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There has been much recent interest in languages whose grammar 
is sufficiently simple that  an efficient left-to-right parsing algorithm 
can be mechanically produced from the grammar. In this paper, we 
define LR(k) grammars, which are perhaps the most general ones 
of this type, and they provide the basis for understanding all of the 
special tricks which have been used in the construction of parsing 
algorithms for languages with simple structure, e.g. algebraic lan- 
guages. We give algorithms for deciding if a given grammar satisfies 
the LR (k) condition, for given k, and also give methods for generating 
recognizers for LR(k) grammars. I t  is shown that  the problem of 
whether or not a grammar is LR(k) for some k is undecidable, and the 
paper concludes by establishing various connections between LR(k) 
grammars and deterministic languages. In particular, the LR(]c) con- 
dition is a natural analogue, for grammars, of the deterministic 
condition, for languages. 

I. INTI~ODUCTION AND DEFINITIONS 

T h e  word  " l a n g u a g e "  will  be used  here to denote  a set of cha rac te r  
s t r ings  which  has  been va r ious ly  cal led a context free language, a (simple) 
phrase structure language, a constituent-structure language, a definable set, 
a B N F  language, a Chomsky type 2 (or type 4) language, a push-down 
automaton language, etc. Such  languages  have  aroused  wide in te res t  
because  t h e y  serve as a p p r o x i m a t e  models  for n a t u r a l  languages  and  
c o m p u t e r  p r o g r a m m i n g  languages,  among  others.  I n  th is  p a p e r  we single 
ou t  an i m p o r t a n t  class of languages  wl~fich will be called translatable from 
left to right; th is  means  if we read  the  charac te rs  of a s t r ing f rom left  to 
r ight ,  and  look a given finite n u m b e r  of charac te rs  ahead  , we are  able to 
pa r se  the  given s t r ing w i thou t  ever  back ing  up  to consider  a p rev ious  
decision.  Such languages  are p a r t i c u l a r l y  i m p o r t a n t  in the  case of com- 
p u t e r  p rog ramming ,  since th is  condi t ion  means  a pars ing  a lgo r i thm can 
be mechan ica l ly  cons t ruc ted  which  requires  an execut ion t ime  at  wors t  
p r o p o r t i o n a l  to  the  length  of the  s t r ing  being parsed .  Spec ia l -purpose  
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methods for translating computer languages (for example, the well- 
known precedence algorithm, see Floyd (1963)) are based on the fact  
that  the languages being considered have a simple left-to-right structure. 
By considering all languages tha t  are translatable from left to right, we 
are able to s tudy all of these special techniques in their most general 
framework, and to find for a given language and g rammar  the "bes t  
possible" way to translate it f rom left to right. The s tudy of such lan- 
guages is also of possible interest to those who are investigating human  
parsing behavior, perhaps helping to explain the fact tha t  certain English 
sentences are unintelligible to a listener. 

Now we proceed to give precise definitions to the concepts discussed 
informally above. The well-known properties of characters and strings 
of characters will be assumed. We are given two disjoint sets of char- 
acters, the "intermediates" I and the "terminals" T; we will use upper  
case letters A, B, C , . . .  to stand for intermediates, and lower case 
letters a, b, c, . . .  to stand for terminals, and the letters X, Y, Z will be 
used to denote either intermediates or terminals. The letter S denotes 
the "principal intermediate charac ter"  which has special significance as 
explained below. Strings of characters will be denoted by  lower case 
Greek letters a, fl, % • • • , and the empty string will be represented by  E. 
The notation a s denotes n-fold concatenation of string a with itself; 

0 n n--1 s = e, and s = s s  . A production is a relation A --+ ~ where A is in 
I and ~ is a string on I (J T; a grammar 9 is a set of productions. 
We write ~ -~ ¢ (with respect to 9, a g rammar  which is usually under- 
stood) if there exist strings s, ~, ~0, A such tha t  ~ = aA~, ¢ = aO~, 
and A --~ ~ is a production in 9. The transitive completion of this rela- 
tion is of principal importance:  a ~ f~ means there exist strings 
so , OLi  , " * " , S n  (with n > 0) for which a = s0 --~ s l  --~ • " --~ ~ = ~. 
Note  tha t  by  this definition it is not necessarily true tha t  a ~ a;  we will 
write a - ->  ~ to mean a = /~ or a ~ ft. A g rammar  is said to be circular 
if ~ ~ s for some ~. (Some of this notation is more complicated than 
we would need for the purposes of the present paper, but  it is introduced 
in this way in order to be compatible with tha t  used in related papers.)  
The language defined by 9 is 

{s [ S ~ s and s is a string over T}, (1) 

namely, the set of all terminal strings derivable from S by  using the 
productions of 9 as substitution rules. A sentential form is any string s 
for which S ~ s.  
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For example, the grammar 

S ---+ A D ,  A ---* aC, B --~ bcd, C ~ BE ,  D --~ ~, E --~ e (2) 

defines the language consisting of the single string "abcde".  Any sen- 
tentiM form in a grammar may be given at least one representation as 
the leaves of a derivation tree or "parse diagram";  for example, there is 
but  one derivation tree for the string abcde in the grammar (2), namely, 

b c d  e 
/ 

B E 
\/ 

a C (3)  
\ /  / 

A D 
\ /  

S 

(The root of the derivation tree is S, and the branches correspond in 
an obvious manner to applications of productions.) A grammar is said 
to be unambiguous if every sentential form has a unique derivation tree. 
The grammar (2) is clearly unambiguous, even though there are several 
different sequences of derivations possible, e.g. 

S ~ A D  ...+ aCD --+ a B E D  ~ abcdED .-~ abcdeD ~ abcde (4) 

S --~ A D  -.~ A -+ aC ~ a B E  --~ abe  ~ abcde (5) 

In order to avoid the unimportant  difference between sequences of 
derivations corresponding to the same tree, we can stipulate a particular 
order, such as insisting that  we always substitute for the leftmost inter- 
mediate (as done in (4))  or the rightmost one (as in (5)) .  

In practice, however, we must start  with the terminal string abcde and 
t ry  to reconstruct the derivation leading back to S, and that  changes our 
outlook somewhat. Let us define the handle of a tree to be the leftmost 
set of adjacent leaves forming a complete branch; in (3) the handle is 
bcd. In other words, if X1, X~, • • • , Xt are the leaves of the tree (where 
each Xi is an intermediate or terminal character or e), we look for the 
smallest k such that  the tree has the form 

Y 
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for some j and Y. If we consider going from a b c d e  backwards to reach S, 
we cap_ imagine starting with tree (3), and "pruning off" its handle; 
then prune off the handle ( " e " )  of the resulting tree, and so on until 
only the root S is left. This process of pruning the handle at each step 
corresponds exactly to derivation (5) in reverse. The reader may easily 
verify, in fact, that  "handle pruning" always produces, in reverse, the 
derivation obtained by replacing the r i g h t m o s t  intermediate character 
at each step, and this may be regarded as an alternative way to define 
the concept of handle. During the pruning process, all leaves to the right 
of the handle are terminals, if we begin with all terminal leaves. 

We are interested in algorithms for parsing, and thus we want to be 
able to recognize the handle when only the leaves of the tree are given. 
Number the productions of the grammar 1, 2, . . .  , s in some arbitrary 
fashion. Suppose a = X 1  • • " X ~  • • • X t  is a sentential form, and suppose 
there is a derivation tree in which the handle is Xr+l • • • X~,  obtained 
by application of the pth production. (0 -<_ r =< n -< t, 1 =< p =< s.) We 
will say (n, p) is a h a n d l e  of a. 

A grammar is said to be t r a n s l a t a b l e  f r o m  l e f t  to r i g h t  w i t h  b o u n d  k 

(briefly, an " L R ( k )  g rammar")  under the following circumstances. 
Let k > 0, and let " ~ "  be a new character not in I 0 T. A/~-sentential 
form is a sentential form followed by /c " ~ "  characters. Let 
a = X 1 X 2  . . .  X n X ~ + I  . . .  X ~ + k Y 1  . . .  Y ~ a n d ¢ ~  = X I X 2  . . .  X ~ X ~ + I  . . .  

X , , + ~ Z ~  • • • Z ~  be k-sentential forms in which u >_- 0, v >= 0 and in which 
none of X.+I ,  • "", X n + ~  , Y~  , " • ,  Y ~  , Z~  , • . . ,  Z~  is an intermediate 
character. If (n, p) is a handle of a and (m, q) is a handle of ~, we require 
that  m = n, p = q. In other words, a grammar is LR(k)  if and only if 
any handle is always uniquely determined by the string to its left and 
the k terminal characters to its right. 

This definition is more readily understandable if we take a particular 
value of k, say/c = 1. Suppose we are constructing a derivation sequence 
such as (5) in reverse, and the current string (followed by the delimiter 
-~ for convenience) has the form X 1  . ' .  X ~ X ~ + ~ a  ~ ,  where the tail end 
"X~+~a ~ " represents part  of the string we have not yet  examined; but  
all possible reductions have been made at the left of the string so that  
the right boundary of the handle must be at position Xr for r > n. We 
want to know, by looking a t  the next character X~+I, if there is in fact 
a handle whose right boundary is at position X~ ; if so, we want this 
handle to correspond to a unique production, so we can reduce the 
string and repeat the process; if not, we know we can move to the right 
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and read a new character of the string to be translated. This process 
will work if and only if the following condition ( " L R ( 1 ) " )  always holds 
in the grammar: If X1X~ . . .  X~X~+lo~I is a sentential form followed by 
" -~ " for which all characters of X,+1o~1 are terminals or " -~ ", and if 
this string has a handle (n, p) ending at position n, then all l-sentential 
forms X 1 X 2 . . .  X,~X~+lo~ with X~+l~o as above must have the same 
handle (n, p). The definition has been phrased carefully to account for 
the possibility that  the handle is the empty string, which if inserted 
between X~ and X~+I is regarded as having right boundary n. 

This definition of an LR(k)  grammar coincides with the intuitive 
notion of translation from left to right looking k characters ahead. 
Assume at some stage of translation we have made all possible reductions 
to the left of Xn ; by looking at the next k characters Xn+l . . .  X~+k, 
we want to know if a reduction on Xr+l . . -  X~ is to be made, regardless 
of what follows X,+k.  In an LR(k)  grammar we are able to decide 
without hesitation whether or not such a reduction should be made. If a 
reduction is called for, we perform it and repeat the process; if none 
should be made, we move one character to the right. 

An LR(/c) grammar is clearly unambiguous, since the definition 
implies every derivation tree must have the same handle, and by indue- 
tion there is only one possible tree. I t  is interesting to point out further- 
more that  nearly every grammar which is known to be unambiguous is 
either an LR(k)  grammar, or (dually) is a right-to-left translatable 
grammar, or is some grammar which is translated using "bo th  ends to- 
ward the middle." Thus, the LR ( k ) condition may be regarded as the most 
powerful general test for nonambiguity that is now available. 

When/~ is given, we will show in Section II  that  it is possible to decide 
if a grammar is LR(/c) or not. The  essential reason behind this that  the 
possible configurations of a tree below its handle may be represented by a 
regular (finite automaton) language. 

Several related ideas have appeared in previous literature. Lynch 
(1963) considered special eases of LR(1) grammars, which he showed are 
unambiguous. Paul (1962) gave a general method to construct left-to- 
right parsers for certain very simple LR(1)  languages. Floyd (1964a) 
and Irons (1964) independently developed the notion of bounded con- 
text grammars, which have the property that  one knows whether or not to 
reduce any sentential form aO~o using the production A ~ 0 by examining 
only a finite number of characters immediately to the left and right of 0. 
Eiekel (1964) later developed an algorithm which would construct a 
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certain form of push-down parsing program from a bounded context 
grammar, and Earley (1964) independently developed a somewhat 
similar method which was applicable to a rather large number of LR (1) 
languages but had several important omissions. Floyd (1964a) also 
introduced the more general notion of a bounded right context grammar; 
in our terminology, this is an LR(k) grammar in which one knows 
whether or not Xr+1 ... X~ is the handle by examining only a given 
finite number of characters immediately to the left of Xr+1, as well as 
knowing Xn+'1 • • • X,,+k. At that time it seemed plausible that a bounded 
right context grammar was the natural way to formalize the intuitive 
notion of a grammar by which one could translate from left to right with- 
out backing up or looking ahead by more than a given distance; but it 
was possible to show that Earley's construction provided a parsing 
method for some grammars which were not of bounded right context, 
although intuitively they, should have been, and this led to the above 
definition of an LR(/c) grammar (in which the entire string to the left of 
X~+I is known). 

I t  is natural to ask if we can in fact always parse the strings corre- 
sponding to an LR(k)  grammar by going from left to right. Since there 
are an infinite number of strings X1 • • • X~+k which must be used to make 
a parsing decision, we might need infinite wisdom to be able to make 
this decision correctly; the definition of LR(k)  merely says a correct 
decision exists for each of these infinitely many strings. But it will be 
shown in Section II  that  only a finite number of essential possibilities 
really exist. 

Now we will present a few examples to illustrate these notions. Con- 
sider the following two grammars: 

S ---* aAc, A ---> bAb, A ---* b. (6) 

S --> aAc, A --~ Abb, A ---* b. (7) 

Both of these are unambiguous and they define the same language, 
{ab~+lc}. Grammar (6) is not LR(/c) for any k, since given the partial 
string ab m there is no information by which we can replace any b by A; 
parsing must wait until the " c "  has been read. On the other hand gram- 
mar (7) is LR(0) ,  in fact it is a bounded context language; the sentential 
forms are {aAb2nc} and {ab~+lc}, and to parse we must reduce a substring 
ab to aA,  a substring Abb to A, and a substring aAc to S. This example 
shows that  LR(k) is definitely a property of the grammar, not of the 
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language alone. The distinction between grammar and language is ex- 
tremely important  when semantics is being considered as well as syntax. 

The grammar 

S ~ aAd, S ~ bAB, A --~ cA, A --~ c, B ---+ d (8) 

has the sentential forms {ac~Ad} U {ac~+~d} U {bc~AB} U {bc~Ad} U 
{bc~+~B} U {bc~+ld}. In the string bc'+ld, d must be replaced by B, while 
in the string ac~+~d, this replacement must not be made; so the decision 
depends on an unbounded number of characters to the left of d, and the 
grammar is not of bounded context (nor is it translatable from right 
to left). On the other hand this grammar is clearly LR(1)  and in fact  
it is of bounded right context since the handle is immediately known by 
considering the character to its right and two characters to its left; 
when the character d is considered the sentential form will have been 
reduced to either aAd or bAd. 

The grammar 

S ~ aA, S ~ bB, A --~ cA, A .--> d, B ---> cB, B ~ d (9) 

is not of bounded right context, since the handle in both acid and bc~d 
is " d " ;  yet  this grammar is certainly LR(0) .  A more interesting ex- 
ample is 

S ~ aAc, S ~ b, A ~ aSc, A --~ b. (10) 

Here the terminal strings are {a~bc~}, and the b must be reduced to S 
or A according as n is even or odd. This is another LR(0)  grammar 
which fails to be of bounded right context. 

In Section I I I  we will give further examples and will discuss the 
relevance of these concepts to the grammar for ALGOL 60. Section IV 
contains a proof that  the existence of k, such that  a given grammar is 
LR(k) ,  is recursively undecidable. 

Ginsburg and Greibach (1965) have defined the notion of a deter- 
ministic language; we show in Section V that these are precisely the 
languages for which there exists an LR(k)  grammar, and thereby we 
obtain a number of interesting consequences. 

II.  ANALYSIS OF LR(k) GRAMMARS 

Given a grammar ~ and an integer k => 0, we will now give two ways 
to test whether ,q is LR(k)  or not. We may assume as usual that  ~ does 
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not contain useless productions, i.e., for any A in I there are terminal 
strings ~, f,  ~ such that  S - >  aA ' , /~  aft'/. 

The first method of testing is to construct another grammar ~ which 
reflects all possible configurations of a handle and k characters to its 
right. The intermediate symbols of ~ will be [A; a], where a is a k-letter 
string on T U { ~ } ; and also [p], where p is the number of production in 
9. The terminal symbols of ~ will be I U T U { -~}. 

For convenience we define Hk(a) to be the set of all k-letter strings f 
over T U { -~ } such that  a - >  ¢~-/with respect to @ for some v; this is 
the set of all possible initial strings of length k derivable from a. 

Let the pth production of ~ be 

A~ -~ Xp l  " "" Xpnp,  1 5~ p ~-~ 8, T~ ~" O. (11)  

We construct all productions of the following form: 

[A~ ; a] --~ Xpl " "  Xp(j_I)[X~ ; f] (12) 

where 1 = j =< n~, X ~  is intermediate, and a, ¢~ are k-letter strings over 
T U { -~ } with f in Hk(X~(j+I) - . .  X ~ a ) .  Add also the productions 

[A~ ; ,~] ---, x ~  . . .  X ~ , ~ [ p ]  (13) 

I t  is now easy to see that  with respect to ~, 

[S; ~k] ~ X ~ . . .  X~X,+~. . .  X.+~[p] (14) 

i f  and only if  there exists a k-sentential form X ~ . . .  X,~X,~+I... 
X,~+~YI"" Y~ with handle (n, p)  and with X~+~ . . .  Y~ not inter- 
mediates. Therefore by definition, ~ will be LR(k)  if and only if ~ satis- 
fies the following property: 

[S; _~k] ~ O[p] and [S; _~k] ~ O~[q] implies ¢ = e and p = q. (15) 

But ~ is a regular grammar, and well-known methods exist for testing 
Condition (15) in regular grammars. (Basically one first transforms 
so that  all of its productions have the form Q~ ~ aQ], and then if Q0 = 
IS; qk], one can systematically prepare a list of all pairs (i, j )  such that  
there exists a string a for which Qo ~ aQ~ and O0 ~ aQj .) 

When k = 2, the grammar ~ corresponding to (2) is 
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IS; 4 4] --+[A; q q] [C; 4 41--+[B;e-~] 

[S; q -t] --~ A[D; -q q] [C; 4 41-+ B[E; 4 4] 

[S; 4 41 - ' ~ A D 4  4[ 1 ] [C; -~ -7]--+BE 4 414] 
(16) 

[a; < g I -+ ale; 4 g I [B; e 41 -~ be& 4 [31 

[A; 4 - f l - + a C 4  412] [E; 4 q ] - -~e4  4161 

[D; 4 4]--+ 4 415] 

I t  is, of course, unnecessary to list productions which cannot be reached 
from [S; 4 4]. Condition (15) is immediate; one may see an intimate 
connection between (16) and the tree (3). 

Our second method for testing the LR(.6) condition is related to the 
first bu t i t  is perhaps more natural and at the same time it gives a method 
for parsing the grammar @ if it is indeed LR(/c). The parsing method is 
complicated by the appearance of e in the grammar, when it becomes 
necessary to be very careful deciding when to insert an intermediate 
symbol A corresponding to the production A --~ e. To treat this condition 
properly we will define Hk'(¢) to be the same as Hk(¢) except omitting 
all derivations that  contain a step of the form 

Ao~ --~ o), 

i.e., when an intermediate as the initial character is replaced by e. This 
means we are avoiding derivation trees whose handle is an empty string 
at the extreme left. For example, in the grammar 

S --~ BC 4 4 4, B --~ Ce, B ---÷ e, C ---÷ D, C ---~ Dc, D ---~ e, D --~ d 

we would have 

Ha(S) = { 4 4 4, c4 4, ceq, cec, ced, d 4 4, dce, 

de4, dec, ded, e 4 4, ec4 ,ed4, edc} 

Ha'( S) = {dce, de4, dec, ded}. 

As before we assume the productions of ~ are written in the form (11). 
We will also change ~ by introducing a new intermediate So and adding 
a "zeroth"  production 

So --~ S -t k (16) 
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and regarding So as the principal intermediate. The sentential forms are 
now identical to the k-sentential forms as defined above, and this is a 
decided convenience. 

Our construction is based on the notion of a "state," which will be 
denoted by [p, j; a]; here p is the number of a production, 0 <= j -<_ np, 
and a is a k-letter string of terminals. Intuitively, we will be in state 
[p, j; ~] if the partial parse so far has the form ~X~I • • • X~, and if 
contains a sentential form ~A~a .-. ; that is, we have found j of the 
characters needed to complete the pth production, and a is a string 
which may legitimately follow the entire production if it is completed. 

At any time during translation we will be in a set $ of states. There 
are of course only a finite number of possible sets of states, although it is 
an enormous number. Hopefully there will not be many sets of states 
which can actually arise during translation. For each of these possible 
sets of states we will give a 1~dle which explains what parsing step to 
perform and what new set of states to enter. 

During the translation process we maintain a stack, denoted by 

SoX1S1X~2 " " X~$~ I Y1 . . "  Y ~ .  (17) 

The portion to the left of the vertical line consists alternately of state 
sets and characters; this  represents the portion of a str ing which has 
already been translated (with the possible exception of the handle) 
and the state sets $~ we were in just after considering X1 • • • X~. To the 
right of the vertical line appear the k terminal characters I11"'" Yk 
which may be used to govern the translation decision, followed by a 
string o~ which has not yet  been examined. 

Initially we are in the state set C0 consisting of the single state 
[0, 0; ~k], the stack to the left of the vertical line in (17) contains only 
C0, and the string to be parsed (followed by -~ k) appears at the  right. 
Inductively at a given stage o f  translation, assume the stack contents 
are given by (17) and that  we are in state set 8 = S~. 

S t e p  1. Compute the "closure" $' of $, which is defined recursively as 
the smallest set satisfying the following equation: 

$' = $ [J {[q, 0; ~] I there exists [ p , j ;  a] in $ ' , j  < np, 
(18) 

X~,(s+l) = A q ,  and B in Hk(Xi,(~+~.) " "  X p ~ ) } .  

(We thus have added to $ all productions we might begin to work on, 
in addition to those we are already working on.) 
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S t e p  2. Compute  the following sets of k-letter strings: 
! 

Z = {~ ] there exists [p, j ;  a] in 6,  j < np,  
(19) 

in H k '  (Xp( j+ l )  . . "  Xp,~pa)} 

Zp = {a I[P, np ; a] in $'}, 0 = p < s. (20) 

Z represents all strings Y1 " '"  Yk for which the handle does no t  appear 
on the stack, and Zp represents all for which the pth production should 
be used to reduce the stack. Therefore, Z ,  Zo , • • • , Z~ m u s t  a l l  be d i s j o i n t  

sets ,  or the g rammar  is not LR(k) .  These formulas and remarks are 
meaningful even when k = 0. Assuming the Z ' s  are disjoint, Y1 " ' "  Yk 
must  lie in one of them, or else an error has occurred. If  Y1 " '"  Yk lies 
in Z, shift the entire stack left: 

$0X151 . - -  g~Yll Y~ " ' "  Y~e 

and rename its contents by letting Xn+~ = Y~, Y~ = Y2, " "" : 

80X151 " -  S~X~+I I Y1 " '"  Y ~ '  

and go on to Step 3. I f  Y~ • .- Yk lies in Zp,  let r = n - n~ ; the stack 
now contains X~+~ • • • X~,  equalling the righthand side of production p. 
Replace the stuck contents (17) by 

goX~S~ . . . X ~ % A p  ] Y 1 .  . . Yk¢o (21) 

and let n = r, Xn+~ = A p .  (Notice tha t  obvious notational conventions 
have been used here to deal with empty  strings; we have 0 ~ r =<_ n. 
I f  n~ = 0, i.e. if the r ighthand side of production p is empty,  we have 
just i n c r e a s e d  the stack size by  going from (17) to (21), otherwise the 
stack has gotten sm~ller.) 

S t e p  3. The stack now has the form 

~DX151 " ' "  XnSnXn . . k l  [ Y 1 .  . . YkO2. ( 2 2 )  

Compute  & '  by Eq. (18) and then compute the new set &~+~ as follows: 

&~+~ = {[p, j q- 1; a l l  [p, j ;  a] in S,~' and X~+I = X~o.+~)}. (23) 

This is the state set into which we now advance; we insert S~+~ into 
the stack (22) just to the left of the vertical line and return to Step 1, 
with $ = $~+~ and with n increased by one. However, if $ now equals 
[0, 1 ; qr ~] and Y1 • • • Yk = -~ k, the parsing is complete. 

This completes the construction of a parsing method. In  order to 
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properly take care of the most general case, this method is necessarily 
complicated, for all of the relevant information must be saved. The 
structure of this general method should shed some light on the im- 
portant special cases which arise when the LR(k) grammar is of a simpler 
type. 

We will not give a formal proof that this parsing method works, since 
the reader may easily verify that each step preserves the assertions we 
made about the state sets and the stack. The construction of all possible 
state sets that can arise will terminate since there are finitely many of 
these. The grammar will be LR(k) unless the Z sets of Eqs. (19)-(20) 
are not disjoint for some possible state set. The parsing method just 
described will terminate since any string in the language has a finite deri- 
vation, and each execution of Step 2 either finds a step in the derivation 
or reduces the length of string not yet examined. 

III. EXAMPLES 

Now let us give three examples of applications to some nontrivial 
languages. Consider first the grammar 

S ~ ~, S --~ aAbS,  S ~ bBaS,  (24) 

A --~ ~, 4 ~ aAbA,  B ~ e, B ---* bBaB 

whose terminal strings are just the set of all strings on {a, b} having exactly 
the same total number of a's and b's. There is reason to believe (24) is 
the briefest possible unambiguous grammar for this language. We will 
prove it is unambiguous by showing it is LR(1), using the first construe- 
tion in Section II. The grammar ~ will be 

[z; q] 

IS;-~]--->a[A;b], IS; -~]---*aAb[S; ~], IS; -~]---+aAbS-~[2] 

[S; -~]----~b[B;a], [S;-~]---~5Ba[S;-~], IS; -~]---+bBaS-~[3] 

[A; b] --~ 5[4] 

[A ; 5] ~ a[A; b], [A ; b] ~ aAb[A ; b], [A ; b] ~ aAbAb[5] 

[B;a] --~ a[6] 

[B; a] --> b[B; a], [B, a] ~ bBa[B; a], [B; a] --~ bBaBa[7] 
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The strings entering into condition (15) are therefore 

(aAb, bBa),~ [1], (aAb, bBa),aAbS~ [2], (aAb, bBa),bBaS~ [3] 

(aAb, bBa),a(a, aAb),b[4], (aAb, bBa),a(a, aAb),aAbAb[5] 

(aAb, bBa)*b(b, bBa),a[6], (aAb, bBa)*b(b, bBa),bBaBa[7]. 

Here (a, f~), denotes the set of all strings which can be formed by con- 
catenation of a and ~; dearly condition (15) is met. 

Our second example is quite interesting. Consider first the set of all 
strings obtainable by fully parenthesizing algebraic expressions involving 
the letter a and the binary operation + :  

S ~ a, S--+ (S -~ S) (25) 

where in this grammar "('% "-~ ", a n d " ) "  denote terminals. Given any 
such string we will perform the following acts of sabotage: 

(i) All plus signs will be erased. 
(ii) All parentheses appearing at the extreme left or extreme right 

will be erased. 
(iii) Both left and right parentheses,will be replaced by the letter b. 
Question: After all these changes, is it still possible to recreate the 

original string? The answer is, surprisingly, yes; it is not hard to see 
that this question is equivalent to being able to parse any terminal string 
of the following grammar unambiguously: 

Product ion ~ Product ion Product ion # Production 

0 S --*Bq 
1 B ----~a 2 B - ->LR 
3 L ---~a 4 L ---~LNb 

5 R ---+a 6 R ---~bNR 
7 N --~ a 8 N --* bNNb 

(26) 

Here B, L, R, N denote the sets of strings formed from (25)  with altera- 
tions (i) and (iii) performed, and with parentheses removed from 
both ends, the left end, the right end, or neither end, respectively. 

I t  is not in,mediately obvious that grammar (26) is unambiguous, 
nor is it immediately clear how one could design an efficient parsing 
algorithm for it. The second construction of Section II shows however 
that  (26) is an LR(1)  granm~ar, and it also gives us a parsing method. 
Table I shows the details, using an abbreviated notation. 
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In Table I, the symbol 21-~ stands for the state [2, 1; ~ ], and 4lab 
stands for two states [4, 1; a] and [4, 1; b]. "Shift" means "perform the 
shift left operation" mentioned in step 2; "reduce p"  means "perform 
the transformation (21) with production p."  The first lines of Table I 

TABLE I 
~ARSING METHOD FOR GRAMMAR (26) 

Additional states If X~+I then go to State set 8 in $~ If Y1 is then is 

004 10~ 204 30ab 40ab a shift B 014 
a 114 3lab 
L 214 4lab 

01~ 4 stop 

114 3lab 4 reduce 1 
a, b reduce 3 

214 4lab 504 604 70b 80b a, b shift 

224 4 reduce 2 

42ab b shift 

R 224 
N 42ab 
a 514 71b 
b 614 81b 

43ab 

51~ 7lab 4 reduce 5 
a, b reduce 7 

61~ 8lab 70ab 80ab a, b shift N 
a 

b 

614 82ab 
7lab 
8lab 

43ab a, b reduce 4 

624 82ab 504 604 70b 80b a, b shift 

634 4 reduce 6 

84ab a, b reduce 8 

R 
N 
a 

b 

63~ 
84ab 
514 71b 
614 81b 
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are formed as follows: Given the initial state $ = {004} , we. mus t  form 
S' according to Eq. (18). Since X01 = B and X02 = 4 we must include 
10 4 and 20 4 in $'. Since X21 = L and X~2 = R we must:include 30ab; 
40ab in $ ' ( a  and b being the possible initial characters o f  R 4 ). Since 
X41 = L and X4~ = N we must, similarly, include 30ab and 40ab in 8'; 
but  these have already been included, and so 8' is completely deter- 
mined. Now Z = {a} in this case, so the only possibility i n s t ep  2 is to 
have Yi = a and shift. Step 3 is more interesting; if we ever get to 
Step 3 with $~ = $ (this includes later events when a reduction (21) has 
been performed) there are three possibilities for X,~+i. These are de- 
termined by the seven states in S t, and the righthand column is merely 
an application of Eq. (23). 

An important  shortcut has been taken in Table I. Although it is 
possible to go into the state set "514 71b", we have no entry for that  
set; this happens because 51471b is contained in  51471ab. A procedure 
for a given state set must  be valid for any of  its subsets. (This implies less 
error detection in Step 2, but we will soon justify that.)  I t  is often 
possible to take the union of several state sets for which the parsing 
action does not conflict, thereby considerably shortening the parsing 
algorithm generated by the construction of Section II. 

When only one possibility occurs in Step 2 there is no need to test 
the validity of Yi • • • Yk ; for example in Table I line 1 there is no need 
to make sure Y~ = a. One need do no error detection until an at tempt  
to shift Y~ = ~ left of the vertical line occurs. At this point the stack 
will contain "$oS8i[ 4 k'' if and only if the input string was well- 
formed; for we know a well-formed string will be parsed, and (by defini- 
tion!) a malformed string cannot possibly be reduced to " S  4 ~'' by 
applying the productions in reverse. Thus, any or all error detection 
may be saved until the end. (When k = 0, 4 must be appended at the 
right in order to do this delayed error check.) 

One could hardly write a paper about parsing without considering the 
traditional example of arithmetic expressions. The following grammar is 
typical: 

Production /~ Production Production ~ Production 

0 S - . E ~  4 T - - ~ P  
1 E - - ~ - T  5 T - - ~ T . P  
2 E - - ~ T  6 P- -~a  
• ~ E - ~ E  -- T 7 P ~  (E) 

(27) 
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This grammar has the terminal alphabet {a, - , . ,  ( , ) ,  4 } ; for example, 
the string " a  -- ( - - a . a  - a)  4 " belongs to the language. Table II shows 
how our construction would produce a parsing method. In line 10, the 
notation "4,  5, 6" appearing in the X column means rules 4, 5, and 6 
apply to this state set also. Such "factoring" of rules is another way to 
simplify t h e  parsing routine produced by our construction, and the 
reader will undoubtedly see other ways to simplify Table II. 

By means of our construction it is possible to determine exactly what 
information about the string being parsed is known at any given time. 
Because of this detailed knowledge, it will be possible to study how much 
of the information is not really essential (i.e., how much is redundant) 
and thereby determine the "best possible" parsing method for a gram- 
mar, in some sense. The two simplifications already mentioned (delayed 
error ehecldng, taking unions of compatible state sets) are simplifications 
of this ldnd, and more study is needed to analyze this problem further. 

In many eases it will not be necessary to store the state sets $~ in the 
stack, since the states Sr which are used in the latter part of Step 2 can 
often be determined by examining a few of the X's at the top of the 
stack. Indeed, this will always be true if we have a bounded right con- 
text grammar, as defined in Section I. Both grammars (26) and (27) 
are of bounded context. 

From Table I we can see how to recover the necessary state set in- 
formation without storing it in the stack. We need only consider those 
state sets which have at least one intermediate character in the " X ~ + I "  
column for otherwise the state set is never used by the parser. Then it is 
immediately clear from Table I that {004} is always at the bottom of 
the stack, {214 , 4lab} is always to the right of L, {614,8lab} is always 
to the right of b, and {624, 82ab} is always to the right of N. 

Grammar (27)  is related to the definition of arithmetic expressions in 
the ALGOL 60 language, and it is natural to ask whether ALGOL 60 is 
an LR(k) language. The answer is a little difficult because the definition 
of this language (see Naur (1963)) is not done completely in terms of 
productions; there are "comment conventions" and occasional informal 
explanations. The grammar cannot be LR(k) because it has a number 
of syntactic ambiguities; for example, we have the production 

(open string} --+ (open string} (open string} 

which is always ambiguous. Another type of ambiguity arises in the 
parsing of (identifier) as (actual parameter}. There are eight ways to do 
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this: 

(actual parameter} --~ 

(actual parameter --~ 

(actual parameter 

(actual parameter 

(actual parameter 

(actual parameter 

: (actual parameter 

(actual parameter} --* 

(array identifier} --~ (identifier} 

(switch identifier} --~ (identifier) 

--* (procedure identifier} --* (identifier} 

-+ (expression} --~ (designational expression} 

(identifier} 

(expression} --~ (Boolean expression} 

(variable} ~ (identifier} 

--~ (expression} --~ (Boolean expression} 

(function designator) ~ (identifier} 

--~ (expression} --~ (arithmetic expression} 

(variable} ~ (identifier} 

(expression} --+ (arithmetic expression} 

(function designator) ~ (identifier} 

These syntactic ambiguities reflect bona fide semantic ambiguities, 
if the identifier in question is a formal parameter to a procedure, for it is 
then impossible to determine what sort of identifier will be the actual 
arg~lment in the absence of specifications. At the time the ALGOL 60 
report was written, of course, the whole question of syntactic ambiguity 
was just emerging, and the authors of that document naturally made 
little attempt to avoid such ambiguities. In fact, the differentiation 
between array identifiers, switch identifiers, etc. in this example was done 
intentionally, to provide explanation along with the syntax (referring 
to identifiers which have been declared in a certain way). In view of this, 
a ninth alternative 

(actual parameter) --~ (string} --* (formal parameter} --* (identifier) 

might also have been included in the ALGOL 60 syntax (since section 
4.7.5.1 specifically allows formal parameters whose actual parameter is a 
string to be used as actual parameters, and this event is not reflected in 
any of the eight possibilities above). The omission of this ninth alterna- 
tive is significant, since it indicates the philosophy of the ALGOL 60 re- 
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port towards formal parameters: they are to be conceptually replaced by 
the actual parameters before rules of syntax are employed. 

At any rate when parsing is considered it is desirable to have an 
unambiguous syntax, and it seems clear that with little trouble one 
could redefine the syntax of ALGOL 60 so that we would have an LR(1) 
grammar for the same language. 

By the " A L G O L  60 language" we mean the set of strings meeting 
the syntax for ALGOL 60, not necessarily satisfying any semantical 
restrictions. For example, 

begin array x[100000: 0]; y :~- z/O end 

would be regarded as a string in the ALGOL 60 language. 
I t  is interesting to observe that it might be impossible to define 

ALGOL 60 using an RL(k) grammar (where by RL(k) we mean "trans- 
latable from right to left," defined dually to LR(k)).  Several features 
of that language make it most suited to a left-to-right reading; for ex- 
ample, going from right to left, note that the basic symbol comment 
radically affects the parsing of the characters to its right. A similar 
language, for which some LR(k) grammars but no RL(k) grammars 
exist, is considered in Section V of this paper; but we also will give an 
example there which makes it appear possible that ALGOL 60 could be 
RL(k). 

IV. AN UNSOLVABLE PROBLEM 

Post (1947) introduced his famous correspondence problem which has 
been used to prove quite a number of linguistic questions undeeidable. 
We will define here a similar unsolvable problem, and apply it to the 
study of LR(k) grammars. 

THE PARTIAL CORRESPONDENCE PROBLEM. Let (al , ~1), (a~ , ~ ) ,  . . .  , 
(an ,  ~n) be ordered pairs of nonempty strings. Do there exist, for all p > O, 
ordered p-tuples of integers ( il , i~ , • • • , ip) such that the first p characters 
of the string ahai2 . . .  ai, are respectively equal to the first p characters 
of ~ ,  ~ . . .  ~ .~  

The ordinary correspondence problem asks for the existence of a 
p > 0 for which the entire strings ~h "'" a~, a n d / ~  - - . /~  are equal. 
A solution to the ordinary correspondence problenl implies an affirmative 
answer to the partial correspondence problem, but the general solvability 
of either problem is not directly related to the solvability of the other. 
There are relations between the partial correspondence problem and 
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the Tag problem (see Cocke and Minsky (1964)) but no apparent simple 
connection. We can, however, prove that the partial correspondence 
problem is recursively unsolvable, using methods analogous to those 
devised by Floyd (1964b) for dealing with the ordinary correspondence 
problem and using the determinacy of Turing machines. 

For this purpose, let us use the definition and notation for Turing ma- 
c.hines as given in Post (1947) ; we will construct a partial correspondence 
problem for any Turing machine and any initial configuration. The 
characters used in our partial correspondence problem wilt be 

q~SiS~hh, 1 < i <_ R, 0 <= j <-_ m. 

If the initial configuration is 

S i l S j ~ " "  Sj~_tq~lSjk'" S~  

the pair of strings 

( ~, ~hSj~ . . .S~_lq i~Sjk . . .  Si~,h) (28) 

will enter into our partial correspondence problem. We also add the 
pairs 

(/~, h), (h,/~), (S~., ~.), (Ss', Sj), (~  , q~), 1 <_- i --- R, 0 ~ j = m. (29) 

Finally, we give pairs determined by the quadruples of the Turing ma- 
chine: 

Form of quadruple Corresponding pairs, 0 < t -< m: 

q~S~Lq~ (hqiS~, h(tzSoSj), ( Stq~S~, q~S~Ss) 

q~S~Rqz (q~Sjh, ,~J(l~Sof~), (q~SjSt, Si~zSt) (30) 

qiSjSkq~ (q~Sj, (lzS~) 

N o w  it is easy to see that these corresponding pairs will simulate the 
behavior of the Turing machine. Since the pair (28) is the only pair 
having the same initial character, and since the pairs in (30) are the 
only ones involving any q~ in the ]efthand string, the only possible 
strings which can be initial substrings of both a~la~: .- .  and 
fl~fl~ . . .  are initial substrings of 

, ~- aO~la~a~&~a~ ""  , (31 ) 

where no, m ,  a~, etc. represent the successive stages of the Turing 
machine's tape (with h's placed at either end, and where ~ is an obvious 
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notation signifying the "bar r ing"  of each letter of a) .  For  these pairs, 
therefore, the partial correspondence problem has an affirmative answer i f  
and only i f  the Turing machine never halts. And the problem of telling if a 
Turing machine will ever halt  is, of course, well known to be recursively 
unsolvable. 

We will apply this result to LR(k)  grammars as follows: 
T~EOREM. The problem of deciding, for a given grammar ~, whether or 

not there exists a k ~ 0 such that ~ is LR(k) ,  is recursively unsolvable. 
This theorem is in contrast to the results of Section II, where we 

showed the problem to be solvable when k is also given. To prove this 
theorem we will reduce the partial correspondence problem to the LR(k)  
problem for a particular class of grammars. 

Let  ( a l ,  ill), "" • , (a,~, ft.) be pairs of strings entering into the partial 
correspondence problem, and let 

X1X2 " "  X~ + 

be n + 1 characters distinct from those appearing among the a 's  and 
3's. Let  ~ be the following grammar: 

S- -~  A ,  S---~ B,  A -+ X i  + o~i , B - ~  XI  + fli 
(32) 

A --+ X i A o ~ i  , B --> X i B f l i  , ] ~- i <~ n .  

The sentential forms are 

{X,,~ . . .  X , , A a q  . . .  a,,~} U {X,,~ . . .  X,xBfl,~ . . .  fl,,,} 

O {X ,m " ' "  X i l  --~ (~il " ' "  C~im } O {Xim " '"  X i  1 ~- ~,1 " ' "  ~,m}: 

We will show @ is LR(tc) for some k if and only if the partiM corre- 
spondence problem has a negative answer. If the answer is affirmative, 
for every p we have sentential forms X 9 . . .  X{, + a~ . . .  a ~ ,  X{. .- • 
Xq + fl~ • • • fl~ in which the first p characters following " + "  agree. 
The handle must include the " + "  sign, but the p - q characters following 
the handle do not tell us whether the production A --+ Xi, + a~ or 
B --+ X~I + fi~ is to be applied, if q is the maximum length of the 
strings a~, fl~. Hence the grammar is not LR(q) .  On the other hand, if 
the answer to the partial correspondence problem is negative, there is 
a p for which, knowing (ix, ".-  , i,~i~(~.o) and the f i rs t  p characters 
of aqai~ - "  ai, ~ ~ or fli,fl~ " '"  flit q ~, we can distinguish whether it 
is a string of a 's  or a string of fl's, and therefore @ is in fact a bounded 
context grammar. 
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We have proved slightly more, answering a question posed by Floyd 
(1964a, p. 66): 

T~EOgEM. The problems of deciding whether a given grammar (i) has 
bounded context, or (ii) has bounded right context, are recursively un- 
solvable. 

These theorems could be sharpened in the usual ways to show that  we 
can assume the grammar ~ is unambiguous, linear, has at most two 
terminals, and has either a bounded number of productions or a bounded 
length of string in a production, and can still prove the problem to be 
unsolvable. 

V. CONNECTIONS WITH DETERMINISTIC LANGUAGES 

Ginsburg and Greibach (1965) define a deterministic language as one 
which is accepted by a so-cMled deterministic push-down automaton 
(DPDA).  The latter is a device which has a finite number of states 
qo, ql, q2, " '" q, ~nd which manipulates strings of characters in two 
alphabets T and I,  according to the production rules of the following 
two types: 

Aq~ --) Oqj (33) 

Aq~a --~ Oqi (34) 

Here A and a are single characters in I and T, respectively, and 0 is 
any string over I. When A is the special character ~ we require ~ to be a 
nonempty string whose initial character is ~. For each pair Aq~, where 
A is in I and 0 <= i _< r, we stipulate there is either a unique rule of 
type (33) and none of type (34), or there are no rules of type (33) and 
at most one of type (34) for each a in T. Some of the states are desig- 
nated as "final states",  and the terminal string a is accepted by the 
DPDA if and only if ~ q0a --> ~ ~qi for some final state ql and some 
string ~o. Here the relation " ~ > "  is generated from "--~" as in Section I. 

THEORFZ~. I f  ~ is an LR(k)  grammar, and if 9 defines the language L, 
there is a DPDA which accepts the language L ~ ~. 

The Second construction of Section II  is in fact closely related to a 
DPDA. The grammar 9 augmented by production (16) defines the 
language L ~ k. To construct such a DPDA we will take as our states, ql, 
terminal k-letter strings [YI" ' "  Yk], and there will also be various 
auxiliary states. The terminal Mphabet for the DPDA will be T [J { -~/ 
and the intermediate alphabet will be {8} U I [J T U { ~}. We want our 
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DPDA to arrive at the configuration 

~-$0Xlg, . . .  X,,g~[Y1 - , .  Y~]co (35) 

if and only if the stack in the parsing algorithm of Section II  is 
"8oXi~  " . .  X,~$,~ I Y* "'" Ykc~" at a corresponding stage of the calcula- 
tion. 

Clearly we can construct productions of form (34) which read the 
first k characters of our input string I/1 "" • Yko0 and get us to the initial 
configuration ~{[0, 0; q k ] } [ y , . . .  Y~]~o. Now assume the D P D A  has 
arrived at the configuration (35); as in steps 1 and 2 of the parsing 
algorithm we can compute the sets Z and Z~. If Y1 " '"  Yk is in Z, we 
create instructions of the form (34) 

& [ Y ,  " .  Yk]a---+ $~Ylg~+I[Y~ " '"  Yka] (36) 

where &+, is determined by X,~+I = !71 (or a if k = 0) in (23). If 
Y~ " '" Yk is in Z~, we let q(0), q(~), . . .  , q(2,~) be new auxiliary states 
and write 

S n [ Y 1  ' ' '  Yk] ~ &q (O) 

oSq(2t) ~ q(2t+l), X (2t-~l) q(2t+2), r4,b,_t)q " ~  0 ~ t < n~,  all $. (37) 

gq(2,p) --+ $A~$~+I[Y1 --- Yk], all $. 

where &,+~ is determined from 8 by using (23) with g. = g, X.+~ = A~. 
We make one exception to this rule, namely, if Y~ . . -  Y~ = _~ k and 
$ = {[0, 0; -{k]}, we change the last instruction to 

gq(2~p) --+ q/ 

where q/is the unique final state of our DPDA. 
The rules (36) and (37) for all possible combinations of S~ and 

[Y1 " "  Yk], plus the few initial and final ones, give us a DPDA which 
exactly follows the procedure of the parsing algorithm in Section II. 

COROLLAn¥. / f  ~ is an LR(]c) grammar and i f  ~ defines the language L,  
there is a D P D A  which accepts the language L. 

For  Ginsburg and Greibach (1965) have proved, among several other 
interesting theorems, that  if L0 is deterministic and R is regular, then 
{a [a/~ in L0 for some fl in R} is deterministic. We take L0 = L _~k and 

. 

We now prove a converse result. 
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THEOREM. I f  L is deterministic, there is an LR(1)  grammar ~ which 
defines L. 

To prove this theorem, we want to take an arbitrary D P D A  with its 
instructions of the forms (33) and (34), and construct a corresponding 
grammar. First it will be necessary to simplify the problem a little, and 
so we will require that  all of the instructions of our D P D A  are of three 
types: 

type (i) : Aq~a --+ Aqj 

type (ii): Aqi --~ q~ (38) 

type (iii) : Aqi --~ ABqj 

where A, B are intermediates, a is terminal. This involves no loss of 
generality, since a rule (34) can be replaced by Aqia --~ Aq, Aq ---> Oq: 
for some new state q, and we are left with type (i) and rules of the 
form (33). The rule Aq~ --+ Oqj is of type (ii) if 0 is empty, otherwise 
assume0 = A 1 A ~ . . . A t w i t h t  => 1. If  A1 ~ A w e h a v e A  ~ ~- so we 
can replace (33) by 

Aq~ --~ q, Bq --* BAlq' for all intermediates B, Alq' -+ Oq: 
! 

where q, q are new states. Thus we may assume A -- A1, and hence 
the rule (33) may  be replaced by  a sequence of t -- 1 rules of type (iii), 
introducing t -- 2 new states, provided t > 1. Finally if t = 1, the rule 
Aq~ -~ Aqj may be replaced by 

Aql --> AAq, Aq --~ q~ 

where q is a new state, thereby reducing all rules to the forms (38). 
For any pair Aqi we still have the deterministic property that  if more 

than one rule appears with Aq~ on the left, all such rules are of type (i), 
and there is at most one such rule for any particular terminal character a. 

A further assumption is needed about final states. If  q:, q/ are final 
states (possibly identical), we want to avoid the situation 

aq: ~ ~q:' (39) 

since this would imply an input string would be "accepted twice" by  
the DPDA.  To exclude this possibility, we double the number of states 
in the DPDA,  using two states q~, ~ for each original state q~. The 
instructions (38) are then replaced by 

type (i) Aqia ----> Aqj , A~ia ~ Aqj . 
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type (ii) Aq~ ~ q~ if qi is not final, Aqi ~ (ti if qi is final, A ~  --~ ~.. 
type (iii) Aql ~ ABqj  if qi is not final, Aq~ --~ AB~j  if q~ is final, A ~  -* 
A B(l j . 

One easily verifies that  (39) cannot occur, and the same set of strings 
is accepted; basically we get into a state ~. if the current string has been 
accepted, and then we do not accept the string again, but return to an 
unbarred state when the next rule of type (i) is used. 

Once the DPDA has been modified to meet these assumptions, let it 
have the states q0, • • • , q, ; we are ready to construct a grammar for 
the language it accepts. We begin by defining the languages L~At for 
0 < i, t < r and for all intermediates A of the DPDA: 

L~At = {a [ Aq~a _t> Aq --+ qt for some q} (40) 

where no step in the derivation represented by " - ' > "  affects the A appear- 
ing at the left. 

Constl~ct the following productions for all rules (38) of the DPDA: 

Rule 

type (i) Aq~a --~ Aqi  
type (ii) Aql -+ qj 
type (iii) Aqi ---+ ABq j  

Product ions  for 

LiAr----> aLjAt,  0 = < t = < r. 

LiAr --+ LjB~L~t,  0 < s, t ~ r. 
(41) 

An easy induction based on the length of the derivation " ~ > "  or the 
derivation in ~ establishes the equality of the sets of strings defined in 
(40) and the sets of strings derivable from LiAr using the productions 
(41). 

Another set of languages is also important: 

L~A = {a I Aq~a ~ >  Ao~q/, some string ~, some final state q/}. (42) 

We construct the following further productions: 

Rule  Produc t ions  for 

type (i) Aqla ~ Aq] L~A --~ aL~A 
type (ii) Aq~ ~ qj (none) (43) 
type (iii) Aq~ ~ ABq~ Li~ ~ L j ,  , Lia --~ LjB~L~ , 0 < s < r. 

ql is final Lia --* e, all A. 

Again, induction establishes the equivalence of (42) and (43). The 
language derivable fi'om Lo~ using ~ is precisely the language L of the 
theorem, by the definition of a DPDA. 
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Now remove all useless productions from ~, i.e., those which can never 
appear in a derivation of a terminal string starting from L0~. We claim 
the resulting grammar ~ is LR(1) .  This result could be proved using 
either of the constructions in Section II, where the state sets have a 
rather simple form, but  for purposes of exposition we will give here a 
more intuitive explanation which shows the connection between the 
operation of the DPDA and the parsing process. 

Consider any string a-{ where a is accepted by the DPDA, and 
consider the step-by-step behavior of the DPD A  as it processes a. At 
the same time we will be building a partial derivation tree which reflects 
all of the information known at a given stage of the parse. The nodes of 
this partial tree will contain symbols [i, A, .] which means that  in the 
only possible parsing of the string the intermediate L~at, for some t = 
0, 1, . . .  , r or t "b lank" ,  must fill that  position. We will be " a t "  some 
node [i, A, *] of the  tree, meaning this particular node below the handle 
is of interest, and at the same time the D P D A  will contain the con- 
figuration . - .  A q ~ . . . .  

All of this can be clarified by considering an example, so we will con- 
sider the following " r a n d o m "  DPDA:  

Rules of DPDA 

qoa --~ ~ ql 
~-ql ~ ~Aq~ 

Aq2a --~ Aql  
Aq~ ~ AAq~ 

A q2b --+ A q3 
Aq2c --~ Aq4 
Aq~ ~ q~ 
Aq4 --~ q6 
A q6 -'* q2 
~ qsc --+ ~ ql 

ql final 
q3 final 

Productions of ~ (useless ones deleted) 

Lof- --~ aL1F- 

L2at --+ aL1At(t = 2, 5, 6), L2A --~ aLia 

L1~2 ~ Lea6L6A2 , Ll~t "--* L2a2L2.4~ 
L2a5 -'~ bL~a~ , L2a -'-+ bL3a 
L~.~6 --~ cL4~ 
L3A5 --~ e 
n4a6 -"--> e 

LeA2 - - -o  e 

Ls~ ~ cL~  

L~a ~ e 

(44) 

Consider the action of the D P D A  when given the string aaacb-~. 
We have 

}- qoaaacb -~ -+ [- qlaacb -~ .-.4 ~- A q2aacb ~ --4 }- A qlacb -~ --4 }- A A q2acb -~ 

• -}  }-AAq~cD -~ ~ }-AAAq2cD -~ --+ }-AAAq4b -~ 
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Corresponding to these seven transitions we will build the following 
partial tree, one node at a time: 

c [4, A, *] 
\ / 

[2, A, ,] 
\ 

a ]1, A, *] 
\ / 

[2, A, *] 
\ 

a [1, A, *] 
\ / 

[2, A, ,1 
\ 

a [1, [-, *] 
\ / 

[0, ~, ,] 

(45) 

We are now " a t "  node [4, A, *], signified by the three dots above it. At 
this point the DPDA uses the rule Aq4 --* q6 and we transform the top 
of tree (45) to 

! ~ ' L  i ". i C 4a6 i " 
.... % ~ A 6 ~  ........... zE6, A,,I 

a ~  / [ 1 ,  A,*] 

[~kA,*] 

(46) 

(Thus, two handles are recognized and then removed from the tree.) 
Then the DPDA uses the rule Aq6 --~ q2 and (46) becomes 

i L L6A~ i 
i a . . .  /<L,~  i ". 

[~A,*] 

(47) 

by reducing three more handles. When the rule Aq~b --~ Aq3 is next ap- 
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plied~ the tree becomes 

b [3, A, *] 

L2~2 [2, A, *] 
\ /  

[1, A, ,] 
a N , / /  (481 

[2, A, *] 
\ 

[1, ~, ,] 
a / 
\ /  

[o, ~, ,] 

Now q3 is a final state and the next character is " ~ ", so we complete 
the parsing; (48) becomes 

b L3~ 
\ /  

L2~2 L2~ 
\ /  

L1A 
a \  // (49) 

L2A 
\ 

a LI~ 
\ /  

Lo~ 

Having worked the example, we can consider the general case. Suppose 
the D P D A  is  in the  configuration . . -  C A q i a  . . .  , and suppose we are 
at node [i, A, .] of the tree. If q~ is a final state and a -= " ~ ", by condi- 
tion (39) we must now complete the parsing, so we proceed to replace 
each [i, A, ,] in the tree by L~u until the root is reached (as in going from 
(48) to (49)).  If q~ is not final or a ~ " -~ ", there are three cases de- 
pending on the pair Aq~ : 

Case ( i ) .  The D P D A  contains a rule of the form A q i a  --~ A q j .  Then 
the only possible parse must occur by changing 
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from to a [j, A, *] 
[i, A, ,] ~ / 

[i, A, *] 

as we did in changing (47) to (48). 
Case (ii) .  The DPDA contains a rule of the form Aq~ --+ qj .  Then 

our tree must be changed from 

/[ i, A,*] 
X2 [il, A,,.] 

x~ \[~i A2.1 

\ 
[i', c,,l 

\ 
to i X~\ ?~ j  

X2 LqA~j 

X. ~./2A2, 
......... . \ / : i  .......................... . "c,1 

[i', c,,] 

as we did in changing from (45) to (46) and (46) to (47). Here n _= 0. 
Case (iii) .  The DPDA contains a rule of the form Aq~ ~ A B q j .  Then 

the only possible parse must occur by changing 

f rom to 

[i, A, .1 [j, B, .] 
\ 
[i, A, *] 

as we did while building tree (45). 
Cases ( i) ,  ( i i) ,  (iii) are mutually exclusive by the definition of DPDA, 

and the arguments are justified by the fact that  our tree represents all 
possible productions of the grammar that  could conceivably work. 
Notice that  in the parsing we actually have almost an LR(0) grammar 
since it was necessary to look at the character following the handle only 
when q~ was a final state, to see if the next character is " ~ "  or not. 

As a consequence of our two theorems, we find a language can be 
generated by an LR(k)  grammar if and only if it is deterministic, if and 
only if it can be generated by an LR(1) grammar. 

The theorem cannot be improved to "LR(0)  grammar",  since ob- 
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viously even the simple language { e, a} cannot be given an LR(0)  gram- 
mar. However, it is possible to show that  the language L ~ can always 
be given an LR(0)  grammar; simply take the LR(1)  grammar of the 
second theorem, and reapply the first theorem to get another D P D A  
for L 4. This  DPDA has only one final state qs, which leads to no 
further states, so the construction of the second theorem applied to this 
new grammar will be LR(0) .  A deterministic language-in which no 
accepted string is a proper initial substring of any other will likewise 
have an LR(0)  grammar. 

Our last theorem shows that  "determinist ic"  is essentially an asym- 
metric property, for there are languages which are translatable from 
right to left but  which are not deterministic. 

THEOREM. The following productions constitute an RL(0)  grammar for 
which the corresponding language is not deterministic: 

S --* Ac, S --~ B, A -~ aAbb, A --* abb, B ~ aBb, B --~ ab. (50) 

Proof: The terminal strings of this language are either anb~'e or a~b n, 
where n > 0. The grammar is clearly RL(0) .  On the other hand, suppose 
we could find an LR(k)  grammar for the same language. (The problem 
is, of course, the appearance of "c"  at the extreme right.) If we consider 
the derivations of the infinitely many strings anb n we must find one in 
which a recursive intermediate appears; thus, there will be an inter- 
mediate C and strings a, ~, ~, ~, w such that  S ~ aC~o ~ a~C~o~ 
a ~ o  = anb ~ for some n. Now a~t~to~ must be in the language for all 
t >_- 0, and ~ is not  empty since the grammar is unambiguous. We see 
therefore that  ~ = a ~, ~ = b ~ for some p > 0. This implies tha t  C cannot 

n ~ 2 n  appear in the derivation of any of the strings a o c. For  arbitrarily large 
t, the language contains strings a~t+t~+~w = an+P% ~+p~ in which, by 
nonambiguity, the handle must  be at least p(t  -t- 1) characters from the 
right and must lead to a sentential form a~t+~C~t+~o with p(t  -+- 1) 
characters to the right of the handle; yet the language also contains the 
strings a~+P~b2('~+Pt)c which must not have the same handle, so the gram- 
mar cannot be L R(k) .  By the preceding theorem the language is not 
deterministic in the left-to-right sense. 

When this paper was being prepared, an at tempt  was made to show 
that  the language {a~b~}d U-(a, b)*c cannot be given an LR(k)  grammar. 
Although this seemed plausible at first, t he  following grammar actually 
does work: . . . . . . . . . . .  
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S - ~  A ,  S ~ bC, S --~ Bd, S --~ BcC, S --) c 

A ~ Be, A --~ BaC, A --~ aA,  
(51) 

B --+ ab, B ~ aBb, 

C -+ c, C --+ aC, C --+ bC. 

This is an LR(0) grammar. 
Indeed, we can note that a DPDA is able to recognize the complement 

of the strings it accepts, so that if L is a deterministic language not 
involving the character " c , "  the language L U {acta  a string on the 
terminal symbols of L} would actuMly be deterministic, contrary to 
expectations. This weakens the argument that "comment" in Algol 60 
might make it a non-RL language. 

VI. REMARKS AND OPEN QUESTIONS 

The concept of LR(k) grammars sheds much light on the translation 
problem for phrase structure languages, and it suggests several inter- 
esting areas for further investigation. 

Of principal interest would be the study of grammatical transforma- 
tions which preserve the LR(k) condition. Many such transformations 
are well known (for example, the removal of "empty"  from a grammar; 
elimination of left-reeursion; reducing to a "normal form" in which all 
productions are of type A - ~  B C  or A --~ a; the operation of transduction 
which converts a grammar to another grammar for its translation; and 
many special cases of the latter). Which of these grammatical modifica- 
tions take LR(!c)  grammars into LR(k) grammars? Similar questions 
apply to bounded context and bounded right context grammars. 

Another important area of research is to develop algorithms that 
accept LR(k) grammars, or special classes of them, and to mechanically 
produce efficient parsing programs. In Section III  we indicated three 
ways to simplify the general parsing schemes produced by our construc- 
tion and many more techniques certainly exist. A table such as Table II 
shows essentially all of the information available during the parsing, and 
much of it can be recognized as repetitive or redundant. 

There are also implications for automata theory. We have shown that 
a deterministic push-down automaton accepts precisely those languages 
that. can be given an LR(h) grammar. This result can be strengthened 
to show that in fact such languages can always be given a bounded right 
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context grammar: We 
changing 

simply modify the construction (41), (43) by 

Li~t -4 a to L~.~t ----> M ~ a  

L~a -~ a to L~  -~ M ~ a  

and adding the productions M~ --~ e for all i, A. This has the effect of 
keeping the necessary information in the sentential form that has been 
parsed. 

The question is, however, what type of automaton is capable of accept- 
ing precisely those languages for which a bounded context grammar can 
be given. The bounded context condition is symmetric with respect to 
left and right, and we have shown that the deterministic property is 
not; for example, the mirror reflection of language (50) is a deterministic 
language which cannot be defined by a bounded context grammar. 

The speed of parsing is another area of interest. Although LR(/c) 
grammars can be efficiently parsed with an execution time essentially 
proportional to the length of string, there are more general grammars 
which can be parsed at a linear rate of speed. This may involve, for 
example, backing up a bounded number of times, or scanning back and 
forth from left to right and right to left in combination, etc. For every 
general parsing method known, there are grammars which cause it to 
take an exponential amount of time; yet it has never been proved that 
the parsing problem is necessarily inefficient in general. Are there par- 
ticular grammars for which no conceivable parsing method will be able 
to find one parse of each string in the language with running time at 
worst linearly proportional to the length of string? Are there general 
parsing methods for which a linear parsing time can be guaranteed for 
all grammars? (In these questions, a parsing method means a process of 
constructing a derivation sequence from a terminal string by scanning a 
bounded number of characters at a time.) 

Finally, we might mention another generalization of LR(k) to be ex- 
plored. The "second handle" of a tree may be regarded as the left-most 
complete branch of terminals lying to right of the handle, and similarly 
we can eonsider the r-th handle. A parsing process which always reduces 
one of the first t handles leads to what might be called an L R ( k ,  t) 
grammar. (In our ease, t = 1.) The grammar 

S ~ ACe,  S ~ BCd, A --* a, B ~ a, C ~ Cb, C ~ b (52) 



TRANSLATION FROM LEFT TO RIGHT 639 

is no t  L R ( k ,  1) for a n y  k, since " a "  is the  hand le  in bo th  abnc and  

abnd; b u t  i t  is L R ( 0 ,  2).  T h e  fol lowing reduc t ion  rules serve  to  

parse  (52) :  

ab ~ aC, Cb ~ C, aCc ~ ACc,  aCd ~ BCd, ACc  ---+ S, BCc ~ S. 

One m i g h t  choose to call  this  le f t - to - r igh t  t rans la t ion ,  a l t hough  we had  
to back  up  a f inite amoun t .  

RECEIVED: June  23, 1965 
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