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Abstract

Motivation: Recent advancements in molecular methods have made it possible to capture physical

contacts between multiple chromatin fragments. The resulting association matrices provide a

noisy estimate for average spatial proximity that can be used to gain insights into the genome or-

ganization inside the nucleus. However, extracting topological information from these data is chal-

lenging and their integration across resolutions is still poorly addressed. Recent findings suggest

that a hierarchical approach could be advantageous for addressing these challenges.

Results: We present an algorithmic framework, which is based on hierarchical block matrices

(HBMs), for topological analysis and integration of chromosome conformation capture (3C) data.

We first describe chromoHBM, an algorithm that compresses high-throughput 3C (HiT-3C) data

into topological features that are efficiently summarized with an HBM representation. We suggest

that instead of directly combining HiT-3C datasets across resolutions, which is a difficult task, we

can integrate their HBM representations, and describe chromoHBM-3C, an algorithm which

merges HBMs. Since three-dimensional (3D) reconstruction can also benefit from topological infor-

mation, we further present chromoHBM-3D, an algorithm which exploits the HBM representation

in order to gradually introduce topological constraints to the reconstruction process. We evaluate

our approach in light of previous image microscopy findings and epigenetic data, and show that it

can relate multiple spatial scales and provide a more complete view of the 3D genome

architecture.

Availability and implementation: The presented algorithms are available from: https://github.com/

yolish/hbm.

Contact: ys388@cam.ac.uk or pl219@cam.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

HiT-3C techniques provide a means for studying the genome archi-

tecture at a range of resolutions. As oppose to light microscopy, 3C

gives a population-based measure that relies on spatial proximity

but does not directly convey a spatial context (Belmont, 2014). All

3C derivatives consist of cross-linking nuclei, followed by chromatin

digestion and re-ligation. Quantifying the number of ligation events

between two chromatin fragments gives their ‘contact frequency’ in

the examined population of nuclei, providing a pairwise estimator

for their distance. HiT-3C methods (most notably, the Hi-C

method) detect contacts between groups of loci, per chromosome or

genome-wide, which are typically summarized in a non-negative ma-

trix called a ‘contact map’.

VC The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 1121

Bioinformatics, 32(8), 2016, 1121–1129

doi: 10.1093/bioinformatics/btv736

Advance Access Publication Date: 17 December 2015

Original Paper

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/32/8/1121/1744533
by guest
on 30 July 2018

https://github.com/yolish/hbm
https://github.com/yolish/hbm
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv736/-/DC1
Deleted Text: i
Deleted Text: 'contact 
Deleted Text: 'contact 
http://www.oxfordjournals.org/


Analyzing contact maps can reveal different scales of topological

organization. At a 1 Megabase (Mb) resolution, chromatin compart-

ments and sub-compartments were identified with principal compo-

nent analysis (PCA) (Lieberman-Aiden et al., 2009) and clustering

(Rao et al., 2014). (Dixon et al. 2012) further suggested that at

shorter length scales (40–100 kilobases (kb)), a genomic bin can be

assigned with a state which represents its preference to interact with

other bins along the sequence (directionality index): upstream,

downstream or none. Using hidden Markov models (HMM) the re-

searchers have shown that the genome can be segmented into re-

gions of bins with the same state, leading to the definition of

Topologically Associated Domains (TADs, ‘upstream’ or ‘down-

stream’ regions) and their boundaries (‘none’ regions). Dynamic pro-

gramming (Levy-Leduc et al., 2014) and change point detection

(Shavit and Lio’, 2014) were also employed for identifying transi-

tions in contact frequency enrichment which induce a topological

genome segmentation. Owing to the definition of TADs, their pos-

ition and boundaries can change considerably depending on the

sequencing depth and the bin size used (Filippova et al., 2014). For

example, studying HiT-3C contact maps at different resolutions re-

vealed that previously identified large TADs can be divided into sub-

TADs (Filippova et al., 2014; Phillips-Cremins et al., 2013). This

hierarchical organization suggests the need for methods that could

go beyond the TAD-based segmentation and capture topologies at

different length scales. Hierarchical topologies derived from contact

maps can further provide a spatial context for studying point-wise

and relational properties (e.g., histone modifications and gene co-

expression, respectively). This can in turn uncover associations

between spatial organization (structure) and genomic features (func-

tion) that could not have been discovered when considering only the

proximity of the sequence. Such evidence synthesis requires an ap-

proach which can relate datasets at different resolutions and link

genetic and epigenetic features to the spatial scale at which they

work.

Physics and statistical mechanics have provided valuable lessons

about the genome organization. By modelling the chromatin fibre as a

polymeric chain of beads, researchers have applied polymer physics to

study the expected genome topology and dynamics. In particular, the

distance and probability of contact of between beads (loci), given their

distance on the sequence, were a subject for much research (Mirny,

2011). Measurements obtained with fluorescence in-situ hybridization

(FISH) and HiT-3C experiments were used to motivate and validate

hypotheses concerning these properties, respectively, and, together

with general characteristics of polymer chain behaviour were used to

propose different models of chromatin organization (Barbieri et al.,

2012; Bohn et al., 2007; Lieberman-Aiden et al., 2009; Mateos-

Langerak et al., 2009; Munkel et al., 1999; Sachs et al., 1995). The

increasing volume of HiT-3C data calls for the development of algo-

rithms and data structures that can summarize, compress and inte-

grate datasets while considering issues of time and space complexity.

Such a computational approach can complement physics simulations

and provide the necessary framework for large scale studies of the 3D

genome architecture and its function.

In this paper, we present a HBM-based algorithmic framework

for topological analysis and integration of HiT-3C data. We

first introduce the HBM representation for contact maps and give

the necessary definitions (Section 2.1). Next, we describe

chromoHBM, an algorithm which compresses a contact map into a

HBM by iteratively detecting dense modules (communities) of inter-

acting chromatin segments (Section 2.2). We then focus on the appli-

cation of HBMs for 3C data integration. We explain the difficulties

involved in directly combining HiT-3C datasets and propose to

merge their HBM representations instead, using the chromoHBM-

3C algorithm (Section 2.3). We also note that spatial inference can

benefit from incorporating topological knowledge and describe

chromoHBM-3D, an algorithm which takes a 3D reconstruction

method and iteratively guides it by means of HBM traversal (Section

2.4). In order to evaluate our approach, we study Hi-C datasets and

show that HBMs highlight key topologies and that the merged

HBM representation can capture multiple scales of spatial organiza-

tion that could not have been detected by separately analyzing each

dataset. For the sake of space, robustness and running time evalu-

ation is given in the supplementary (suppl.) information (Table 1).

Additional results of related or exploratory analysis are also avail-

able on request.

2 Methods

2.1 From contact maps to HBMs: an introduction for

bioinformaticians
3C experiments measure the frequency of ligation events between

chromatin fragments in a population of nuclei. For a given pair of

genomic bins, each spanning one or more chromatin fragments, we

define their contact frequency as follows:

DEFINITION 1 (contact frequency): Let a genomic bin be a vector of

consecutive chromatin fragments. Let a ¼ ða1; a2; :::; akÞ be a gen-

omic bin with k fragments and b ¼ ðb1;b2; :::; blÞ a genomic bin

with l fragments. The contact frequency between a and b is then:

fa;b ¼
Pk

i¼1

Pl
j¼1 eai ;bj

where eai ;bj
is the number of ligation events

between fragments ai and bj, for 1 � i � k; 1 � j � l.

We can further summarize these data with a matrix whose

entries give the pairwise contact frequencies between two vectors of

genomic bins. This leads to the following definition:

DEFINITION 2 (contact map): Let p ¼ ðp1;p2; :::;pmÞ be a vector of

m consecutive genomic bins and q ¼ ðq1;q2; :::; qnÞ a vector of n

consecutive genomic bins. The contact map of p and q is a m � n

matrix A, with Ai;j ¼ fpi ;qj
, where fpi ;qj

is the contact frequency be-

tween bins pi and qj, for 1 � i � m; 1 � j � n.

Table 1. Evaluation results and their availability.

Evaluation Algorithm Availability

Consistency with FISH chromoHBM Section 3

Consistency with FISH chromoHBM-3C Section 3

Consistency with epigenetic data chromoHBM-3C Section 3

Consistency with FISH chromoHBM-3D Suppl.

Consistency with topological

domains

chromoHBM Suppl.

Robustness (community

detection method)

chromoHBM Suppl.

Robustness (filtering) chromoHBM Suppl.

Runtime analysis chromoHBM Suppl.

Runtime analysis chromoHBM-3C Suppl.

Runtime analysis chromoHBM-3D Suppl.

Consistency of contact maps

with FISH

Pre-processing AOR

Reproducibility between

replicates

Pre-processing AOR

AOR, available on request; Suppl., supplementary information.
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When all the genomic bins in p and q are from the same chromo-

some, we call A a cis contact map. Otherwise, A is a trans contact

map. From Definition 1 we also get that A is a non-negative matrix

and that if p and q are identical then it is also symmetric.

In practice, contact frequencies are biased measures of ligation

events (Yaffe and Tanay, 2011). Consequently, contact maps need

to be corrected before any subsequent analysis. In addition, even in

the bias-free case, their exact spatial interpretation is not straightfor-

ward. For example, we have recently found that contact frequencies

and distances measured with FISH are correlated only for short

range distances (Shavit et al., 2014). Thus, de-noised contact maps

should also be filtered in order to discard artefacts and data that are

not spatially meaningful. Here, we concentrate on the topological

analysis and data integration of cis chromosomal contact maps and

assume that they are de-noised and filtered (an evaluation of the ef-

fect of filtering is described in the suppl. information).

Since we are interested in recovering the topology of chromosomes

from their contact maps, the concept of networks immediately comes

to mind. In fact, cis contact maps were previously modelled as adja-

cency matrices of weighted undirected graphs (Boulos et al., 2013).

This leads to the definition of a contact network:

DEFINITION 3 (contact network): Let p ¼ ðp1; p2; :::; pmÞ be a vector

of m genomic bins, from the same chromosome. The contact net-

work of p is a weighted undirected graph NðV;E;wÞ where:

• V ¼ fp1; p2; :::; pmg is a set of nodes,
• E ¼ ffpi; pjgjfpi ;pj

> 0g is a set edges, where fpi ;pj
is the contact

frequency between the nodes (bins) pi and pj, for 1 � i; j � m,

and
• w : E! R

þ is a weight function which assigns each edge with

the contact frequency between its elements: wðfpi;pjgÞ ¼ fpi ;pj

and R
þ is the set of strictly positive real numbers.

It follows that A, the contact map of p (a symmetric cis contact

map), is the m � m adjacency matrix of N:

Ai;j ¼
wðfpi;pjgÞ fpi ;pj

> 0;

0 otherwise

(
(1)

Based on Definition 3 and Equation 1 we can derive a contact map

from a contact network and vice versa. The network representation

of a contact map (i.e., its contact network) provides an intuitive

starting point for analyzing its topology.

Recently, several studies have demonstrated that both the fine

structure and long range scaling behaviour of Hi-C data is consistent

with a fractal globule model of genome folding (Grosberg et al.,

1988; Lieberman-Aiden et al., 2009; Mirny, 2011; Nazarov et al.,

2015). From a modelling point of view, the packing of the crumpled

globule is formed by iteratively folding the polymer (chromosome)

chain such that folds at one scale are grouped together in the next

scale, ultimately forming a ‘fold of folds’ (Grosberg et al., 1988).

The resulting structure can be described with a hierarchical block

Parisi matrix that is consistent with characteristics observed in Hi-C

data (Nazarov et al., 2015). Parisi matrices consist of a growing

block, placed along the diagonal, which is itself a Parisi matrix of a

smaller size. This class of matrices is a sub-class of hierarchical

matrices which can be used to represent large-scale and dense

matrices with logarithmic-linear complexity (Hackbusch, 1999).

Similarly to Parisi matrices, HBMs can capture self-similar hierarch-

ical structures but in these data structures an entry in the matrix

takes the lowest level in the hierarchy. More formally, we define an

HBM as follows:

DEFINITION 4 (hierarchical block matrix (HBM)): Let N be an undir-

ected graph NðV;E;wÞ, with V a set of m nodes, E a set of edges be-

tween them and w a function which assigns each edge with a

weight. If w is defined as w : E! f1g then we say that N is un-

weighted, otherwise N is a weighted graph. Let C be the set of clus-

ters in N, C ¼ fclgk
l¼1 where cl � V and k � 1. We denote B(1) to

be a m � m matrix, with:

Bð1Þi;j ¼
1 i; j 2 c; c 2 C; c � V;

0 otherwise

(

Let N1ðV1;E1;w1Þ be an undirected graph whose nodes are the

clusters in N and C1 ¼ fc1;lgk1

l¼1 is the set of the clusters in N1, with

c1;l � V and k1 � 1. Note that each cluster in C1 is a union of sets

(clusters in C) that contain nodes in V. Using a recursive definition,

we denote Ns to be an undirected graph whose nodes are the clusters

in Ns�1 and B(s) to be a m � m matrix, with:

BðsÞi;j ¼
1 i; j 2 c; c 2 Cs�1; c � V;

0 otherwise

(

where Cs�1 ¼ fcs�1;lgks�1

l¼1 is the set of clusters in Ns�1 with cs�1;l � V

and ks�1 � 1, for s � 2. Note that if BðsÞi;j ¼ 1 than for all

s0 > s; Bðs0Þi;j ¼ 1 as well.

The hierarchical block matrix (HBM) of N is a non-negative sym-

metric m�m matrix, H, with: Hi;j ¼ minsfsjBðsÞi;j ¼ 1g, for s � 1.

If the underlying topology of a chromosome is hierarchical then

we expect its contact network to consist of communities (clusters)

that will form mega-communities and so forth. This is in keeping

with the general definition of communities as dense sub-graphs of a

sparser graph (Radicchi et al., 2004). The resulting hierarchy can

then be described with an HBM; given a contact map A and its

contact network N, we can compute H from N using Definition 4

Fig. 1. Building HBMs from chromosomal contact maps. (a) A contact map.

(b, c) The HBM of the contact map in (a) and its dendogram representation. At

the first level (dark blue), the bins i and j are detected as part of two different

communities in the contact network of the contact map in (a). They appear as

leaves in the dendogram and belong to two separate clusters. At level 2 (or-

ange), i and j are first assigned to the same community and the clusters in the

dendogram are merged into one. The i, jth entry of the HBM (pointed to by a

black arrow) is set accordingly to 2. At the third and last level (green) all the

bins are merged into one single cluster. The HBM in (b) can be derived from

the dendogram in (c) (and vice versa) using a traversal from the lowest to the

highest level

Hierarchical block matrices 1123

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/32/8/1121/1744533
by guest
on 30 July 2018

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv736/-/DC1
Deleted Text: s
Deleted Text: ; Mirny, 2011
Deleted Text: 'fold 


by iteratively detecting and merging communities in N until all com-

munities are merged into one or cannot be merged any further.

Figure 1 illustrates this idea. H can be further summarized with a

hierarchical tree (or a dendogram), which describes the merges of

communities at each level in a succinct way (Figure 1c). Taking a

data-driven perspective, H also allows us to first incorporate local

information and gradually include more global constraints, which is

desirable when considering contact frequencies (Shavit et al., 2014).

In the next sections we describe three HBM-based algorithms:

chromoHBM, chromoHBM-3C and chromoHBM-3D. The imple-

mentation of these algorithms is available at: http://www.cl.cam.ac.

uk/ys388/hbm/. Details of data preparation (datasets used and sub-

sequent pre-processing) and performance evaluation are given in the

suppl. information (see also Table 1).

2.2 chromoHBM: compressing contact maps into

topological features
The chromoHBM algorithm (Algorithm 1) derives the HBM

representation of a (de-noised and filtered) cis contact map. It takes

a m � m symmetric cis-contact map A and returns its HBM

H. chromoHBM starts by initializing H to be a m � m matrix

(Algorithm 1, line 3) and then removes self-interactions from A (by

setting its diagonal to zero) and creates Adj, a copy of A (Algorithm

1, lines 4–5). Next, H is iteratively populated. At each iteration, s,

chromoHBM calls detectCommunities which returns the commun-

ities in N, the network whose adjacency matrix is defined by Adj. It

then updates Adj to be a ms � ms matrix, with ms the number of

identified communities. Adji;j is set to be a normalized sum of the

contact frequencies between the bins in A that are elements in the ith

and jth communities in N, respectively:

Adji;j ¼

X
k2ci

X
l2cj

Ak;l

jcijjcjj
(2)

where cr is the rth community in N and jcrj is its size, for 1 � r � ms

and i � j. Finally, chromoHBM updates H to record the commun-

ities detected at the current iteration (level) s by setting Hk;l to s if

the bins k and l in A are assigned to the same community for the first

time, for 1 � k; l � m (Algorithm 1, lines 26–30). The iterative pro-

cess halts when a single community has been identified (all commun-

ities were merged) or when it is not possible to merge any of the

communities detected at the previous level (Algorithm 1, while-loop

condition, line 10). At this point, s is maxðHÞ þ 1 and H may in-

clude entries that have not been set (if some communities could not

have been merged). chromoHBM updates such entries to take the

value of s in order to represent the global community formed by all

the communities in the network (Algorithm 1, lines 33–37).

The time complexity of the sth iteration in chromoHBM is given by:

Tðs;msÞ ¼ TðdetectCommunities;AdjsÞ þ
Xms

i¼1

Xms

j¼iþ1;i<ms

jcijjcjj (3)

where T(g, m) is the time complexity of g with an input of size m.

The first term in Equation 3 gives the time complexity of

detectCommunities which depends on the size of Adj at iteration s,

Adjs. This method is intentionally left unspecified since we expect

that the underlying hierarchy will consistently emerge regardless of

the implementation used (an evaluation of the robustness of HBMs

generated with chromoHBM, when using different detection

methods, is described in the suppl. information). The second term

describes the number of operations required to update Adj and H,

which depends on ms, the number of communities detected at

iteration s and on jcrj, the size of community cr, for 1 � r � ms.

Since the final update of H takes another Oðm2Þ operations

(Algorithm 1, lines 33–37), the total time complexity of the

algorithm is given by:

TðchromoHBMÞ ¼ Oðm2Þ þ
X

s

Tðs;msÞ (4)

The space complexity of chromoHBM is Oðm2Þ since we store Adj

and H in memory. This requirement could be relaxed by implement-

ing H as a hierarchical tree.

2.3 chromoHBM-3C: merging HBMs with different

bin sizes
High-throughput 3C techniques generate contact maps at various

resolutions and bin sizes. To date, however, there are no methods

for putting together contact maps that differ in their binning,

Algorithm 1. chromoHBM

1: procedure chromoHBM(A)

2: m NrowðAÞ
3: H  matrix(m, m)

4: diagðAÞ  0 " remove self-interactions

5: Adj A " the adjacency matrix of a network N

6: m0  m

7: ms  m0

8: s 1

9:

10: while ms > 1 and ðms < m0 or s ¼ 1Þ do

11: c detectCommunitiesðAdjÞ
12: m0  ms

13: ms  lengthðcÞ " number of communities in N

14: Adj matrixðms;msÞ
15:

16: for i 1 to ms do

17: for j i to ms do

18: if i 6¼ j then

19: f  0

20: for all k 2 ci do

21: for all l 2 cj do

22: f  f þ Ak;l

23: Adji;j  f
jci jjcj j

24: Adji;j  Adjj;i
25:

26: for all k 2 ci do

27: for all l 2 ci do

28: if Hk;l is NULL then " first time we

find k and l together

29: Hk;l  s

30: Hl;k  Hk;l

31: s sþ 1

32:

33: for i 1 to m – 1 do

34: for j iþ 1 to m do

35: if Hi;j is NULL then " first update

36: Hi;j  s

37: Hj;i  Hi;j

38: return H
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resolution or protocol. We focus on the integration of cis symmetric

contact maps and define the problem of HiT-3C data integration as

follows:

DEFINITION 5 (3C data integration): Let x ¼ ½xb; xe� be a genomic

range starting at position xb and ending at position xe on a given gen-

omic sequence. A y-binning of x divides it into xe�xbþ1
y genomic bins

of length y, where y is a natural number. Let u ¼ ðu1;u2; :::; umÞ and

v ¼ ðv1; v2; :::; vkÞ be two vectors of genomic bins, generated by a r

and a r/n binning of x, respectively. For simplicity, we will assume

that n and xe�xbþ1
r are natural numbers. Since r

n is also a natural num-

ber (by the definition of binning), we get that k ¼ nm. Let A and B

be the contact maps of u and v, respectively; the problem of integrat-

ing A and B is to create a new k � k contact map which faithfully

represents the information in A and in B.

Several factors make the 3C data integration problem particu-

larly challenging. First, differences in resolution and in the molecular

protocol can lead to a considerable variation in the contact fre-

quency range, which in turn makes it difficult to combine (and com-

pare) contact maps. Other variations in the experimental setting can

also contribute to this effect. In addition, merging contact maps

with different bin sizes require data processing, such as expansion or

normalization of contact frequencies, which is not straightforward

to perform and may lead to data distortion. Since we are ultimately

interested in putting together the underlying topologies that are cap-

tured by contact maps, the HBM representation offers an attractive

surrogate. Thus, instead of directly combining two contact maps,

which is a difficult task, we can merge their HBMs and generate a

unified representation of their topologies.

We follow the definition of the 3C data integration problem

(Definition 5) and denote HA to be the m � m HBM of A and HB

to be the k � k HBM of B. Since k ¼ nm, we can expand HA to be a

k � k matrix, Ĥ
A
, with:

Ĥ
A

i;j ¼ HA
p;q; p ¼ Ø

i

n
ø; q ¼ Ø

j

n
ø (5)

for 1 � i; j � k and 1 � p;q � m.

We define a ‘merging matrix’, M, given by:

M ¼ Ĥ
A þHB

2
(6)

where Mi;j takes the ‘average level’ between the levels at which i

and j were first assigned to the same community. Given M, we can

compute the ‘merged HBM’, HA;B which integrates A and B by

merging the topologies of HA and HB. Let s ¼ fsiglM
i¼1 be the set of

levels (unique values) in M, sorted in an increasing order, where lM
is the total number of levels in M. HA;B

i;j is given by:

HA;B
i;j ¼ gðMi;jÞ (7)

where g is a function which takes the value of a level in M and re-

turns its index in s:

gðsiÞ ¼ i; si 2 s (8)

The computation of HA;B mimics a bottom-up traversal of M, where

new levels are added in order to accommodate for the, possibly dif-

ferent, topologies of HA and HB (note that when HA ¼ HB then also

HA;B ¼ HB). Figure 2 illustrates the steps involved in merging two

HBMs, using a toy example.

The chromoHBM-3C algorithm (Algorithm 2) takes a m � m

HBM HA and a k � k HBM HB where k ¼ nm and n is a natural

number. It follows the steps described above and returns HA;B, the

merged HBM of HA and HB. First, it generates Ĥ
A

, the expanded

version of HA, according to Equation 5 (Algorithm 2, lines 6–11).

Second, it creates the merging matrix, M, by taking the ‘average’ of

Ĥ
A

and HB. Lastly, chromoHBM-3C traverses the levels of M, from

the lowest to the highest, and updates HA;B according to Equation 7

(Algorithm 2, lines 16–21). For each level sl in M, chromoHBM-3C

iterates through the entries of M and updates the entry HA;B
i;j to be l

if Mi;j equals sl. At the end of the traversal H contains the number of

levels required to merge the topologies in HA and HB. The expansion

and merge steps take Oðk2Þ operations each and the bottom-up tra-

versal requires another OðlMk2Þ operations (where lM is the number

of levels in M). We also create and update matrices of size k2.

Hence, the total time and space complexities of the algorithm are

OðlMk2Þ and Oðk2Þ, respectively.

2.4 chromoHBM-3D: guiding 3D positioning with HBMs
Current methods for 3D positioning typically use available con-

straints (contact frequencies) all together. If chromosomes are hier-

archically organized, then reconstructing their configuration could

benefit from a bottom-up approach, which starts by positioning the

smaller, more local domains, and gradually proceeds by placing

them relative to each other (instead of inferring all the positions at

once). Since HBMs capture and relate multiple levels of topological

features, they provide a natural means for implementing such an

approach.

The chromoHBM-3D algorithm (Algorithm 3) takes five argu-

ments as input:

• A, a m � m contact map,
• H, the HBM of A,
• f, a 3D reconstruction method which takes a contact map and re-

turns its 3D positioning,
• t, a function which converts distances into contact frequencies

(for example, using the inverse function), and
• arg, a list of any additional arguments for f.

Fig. 2. Merging HBMs with different bin sizes. Two HBMs, H1 and H2 are gen-

erated from contact maps with a different binning, where a bin in H1 corres-

ponds to two bins in H2. In Step 1, we expand H1 so that the binning of the

two HBMs will match (Equation 5). The average between the expanded HBM,

H 01, and H2 gives the merging matrix M (Step 2, Equation 6). Finally, at Step 3,

we compute the merged HBM, H, using M. Each entry in H takes the index of

the level value in the matching entry in M, which can be computed with the

function g (Equations 7–8)
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Given this input, chromoHBM-3D performs a bottom-up tra-

versal of H and returns the 3D positioning of A. It first creates a

m � m distance matrix, D, that will be updated during the traver-

sal. For each level l, for each community ck 2 c (for c, the set of

communities detected at level l), chromoHBM-3D calls f with the

contact map of ck, Ack , given by Ack
i;j ¼ Ai;j for all i; j 2 ck. Note

that small communities are skipped since they do not provide

enough spatial constraints (Algorithm 3, line 9, where jckj is the

size of ck). Given Y, the 3D configuration reconstructed with f,

chromoHBM-3D updates Di;j to take the Euclidean distance be-

tween i and j in Y, for i; j 2 ck. This update is carried only for

entries that have not been updated at previous iterations (based on

‘more local’ constraints). At the end of the iterative procedure,

chromoHBM-3D transforms D into a ‘contact map’ A0, using t,

and calls f with A0. The resulting 3D configuration is a ‘refined’ 3D

positioning of A based on the information in H.

The running time of chromoHBM-3D depends on the number

of levels and communities in H and on the time complexity of f.

Let lH be the number of levels in H, ml, the number of

communities at level l, and T(f, n), the time complexity of f with

an input of size n. The time complexity of chromoHBM-3D is

given by:

TðchromoHBM� 3DÞ ¼ Oðm2 þ Tðf ;mÞ þ
Xlh

l¼1

Xml

k¼1

Tðf ; jckjÞ þ jckj2Þ (9)

The first and second terms in Equation 9 give the number of oper-

ations required to derive A0 from D and the time complexity of re-

constructing Y from A0, respectively (Algorithm 3, lines 18–22). The

time complexity of the bottom-up traversal is given by the third

term (nested sums). For each level l, we call f with the contact map

of the community ck which takes Tðf ; jckjÞ operations. Updating D

requires additional jckj2 operations.

The space complexity of chromoHBM-3D depends on the mem-

ory requirements of f but has a lower-bound of Oðm2Þ (the size of

the distance matrix D).

3 Results

Let A and B be two contact maps, HA and HB their HBMs, respectively,

and HA;B the merged HBM of HA and HB, we would like to test:

• Is HA;B ‘consistent’? If HA;B is consistent then its topology should

be in agreement with the separate topologies of HA and HB as

well as with previous findings.
• Is HA;B ‘powerful’? If HA;B is powerful then it should add new in-

formation, which is not available when independently analyzing

HA and HB. Also, there should be a clear motivation for not dir-

ectly comparing A and B (for example, large variation in contact

frequency distribution and range).

Further evaluation of the robustness, consistency and performance

(running time) of chromoHBM, chromoHBM-3C and chromoHBM-

3D is described in the suppl. information (see Table 1).

In order to evaluate how ‘consistent’ and ‘powerful’ separate and

merged HBMs are, we study two contact maps and their HBMs,

which considerably differ in their binning: a 500 and a 25 kb contact

maps generated from human fibroblasts nuclei for chromosome 1

(Rao et al., 2014). We first compare the corrected (de-noised) contact

maps. We find that the 25 kb contact map is sparser and that the dis-

tributions of the two contact maps are significantly different (one-

sided t-test (significant differences are observed also when considering

non-parametric tests such as the Kolmogorov-Smirnov test), P-value

Algorithm 2. chromoHBM-3C

1: procedure chromoHBM-3C(HA , HB)

2: m NrowðHAÞ
3: k NrowðHBÞ
4: n k

m " we assume that n is a natural number

5: Ĥ
A  matrixðk; kÞ " expand HA

6: for i 1 to k do

7: p Ø i
n ø

8: for j i to k do

9: q Ø j
n ø

10: Ĥ
A

i;j  HA
p;q

11: Ĥ
A

j;i  Ĥ
A

i;j

12: M Ĥ
AþHB

2

13: HA;B  matrixð0; k; kÞ
14: s getLevelsðMÞ " level values in increasing order

15: lM  lengthðsÞ " number of levels

16: for l 1 to lM do

17: for i 1 to k do

18: for j i to k do

19: if Mi;j ¼ sl then

20: HA;B
i;j  l

21: HA;B
j;i  HA;B

i;j

22: return HA;B

Algorithm 3. chromoHBM-3D

1: procedure chromoHBM-3D(A, H, f, t, arg)

2: m NrowðAÞ
3: D matrixðm;mÞ
4: lH  NlevelsðHÞ " number of levels in H

5: for l  1 to lH do

6: c communitiesAtLevelðlÞ " communities

detected at level l

7: for all ck 2 c do

8: ml  jckj
9: if ml > 4 then

10: Ack  matrixðml;mlÞ
11: for all i; j 2 ck do

12: Ack

i;j  Ai;j

13: Y  f ðAck ; argsÞ " the 3D positioning

of Ack

14: for all i; j 2 ck do

15: if Di;j is NULL then " first update

16: Di;j  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

a¼1 ðYi;a � Yj;aÞ2
q

17: A0  matrixðm;mÞ
18: for i 1 to m – 1 do

19: for j iþ 1 to m do

20: A0i;j  tðDi;jÞ " convert distances into ‘contact

frequencies’

21: A0j;i  A0i;j
22: Y  f ðA0; argsÞ
23: return Y
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< 2.2 � 10–16). The 500 kb contact frequencies range between 0 and

101 500 with a mean of 427.10 and a median of 31.57, while the dis-

tribution of the 25 kb contact frequencies is more (rightly) skewed;

the 25 kb contact frequencies range between 0 and 6221 and have a

mean of 1.074 and a zero median. In order to allow for a more direct

comparison, we standardize the two contact maps and compute the

expanded version of the 500 kb contact map, using Equation 5.

Testing for agreement between the two standardized contact maps

(which now match in their dimensions) yields a low Pearson correl-

ation value (r ¼ 0.15). Put together, the notable variations between

the 500 and 25 kb contact maps, make it difficult to integrate them

and motivate the use of their HBM representation for this purpose.

We next apply chromoHBM in order to generate the HBM for

each of the contact maps, using the Infomap algorithm (Rosvall and

Bergstrom, 2008) for detecting communities. This algorithm, which

is recognized as a leading approach for community detection in un-

directed weighted graphs (Lancichinetti and Fortunato, 2009), aims

at finding an optimal compression of the information flow in a

graph, using random walks as a proxy for the amount of informa-

tion transferred between nodes. Its key idea, inspired by Information

Theory, is that finding a compression that can closely recover the in-

formation flow in a graph is equivalent to detecting its topological

modules or communities (which dictate the dynamics of the system).

In the suppl. information we further show that chromoHBM re-

covers similar HBMs, independently of the detection method used

(robustness evaluation, see Table 1).

Given their HBMs, we apply chromoHBM-3C to compute the

merged HBM representation of the two contact maps. For descrip-

tion purposes, we use H500, H25 and Hmerged to denote the 500 kb,

25 kb and the merged HBMs, respectively. Figure 3 shows H500

(enlarged for visual clarity), H25 and Hmerged. We notice that some

topological patterns that appear in H500 are missing from H25 and

vice versa. Small communities that are detected at the first level of

H25, are missing or merged in H500. At the second level, the two

HBMs detect mega communities that roughly correspond or over-

lap. These communities are further combined into two large clusters

(in blue) at the third level of H500. This level of hierarchical organ-

ization is completely absent from H25. At the last level (level 5 and

level 4 for H500 and H25, respectively), bins which correspond to re-

gions with a poor mappability (and thus poorly covered) are merged

with the others to form the global community.

From a signal processing point of view (according to the

Heisenberg uncertainty principle), the observed trade-off, between

H500 and H25, is expected. Smaller bins can better detect small scale

topologies but miss large scale features (good knowledge of fre-

quency but poor knowledge of position). In contrast, larger bins

capture large scale organization on the expense of finer details (good

knowledge of position but poor knowledge of frequency). Hmerged

(Figure 3c) accommodates for the distinct scales that are captured

by H25 and H500, and provides a multi-scale view of the organiza-

tion of chromosome 1. Its first level matches the first level of H25 (a

small scale topology) while its fifth level roughly corresponds to the

third level of H500 (a large scale topology). At intermediate levels,

overlapping features detected by both HBMs are combined together,

forming a unified view of the separate hierarchies.

In order to further evaluate the consistency of Hmerged, we study

active and repressed domains in chromosome 1. These domains be-

long to a group of regions which appear throughout the genome,

termed ‘ridges’ and ‘anti-ridges’, which show distinct functional and

structural characteristics. Ridge domains are rich with genes and ac-

tive regulatory elements, and are highly transcribed and expressed

(‘active’) (Gilbert et al., 2004; Versteeg et al., 2003). They possess an

‘open’ chromatin topology which further correlates with their high ex-

pression level. In contrast, anti-ridge domains are gene poor, lowly

transcribed and expressed and present a ‘close’ and packed topology

(‘repressed’). Figure 4 shows the HBMs of chromosome 1, at positions

1.50 � 108 to 1.54 � 108 (green frame, upper panel) and 1.73 � 108

to 1.76 � 108 (red frame, lower panel), which correspond to a ridge

and an anti-ridge domain, respectively. For these specific regions, dif-

ferences in density were also confirmed with FISH (distances within

the ridge domain shown to be larger than distances within the anti-

ridge domain) (Mateos-Langerak et al., 2009).

In line with the trend observed when analyzing the entire chromo-

some, H25 captures finer topological details compared to H500. At the

first level, the ridge domain of H25 consists of four communities,

which roughly correspond to two communities in H500. In a similar

way, the two communities detected in the anti-ridge domain in H25

form a single community in H500. When considering Hmerged, we find

that the anti-ridge domain presents a flatter hierarchy compared to

the ridge domain (two levels versus three levels, respectively) with a

smaller number of larger communities. This is in agreement with the

characteristics of anti-ridge domains, which are more dense than ridge

Fig. 3. HBMs of chromosome 1: before and after merge. (a) 500 kb HBM of

chromosome 1 (enlarged for visual clarity). (b) 25 kb HBM of chromosome 1. (c)

The merged HBM of the HBMs in (a) and (b), generated with chromoHBM-3C

Fig. 4. HBMs of chromosome 1 at ridge and anti-ridge domains. The upper

panel (green frame) shows the 500 kb (a), 25 kb (b) and merged (c) HBMs of

chromosome 1 at positions 1.50 � 108 to 1.54 � 108, which correspond to a

ridge (‘active’) domain. The respective HBMs at the lower panel correspond

to an anti-ridge (‘repressed’) domain at positions 1.73 � 108 to 1.76 � 108. The

vertical track next to the merged HBM of the ridge domain (c) shows the picks

of the H3K27Ac histone modification mark at the corresponding positions in

the genome (chromosome 1: 1.50 � 108 to 1.54 � 108). This track was

retrieved from the UCSC Genome Browser website (Kent et al., 2002)

Hierarchical block matrices 1127

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/32/8/1121/1744533
by guest
on 30 July 2018

Deleted Text:  
Deleted Text: s
Deleted Text: ,
Deleted Text: s
Deleted Text: s
Deleted Text: ,
Deleted Text: s
Deleted Text: s
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv736/-/DC1
Deleted Text: Kbs
Deleted Text: s
Deleted Text: 'ridges' 
Deleted Text: 'anti
Deleted Text: 'active'
Deleted Text: ; Gilbert <italic>et<?A3B2 show $146#?>al.</italic>, 2004
Deleted Text: 'open' 
Deleted Text: 'close' 
Deleted Text: 'repressed'
Deleted Text: -
Deleted Text: -
Deleted Text: s


domains. For the ridge domain, the first and third level of Hmerged

closely correspond to the first and second level of H25, respectively.

The second level of Hmerged, reveals, however, an additional scale that

is missing from H25 and H500; the last and first two communities

(along the diagonal), which are detected at the first level, form one

mega community while the other two communities are merged into a

second mega community. This topology recapitulates the picks of a

regulatory mark (shown as a vertical track next to Hmerged in Figure

4c), which is associated with a high transcription activity (the

H3K27Ac histone mark). The first mega community corresponds to

H3K27Ac picks while the second matches a flat profile. This parti-

tion, which is missing from the separate HBMs, further illustrates the

advantage of a merged view of multiple scales.

4 Outlook

Since the introduction of the 3C technique in 2002 (Dekker et al.,

2002), various high-throughput derivatives have been developed.

Given the latest enhancements in resolution (kb and sub-kb) (Hsieh

et al., 2015; Rao et al., 2014; Sexton et al., 2012) and signal-to-

noise ratio (Kalhor et al., 2012a,b), as well as the on-going reduc-

tion in sequencing costs, HiT-3C techniques are expected to become

even more widely used for studying the 3D genome organization.

Recent single-cell protocols (Nagano et al., 2013, 2015) also hold

the promise to extend the conventional population-based analysis to

the single cell level. Integrating these noisy, big and high-dimen-

sional data across resolutions, sub-populations and with other

Omics, pose challenges that are not yet addressed.

The HBM representation summarizes the topological features of

chromosomal contact maps. This summary is useful not only for gain-

ing biological insights into genome topology, but importantly as a

data structure that can facilitate data integration. Putting together

HiT-3C HBMs can be performed across resolutions (as demonstrated

above) but also across sub-populations. If we consider n contact maps

of n sub-populations, their HBMs give a means to compare the topol-

ogies which characterize each sub-population and allow to create an

ensemble which captures the variance in the global population. This

can be achieved using a simple voting algorithm, where each HBM

‘votes’ for the communities which comprise it. In this way, one can

identify the communities which dominate the population. In addition,

simple HBM statistics (e.g., mean and variance) can give insights

about the importance of the relative positioning of genes and do-

mains. Beyond the challenge of integrating different 3C datasets, a

key problem is how to relate Omics and 3C information (i.e., at what

resolution?). Merged HBMs allow to identify the spatial scales and

topologies which are relevant for a given Omic of interest and to bet-

ter link structure and function (see Section 3).

The algorithmic framework presented in this paper can be used

as a foundation for analyzing multi-omic data, while considering

both their sequence and 3D contexts. Since analysis can be carried

independently for each scale, HBMs also lend themselves to parallel

computations which is advantageous for big data. Finally, HBMs

could complement genome Google-like browsers, which are now

starting to emerge (He et al., 2013), since they link information at

different resolutions.
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