
‘Wayback’ for Accessing Web Archives

Brad Tofel
Internet Archive
4 Funston Ave

San Francisco, CA 94129, USA
brad@archive.org

ABSTRACT
'Wayback' is an open-source, Java software package for browser-
based access of archived web material, offering a variety of
operation modes and opportunities for extension. In its basic,
usual configuration it can both list available URL captures by date
and offer recursive archive browsing starting from any capture.
Advanced configurations offer better performance for challenging
archived material and improved navigation.

'Wayback' is implemented as a collection of loosely coupled
alternate implementations of core modules, for which an overview
of each is provided. The functionality and implementation is also
contrasted with its inspiration and predecessor, the Internet
Archive's classic public Wayback Machine software, and other
ways of accessing archived web material. Finally, future
directions for improvement are outlined.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Web-based services

General Terms
Management, Documentation, Design, Human Factors.

Keywords
Web archives, Wayback Machine, access tool, web browsing.

1. INTRODUCTION
Archiving of digital materials has grown rapidly over the past
decade, and as the number of organizations using common tools
and formats grows, the opportunities for creating and sharing
additional software specialized for those formats grows as well.
Many organizations have adopted the ARC file format [1] for
preserving digital documents, which consists of many individual
URL captures concatenated into aggregate files, each capture
prepended with a small amount of metadata. While this format has
demonstrated significant advantages in managing and processing
very large-scale archives, it does not lend itself to human access.

The Wayback project’s goal is to provide a common tool for
delivering this access, leveraging common code bases and
techniques, while allowing sufficient flexibility to be useful in the
varied application contexts and infrastructures found in the digital
archiving community. Modularity of the system has been a
fundamental design goal, enabling organizations to implement
custom modules as needed to adapt the Wayback system to their
specific infrastructure and access needs.

2. MAJOR COMPONENTS
Wayback consists of four primary components, each with several
current implementations that can be combined to customize
installations of varying scales and capabilities.

The four components are:

• Query UI: responsible for parsing user queries,
executing them against the Resource Index, and
rendering the results in lists or tables for end user
consumption. Hyperlinks are typically included in the
results, allowing users to navigate into the Replay UI.

• Resource Store: responsible for retrieving archived
content, abstracting the medium and format used to
store the web content.

• Resource Index: responsible for satisfying queries
against the documents located in the Resource Store,
either through URL based queries, full-text search, or
other novel search mechanisms.

• Replay UI: responsible for altering the context of
documents being viewed by users, so hyperlink
references refer back into the Wayback system,
allowing users to interactively browse the web “as it
was”.

2.1 Component Implementations
2.1.1 Query UI Implementations
There are currently three implementations of this component for
rendering the results of user queries in a specialized way. Specific
fields parsed from user queries are forwarded transparently to the
Resource Index, decoupling this module from various Resource
Index implementations.
The three implementations are:

• Classic Query UI. This mode mimics the “calendar”
query results view found in the Internet Archive’s
classic public Wayback Machine [2], partitioning results
by Year, Month, Day, or other time slices, and places all
results within each partition in a dense column of links.
It is effective at displaying a large number of results in a
format that is comprehensible and easy to navigate.

• Search Engine Query UI. This mode provides search
results in the familiar ranked, paginated method
commonly used by search engines.

• XML Query UI. This mode provides results of user
queries in a format easily read by other programs. This
implementation is useful in providing a web service for
end users, and is critical for hosts providing remote
access to a local Resource Index in distributed Wayback
installations (described later).

This work is dual-licensed under either the Attribution-NonCommercial-
NoDerivs 2.0 France Creative Commons License.
IWAW’07, June 23, 2007, Vancouver, British Colombia, Canada.

2.1.2 Resource Store Implementations
Presently there are two Resource Store implementations, both of
which assume documents are stored in ARC file format. Providing
a new Resource Store implementation can support other storage
formats. Access to archived content is wrapped in a Wayback
specific format for use by other components in the system.

The two current implementations are:

• Local ARC Resource Store. This provides simple
access to content stored in ARC files local to the
Wayback service. Using NFS, or any other network file
system, this implementation can also provide access to
ARC files distributed across multiple networked storage
devices. This implementation also has the capability to
use a background thread to poll the local file system and
notice the appearance of new ARC files, automatically
index their content, and forward records to the Resource
Index for incorporation in the live Wayback index.

• HTTP 1.1 Remote ARC Resource Store. This
implementation accesses individual documents via
HTTP 1.1’s range request feature from a single remote
HTTP directory. Wayback comes with an application
called the ArcProxy that maintains a database mapping
ARC files to HTTP URLs. The ArcProxy forwards
incoming HTTP range requests to the appropriate

storage server, enabling Wayback to access records
stored in millions of ARC files.

2.1.3 Resource Index Implementations
There are several Resource Index implementations, each with
varying capabilities. Implementations are free to offer whatever
search parameters they wish, but to satisfy the minimum
requirements for the Replay UI, they must be able to map an URL
and a capture date to a specific document in the Resource Store.
Current implementations allow queries based on either an URL or
on an URL prefix, and enforce primitive access control
mechanisms.
The five current implementations are:

• Local BerkeleyDB (BDB) Resource Index. This
implementation stores records in a Java-native database
(BerkeleyDB Java Edition [3]), allowing records to be
quickly inserted into the index, and immediately
available for subsequent queries. This Resource Index
supports only URL or URL prefixed based searching,
and includes optimizations for URL-date queries for
Replay UI access.

• Local CDX Resource Index. This implementation
performs binary searches against a sorted, plain text file
(called a ‘CDX’ [4] when indexing ARC files) to satisfy
URL and capture date queries, just like the BDB
Resource Index. These text files are maintained by a
system outside the scope of the Wayback software. The
primary advantage over the BDB implementation is size
on disk, increased scalability, and explicit management
and updating of the index.

• Remote Resource Index. This implementation accesses
a remote BDB or CDX Resource Index by assembling
an HTTP query against the remote index, and extracting
the query results from the returned XML data. This
allows separation of processing and storage of a

Figure 1: ARC Proxy Application

Figure 2: Remote Resource Index

Resource Index from the rest of the system.

• Remote NutchWAX Resource Index. This
implementation allows an externally built NutchWAX
[5] full text index to act as a Wayback Resource Index.
This implementation is primarily responsible for
marshaling Wayback queries into HTTP requests
meaningful to a NutchWAX index, and then translating
the results from their XML format into the abstracted
result format that the other Wayback components use.

• Alphabetic Distributed Resource Index. This
implementation uses a configuration file to map
contiguous alphabetic partitions of the URL space to
individual hosts responsible for each partition. This
Resource Index then forwards each incoming request to
the appropriate host, allowing a single logical index to
span many hosts. This implementation allows
responsibility for specific ranges to be assigned to
multiple hosts, providing load balancing and fault
tolerance to the distributed index.

2.1.4 Replay UI Implementations
There are presently three implementations of the Replay UI
component, each using a different strategy for altering the context
of replayed pages hyperlink references to allow archived
documents to be viewed correctly in web browsers.
The three implementations are:

• Archival URL Replay UI. This implementation
mimics the current Internet Archive classic public
Wayback Machine’s mechanism for altering archived
documents as they are served. Specifically, this includes
altering HTML documents by rewriting FRAME:SRC
attributes, updating or inserting BASE:HREF attributes,
and inserting Javascript at the end of the document. This
inserted Javascript executes in the client browser and is
responsible for rewriting hyperlink anchors and
embedded objects found in the page so they refer back
into the Wayback Replay UI service. This mechanism
suffers from several shortcomings, which are described
later in this document.

• Timeline Replay UI. This implementation mimics the
WERA [6] (see Related Work, below) user interface by
providing a timeline navigation element at the top of
each replayed document. This timeline allows users to
navigate between individual archived versions of the
current page without returning to the Query UI. The
hyperlink context alteration methods used are the same
as in Archival URL Replay mode.

• Proxy Replay UI. Using this implementation, the
Wayback Replay UI acts as an HTTP proxy server.
Users can configure their web browsers to proxy all
requests through the Wayback service, which has
significant advantages over other replay modes, in that
no hyperlink context alteration is needed. Any hyperlink
references found in replayed documents will
automatically be requested though the Wayback service,
including dynamic content, such as embedded Flash or
Java objects, and hyperlink references constructed by
Javascript found in the original page. However, casual
web users may find enabling/disabling use of a remote
web proxy for their archive access more challenging
than the other mechanisms.

3. EXAMPLE DEPLOYMENTS
The Internet Archive has deployed the Wayback in several
contexts, providing access to over 70 archived collections. There
have been 3 primary deployment patterns used thus far.

3.1 Simple Standalone
The first deployment pattern is a simple, standalone application,
using a Local ARC Resource Store and a Local BDB Resource
Index to automatically make accessible new content discovered in
a local ARC directory. This pattern has proved very effective for
small-scale collections, where the Heritrix web crawler is run on
the same server as the Wayback, and the Wayback is configured
to automatically index ARC files, as they are crawled.

Figure 3. Alpha Distributed Resource Index

Figure 4. Simple Standalone Deployment

3.2 Multiple Replay Modes Sharing
Resource Index and Resource Store
The second deployment pattern involves hosting many small
collections on a single host, where each collection provides access
to a collection of ARC files via all three current Replay UI
implementations. In these contexts, a single Local CDX Resource
Index is exported with an XML Query UI. All three Replay modes
share the common remotely accessed Resource Index and
Resource Store, allowing users to choose their preferred Replay
mode while minimizing the server resources required.

3.3 Large Scale Distributed Resource
Index
The final deployment pattern used at the Internet Archive
demonstrates a large-scale, distributed collection of over 140
million captured documents. In this configuration, ARC files are

highly distributed across hundreds of storage machines, and are
accessed with an HTTP 1.1 Remote ARC Resource Store. The
Resource Index is broken into multiple, alphabetically partitioned
CDX shards, and each of those shards is stored on a host that is
only responsible for satisfying queries against that local index
shard, responding with XML data. There is a single Alphabetic
Distributed Resource Index server that accepts all queries, and
forwards the queries on to the appropriate shard server.

This configuration allows the number of shards to grow with the
number of documents being indexed, and also provides a single
point for caching Resource Index query results, decreasing latency
as well as load on the shard servers. This configuration also
allows a varying number of servers to be responsible for each
shard segment, which provides fault tolerance, as well as
flexibility in increasing the replication level of each shard based
on traffic patterns. In this deployment pattern, the same Resource
Index and Resource Store instances are again shared by multiple
Replay UI deployments, so all three major Replay modes are
supported using the same remote server resources.

3.4 Performance Analysis
Study of the performance characteristics of the Wayback code is
ongoing, with some initial data available from experience so far
and simulated volume testing. All statistics provided are based on
software running on servers with a 1Ghz Via C3 processor,
512MB RAM, and 4 720RPM IDE hard drives.
Generating a CDX index for a single ARC file using Wayback
software takes 60-120 seconds, but this rate varies dramatically
depending on the consistency of each ARC file. Combining these
per-ARC CDX indexes is then performed with a generic tool,
such as the Gnu 'sort' command included with most Linux
distributions.

We have not collected detailed timings on the creation of BDB
indexes, but insertion rates of 7K records-per-second have been
observed when building indexes of 10 million records or more.
BDB insertion rates are known to be sensitive to the amount of
BDB-specific cache memory allocated, and to the initial ordering
of records. When inserting randomly ordered records, the
insertion rate plummets after the total amount of data exceeds
cache size; when inserting pre-sorted records, the insertion rate
stays close to the initial rate.

Query and retrieval rates were tested against a sample Wayback
installation containing an index of approximately 1.5 billion URL
captures. This installation consists of a single front-end server
hosting the ReplayUI, QueryUI, ArcProxy, and Alpha Distributed
Resource Index components. The distributed Resource Index
forwards requests to two index servers, each returning index data
in XML format from queries against a pair of local CDX files,
each on a different disk drive. The total size of the four CDX files
being searched across the 2 index servers is 254GB. ARCs
themselves are spread across hundreds of other storage servers,
and the ArcProxy application forwards retrieval requests to the
appropriate ARC storage server. The front-end server, two index
servers, and storage servers all match the hardware configuration
described above, but the storage servers are also regularly
contributing to other active services, even during our performance
testing.

For testing query performance, a set of 2,000 URLs and another
set of 4,000 URLs were randomly chosen from the combined four
CDX files. For each set of URls, the front-end Wayback services

Figure 5. Alternate UIs Sharing Resource Index/Store

and index server Wayback processes were restarted, and the URLs
queried in series via a scriptable HTTP client. The time for each
query to return with results was records. For the 2,000 queries, the
average elapsed time per query was 0.47 seconds; the median was
0.29 seconds. For the 4,000 queries, the average elapsed time was
0.48 seconds; the median was 0.28 seconds. Thus with one rapid-
fire client, this Wayback configuration could serve 2-3 queries per
second.

A similar procedure was used for testing retrieval performance.
Sets of 2,000 URL-at-timestamp records and 4,000 URL-at-
timestamp records were chosen at random from the combined
CDX. For each set, the front-end and index server Wayback
processes were restarted, and the URLs-at-timestamps were
requested from the front-end server in series. For the 2,000
retrievals, the average elapsed time was 0.53 seconds; the median
was 0.40 seconds. For the 4,000 retrievals, the average elapsed
time was 0.64 seconds; the median was 0.40 seconds. Facing the
one rapid-fire client, this Wayback configuration could serve 1.6-
2.5 retrievals per second.

In a smaller informal test, up to 10 concurrent querying or
retrieving clients in parallel had little effect on response elapsed
time, but throughput began declining with greater traffic. Further
investigation of current Wayback performance and potential
optimizations is planned.

4. OPEN SOURCE PROJECT
The Internet Archive maintains the Wayback project on
sourceforge.net, under the ‘archive-access’ project. The project
website includes source code, documentation, a user manual, bug
and feature tracking, project statistics. There is also an open
mailing list for Wayback discussion by developers and software
users, and mutual technical assistance. These can all be found at:

 http://archive-access.sourceforge.net/projects/wayback/

The Wayback project is distributed under the GNU “Lesser” (or
“Library”) Public License (LGPL) [7], enabling it and its source
code to be used standalone or as a component of larger projects
under other licenses.

5. FUTURE DIRECTIONS
Plans for the Wayback in the future include:

• Improved Replay systems, which will involve novel
methods for altering the context of replayed content,
additional inserted in-page content providing simpler
access to metadata about documents being viewed, and
cooperating web browser plug-ins that will allow
greater control of replayed content.

• Improved internationalization support, which will add
additional languages to the Wayback UI elements.

• Improved functionality in access-control methods,
which will allow content to be blocked or visible based
on access location, capture time, user authentication,
and various robots.txt policies.

• Deeper integration with the Heritrix web crawler,
allowing additional content to be scheduled in the web
crawler from the Wayback user interface, and linking
from the Heritrix logs and user interface into the
Wayback UI.

• Leveraging Wayback Proxy Replay mode for large-
scale QA of collections. Using pools of automated web
browsers, content can be loaded through the Wayback
in the same method that end users will view the content,
to identify web content that was missed in the initial
capture process.

• Large-scale deployments, including replacing the
software used to operate the 100 billion URL Internet
Archive classic public Wayback Machine.

• Integration with the Hadoop data processing system to
allow automated large-scale indexing operations.

• In-depth performance analysis comparing different
index strategies (BDB, CDX, and full-text).

6. RELATED WORK
6.1 Classic public ‘Wayback Machine’
In 2001, Alexa Internet and the Internet Archive collaborated in
the development of an access tool to provide public access to the
full historical collection maintained by the Internet Archive. The
project was called the Wayback Machine, referring to a device
used by professor Peabody in The Rocky and Bullwinkle Show to
travel through time.
The initial deployment of the Wayback Machine held an index of
approximately 100 TB of data, nearly 10 billion archived
documents. The architecture of the service used 4 tiers:

1. Load balancer: distributing requests to the CGI farm

2. CGI Farm: Tens of Apache servers, running a mod_perl
CGI, which roughly correlates to the Replay and Query
UI.

3. Index Farm: Tens of custom C HTTP servers that
performed binary searches through sorted text index
files, and retrieved documents from the Document
Server Farm, returning them to the CGI Farm nodes.
This component roughly correlates to the Resource
Index.

4. Document Server Farm: Hundreds of C custom TCP-
protocol servers that extracted documents from ARC
files, and returned them to the Index Farm nodes. This
same functionality is implemented in the Wayback via
HTTP 1.1 range requests, and the interface to this
component roughly correlates to the Resource Store.

This architecture is still used to serve over 80 billion URL
captures, but over time has shown problems. Some of this system
uses Alexa proprietary code, so cannot be shared as the basis of an
open source project. Additionally, this architecture has proved
inflexible for experimentation with new features, and difficult to
maintain, due to program logic that spans programs, machines,
and programming languages.
One technology developed for the Wayback Machine that is
significantly leveraged by the Wayback system is the method for
rewriting HTML documents so hyperlinks refer back into the
Wayback Replay UI. The technology uses minimal server-side
document rewriting, which reduces the need for extensive and
complex server libraries to handle malformed archived
documents. Documents are modified as they are returned to
clients by:

1. Adding or replacing a <BASE href=””> tag so relative
links are resolved correctly against the original
document URL.

2. Modifying some tags, including FRAME src's, and
document background images, which cannot be
modified by Javascript after the document has loaded
within the client browser.

3. Inserting Javascript which executes within the client
browser, after the page has loaded, and is responsible
for changing all URLs in the document to point back at
the Wayback Machine.

This context alteration technology is extremely simple, and
heavily leverages client browser DOM and Javascript capabilities,
but has several significant shortcomings, which are also present in
the current Wayback implementations, since the same strategy is
used:

1. Web browsers begin rendering the pages before the
Wayback link-alteration Javascript has executed. Since
web browsers are optimized to begin downloading
embedded content while the original page is still
loading, some requests for embedded content may first
be made to the original content on the live web, before
being subsequently patched to load the archived content
in the Wayback Machine.

2. URLs present in embedded content, such as Java applets
and Flash documents, are not rewritten, and often
resolve to their original locations on the live web.

3. Javascript present in the original page is not updated by
the Wayback software, so URLs constructed by this
Javascript often resolve against the live web. In
addition, Javascript in the original document
occasionally will redirect the browser to a page on the
live web, in effect hijacking the Wayback replay
session.

The Proxy Replay mode present in the new Wayback software
addresses most, if not all of these problems, but there is added
complexity in requiring users to change their web browser’s
configuration to use the Wayback as a proxy server, and the Proxy
mode is sometimes confusion to users who may not be aware of
their browser’s proxy configuration.

6.2 WERA: Access using full-text search
and the Timeline
The Nordic Web Archive [8], a collaboration of Nordic
National Libraries, in 2005 released WERA [6], another
access tool for viewing archived web content in ARC files.
WERA leveraged the same hyperlink patching technology
found in the Wayback Machine, but also added two new
powerful features. The first is a timeline banner user
interface element, allowing users to navigate between
archived versions of a page without returning to a search
result list. The second major feature is the utilization of the
NutchWAX full-text indexing system. This allows users to
locate content within the archive using text search, whereas
the original Wayback Machine only allowed access to
content based on URL queries. WERA’s features have
directly inspired the Timeline Replay UI and NutchWAX

Resource Index components/modes of the current Wayback
project.

6.3 Filesystem Directory Tree Access
One relatively simple approach to solving the problems of
archiving and providing access to archived content is to
store web content directly on a file system. This approach
is used by popular web-content collection tools including
wget [9] and HTTrack [10].

If content is stored within the file system in a directory
structure that mimics the original location of the content,
then both the storage and (URL-based) indexing problems
are solved. There are portability issues, since different
operating systems use different directory separators, and
may not allow filenames with special URL characters that
can be used to describe content on the Internet.
Additionally, most operating systems impose maximum
filename lengths that limit the ability to correctly store
some content.

In addition to the problems associated with accurately
mapping the global URL space into file system paths, much
of the original content needs to be altered when saving the
content to correct hyperlink references. Hyperlinks
expressed relative to a particular document may function
correctly, but server-relative and absolute URLs will not
correctly resolve to archived content unless they are
modified when documents are saved.

One approach used by some of these web capturing tools,
involves rewriting the content itself, so server-relative and
absolute hyperlinks refer correctly to locally archived
content. This approach has significant simplicity benefits in
that once content is saved with this specialized software, it
requires no specialized software to replay it. However, the
process of altering the content cannot be reversed
deterministically. Correcting problems discovered after
documents are captured requires saving an original,
unmodified version of the content, in addition to the
version used for replay browsing. The same problems non-
Proxy Wayback modes have with Flash and Java applets,
and URLs generated by Javascript content, are also present
in these filesystem-based tools today.

Current file systems are not usually adept at handling
millions or billions of files, so this technique also has
scaling limits that prohibit it from being used in many
contexts. These considerations helped motivate the original
design and adoption of the ARC file format by the Internet
Archive and its storage and access software.

7. ACKNOWLEDGMENTS
The work of Dave Sherfesee, as primary creator of the original
Wayback Machine, has been a seminal influence on all later
extensions and new implementations of ARC-based web archive
access tools. The International Internet Preservation Consortium
and its individual member institutions have helped support the

Internet Archive’s targeted web archiving and associated
technology development, of which the open source Wayback
project is an important part. The Library of Congress, especially,
has helped drive the development of Wayback with their ongoing
collection activities – and willingness to be early testers of new
software. Thanks also go to the rest of the Internet Archive web
team for helping develop, deploy, maintain, support, and explain
Wayback for the world, and Gordon Mohr for assistance editing
this paper.

8. REFERENCES
[1] Burner, Mike. and Brewster Kahle, “The ARC File Format,”

September 1996.
<http://www.archive.org/web/researcher/ArcFileFormat.php
>

[2] Koman, Richard. “How the Wayback Machine Works,”
January 21, 2002.

<http://webservices.xml.com/pub/a/ws/2002/01/18/brewster.
html>

[3] BerkeleyDB Java Edition, Oracle Corporation.
<http://www.oracle.com/database/berkeley-
db/je/index.html>

[4] “CDX File Format,”
<http://www.archive.org/web/researcher/cdx_file_format.ph
p>

[5] NutchWAX project. <http://archive-
access.sourceforge.net/projects/nutch/>

[6] WERA project. < http://archive-
access.sourceforge.net/projects/wera/>

[7] GNU Lesser General Public License (LGPL).
<http://www.gnu.org/licenses/lgpl.html>

[8] Nordic Web Archive home page. <http://nwa.nb.no/>
[9] Wget. <.http://wget.sunsite.dk/>
[10] HTTrack project. <http://www.httrack.com/>

