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1 M o t i v a t i o n s  

The ~r-calculus is a development of CCS where names (a synonymous for "chan- 
nels") can be passed around. This permits the description of mobile systems, 
i.e., systems whose communication topology can change dynamically. 

Name communication gives ~r-calculus a much greater expressiveness than 
CCS. For instance, in the 7r-calculus there are simple and intuitive encodings for: 
Data values [MPW92, Mi191], agent-passing process calculi [Tho90, San92] (i.e., 
calculi where terms of the language can be exchanged), the )~-calculus [Mi192], 
certain concurrent object-oriented languages [Jon93, Wa195], the locality and 
causality relations among the activities of a system, typical of true-concurrent 
behavioural equivalences [BS95]. In CCS, the modelling of such objects is possible, 
at best, in a clumsy and unnatural  way - -  for instance making heavy use of 
infinite summations. 

But research has also showed that  the ~r-calculus has a much more complex 
mathematical  theory than CCS. This shows up in: 

- The operational semantics. Certain transition rules of the ~r-calculus are hard 
to assimilate. 

- The definition of bisimulation. Various definitions of bisimilarity have been 
proposed for the 7r-calculus, and it remains unclear which form should be 
preferred. Moreover, most of these bisimilarities are not congruence relations. 

- The axiomatisations. The axiomatisations of behavioural equivalences for 
the 7c-calculus - -  and in particular the proof of the completeness of the 
axiomatisations - -  is at least one order of magnitude more complicated than 
the corresponding axiomatisations for CCS. 

- The construction of canonical normal forms. In general we do not know how 
to transform a ~r-calculus process P into a normal form which is unique 
for the equivalence class of P determined by the behavioural equivalence 
adopted. 

In CCS, these problems are well-understood and have simple solutions [Mi189, 
BK85, DKV91]. 

There is, therefore, a deep gap between CCS and ~r-calculus, in terms of 
expressiveness and mathematical theory. The main goal of the paper is to explain 
this gap and to examine whether there are interesting intermediate calculi. For 
instance, are the complications of the theory of the 7r-calculus w.r.t, that  of CCS 
an inevitable price to pay for the increase in expressiveness? 
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We shall isolate and analyse one such intermediate calculus, called ~rI. This 
calculus appears to have considerable expressiveness: Data values, the lambda 
calculus, agent-passing calculi, the locality and causality relations of true-concurrent 
behavioural equivalences can be modelled in 7rI much in the same way as they 
are in the ~-calculus. But, nevertheless, the theory of ~rI remains very close to the 
theory of CCS: Alpha conversion is, essentially, the new ingredient. To obtain 7rI, 
we separate the mobility mechanisms of the ~r-calculus into two, namely internal 
mobility and external mobility. The former arises when an input meets a bound 
output, i.e., the output of a private name; the latter arises when an input meets 
a free output, i.e., the output of a known name. In ~I only internal mobility 
is retained -- the free output construct is disallowed. A pleasant property of 
~I is the full symmetry between input and output constructs. The operators 
of matching and mismatching, that in the 7c-calculus implement a form of case 
analysis on names and are important in the algebraic reasoning, are not needed 
in the theory of 7d. 

Sections 2-4 are devoted to introducing ~I and its basic theory. The encoding 
of the A-calculus into ~I is studied in Section 5: It is challenging because all 
known encodings of the A-calculus into 7r-calculus exploit, in an important way, 
the free-output construct, disallowed in 7rI. We sketch the comparison between 
~rI and agent-passing calculi in Section 6. There is an exact correspondence, in 
terms of expressiveness, between a hierarchy of subcalculi of ~rl and a hierarchy 
of agent-passing calculi obtained from the Higher-Order Tr-calculus [San92]. The 
definitions of two hierarchies rely on the order of the typing systems of ~I and 
of the Higher-Order ~-ealculus. 

In this short version of the paper, the presentation is kept rather informal; 
for technical details and proofs, we refer to the full version [San95]. 

Acknowledgements. I have benefited from discussions with Gerard Boudol, 
Claudio Calvelli, Robin Milner, David Turner and David Walker, and from the 
comments of the anonymous referees. This research has been supported by the 
Esprit BRA project 6454 "CONFER". 

2 T h e  c a l c u l u s  ~'I 

In this section we introduce (the finite part of) 7rI. We examine the move from 
7r-calculus to ~rI from three different angles: First, our guiding criterion is sym- 
metry; then we take into account the mobility mechanisms; finally, we focus on 
the algebraic theory. There are not compelling reasons for wanting symmetry: 
Our major motivation is elegance, which will show up in the presentation of the 
calculus and of its properties. 

Throughout the paper we use a tilde (~) to denote a finite and possibly empty 
tuple. All notations are extended to tuples componentwise. 

2.1. Looking for s y m m e t r y :  From Tr-calculus to zrI We shall derive 
the grammar for ~rI from the one below, which collects the principal operators 
of the 7r-calculus, namely guarded sum, parallel composition and restriction. 
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Symbols x, y, z , . . .  will range over the infinite set of names; P, Q and R will be 
metavariables over processes; prefixes, ranged over by c~, can be of the form 7- 
(silent prefix), x(y) (input prefix), or (free-output prefix): 

P : : = ~ , ~ e , c ~ . P ~  [ P I P  I u x P  

I is a finite indexing set; if I is empty, we abbreviate  the sum as 0. As usual, + 
is binary sum. Sometimes, we shall write a l .  P1 + . . .  + c~,~. P~ for ~-~l<i<~ c~. Pi. 

An input prefix x(y). P and a restriction v y P bind all free occurrences of 
name y in P. Free and bound names of processes and of prefixes, and alpha 
conversion are defined as expected, p{x/y} denotes the substi tution of x for y in 
P,  with renaming possibly involved to avoid capture of free names. In examples, 
the object par t  of prefixes will be omit ted if not important .  A process c~. 0 
will often be abbreviated as a,  and v xx . . .  v x~ P as v X l , . . . ,  x~ P.  Sum and 
parallel composition will have the lowest syntactic precedence; substi tution the 
highest. 

The g rammar  above does not mention the match and mismatch operators,  
writ ten [x = y]P and [x•y]P, respectively. The former means: "if x equal to y, 
then P" ;  the lat ter  means "if x different from y, then P ' .  Match and mismatch 
are often included in the u-calculus, mainly because very useful in the algebraic 
theory. But  they will not be needed in the algebraic theory of ~I, as shown in 
Section 3. 

We wish to make two remarks about  the ~-calculus language above pre- 
sented. The first regards the asymmet ry  between the input and output  con- 
structs, namely x ( y ) . -  and ~ y . - .  The asymmet ry  is both  syntactic - -  the 
input is a binder whereas the output  is not - -  and semantic - -  in an input any 
name can be received, whereas in an output  a fixed name is emitted. The second 
remark regards a derived form of prefix, called bound output, written g(y) as an 
abbreviat ion for v y ~y. Bound output  plays a central role in ~-calculus theory, 
for instance in the operational semantics and in the axiomatisation. In the op- 
erational semantics, bound output  is introduced in the 0P~N rule, one of the of 
the two rules for restriction: 

p ~ p 1  
O P E N  : x ~ y.  

v y P 5(Yl P~ 

(We can make an analogy between bound output  and silent prefix: Both can 
be viewed as derived operators  - -  7 .P  as abbreviat ion for v x  ( x . P ] ~ ) ,  for 
some x not free in P;  and both  are needed in the operational semantics and 
axiomatisations.) 

Having noticed the importance of bound output,  we can reasonably add it 
to the g rammar  of prefixes: 
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The new syntax still contains asymmetries: First, the free-output construct has 
no input counterpart.  Second, input and bound output,  although syntactically 
similar - -  both are binders - -  are semantically very far apart ,  as revealed by 
the interactions they can participate in: Any name can be received through an 
input, whereas only a fresh name can be emitted through a bound output.  

We move to ~I by eliminating the free output  construct. 

D e f i n i t i o n  I ( f in i te  ~I) .  The class of finite ~I processes is described by the 
following grammar: 

P::=E,cI~,.P~ [ P I P  l v x P  

::= I x(y) I 

In 7rI, the input and output  constructs are truly symmetric: Since only out- 
puts of private names are possible, an input x(y). P means "receive a fresh name 
at x",  which is precisely the dual of the output  E(y). P.  Indeed, we can define an 
operation "dual"  which transforms every output  into an input and vice versa: 
The symmetry of the calculus is then manifested by the fact that  dua l  commutes 
with the transition relation (Lemma 2). 

2 .2 .  I n t e r n a l  a n d  e x t e r n a l  m o b i l i t y  Above, the motivation to the intro- 
duction of ~rI was symmetry. A more pragmatic motivation is given here. 

What  distinguishes 7r-calculus from CCS is mobiSty, that  is, the possibility 
that  the communication linkage among processes changes at run-time. In the 
vr-calculus there are two mechanisms to achieve mobility, which are embodied 
in the two communication rules of the calculus (usually called coM and CLOSE). 
Accordingly, we can distinguish between two forms of mobility, internal mobility 
and external mobility. Internal mobility shows up when a bound output  meets 
an input, for instance thus: 

~(Y).P I x (y ) .Q  ~ v y ( P  I Q).  

Two separate local (i.e., internal) names are identified and become a single local 
name. The two participants in the interaction, 5(y). P and x(y). Q, agree on the 
bound name; for this, some alpha conversion might have to be used. The interac- 
tion consumes the two prefixes but  leave unchanged the derivatives underneath.  
With internal mobility, alpha conversion is the only form of name substitution 
involved. 

External  mobility shows up when a free output  meets an input, for instance 
thus: 

-2y. P ] x(z). Q ~-~ P ] Q{y/z}. 

Here, a local name gets identified with a free (i.e., external) name. In this case, 
alpha conversion is not enough: Name y is free, and might occur in Q; hence 
in general z cannot be alpha converted to y. Instead, a substitution must be 
imposed on the derivatives so to force the equality between y and z. 

In :rI, only internal mobility is present. Studying 7rI means examining in- 
ternal mobility in isolation, and investigating its impact on expressiveness and 
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mathemat ica l  theory. From the experimentat ion tha t  we have conducted so far, 
it appears  tha t  internal mobility is responsible for much of the expressiveness of 
the ~r-calculus, whereas external mobility is responsible for much of the semantic 
complications. Some evidence to this will be given in the remaining sections. 

2 .3 .  S o m e  a d v a n t a g e s  o f  t h e  t h e o r y  o f  7cI Through examples, we show 
a few weaknesses of the theory of the ~r-calculus, and we show why they do not 
arise in 7rI. 

Below, ~ denotes ~r-calculus original bisimilarity, as in [MPW92]; it is some- 
times called late bisimilarity. (The examples we use are rather  simple, so we do 
not need to recall the definition of ~ . )  Consider the ~r-calculus process x l Y, 
where x and y are different names. We can rewrite it as follows, using expansion: 

x l ~ ~ ~ x . y + y . x .  (1) 

However, this equality can break down underneath an input prefix: 

z(x). (x I~) #~ z(x). (x.~ + ~. x) .  (2) 

The process on the left-hand side can receive y in the input and become y l Y, 
which then can terminate  after a silent step. This behaviour is not matched by 
the process z(x). (x. ~ + ~. x), which, upon receiving y, can only terminate  after 
two visible actions. 

To have a fully-substitutive equality, some case analysis has to be added to 
the expansion (1), by means of the match operator:  

x ]~ ~ x . ~ + ~ . x  + [x = y]~-. 

The third summand allows a 7- if x and y are the same name. This equality can 
now be used underneath a prefix: 

z(x). (x I ~) ~~ z(x). (x. ~ + ~. x + [~ = y]~). 

The above discussion outlines two important  points: First, ~-calculus bisimilarity 
is not preserved by input prefix; second, to get congruence equalities some case 
analysis on names might be needed. In the above example, one level of case 
analysis was enough, but for more complex processes it can be heavier; the 
mismatch operator  might be needed too. In general, if in the ~-calculus we wish 
to manipulate  a subcomponent  P of a given process algebraically, then we cannot 
assume tha t  the free names of P will always be different with each other: By 
the t ime the computat ion point has reached P,  some of these names might have 
become equal. Therefore we have to take into account all possible equalities and 
inequalities among these names; if they are n, then there are 2 '~ cases to consider. 

These inconvenients do not arise in ~I. Bisimilarity is natural ly a full congru- 
ence, and no case analysis on names is required. For instance, consider processes 
x l~ and x. ~ + ~. x in (1), and let ~ be ~I bisimilarity. As in the ~-calculus, so in 
~I the two processes are bisimilar; but,  unlike the ~-calculus, their bisimilarity 
is preserved by input prefix: 

z(x). (~ I ~) ~ z(x). (x. ~ + ~. x) . 
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This because in ~I only fresh names are communicated,  hence the free name y 
can never be received in an input at z. The absence of case analysis explains 
why match  has not been included among the ~I operators.  

Besides late bisimilarity, other formulations of bisimilarity for the ~-calculus 
have appeared in the l i terature (see [FMQ94]), and it is far from clear which 
one should be preferred. (Some of these relations are full congruences, but  all 
require the case analysis on names mentioned before.) The differences among 
these bisimilarities are due to the different interpretat ion of name substi tution 
in an input action. The choice is about  when should such a substi tution be 
made: For instance immediately, in the input rule, or later, in the communicat ion 
rule, or only when the name received is needed. The choice affects the resulting 
behavioural  equivalence, since a substi tution can change the relationships of 
equality or inequality among names. In 7rI, a lpha conversion is the only form of 
name substi tution needed. Alpha conversion is semantically harmless, because 
it does not change the equalities and inequalities among names; hence in ~I the 
bisimilarity relation is unique. 

3 Basic  theory  of  7rI 

We consider the basic theory of ~I: Operational semantics, bisimilarity, axioma- 
tisation, construction of canonical normal forms. In all these cases, a clause for 
alpha conversion represents the only difference w.r.t, the theory of CCS. An ex- 
ception to this is the appearance of a restriction in the communication rule for 
7rI. 

3.1. Operational semantics and bisimilarity We write ~ for the comple- 
mentary of ~; that is, if a = x(y) then ~ = E(y), if a = E(y) then ~ = x(y), and 
if ~ = r, then ~ = c~. We write P -~ Q if P and Q are alpha convertible. We 
write fn(P), bn(P) (resp. fn((~), bn((~)) for the free names and the bound names 

of P (resp. c~): The names of P or c~, written n(P) and n(~), are the union of 

their free and bound names. Table 1 contains the set of the transition rules for 
~I. We have omitted the symmetric of rule PAR. The only formal difference w.r.t. 
the set of rules for CCS is the presence of the alpha conversion rule and the gen- 
eration of a restriction in the communication rule. Unlike the ~-calculus, there is 
only one rule for communication and one rule for the restriction operator. Note 
that the alphabet of actions is the same as the alphabet of prefixes. We call a 
transit ion P ~ > p i  a reduction. 

We define an operation dua l  which complements all visible prefixes of a ~I 
process: If P C 7rI, then P is obtained from P by transforming every prefix 
into the prefix ~. Operat ion dua l  can be defined on ~I because of its syntactic 
symmetry.  The following lemma shows tha t  the symmet ry  is also semantic. 

L e m m a  2. I f  .P --%+ pr, then -P -~ ) p-7. [] 

Note tha t  since P = P ,  the converse of Lemma 2 holds too. 



178 

ALPHA: 

PAR: 

C0M: 

P =~ p '  p '  --%+ p "  
p --% p, '  

p, p - - - +  
if bn(o 0 A fn(Q) = (a 

PiQ --~ P, iO 

P ~ P '  Q - ~  Q' for ~ # r , x - - - b n ( o ~ )  
P I q  -:-* ~ ( P ' l q ' )  

PB.E: 0'. P -----4 P 

p, p - - - - ,  
RES: 

u x P  ~ u x P '  

p; _2~ p:, i 6 I 
SUM: 

if x r n(c~) 

Table  1. The transition system for ~I 

D e f i n i t i o n  3 0 r I  s t r o n g  b i s i m i l a r i t y ) .  Strong bisimilarity is the largest sym- 

metric relation ,-~ on 7rI processes s.t. P ,-~ Q and P ~ P ' ,  with bn(a )Nfn(Q)  = 

, imply tha t  there is Q'  s.t. Q - %  Q' and P'  ,., Q'. 

By contrast  with 7rI bisimilarity, in ~r-calculus bisimilarity [MPW92] the 
clauses for input and output  must  be distinguished, the reason being tha t  input 
and output  are not symmetric.  

Lemmas 4 and 5 are technical results useful to deal with the alpha convert- 
ibility clause on processes and transitions. Lemma 5 shows tha t  bisimilarity is 
preserved by injective substitutions on names. 

L e m m a  4. I f  P - ~  Q, then P ~., Q. [] 

L e m m a  5. I f  y ~_ fn(P ) , then for all x, P ,,~ Q implies P { y/x } ,~ Q { y/x } . [] 

Propos i t i on  6 (congruence  f o r  ~ ) .  Strong bisimilarity is a congruence. 

PROOF: By showing tha t  it is preserved by all operators  of the language. Each 
case is simple. For instance, for prefixes, one shows tha t  {(a. P, a.  Q)} u ~ is a 

strong bisimulation. The move a.  P " ) P is matched by a. Q " ) Q; this is 
enough even if a is an input prefix, since no instantiation of the bound name is 
required. [] 

Weak transitions and weak bisimilarity, writ ten ~ ,  are defined in the ex- 
pected way. As strong bisimilarity, so weak bisimilarity is preserved by all oper- 
ators of the language3 

3 .2 .  A x i o m a t i s a t i o n  We show a sound and complete axiomatisat ion for 
strong bisimilarity over finite ~rI processes. 

To have more readable axioms, it is convenient to decompose sums ~ e / c r  P~ 
into binary sums. Thus we assume that  sums are generated by the g rammar  

M : = M + N  [ c~.P [ O. 

1 The congruence is not broken by sum because of the guarded form of our sums. 
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We let M, N, L range over such terms. The axiom system is reported in Table 2; 
we call it A. We write A F P = Q if P = Q can be inferred from the axioms 
in A using equational reasoning. 

Alpha-convers ion:  If P and Q alpha-convertible then P -- Q 

Summat ion :  M + 0 = M M-I- N = N + M 

M + ( N + L i = ( M + N ) + L  M + M = M  

Restr ict ion:  if, for all i E I, x r n(~,) then u x ( ~  ~ .  Pi) = Y']~i (~i" u x P~ 

if x is the subject of c~ then v x ( M + c ~ . P )  = v x M  

Expansion: 

Assume that P -- ~ c~,.Pi and Q -- ~ j  fly. Qs, and that for all i and j with 
c~, fis 7 ~ ~, it holds that bn(~i) -- bn(flj) ---- x ~ fn(P, Q). Then infer 

P I Q =  ~-~,c~'(P~]Q)+ ~-~fih'(PIQh) + ~ ~'ux(P, lQ3) 
3 o~ z o p p  ~ j  

where c~i opp f13 holds if ~ = fi~. 

Table 2. The axiom system for finite 7rI processes 

Theorem 7 (soundness and completeness).  P ~ Q iff ,4 F- P = Q. [] 

Omitting the axiom for alpha conversion and the bound name x in the ex- 
pansion scheme, the axioms of Table 2 form a standard axiom system for strong 
bisimilarity of CCS. Also the proofs of soundness and completeness for the 7rI 
axiomatisation are very similar to those for CCS [Mi189]. For instance, as in 
CCS, so in the completeness proof for 7rI a restriction can be pushed down into 
the tree structure of a process until either a 0 process is reached, or a 0 process is 
introduced by cutting branches of the tree, and then the restriction disappears. 

The proof of completeness of the axiomatisation [San95] exploits a transfor- 
mation of processes to normal forms, that  is tree-like structures built from the 
operators of sum, prefixing and 0. Then the axioms for commutativity, asso- 
ciativity and idempotence of sum, and alpha conversion can be used to obtain 
canonical and minimal representatives for the equivalence classes of ,,~. Again, 
this mimics a well-known procedure for CCS. 

4 E x t e n d i n g  t h e  s i g n a t u r e  o f  t h e  f i n i t e  a n d  m o n a d i c  r r I  

4 .1 .  In f in i t e  p r o c e s s e s  To express processes with an infinite behaviour, we 
add recursive agent definitions to the language of finite 7rI processes. We assume 
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a set of constants, ranged over by D, each of which has a non-negative arity, 
and add the production 

P ::= D(~'} 

to the grammar of Definition 1. It is assumed that  each constant D has a unique 

defining equation of the form D de__f (5) P.  Both in a constant definition D de=f 
(5) P and in a constant application D(~), the parameter  5 is a tuple of all distinct 
names whose length equals the arity of D. 

The constraint that  the actual parameters 5 in a constant application should 
be distinct - -  normally not required in the 7r-calculus - -  ensures that  alpha con- 
version remains the only relevant form of name substitution in ~rI. The transition 
rule for constants is: 

p ~ p ,  
i f  D d__ef (y~ Q and (y--) Q - ~  (5) P .  

4 .2 .  P o l y a d i c i t y  The calculi seen so far are monadic, in that  precisely one 
name is exchanged in any communication. We extend these calculi with polyadic 
communications following existing polyadic formulations of the :r-calculus [Mil91]. 
The operational semantics and the algebraic theory of the polyadic 7rI are straight- 
forward generalisations of those of the monadic ~rl, and will be omitted. 

The syntax of the polyadic 7rI only differs from that  of the monadic calculus 
because the object part  of prefixes is a tuple of names: 

Names in ~" are all pairwise different. When ~ is empty, we omit the surrounding 
parenthesis. 

As in the r-calculus [Mil91, section 3.1], so in 7rI the move to polyadicity 
does not increase expressiveness: A polyadic interaction can be simulated using 
monadic interactions and auxiliary fresh names. 

4 .3 .  T y p i n g  Having polyadicity, one needs to impose some discipline on names 
so to avoid run-time arity mismatchings in interactions, as for x(y). P l~(y, z). Q. 
In the 7r-calculus, this discipline is achieved by means of a typing system (in the 
literature it is sometimes called sorting system; in this paper we shall prefer the 
word "type" to "sort"). A typing allows us to specify the arity of a name and, 
recursively, of the names carried by that  name. The same formal systems can be 
used for the typing of 7rI. (However, the typed ~rI enjoys a few properties which 
are not true in the typed 7r-calculus; one such property is that  the by-structure 
and by-name definitons of equality between types [PS93] coincide.) We shall not 
present the type system here; an extensive t reatment  is in [San95]. 

4 .4 .  R e c u r s i o n  ve r su s  r e p l i c a t i o n  Some presentations of the ~r-calculus 
have the replication operator in place of recursion. A replication ! P stands for 
an infinite number of copies of P in parallel, and is easily definable in terms 
of recursion. The typing system of :rI, as well as that  of the 7r-calculus, allows 
recursive types. However, if in 7rI recursion is replaced by replication, then all 
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processes can be typed without the use of recursive types. Start ing from this 
observation, in [San95] we show tha t  recursion cannot be encoded in terms of 
replication. This contrasts with the ~r-calculus, where recursion and replication 
are interdefinable [Mil91]. 

5 T h e  e n c o d i n g  o f  t h e  A - c a l c u l u s  

~rl appears to have considerable expressiveness. We have examined various non- 
trivial applications, which include the encodings of values and data structures, 
the A-calculus, agent-passing calculi, and the locality and causality relations 
among actions of processes. Values and data structures can be modelled in ~I 
in the same way as they are in 7r-calculus: The 7r-calculus representations given 
by Milner [Mil91, Sections 3.3., 6.2 and 6.3] only utilise the ~I operators. Also, 
the encodings of locality and causality into 7~-calculus in (see [BS95]) can be 
easily adapted to ~I. More interesting is the encoding of the A-calculus and of 
agent-passing calculi. We look at the A-calculus here, and sketch the study of 
agent-passing calculi in Section 6. 

In this section, M, N , . . .  are A-calculus terms, whose syntax is given by 

M : = x  I Ax .M ] M M  

where x and y range over A-calculus variables. In Abramsky ' s  lazy lambda cal- 
culus [Abr89], the redex is always at the extreme left of a term. There are two 
reduction rules: 

M ~ M  ~ 
b e t a :  ( A x . M ) N ~ M { N / x } ,  app-L:  

M N  ~ M~N 

We first encode the linear lazy A-calculus, in which no subterm of a t e rm may 
contain more than one occurrence of x, for any variable x. We begin by recalling 
Milner's encoding C into the 7v-calculus. Then we describe the changings to be 
made to obtain an encoding P into 7rI. Both encodings are presented in Table 
3. The core of any encoding of the A-calculus into a process calculus is the 
translat ion of function application. This normally becomes a part icular  form of 
parallel combination of two agents, the function and its argument;  beta-reduction 
is then modeled as process reduction. 

Let us examine C. In the pure A-calculus, every te rm denotes a function. 
When supplied with an argument ,  it yields another  function. Analogously, the 
translat ion of a A-term M is a process with a location p. It  rests dormant  until 
it receives along p two names: The first is a trigger x for its argument  and the 
second is the location to be used for the next interaction. The location of a t e rm 
M is the unique por t  along which M interacts with its environment.  Two types 
of names are used in the encoding: Location names, ranged over by p, q and r, 
and trigger names, ranger over by x, y and z. For simplicity, we have assumed 
tha t  the set of trigger names is the same as the set of A-variables. More details 
on this encoding and a s tudy of its correctness can be found in [Milgl, San92]. 
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The encoding into r-calculus; ~(x)p.-  is an output  prefix at r in which the private 
name x and the free name p are emitted.  

CiAx.M]v clef p( x, q). C[M]q 

C[M N]p def  = vr(C[M]~ [?(x)p.x(q).C[g]q) x fresh 

The encoding into 7rI: 

P[ax.M]p %f ~(w). w(x, q). PlM]~ 

P[X]p d e_f N(r). r'--+ p 

P[MN]p clef/9' r (79[M]r [ r(w). ~(x, q'). (q' - - ~  p [ x(q). PIN]q) x fresh 

T a b l e  3. The encodings of the linear lazy A-calculus 

E n c o d i n g  C is no t  an encoding  into  ~I  because  the re  a re  o u t p u t s  of free 
names ,  one in the  rule for var iables ,  and  one in the  rule for app l i ca t ions .  Indeed ,  
t he  free o u t p u t  cons t ruc t  p lays  an i m p o r t a n t  role in C: I t  is used  to  red i rec t  
l oca t ion  names  which,  in th is  way, can  bounce  an  u n b o u n d e d  n u m b e r  of t imes  
before  a r r e s t i ng  as sub jec t  of a prefix.  

Encod ing  P is o b t a i n e d  f rom C wi th  two modi f ica t ions .  F i r s t ,  the  o u t p u t  of  
a free n a m e  b is r ep laced  by  the  o u t p u t  of  a b o u n d  name  c plus  a link f rom c 

to  b, wr i t t en  c --~ b. Names  b and  c a re  "connected"  by  the  l ink,  in t he  sense 
t h a t  a p rocess  pe r fo rming  an  o u t p u t  a t  c and  a process  pe r fo rming  an inpu t  a t  
b can in te rac t ,  asynchronous ly ,  t h r o u g h  the  link. In  o the r  words,  a l ink behaves  
a l i t t le  like a n a m e  buffer: I t  receives names  a t  one end -po in t  and  t r a n s m i t  
names  at  the  ottfer  end-po in t .  However ,  the  l a t t e r  names  are  no t  the  same  as 
the  former  names  - -  as i t  would  be  in a real  buffer - -  but ,  ins tead ,  a re  linked 
to  them:  This  accounts  for the  recurs ion  in the  def ini t ion of l inks below. For  
tup les  of names  ~ = u l , . . . ,  u~ and  ~ = Vl , . .  �9 v~ we wr i te  ~ --* ~ to  a b b r e v i a t e  

 1- vll . .  

If  a and  b have the  same  type ,  t hen  we define: a --+ b ~ f  a (~) .  b(~). ~ -*  

(for convenience,  we have left the  p a r a m e t e r s  a and  b of the  l ink on the  left- 
h a n d  side of the  def ini t ion) .  Note  t h a t  the  l ink is ephemera l  for a and  b - -  t h e y  
can on ly  be  used  once - -  and  t h a t  it  inver ts  i ts  d i rec t ion  a t  each cycle  - -  the  
recurs ive  call  c rea tes  l inks f rom the  ob jec t s  of b to  the  ob jec t s  of a. B o t h  these  
fea tures  a re  t a i l o red  to  the  specific app l i ca t i on  in exam,  n a m e l y  the  encod ing  of 
the  l azy  A-calculus.  

T h e  o the r  difference be tween  encodings  C and  P is t h a t  t he  l a t t e r  has  a level 
of ind i rec t ion  in t he  rule for abs t r ac t ion .  A t e r m  signals  to  be  an  a b s t r a c t i o n  
before  rece iv ing  the  ac tua l  a rgument s .  This  is i m p l e m e n t e d  us ing a new t y p e  
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of names, ranged over by w. This modification could be avoided using more 
sophisticated links, but  they would complicate the proofs in Lemma 8. 

When reasoning about encoding 7), one does not have to remember the defi- 
nition of links; the algebraic properties of links in Lemma 8 are enough. Assertion 
(1) of this lemma shows that  two links with a common hidden end-point behave 
like a single link; assertions (2) and (3) show that  a link with a hidden end-point 
acts as a substitution on the encoding of a A-term. 

L e m m a  8. Let  M be a linear A-term. 

1. I f  a, b and c are distinct names  of the same type, then 
L, b ( a ---+ b l b ---+ c ) .~ a --+ c. 

2. I f  x and y are distinct trigger names  and y is not  free in M ,  then 
. x (x  y 7) M{y/x}L. 

3. I f  p and r are distinct location names,  then ~,r (r --~ p lT)[M~,)  .~ 7)[M]p. 

The main result needed to convince ourselves of the correctness of 7) is the 
validity of beta-reduction. The proof is conceptually the same as the proof of 
validity of beta-reduction for Milner's encoding into ~v-calculus; in addition, one 
has to use Lemma 8(3). 

T h e o r e m  9. For all M,  N , p  it holds that 7 ) [ (A . xM)N]p  ~ 7)[M{N/x}]p .  [] 

To encode the full lazy A-calculus, where a variable may occur free in a term 
more than once, the argument of an application must be made persistent. This is 
achieved by adding, in both encodings C and P ,  a replication in front of the prefix 
x ( q ) . - ,  in the rule for application (recall that  replication is a derived operator  
in a calculus with recursion). In addition, for 7 ) also the link for trigger names 
must be made persistent, so that  it can serve the possible multiple occurrences 
of a trigger in a term. Thus 

def  
if x and y are trigger names, then we define: x ~ y = ! x(~). ~(~). ~ ~ ~. 

In this way, Lemma 8 and Theorem 9 remain true for the full lazy A-calculus. 
Links - -  as defined here, or variants of them - -  can be used to increase 

the parallelism of processes. For instance, adding links in the encoding of A- 
abstractions, as below, gives an encoding of a strong lazy strategy, where reduc- 
tions can also occur underneath an abstraction (i.e., the Xi rule, saying that  if 
M ~ M I then Ax. M ~ Ax. M t, is now allowed): 

7)[Ax.M~ p de~ v q, x (~(w).  w(y ,  r). (q ~ r Ix  -~ y) [ 7)[M~q) . 

In the lazy A-calculus encoding, there is a rigid sequentialisation between the 
behaviour of (the encodings of) the head Ax. -  and of the body M of the ab- 
straction: The latter cannot do anything until the former has supplied it with its 
arguments x and q. In the strong-lazy encoding, the only dependencies of the 
body from the head are given by the actions in which these arguments appear; 
any other activity of the body can proceed independently from the activity of 
the head. 
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6 R e l a t i o n s h i p  w i t h  a g e n t - p a s s i n g  p r o c e s s  c a l c u l i  

We have used ~I and subcalculi of it, to study the expressiveness of agent- 
passing process calculi (they are sometimes called higher-order process calculi in 
the literature). In these calculi, agents, i.e., terms of the language, can be passed 
as values in communications. The agent-passing paradigm is often presented in 
opposition to the name-passing paradigm, followed by ~v-calculus and related 
calculi, where mobility is modelled using communication of names, rather  than 
of agents. An important  criterion for assessing the value of the two paradigms 
is the expressiveness which can be achieved. Below, we briefly summarise work 
reported in [San95]. 

6 .1 .  A h i e r a r c h y  o f  ~I subca lcu l i  Using the typing system of ~I and 
imposing constraints on it, we have defined a hierarchy of calculi {~I~}n_<~. A 
calculus ~I n includes those ~I processes which can be typed using types of order 
n or less than n, and ~I ~ is the union of the ~I~'s. Instead of giving the formal 
definition of the order of a type, we explain - -  very informally - -  what syntactic 
constraints the orders of types impose on processes. Take a process in which 
the bound names are all distinct from each other and from the free names; we 
say that  a name of this process depends on another name if the latter carries 
the former. For instance, in process x(y). ~(z). z. O, name y depends on x and z 
depends on y. A dependency chain is a sequence x l , . . . ,  xn of names s.t. x~+l 
depends on x~, for all 1 < i _< n. Thus the processes in ~I ~ are those which 
have dependency chains among names of length at most n. For instance, process 
x(y). ~(z). z. 0 is in ~I ~, for all n _> 3, since its maximal dependency chain has 
length 3, involving names x, y and z. Calculus ~I 1 includes processes like a. bl~. 
in which names are only used for pure synchronisation; ~I 1 represents the core 
of CCS. ~I 2 includes processes like 

x(y, z). (~ I z) and y. x(z). ~. z 

where if a name carries another name, then the latter can only be used for pure 
synchronisation. A technical remark: The syntax of the calculi {uI~}n_<~, in 
[San95], uses the replication operator in place of recursion; this makes sense be- 
cause, as mentioned at the end of Section 4, the typability of the processes which 
use replication does not require recursive types (i.e, all types have a bounded 
order). 

Intuitively, the calculi 7cI 1, 7rI2,. . . ,  7cI~,... 7cI ~, 7rI are distinguished by the 
"degree" of mobility allowed; indeed, if mobility is taken into account, then they 
form a hierarchy of calculi of strictly increasing expressiveness. 

6 .2 .  C o r r e s p o n d e n c e  w i t h  a h i e r a r c h y  o f  a g e n t - p a s s i n g  p r o c e s s  cal- 
culi  Agent-passing developments of CCS are the calculi Plain CHOCS [Tho90], 
and Strictly-Higher-Order ~-calculus; the latter, abbreviated HO~ -~, is the frag- 
ment of the Higher-Order r-calculus [San92] which is purely higher order, i.e., 
no name-passing feature is present. In Plain CHOCS processes only can be ex- 
changed. In HO~ ~ besides processes also abstractions, i.e., functions from agents 
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to agents, of arbi t rary  high order can be exchanged. Roughly, HOTr ~ is as an 
extension of CCS with the constructs of the simply-typed A-calculus, namely 
variable X,  abstract ion ( X ) A  (it would be writ ten AX. A in a A-calculus nota- 
tion) and application A(B) (where B is the argument  of the application). An 

example of abstract ion is F de f (X) (PI  X): It  represents a function from pro- 
cesses to processes, where the process-argument is run in parallel with P in the 
process-result; for instance, F(Q) beta-reduces to PI Q. An abstract ion one order 

higher than  F is G de~ (y) (p I Y(Q)), which takes abstract ions of the same type 
as F as argument.  The application G(F) beta-reduces to P I P I Q. The types 
used in HOTr ~ are those of the simply-typed A-calculus with the process type �9 
as the only first-order (i.e., basic) type. For instance, the abstract ions F and G 
above have types �9 - - ~  �9 and ( �9 ~ . )  ~ . ,  respectively. The order of a 
type is determined by the level of arrow-nesting in its definition. 

As in ~I, so in HO~ ~ we can discriminate processes according to order of 
the types needed in the typing. This yields a hierarchy of agent-passing calculi 
{ H O ~ } ~ < ~ ,  where HO~ 1 coincides with ~I 1 - -  hence with the core of CCS - -  
and HO~ 2 is the core of Plain CHOCS. For each n ~ ~, we have compared the 
agent-passing calculus HOTr ~ with the name-passing calculus 7tin-; the lat ter  
is a subcalculus of 7rI ~ whose processes respect a discipline on the input and 
output  usage of names similar to those studied in [PS93]. We have showed that  
HO~r ~ and 7rI ~ -  have the same expressiveness, by exhibiting faithful encodings 
of HOTr n into ~rI ~ -  and of 7rI n -  into HOTr n. The encodings are fully abst ract  
w.r.t, the reduction relations of the two calculi. (The encoding from HOTr ~ to 
:rI ~-  is a special case of the compilation of the full Higher-Order 7r-calculus into 
7r-calculus studied in [San92]; the communication of an agent is t ranslated as the 
communication of a private name with which the recipient can activate a copy 
of the agent.) Note in particular the correspondence between HO~r 2 and 7rI2-: 
Process passing only gives little expressiveness more than  CCS. 

These results establish an exact connection between agent-passing calculi and 
name-passing calculi based on internal mobility, and strengthen the relevance of 
the lat ter  calculi. 

7 F u t u r e  w o r k  

We wish to develop the s tudy of the expressiveness of ~I, which we expect to be 
ra ther  close to tha t  of the ~-calculus. The translation of the A-calculus presented 
is obtained by refining Milner's encoding into the ~-calculus, which makes non- 
trivial use of the free-output construct - -  disallowed in ~I. We hope tha t  the 
encoding might also give insights into the comparison between ~I and ~--calculus. 

For the translat ion of the A-calculus, we first adopted Abramsky ' s  lazy re- 
duction strategy. Our encoding of it uses special ~rI processes called links. We 
believe tha t  understanding the algebraic properties of links can be helpful to 
justify t ransformations of processes aimed at augmenting their parallelism. For 
instance, in Section 5 by manipulat ing links we have modified the encoding of 
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the lazy strategy into an encoding of a strong-lazy strategy which is more per- 
missive (i.e., more parallel) because it also allows reductions inside abstractions 
(the Xi rule). At present we are studying the properties of this encoding. We 
are not aware of other encodings, into a process algebra, of A-calculus strategies 
encompassing the X• rule. 

We have showed that  name-passing process calculi based on internal mobility 
have a simple algebraic theory, in which the main difference from the theory of 
CCS is the use of alpha conversion. These calculi also possess a pleasant sym- 
metry in their communication constructs. These features might become useful 
in the development of denotational models. 
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