
ERP Interfaces for Enterprise Networks 
An XML approach 

Szilveszter Drozdik 
drozdik@sztaki.hu 

Abstract: Although Enterprise Networks may be formed for different purposes, the need 
of integration always pops up. Integration requires interfaces, clear and 
consistent constructions of the communication. FLUENT (Flow Oriented 
Logistics Upgrade for Enterprise Networks) is a joint European project (Esprit 
IV) in which - among others - ERP (Enterprise Resource Planning) interfaces 
are defined and implemented for systems, like SAP and Baan. ERP systems 
provide proprietary interfaces, so FLUENT founded a common core interface 
specification easy to fit for any ERP interface. FLUENT ERP interface 
architecture defines XML schemas and transformations to convert a 
proprietary ERP data set to the format of another one and vice versa. This 
architecture is based on standardised XML solutions so exploits the 
advantages of the emerging XML trend 

Key words: Enterprise Network Integration, ERP, XML, EDI, FLUENT 

1. INTRODUCTION 

FLUENT [FLU] is an international, multi-sectorial attempt to develop 
methods and tools for managing complex logistic flows, occurring in a 
distributed manufacturing network with multiple plants and co-operating 
firms. This kind of organisation has been attracting great interest from the 
industry community world-wide, under the impulse of: 

Emerging trends in logistics management: Virtual/extended enterprise 
paradigms and Integrated Supply-Chain Models 
Evolving market conditions: Decentralisation of facilities, Strategic 
alliances with suppliers and Complex distribution networks 

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35492-7_50 

© IFIP International Federation for Information Processing 2002
G. L. Kovács et al. (eds.), Digital Enterprise Challenges

http://dx.doi.org/10.1007/978-0-387-35492-7_50


464 Szilveszter Drozdik 

Enabling technologies available on the IT market:Networking and 
Workflow solutions, Standards for ERP integration and Supply Chain 
Planning solutions. 

Appealed by this scenario, companies of every size strive to integrate 
their logistics processes, but a coordinated IT solution is not yet available. 
So, traditional logistics functions like sales and purchase are left alone to 
face problems far beyond their intended role. 

2. ERP INTEGRATION 

The main purpose of the FLUENT ERP interface software is to achieve a 
seamless integration between the supply logistic chain that will be managed 
by FLUENT and the ERP product. 

Supply chain management does not mean exposing ERP transactions via 
an Internet interface. FLUENT aim is to implement new functions 
supporting network-level processes, complementary to the standard 
functionality of ERP at the local level. 

Theoretically, FLUENT allows integration with any ERP system, 
including legacy systems. ERP products of SAP, Baan/Singular, Diapason, 
system were considered and an EDI interface were planned to support EDI­
linked business. 

Hence, the integration software is based on the principle that no local 
function or ERP transaction shall be replicated in the new system. Hence, 
only data really necessary to node interactions in the supply network will be 
exposed at the network level. 

This requirement can appear straightforward, but it is very common to 
find "web-transposed ERP functions" when looking at supply chain 
solutions on the market. It is thus necessary to mark clearly the difference 
between network transactions, to be supported by FLUENT, and local 
transactions supported by the ERP: 
- Network transactions are those requiring the co-operation between nodes 

in order to take decisions, and for FLUENT the only data to be exposed 
at network level are those supporting these transactions. For example, a 
network process is the planning and negotiation of a supply flow through 
a link between two nodes. A data item relevant to this network-level 
transaction is the price applying for the transfer of product. 

- Local transactions are those performed within the scope of a single node, 
and not requiring interactions at the supply network level. For example, 
local transactions are those of creation, definition and approval of a price 
list for a supplier or class of suppliers. The "price" data is obviously the 



ERP Interfaces for Enterprise Networks 465 

same as in the previous case, and a proper connection will be needed to 
update the price in the "Link" FLUENT object on the basis of listings 
changes. What is not required is to expose the "Listing" document (with 
all its approval, accounting and other details) at the network level. This 
would mean translating ERP functions into the new system. 

Connections between two systems are realised through asynchronous 
alignment of data and events: 
- Each system (FLUENT or the ERP) imports from/exports to the other 

system according to its own schedule. No synchronised update or 
common schedule between the two systems is required. 

- Both systems are able to operate in their respective domains even in 
absence of up-to-date data from the other system. This means, for 
example, that FLUENT uses last availability data published from the 
ERP, while "real" availability can have changed in the meantime in the 
ERP domain. 

- From a technological point of view, alignment of data can take place 
indifferently via LAN, WAN, or any other file transfer mechanism. 

FLUENT 

Node2 

!J< 
Figure I . ERP Integration Model 

To achieve this seamless integration a long-term strategic approach was 
chosen satisfying these goals: 



466 Szilveszter Drozdik 

- Usage of common available technology. 
- Usage of a common language for exchanging data. 
- Usage of simple and standard formats for data exchange. 

The answer to these requirements is represented by XML. 

3. XML IN A NUTSHELL 

Here in this paper there is no place to introduce XML [XML], we just 
hope the reader has already met it. For a newcomer, very briefly, XML 
(Extensible Markup Language) is a widely adopted standard, is available on 
a large number of platforms, is pretty simple and straightforward and, 
because is based upon exchange of formatted ASCII files, can be easily 
implemented also if the platform upon which the ERP product is based 
doesn't support it. All is needed is simply to write, read and transfer well 
formed text files. In some features: 
- XML is a way of adding intelligence to your documents. It lets you 

identify each element using meaningful tags and it lets you add 
information ("meta-data") about each element. 

- XML is very much a part of the future of Web, and part of the future for 
all electronic information. 

- XML is syntax for marking up data and it works with many other 
technologies to display and process information. It looks and feels very 
much like HTML. 

In the following we apply some XML companion standards like XML 
Schema [XSCH] and Extensible Stylesheet Language Transformations 
[XSLT]. For further reading, see the references. 

4. FLUENT ERP-XML INTERFACE 

For understanding the interface, let we consider a typical communication 
scenario. The flow of communication will proceed according to the 
following steps, shown in Figure 2 (the described scenario is export of data 
from ERP to FLUENT, but the same considerations apply also to the reverse 
case): 



ERP Interfaces for Enterprise Networks 467 

ERPdomain 

Programming 

Figure 2. Communication Scenario 

1. The ERP system will describe an XML Schema of the data it will make 
available for FLUENT, each entity that will be transferred to FLUENT 
will need to have a schema defined. Based upon this schema the ERP 
system will generate the XML files upon some arranged scheduling (ie: 
each time a new file is needed, each night, each week), the XML schema 
will be also made available on the FLUENT machine. This schema will 
be referred as "Starting schema" in the following. 

2. For each entity that FLUENT will need to process a schema will be 
defined by the FLUENT Consortium. This schema will be referred as the 
"FLUENT schema" in the rest of the paper. 

3. The Starting schema and the FLUENT schema can be the same or can be 
different, it depends on the ERP system. This choice (having two 
possible schemas) was made because there is a increasing interest in 
XML by the ERP producer and so there can be a situation where an 
existing schema can be already available for the ERP product the 
customer has available, in this case there is no need to create a new 
schema but the existing one can be used. 

4. Recently Microsoft has been supporting a common framework for these 
operations named "BizTalk" that is already endorsed by the major ERP 
producer (SAP, Baan, PeopleSoft and JD Edwards just to name few). 
FLUENT and is also part of this initiative and so all the schema will be 
defined using the BizTalk format. 



468 Szilveszter Drozdik 

5. The XML files will be transferred on the FLUENT machine using some 
kind of common transfer method (e.g.: FTP, Samba, CFS or some other 
kind of file transfer mechanism), at this point the ERP system has 
finished its work. As far as the ERP is concerned, this approach seems to 
be the less demanding in terms of adoption of new technologies and 
changes to the local environment. The EDP personnel has to know: 

- How to create and manage an XML Schema. 
- How to write XML text files according to this schema. 
- How to transfer files to the FLUENT machine. 

The last two of the operations above would be needed even if XML 
schemas and XML files were not involved in the process. 

5. AN INTERFACE EXAMINATION METHOD 

Our examination on the interfacing issues lays on some obvious 
considerations. Let us have two systems (A and B) and two transformations 
(TAB and TBA) to exchange some structured data (x) between them (Figure 
3). 

Figure 3. Simple Transformations 

Let we define a test transformation: 
T = T BA 0 TAB. so 

T(x) = (TBA 0 TAB )(x) = TBA(TAB(x)) 
The test transformation simply transfers data from A to B, and backward. 

We would like to get back the same data we sent, but our wishes rarely come 
true. Repeating T again and again on the result of the previous T we can 
make a sequence of xi : 

Xi+t = T(xi) 
And if T satisfies some criteria it should do, the limit value of the 

sequence signed X must exist: 
Lim Xi= X 



ERP Interfaces for Enterprise Networks 469 

Obviously X is the fix point ofT as 
T{x) =X 

Here comes the sense of the thing as here we get back the same data we 
sent. Unfortunately T is not supposed to behave so nice in case of arbitrary 
data. X is the only one T likes, and X may be completely useless for us. In 
order to be able to gauge the usefulness of X or any other Xi, we should 
introduce an evaluating function. 

The evaluating function E(x) measures the efficiency of the utilisation of 
the structure, that is E compares the actual data to the ideal amount of data 
the structure could carry. Function E produces a value between 0 and 1 
where 0 means data good-for-nothing and 1 means data the structure is 
completely utilised by. The construction of the value is hidden and does not 
matter. Now we may examine the amount of the information X contains. 

In the best case E(x) = 1. It means T is perfect, consequently TAB and T BA 
are both perfect, so the interface works fine in both direction and we may use 
it as it is. 

If E(X) = 0, the interface worth nothing. It does not mean that TAB and 
T BA are both inaccurate, both of them may be good enough and the interface 
can work quite fine without the loopback. 

In any other case, we may consider whether X provides data reasonably 
enough or not. Anyway E(X) < 1, there must be some interface insufficiency 
or excessive requirements occur. If X is good enough, we should compare x0 

to X and decide to eliminate data loosing substructures, because those 
needlessly engage resources. 

A good approach is to define an X data structure first as necessary and 
sufficient for our systems, then we design and interface of TAB and T BA 
where 

X=x 

6. INTERMEDIATED TRANSFORMATIONS BY 
FLUENTERPINTERFACES 

Our case study begins with three systems (Figure 4). Let system A the 
FLUENT one, system C is the ERP one and system B is the intermediate 
one. 



470 Szilveszter Drozdik 

Figure 4. Intermediated Transformations 

Why intermediation necessary? In case of n systems without an 
intermediating one there are {n2- n) transformations. The intermediating 
solution requires (2 * n) transformations only. The role of the intermediate 
system is to provide a common base for any system to join and participate in 
the communication. 

Unfortunately ERP systems do not really support a common way to 
exchange information between them. In most case an ERP product declares 
some interface for the world outside its own way. Recently XML became an 
interface language of the communication and ERP systems are announced to 
support XML interfaces. It does not mean a common interface with anybody 
using XML, since the XML Schemas ERP systems use are different ones. 
XML just makes the interfacing easier by a standardised data format. 
FLUENT recognised and exploited the advantages of the XML-based 
interfacing and declared its own XML interface. 

In a typical case system S specifies an XML subsystem S' and 
export/import transformations where Ess·(X) 1. System A (FLUENT) and 
C (an ERP) do provide such A' and C' XML spaces and transformations. 
The only thing to do is to implement transformations between A' and C' 
(Figure 5). 

A 

Figure 5. Intermediation Detailed 

The solution of Figure 5 should not be called really intermediated as 
system B is phantom one. System B is a collection of XML Schemas, 



ERP Interfaces for Enterprise Networks 471 

transformations and tools supporting the interface between A and C. 
Furthermore B is unclosed since when a new ERP system (D) joins the 
network B should be expanded with D' and corresponding transformations 
to A'. 

Although there is no real ERP intermediating specification, FLUENT 
itself could be seen as a kind of ERP integration solution since ERPs could 
be connected to each other through FLUENT (Figure 6). 

FLUENT 

Figure 6. Intermediation by FLUENT XML 

Our considerations on interface examination can be extended for the case 
of using FLUENT to integrate different ERP systems. As any combination 
of transformation routes may occur, we should test chains of 
transformations. According to a well-known saying a chain is as strong as 
the weakest link does. Consequently the chain can be tested link by link. A 
link test produces x and E(X) values for a link. We also can produce a value 
for the chain as the minimal value of the links: 

Min (Ei(Xi) ) 
This way we can simply point out that one transformation loosing data 

might infect the whole system. If there is a chain going through each ERP 
system and through FLUENT between ERPs, the chain uses each of the 
transformations at least once. Obviously, if a transformation loose data 
somewhere, there is no way to reproduce it, so the following links get less 
information. 



4 72 Szilveszter Drozdik 

7. FLUENT SPECIFIC INTERFACING PROBLEMS 

Although FLUENT does not specify requirements for the ERP 
integration, the nature of the integration assumes some features the ERP 
should satisfy. 

First we consider the main problematic point of the integration. As 
FLUENT itself works with Business Objects (BO), the work around is BO 
centric. Each import operation results one or more BOs and each export 
operation is fed from BOs. FLUENT objects represent Product, Aggregate 
BOM, Available Inventory, Planned Inventory, Independent Demand Order, 
Materials Requirement, Shipment, Receipt, Supply Item, Supply, Forecast 
and Unit Of Measure descriptions. 

The FLUENT ERP Interface software realises a given number of 
Connections. Each connection represents an automated process for 
importing, exporting or aligning data between the ERP and FLUENT 
Business Objects. 

Import connections update FLUENT objects based on ERP data; Export 
connections update ERP tables based on FLUENT objects; Align 
connections operate in both directions, keeping data aligned with respect to 
latest changes in both systems. 

In the case of an import operation, we should create FLUENT Business 
Objects from the ERP side. The import procedure should solve the following 
problems: 
- Semantically mapping ERP information into BO attributes can be 

difficult or even impossible and require ERP queries. 
- One result may be calculated from other ones, so a dependency tree 

grows up. 
- Some BO attributes reference to other ones (in FLUENT syntax of 

course), so the procedure should check the existence and coherence of the 
references at FLUENT side. 
FLUENT having recognised the problems above, classified BO attributes 

as: 
- Mandatory: The field value is required by FLUENT in order to define a 

proper instance of the object (defining attribute). 
- Default available: If the ERP has it, the field value is useful on the 

FLUENT side. Event if the field is not exported by the ERP, new 
instances can be defined since FLUENT can use a default value. 

- Optional: The field is optional on the FLUENT side, and it will be 
instantiated only if the ERP has it. 
Unfortunately even if we consider the mandatory attributes only (limiting 

quite much the usability of the interface), we could not ward off the great 
mass of the complications. 



ERP Interfaces for Enterprise Networks 473 

Export operations face similar difficulties, and in the align case, conflict 
may arise if a data element is updated in both systems. In such cases, as a 
general rule, the winner will be the latest update. 

8. FLUENT - EDI INTERFACING PROBLEMS 

Special cases of ERP integration when we are to build interface for 
another interface like EDI. EDI (Electronic Data Interchange) is a computer­
to-computer transmission of (business) data in a standard format. Parties 
using EDI exchange messages. EDI allows specifying specialised message 
types (so called subsets) over the general syntax and semantics. Companies 
specified countless subsets for their own needs as ordering or offering 
products, notifying price changes and so one. In many cases, EDI is used to 
exchange ERP like information, so at this point we may introduce FLUENT 
as a solution of ERP integration. 

When we build FLUENT Business Objects from EDI messages, we face 
some deeper difficulties as if we would work upon an ERP interface: 
- There is no standardised subset each company use, so we should produce 

an interface for each subset. 
- We just get messages often reflecting completely different approaches of 

the FLUENT use. 
- There is no way to query the ERP for filling up aBO. 
- When we export a FLUENT BO, we should build up messages filling up 

with EDI and subset specific data fields FLUENT does not provide. 
Considering the problems above, we suggest specifying FLUENT 

compatible EDI subsets. Unfortunately there is no guarantee anybody 
accepts new subsets. 

9. CONCLUSION 

FLUENT provides software tools and techniques for the integration of 
distributed logistic and business flows. 

The integration is based on standardised XML documents and 
transformations. 

The integration can be difficult in case of special ERP systems. Although 
we may solve the integration is some way, we lose data during the 
interfacing procedures. 

More problems arise when we integrate FLUENT with EDI. 



474 Szilveszter Drozdik 

10. REFERENCES 

Table 1. References Table 
Ref. See Here 
FLU http:/!fluent.gformula.com 
XML http://www.w3.org/XML 
XSCH http://www.w3.org/XML/Schema 
XSLT http://www.w3.org/TR!xslt 


	ERP Interfaces for Enterprise Networks An XML approach
	1. INTRODUCTION
	2. ERP INTEGRATION
	3. XML IN A NUTSHELL
	4. FLUENT ERP-XML INTERFACE
	5. AN INTERFACE EXAMINATION METHOD
	6. INTERMEDIATED TRANSFORMATIONS BY FLUENT ERP INTERFACES
	7. FLUENT SPECIFIC INTERFACING PROBLEMS
	8. FLUENT - EDI INTERFACING PROBLEMS
	9. CONCLUSION
	10. REFERENCES




