
A 065 010 ROYAL SIGNALS AND RADAR ESTABLISHMENT MALVERN (ENGLAND) F/S 9/2
9 AN INTRODUCTION TO THE FLEX COMPUTER SYSTEM, (U)
F OCT179 J M FOSTER. C I MOIR, I CURRIE

UNCLASSIFIED RSRE.79DRIC -RR738 NI.

I 'EEEEEEE



1" 11128  1ii1i-5
lii11=132

11111_.25 111111.4....

M I P1 , ) II lsl (liAP



An Introduction to the FLEX Computer System

This report describes the background to the development of
the FLEX system, which is a novel, high performance, multi)
- computer system being built at RSRE. FLEX has an
instruction set which is oriented towards compiler
generation of code, and which aids in security and
parallel processing. The pe ri herals are controlled by a
subsidiary computer. The inter - computer communication is
provded by a packet switching network which is fast enough
to allow sharing of peripherals and backing store. This
report gives a high level description of the FLEX
processor and memory, the peripheral control subsystem and
COMFLEX, the communications subsystem> -- 94ve an
overview of the processor architecture at the macro - dode
level. It describes the operating system and user program
facilities provided on the machine. -The reportAconcludes
by summarising the current state of the development of the
FLEX computer stem, and indicating the intended short
term developments of the system.

44

Authors:

Dr. J M Foster, C I Moir, I F Currie,

J A McDermid, P W Edwards, J D Morison,

C H Pygott

Date:

October 1979

AccessicFor2
I ITIS Z

DDC TAB []
U~~ unc ed [
Justificalticn

By_
Dist r ibut4!t'- /

. v. i] t ". "t Codes

____________________________Avail and/or
U ~ Dist special

S -.-.. , c e\ , 4



Contents

1 The salient features of FLEX

2 An Overview of the FLEX computer hardware

3 The FLEX Processor and Memory

4 The Peripheral Subsystem

5 The COMFLEX Communications Subsystem

6 Processor Architecture

7 Software

8 The State of the FLEX Development

9 Acknowledgements

10 References

Introduction

The most salient features of the FLEX computer are
described in section 1. An overview of the computer hardware
is given in section 2 and more detailed descriptions of the
processor and memory, the peripheral control subsystem, and
the communications subsystem are in sections 3, 4 and 5.
Section 6 gives a description of the processor architecture at
the macro - code level, and section 7 describes the software,
in particular the operating system kernel, provided on the
machine.

2



1) The salient features of FLEX

1.1) Introduction

We can divide these features into three areas. First, FLEX

has a high level language oriented instruction set,
implemented in micro - code. This instruction set is of
interest in security, in the use of parallel processes and as
a target language for compilers. Especially important is the
fact that procedures can be treated as values, in the
conventional sense. Second, FLEX computers can be
interconnected by means of a packet switching network
sufficiently fast to match disc transfer speeds. The structure
of these packets is used throughout the software. Third, the
peripherals are controlled by a susidiary computer based on
the Intel Multibus, to simplify the introduction of new
peripherals. This computer is also used to diagnose the main
computer for purposes of maintenance.

1.2) The instruction set

The allocation of storage in the FLEX memory (the memory
of the main computer) is under the control of the micro -

code. It can be allocated in pieces of any size from one word
up to 1Mbyte. Every data byte has a tag bit. This tag bit does
not enter into the arithmetic, but it can be tested and set by
the micro - code. By using this tagged architecture, the micro
- code can ensure that store references are different from
other data, and so control which operations are legal. For
example, an integer can not be added to a reference, nor can
it be used to address the store. It is also possible to
distinguish between various types of entity in the store.
Procedures are identified as such and can only be obeyed, not
read. Likewise arrays can not be obeyed. All reading and
writing is checked to make sure that it is carried out within
the bounds of the piece of store which is specified. Hence we
can can be sure that it is impossible to stray outside the
range of things which can properly be addressed. The same
methods are used to check references to disc. All these checks
are carried out, as relevant, on every instruction without
exception. This provides a protection structure equivalent to
that of capability machines, in a more elegant and efficient
manner.

The store is qarbage collected, that is blocks of store
which can no longer be used are reclaimed at suitable moments
and the wanted store is compacted. This can be carried out so
quickly that on a 128k word machine it is imperceptible to the
users. Hence store can be freely allocated and abandoned, and
this makes the use of store by parallel processes easy to
orqanise. The micro - code implementation of the change of
environment on entering or leaving procedures or on changing
processes, makes these operations cheap.

An RS Algol 68 111,12) compiler has been produced for this
instruction set. For a given program, the code produced by

3



this compiler is half the size (in terms of words of memory
occupied) of that produced by the Algol68R system on the ICL
1900 [2]. This instruction set arose out of research into high
level language design being undertaken at RSRE [3].

1.3) The COMFLEX network

Both the main and subsidiary computers can be attached to
nodes of the COMFLEX network, which provides very fast, packet
switched, communications. Since COMFLEX can keep up with disc
tranfer rates, it is not necesary for the main computers to
use their local discs. They can use discs attached to other
nodes in the network without degrading the rate of transfer.
This network can also be used to transfer packets between the
other peripherals and main computers. Hence any computer can
use any peripherals, and this is especially interesting for
the VDUs, since it means that a user can be atached to any of
the machines on the network, without penalty.

4.4



2) An Overview of the FLEX computer hardware

2.1) Introduction

The FLEX computer hardware comprises three subsystems
which can be interconnected to produce distributed computer
systems to satisfy particular requirements. The three
subsystems provide the three main functions required of a
distributed computer system:

- processing of user programs

- peripheral control

- communications

It is possible to produce a single computer system without
using the communications subsystem, as shown in figure 2.1. A
simple triple computer system which could be constructed from
these subsystems is shown in figure 2.2. This configuration is
designed to meet the requirements for the RSRE computing
service.

An overview of the three subsystems is given here and they

are described in more detail in sections 3, 4 and 5. The
processor architecture at the macro - code level is described
in section 6.

2.2) User Program Processing

User programs are held in the FLEX memory and are executed
by the FLEX processor [4]. The processor design and memory
organisation are sympathetic to the requirements of High Level
Languages (HLL), thus the fast and efficient execution of user
programs written in HLL is possible.

The memory data words are 32 bits wide. The memory is byte
addressed and it is protected by parity bits on each 8 bit
data byte. In the current implementation the maximum memory
size is IMwords. The memory has some sophisticated addressing
modes which are conducive to efficient store usage and fast
data access. Each memory byte also carries a tag field which
is used to facilitate the memory management. The memory
contains a high speed parallel interface to the communications
sibsystom.

The processor is microprogrammed, that is, the instruction
s- t ,-rcoqnised by the processor is determined by a program
(more strictly a mico - program) , not directly by the
hardware. Peripherals are controlled separately (by the
peripheral subsystem) so the processor is larqely free of the
time constraints of peripheral handling, which allows
considerable scope in designing the macro - instruction set. A
micro - programmed implementation of a macro - instruction set
suitable for use with high level languages has been developed.

5



The processor data word is 24 bits wide. The addressing
modes of the memory allow the processor and memory to work
together efficiently, despite the apparent incompatibility in
word length. Since the memory is byte addressed the main
significance of the word width is that it specifies the
maximum number of data bits (32) which can be transferred from
or to the memory in any store operation. The arithmetic
operations in the processor use 24 bits for integers and 48
bits for floating point numbers. Hardware assisted floating
point multiply and divide are provided.

2.3) Peripheral Control

The Peripheral Control Subsystem has four primary
functions. It operates as a disc controller and can handle up
to 4 Calcomp Trident (or equivalent) discs of 25, 50 or 80
Mbytes capacity. It controls low speed peripherals including
VDUs and a lineprinter, and it provides some industry -
standard general purpose interfaces (e.g. CCITT V24). It
controls COMFLEX, the communications subsystem. It provides
micro - program loading facilities and diagnostics for the
FLEX processor. The peripheral control subsystem is also
responsible for the initialistion of all three subsystems.

The peripheral control subsystem comprises four processors
and two special interfaces, to COMFLEX and the discs
respectively, communicating via a bus. The subsystem is itself
modular and can be configured to perform various subsets of
its primary functions or to incorporate interfaces to other
deivces. If a system without discs were configured an
alternative medium for storing the initialisation information,
such as a floppy disc, might have to be provided (dependent on
the system configuration).

2.4) Communications - COMFLEX

The Communications Subsystem is the COMFLEX packet switch.
In a particular system the COMFLEXes are interconnected to
provide fast and reliable data transmission between the
peripheral control and processing subsystems. COMFLEX enables
any subsystem to communicate with any other subsystem. COMFLEX
can transmit data at disc speed, and its operation is
transparent to application programs running on the FLEX
processors, making viable the separation of the main
processors and the peripheral control subsystems. The speed
and transparency of COMFLEX allow the main processors to share
peripherals and backing store. The communications medium is
resilient to communications line and subsystem failures.

COMFLEX controls up to eight incoming lines and up to
eight outgoing lines at a maximum data rate of 2.5 Mbytes per
line. It contains logic for the routing of packets, for flow
control and for error detection and recovery.

6



CD
Q

CL -

O~C.)

'LIJ

SLA

zz
00

z -J

0 -I.

UU C.

C0
I- Um

- ~0
C0 )c

c.

0 CC__

U. 4U

'U
U) __ __ __



LU-

xz

-8 U-

LL. 0

ciM

LU-

a.a

"o U.)

LU U-



3) The FLEX Processor and Memory

3.1) The FLEX Processor

The main processor of the FLEX computer system is a
soft-microprogammable processor based on bipolar bit-sl ice
elements. The processor is constructed as a set of 8 bit
slices and the processor word width can be 16, 24 or 32 bits.
The current version of the processor is 24 bits wide. To make
a processor of different width would require some changes to
the micro - code.

The processor configuration is shown in figure 3.1. There
are two main highways which connect the processor to memory
and other subsystems. The 60 bit highway transfers data and
tags to and from the memory, and transfers addresses to the
memory. Packets can be transferred to and from the COMFLEX
data channel, under microprogram control, via the byte
multiplex highway. The COMFLEX data channel contains full
packet buffering for incoming packets. Data can also be
transferred to and from the controlling processor in the
peripheral control subsystem by means of the byte multiplex
highway and the SBC data channel. A further interface to the
controlling processor is provided which is used for microcode
loading, diagnostic monitoring of processor registers and
highways, error reporting, and processor control functions
(such as run, stop and "single stepping" the microprogram).
The diagnostics and microprogram control facility permits
comprehensive hardware fault location.

The microprogram control word is designed to allow many
operations to be performed in parallel and has no overlapping
use of control fields within the word, giving maximum
flexibility. The writeable control store size is 4096 words of
80 bits per word. The microinstruction cycle times vary
between 200 nanoseconds for internal processor operations to
600 nanoseconds for operations using the main highway.

A high speed fixed point multiplier allows single or
double precision multiply, with a typical speed of 3
microseconds to form a signed 96 bit product. Hardware
assisted divide is also provided. Microprogrammed floating
point operations are provided giving a typical execution time
for 48 bit floating point multiply of 8 microseconds.

The processor is constructed on double Europa circuit
cards with the current 24 bit version using 26 cards of 15
diffprent types.

3.2) The FLEX Memory

The FLEX memory is a high density, solid state dynamic
momory which allows byte or word access via the 60 b t
highway. The design is modular, having a number of
semi-independent byte memories controlled by a microprogrammed
interface processor. The interface processor has a cycle time

7



of about lOOnS. Figure 3.2 shows the memory organisation.

The control algorithms allow 1, 2, 3 or 4 bytes to be read
or written independent of any word address boundaries. This
type of memory is often described as "spiralised" and it
allows efficient use of storage, as items less than one word
long do not use a complete word of storage. The memory
interface processor performs access sequence checks during
each memory cycle to ensure that illegal accesses (i.e reading
more bytes than had been requested) are prohibited. This traps
some microprogram and hardware faults. The design of the
memory interface allows a high degree of overlap between the
FLEX processor and the memory, giving high run time
efficiency. One or two microcycles can be executed in parallel
with memory access.

The current configuration uses four 10 bit wide memories,
with a total data width of 32 bits (four memories are used for
convenience of addressing). Each 10 bit memory word contains
an eight bit data byte, a parity bit and a bit known as the
"tag bit". These tag bits are used to indicate those locations
containing references. The tag bit can only be read or changed
by the microprogram.

Memory access codes are provided which allow direct memory
to memory transfers using separate registers for the read and
write addresses; auto increment and auto decrement of
addresses; indirect addressing (via a third address register);
and a number of special purpose read and write operations for
manipulation of the tag bits.

The read and write cycle times are approximately 550
nanoseconds (including data transfers) and the unit size of
the memory is a single crate of 28 double Europa cards
currently giving 384 kilowords x 40 bits per crate. A maximum
of 4 crates can be driven by the FLEX processor.

8



zz

L6

CL-

>..

E~+

LLLu

It -I

-Jm

L U

00

uju

to I
M



52 LU

29
COJ

Co z

2o C.3

I---

co C

LU

CO)

LU C2 z

I---

4 CD

2 LU

co 21 Co Lb.

LU

0
16U o

cc-



4) The Peripheral Subsystem

4.1) Function

The Peripheral Subsystem is designed to control a range of
peripherals, to interface them to COMFLEX, and to perform
system initialisation. The subsystem is required to control
five VDUs, one or more disc drives interfaced to a CALCOMP
1150 formatter/controller, a paper tape reader and a line
printer. The subsystem also has one bidirectional BSI and
three CCITT V24 communication interfaces.

4.2) Hardware

The Peripheral Subsystem is based on the INTEL 8080 SBC
(Single Board Computer) Multibus system, but includes some
purpose built circuit cards, as shown in figure 4.1. Three of
the peripheral channels: the disc interface unit, COMFLEX
input and COMFLEX output, have high speed DMA (direct memory
access) to the Packet Store. All other peripherals are under
direct processor control. The four processors perform the
following functions:-

Processor 1 provides control (addresses, status etc.) for
DMA access between disc and Packet Store, and also
provides control for the FLEX processor.
Processor 2 provides control for DMA access to and from
COMFLEX and the COMFLEX control functions.
Processor 3 controls the four user VDUS.
Processor 4 controls all other slow peripherals: the tape
reader, the line printer, the command VDU, the BSI
communications channel and the V24 interfaces (which will
include an interface to the RSRE site network.

The three DMA channels and the four processors can
instigate Multibus transfers and their access to the Multibus
is controlled by a priority mechanism. The processors
communicate by means of the RAM on the RAM/IO card, and
throuqh parallel I/O channels.

4.3) Implementation

The implementation comprises eighteen SBC cards in one 19
inch rack mounting chassis. The formatter/controller is a
separate unit which will be housed in one of the disc drives.
Seven of the cards are standard Intel cards, but the remainder
have been designed specifically for this application. Care has
been taken with the design of the custom built cards to ensure
that they can be used in any combination, so that the
subsystem is truly modular, and can be configured to control
any subset of its full complement of peripherals or any other
peripherals intprfaced to Intel Multibus, such as an X-25
interface.

Note: "Multibus" is a trademark of the Intel corporation.



0. U4

I- LUS -mJa

LU C0 - -j , -Z in
cmc~ >- V)z L.CC" CA ---- z=

U3

_j C) 0-!Z.,

<0 C

LUU,

cm 0 0

0w UJ

CC-

LU

cn LU -------

LU LD 0 U

4 - cc -

0 L
C.,) D z LU

I- = c Cc

LU CL M

L) LU

LU x LU

a-D CD
I-- ci I.
col



5) The COMFLEX Communications Subsystem

5.1) Requirement

The communications subsystem is required to provide fast
and reliable communications between the other FLEX subsystems.
It should be capable of transmitting data at disc speed and
should be resilient to transmission line and subsystem
failures. This requirement is met by using a localised packet
switching network.

5.2) Function

COMFLEX is a packet switching node which is capable of
handling up to eight input lines and eight output lines at
line speeds up to 2.5Mbytes/s. The COMFLEX packet size is
variable from 15 to 270 bytes. There is a fixed packet header
of 14 bytes, a data field which is variable from 0 to 255
bytes and a trailer byte. COMFLEX uses a parity bit on each
byte to check the accuracy of the data transmission and will
retransmit packets which have been transmitted incorrectly.
The trailer byte contains a longitudinal sum check which is
used for end to end error checking.

Data transmission and flow control are performed entirely
by hardware. The routing function is performed partly by
hardware and partly by software running in the controlling
processor. COMFLEX contains logic to detect transmission line
failures and to report these to the controlling processor. The
routing operation is also checked and faults are reported to
the controlling processor. The design philosophy of COMFLEX
and its control algorithms are described in more detail in
[51.•

5.3) Hardware Implementation

The structure of COMFLEX is shown in figure 5.1. The input
ports contain full packet buffering and the output ports are
simple slave devices containing single byte buffering. The
controller and the ports communicate via a data and control
bus. The bus is multiplexed by a 20MHz, 8 phase clock, one
phase being allocated to each input port.

The input ports control the data flow through COMFLEX.
They arrange for packet retransmission in the event of data
being transmitted incorrectly, monitor the state of the
transmission lines and check the routing operation. The
controller implements the routing algorithm by means of a
look-up table. The table is loaded from the controlling
processor (in the peripheral system). The controller also
implements the flow control algorithm.

The controller, input ports and output ports are all
implemented in hard-wired logic. The input port is based on a
microproqrammed sequencer. The hardware implementation is

10



described in more detail in [61.

|.11



0. 0
2C03

• j

cJcc
a.I.-

LmL

I aa

U. I

I. I3

I LU

Q I.-c
CL. 0

I Ia



6) Processor Architecture

6.1) Introduction

The architecture of the FLEX processor is intended to
match the essential requirements of most high level languages
[7]. The provision of such an architecture simplifies the
compiler writers task, enables user programs to be executed
more efficiently, and also provides the (protection)
facilities necessary to ensure that a secure environment for
running user programs can be easily and elegantly produced.

One primary aim of an operating system is to guard against
unauthorised use of system resources such as memory, file
store and peripherals. The operating system also aims to
protect the users from each other or to allow controlled
co-operation as appropriate. The protection structures of
conventional machines (e.g. ICL 1900, IBM 360) are unsuitable
for this, and consequently the operating system has to provide
a "firewall" behind which the programs which provide the
desired protection reside. As a further consequence of the
unsuitable hardware the operating systems tend to become very
large (e.g. GEORGE 3, OS 360) and to contain programs which
are not (logically) part of the Operating System at all (e.g.
the text editor in GEORGE). We note however that most of the
requisite protection is implicit in good programming
languages, viz:

- procedures provide functions with well - defined
interfaces whose contents are inaccessible;

- identifier names of objects are non - computable;
- one cannot jump to an arbitrary place in the program (or

out of it).
The FLEX instruction set enforces this protection, hence the
"firewall" for main store allocation has been reduced to the
properties of the microprogram. Controlled and secure access
to backing store and peripherals is achieved through a
procedural interface to a small kernel written in RS Algol 68.

The remainder of this section gives an overview of the
FLEX processor architecture at the macro - code level.

6.2) Storage Management

Store is allocated in blocks by the micro - code, and
every pieco of proqram or data is held in some block. Blocks
start on word boundaries and contain an overhead word which
specifics the block type and its size in words. The maximum
block size is IMword. There are several block types, and these
fall into two groups - those associated with procedures and
those containing data. The modes of access which are allowable
on any block are defined by its type.

The data blocks can be organised in words, bytes or bits.
They can be indexed, and both writing and reading is
permitted.

12



For each procedure there is a closure block and a
workspace block. The procedure is accessed through a closure
block on which the only valid operation is procedure call. The
closure contains pointers to the code, constants and non -
locals for the procedure. The workspace contains the locals
and the stack for the procedure and may be read or written,
and (conceptually) a new workspace is created at each
procedure call. Clearly this arrangement allows code to be
used re-entrantly. Less obviously, this store architecture
allows procedures to be written which deliver procedures as
results, without the restrictions necessary on conventional
stack machines to overcome the problems associated with
accessing non - locals. This attribute aids in the provision
of a secure procedural interface to the kernel.

Store can be addressed by pointers and references.
Pointers are created by the micro - code and are identified by
means of the tag bit in the memory word (which only the micro

code can access) . Pointers are thus unforgeable and are
immutable once created, hence providing the protection
described in 6.1 above. A reference comprises a pointer plus
an offset and provides indexed addressing into a block. The
store protection mechanisms check that the pointer is to a
block header, that the offset is within the block and that the
type of access is valid for that block type.

The tagged store architecture has enabled the provision of
a garbage collector in micro - code for which the execution
time increases only linearly with store size. On conventional
machines garbage collection time increases more than linearly
with store size.

Disc pointers (and references) are identified by the tag
bit like their main store counterparts.Disc pointers are
marked to distinguish them from main store pointers. They may
be stored on disc and are created by the filing system (in the
peripheral subsystem) rather than by FLEX micro - code.

6.3) Registers

There are effectively only four registers in the machine
which are relevant at the macro - code level. These arp:

U, the universal register. U is capable of holding one
object of N words, bytes or booleans, where N is an
arbitrary integer (max. size IMword).
WS is the current workspace pointer.
ST is the top of stack in the current workspace.
PC is the program counter.

Most operations in the machine operate on U or on U and the
object on top of the stack. U is adjusted by the micro - code
to the size appropriate to object which it is to contain.

6.4) Control

Clearly FLEX has to provide instructions to allow change

13



in the flow of control. Simple conditional jumps are provided
which depend on the state of a boolean in U. In addition to
conventional jumps FLEX has two instructions which implement a
simple case (multi - way jump) and an associative case switch
respectively.

Procedures are the most important type of object in FLEX
and their execution warrants more detailed discussion. A
procedure is called by placing the closure on top of stack,
the parameters (if any) in U and executing the call
instruction. The current values of PC and ST are stored in the
current workspace, a new workspace is created and a link to
the old workspace is put in the new one. The values of ST and
PC are set to zero and the new workspace is made current.

On procedure exit, control is returned to the calling
workspace in the obvious manner. The current workspace becomes
idle, but is still associated with the code block that has
just been exited. If the garbage collector is run before the
procedure is next called then the space will be recovered,
otherwise the workspace will be re - used. This reduces the
rate at which garbage will be generated and thus reduces the
frequency of garbage collection, and increases the effective
speed of execution of the call instruction.

The mechanism for handling program execution failures
stems from the procedural structure. When a procedure is
called a place in the calling procedure may be nominated as
the return point in the event of a failure in the called
procedure. When a failure does occur control will pass to the
nearest procedure in the call chain for which there is such a
failure return point. This mechanism enables a hierarchic
failure handling (often called exception handling) structure
to be implemented, if desired.

6.5) Instructions

The instructions are of 1, 2 or 3 bytes in length, and
thus good use may be made of the memory's byte addressing
capability to acnieve compact code. There are essentially four
types of instruction:

Instructions which load or store U or the top of stack.
Control instructions, e.g. CALL.
Instructions which operate on U and the top of stack, e.g.
PLUS.
Special instructions.

The load and store instructions conceptually move N words,
bytes or bools, where N is an arbitrary integer. Data is only
moved if it is strictly necessary, and often the effect of the
load is achieved simply by altering the location of U. These
instructions take one parameter which is the offset in the
source or destination block. The source of data for the load
instructions is the locals, the non - locals, the constants or
the block specified by a pointer in U. The destination for the

14



store instruction excludes the constants.

The control instructions have been described in section
6.4.

The arithmotic, loqical and certain data manipulation
instructions work on U and the top of stack. The obvious
arithmetic -;,erations of PLUS, MINUS, TIMES and DIVIDE are
provided on reals and integers. Logical operations such as AND
and OR on bools are provided. There are a number of comparison
operators, such as EQUALS and LESS THAN, which leave a boolean
in U. There are certain instructions which are not found in
conventional machines which help provide compact code and
speedy program execution. An example of such an instruction is
INDEX which forms an index into an N dimensional array. The
instruction takes an N - tuple of integers (the indices) on
the top of stack, and a 3N - tuple in U in the form

1 ,u ,s ..... 1 ,u ,s
where 1 is the lower bound, u the upper bound and s the stride
of the dimension of the array given by the index. The
instruction leaves the offset into the array in U or produces
a failure if one of the indices is out of bounds.

There are a number of special instructions provided for a
variety of purposes. To facilitate parallel processing two
instructions: SECURE SEMA and RELEASE SEMA are provided. These
enable separate processes to make controlled use of shared
resources, and have similar semantics to Dijkstras P and V
operations (these instructions have not been micro - coded and
are currently interpreted by the kernel). Some instructions
are provided to perform the mode changes required by the code
generator in a compiler. Examples are MAKE CODE BLOCK which
turns a data block into a code block, and CLOSE which
similarly produces a closure block.

15



7) Software

7.1) Operating System

It is not intended that a complicated operating system
shall be produced as part of the FLEX development, but a safe
operating environment will be provided in which users can run
their programs. The design of this operating environment is
such that the user can indulge in activities, such as the
production of his own file structuring and naming scheme,
which are normally the preserve of the systems programmer. He
can do this without any particular priviledge or status, and
without being aware that he is doing what is normally "systems
programming".

The safe operating environment is provided by the
protection implicit in the FLEX instruction set, and by the
procedural interface presented by the Kernel.

7.2) Kernel Facilities

Rather than being a program, as such, the Kernel is a set
of basic procedures designed to allow the FLEX machine to be
run in multi - processing, multi - access mode. These
procedures implement such functions as interrupt, peripheral
and process handling. Certain of these functions are made
directly accessible to the user. It is not appropriate to
describe the Kernel functions in detail here, but some of the
more salient ones (to the user) are described.

The user interface to a VDU is effectively via two
procedures: READVDU and WRITEVDU. WRITEVDU takes two
parameters, an array of characters which is the message to be
sent and a screen address which specifies where the message is
to be sent. READVDU takes two parameters, an array of
characters which is a prompt to be sent to the VDU, and a
screen address which specifies where the prompt is to be sent.
The read interface to the VDU includes some editing functions.
Pressing the send key after inputting some text, or pressing
one of the editing keys will cause an action by the reading
procedure. If the normal "send" key is pressed the procedure
delivers an array of characters which is the message typed on
the VDU after the prompt. If an editing key is pressed then
the appropriate action, such as inserting or deleting a line,
is carried out. Any instance of these two procedures is
specific to one VDU.

Access to the file store is achieved by means of two
procedures WRITEDISC and READDISC. In order to help preserve
the data integrity, the file store is orqanised so tnat data
can not be overwritten. Thus when writing to the file store
the procedure WRITEDISC is called with the data to be written
as a parameter, and it delivers a backing store pointer which
specifies where the data has been stored. The data will oe
stored as one logical block and the pointer may subsequently
be used to retrieve the block but not to overwrite it. To read

16

. ......



the data from the file store the procedure READDISC is called
with the appropriate disc pointer as a parameter and it
returns the block previously written, starting at that
address.

The no over - writing property of the file store implies
that the data on the file store forms a tree structure and it
can be accessed from a set of root pointers. Clearly, these
root pointers must themselves be over - writeable; this in
itself could lead to inconsistencies particularly where
several FLEX machines are accessing the same backing store.
This problem is overcome by making the modification of a root
pointer an indivisible operation in the peripheral system,
requiring the previous root pointer as key. Thus the onus for
maintaining the consistency of the data pointed to by the root
pointer is with the procedure which tried to alter it -
outside the "firewall". The user thus has responsibility for
his own data integrity, but is provided with the mechanism for
ensuring this integrity.

Because of the no over - writing property, unless space
were reclaimed, the file store would eventually become full.
However, space which is no longer pointed to can be reclaimed,
and a disc garbage collector is provided for this purpose. The
no over - writing property prevents the use of randomly
addressable files so applications, such as databases, which
conventionally use this type of file have to be implemented
using a different type of file structure.

In order that a user may carry out parallel processing
within his own programs, a facility for creating processes has
to be provided. This is done by means of a procedure
PROCESSMAKER, which takes a procedure parameter, turns that
parameter into a process and delivers a procedure to run this
new process.

7.3) User Procedures

A "program" may be regarded as a special case of a
procedure, thus the concept "program" is unnecessary. FLEX
recognises procedures but does not recognise "programs" and
what are conventionally known as "user programs" are referred
to as "user procedures". An RS Algol68 compiler exists and can
be used for the production of user procedures. A user
procedure has access to the Kernel procedures as non - locals
and this non - local block is known as the environment
interface. The Kernel procedures can be bound to the user
program at the time that it is initiated, and the READVDU and
WRITEVDU procedures in this environment interface are specific
to the terminal from which the proqram was initiated.

Diagnostics will be provided by means of a program which
allows a programmer to follow the call chain of his program,
examining the data as he qoes. The information will be
presented so that the correlation with the program source text
is apparent.

17



7.4) Facilities on RSRE Service Machine

Although the aim of the FLEX development is not to produce
a complicated operating system, it will be necessary to
provide a simple, standard, operating system for the casual
users of the machine. The form that this will take has not yet
been defined but will include some form of file structuring
and naming facility, and will probably include a higher level
interface to the input - output system.

Facilities such as a text editor will be available, but
they will be implemented as independent procedures rather than
as part of the operating system (although the majority of the
"editing" work is performed by the READVDU procedure in the
kernel).

18



8) The State of the FLEX Development

Laboratory models of all the three hardware subsystems
have been desiqned and commissioned. The FLEX micro - code,
the Kernel and the peripheral control software in the
peripheral subsystem have been implemented and are
operational. The RS Algol68 compilation system for FLEX is
complete and is resident on FLEX, so it is now possible to run
RS Algol68 programs on the laboratory model FLEX machine. A
simple diagnostic program and a text editor have been produced
thus the FLEX laboratory model is now a viable, stand alone,
single computer system.

To produce a multi - computer system further development
is required to bring the hardware to a state where it is
reliably reproducible, and so a second version of FLEX, known
as the prototype, is being developed. Logica Data Systems Ltd.
will manufacture copies of the prototype under licence. A
prototype of COMFLEX has been produced and three copies of
this prototype have been manufactured by Logica Data Systems
Ltd. A peripheral subsystem prototype has been designed by
Logica Ltd. and is now being commissioned. The FLEX processor
prototype has been designed at RSRE and commissioning is due
to be completed in early 1980. It should be noted that this
document describes the design of the prototype, not the
laboratory model.

As the designs of the prototype and the laboratory model
have minor differences some of the low level software (e.g.
the micro - code) will have to be re - written, but the
functions implemented by the software will be the same for the
two versions.

It is expected that the prototype FLEX computer will be
operational in mid 1980, and that a network of three computers
will be available as a research machine about a year later.

19



9) Acknowledgements

The FLEX computer has been developed as a co - operative
effort between Cl and C2 divisions at RSRE, with assistance
from Logica. The team currently includes Dr. J M Foster, I F
Currie, P W Edwards and J D Morison from C2 division, C I
Moir, J A McDermid, Dr. C H Pygott and P J Bradford from Cl
division and Dr. J Harrison, D Fishwick and R Cummings of
Logica. Various other people have given assistance in the
past. Special thanks are due to Dr. A J Fox for his support
and encouragement throughout the project.

This document draws on internal RSRE papers produced by
various members of the project team, and has been compiled and
edited by J A McDermid.

2

20 1



10) References

(11 "Introduction to the RS portable compiler", RRE Technical
Note 802, S G Bond, P M Woodward, August 1977.

[2] Algol 68R Users Guide, P M Woodward, S G Bond, HMSO, 1974.

[3] "Abstract data and functors", J M Foster, P D Foster,
Sigplan notices, ppl6l - 167, 1977.

[4] "The FLEX Computer: hardware aspects", C I Moir, RSRE
Technical Note (to appear).

[51 "COMFLEX" - A high speed packet switch for inter -

computer communication", J A McDermid, Proceedings of
Eurocomp 78, pp187 - 204, May 1978.

[6] "COMFLEX Operators Manual", Dr. J Harrison, Logica Ltd.
Report No. 2559/003A. Oct. 1979.

[71 "The FLEX computer: software aspects", J M Foster, RSRE
Technical Note (to appear).

Oh

21


