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ABSTRACT

Motivation: In the past years, both sequencing and microarray have

been widely used to search for relations between genetic variations

and predisposition to complex pathologies such as diabetes or neuro-

logical disorders. These studies, however, have been able to explain

only a small fraction of disease heritability, possibly because complex

pathologies cannot be referred to few dysfunctional genes, but are

rather heterogeneous and multicausal, as a result of a combination

of rare and common variants possibly impairing multiple regulatory

pathways. Rare variants, though, are difficult to detect, especially

when the effects of causal variants are in different directions, i.e.

with protective and detrimental effects.

Results: Here, we propose ABACUS, an Algorithm based on a

BivAriate CUmulative Statistic to identify single nucleotide polymorph-

isms (SNPs) significantly associated with a disease within predefined

sets of SNPs such as pathways or genomic regions. ABACUS is

robust to the concurrent presence of SNPs with protective and detri-

mental effects and of common and rare variants; moreover, it is

powerful even when few SNPs in the SNP-set are associated with

the phenotype. We assessed ABACUS performance on simulated

and real data and compared it with three state-of-the-art methods.

When ABACUS was applied to type 1 and 2 diabetes data, besides

observing a wide overlap with already known associations, we found a

number of biologically sound pathways, which might shed light on

diabetes mechanism and etiology.

Availability and implementation: ABACUS is available at http://www.

dei.unipd.it/�dicamill/pagine/Software.html.

Contact: barbara.dicamillo@dei.unipd.it

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

In the past few years, the hereditary component of complex

multifactorial diseases has started to be explored through the

novel paradigm of genome-wide association studies (GWASs).

A GWAS searches for patterns of genetic variation, in the form

of single nucleotide polymorphisms (SNPs), between a popula-

tion of affected individuals (cases) and a healthy (control) popu-

lation. Although these studies have successfully identified a

number of significant SNP–disease associations, they were able

to explain only a small fraction of disease heritability (Manolio

et al., 2009). One of the reasons for this lack of success, as al-

ready faced in microarray data analysis (Di Camillo et al., 2012;

Sanavia et al., 2012), is that complex pathologies, such as cancer,

diabetes or neurological disorders, are heterogeneous and multi-

causal, as a result of the alteration of multiple regulatory path-

ways and of the interplay between different genes and the

environment, rather than imputable to a single dysfunctional

gene like monogenic diseases (Moore et al., 2010). Another im-

portant reason is that a combination of rare and common vari-

ants is likely to contribute to the disease (Gibson, 2012). Rare

variants, though, are more difficult to detect than common vari-

ants (Asimit and Zeggini, 2010); in fact, single-marker tests are

not powerful enough when applied in a context of low evidence

of association (relatively low number of subjects carrying the rare

allele) together with the need of correction for multiple testing

(Dudoit et al., 2003).

Several alternatives to single marker tests have been proposed

in the literature to detect rare variants. Multiple marker methods

test the association of a group of variants, e.g. SNPs within the

same gene or pathway, to the disease. In this context, a widely

applied approach is to test for the significance of accumulation of

rare alleles within a phenotype, across a group of SNPs. Briefly,

for each subject, SNPs in the same group are collapsed to an

indicator variable summarizing either the proportion of rare vari-

ants that carry at least one minor allele or the presence/absence

of at least one rare variant (Li and Leal, 2008; Madsen

and Browing, 2009; Morgenthaler and Thilly, 2007). These

approaches, known as collapsing methods or burden tests,

loose power when a portion of SNPs increases the risk of disease

and the remaining portion is protective. Multi-marker

approaches alternative to burden tests include the Hotelling

two samples T2 test (Fan and Knapp, 2003), the Zglobal statistic

(Schaid et al., 2005) and the weighted score test proposed by

Wang and Elston (2007). The Hotelling two samples T2 test is

a generalization of the Student’s t-test, whose degrees of freedom

increase with the number of SNPs being simultaneously tested,

thus losing power with the SNP-set size. The Zglobal statistic

and the weighted score test have only one degree of freedom;

however, using these methods implies to know the risk allele at

each variant and, as for burden tests, power is affected by the

relative proportions of SNPs increasing and decreasing the risk

of disease.
Alternatives, whose power does not depend on the SNP-set

size and that do not make any assumption on the direction of the

SNP effect (i.e. on the protective or detrimental effect of the

variants on the phenotype), are the methods based on genotype

similarity between individual in the same group, such as*To whom correspondence should be addressed.
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multivariate distance matrix regression (Wessel et al., 2006) and
kernel-based association tests (KBAT) (Mukhopadhyay et al.,
2010). In particular, multivariate distance matrix regression has

been shown to be more powerful for sets of correlated SNPs,
whereas KBAT well handles both correlated and uncorrelated
SNPs (Morris and Zeggini, 2010). In general, these latter meth-

ods based on genotype similarity between individuals are robust
to the direction of genotype risk. However, they have been re-
ported to lose power when higher minor allele frequency (MAF)

SNPs are included in the SNP-set or when many SNPs are jointly
analyzed and only few of them are associated with the disease,
probably due to the relative low number of subjects compared

with the number of possible combinations of rare variants
(Asimit and Zeggini, 2010; Zeggini and Asimit, 2011).
Recently, an optimal unified approach for rare variant associ-

ation testing has been proposed by Lee et al. (2012); the method,
called SKAT-O, combines burden tests with a sequence kernel
association test.

Because in general, a combination of rare and common vari-
ants influencing the genotype with a protective or detrimental
effect is likely to contribute to the disease, an ideal method

should be robust to different MAF, to different direction of
genotype effects and to the number of associated SNPs within
the SNP-set being analyzed. Moreover, it is desirable to gain

some knowledge on the specific SNPs associated with the disease.
In fact, multi-marker and cumulative test methods assess the
association of a group of markers, but do not distinguish be-

tween associated and not associated markers within the group.
Here, we propose ABACUS, an Algorithm based on a

BivAriate Cumulative Statistic designed to analyze SNPs with

different MAF in the same group, independently on the protect-
ive or causative effect of the minor frequency allele.
Being based on a bivariate statistic, ABACUS, differently

from other methods, performs multiple tests on each SNP,
namely, equal to the number of SNPs in the SNP-set minus 1.
This provides multiple evidence of associations and allows

increasing the sensitivity with respect to other methods, such as
methods based on genotype similarity between individuals in the
same group and sequence kernel association tests, which instead

calculate a cumulative SNP-set statistic to associate SNP-sets to
phenotype. Moreover, the bivariate statistic used by ABACUS is
independent on the minor allele being protective or causative to

the disease, which makes ABACUS advantageous with respect to
burden tests. Relying just on a bivariate statistic, though, would
be type 1 error prone because of the number of performed tests.

Thus, to control type I error, ABACUS implements a Bonferroni
correction within each SNP-set together with a graph-theoretic
approach to identify groups of significant SNPs.

Applied to a whole SNP dataset, ABACUS gives as output a
list of SNP-sets associated with the disease and, for each SNP-
set, the list of significant SNPs.
ABACUS, like other methods, first requires the definition of

the SNP-sets, such as pathways, genes or genomic regions encod-
ing a priori information on the potential point effects of the
SNPs in each subset. We consider biological pathways as the

preferred definition of SNP-sets, as studying the cumulative vari-
ation of SNPs mapping on genes in the same pathway (interact-
ing genes) might fill in part the missing heritability and guide

mechanistic studies helping uncovering the underlying disease

pathways (Barrett et al., 2009). Moreover, ABACUS is particu-
larly suited for pathway analysis, given its ability of simultan-
eously considering common and rare variants and different

direction of genotype effects.
In the following, we introduce ABACUS and assess its per-

formance in comparison with other methods on a number of

simulated datasets with known genotype–phenotype associ-
ations. To better appreciate the various facets of the method

and assess it also on real data, we illustrate ABACUS application
to the Wellcome Trust Case Control Study on type 1 and 2 dia-

betes (The Wellcome Trust Case Control Consortium, 2007).
Results show how ABACUS is able to select a number of
SNPs and genes associated to diabetes, previously identified

either by the WTCCC consortium or in different T1D and
T2D GWAS, showing high sensitivity in detecting both

common and rare variants. Moreover, ABACUS identifies new
biologically sound associations with diabetes, involving genes
associated with focal adhesion, platelet homeostasis, inositol

phosphate metabolism and glutathione metabolism for type 1
diabetes and tryptophan metabolism and lipid homeostasis for

type 2 diabetes.

2 METHODS

ABACUS exploits (i) a bivariate statistic, from now on called S2, calcu-

lated for each pair of SNPs within the SNP-set and (ii) an aggregated

score measuring the cumulative evidence of genetic–phenotypic associ-

ation of the SNPs annotated in the SNP-set. We first introduce the stat-

istic S2 and then describe the ABACUS algorithm.

2.1 Computing the statistic S2 for a pair of SNPs

The genotype of a pair of SNPs i and j with alleles A,a and B,b, respect-

ively, has nine possible configurations: AABB, AABb, AAbb, AaBB,

AaBb, Aabb, aaBB, aaBb and aabb. The main building block of a

SNP pair-based analysis is thus a 2� 9 contingency table, reporting the

frequencies of the number of genotypes in the case and control condi-

tions. In Table 1, fcg are the frequencies of the number of cases (c¼ 1) and

controls (c¼ 2) with genotype g (g¼ 1, .., 9), i.e. the counts of the different

genotypes, divided by the number of samples in cases (N1) and controls

(N2), respectively. Thus, in the hypothesis of no association between the

pair of SNPs and the disease, f1gffi f2g (8g¼ 1, .., 9).

To test this hypothesis we exploit the concept of entropy (Shannon and

Weaver, 1963) and define a statistic S2, obtained by calculating, for each

genotype g, the relative weighted difference between the expected and the

observed entropy and summing it across the nine genotypes:

S2 i, jð Þ ¼
X9
g¼1

H0 �Hg

H0

� �
� Fg ð1Þ

where: Fg is the proportion of the genotype g in the entire dataset, i.e.

Fg¼(f1g�N1þ f2g�N2)/(N1þN2); Hg is the entropy of genotype g in the two

populations of cases and controls, computed as follows:

Hg ¼ �
f1g
Fg
� log2

f1g
Fg

� �
�
f2g
Fg
� log2

f2g
Fg

� �
ð2Þ

and H0 is the maximum entropy value, occurring when f1g¼ f2g; i.e. in a

two classes problem H0¼ 1. Genotypes with frequency 0 have Hg¼ 0,

according to the entropy definition.

It has to be noted that a small difference, e.g. of one single subject, in

the number of cases with genotype g with respect to the controls implies

either a large or a negligible difference between f1g and f2g depending on g

being rare or common, respectively. As a consequence, Hg will be much
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lower than H0 in the first case, thus contributing to increase S2(i, j), and

almost equal to H0 in the second, thus giving almost no contribution to

S2(i, j). In general, this is a desirable property forHg and, with a number

of subjects tending to the whole population, unbiased. However, in prac-

tice, the number of subjects is limited to the observed sample; thus rare

genotypes counts, limited to some units, can give an inaccurate estimate

of f1g and f2g. In Equation 1, the relative difference between the observed

entropy Hg and its maximum value H0 is thus weighted by Fg, to correct

for possible biases introduced by genotypes with different frequencies.

The higher is S2, the higher is the confidence that the two SNPs are

associated with the phenotype. The distribution of S2 under the null hy-

pothesis is obtained by repeatedly shuffling at random subject labels from

cases and controls and considering the distribution of all test statistics, i.e.

for all the SNP pairs (i, j).

A statistic S1 analogous to S2 can also be defined for a single SNP i,

using a 2� 3 contingency table. S1(i) represents the strength of the asso-

ciation between locus i and the phenotype; the difference �S2(i, j) be-

tween S2(i, j) and max {S1(i), S1(j)} can thus be interpreted as the fraction

of association between genotype and phenotype that is explained by the

joint effect of the two SNPs and that cannot be explained by a single gene

model. In other words, the value of the statistic S2(i, j) is enhanced by the

strength of association of the two single SNPs i and j and by their possible

epistatic interaction.

2.2 The ABACUS algorithm

Given a number of SNPs annotated in different SNP-sets, with possible

overlaps, ABACUS analyzes each SNP-set independently and, for each

SNP-set, selects the best subset of SNPs jointly associated with the pheno-

type. A SNP-set is considered significantly associated with the phenotype

if it contains at least one SNP significantly associated with it.

In details, given P SNPs belonging to a given SNP-set, ABACUS

selects significantly associated SNPs based on the following steps

(Fig. 1 illustrates the algorithm with a graphical example).

(1) S2(i, j) is computed for each pair of SNPs (i, j) in the SNP-set

(2) For each SNP i, MS(i)¼median {S2(i, j); j¼ 1, ..,P} is computed.

(3) The confidence thresholds � for S2(i, j) are fixed corresponding to a

significance level � (corrected for the number of tests P�(P-1)/2

using Bonferroni correction).

(4) An undirected graph G¼ (V, E) with vertices V¼ {1, ..,P} and

edges E¼ {(i, j); i, j 2 V j S2(i, j)4�} is defined (Fig. 1b).

(5) While the edge set E 6¼ Ø:

- The SNP iw with the highest MS(i) is picked and, if there is at

least one edge (iw, j) 2 E, iw is considered associated with the

phenotype, with score MS(i) (Fig. 1c and e).

- All edges (iw, j) are removed from E (Fig. 1d and f).

The first step of the algorithm is to compute S2(i, j) for each pair of SNPs

in the gene set. The higher the risk carried by i and/or j, the higher S2(i, j)

is expected to be. In general, if i is not associated with the phenotype,

S2(i, j) will be above the threshold � only if j is associated with the

phenotype or in case of a false positive. On the other hand, if i is asso-

ciated with the phenotype, S2(i, j) is likely to be above �, with increased

value in case also j is associated, with single or joint effect on the pheno-

type. However, relying just on S2(i, j) to directly measure the association

between the pair (i, j) and the phenotype is type 1 error prone, both

because every SNP i is tested P�(P-1)/2 times and because S2(i, j) is

likely to pass the threshold � even if just one of the two SNPs (i or j) is

associated with the phenotype. For these reasons, ABACUS implements

a Bonferroni correction within each SNP-set (� is corrected for the

number of tests P�(P-1)/2) together with an iterative graph-pruning strat-

egy to identify groups of significant SNPs. More in details, ABACUS

ranks the SNPs within a SNP-set based on the median value MS(i) of the

statistic S2(i, j) across the values observed for each pair (i, j), j¼ 1, . . . , i-1,

iþ 1, . . . ,P, rather than on the statistic itself. Because the median value

MS(i) of the statistic S2(i, j) is based on multiple evidences of association

of SNP i with the phenotype, it is a precise and sensitive statistic to select

significant SNPs, as shown in Section 3. The median was preferred with

respect to the average or maximum value based on empirical observation

of the results on a number of different simulations (data not shown).

A null hypothesis can be derived also for MS(i) and, in principle, the

algorithm could stop at step 2. The rationale of steps 3–5 of the algorithm

is to further improve ABACUS precision limiting the loss of sensitivity,

by separating the confounding effect that strongly associated SNPs might

exert on the value MS(�) of non-associated SNPs.

For example, referring to Figure 1, if SNP 1 is associated with the

phenotype but 4 is not, S2(1, 4) will likely be above the threshold � and

MS(1) will likely be greater than MS(4), thus 1 will be analyzed before 4,

associated with the phenotype and removed from V (Fig. 1c and d).

When 4 will then be analyzed, the edge (1, 4) will have already been

removed from E and so all the edges (4, j), with MS(j)4MS(4)

(Fig. 1f). Node 2, on the other hand, if analyzed after node 1 and 4,

has another incident edge after the removal of node 1, so it will be

selected.

ABACUS outputs the list of SNP-sets associated with the phenotype

and, for each SNP-set, the list of SNPs iw associated with the phonotype

and their score MS(iw), which can be used to rank the SNPs in the SNP-

set based on the strength of confidence of association with the disease.

Because ABACUS implements a Bonferroni correction within each SNP-

set followed by the graph pruning strategy described earlier in the text,

the familywise error rate, i.e. the probability of making at least one false

SNP-phenotype association within the SNP-set, is controlled at a

(a) (b) (c)

(d) (e) (f)

Fig. 1. Example of ABACUS working on a simple set of four SNPs (a)

Definition of a fully connected undirected graph G¼ (V,E); (b) only edges

(i, j) with S2(i, j)4� are kept in the graph; (c) the SNP with highest MS(i)

is picked (in gray in the figure) and, if it has at least one incident edge

(dashed lines in the figure), it is considered associated with the phenotype;

(d) then its edges are removed from the graph; (e and f) iteration of step 5

on SNP 2

Table 1. Contingency table for case/control joint analysis of a pair

of SNPs

Group/

Genotype

AABB AABb AAbb AaBB AaBb Aabb aaBB aaBb aabb �

Cases f11 f12 f13 f14 f15 f16 f17 f18 f19 �f1g¼ 1

Controls f21 f22 f23 f24 f25 f26 f27 f28 f29 �f2g¼ 1
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probability equal or lower than the chosen significance level � (see

Section 3). Thus, when different SNP-sets (let us suppose statistically

independent for the sake of simplicity) are analyzed, we expect a

number of false positive SNP-sets equal to � multiplied by the number

of SNP-sets that are truly non-associated with the phenotype (at max-

imum the number of analyzed SNP-sets). For example, if �¼ 0.05 and

100 SNP-sets are analyzed, we expect a number of false positive associ-

ations �5. ABACUS does not correct automatically by the number of

SNP-sets being analyzed but leaves the user to set the appropriate sig-

nificance level �.

Steps 1–5 of the algorithm have computational complexity O(N�P2),

O(P2�logP), O(1), O(P2), O(P�logP), respectively; thus, analyzing one

SNP-set has computational complexity O(P2�(NþlogP), with N being

the number of subjects and P the number of SNPs.

ABACUS software is built as an R package with the most computa-

tionally demanding functions written in C; it is released under the GNU

general public license and is available at http://www.dei.unipd.it/

�dicamill/pagine/Software.html.

2.3 Type I error simulations

To investigate whether ABACUS attains to the desired type I error rate

at low significance levels, e.g. �¼ 10�6, it is necessary to conduct simu-

lations with hundreds of millions of simulated datasets. To do that while

diminishing the computational burden produced by simulating and ana-

lyzing such an amount of data, we generated 10 datasets of 4000 subjects

and 200000 SNPs and, for each dataset, we repeatedly (100 times)

sampled 10 000 SNP-sets of 20 SNPs each, for a total of 107 simulated

SNP-sets. For each SNP, the MAF was randomly sampled from a uni-

form distribution ranging from 0.01 to 50%. Linkage disequilibrium

(LD) was simulated as described in Yuan et al. (2011) starting from an

initial population with high LD level, and then decaying to the desired

level through the processes of mating and recombination over gener-

ations. The case population under the null hypothesis was generated by

randomly picking 2000 subjects from the initial population of 4000.

2.4 Type II error simulations

To assess ABACUS power to detect true positives on a benchmark with

known genotype–phenotype associations under different conditions, such

as different number of SNPs associated with the disease, different MAF

and LD patterns across variants, we run a number of different simula-

tions. In particular, we generated 100 datasets of 4000 subjects and 20 000

SNPs and for each dataset, we sampled 1000 SNP-sets of 20 SNPs each,

for a total of 105 simulated SNP-sets. The LD was simulated as described

in the previous paragraph. Each SNP-set had a number of SNPs ran-

domly associated with the disease equal to 1, 2, 3, 4, 6, 8 or 10. The

assignment was done having care to produce SNP-sets at low and high

MAF, in LD and not, to being able to assess methods performance under

different conditions.

After having assigned a phenotype label to each subject (e.g. half con-

trols and half cases), for each associated SNP allele frequencies were

distributed in cases according to 10 different models, including single-

locus and two-locus interactions, and to different odds ratio sampled in

the range 1.4–3. In particular, the model set included single-locus reces-

sive, dominant, additive and multiplicative models and six two-locus

models (Fig. 2), where the risk genotypes were all assumed to carry the

same risk. All the details on how we assigned allele frequencies accord-

ingly to the different models are given in the Supplementary Material.

2.5 Real data

As a proof of concept, we applied ABACUS on the WTCCC case-control

study on T1D and T2D (The Wellcome Trust Case Control Consortium,

2007). The study examined �2000 T1D cases, 2000 T2D cases and 3000

healthy controls. Each subject was genotyped on the Affymetrix

GeneChip 500K Mapping Array Set. We excluded a small number of

subjects according to the sample exclusion lists provided by the WTCCC.

In addition, we excluded a SNP if (i) it is on the SNP exclusion list

provided by the WTCCC and (ii) it has a poor cluster plot as defined

by the WTCCC. The resulting dataset consists of 458376 SNPs, measured

for 1963 T1D cases, 1924 T2D cases and 2938 controls.

We mapped SNPs to genes using Affymetrix SNP Array 500K anno-

tation (http://www.affymetrix.com). SNPs annotated as 30 and 50 untran-

slatable region, coding sequences, intron, upstream and downstream were

all associated to the corresponding gene. Multiple SNP–gene associations

were allowed. We mapped genes to pathways using the Molecular

Signatures Database, mSigDB (Subramanian et al., 2005) and exploited

the curated SNP-sets derived from the REACTOME and KEGG path-

way databases (Kanehisa and Goto, 2000; Matthews et al., 2009). SNPs

that did not map to any pathway due to lack of annotation were mapped

on 22 pseudo-pathways corresponding to the different chromosomes.

2.6 Implementation of KBAT and SKAT-O

We compared ABACUS with KBAT and SKAT-O. We chose KBAT

because it has been reported to outperform other methods under different

disease–SNP association models and assumptions (Asimit and Zeggini,

2010; Mukhopadhyay et al., 2010) and SKAT-O because it optimally

combines a burden test with a kernel method and is one of the latest

proposed approaches by Lee et al. (2012).

We run SKAT-O in R using the package SKAT using the optimal

adjustment method, optimally compromising between a burden test and

the original SKAT algorithm (Wu et al., 2011). The SKAT function in R

allows setting two parameters a1 and a2, to balance between the weights

of rare and more common variants in determining the SNP-set P-value

(see Wu et al., 2011 for more details on these parameters). We run SKAT-

O using both the default parameters setting, a1¼1 and a2¼25, which

weights more the rare variants, and an alternative parameters setting,

a1 ¼ 25 and a2 ¼ 1, which weights more the common variants, so to

explore both conditions. All the other parameters were set to their

default.

We implemented KBAT with the allele match kernel (AM) as ex-

plained in Mukhopadhyay et al. (2010), as this is the only kernel that

does not require knowledge of the risk allele of each SNP.

3 RESULTS

3.1 Ability to control the type I error rate

To investigate whether ABACUS attains to the desired type I

error rate at low significance levels, we simulated 107 SNP-sets

Fig. 2. The six two-locus models implemented in the simulation. The

combinations of the two SNPs genotypes that carry higher risk of disease

are marked with symbol 1
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under the null hypothesis as explained in Section 2.3. Results are

shown in Table 2 and suggest that ABACUS is able to control the

type I error rate for SNP-set association in a slightly conservative

way, probably due to the implementation of the Bonferroni cor-

rection on the statistic S2 within each SNP-set, followed by the

graph pruning strategy. However, despite being slightly conserva-

tive, ABACUSmaintains good power comparedwith the state-of-

the-art methods, as shown later in the text (Section 3.2).
Because ABACUS outputs both the SNP-sets associated to

the phenotype and the SNPs within the SNP-sets that contribu-

ted to the association, it is of interest to comment also on the

false-positive rate for single SNP association. In this regard, it

must be noted that ABACUS selects a SNP-set as associated to

the phenotype if at least one SNP in the SNP-set is associated

with the phenotype. As explained in Section 2.2, ABACUS con-

trols the familywise error rate of these associations at the chosen

significance level � within each SNP-set; in other words, the

probability of committing at least one false-positive single SNP

association within each SNP-set is equal to �. In a dataset with K

SNP-sets (let us suppose SNP-sets are statistically independent

for the sake of simplicity), the expected percentage of false-posi-

tive single SNP associations is thus equal to � multiplied by K,

divided by the total number of SNPs being analyzed. In our

simulations, this corresponds to � divided by 20. Consistently,

the empirical type I error rate observed for single SNP associ-

ation (Table 2, second row) takes a value close to the type I error

rate observed for SNP-set association divided by 20.

3.2 Comparison with KBAT and SKAT-O

One hundred simulated datasets were used to evaluate ABACUS

performance under different scenarios; namely, different MAF,

different numbers of associated SNPs and presence/absence of

LD within the SNP-set being analyzed, in comparison with

KBAT and SKAT-O. Each dataset consists of 1000 SNP-sets,

thus the false-positive rate was controlled at a significance level �
equal to 0.005. Because KBAT and SKAT-O give their output in

terms of significance of association of the SNP-set with the dis-

ease, to compare the different methods we used the recall,

defined as the number of true positive SNP-sets divided by the

number of SNP-sets truly associated with the disease.
Figure 3 shows the results averaged across the 100 simulated

datasets, for low MAF, i.e.� 0.1 (left panels), and high MAF,

i.e.40.1 (right panels), under single- and multi-locus association

models, with associated SNPs in LD (upper panels) or not (lower

panels).

As for the other methods, ABACUS performance is robust to

different correlation among SNPs and improves with the number

of SNPs associated with the disease. A one side Wilcoxon signed

ranks test corrected for multiple testing was used to test if

ABACUS significantly outperforms other methods (�¼ 0.05).

Results are shown in Figure 3, where colored star symbols indi-

cate statistically significant differences between ABACUS and

the other tests. Because SKAT-O performance depends on the

parameters a1 and a2 and, as evident from Figure 3, there is not a

unique parameter setting working well for both rare and

common variants, we compared ABACUS with the best per-

forming setting of SKAT-O. Results indicate that ABACUS out-

performs all other methods in terms of ability to detect true

associations when few SNPs in the SNP-set are associated with

the phenotype. From Figure 3, it appears also evident that

ABACUS and KBAT are robust to different MAFs, with

ABACUS improving its performance at high MAFs.

The sensitivity of ABACUS in detecting rare variants even

when few SNPs are associated to the phenotype derives from

the use of a pairwise statistic S2 [Equations (1) and (2)]. In

fact, differently from other methods, which assign a score and

the corresponding P-value to the SNP-set being analyzed,

ABACUS assigns a score to each pair of SNPs, which increases

with (i) the strength of association, (ii) the number of SNPs

associated to the disease and (iii) possible epistatic interactions

between SNPs. For example, let us consider a SNP-set of 10

SNPs. In the worst-case scenario, i.e. the most difficult to

detect, just 1 SNP, say k, is associated to the phenotype within

the SNP-set. In this case, ABACUS computes 45¼ 10*9/2

observed values of S2, of which 9 involve k. Even in case k cor-

responds to a rare variant, there is a reasonable chance that at

least 1 of the 9 values of S2(k, j) (j¼1, . . . , 10, j6¼k) passes the

threshold � (step 4 of the algorithm). In case 2 of 10 SNPs are

associated with the phenotype, 16 statistics S2 will involve one of

Fig. 3. Recall of different methods in detecting associated SNP-sets.

Average recall across 100 simulated datasets is shown at low (left

panels) and high (right panels) MAF, for SNPs in LD (upper panels)

and not in LD (lower panels), as a function of the number of SNPs

associated to the phenotype in the SNP-set. Colored star symbols indicate

statistically significant differences between ABACUS and the other tests

Table 2. Estimated type I error rates at different significance levels �, for

both SNP-set and single SNP association

� 5�10�2 5�10�3 5�10�4 5�10�5

SNP-set 1.6�10�2 1.2�10�3 1.1�10�4 0.9�10�5

Single SNP 8.3�10�4 5.6�10�5 5.2�10�6 4.3�10�7
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the SNPs associated with the phenotype and 1 statistic will in-

volve both, thus improving the chance that at least 1 statistic

passes the threshold �. Moreover, if an epistatic interaction be-

tween the two associated SNPs exists, the statistic S2 between

them will further increase its value. Obviously, the power

of ABACUS keeps increasing with the number of associated

SNPs.

3.3 Application to T1D and T2D data

On T1D ABACUS identified 864 SNP associations, correspond-

ing to 153 genes and 267 SNP-sets; on T2D ABACUS identified

75 SNP associations, corresponding to 45 genes and 67 SNP-sets.

The MAF distribution of the SNPs identified by ABACUS as

associated with T1D and T2D covers the entire range 0.01–0.5

for both datasets (Fig. 4). Redundancy among SNP-sets is obvi-

ously observed, as a gene may function in multiple ways and thus

may appear multiple times in functional SNP-sets and SNPs

can be mapped to multiple genes. In Supplementary Material

‘PATH_tables’ non-redundant pathways associated with T1D

and T2D, i.e. pathways whose selected SNPs were not entirely

included in other pathways, are shown, together with the number

of selected SNPs and the corresponding genes. The complete lists

of associated SNPs and relative information (SNP ID, chromo-

some, cytoband, MAF, odds ratio and Affymetrix Annotation)

are available as Supplementary Materials (RES_T1D.txt and

RES_T2D.txt).
As regards T1D, all pathways including genes from the

human leukocyte antigen (HLA) region of chromosome 6

(6p22.2� 6p21.32) received high ranking and had 758 SNPs

associated among the 864 selected. This was to be expected, as

HLA is one of the most recognized regions of interest for T1D

(Barrett et al., 2009) and HLA genes, playing a central role in the

human immune system, are known vulnerabilities to autoim-

mune diseases (Altmann and Trowsdale, 1989; Seliger, 2012).

Pathways from 1 to 9 and from 16 to 23 in Supplementary

Material PATH_tables refer to region 6p22.2� 6p21.32.
For both type 1 and type 2 diabetes, ABACUS was able to

detect SNPs/genes previously identified in the WTCCC study,

plus numerous additional SNPs/genes identified in different

T1D and T2D GWAS. In particular, 90% of the SNPs selected

by ABACUS were already associated or map in regions of the

genome previously associated with diabetes, metabolic traits,

LDL cholesterol, body mass index, fasting glucose-related traits

and glycated hemoglobin levels. These terms and the related SNP

associations were retrieved from the database HuGE Navigator

(Wei et al., 2011), searching for human genetic associations with

the term ‘diabetes’ http://hugenavigator.net/HuGENavigator/

gWAHitStartPage.do.
The 10% remaining SNPs map on genes and pathways that

are biologically sound. We briefly list and comment these path-

ways in the following.

� ‘Focal Adhesion’ is crucial for glucose-stimulated insulin

secretion (Rondas et al., 2011);

� ‘Platelet homeostasis’ is central in T1D, as platelet hyper-

activity and abnormal Ca(2þ) homeostasis in diabetes mel-

litus are known (Li et al., 2001);

� ‘GPCR downstream signaling’ and, in particular, the gene

adenylyl cyclase 8 are central to glucagon-like peptide 1

signaling (Roger et al., 2011);

� ‘Apoptosis’ and ‘IL receptor SHC signaling’ might be of

great interest, as apoptosis is involved in T1D beta-cells

death and IL3RA is reported to be highly expressed in

beta cells in human (source: http://www.t1dbase.org/);

� ‘Inositol phosphate metabolism’ and, in particular, pyro-

phosphates have been reported to inhibit Akt signaling

and thus insulin sensitivity (Chakraborty et al., 2010);

� ‘Glutathione metabolism’ has been reported to be altered in

adolescents with type 1 diabetes (Darmaun et al., 2008);

� ‘Huntigton disease’ has been controversely associated with

increased risk of T1D. Interestingly, the two genes we have

found in association with this pathway might be of interest,

as (i) the brain-derived neurotrophic factor has been shown

to exert an important role during implantation, placental

development and fetal growth and to have low expression

when fetal macrosomia is associated with maternal type 1

diabetes (Mayeur et al., 2010) and (ii) the nuclear respiratory

factor-1 (NRF-1) enhances the promoter activity of mito-

chondrial transcription factor A (a key regulator of mito-

chondrial DNA transcription and replication) at high

glucose levels. (Choi et al., 2004);

� ‘Tryptophan metabolism’ has been previously associated

with T2D, as tryptophan levels are low in type 2 diabetic

patients, and interestingly, also in gestational diabetic

women;
Fig. 4. MAF distribution. MAF distribution of the SNPs identified by

ABACUS as associated with T1D (upper panel) and T2D (lower panel)
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� ‘COPI-mediated transport’ might be of interest, as Coat

protein complex, or COPI complex is a regulator of lipid

homeostasis (Beller et al., 2008).

It is interesting to note that, for each of the pathways

listed above, which refer to regions not previously associated

with diabetes, only few SNPs (from 1 to 6) were associated to

the phenotype, possibly confirming the sensitivity of ABACUS

when few markers in the SNP-set are associated with the

phenotype.

Overall, the aforementioned results provide proof of the prin-

ciple that ABACUS is a powerful tool to identify genotype–

phenotype associations within predefined sets of functionally

related genes, thus confirming the good sensitivity observed on

simulated data. Moreover, the application of ABACUS to bio-

logical pathways gives an implicit functional characterization of

trait-associated loci.

4 DISCUSSION

In this work, we have presented ABACUS, a method for iden-

tifying genotype–phenotype associations within predefined sets

of SNPs in GWAS studies. ABACUS is based on the concept of

entropy, which allows measuring the variation in the information

content of genotype frequencies in cases versus controls. In par-

ticular, ABACUS selects the SNPs associated with the phenotype

within a SNP-set based on the median value MS(i) of the

bivariate statistic S2(i, j) [(Equations. (1) and (2)], this latter

measuring the joint effect of SNPs i and j on the phenotype.

It is important to note that the magnitude of MS(i) is SNP-set

dependent, its value being enhanced by the presence of

different SNPs associated to the phenotype in the SNP-set and

by possible epistatic associations between them. However,

MS(i) does not depend on the number of SNPs being

analyzed in the SNP-set; for example, for the WTCCC T1D

and T2D datasets, the Pearson correlation between MS(i) and

the number of SNPs in the SNP-set is �0.011 and 0.038,

respectively.

The rationale of the iterative graph pruning strategy per-

formed at steps 3–5 of the algorithm is to account for the con-

founding effect that strongly associated SNPs would have on the

statistic MS(i) of the other SNPs in the SNP-set. Steps 3–5 of

the algorithm result in a significant improvement in terms of

precision in the detection of single SNP associations (number

of true positive SNPs divided by the number of selected SNPs),

which rises from an average value of 0.9 to 0.98 across the simu-

lated datasets (Wilcoxon paired test P51� 10�10), without a

loss of recall.

On simulated data ABACUS has been shown to be robust to

different MAF and different correlation among SNPs; moreover,

it is more powerful than other methods in terms of ability to

detect true associations when few SNPs in the SNP-set are asso-

ciated with the phenotype. The robustness of ABACUS to dif-

ferent MAF and its sensitivity when few markers are associated

with the phenotype is confirmed by the use of real data.

Because ABACUS is able to simultaneously consider common

and rare variants and different directions of genotype effect, we

consider pathways as the preferred definition of SNP-sets.

Focusing on multi-locus associations within a set of functionally

related genes might shed light on functional interactions and

might represent an advance in the direction of a systems-level

understanding of gene regulation. Besides observing a wide over-

lap with already known associations, analyzing ABACUS results

we found a number of biologically sound pathways, which might

help generating new hypothesis on diabetes mechanism and

etiology.
ABACUS, here described for a two-class problem, can be

easily extended to more classes. Moreover, with sufficient num-

bers of cases and controls or focusing on a genomic region

known to be rich of possible interactions, ABACUS can be ex-

tended to analyze the joint effect of three or more variables.
In its present form, ABACUS does not output risky combin-

ations of alleles of the output SNPs. However, this can be easily

derived from ABACUS output using standard methods and

tools such as the logistic regression implemented in PLINK

(Purcell et al., 2007). One of the possible future directions is to

study the combinatorial problem of finding the best partition of

susceptibility SNPs in sets of one, two, . . . , k variables, each set

with a joint effect on the disease.
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