
Increasing Interconnection Network
Connectivity for Reducing Operator Complexity

in Asynchronous Vision Systems

Valentin Gies and Thierry M. Bernard

ENSTA, 32 Bd Victor 75015, Paris, France
contact@vgies.com,

http://www.ensta.fr/uer/uei/eng/index.html

Abstract. Due to the restriction of SIMD mode to local operations in
VLSI massively parallel vision chips, using programmable connections
and asynchronous communications are key ingredients to support re-
gional computations. Asynchronism implies using combinatorial multi-
input operators having an important hardware cost. To reduce it, we
propose to use a connection network having a connectivity level greater
than the mesh being mapped. This solution allows to use only 2-inputs
asynchronous operators having a reduced hardware cost in each pixel. Ex-
amples and results will be presented on the examples of the regional sum
algorithm computed over a 4-connectivity squared mesh connected with a
6-connectivity interconnection network, and the regional sum computed
over a 6-connectivity squared mesh connected with a 8-connectivity in-
terconnection network.

1 Introduction

An artificial retina is an image sensor with a processing element (PE) in each
pixel. Such VLSI circuits are also called ”vision chips” [1]. Motivated by the
low power implementation of vision applications, we focus our research [2] on
digital programmable artificial retinas (PAR), for which the PE is a tiny digital
processor called the pixellic processor. The latter allows the on-site processing
of data from the pixel or its neighbors, according to instructions provided by an
external program.

The basic operating mode of a PAR is the SIMD mode (Single Instruction
Multiple Data) : at a given time, the same instruction is simultaneously executed
by each pixellic processor. SIMD mesh arrays for image processing were popular
in the eighties as they allow the efficient implementation of local and shift-
invariant operators (linear filtering, mathematical morphology, ...). But they
were later abandoned due to several drawbacks. Nowadays, SIMD processing
has come back into favor within commercial microprocessors in order to cope
with frequency and power consumption limitations. While PARs fully benefit
from the SIMD low power advantages, they are much less subject to SIMD

E. Andres et al. (Eds.): DGCI 2005, LNCS 3429, pp. 1–10, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 V. Gies and T.M. Bernard

drawbacks than the mesh arrays of the eighties. Still, the SIMD mode is only
well adapted to low-level vision.

Rather than processed images produced by low-level vision operators, a PAR
should ideally output image descriptors, which can only result from higher levels
of vision. These descriptors are based on regions resulting from a segmentation
of the image. These regions need efficient regional operators for manipulating
it. In contrast with neighbor-to-neighbor communications used in PARs for low-
level vision, regional operators need to communicate between sparse and distant
pixels.

Programmable neighbor-to-neighbor connections [3] allow to implement data-
dependant communication networks within the SIMD framework, but with very
poor synchronous performances. In the synchronous case, communication speed
is limited to ”one pixel farther per clock cycle”.

Suppressing the above drawback leads to use asynchronous instead of syn-
chronous communication. Thus PARs have to feature programmable connections
and asynchronous communications and computations to efficiently handle regions.

This paper first presents some existing solutions for computing an exemplary
asynchronous regional task, the ”regional sum” in a 4-connectivity network using
a dedicated asynchronous adder in each pixel. Since this adder cost is prohibitive
for very large scale implementations, we propose a new communication network
based on 6-connectivity reducing the hardware cost of asynchronous operators
by reducing their necessary inputs to the minimum possible. Algorithm for in-
stalling the communication network is presented, a hardware cost comparison is
proposed.

2 Linear Bit-Serial Multi-input Adder

Computing a regional sum implies to collect data from all the pixels of the region.
Collecting and adding these data in one chosen place implies moving data on
long distances. In order to overcome this problem, data must be added locally.
To do this, a possibility is to chain pixels with an adder operator inside the
pixel. The operator will have to add the binary value provided by the preceding
pixel, and the local value. For digital sum computation, bits have to be processed
one after the other, from less significant bit to most significant bit. In this case,
one also has to sum the carry stored in each pixel during the computation of
the preceding bit sum. Finally, the local operator has to be an adder able to
compute the sum of 3 binary inputs. The operator used is a full adder.

The principle of the global addition is explained in fig.1.This solution has been
proposed and implemented by in [4] using dynamically reconfigurable chains of
pixels set by external programming.

2.1 Sum Algorithm

In each processor, the full adder inputs are connected to local binary data (in-
ternal bit and carry) and to the preceding full adder less significant output bit
(usually called the sum bit). The least significant output bit is connected to the

Increasing Interconnection Network Connectivity 3

Fig. 1. Linear bit-serial multi-input adder process

next full adder input in the chain. This bit can also be seen as the parity of the
number of 1’s input to the full adder in that pixel. By associativity of the parity
operator, the result at the end of the chain can be interpreted as the parity of
the number of 1’s among all local binary inputs in the chain (fig.1). This value is
also the least significant bit of the sum of local binary data of the whole region.
To start the regional sum algorithm, the least significant bit of the operand in
each pixel is placed in the internal bit while all carries are reset. The first step is
to run the global combinatorial sum computation and to get the least significant
bit of the sum in the adder at the end of the chain (displayed as a double circled
Sbit0 in fig.1). The second step is to move the most significant bit (called SBit1
in fig.1) of each full adder in the carry bit. Besides, local values corresponding
to the next bit of the operands are loaded in the internal bit of the pixel.
Then, the process is iterated to produce each bit of the sum, as the output of
the processor in the pixel at the end of the chain.

This algorithm computes the regional sum in N combinatorial operations
where N is the number of bits required to represent the sum. These combi-
natorial operations are executed in a synchronous sequence. Since the regional
sum operator is based on the ripple propagation, from pixel to pixel of parity
information from the beginning to the end of the chain, we consider it as an
asynchronous operator.

2.2 Limitations

Although this implementation allows to compute the regional sum quickly, the
main problem is that a chain is a linear structure (cf. fig.2), and it is impossible
to cover arbitrary connected sets of pixels with chains. Figure 3 shows a simple
example of this impossibility. In such a situation, a tree-based bit-serial multi-
input adder is needed instead of a linear one.

Fig. 2. Linear adder Fig. 3. Tree adder

4 V. Gies and T.M. Bernard

3 Tree Bit-Serial Multi-input Adder

The asynchronous algorithm used to compute a sum over an arbitrary shaped
region is an extension of the linear bit-serial multi-input one presented in previ-
ous section. The main difference is the tree structure of the global adder. Such
a structure has been implemented in the Associative Mesh of Orsay [5] [6].

What is a tree? It is a direct acyclic graph [7]. That means there is no loop
(it is impossible to find 2 points connected by more than one direct subgraph)
and there is only one root in it. The acyclic property is needed for using non
idempotent associative operators (such as sum) on a graph [8]. The root is be
used to collect the sum information computed on the graph.

Every pixel in the region is connected to this root through a spanning tree
(fig. 3). As a consequence, inputs of the adder are connected to local binary
data (internal bit and carry) and to all the directly preceding full adder least
significant output bits in the tree. Consecutively, in 4-connectivity, each pixel
different from the root can be connected to up to 3 neighbors as input of the
adder, the fourth one being necessarily connected to the output of the adder.
Taking into account 1 local binary data (both binary local data are added syn-
chronously before the asynchronous sum), a total of 4 binary inputs are needed
for the local adder. A Wallace tree analysis shows that 1 full adders and 2 half
adder are needed to perform this task in a combinatorial way.

The algorithm used to compute the sum is very similar to the one described
in section 2.1. The only difference lies in the number of inputs of the adders.

At this point, one main issue is still remaining : How to install a spanning
tree over a region using a fast enough procedure regardless of the region shape?

3.1 Asynchronous Spanning Tree Installation

A spanning tree cannot be settled efficiently in a synchronous way, because
the number of steps of the algorithm would grow linearly with the geodesic
diameter, and it would take a long time. So, we have to perform this task in an
asynchronous way.

The asynchronous algorithm used is the following one. At initialization, all
connections between pixels of a same region are established. All pixels are in-
active and a root is chosen, deterministically or at random. Then the root is
activated, and communicate its state to the neighbor pixels. Each activated pixel
keeps in memory the connection through which it was activated, and forward its
active state to its neighbors. This process propagates asynchronously through-
out the region until all pixels are active. The oriented spanning tree is obtained
looking at the unique connections used for the activation of each pixel.

As explained before, a spanning tree is a direct acyclic graph, that means each
pixel must have only one antecedent. During the algorithm, a pixel may have to
choose between 2 or more antecedents if they want to activate the considered
pixel at the same time. For this reason a 4 inputs arbiter is needed in each pixel.

Increasing Interconnection Network Connectivity 5

3.2 Tree Bit-Serial Adder Asynchronous Hardware Cost

The different asynchronous components needed to perform regional sum com-
putation and spanning tree installation have been defined before. According to
the specification above, the elementary processor asynchronous part is composed
of a 4-input arbiter (32 transistors), a 4-input adder(44 transistors), and 6 pro-
grammable connections (necessary for choosing 3 out of 4 inputs). The hardware
cost of the asynchronous part is finally 82 transistors. Such an important cost is
worth being reduced for a VLSI implementation.

4 Network Topology for Regional Sum Computation
over a 4-Connectivity Region

Asynchronous dedicated operators used for sum computation are expensive mostly
because they have 4 inputs. To cut this transistor expense, a lighter structure
is desirable. When looking at an example of computing network, we notice that
most of the cells exploits their 4-input convergent operators as simple 1-input
operators only. This is a waste of resources. Is there any way to better distribute
the network, that allows the use of k-input convergent operators with k smaller
than 4?

First, let’s recall that k = 1 corresponds to 1-input operators and is therefore
insufficient. What about using a 2-input asynchronous operator? Let’s call it a
2-input convergent operator. Let’s consider a computation network over a region
with m pixels. Connecting these m pixels together in a tree structure requires
exactly m−1 operators, convergent or not. How to settle them among m pixels?
Only one 2-input convergent operator in each pixel could be enough. There are 2
main issues for implementing such a structure. The first one is the network topol-
ogy needed to implement it, the second one is how to install the spanning tree.

4.1 Network Topology

We recall that a 4-connectivity network combined with the use of 2-input con-
vergent operators is insufficient to set-up a network over an arbitrary shaped
region. Let’s consider a cross-shaped region of 5 pixels, such a region is an ex-
ample of this impossibility (Fig. 5). A solution is to increase the connectivity
level used. An 8-connectivity interconnection network could be an obvious solu-
tion to the problem, allowing vertical, horizontal and both diagonal connections.
However, the hardware cost would be rather expensive. A better solution is to
use 6-connectivity and 2-input convergent operators. First, let’s show that this
solution fits our needs. For this, let’s consider the pixel matrix as a hexagonal
mesh (Fig. 4). Thanks to hexagonal mesh properties, an arbitrary pixel config-
uration can be connected with only 2-input convergent operators. For example,
installation of a spanning tree using only 2-input convergent operators over a
5 pixels cross-shaped region is proposed (Fig. 5),whereas it was impossible to
map in 4-connectivity. 6-connectivity is the lowest connectivity level allowing the
connection of an arbitrary shaped region into a tree structure with only binary

6 V. Gies and T.M. Bernard

Fig. 4. Transformation from square to hexagonal mesh

Fig. 5. Spanning tree over a cross-shaped region

operators, and it leads to the lowest possible hardware cost using asynchronous
computation operators.

4.2 Asynchronous Spanning Tree Installation

Using 4-inputs convergent operators, installation of a spanning tree is a rather
simple task. Starting from a fully connected network, a signal propagates from
the tree root through the network until all pixels have been reached (cf. 3.1).
Using 2-inputs convergent operators, this task is much more difficult because
at the initialization of the algorithm, each pixel can be connected to 2 pixels
only, and not to all its neighbors. Connecting all the neighbors is something
simplifying the construction of the spanning tree but fortunately it is not really
necessary. One as only to ensure that propagation starting from one pixel will
reach all the other pixels of the region. That means every pixel of the region has
to be connected to all other pixels. Such a region is called a strongly connected
component (SCC). The issue is how to build a SCC in 6-connectivity using only
2-inputs convergent operators.

Algorithm Principles. A way to solve this problem is to connect all the
boundary pixels of the region into a clockwise oriented chain and then to connect
all the pixels not connected yet and the boundary rings together. Fig.6 shows the
original region on the top, and its corresponding hexagonal representation after
the initialization of the connections on the bottom. As explained before, pixel
inputs are connected to a maximum of 2 other pixels. According to this connec-
tion method, boundary pixels are connected in a SCC (a ring is a simple SCC),
and other pixels are added to the SCC thanks to bi-directional connections, this
ensuring them to be part of the SCC.

The final step of the proposed method is to extract a spanning tree from the
SCC by propagating a token from the root as explained before in section 3.1.

Algorithm for Connecting a SCC. The algorithm used is very simple, and
can performed in a very cheap and fast synchronous way. Initialization of the con-
nections can be done by only considering 6 local pixel configurations as described

Increasing Interconnection Network Connectivity 7

Region being connected Corresponding hexagonal region
with connections initialized

Spanning tree
obtained

Fig. 6. Example of spanning tree installation using a 6-connectivity interconnection
network and 2-inputs convergent operators over a 4-connectivity region

in Fig. 7. Configurations 1 to 6 are used for connecting boundary pixels. Config-
urations 5 and 6 also allow to connect all other pixels diagonally. In the different
configurations of , the pixel to connect is double-circled. Black pixels are
pixels belonging to the region while white ones are pixels outside the region.

An important fact is the non-isotropy of the local transformation. Configura-
tion 5 and 6 are not rotated versions of configurations 1 and 2 or 3 and 4. This
is a consequence of mapping a 4-connectivity square mesh onto an hexagonal
network. Instead of configurations 5 and 6, using a 2π/3 rotated versions of con-
figurations 1 and 2 would lead to connect diagonal configurations of pixels not
connected in a 4-connectivity squared mesh. Actually, the diagonal connection,
not present in 4-connectivity, is used here for establishing all the non-boundary
connections.

(a) Config. 1 (b) Config. 3 (c) Config. 5

(d) Config. 2 (e) Config. 4 (f) Config. 6

Fig. 7. Local configurations for SCC initialization in 4-connectivity using a 6-
connectivity interconnection network

Fig. 7.

8 V. Gies and T.M. Bernard

Validity of the Algorithm. Having presented the principles and operation of
the algorithm, let’s demonstrate its validity. By construction, all pixels are con-
nected in a same SCC. By construction, all pixels of a same region are connected
into one SCC. The only point to check is that pixel inputs do not have to be
connected to more than 2 neighbor pixels, to allow the use of 2-inputs operators.

As shown in Fig.7, each configuration sets-up one input connection. We have
to verify that if a pixel neighborhood corresponds to 2 configurations, all the
other configurations are false. For this let’s consider the mutual exclusions of the
configurations. Configuration 1 excludes configuration 3 and 5. Configuration
3 excludes 1 and 5, and configuration 5 excludes 1 and 3. Finally only one
odd-numbered configuration can be true at one time. It is the same for even
configuration. Only one even configuration can be true for a given neighborhood.
There are no exclusions between odd and even configurations. Finally, a pixel
neighborhood can only match one even and one odd configuration. That means
a maximum of 2 configurations can be valid at one time, and maximum 2 input
connections will be set-up in the pixel.

Performance of the Algorithm. The proposed algorithm for initializing the
SCC can be performed very efficiently in a synchronous non-iterative way. This
allows using this algorithm on a massively parallel synchronous machine having
only limited resources for synchronous computation. There is no hardware ded-
icated to the spanning tree initialization task, which means that the reduction
of hardware cost due to the use of 2-input convergent operators does not imply
additional costs for installing the spanning tree.

4.3 Hardware Reduction

Using 6-connectivity connections over a squared mesh allows to reduce the hard-
ware cost dedicated to asynchronous regional sum to one 2-input arbiter (8
transistors) and one 3-inputs adder (20 transistors) in each pixel. 3 inputs are
necessary for the adder : one for the local bit, and two for the neighbor connec-
tions. However, the necessary number of programmable connections increases. 2
out of 6 neighbors have to be connected at one time. Consequently, the minimal
number of programmable connections necessary is 5 connections for each input.
Finally, the number of transistors needed is 8 + 20 + 10 = 38 transistors.

44 transistors are saved in each pixel by using a 6-connectivity topology. This
leads to a reduction of 54% of the asynchronous hardware expense. However, the
algorithmic capabilities are remaining the same.

5 Network Topology for Regional Sum Computation
over a 6-Connectivity Region

5.1 Network Topology

Increasing the connectivity level of the interconnection network for reducing
hardware cost of regional computation using only 2-input convergent operators

Increasing Interconnection Network Connectivity 9

Fig. 8. Transformation from squared to hexagonal 8-connectivity mesh

(a) Config. 1 (b) Config. 3 (c) Config. 5 (d) Config. 7

(e) Config. 2 (f) Config. 4 (g) Config. 6 (h) Config. 8

Fig. 9. Local configurations for SCC initialization in 6-connectivity using a 8-
connectivity interconnection network

can be extended to 6-connectivity meshes. A 8-connectivity interconnection net-
work is used. The interconnection network will be represented in a squared mesh
because as shown in Fig. 8, in a squared mesh, a 8-connectivity neighborhood
is more regular (central symmetry) than in a hexagonal mesh (only 2 axial
symmetries).

The principles of the algorithm remain the same as in 4-connectivity. Bound-
ary pixels are connected into a clockwise oriented chain and non-boundary pix-
els are connected to the SCC formed by the boundary ring using a synchronous
algorithm (cf. Fig. 9).There are 8 configurations to consider for setting the inter-
connection network. All theses configurations are used for connecting boundary
pixels. Configurations 1 and 2 are also used for connecting non-boundary pixels
to the boundary ring. With the proposed algorithm, an 6-connectivity network
can be connected using 2-input convergent operators.

5.2 Hardware Reduction

Using an 8-connectivity interconnection network over a 6-connectivity hexagonal
mesh allows to reduce the hardware cost dedicated to asynchronous regional sum
to one 2-input arbiter (8 transistors) and one 3-inputs adder (20 transistors) in

10 V. Gies and T.M. Bernard

each pixel. 3 inputs are necessary for the adder : one for the local bit, and two for
the neighbor connections. Considering interconnections, 2 out of 8 neighbors have
to be connected at one time. Consequently, the minimal number of programmable
connections necessary is 7 connections for each input. Finally, the number of
transistors needed is 8 + 20 + 14 = 42 transistors.

Using 7-input asynchronous adders and 6-input arbiters leads to an hardware
cost of 156 transistors (72 for the adder and 84 for the arbiter). Finally, 114 are
saved in each pixel by using a 8-connectivity interconnection network. This leads
to a dramatic reduction of 73% of the asynchronous hardware expense, without
lowering algorithmic capabilities.

6 Conclusion

We first presented implementations for regional sum computation through sub-
sets of pixels in the image. After evaluating the hardware cost of dedicated
operators needed for computing the sum asynchronously, we proposed using a
6-connectivity interconnection network and 2-input operators for reducing the
hardware cost of asynchronism in 4-connectivity squared meshes. This leads to a
important reduction of more than half the original transistor cost. The reduction
is even more important (73%) when using an 8-connectivity interconnection net-
work and 2-input convergent operators for mapping 6-connectivity region. Such
a reduction offers an opportunity for achieving a dense large scale implementa-
tion of this circuit. Such an implementation is now on its way, and will lead to
a vision chip allowing to perform medium level image processing.

References

1. Moini, A.: Vision Chips. Kluwer Academic Publishers, ISBN: 0-7923-8664-7 (2000)
2. Paillet, F., Mercier, D., Bernard, T.: Second generation programmable artificial

retina. In: IEEE ASIC/SOC Conf. (1999) 304–309
3. Li, H., Stout, Q.: Reconfigurable Massively Parallel Computers. Prentice-Hall,

Englewood Cliffs, NJ (1991)
4. Komuro, T., Kagami, S., Ishikawa, M.: A dynamically reconfigurable simd processor

for a vision chip. IEEE Journal of Solid-State Circuits 39 (2004) 265–268
5. Merigot, A.: Associative nets: A graph-based parallel computing net. IEEE Trans-

actions on Computers 46 (1997) 558–571
6. Dulac, D., Mohammadi, S., Merigot, A.: Implementation and evaluation of a parallel

architecture using asynchronous communications. In: CAMP. (1995) 106–111
7. Ducourthial, B., Merigot, A.: Graph embedding in the associative mesh model.

Technical Report TR-96-02 (1996)
8. Ducourthial, B., Mérigot, A.: Parallel asynchronous computations for image analy-

sis. Proceedings of the IEEE 90 (2002) 1218–1228

	Introduction
	Linear Bit-Serial Multi-input Adder
	Sum Algorithm
	Limitations

	Tree Bit-Serial Multi-input Adder
	Asynchronous Spanning Tree Installation
	Tree Bit-Serial Adder Asynchronous Hardware Cost

	Network Topology for Regional Sum Computation over a 4-Connectivity Region
	Network Topology
	Asynchronous Spanning Tree Installation
	Hardware Reduction

	Network Topology for Regional Sum Computation over a 6-Connectivity Region
	Network Topology
	Hardware Reduction

	Conclusion

