
7rI: a s y m m e t r i c c a l c u l u s
b a s e d on i n t e r n a l m o b i l i t y

Davide Sangiorgi

INRIA- Sophia Antipolis, France. Email: davide�9 craa. f r .

1 M o t i v a t i o n s

The ~r-calculus is a development of CCS where names (a synonymous for "chan-
nels") can be passed around. This permits the description of mobile systems,
i.e., systems whose communication topology can change dynamically.

Name communication gives ~r-calculus a much greater expressiveness than
CCS. For instance, in the 7r-calculus there are simple and intuitive encodings for:
Data values [MPW92, Mi191], agent-passing process calculi [Tho90, San92] (i.e.,
calculi where terms of the language can be exchanged), the)~-calculus [Mi192],
certain concurrent object-oriented languages [Jon93, Wa195], the locality and
causality relations among the activities of a system, typical of true-concurrent
behavioural equivalences [BS95]. In CCS, the modelling of such objects is possible,
at best, in a clumsy and unnatural way - - for instance making heavy use of
infinite summations.

But research has also showed that the ~r-calculus has a much more complex
mathematical theory than CCS. This shows up in:

- The operational semantics. Certain transition rules of the ~r-calculus are hard
to assimilate.

- The definition of bisimulation. Various definitions of bisimilarity have been
proposed for the 7r-calculus, and it remains unclear which form should be
preferred. Moreover, most of these bisimilarities are not congruence relations.

- The axiomatisations. The axiomatisations of behavioural equivalences for
the 7c-calculus - - and in particular the proof of the completeness of the
axiomatisations - - is at least one order of magnitude more complicated than
the corresponding axiomatisations for CCS.

- The construction of canonical normal forms. In general we do not know how
to transform a ~r-calculus process P into a normal form which is unique
for the equivalence class of P determined by the behavioural equivalence
adopted.

In CCS, these problems are well-understood and have simple solutions [Mi189,
BK85, DKV91].

There is, therefore, a deep gap between CCS and ~r-calculus, in terms of
expressiveness and mathematical theory. The main goal of the paper is to explain
this gap and to examine whether there are interesting intermediate calculi. For
instance, are the complications of the theory of the 7r-calculus w.r.t, that of CCS
an inevitable price to pay for the increase in expressiveness?

173

We shall isolate and analyse one such intermediate calculus, called ~rI. This
calculus appears to have considerable expressiveness: Data values, the lambda
calculus, agent-passing calculi, the locality and causality relations of true-concurrent
behavioural equivalences can be modelled in 7rI much in the same way as they
are in the ~-calculus. But, nevertheless, the theory of ~rI remains very close to the
theory of CCS: Alpha conversion is, essentially, the new ingredient. To obtain 7rI,
we separate the mobility mechanisms of the ~r-calculus into two, namely internal
mobility and external mobility. The former arises when an input meets a bound
output, i.e., the output of a private name; the latter arises when an input meets
a free output, i.e., the output of a known name. In ~I only internal mobility
is retained -- the free output construct is disallowed. A pleasant property of
~I is the full symmetry between input and output constructs. The operators
of matching and mismatching, that in the 7c-calculus implement a form of case
analysis on names and are important in the algebraic reasoning, are not needed
in the theory of 7d.

Sections 2-4 are devoted to introducing ~I and its basic theory. The encoding
of the A-calculus into ~I is studied in Section 5: It is challenging because all
known encodings of the A-calculus into 7r-calculus exploit, in an important way,
the free-output construct, disallowed in 7rI. We sketch the comparison between
~rI and agent-passing calculi in Section 6. There is an exact correspondence, in
terms of expressiveness, between a hierarchy of subcalculi of ~rl and a hierarchy
of agent-passing calculi obtained from the Higher-Order Tr-calculus [San92]. The
definitions of two hierarchies rely on the order of the typing systems of ~I and
of the Higher-Order ~-ealculus.

In this short version of the paper, the presentation is kept rather informal;
for technical details and proofs, we refer to the full version [San95].

Acknowledgements. I have benefited from discussions with Gerard Boudol,
Claudio Calvelli, Robin Milner, David Turner and David Walker, and from the
comments of the anonymous referees. This research has been supported by the
Esprit BRA project 6454 "CONFER".

2 T h e c a l c u l u s ~'I

In this section we introduce (the finite part of) 7rI. We examine the move from
7r-calculus to ~rI from three different angles: First, our guiding criterion is sym-
metry; then we take into account the mobility mechanisms; finally, we focus on
the algebraic theory. There are not compelling reasons for wanting symmetry:
Our major motivation is elegance, which will show up in the presentation of the
calculus and of its properties.

Throughout the paper we use a tilde (~) to denote a finite and possibly empty
tuple. All notations are extended to tuples componentwise.

2.1. Looking for s y m m e t r y : From Tr-calculus to zrI We shall derive
the grammar for ~rI from the one below, which collects the principal operators
of the 7r-calculus, namely guarded sum, parallel composition and restriction.

174

Symbols x, y, z , . . . will range over the infinite set of names; P, Q and R will be
metavariables over processes; prefixes, ranged over by c~, can be of the form 7-
(silent prefix), x(y) (input prefix), or (free-output prefix):

P : : = ~ , ~ e , c ~ . P ~ [P I P I u x P

I is a finite indexing set; if I is empty, we abbreviate the sum as 0. As usual, +
is binary sum. Sometimes, we shall write a l . P1 + . . . + c~,~. P~ for ~-~l<i<~ c~. Pi.

An input prefix x(y). P and a restriction v y P bind all free occurrences of
name y in P. Free and bound names of processes and of prefixes, and alpha
conversion are defined as expected, p{x/y} denotes the substi tution of x for y in
P, with renaming possibly involved to avoid capture of free names. In examples,
the object par t of prefixes will be omit ted if not important . A process c~. 0
will often be abbreviated as a, and v xx . . . v x~ P as v X l , . . . , x~ P. Sum and
parallel composition will have the lowest syntactic precedence; substi tution the
highest.

The g rammar above does not mention the match and mismatch operators,
writ ten [x = y]P and [x•y]P, respectively. The former means: "if x equal to y,
then P" ; the lat ter means "if x different from y, then P ' . Match and mismatch
are often included in the u-calculus, mainly because very useful in the algebraic
theory. But they will not be needed in the algebraic theory of ~I, as shown in
Section 3.

We wish to make two remarks about the ~-calculus language above pre-
sented. The first regards the asymmet ry between the input and output con-
structs, namely x (y) . - and ~ y . - . The asymmet ry is both syntactic - - the
input is a binder whereas the output is not - - and semantic - - in an input any
name can be received, whereas in an output a fixed name is emitted. The second
remark regards a derived form of prefix, called bound output, written g(y) as an
abbreviat ion for v y ~y. Bound output plays a central role in ~-calculus theory,
for instance in the operational semantics and in the axiomatisation. In the op-
erational semantics, bound output is introduced in the 0P~N rule, one of the of
the two rules for restriction:

p ~ p 1
O P E N : x ~ y.

v y P 5(Yl P~

(We can make an analogy between bound output and silent prefix: Both can
be viewed as derived operators - - 7 .P as abbreviat ion for v x (x . P] ~) , for
some x not free in P; and both are needed in the operational semantics and
axiomatisations.)

Having noticed the importance of bound output, we can reasonably add it
to the g rammar of prefixes:

175

The new syntax still contains asymmetries: First, the free-output construct has
no input counterpart. Second, input and bound output, although syntactically
similar - - both are binders - - are semantically very far apart , as revealed by
the interactions they can participate in: Any name can be received through an
input, whereas only a fresh name can be emitted through a bound output.

We move to ~I by eliminating the free output construct.

D e f i n i t i o n I (f in i te ~I) . The class of finite ~I processes is described by the
following grammar:

P::=E,cI~,.P~ [P I P l v x P

::= I x(y) I

In 7rI, the input and output constructs are truly symmetric: Since only out-
puts of private names are possible, an input x(y). P means "receive a fresh name
at x", which is precisely the dual of the output E(y). P. Indeed, we can define an
operation "dual" which transforms every output into an input and vice versa:
The symmetry of the calculus is then manifested by the fact that dua l commutes
with the transition relation (Lemma 2).

2 .2 . I n t e r n a l a n d e x t e r n a l m o b i l i t y Above, the motivation to the intro-
duction of ~rI was symmetry. A more pragmatic motivation is given here.

What distinguishes 7r-calculus from CCS is mobiSty, that is, the possibility
that the communication linkage among processes changes at run-time. In the
vr-calculus there are two mechanisms to achieve mobility, which are embodied
in the two communication rules of the calculus (usually called coM and CLOSE).
Accordingly, we can distinguish between two forms of mobility, internal mobility
and external mobility. Internal mobility shows up when a bound output meets
an input, for instance thus:

~(Y).P I x (y) .Q ~ v y (P I Q).

Two separate local (i.e., internal) names are identified and become a single local
name. The two participants in the interaction, 5(y). P and x(y). Q, agree on the
bound name; for this, some alpha conversion might have to be used. The interac-
tion consumes the two prefixes but leave unchanged the derivatives underneath.
With internal mobility, alpha conversion is the only form of name substitution
involved.

External mobility shows up when a free output meets an input, for instance
thus:

-2y. P] x(z). Q ~-~ P] Q{y/z}.

Here, a local name gets identified with a free (i.e., external) name. In this case,
alpha conversion is not enough: Name y is free, and might occur in Q; hence
in general z cannot be alpha converted to y. Instead, a substitution must be
imposed on the derivatives so to force the equality between y and z.

In :rI, only internal mobility is present. Studying 7rI means examining in-
ternal mobility in isolation, and investigating its impact on expressiveness and

176

mathemat ica l theory. From the experimentat ion tha t we have conducted so far,
it appears tha t internal mobility is responsible for much of the expressiveness of
the ~r-calculus, whereas external mobility is responsible for much of the semantic
complications. Some evidence to this will be given in the remaining sections.

2 .3 . S o m e a d v a n t a g e s o f t h e t h e o r y o f 7cI Through examples, we show
a few weaknesses of the theory of the ~r-calculus, and we show why they do not
arise in 7rI.

Below, ~ denotes ~r-calculus original bisimilarity, as in [MPW92]; it is some-
times called late bisimilarity. (The examples we use are rather simple, so we do
not need to recall the definition of ~ .) Consider the ~r-calculus process x l Y,
where x and y are different names. We can rewrite it as follows, using expansion:

x l ~ ~ ~ x . y + y . x . (1)

However, this equality can break down underneath an input prefix:

z(x). (x I~) #~ z(x). (x.~ + ~. x) . (2)

The process on the left-hand side can receive y in the input and become y l Y,
which then can terminate after a silent step. This behaviour is not matched by
the process z(x). (x. ~ + ~. x), which, upon receiving y, can only terminate after
two visible actions.

To have a fully-substitutive equality, some case analysis has to be added to
the expansion (1), by means of the match operator:

x]~ ~ x . ~ + ~ . x + [x = y]~-.

The third summand allows a 7- if x and y are the same name. This equality can
now be used underneath a prefix:

z(x). (x I ~) ~~ z(x). (x. ~ + ~. x + [~ = y]~).

The above discussion outlines two important points: First, ~-calculus bisimilarity
is not preserved by input prefix; second, to get congruence equalities some case
analysis on names might be needed. In the above example, one level of case
analysis was enough, but for more complex processes it can be heavier; the
mismatch operator might be needed too. In general, if in the ~-calculus we wish
to manipulate a subcomponent P of a given process algebraically, then we cannot
assume tha t the free names of P will always be different with each other: By
the t ime the computat ion point has reached P, some of these names might have
become equal. Therefore we have to take into account all possible equalities and
inequalities among these names; if they are n, then there are 2 '~ cases to consider.

These inconvenients do not arise in ~I. Bisimilarity is natural ly a full congru-
ence, and no case analysis on names is required. For instance, consider processes
x l~ and x. ~ + ~. x in (1), and let ~ be ~I bisimilarity. As in the ~-calculus, so in
~I the two processes are bisimilar; but, unlike the ~-calculus, their bisimilarity
is preserved by input prefix:

z(x). (~ I ~) ~ z(x). (x. ~ + ~. x) .

177

This because in ~I only fresh names are communicated, hence the free name y
can never be received in an input at z. The absence of case analysis explains
why match has not been included among the ~I operators.

Besides late bisimilarity, other formulations of bisimilarity for the ~-calculus
have appeared in the l i terature (see [FMQ94]), and it is far from clear which
one should be preferred. (Some of these relations are full congruences, but all
require the case analysis on names mentioned before.) The differences among
these bisimilarities are due to the different interpretat ion of name substi tution
in an input action. The choice is about when should such a substi tution be
made: For instance immediately, in the input rule, or later, in the communicat ion
rule, or only when the name received is needed. The choice affects the resulting
behavioural equivalence, since a substi tution can change the relationships of
equality or inequality among names. In 7rI, a lpha conversion is the only form of
name substi tution needed. Alpha conversion is semantically harmless, because
it does not change the equalities and inequalities among names; hence in ~I the
bisimilarity relation is unique.

3 Basic theory of 7rI

We consider the basic theory of ~I: Operational semantics, bisimilarity, axioma-
tisation, construction of canonical normal forms. In all these cases, a clause for
alpha conversion represents the only difference w.r.t, the theory of CCS. An ex-
ception to this is the appearance of a restriction in the communication rule for
7rI.

3.1. Operational semantics and bisimilarity We write ~ for the comple-
mentary of ~; that is, if a = x(y) then ~ = E(y), if a = E(y) then ~ = x(y), and
if ~ = r, then ~ = c~. We write P -~ Q if P and Q are alpha convertible. We
write fn(P), bn(P) (resp. fn((~), bn((~)) for the free names and the bound names

of P (resp. c~): The names of P or c~, written n(P) and n(~), are the union of

their free and bound names. Table 1 contains the set of the transition rules for
~I. We have omitted the symmetric of rule PAR. The only formal difference w.r.t.
the set of rules for CCS is the presence of the alpha conversion rule and the gen-
eration of a restriction in the communication rule. Unlike the ~-calculus, there is
only one rule for communication and one rule for the restriction operator. Note
that the alphabet of actions is the same as the alphabet of prefixes. We call a
transit ion P ~ > p i a reduction.

We define an operation dua l which complements all visible prefixes of a ~I
process: If P C 7rI, then P is obtained from P by transforming every prefix
into the prefix ~. Operat ion dua l can be defined on ~I because of its syntactic
symmetry. The following lemma shows tha t the symmet ry is also semantic.

L e m m a 2. I f .P --%+ pr, then -P -~) p-7. []

Note tha t since P = P , the converse of Lemma 2 holds too.

178

ALPHA:

PAR:

C0M:

P =~ p ' p ' --%+ p "
p --% p, '

p, p - - - +
if bn(o 0 A fn(Q) = (a

PiQ --~ P, iO

P ~ P ' Q - ~ Q' for ~ # r , x - - - b n (o ~)
P I q -:-* ~ (P ' l q ')

PB.E: 0'. P -----4 P

p, p - - - - ,
RES:

u x P ~ u x P '

p; _2~ p:, i 6 I
SUM:

if x r n(c~)

Table 1. The transition system for ~I

D e f i n i t i o n 3 0 r I s t r o n g b i s i m i l a r i t y) . Strong bisimilarity is the largest sym-

metric relation ,-~ on 7rI processes s.t. P ,-~ Q and P ~ P ' , with bn(a)Nfn(Q) =

, imply tha t there is Q' s.t. Q - % Q' and P' ,., Q'.

By contrast with 7rI bisimilarity, in ~r-calculus bisimilarity [MPW92] the
clauses for input and output must be distinguished, the reason being tha t input
and output are not symmetric.

Lemmas 4 and 5 are technical results useful to deal with the alpha convert-
ibility clause on processes and transitions. Lemma 5 shows tha t bisimilarity is
preserved by injective substitutions on names.

L e m m a 4. I f P - ~ Q, then P ~., Q. []

L e m m a 5. I f y ~_ fn(P) , then for all x, P ,,~ Q implies P { y/x } ,~ Q { y/x } . []

Propos i t i on 6 (congruence f o r ~) . Strong bisimilarity is a congruence.

PROOF: By showing tha t it is preserved by all operators of the language. Each
case is simple. For instance, for prefixes, one shows tha t {(a. P, a. Q)} u ~ is a

strong bisimulation. The move a. P ") P is matched by a. Q ") Q; this is
enough even if a is an input prefix, since no instantiation of the bound name is
required. []

Weak transitions and weak bisimilarity, writ ten ~ , are defined in the ex-
pected way. As strong bisimilarity, so weak bisimilarity is preserved by all oper-
ators of the language3

3 .2 . A x i o m a t i s a t i o n We show a sound and complete axiomatisat ion for
strong bisimilarity over finite ~rI processes.

To have more readable axioms, it is convenient to decompose sums ~ e / c r P~
into binary sums. Thus we assume that sums are generated by the g rammar

M : = M + N [c~.P [O.

1 The congruence is not broken by sum because of the guarded form of our sums.

179

We let M, N, L range over such terms. The axiom system is reported in Table 2;
we call it A. We write A F P = Q if P = Q can be inferred from the axioms
in A using equational reasoning.

Alpha-convers ion: If P and Q alpha-convertible then P -- Q

Summat ion : M + 0 = M M-I- N = N + M

M + (N + L i = (M + N) + L M + M = M

Restr ict ion: if, for all i E I, x r n(~,) then u x (~ ~ . Pi) = Y']~i (~i" u x P~

if x is the subject of c~ then v x (M + c ~ . P) = v x M

Expansion:

Assume that P -- ~ c~,.Pi and Q -- ~ j fly. Qs, and that for all i and j with
c~, fis 7 ~ ~, it holds that bn(~i) -- bn(flj) ---- x ~ fn(P, Q). Then infer

P I Q = ~-~,c~'(P~]Q)+ ~-~fih'(PIQh) + ~ ~'ux(P, lQ3)
3 o~ z o p p ~ j

where c~i opp f13 holds if ~ = fi~.

Table 2. The axiom system for finite 7rI processes

Theorem 7 (soundness and completeness). P ~ Q iff ,4 F- P = Q. []

Omitting the axiom for alpha conversion and the bound name x in the ex-
pansion scheme, the axioms of Table 2 form a standard axiom system for strong
bisimilarity of CCS. Also the proofs of soundness and completeness for the 7rI
axiomatisation are very similar to those for CCS [Mi189]. For instance, as in
CCS, so in the completeness proof for 7rI a restriction can be pushed down into
the tree structure of a process until either a 0 process is reached, or a 0 process is
introduced by cutting branches of the tree, and then the restriction disappears.

The proof of completeness of the axiomatisation [San95] exploits a transfor-
mation of processes to normal forms, that is tree-like structures built from the
operators of sum, prefixing and 0. Then the axioms for commutativity, asso-
ciativity and idempotence of sum, and alpha conversion can be used to obtain
canonical and minimal representatives for the equivalence classes of ,,~. Again,
this mimics a well-known procedure for CCS.

4 E x t e n d i n g t h e s i g n a t u r e o f t h e f i n i t e a n d m o n a d i c r r I

4 .1 . In f in i t e p r o c e s s e s To express processes with an infinite behaviour, we
add recursive agent definitions to the language of finite 7rI processes. We assume

180

a set of constants, ranged over by D, each of which has a non-negative arity,
and add the production

P ::= D(~'}

to the grammar of Definition 1. It is assumed that each constant D has a unique

defining equation of the form D de__f (5) P. Both in a constant definition D de=f
(5) P and in a constant application D(~), the parameter 5 is a tuple of all distinct
names whose length equals the arity of D.

The constraint that the actual parameters 5 in a constant application should
be distinct - - normally not required in the 7r-calculus - - ensures that alpha con-
version remains the only relevant form of name substitution in ~rI. The transition
rule for constants is:

p ~ p ,
i f D d__ef (y~ Q and (y--) Q - ~ (5) P .

4 .2 . P o l y a d i c i t y The calculi seen so far are monadic, in that precisely one
name is exchanged in any communication. We extend these calculi with polyadic
communications following existing polyadic formulations of the :r-calculus [Mil91].
The operational semantics and the algebraic theory of the polyadic 7rI are straight-
forward generalisations of those of the monadic ~rl, and will be omitted.

The syntax of the polyadic 7rI only differs from that of the monadic calculus
because the object part of prefixes is a tuple of names:

Names in ~" are all pairwise different. When ~ is empty, we omit the surrounding
parenthesis.

As in the r-calculus [Mil91, section 3.1], so in 7rI the move to polyadicity
does not increase expressiveness: A polyadic interaction can be simulated using
monadic interactions and auxiliary fresh names.

4 .3 . T y p i n g Having polyadicity, one needs to impose some discipline on names
so to avoid run-time arity mismatchings in interactions, as for x(y). P l~(y, z). Q.
In the 7r-calculus, this discipline is achieved by means of a typing system (in the
literature it is sometimes called sorting system; in this paper we shall prefer the
word "type" to "sort"). A typing allows us to specify the arity of a name and,
recursively, of the names carried by that name. The same formal systems can be
used for the typing of 7rI. (However, the typed ~rI enjoys a few properties which
are not true in the typed 7r-calculus; one such property is that the by-structure
and by-name definitons of equality between types [PS93] coincide.) We shall not
present the type system here; an extensive t reatment is in [San95].

4 .4 . R e c u r s i o n ve r su s r e p l i c a t i o n Some presentations of the ~r-calculus
have the replication operator in place of recursion. A replication ! P stands for
an infinite number of copies of P in parallel, and is easily definable in terms
of recursion. The typing system of :rI, as well as that of the 7r-calculus, allows
recursive types. However, if in 7rI recursion is replaced by replication, then all

181

processes can be typed without the use of recursive types. Start ing from this
observation, in [San95] we show tha t recursion cannot be encoded in terms of
replication. This contrasts with the ~r-calculus, where recursion and replication
are interdefinable [Mil91].

5 T h e e n c o d i n g o f t h e A - c a l c u l u s

~rl appears to have considerable expressiveness. We have examined various non-
trivial applications, which include the encodings of values and data structures,
the A-calculus, agent-passing calculi, and the locality and causality relations
among actions of processes. Values and data structures can be modelled in ~I
in the same way as they are in 7r-calculus: The 7r-calculus representations given
by Milner [Mil91, Sections 3.3., 6.2 and 6.3] only utilise the ~I operators. Also,
the encodings of locality and causality into 7~-calculus in (see [BS95]) can be
easily adapted to ~I. More interesting is the encoding of the A-calculus and of
agent-passing calculi. We look at the A-calculus here, and sketch the study of
agent-passing calculi in Section 6.

In this section, M, N , . . . are A-calculus terms, whose syntax is given by

M : = x I Ax .M] M M

where x and y range over A-calculus variables. In Abramsky ' s lazy lambda cal-
culus [Abr89], the redex is always at the extreme left of a term. There are two
reduction rules:

M ~ M ~
b e t a : (A x . M) N ~ M { N / x } , app-L:

M N ~ M~N

We first encode the linear lazy A-calculus, in which no subterm of a t e rm may
contain more than one occurrence of x, for any variable x. We begin by recalling
Milner's encoding C into the 7v-calculus. Then we describe the changings to be
made to obtain an encoding P into 7rI. Both encodings are presented in Table
3. The core of any encoding of the A-calculus into a process calculus is the
translat ion of function application. This normally becomes a part icular form of
parallel combination of two agents, the function and its argument; beta-reduction
is then modeled as process reduction.

Let us examine C. In the pure A-calculus, every te rm denotes a function.
When supplied with an argument , it yields another function. Analogously, the
translat ion of a A-term M is a process with a location p. It rests dormant until
it receives along p two names: The first is a trigger x for its argument and the
second is the location to be used for the next interaction. The location of a t e rm
M is the unique por t along which M interacts with its environment. Two types
of names are used in the encoding: Location names, ranged over by p, q and r,
and trigger names, ranger over by x, y and z. For simplicity, we have assumed
tha t the set of trigger names is the same as the set of A-variables. More details
on this encoding and a s tudy of its correctness can be found in [Milgl, San92].

182

The encoding into r-calculus; ~(x)p.- is an output prefix at r in which the private
name x and the free name p are emitted.

CiAx.M]v clef p(x, q). C[M]q

C[M N]p def = vr(C[M]~ [?(x)p.x(q).C[g]q) x fresh

The encoding into 7rI:

P[ax.M]p %f ~(w). w(x, q). PlM]~

P[X]p d e_f N(r). r'--+ p

P[MN]p clef/9' r (79[M]r [r(w). ~(x, q'). (q' - - ~ p [x(q). PIN]q) x fresh

T a b l e 3. The encodings of the linear lazy A-calculus

E n c o d i n g C is no t an encoding into ~I because the re a re o u t p u t s of free
names , one in the rule for var iables , and one in the rule for app l i ca t ions . Indeed ,
t he free o u t p u t cons t ruc t p lays an i m p o r t a n t role in C: I t is used to red i rec t
l oca t ion names which, in th is way, can bounce an u n b o u n d e d n u m b e r of t imes
before a r r e s t i ng as sub jec t of a prefix.

Encod ing P is o b t a i n e d f rom C wi th two modi f ica t ions . F i r s t , the o u t p u t of
a free n a m e b is r ep laced by the o u t p u t of a b o u n d name c plus a link f rom c

to b, wr i t t en c --~ b. Names b and c a re "connected" by the l ink, in t he sense
t h a t a p rocess pe r fo rming an o u t p u t a t c and a process pe r fo rming an inpu t a t
b can in te rac t , asynchronous ly , t h r o u g h the link. In o the r words, a l ink behaves
a l i t t le like a n a m e buffer: I t receives names a t one end -po in t and t r a n s m i t
names at the ottfer end-po in t . However , the l a t t e r names are no t the same as
the former names - - as i t would be in a real buffer - - but , ins tead , a re linked
to them: This accounts for the recurs ion in the def ini t ion of l inks below. For
tup les of names ~ = u l , . . . , u~ and ~ = Vl , . . �9 v~ we wr i te ~ --* ~ to a b b r e v i a t e

 1- vll . .

If a and b have the same type , t hen we define: a --+ b ~ f a (~) . b(~). ~ -*

(for convenience, we have left the p a r a m e t e r s a and b of the l ink on the left-
h a n d side of the def ini t ion) . Note t h a t the l ink is ephemera l for a and b - - t h e y
can on ly be used once - - and t h a t it inver ts i ts d i rec t ion a t each cycle - - the
recurs ive call c rea tes l inks f rom the ob jec t s of b to the ob jec t s of a. B o t h these
fea tures a re t a i l o red to the specific app l i ca t i on in exam, n a m e l y the encod ing of
the l azy A-calculus.

T h e o the r difference be tween encodings C and P is t h a t t he l a t t e r has a level
of ind i rec t ion in t he rule for abs t r ac t ion . A t e r m signals to be an a b s t r a c t i o n
before rece iv ing the ac tua l a rgument s . This is i m p l e m e n t e d us ing a new t y p e

183

of names, ranged over by w. This modification could be avoided using more
sophisticated links, but they would complicate the proofs in Lemma 8.

When reasoning about encoding 7), one does not have to remember the defi-
nition of links; the algebraic properties of links in Lemma 8 are enough. Assertion
(1) of this lemma shows that two links with a common hidden end-point behave
like a single link; assertions (2) and (3) show that a link with a hidden end-point
acts as a substitution on the encoding of a A-term.

L e m m a 8. Let M be a linear A-term.

1. I f a, b and c are distinct names of the same type, then
L, b (a ---+ b l b ---+ c) .~ a --+ c.

2. I f x and y are distinct trigger names and y is not free in M , then
. x (x y 7) M{y/x}L.

3. I f p and r are distinct location names, then ~,r (r --~ p lT)[M~,) .~ 7)[M]p.

The main result needed to convince ourselves of the correctness of 7) is the
validity of beta-reduction. The proof is conceptually the same as the proof of
validity of beta-reduction for Milner's encoding into ~v-calculus; in addition, one
has to use Lemma 8(3).

T h e o r e m 9. For all M, N , p it holds that 7) [(A . xM)N]p ~ 7)[M{N/x}]p . []

To encode the full lazy A-calculus, where a variable may occur free in a term
more than once, the argument of an application must be made persistent. This is
achieved by adding, in both encodings C and P , a replication in front of the prefix
x (q) . - , in the rule for application (recall that replication is a derived operator
in a calculus with recursion). In addition, for 7) also the link for trigger names
must be made persistent, so that it can serve the possible multiple occurrences
of a trigger in a term. Thus

def
if x and y are trigger names, then we define: x ~ y = ! x(~). ~(~). ~ ~ ~.

In this way, Lemma 8 and Theorem 9 remain true for the full lazy A-calculus.
Links - - as defined here, or variants of them - - can be used to increase

the parallelism of processes. For instance, adding links in the encoding of A-
abstractions, as below, gives an encoding of a strong lazy strategy, where reduc-
tions can also occur underneath an abstraction (i.e., the Xi rule, saying that if
M ~ M I then Ax. M ~ Ax. M t, is now allowed):

7)[Ax.M~ p de~ v q, x (~(w). w(y , r). (q ~ r Ix -~ y) [7)[M~q) .

In the lazy A-calculus encoding, there is a rigid sequentialisation between the
behaviour of (the encodings of) the head Ax. - and of the body M of the ab-
straction: The latter cannot do anything until the former has supplied it with its
arguments x and q. In the strong-lazy encoding, the only dependencies of the
body from the head are given by the actions in which these arguments appear;
any other activity of the body can proceed independently from the activity of
the head.

184

6 R e l a t i o n s h i p w i t h a g e n t - p a s s i n g p r o c e s s c a l c u l i

We have used ~I and subcalculi of it, to study the expressiveness of agent-
passing process calculi (they are sometimes called higher-order process calculi in
the literature). In these calculi, agents, i.e., terms of the language, can be passed
as values in communications. The agent-passing paradigm is often presented in
opposition to the name-passing paradigm, followed by ~v-calculus and related
calculi, where mobility is modelled using communication of names, rather than
of agents. An important criterion for assessing the value of the two paradigms
is the expressiveness which can be achieved. Below, we briefly summarise work
reported in [San95].

6 .1 . A h i e r a r c h y o f ~I subca lcu l i Using the typing system of ~I and
imposing constraints on it, we have defined a hierarchy of calculi {~I~}n_<~. A
calculus ~I n includes those ~I processes which can be typed using types of order
n or less than n, and ~I ~ is the union of the ~I~'s. Instead of giving the formal
definition of the order of a type, we explain - - very informally - - what syntactic
constraints the orders of types impose on processes. Take a process in which
the bound names are all distinct from each other and from the free names; we
say that a name of this process depends on another name if the latter carries
the former. For instance, in process x(y). ~(z). z. O, name y depends on x and z
depends on y. A dependency chain is a sequence x l , . . . , xn of names s.t. x~+l
depends on x~, for all 1 < i _< n. Thus the processes in ~I ~ are those which
have dependency chains among names of length at most n. For instance, process
x(y). ~(z). z. 0 is in ~I ~, for all n _> 3, since its maximal dependency chain has
length 3, involving names x, y and z. Calculus ~I 1 includes processes like a. bl~.
in which names are only used for pure synchronisation; ~I 1 represents the core
of CCS. ~I 2 includes processes like

x(y, z). (~ I z) and y. x(z). ~. z

where if a name carries another name, then the latter can only be used for pure
synchronisation. A technical remark: The syntax of the calculi {uI~}n_<~, in
[San95], uses the replication operator in place of recursion; this makes sense be-
cause, as mentioned at the end of Section 4, the typability of the processes which
use replication does not require recursive types (i.e, all types have a bounded
order).

Intuitively, the calculi 7cI 1, 7rI2,. . . , 7cI~,... 7cI ~, 7rI are distinguished by the
"degree" of mobility allowed; indeed, if mobility is taken into account, then they
form a hierarchy of calculi of strictly increasing expressiveness.

6 .2 . C o r r e s p o n d e n c e w i t h a h i e r a r c h y o f a g e n t - p a s s i n g p r o c e s s cal-
culi Agent-passing developments of CCS are the calculi Plain CHOCS [Tho90],
and Strictly-Higher-Order ~-calculus; the latter, abbreviated HO~ -~, is the frag-
ment of the Higher-Order r-calculus [San92] which is purely higher order, i.e.,
no name-passing feature is present. In Plain CHOCS processes only can be ex-
changed. In HO~ ~ besides processes also abstractions, i.e., functions from agents

185

to agents, of arbi t rary high order can be exchanged. Roughly, HOTr ~ is as an
extension of CCS with the constructs of the simply-typed A-calculus, namely
variable X, abstract ion (X) A (it would be writ ten AX. A in a A-calculus nota-
tion) and application A(B) (where B is the argument of the application). An

example of abstract ion is F de f (X) (PI X): It represents a function from pro-
cesses to processes, where the process-argument is run in parallel with P in the
process-result; for instance, F(Q) beta-reduces to PI Q. An abstract ion one order

higher than F is G de~ (y) (p I Y(Q)), which takes abstract ions of the same type
as F as argument. The application G(F) beta-reduces to P I P I Q. The types
used in HOTr ~ are those of the simply-typed A-calculus with the process type �9
as the only first-order (i.e., basic) type. For instance, the abstract ions F and G
above have types �9 - - ~ �9 and (�9 ~ .) ~ . , respectively. The order of a
type is determined by the level of arrow-nesting in its definition.

As in ~I, so in HO~ ~ we can discriminate processes according to order of
the types needed in the typing. This yields a hierarchy of agent-passing calculi
{ H O ~ } ~ < ~ , where HO~ 1 coincides with ~I 1 - - hence with the core of CCS - -
and HO~ 2 is the core of Plain CHOCS. For each n ~ ~, we have compared the
agent-passing calculus HOTr ~ with the name-passing calculus 7tin-; the lat ter
is a subcalculus of 7rI ~ whose processes respect a discipline on the input and
output usage of names similar to those studied in [PS93]. We have showed that
HO~r ~ and 7rI ~ - have the same expressiveness, by exhibiting faithful encodings
of HOTr n into ~rI ~ - and of 7rI n - into HOTr n. The encodings are fully abst ract
w.r.t, the reduction relations of the two calculi. (The encoding from HOTr ~ to
:rI ~- is a special case of the compilation of the full Higher-Order 7r-calculus into
7r-calculus studied in [San92]; the communication of an agent is t ranslated as the
communication of a private name with which the recipient can activate a copy
of the agent.) Note in particular the correspondence between HO~r 2 and 7rI2-:
Process passing only gives little expressiveness more than CCS.

These results establish an exact connection between agent-passing calculi and
name-passing calculi based on internal mobility, and strengthen the relevance of
the lat ter calculi.

7 F u t u r e w o r k

We wish to develop the s tudy of the expressiveness of ~I, which we expect to be
ra ther close to tha t of the ~-calculus. The translation of the A-calculus presented
is obtained by refining Milner's encoding into the ~-calculus, which makes non-
trivial use of the free-output construct - - disallowed in ~I. We hope tha t the
encoding might also give insights into the comparison between ~I and ~--calculus.

For the translat ion of the A-calculus, we first adopted Abramsky ' s lazy re-
duction strategy. Our encoding of it uses special ~rI processes called links. We
believe tha t understanding the algebraic properties of links can be helpful to
justify t ransformations of processes aimed at augmenting their parallelism. For
instance, in Section 5 by manipulat ing links we have modified the encoding of

186

the lazy strategy into an encoding of a strong-lazy strategy which is more per-
missive (i.e., more parallel) because it also allows reductions inside abstractions
(the Xi rule). At present we are studying the properties of this encoding. We
are not aware of other encodings, into a process algebra, of A-calculus strategies
encompassing the X• rule.

We have showed that name-passing process calculi based on internal mobility
have a simple algebraic theory, in which the main difference from the theory of
CCS is the use of alpha conversion. These calculi also possess a pleasant sym-
metry in their communication constructs. These features might become useful
in the development of denotational models.

R e f e r e n c e s

[Abr89]

[BK85]

[BS95]

[DKV91]

[FMQ94]

[Jon93]

[Mi189]
[Mi191]

[Mi192]

[MPW92]

[PS93]

[San92]

[San95]

[Tho90]

[Wa1951

S. Abramsky. The lazy lambda calculus. In D. Turner, editor, Research
Topics in Functional Programming, pages 65-116. Addison-Wesley, 1989.
J.A. Bergstra and J.W. Ktop. Algebra for communicating processes with
abstraction. Theoretical Computer Science, 37(1):77-121, 1985.
M. Boreale and D. Sangiorgi. A fully abstract semantics for causality in the
1r-calculus. Proc. STACS'95, To appear.
P. Degano, S. Kasangian, and S. Vigna. Applications of the calculus of trees
to process description languages. Proc. CTCS '91, LNCS 530, 1991.
G. Ferrari, U. Montanari, and P. Quaglia. A ~-calculus with explicit substi-
tutions: the late semantics. Proc. MFCS'94, LNCS, 1994.
C.B. Jones. A n-calculus semantics for an object-based design notation. In
E. Best, editor, Proceedings of CONCUR '93, LNCS 715, 1993.
R. Milner. Communication and Concurrency. Prentice Hall, 1989.
R. Milner. The polyadic ~r-calculus: a tutorial. Technical Report ECS-
LFCS-91-180, LFCS, Dept. of Comp. Sci., Edinburgh Univ., October 1991.
R. Milner. Functions as processes. Journal of Mathematical Structures in
Computer Science, 2(2):119-141, 1992.
R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, (Parts

I and Ii). Informatwn and Computation, 100:1-77, 1992.
B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. In
8th LICS Conf., pages 376-385. IEEE Computer Society Press, 1993.
D. Sangiorgi. Expressing Mobility in Process Algebras: Fwst-Order and
Higher-Order Paradigms. PhD thesis CST-99-93, Department of Computer
Science, University of Edinburgh, 1992.
D. Sangiorgi. Full version of this paper. To Appear as Technical Report,
1NRIA-Sophia Antipolis, 1995.
B. Thomsen. Calculi for Higher Order Communicating Systems. PhD thesis,
Department of Computing, Imperial College, 1990.
D. Walker. Objects in the ~-calculus. Information and Computation, 1995.
To appear.

