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ABSTRACT

Motivation: Annotation of operons in a bacterial genome is an
important step in determining an organism’s transcriptional regulat-
ory program. While extensive studies of operon structure have been
carried out in a few species such as Escherichia coli, fewer resources
exist to inform operon prediction in newly sequenced genomes. In
particular, many extant operon finders require a large body of training
examples to learn the properties of operons in the target organism.
For newly sequenced genomes, such examples are generally not
available; moreover, a model of operons trained on one species may
not reflect the properties of other, distantly related organisms. We
encountered these issues in the course of predicting operons in the
genome of Bacteroides thetaiotaomicron (B.theta), a common anaer-
obe that is a prominent component of the normal adult human intestinal
microbial community.

Results: We describe an operon predictor designed to work without
extensive training data. We rely on a small set of a priori assump-
tions about the properties of the genome being annotated that permit
estimation of the probability that two adjacent genes lie in a common
operon. Predictions integrate several sources of information, includ-
ing intergenic distance, common functional annotation and a novel
formulation of conserved gene order. We validate our predictor both
on the known operons of E.coli and on the genome of B.theta, using
expression data to evaluate our predictions in the latter.

Availability: The software is available online at http://www.cse.
wustl.edu/~jbuhler/research/operons

Contact: jbuhler@cse.wustl.edu

1 INTRODUCTION

2003a) andBacillus subtilis (De Hoonet al., 2004). In contrast,
new genomes lack a set of validated operons, so predictors that train
organism-specific models cannot easily be applied to them. In such
cases, one may hope that training sets of operons from one spe-
cies might be useful in another. For example, Moreno-Hagelsieb
and Collado-Vides (2002) found that an operon predictor based on
intergenic distances iiE.coli worked equally well when applied

to the known operons oB.subtilis. However, other operon find-

ers trained in one organism have proved less portable when the
target species is not closely related to that used for training. For
example, Romero and Karp (2004) found that a predictor trained on
E.coli performed relatively well for that organism (69% of known
operons correctly predicted) but performed substantially less well
when applied tdB.subtilis (46% of known operons correctly pre-
dicted). Portability of an operon finder may depend on the types and
amount of information used for training, particularly if no expli-

cit effort is made to produce a predictor that is portable across
genomes.

In this work, we seek to perform operon predictiorBacteroides
thetaiotaomicron (B.theta), a prominent yet relatively uncharacter-
ized member of the human intestinal microbiota (Xal., 2003).
Bacteroides is the predominant genus in the normal adult human
distal intestine B.theta was the first member of this genus to have
its genome completely sequenced and assembled, so there were as
yet few well-characterized operons on which to train; moreover,
B.theta is not closely related either to th@ammaproteobacteria
or to the Bacillaceae, so we were wary of applying an operon
finder trained orE.coli or B.subtilis. Instead, we developed a sys-
tem for operon prediction that does not demand a training set of
operons for the genomes of interest. Our predictor reliea pri-

Operons—sets of genes that are co-transcribed into a single polysi assumptions about the properties of operons to convert several
cistronic mRNA sequence—are a fundamental mechanism by whicQl e < f genomic evidence—intergenic distance, common functional

_bacteriaimpl_ement co-expression O_f related genes. dentifying pm_‘"‘%’mnotation and conservation of gene order—into a single probabil-
ive operons is therefore a key step in characterizing gene regulatioyic hrediction. Our system is designed to enable reliable operon
in newly sequenced bacteria. A number of computational methods iction not just inB.theta but generally in bacteria containing
(Salgadat al., 2000; Ermolaevet al., 2001; Bockhorstt al., 2003a; few well-characterized operons.

De Hoonet al., ,2004,) exist for operon prediction. The majority.of The remainder of the paper is organized as follows. After review-
these methods |dent|fy_operons using am_odel inferred from atrammgng related work on operon finding, Section 2 describes the methods
set of known operons in the organism o_f_mterest. . used to implement our predictor. Section 3 assesses the perform-
The need flortraln.lng data limits the utility of most operon predict- ance of our predictor both on its intended tar@&theta, and on the
ors to organisms with many experimentally characterized operongyear_characterize.coli strain K12. FoiE.coli, we can assess the
such asEscherichia coli (Salgadoet al., 2000; Bockhorset al., performance of our software against the large set of known operons
in the RegulonDB database (Salgagdal., 2004). ForB.theta, we
validate our predictor by comparing its predictions to observations
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from DNA microarray-based expression studies. Finally, Section 4e a special case of an operon. Although most definitions of operons include

concludes and identifies opportunities for future work. regulatory elements, our predictions focus only on determining which sets of
genes are co-transcribed.
1.1 Relation to previouswork The inputs to our operon predictor ardamget genome, with annotated

The design of our software is informed by previous operon finders b)gene locations and putative functional annotations for each gene, along with
Salgadaet al. (2000); Moreno-Hagelsieb and Collado-Vides (2002): a set ofinformant genomes (e.g. those available from GenBank) and their

] respective gene locations and functional annotations. Given this information,
Bockhorstet al. (2003a); Ermolaevet al. (2001) and TIGR (2004). we construct aoperon map for the target genome that predicts, for each pair

Salgado’s predictor, trained dhcoli, predicts operons on the basis o agjacent genes in the target, whether the pair belongs to the same operon.
of intergenic distance and manual functional classification of genes. Because genes on opposite strands of a genome cannot belong to the same
The measured distributions of intergenic distance for pairs of adjaceriperon, we limit prediction to contiguous genes on the same strand with
genes known to be in operons and for pairs knawh to be in no intervening gene on the opposite strand. We will refer to such runs of
operons are used to produce a log-likelihood ratio test for whethegame-stranded genesdigectons (Salgadeet al., 2000).

two adjacent genes are in a common operon. Genes with both t
right intergenic distance and a common functional classification are”
considered most likely to be in a common operon. Once trained, thi¥ve use three data sources to predict whether a pair of adjacentgenesin a direc-

predictor correctly classified 88% of pairs of adjacEmoli genes ton _bel.o ng to th? same operon. d'St"’.mce betw_een the'r.Open readmg_frames,
. g . . . 8 similarity of their functional annotations and interspecies conservation of
fromitstraining set. Our predictor, in common with Salgado’s, makes S ; .
ene clusters containing the two genes. All of these sources of information

use of intergenic distance and common functional information, buEave proven previously to be useful predictors of operon structuFecahi.
itsapriori approach works around both the lack of training examples | g 5 e the event that two adjacent genes in a genome occur on the same
and the lack of an equivalent manual functional classification for thestrand, and lep be the event that the genes are in the same operon. Moreover,
genes oB.theta. let X be a random variable observed for the two genes (e.g. their intergenic

The software of Bockhorsit al. makes predictions based on a distance). We wish to estimate(®er | S,X = x), the probability that two
number of features of adjacent genes, including codon usage statistame-stranded genes belong to the same operon given an observed value
ics, gene expression data, intergenic distance and regulatory featurddy. X. Estimating this probability requires either training. examples, in the
The authors report a predictive accuracy of 78% true positives fofor™ Of gene pairs labeled as to whether or not they are in the same operon,
10% false positives if.coli. A major contribution of this predictor ~ © & Prior assumptions.

is its rigorous procedure for combining multiple types of informa- We apply two key assumptions formulated by Ermolasted. (2001). The
9 P 9 pie typ first assumption regards the priorBr | S) that two same-stranded genes are

tion usmg a Bayesian netwpr_k. We use a Slmpllfled ver_3|on of th'%n a common operon. We assume that the strandedness of each operon is
Bayesian strategy for combining information in our predictor. Othercpgsen uniformly at random, that is, that two adjacent genes not in the same
predictors that combine information sources, such as those of Yadsperon are equally likely to be on the same strand or on opposite strands.
et al. (1999) and Tjadest al. (2002), use a more elaborate HMM- Under this assumption, the probability that a directon contains exactly
based gene model that predicts operons as one of its features. dperonsig1/2)", and the expected number of operons per directon (including
contrast, we assume that genes have already been annotated in #igle-gene ‘operons’) i5_2, i(1/2)" = 2. Hence, if there are on average
target species and focus purely on operon prediction. two operons per direpton, then there is on average one operon poundary per
The predictor of Ermolaewvet al. is perhaps closest in spirit to our directon, and we estimate @ | ) by 1~ (# of directong# of S pairs.
own. It predicts operons with a high degree of confidence based on_ '€ Sécond assumption, which we apply to some but not all data sources,
h . . ermits computation of the posterior(er | S, X = x). We assume that the
the notion that pairs of genes that occur adjacent to one another M tributi o
. . h istribution of the observed statistic is the same for all non-operon gene
multiple organisms grenllkely to be members oft_he same operon. Thﬁairs,whether o not they are on the same strand. Using this assumption,
method has a specificity of 92% on known pairs of adja¢ecli we may estimate RK — x | 0) as P(X = x | 5), the corresponding
genes in a common operon and an estimated sensitivity of 30-50%robability for adjacent gene pairs that occur on opposite strands, since such
on all gene pairs in that genome. We have adapted this predictorisairs are known not to be in a common operon. Given both this and the
probability model, includinga priori assumptions about the distri- preceding assumption, it follows (see Section A.1 in the Appendix) that
bution of operons, to provide a rigorous probabilistic basis for our Pr(X = x | 5)

use of intergenic distance and predicted gene function. However, we POIS X =0 =155 =15 PI(O | S). @

generalize its strategy for using conserved gene order to consider @}y of the terms on the right-hand side can be estimated from the annotated
only pairs of adjacent genes but clusters of several nearby genes. genes of the genome or obtained from the prior.
Finally, we note that not all groups use the same definition of cor- . o

rect or ‘true positive’ detection of a known operon, so that the above?-3 USe of intergenic distance

quoted sensitivity and specificity values are not necessarily compaifhe distance between adjacent genes is a powerful signal for operon pre-

able across studies. We follow the convention of reporting as trugliction (Salgadet al., 2000; Moreno-Hagelsieb and Collado-Vides, 2002).

positives those pairs of adjacent genes that are correctly identified #$nong the many features used to predict operons, Bockkoast (2003a)

being in a common operon. found intergenic distance to be the best single predictor of operdasahi.
Genes belonging to the same operon tend to exhibit small intergenic distance;
indeed, it is not uncommon for the distances between these genesédg-be

2 METHODS ative; i.e., the end of one gene overlaps the start of the next. In contrast,

genes not in the same operon have a more uniform distribution of intergenic

distance.

We define an operon to be a set of one or more genes, occurring contigu- We assume that intergenic distance in non-operon gene pairs is not strongly

ously in a genome, that are transcribed into a single mRNA molecule. Fobiased between genes on the same strand and genes on opposite strands.

mathematical convenience, we consider a single gene transcribed by itself tdsing this assumption, we apply Equation (1) to estimate for each gene

Data sources and the a priori model

2.1 Problem formulation
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1 account for some common features of operons. We relax the criterion
of adjacency by allowing a cluster in two genomes to differ by one or
more missing or inserted genes. Instances of gene insertion and deletion
in actual operons are well known iB.coli and B.subtilis, for example,
the glycogen biosynthesis and degradation operon glgBCDARsibtilis
(Itoh, 2004, http://www.cib.nig.ac.jp/dda/taitoh/bsub.operon.html) is repr-
esented as glgCAP iB.coli (Salgadcet al., 2004). Moreover, we relax the
criterion of orthology by considering matches between genes in which each
gene is not necessarily the other’s best BLAST hit. This criterion allows for
uncertainty about which gene in one genome is orthologous to a given gene
in the other.
Our algorithm for detecting gene clusters comparesatget genome, i.e.
the one whose operons are being annotated, to a séafmnthant genome.
We first divide the target genome into directons, since clusters corresponding
to operons cannot cross directon boundaries. We compare all genes in each
directon to the target genome using NCBI BLASTP (Altsceiudl., 1997)
0 ‘ ‘ ‘ ‘ ‘ and keep all matches with E-values less than or equal to some threshold
0 50 100 150 200 250 These matches indicapessible (though by no means definite) orthologous
intergenic distance x gene pairs between target and informant; in cases of ambiguity, multiple
matches are retained for a single target gene. From these matches, we create
) ) o ) adirected graph containing one node for each BLAST hitand an edge between
Fig. 1. Estimated probability iiB.theta that a gene pair belongs toacommon  g4ch pair of nodes representing two genes on the same strand separated by
operon as a function of its intergenic distance, computed as described ig mosty genes in the informant genome. In the current implementation,
Section 2.3. we follow the practice of Ermolaevet al. (2001) and the TIGR Operon
Finder (TIGR, 2004, http://www.tigr.org/tigr-scripts/operons/operons.cgi) by
) . . - . settingr = 10~° andy = 4. Finally, we enumerate every chain of at least
pair the probability Rt | §,1D = x), wherelD is intergenic distance. This two genes in this graph; every subset of such a chain is a candidate cluster.

probability is plotted as a function of the distance in Figure 1. To reduce nOiS?:igure 2 illustrates a chain of four genes representing a potential conserved
in the observed distribution of intergenic distance, we smooth the distribution

by assigning each observation of a distance between-19and 1@ + 5 to cluster.
. . . . We enumer; hains in the graph for ir n h-fir rch
a bin centered at 0and storing only the size of each bin. e enumerate chains in the graph for a directon by depth-first search,

starting from every node without an incoming edge. In the extreme case
. where each ofz genes in the target directon matches every one @énes
24 Useof functional relatedness in the informant genome, the time complexity for building and searching the

Genes within operons tend to have related functions. Hence, the functiondlraph isO (¥ nm). In practice, however, most genes in the target match few
relatedness of two adjacent genes suggests that they may belong to the safie10 genes in the informant, so that the total time complexity is closer to
operon. However, quantifying the function of a gene is challenging, partic-O (¥m).

ularly in a newly sequenced genome. The best available evidence in such a

genome typically comes from comparative annotation, in particular strongp 6 Significance of clusters

protein-level similarity between a new gene and another gene of known . " . .
function. These annotations are summarized for microbial genomes in G‘erane we have identified all candidate clusters for a directon, we want to use

Bank by one-line textual descriptions in the file of predicted genes included(Or operon prediction only those clusters _tha_t_are unlikely to have_arlsen by
with each genome. A more controlled classification, such as Gene Ontolog?hance alone. We therefore assess the significance of each candidate cluster
(GO) terms or Enzyme Commission (EC) numbers, or amanual classificatioﬁmd Weight its contribution to operon pr(_adiction by its significance. Agai_n,
like that in Neidhardet al. (1996), might be more informative but requires we conS|dera_ny subset quenes_ln_a chain through the graph to be a candidate
substantial labor and has not been done for many genomes of interest. cluster. The size of a typlcal_cham is less than elght genes, so the number of
As a surrogate statistic for functional relatedness of two genes, we uséijsetS conS|dered_ pe_r_chaln remains computationally fe_a5|ble. .
the length of the longest common substring in their one-line annotations, We test cluster significance against the null hypothesis that the genes in
Once again, we apply the priori model to estimate RO | S,CL = y) the informant genome are randomly ordered relative to the genes in the target

whereCL is the common substring length. To limit the number of matches9€nome. In other words, we assume that the informant genome is a uniformly

between unrelated genes, we remove common stop words, such as pronouﬁg9sen random permutation of the target. Under this null hypothesis we ask,
and generic terms such as ‘protein, ‘conserved,’ or ‘hypothetical,’ from theWhat is the chance that a cluster from the target would also have occurred by

descriptions before comparing them. chance in the mform'ar?t’? ) )

Our null hypothesis is not unreasonable provided the target and informant
genomes are sufficiently diverged. However, it is likely to be grossly viol-
25 Conserved gene clusters ated for closely related genomes. To avoid using informant genomes that are
In the absence of selective pressure, genes in bacteria tend to becomksely related to the target, we compute for each informant genome the ratio
rearranged with respect to each other (Mushegian and Koonin, 1996). Gengs= (n — b)/n, wheren is the total number of orthologous genes between
that cluster together in multiple organisms are therefore more likely to behe target and informant (defined by bidirectional best BLASTP hits)iand
members of the same operon. Ermolaeval. (2001) found that a pair of  is thebreakpoint distance (Wattersoret al., 1982) between the two genomes,
adjacent, same-stranded gemeand B whose corresponding orthologs defined as the number of pairs of adjacent genes in the informant whose
andB’ are adjacentin another genome are likely to belong to the same operonrthologs arenot adjacent, or whose relative orientation is not preserved, in
GenesA and A’ in two organisms were judged orthologous if each was thethe target. We keep only those informants witat most at some threshaotd
other’s highest-scoring BLASTP match in the other organism. The parametes, which fixes the set of informants used, should be chosen

Our predictor relaxes both the adjacency and orthology criteria forfor eachtarget genome so as to exclude informants that are likely to have many
declaring that a pair of genes belong to a common cluster, in order taon-operon genes in conserved order and orientation relative to the target,
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Target Directon 13 14 15 16 17 18
47\ (.49 183 51
Matching Genes v
in Informant 24 36 Y 50 221
Genome
62

Fig. 2. Example of a chain of conserved genes. Genes are labeled with numbers corresponding to their order in the respective genomes. Circled genes form ¢

chain in the order indicated by the connecting edges.

while still including informants that are likely to share common operons with informant genomes by chance, is obtained by summing over all possible

the target. This problem is similar in spirit to that of choosing informant gen-

omes for conservation-based gene prediction (iébd., 2001). We choose
B based ore priori biological considerations; for example, f&rcoli, we

setB so as to exclude other gammaproteobacteria from the set of informants

while including more distantly related organisms.
We now describe the significance test used to score clusters. The stati

windows of sizen in the target genome:
D max0,d; —m+1)

S(n,k,m,r)zz Z

i=1 j=1

N, P,(n,k,m,r),

é/y_hereD is the total number of directons in the target genomedrid the

ical framework for this test was described by Durand and Sankoff (2003). (flumber of genes in ith directon.

the target and the informant hawegenes in common, then we assess the
significance of a cluster of sizeas follows. Given a fixed window of
sizem within a directon of the target and a fixed windaw of r contiguous
same-stranded genes in the informant, the probatility, k, m, r) thatw,
containsexactly k genes fromws in the same relative order is given by the

hypergeometric distribution,
m n—m
k/\r—k

(-

The numerator counts the number of ways to dividertgenes ofw; into k
genes with matches im1 andr — k non-cluster-associated genes not from
w1. The denominator counts the total number of ways to choosegéees in
w2, while k! is the number of possible ways to order theluster-associated
genes ofwy.

We now wish to know the probability, (n, k,m,r) that w, contains a
cluster ofat least k genes fromws. This probability is obtained by summing
P.(n,k,m,r) over all cluster sizes > k:

min(r,m)
P,(n,k,m,r) = Z P.(n,i,m,r).
i=k
The window sizes andm and the length of the shared chaiare properties
of a given cluster, s®, (n, k,m, r) is the chance of seeing a cluster as good
as that actually observed purely by chance, fixal position in the target
and informant genomes.

Letwsy; be the window of size starting at positiorj in the target genome.
Define the indicator function
1, if wy; has>k genes fromwy,

0, otherwise.

Pe(n,kym,r) =

Xj=

For all j, the expected value df ; is given by
E(X;)=PrX; =1 = P,(n,k,m,r).
To calculate the expected number of windows of sizie the informant

genome with>k genes from a single window in the target genome, we
sum over the total numbe¥, of windows of size- in the informant genome:

Ny A
E ij :ZE(Xj):N,PM(n,k,m,r).
j=1 j=1

Finally, the total E-value of a cluster, i.e. the expected nunstierk, m, r)

The E-valueS(n, k, m, r) assumes that each gene in the target has only one
possible match in the informant. However, our algorithm permits clusters to
contain informant genes that are not the best BLAST hits to their target genes.
To adjust our E-values for such suboptimal hits, we use the notigeref
families, in which one gene from the target may match any of several genesin
the informant. For example, if for a given cluster, a geién the informant
is the third best match to gentin the target,A is considered to match a
family of three genes.

If the ¢ informant gene in a cluster is thiélh best match to its target gene,
then a cluster containing any of tde genes in the same family would be at
least as interesting as the one actually observed. We must therefore multiply
our E-valueS(n, k,m, r) by the number of ways of picking informant genes
from the families matching each target gene of the cluster:

k
Sy(n,k,m,r) = (l_[ <1>g> S(n, k,m,r).

=1
2.7 Useof clustersin operon prediction

Suppose two adjacent genes in the target genome are found to be in a cluster
with E-valuee < 1. By Markov's inequality, the value is an upper bound

on the p-valuep, which is the probability that the cluster occurred purely

by chance under the null hypothesisVe therefore lepp = e, discarding
clusters for whicte approaches or exceedsel# 0.9).

Because our clustering procedure provides p-values for clusters, we use
these values directly for prediction rather than inspecting opposite-stranded
gene pairs as for the other data sources.dgi) be the event that a pair of
adjacent genes occurs in a cluster with p-vghud.et F be a 0-1 indicator
for the event that the null hypothesis is false, i.e. that the observed cluster is
not a chance event. Then

Pr(O | S,C(p)) =Pr(O | S,F =1)Pr(F=1]S,C(p))
+Pr(O|S,F=0)[1-Pr(F=1]|S5,C(p)l

To incorporate the p-value, we take(Pr= 1| §,C(p)) = 1 — p. We set

Pr(0 | S,F = 1) = 1, although there might be other reasons for same-
stranded genes to cluster besides being in a common operon, we take the
view that such clusters are still of biological interest, since our informant

1n principle, we must correct for testing multiple clusters for a given pair of
genes; however, the large overlap among the clusters covering a given gene

of times such a cluster is expected to be observed between the target apdir typically makes their occurrence highly correlated.
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genomes are chosen to be highly rearranged versus the target. Finally, we ssttensively annotated for both known operons and non-operon gene
Pr(O | S, F = 0) =Pr(0 | S). The use of the prior here it conservative,  pairs; these annotations are available through the RegulonDB data-
since genes lacking a conserved cluster are less likely than average to be ilhase (Salgadet al., 2004). From this database, we obtained 797
common operon. However, over 80% of same-stranded gene p&8ithé®  pajrs of adjacent, same-stranded genes known to belong to a com-
exhibit no cluster withp < 1, so a large majority of the instances that go into mon operon and 294 such pairs knonat to belong to a common
estimating the prior are from the = 0 case. In summary, we estimate . -
operon. Non-operon pairs occurred atboundaries between two annot-
Pr(O | S,C(p)) = (1—p)+ pPr(0 | 9). ated operons. For each gene pair, we used our predictor to infer
Given the large number of available bacterial genomes, it is desirable tavhether the pair was in a common operon and compared our result
find a way to use multiple informant genomes for a given target. When usingo the known annotation.
multiple informants, we consider a pair of adjacent genes in the target to be The informant genomes used f&tcoli were derived from a
in a cluster ifat least one informant genome yields a cluster containing both set of 181 bacterial and archeal genomes in GenBank. A com-
genes. We retain the p-value for the most significant cluster in any informanb|ete list of these informants is given in our Supplemental Data
but correct it for tests against multiple informants by multiplyingdyythe http://www.cse.wustl.ed/jbuhler/research/operons).  Setting a

number of informant genomes for which a cluster spanning the two gene _ . .
could occur given the observed BLAST hits between target and informant. resholdg = 0.35 sufficed to exclude other gammaproteobacteria

Experimentation revealed that cluster scores were being overweighted in tH(éonl] the set of Informants.. . o
final analysis, possibly because the multiple test correction is insufficient. In  Figure 3A shows a receiver operating characteristic (ROC) curve

order to compensate, ® | S, C(p)) was limited to be<0.95. describing the performance of our operon finder. The curve was
. . obtained by varying the threshofdfor the overall probability that

2.8  Combining information an adjacent gene pair is in an operon, as computed in Section 2.8.

Each of our three sources of information—intergenic distance, commorPairs scoring abové were labeled ‘operon,” while the remaining

annotation length and inclusion in a common cluster—assignattaif- pairs were labeled ‘non-operon.’ Pairs of genes labeled ‘operon’ and

ute to a pair of adjacent genes. For each attribiitewe have estimated  known to belong to acommon operon were considered true positives,
Pr(O | S, X = x) individually. We must now combine this information into while pairs labeled ‘operon’ but knowmot to belong to a common
a single probability RO | S,X1 = x1...X3 = x3), which is our final operon were considered false positives.

estimate of whether a gene pair is likely to belong to a common operon. . . o o -
We use a naive Bayesian combining strategy (Mitchell, 1997, Chapter 6), We achieved a true positive rate of 88% at 20% false positives.

which assumes that the values of the various attributes are independent givélthoth thls true positive rate' is slightly lower than that reported
that we know whether or not a gene pair is in a common operon. Under thif0" more highly tuned operon finders such as that of Salghab
assumption, (2000), it was obtained with no prior training of parameters on known

E.coli operons and non-operons.

Overall, our predictor’s output is highly enriched for true operons
and hence is of value in choosing putative operons for experimental
validation in a new genome.

[T, Pr(X; =x; | S,0)PrO | §)
Pr(X1 =x1...X3 =x3|9)
Moreover, we have by Bayes'’ rule that
PI‘(O | S, X =xi)Pr(X,- = X; | S)

Pr(O| S, X1=x1...X3=1x3) =

Combining these observations, we conclude that We next applied our operon predictor to the genom.thfeta strain
3 VPI-5482 (GenBank accession NC_004663.1). Unlikesoli,

PrO | S, X; = x;)

Pr(O|S,X1=x1...X3=1x3) = H{ PRO | S) ]Pr(o [S)-y, B.theta does not have a large number of closely related bacterial

i=1 genomes in GenBank; hence, we set the thresBold 0.4, which
wherey is a constant independent of, and all the remaining terms either utilized all of our informant genomes (exceftheta itself). In par-
reflect the prior or are computable by the methods of the previous sectionsticular, we included as an informaRorphyromonas gingivalis, the
We make our final operon prediction for a pair of genes by computing eaclt|osest relative oB.theta present in GenBank at the time of writing.
of the two probabilitieso = Pr(O | S, X1 = x1... X3 = x3) andvg = Because it has not been extensively annotdebeta lacks alarge
Pr(O'| §, X1 =x1... X3 = x3), according to the method above. These WO 5,956 of experimentally confirmed operons that could be used as
probabilities must sum to 1, which allows us to infer the normalizing factorgrOund truth for validation. We therefore devised a scheme by which

y. We may then set a probability cutdifbetween 0 and 1; gene pairs with .
vo > 0 are considered to be in a common operon, while pairs with< @ gene expression data acted as a surrogate for knowledge of whether
a pair of genes belong to a common operon.

are not.
321 Useofexpressiondata We performed comprehensive tran-

3 EXPERIMENTAL VALIDATION scriptional profiling ofB.theta using custom Affymetrix GeneChips

We validated our operon predictor on two bacterial genomes, oné0 obtain growth-phase-associated expression measurements (see

well-studied and one novel. To enable performance comparison witfection A.2 in the Appendix for details). Pairs of adjacent, same-

existing operon finders, we first tested our predictor on the genstranded genes were hypothesized to belong to the same operon

ome ofE.coli. We then applied the predictor to its intended target, if their expression displayed significant covariation over multiple

the genome oB.theta., using gene expression measurements as ougXperimental time points.

best available surrogate for ground truth about the genome’s operon More precisely, for each gene in the genomeBatheta, we

structure. obtained an expression level along with its estimated standard devi-
L . ation using the dChip analysis software (Li and Wong, 2001). We
3.1 Validation in E.coli treated the measuremest(r) at each time point as a Gaussian

We first tested our predictor on the K12 straintbfoli (GenBank  random variable centered about the true expres&an at that
accession NC_0009131). ThE.coli K12 genome has been time, with the observed standard deviation. We limited attention
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When a pair of adjacent, same-stranded genes consistently
increased or decreased significantly across two or more pairs of con-
secutive time points, we called those gepescordant and labeled
] them as being putatively in a common operon (a positive example). If
the genes exhibited significant changes in opposite directions across
two or more pairs of consecutive time points, we called those genes
discordant and labeled them as being putativelgt in a common
1 operon (a negative example). Gene pairs that were neither concordant
nor discordant were not used in validation.Brtheta, this labeling
procedure produced 936 positive and 106 negative gene pairs.

Identifying putative operons from expression data can be error-
prone, since adjacent, same-stranded genes can display covariant
expression due to common regulation without being part of the same
polycistronic transcript. As a measure of the accuracy of our sur-
0.2 § rogate for ground truth, we applied the above labeling procedure
to expression measurements from a comparable Affymetrix Gene-
Chip experiment performed with.coli K12. Our expression-based
labeling of gene pairs as operon or non-operon agreed with that given

5 02 0d 08 08 ! by RegulonDB 84% of the time.

true positives

false positives 322 Results Figure 3B gives the performance of our predictor

relative to expression-based labelingBitheta. True positives rep-

resent concordant gene pairs labeled ‘operon,” while false positives

represent discordant gene pairs labeled ‘operon.’ We obtained a true
B positive rate of 73% with 20% false positives.

08 4

3.3 Sensitivity analysis
To assess the utility of different data sources in our predictor, we
measured the predictive performance when each data source in turn
is removed from the predictor. Figure 4 shows the results of these
experiments. Sensitivity analysis to changes in parameter values are
described in our Supplementary Data.
0.4 - . For both target organisms, each data source by itself gave signific-
antly better predictions than chance alone (data not shown). However,
some data sources proved redundant when other high-quality inform-
ation was available. Fdg.coli, shown in Figure 4A, the best single
source of information was intergenic distance, as may be expec-
ted given the results of (Salgadd al., 2000; Moreno-Hagelsieb
and Collado-Vides, 2002). Becaug&ecoli has been extensively
, , , , annotated, functional relatedness also proved a useful source of
0 0.2 0.4 06 0.8 1 information. Information from clustering in this case proved redund-
false positives antto the other two data sources combined, though it is not redundant
to either source alone.

. o S Operon prediction foB.theta is more challenging than fdg.coli
Fig. 3. (A) ROC plot for operon prediction i&.coli, using RegulonDB as becg e thpe former's genome has been le 3 tgn ivelv studied. The
ground truth as described in Section 3B) ROC plot for operon prediction us Sg S Ss extensively studied.

in B.theta, using concordant gene expression as ground truth as described ﬁ\lvallable genomes y'EId?d fewer common _annorat'o_ns and _feW_er
Section 3.2. conserved clusters, leading to a greater reliance on intergenic dis-
tance. The relative dearth of common annotations compateddb
can be traced to the fact that a larger fraction of geneB.tineta
to intervals of time during which both genes exhibited a significant(41% versus 34% irE.coli) are still labeled only as ‘hypothet-
change in expression, as follows. For measured expression valuesal. Moreover, the typical evolutionary distance betwdktheta
E(r) andE(r + 1) of a gene at time pointsandr + 1, we computed  and other bacteria in GenBank is much greater than that.fmti,
the probability P(E(r) < E(t + 1)) that the true expression value resulting in fewer opportunities to discover conserved clusters.
E(t + 1) exceeds the true valug(z). If this probability exceeded Sensitivity analysis of thé.theta results, shown in Figure 4B,
a high threshold;, then expression was held to increase signific-is consistent with our observations about data availability for this
antly; conversely, if it exceeded a low threshalgd then expres- organism. The negative effect of removing intergenic distance is con-
sion was held to decrease significantly. Otherwise, no significansiderably more dramatic, while functional relatedness information
change was recorded. In the current implementatign= 0.8 was typically of little benefit. In contrast t&.coli, significant util-
andry = 0.2. ity was obtained from clustering even given the other data sources,

06 i

true positives

02 4
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A 1

will be able to exploit this information to improve our predictions
for B.theta.

08 4 DISCUSSION

We have presented a procedure for operon finding designed to work
in genomes where operons have not been previously identified. Our
8 predictor combines information from intergenic distance, functional
relatedness of genes and conserved gene clusters. Validation with
the known operons oE.coli, along with corroboration from gene
expression measurementsBriheta, suggest that our operon finder
is robust enough to yield reasonable predictive performance across
widely divergent species. While a predictor trained on many known
; operons of a given organism remains the most accurate available
0o —— allfeatures ] option, our approach provides useful results even in the absence of
S [— without clusters such training data. Indeed, our method needs only a target genome,
"""" without functional relatedness a set of gene predictions and minimal functional annotations for it,
without intergenic distance and one or more informant genomes. Complete sets of predictions
0 . . ! ! for B.theta and E.cali, along with the source code of the operon
0 0.2 0.4 0.6 0.8 1 . . . . .
false positives finder and other supplemental information, may be obtained online
at http://www.cse.wustl.edwbuhler/research/operons.
1 ‘ ‘ ‘ ‘ _ A number of potential opportunities exist for improving our pre-
B e dictor while preserving it priori nature. One limitation of our
approach to estimating BY = x | S, O) as described in Section 2.2
is its assumption that intergenic regions between genes on opposite
a strands have properties similar to regions between same-stranded
genes not in a common operon. In observing opposite-stranded
genes, we combine statistics from bathnvergent gene pairs
(those whose '3ends face each other) amnlivergent pairs (those
whose 5 ends face each other). For certain attributes, these two
types of gene pairs may look different. For example, we expect
; , divergent pairs to have a larger intergenic distance than convergent
oal 4 J pairs, in order to accommodate promoter sites. It may therefore
i be helpful to consider convergent and divergent pairs separately for
parameterizing oua priori models.
In using gene clusters, it may be desirable to permit local gene
02 7 [—— all features 1 order rearrangements within a cluster. Such changes have been
' without clusters observed in, e.g., the L-arabinose operon, whose geristibtilis
o without functional relatedness appear as araA-araB-araD (Itoh, 2004) butBEroli appear as
without intergenic distance ;
, 1 1 1 1 araB-araA-araD. It should be straightforward to extend our E-value
0 0 0.0 04 06 08 1 estimates to accommodate this change to the cluster model, but such
false positives a change will tend to lower the significance of any clusters observed
and so must be evaluated for potential loss of sensitivity. More gen-
erally, we wish to extend the estimation of significance for clustering
(%o provide more accurate accounting for multiple clusters and mul-

0.6

true positives

0.8 r

06

true positives

Fig. 4. Sensitivity analysis of operon predictoA) Effects onE.coli pre-
dictions of removing each individual data source. Curves for all features an
those for all features except clusters are nearly coincid&)tEffects on
B.theta predictions of removing each individual data source.

iple informants. However, such an extension is challenging because
it must account for the fact that overlapping clusters from one or
several related species are not independent events.

Our criteria for choosing informant genomes for clustering are
particularly for false positive rates around 20%. Most of the bene-biologically rather than statistically motivated. While biological
fit of clustering derived from conserved clusterdAgingivalis, the knowledge was sufficient to make reasonable prior choices of organ-
closest relative oB.theta in GenBank. isms in this work, one might wish for a cluster scoring system that

Overall, we conclude that, while clustering and functional related-usesall genomes as informants while appropriately discounting those
ness were not always useful, neither one can consistently bthat prove too closely related to the the target. The scoring system of
eliminated from the predictor without impacting on performance.Ermolaeveet al. (2001) has this property for gene pairs; for larger
We would expect that annotations are generally more useful foclusters, a modification of our system may be possible. The principal
well-studied genomes, while clusters are more useful for recentlyarrier is not statistical but computational: the cost of enumerating
sequenced organisms. As the quality of annotation and availabilitand scoring all clusters shared by two closely related genomes is
of informant genomes iBacteroidesand related groups improve, we quite high. Future work may be able to reduce this cost.
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Finally, while this work reserved gene expression measurementsable A1l. Formulation of TYG-rich media foB.theta
to validate our predictor, our resultskicoli suggest that integrating
this data into the operon finder, as has been done by, e.g., Bockhorst )
et al. (2003b), would be of considerable value. Our measure of concomponem Concentration
cordant versus discordant expression could be used as an attribute of

gene pairs for prediction. Tryptone 1%
Yeast extract 0.5%
Glucose 0.2%
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Samples ofB.theta were collected at five time points—3.5, (Affymetrix, Santa Clara, CA). Scanned images of hybridized arrays
4.5, 5.5, 6.5 and 8.83 h after inoculation—during growth from were quantified and interpreted using the dChip software (Li and
mid-log to stationary phase. At each time point, aliquots wereWong, 2001).
removed from each vessel and placed in RNAProtect (Qiagen, For comparison, we performed a time course experiment sim-
Valencia, CA), and RNA was isolated (RNeasy; Qiagen). Genomidlar to the above usingt.coli strain MG1655 grown in standard
DNA contamination was minimized by treatment with DNAfree Luria-Bertani media. Gene expression was measured using Affy-
(Ambion, Austin, TX). cDNA targets were prepared using meth- metrix E.coli ASV2 GeneChips at 2.5, 3.8, 4.5, 5.3 and 7.8 h
ods described in thée.coli Antisense Genome Array Manual post-inoculation.
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