
L. Rivest, A. Bouras, and B. Louhichi (Eds.): PLM 2012, IFIP AICT 388, pp. 569–577, 2012.
© IFIP International Federation for Information Processing 2012

Dynamic Customization and Validation
of Product Data Models Using Semantic Web Tools

Sylvere Krima1,3, Allison Barnard Feeney1, and Sebti Foufou2,3

1 National Institute of Standards and Technology (NIST),
Gaithersburg, Maryland, USA

{sylvere.krima,abf}@nist.gov
2 Qatar University, Doha, Qatar

sfoufou@qu.edu.qa
3 Le2i Lab. UMR 6306, University de Bourgogne, France

Abstract. Product Lifecycle Management (PLM) has always required robust solu-
tions for representing product data models. Product data models enable information
exchange across different organizations, actors, processes and stages in the product
lifecycle. In this context, standardization of models plays a key role, since it
ensures interoperability between the different systems that support information ex-
change. These standard models need to support diverse domain-specific require-
ments from the multitude of disciplines involved during a product’s lifecycle. Due
to this diversity, challenges are to (1) develop multidisciplinary reusable models,
(2) extend them to support new requirements over time (new products, new regula-
tions, new materials, new processes) and (3) implement the resulting gigantic in-
formation models. ISO 10303, the reference standard for PLM-related data models
provides two mechanisms that enable specialization of generic product data to ad-
dress some of these challenges. In this paper we introduce the need for dynamic
PLM-related information models, detail the existing ISO 10303 method and identi-
fy its limitations. We then present a methodology for enhancing that method using
the Web Ontology Language (OWL) and ontologies for representing product data
models and the SPARQL Inference Notation (SPIN), a new Semantic Web tech-
nology, for validating product data and overcoming OWL limitations.

1 Introduction

We live in the information age. Data has become an essential asset for most everyday
situations and business interactions. The need to share data, to generate information,
and create new knowledge from that data is common to all fields of research and all
economic activity. Whether it is financial data, product data, health data, or disaster
data, managing that data is a critical, and sometimes costly, process. To manage data
well, we must understand that it has a lifecycle composed of several steps including
definition, instantiation, transformation, validation and archive. When not properly
defined, data might become incomplete, inconsistent or, even worse, unusable. Re-
quirements for data evolve and we must define new data or update existing data over

570 S. Krima, A. Barnard Feeney, and S. Foufou

the entire data lifecycle. Evolving data requirements is an important issue and a tech-
nological challenge as it is not possible to define, in advance, information structures
that meet requirements you do not yet know.

Specifying information requirements is particularly challenging in domains such as
manufacturing where information exchange involves many actors and sharing across
multiple functions and software applications. In these situations, each function has its
own needs and each application has its own input/output requirements. As a result, it
becomes hard to find a common information structure for representing data. The chal-
lenge is even bigger when a temporal aspect has to be considered since it requires the
ability to extend the information structure dynamically over time. One area within the
manufacturing domain that we have identified with these characteristics is Product
Lifecycle Management (PLM). PLM involves many global actors using a myriad of
software applications that perform a series of product management functions that can
last from weeks to decades.

Because the mechanism to extend models is static by its nature, requiring numerous
updates of the initial information model, this operation is expensive in cost and time. It
requires an understanding of the entire initial model to ensure correct extensions are de-
veloped. Software components may need to be updated so they can exchange, under-
stand, and use the information in the new model. Finding an alternative is crucial when
dealing with complex products and multiple requirements typical of PLM.

ISO 10303 [1], informally known as STEP, is the reference standard among PLM-
related data models [2]. ISO 10303 provides two mechanisms that enable specializa-
tion of generic product data to address some of these issues.

2 Presentation of ISO 10303

2.1 Introduction

ISO 10303, most commonly known as the Standard for Exchange of Product model
data (STEP), is an international standard designed to exchange digital information,
enabling an ever-widening range of engineering software systems to interoperate.
STEP is divided into parts, to ease its use and implementation. The parts of STEP
that are designed for implementation are called Application Protocols (APs). APs
contain information models developed using a standard language, called EXPRESS.
The most common exchange structure for EXPRESS information models is also stan-
dardized, and is simply referred to as Part 21 [3].

STEP has a broad scope and new capabilities are continually being added to cover
emerging user needs. However, the standards-development timeline is quite long, and
a more responsive approach was sought for certain types of schema customization.
STEP provides two mechanisms that enable customization for domain-specific needs.
First, users can define and add new attributes to existing concepts. Second, users can
classify STEP instances with an externally controlled vocabulary - this is called ex-
ternal classification. Although user-defined attributes give users the possibility to add
new properties to instances, those properties have no formally-defined semantics.

 Dynamic Customization and Validation of Product Data Models 571

Due to their implementation as independent key-value pairs, they are only human
interpretable properties. This paper focuses on the external classification approach.

2.2 External Classification

The STEP external classification approach defines added semantics formally with an
external resource - such as a taxonomy or controlled vocabulary and uses it to classify
instances so each instance will contain a link to its formal definition.

To establish links between an instance and its external definition, STEP uses three
EXPRESS entities: Applied_classification_assignment, Externally_defined_class and
External_class_library. External_class_library represents an external classification,
Externally_defined_class represents a classifier formally defined in the external clas-
sification and Applied_classification_assignment is the way to apply the external
classifier to an instance. The following Part 21 code shows an example of classifica-
tion where an instance of the Product EXPRESS entity is classified as a ‘Car’,
‘http://myontology.org/Car’ being an external concept formally-defined in the exter-
nal library whose identifier is ‘http://myontology.org’.

#1 = PRODUCT($,$,'Car Assembly',());
#2 = APPLIED_CLASSIFICATION_ASSIGNMENT(#3,$,(#1));
#3 = EXTERNALLY_DEFINED_CLASS('Car',$,$,#4);
#4 = EXTERNAL_CLASS_LIBRARY('http://myontology.org');

STEP does not provide any restriction on the formalism to use, so in this example we
choose to represent the external classification, also known as Reference Data, using
an ontology implemented in Web Ontology Language (OWL) [7]. OWL is recom-
mended by the OASIS Product Lifecycle Support Technical Committee [4] for im-
plementing ISO 10303-239 [5]. This ontology formally defines “Car” and a few other
concepts. Any of these concepts can be used to classify STEP instances.

2.3 Toward a Semantic STEP

Extensions using External_class do have well-defined semantics, but present their
own set of problems because of the heterogeneous architecture (See Fig. 1.) where
the classifiers and the instances require integrating two different implementation
technologies - OWL and Part 21, which increases the complexity for developers to
implement a mechanism for classification of instances.

572 S. Krima, A. Barnard

Fig. 1. STEP e

One needs to convert bot
tation technology that allow
instance can change throug
classifications is the ontolo
straints. OWL[6] is a langu
in OntoSTEP1[7], as a de
originally in EXPRESS/Par
OWL and combined with a
tomatic classification of ins
restrictions. Fig. 2. shows a
an ontology where Car, Fa
so that any instance of P
STEP method for external
Fig. 2.). After classificatio
uct but also an instance of
readability only. Reference
notation2.

1 OntoSTEP plugin for Protég
 http://www.nist.gov
2 http://www.w3.org/T

d Feeney, and S. Foufou

external classification heterogeneous architecture

th the classifiers and the instances to a common implem
ws dynamic classification of instances so that the type of
gh its lifecycle. A technology that enables such dynam
ogies where classification of instances is driven by c
uage for implementing this mechanism and has been us
estination language to translate STEP APs and instan
rt 21. Once STEP APs and instances are transformed i
an external classification in OWL, one can achieve an
stances by enriching the external classification with OW

an example where an instance of Product is classified us
astCar and SUV are defined. We then enrich this ontolo
Product is classified as an instance of Car when
l classification is correctly used (see bottom condition
on, the Product instance #1 is not only an instance of Pr

Car. In Fig. 2. instances are shown as Part 21 for ease
e data and the OWL constraint are expressed using the

é is available at:
v/el/msid/ontostep.cfm
eamSubmission/n3/

men-
f an
mic

con-
sed,
nces
into
au-

WL
sing
ogy
the

n in
rod-
e of
N3

 Dynamic

Fig. 2. Example of external cla

In this section we presen
automatic classification of
stances into OWL to perfor
we explain and overcome in

3 Using OWL for

In Section 2, we classified
name of the external class u
tic and does not ensure tha
mantically correct, classif
validation.

As an example of an int
as a product with four whe
four wheels should be seen
Assumption (UNA), where
tially dealing with the Open

c Customization and Validation of Product Data Models

assification using STEP and OWL in a homogeneous architect

nted a mechanism, implemented with OWL, which enab
f instances based on constraints. We converted STEP
rm this classification. However, OWL has limitations t
n the next section.

STEP Validation

instances based on the string value of an attribute (i.e.,
used for classification). This classification is purely synt
at classified instances are semantically correct. To be
fied instances need to pass some integrity constra

tegrity constraint, consider the following. A car is defi
eels (the constraint); any instance of car that does not h

as an error. Using OWL with the absence of Unique Na
e different names refer to different instances, we are ess
n World Assumption (OWA) [8]. In the open world, a

573

ture

bles
in-

that

the
tac-
se-

aints

ined
have
ame
sen-
car

574 S. Krima, A. Barnard Feeney, and S. Foufou

with three wheels cannot be seen as inconsistent with our constraint. This can happen
because it is possible that this car has four wheels, but the information about the
fourth wheel has not been discovered yet. In other words, open world means that we
cannot assume that our knowledge base, used to build our assumptions, is complete.
As a result, it is quite complex to use native OWL mechanisms for integrity constraint
validation. We need an approach that simulates a closed world.

Research efforts in this domain have yielded some approaches, implementations, and
software [9, 10] that provide solutions for validation of integrity constraints when using
OWL. SPIN (SPARQL Inferencing Notation) [11] is the solution we have chosen. SPIN
is a SPARQL-based rules and constraints language with an object-oriented approach.
With SPIN users can define rules and constraints at the class definition level, and then
apply them to instances. More importantly for our purpose, implementations of SPIN
can produce data validation constraint results as if the world was closed.

Let us consider the following Part 21 instance file (syntactically valid with respect
to STEP AP2033) that represents five products where one, instance #1 is defined as a
car, is an assembly of #6, defined as a body, and three instances of #9, defined as a
wheel. The reference data used in #17 is defined using OWL.

#1 = PRODUCT($,$,'Car Assembly',());
#2 = PRODUCT_DEFINITION_FORMATION($,'Car assembly',#1);
#3 = PRODUCT($,$,'Body',());
#4 = PRODUCT_DEFINITION_FORMATION($,'Body',#3);
#5 = PRODUCT_DEFINITION($,'Body',#4,$);
#6 = PRODUCT_DEFINITION($,'Car',#2,$);
#7 = PRODUCT($,$,'Wheel',());
#8 = PRODUCT_DEFINITION_FORMATION($,'Wheel',#7);
#9 = PRODUCT_DEFINITION($,'Wheel',#8,$);
#10 = NEXT_ASSEMBLY_USAGE_OCCURRENCE($,$,'Body',#6,#5,$);
#11 = NEXT_ASSEMBLY_USAGE_OCCURRENCE($,$,'RF',#6,#9,$);
#12 = NEXT_ASSEMBLY_USAGE_OCCURRENCE($,$,'LF',#6,#9,$);
#13 = NEXT_ASSEMBLY_USAGE_OCCURRENCE($,$,'RR',#6,#9,$);
#22 = APPLIED_CLASSIFICATION_ASSIGNMENT(#19,$,(#1));
#21 = APPLIED_CLASSIFICATION_ASSIGNMENT(#20,$,(#3));
#20 = EXTERNALLY_DEFINED_CLASS('Body',$,$,#17);
#19 = EXTERNALLY_DEFINED_CLASS('Car',$,$,#17);
#18 = EXTERNALLY_DEFINED_CLASS('Wheel',$,$,#17);
#17 = EXTERNAL_CLASS_LIBRARY('http://myOntology/Car');
#16 = APPLIED_CLASSIFICATION_ASSIGNMENT(#18,$,(#7));

After applying OntoSTEP and the mechanism described in Fig. 2. , we are able to
classify instances #1, #6 and #9. Unfortunately, because of the OWA, it is impossible
to enrich the reference data, defined in #17, with the following rule: if an instance of
Car does not have four Wheels then the instance is inconsistent.

3 ISO 10303-203:1994 Industrial automation systems and integration -- Product data represen-

tation and exchange -- Part 203: Application protocol: Configuration controlled 3D design of
mechanical parts and assemblies.

 Dynamic Customization and Validation of Product Data Models 575

To overcome the OWA limitations we will use SPIN to enrich the reference data in
a way that any instance of Car will raise an inconsistency if it does not have four
wheels. First we create an OWL object property called hasWheel whose domain is
Car and range is Wheel. We then create a rule, which we attach to the Car class, that
instantiates the hasWheel object property every time an instance of Wheel is used in
the assembly of an instance of a Car.

CONSTRUCT4 {
 ?this :hasWheel ?x
}
WHERE {
 ?x rdf:type :Wheel.
 ?pdf :product_definition_formation_has_of_product
 ?this.
 ?pd :product_definition_has_formation :pdf.
 ?nauo
 :product_definition_relationship_has_related_product_de
finition ?pd.
 ?nauo
 :product_definition_relationship_has_relating_product_d
efinition ?pdw.
 ?pdw :product_definition_has_formation ?pdfw.
 ?pdfw : product_definition_formation_has_of_product
 ?wheel.
 ?wheel rdf:type :Wheel.
}

Now we can enrich the reference data ontology with a SPIN constraint, which we
attach to the Car class definition that represents an integrity constraint, to raise an
inconsistency when an instance of Car does not have four wheels; when this instance
of Car does not have four instances of the hasWheel object property we previously
defined. Such a constraint can be expressed in SPIN, as follows:

ASK WHERE{
 {
 FILTER(spl:objectCount(?this, :hasWheel) <4).
 }UNION{
 FILTER(spl:objectCount(?this, :hasWheel) >4).
 }UNION{
 ?this :hasWheel ?wheel.
 FILTER(!spl:instanceOf(?wheel, :Wheel)).
 }.
}

4 In this SPIN rule: 1) terms prefaced by question marks represent variables bindings 2) in-

structions are delimited by a “.” 3) the “:’ sign is used to represent the namespace of a
class/property.

576 S. Krima, A. Barnard Feeney, and S. Foufou

After running the SPIN engine with the enriched reference data and the OntoSTEP
result we had, the instance #1 is first classified as an instance of Car, but then it is
flagged because it only has three wheels. This error could not have been identified by
an OWL reasoner due to the OWA. Using SPIN we are able to overcome the OWL’s
OWA in order to enable integrity constraints validation.

4 Conclusion and Future Work

In this paper, we introduced the need for dynamic information models to support
changing data requirements in the Product Lifecycle Management (PLM) area. We
then reported on an approach standardized in ISO 10303 (STEP). We acknowledged
that although the STEP external classification mechanism shows promise as an effec-
tive solution for changing data requirements, its implementation using reference data
represented in OWL leads to some issues. The heterogeneous architecture issues that
result from the use of different implementation technologies for the STEP data and
the external classification are resolved using OntoSTEP. By transforming STEP in-
formation models and data to OWL, OntoSTEP enables a homogeneous architecture
that takes full advantage of OWL[7].

We highlighted the Open World Assumption (OWA) as an issue when validating
classified data. We demonstrated that SPIN, a new semantic web technology, can
overcome validation issues by producing data validation results as if the world was
closed. Using SPIN, we are able to maintain consistency despite OWL’s OWA.

The scope of this paper is limited to data representation and validation. However,
PLM involves numerous and varied data exchanges and sharing[12]. The use of Ser-
vice Oriented Architecture (SOA) has been identified as an approach for PLM im-
plementations supporting capabilities beyond file-based data exchange[13][14]. Our
future work will evaluate methods for enabling our framework to be integrated within
SOAs.

References

1. Pratt, M.J.: Introduction to ISO 10303—the STEP Standard for Product Data Exchange.
Journal of Computing and Information Science in Engineering 1, 102 (2001)

2. Mehta, C., Patil, L., Dutta, D.: STEP in the Context of PLM. In: Advanced Design and
Manufacturing Based on STEP, pp. 383–397. Springer, London (2009)

3. ISO: 10303-21:2002 Industrial automation systems and integration – Product data repre-
sentation and exchange – Part 21: Implementation methods: Clear text encoding of the ex-
change structure

4. OASIS: Reference Data, http://www.plcs-resources.org/plcs/dexlib/
help/dex/techdes_refdata.htm

5. ISO: 10303-239:2005 Industrial automation systems and integration – Prod-uct data repre-
sentation and exchange – Part 239: Application protocol: Prod-uct life cycle support

6. W3C: OWL Web Ontology Language, http://www.w3.org/TR/owl-ref/

 Dynamic Customization and Validation of Product Data Models 577

7. Krima, S., Barbau, R., Fiorentini, X., Rachuri, S., Foufou, S., Sriram, R.D.: OntoSTEP:
OWL-DL ontology for STEP. In: Proceedings of the International Conference on Product
Lifecycle Management, PLM 2009, July 6-8, pp. 770–780. Inderscience Publishers, Bath
(2009)

8. Elçi, A., Rahnama, B., Kamran, S.: Defining a Strategy to Select Either of Closed/Open
World Assumptions on Semantic Robots. In: 32nd Annual IEEE International Computer
Software and Applications Conference, July 28-August 1, pp. 417–423. IEEE (2008)

9. Motik, B., Horrocks, I., Sattler, U.: Adding Integrity Constraints to OWL. In: Proceedings
of the 3rd International Workshop on OWL: Experiences and Directions, June 6-7. CEUR
(2007)

10. Sirin, E., Tao, J.: Towards Integrity Constraints in OWL. In: Proceedings of the 6th Inter-
national Workshop on OWL: Experiences and Directions, October 23-24. CEUR (2009)

11. Knublauch, H., Hendler, J.A., Idehen, K.: SPIN - Overview and Motivation,
http://www.w3.org/Submission/spin-overview/

12. Srinivasan, V., Lämmer, L., Vettermann, S.: On architecting and implementing a product
information sharing service. Journal of Computing and Information Science in Engineer-
ing 8, 110061–1100611 (2008)

13. Lämmer, L., Bugow, R.: PLM Services in Practice. In: Krause, F.L. (ed.) The Future of
Product Development Proceedings of the 17th CIRP Design Conference, March 27-28,
pp. 503–512. Springer (2007)

14. Gunpinar, E., Han, S.: Interfacing heterogeneous PDM systems using the PLM Services.
Advanced Engineering Informatics 22, 307–316 (2008)

	Dynamic Customization and Validation
of Product Data Models Using Semantic Web Tools
	Introduction
	Presentation of ISO 10303
	Introduction
	External Classification
	Toward a Semantic STEP

	Using OWL for STEP Validation
	Conclusion and Future Work
	References

