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Evolution of proteins is generally modeled as a Markov process acting on each site of the sequence. Replacement
frequencies need to be estimated based on sequence alignments. Here we compare three approaches: First, the
original method by Dayhoff, Schwartz, and Orcutt (1978) Atlas Protein Seq. Struc. 5:345-352, secondly, the re-
solvent method (RV) by Miller and Vingron (2000) J. Comput. Biol. 7(6):761-776, and finally a maximum like-
lihood approach (ML) developed in this paper. We eval uate the methods using a highly divergent and inhomogeneous
set of sequence alignments as an input to the estimation procedure. ML is the method of choice for small sets of
input data. Although the RV method is computationally much less demanding it performs only dlightly worse than
ML. Therefore, it is perfectly appropriate for large-scale applications.

Introduction

Differences between homologous proteins are the
result of a mutation process starting from a common,
though unknown ancestor. In a mutation event, an amino
acid at a certain position in a protein is replaced by
another one. These exchanges are constrained by the
requirement to maintain protein structure or function.
Certain mutations tend to have little effect in this respect
and are observed more frequently than exchanges that
clearly influence the protein structure.

If this replacement improves the fitness of the or-
ganism the new amino acid will be accepted by natural
selection. Replacements of very dissimilar amino acids
often drastically change the fold of the protein, leading
to a complete loss of function. Hence, such mutations
are less often observed than those of similar amino ac-
ids, which have only dlight effects with respect to fold
and function. Therefore, amino acid similarity is reflect-
ed in replacement frequencies. It is important to note
that actual mutation counts depend not only on these
similarities but also on the degree of divergence of the
sequences that one compares. We thus need a model
which describes protein evolution as a function of time.

Modeling amino acid replacements by a Markov
chain has been introduced by Dayhoff, Schwartz, and
Orcutt (1978). In this approach a set of identical Markov
chains acting independently on each site of the protein
is used. The time index of the process is interpreted as
a measure of evolutionary divergence. The challenge is
to estimate the parameters of the process from divergent
and time-inhomogeneous sequence data.

In the origina approach of Dayhoff, Schwartz, and
Orcutt (1978) the actual estimation is restricted to only
very closely related pairs of sequences. However, once
a Markov model is fitted to this data, replacement fre-
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quencies characteristic for distantly related sequences
can be extrapolated from the model.

Dayhoff’s approach has been generalized and ap-
plied to larger data sets (Gonnet, Cohen, and Benner
1992; Jones, Taylor, and Thornton 1992). Furthermore,
the advent of large numbers of structuraly derived
alignments has raised interest in using information also
from very distant related alignments (Overington et al
1990; Ridler et al 1988). However, these authors do not
provide an estimation procedure which would account
for the time-inhomogeneity of the input data.

Benner, Cohen, and Gonnet (1994) were the first to
point out the problem of estimating one consistent mod-
el from an inhomogeneous pool of alignment data. They
sketch a normalization algorithm, which is based on
computing logarithms of transition matrices which they
approximate by power series. The approach is heuristic,
as the convergence of the power series cannot be guar-
anteed for empirically derived matrices.

Mduller and Vingron (2000) present a rigorous es-
timation procedure which is based on an entirely differ-
ent mathematical formalism. We refer to this method as
resolvent method and briefly review it in the Resolvent
Method section. Alternatively, we describe a novel max-
imum likelihood based approach. The Maximum Like-
lihood section provides the details of the mathematical
formalisms and computations.

In principle, one has two important, although con-
flicting, criteria for evaluating the quality of the meth-
ods. For large-scale applications, time performance of
the algorithms is crucial, whereas low statistical effi-
ciency of the estimator can be compensated for by the
huge amount of data that is used. On the other hand, if
one is restricted to only a small set of input data, the
accuracy of the estimator is more important. In the Re-
sults section we discuss the individual merits of the re-
solvent and the maximum likelihood estimator.

M odel

Let P(t) be the transition probability matrix of a
time continuous Markov chain with entries p;(t) =
Prob(X [s + t] = j|X[s] = i). We consider only Markov
chains for which the rate matrix Q = lim,, (P[t] —



I/t exists, where | denotes the identity matrix. Hence,
we get the following linear approximation

P(t) =1 +tQ + o(t), (0]
for small t. The resolvent

R, = f " ewp(t) ot )
0

provides an alternative characterization of the rate ma-
trix. From the Chapman-Kolmogorov equation, we get
the forward and backward equations (d/dt)P(t) = P()Q
= QP(t). Differentiating e «'P(t) using the product rule
for matrix differentiation we get

d d
—at + — —at — aat—
aetP(t) dt(e P[t]) = e OltP(t)
for « > 0, t = 0. Using this we obtain:

) —at xg —at
af e tP(t) dt+f S (© Pl dr

0 0

T aad N
=f e P dt—f etP(t) dtQ.

0 0
Multiplication by R;! reduces the above equation to

ol —R1=Q (a>0). ®3)

Note that R, is in fact invertible for all « > 0 (see
Mduller and Vingron 2000).

The forward and backward equations can be solved
under the initial condition P(0) = | and yield

P(t) = exp(tQ). 4

This allows transition probabilities for any time of di-
vergence t to be computed from the rate matrix.

The problem of modeling amino acid replacement
frequencies requires additional assumptions on the Mar-
kov chain. Following Dayhoff, Schwartz, and Orcutt
(1978) we model the evolution of each site of the pro-
teins by a single time-homogeneous Markov chain X(t),
calibrated, such that on average 1% of the amino acids
are changed after one unit of time: Prob[X(t) # X(t +
1)] = 0.01. Once calibrated, the time t in the Markov
chain can be used as a measure of evolutionary diver-
gence. The acronym PAM (Point Accepted Mutations)
is commonly used for this unit of divergence.

We assume that any amino acid can change into
any other one. This is ensured by the requirement that
the exchange rates q; be strictly positive for all i, j. Then
there exists a unique limiting amino acid distribution
= (7, ..., ) Where m; = lim,_.. p;(t) > O is inde-
pendent of the initial residuei. The distribution = fulfills
the equations wQ = 0 and wP(t) = w for al t = 0 and
is called the equilibrium distribution. We only consider
Markov processes which are in equilibrium. With the
transition probabilities (P~ and the overall amino acid
distribution we calculate the joint distribution my(t) =
;i p;;(1) of (X, Xsip). M(t) = my(t) denotes the probability
of finding amino acid & and amino acid & aligned with
each other in two sequences that are t time units apart.
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The Markov chain X; describes the evolution of a
single site in a protein from ancestors to descendants.
Whereas data from ancestor sequences are not available,
we do observe pairs of proteins that have evolved from
a common, though unknown, ancestor. We cannot decide
the direction of the mutation, we only observe pairs of
corresponding amino acids at certain positions in a pro-
tein. It would not be appropriate to model such a direc-
tion. Such processes are described by the class of time-
reversible Markov chains. This means that the proba-
bility of being in amino acid & and going from 3 to g
intime t is equal to that of being in amino acid g and
going from amino acid & to a Consequently, we get
the detailed balance equation m;qg; = m;q;. In particular,
M(t) is a symmetric matrix. We use the shortcut Evo-
lutionary Markov Process (EMP) for a process satisfy-
ing al the conditions discussed earlier.

The transition and the rate matrix of an EMP have
the following mathematical properties. Denote by F the
diagonal matrix with entries ;. Then F constitutes a
symmetric, positive definite matrix and (x, ) = (X, Fy)
defines an inner product. Because of the reversibility, Q
and P(t) are selfadjoint relative to (:, -)g, i.e., (P(O)X, V)r
= (X, P(t)y)r, and can therefore be transformed into di-
agonal form by a change of coordinates. The eigenval-
ues of Q are real by selfadjointness, and negative owing
to Gershgorin’s theorem. Using definition (4) we can
rewrite Q and P(t) as

S 08
Q=s: St PO =S - [SL (9
DO )\zolj |:|0 et)\ZOD

where \; are the eigenvalues of Q, and the matrix S
consists of the joint orthonormal basis of eigenvectors
of Q and P(t). According to the Perron-Frobenius the-
orem the largest eigenvalue of P(t) equals 1 and there-
fore the largest eigenvalue of Q equals 0. In general,
given a rate matrix Q of an EMP, one can easily cal-
culate P(t) for al t > 0 by formula (5).

Estimation Algorithms

The problem we are dealing with is the estimation
of the parameters of an EMP from observed replacement
frequencies. However, practically these frequencies are
derived from different sequence alignments and will
generaly not conform to one EMP. We describe three
approaches to the EMP estimation problem. We start
with summarizing the original work of Dayhoff,
Schwartz, and Orcutt (1978), develop the formalism of
a maximum likelihood estimator, and finally explain the
resolvent method.

Dayhoff’s Method

Dayhoff’s method has a strategy consisting of es-
timating P(1) and then extrapolating to higher PAM dis-
tances. She pools input alignments of only closely re-
lated sequences. Nevertheless, this data can still be time-
inhomogeneous. From this data she derives a calibrated
transition matrix using the fact that on small evolution-
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ary distances the calibration can be carried out linearly,
as in equation (1). It is important to note that Dayhoff
intended to use only alignments of very closely related
pairs of sequences. There is no theoretical justification
for applying it to more divergent input alignments. In
fact, from our discussion earlier it becomes clear that
linear calibration fails for more divergent data. The com-
putational details of Dayhoff’s method are summarized
in various textbooks, see e.g., Setubal and Meidanis
(1997).

Maximum Likelihood

With the enormous number of divergent alignments
available today, Dayhoff’s approach implies a huge loss
of information. Yet it is highly desirable to exploit se-
guence alignments of widely different evolutionary dis-
tances. However, this requires progress in the theory of
EMP estimation. An appropriate estimator should ac-
count for the evolutionary divergence of each alignment
in the data set.

Our procedure is based on a two-step algorithm to
improve a given set of rates and an equilibrium distri-
bution. In the first step, the degree of evolutionary dis-
tance for each given alignment is estimated under the
input parameters. In the second step, new parameters are
estimated assuming the divergence times just calculated.
This two-step procedure was started using Dayhoff’s pa-
rameters and then iterated until no change of the param-
eters could be detected. This iterative approach is dis-
cussed in Muller and Vingron (2000). The time esti-
mation part is discussed in Barry and Hartigan (1987a,
1987b); Adachi and Hasegawa (1996); Baake and von
Haeseler (1999); Muller and Vingron (2000). For the
following exposition we thus focus on the estimation of
the rate matrix assuming that the evolutionary distances
of al alignments are given.

The main problem in formulating a maximum like-
lihood estimator is to develop a parameterization for the
rate matrix that reflects al requirements for an EMP In
order to specify the EMP, we estimate 210 parameters,
namely the equilibrium distribution = and the rate ma-
trix Q.

For simplicity we start by formulating the estimator
only for a single given alignment A with evolutionary
distance t. The maximum likelihood method yields the
following estimates for  and Q:

(7, Q) = argmax £(m, Q[t, A)
w,Q

= ar%rgax 2 N;;log([Fe'?];)), (6

where N;; counts aligned amino acid pairs, F is a diag-
onal matrix with entries mr;, and Q is a rate matrix. We
use the parameterization

Q=cQ @)

where ¢ = (200 2;.; mr;) ! and
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Note that Q is a rate matrix and satisfies the detailed
balance equation. Conversely, al rate matrices that ful-
fill detailed balance can be parameterized as in (8). We
proceed to show that multiplication by the factor ¢ =
(200 %;.; mry)~* calibrates the process to 1 PAM. To
this end, we search for a ¢ such that tr (Fe*Q) = 0.99.
From equation (1) we obtain

0.99 = tr(Fe’?) =~ tr(F[I + cQ]) = 1 + ¢ tr(FQ),
or equivalently ¢ = —(100 tr[FQ])~L. We want to ex-
press c in terms of the parameterization variables:

tr(FQ) = > omb = -, mby; = —2 ), wr,

i j#i j>i

because of the symmetry of (r;;) and hence we choose

-1
j=>i

Practically, we are not given one alignment but many,

each of possibly different divergence time. This leads to

the following expression for the log-likelihood

[#, Q = argmax kZ JZ N®log([Fex?];;), (10)

where we assume that the n alignments are drawn in-
dependently and have divergence timest,, k = 1, ...,
n. N®¥ are the respective matrices of exchange counts.
The parameters that maximize equation (10) yield the
maximum likelihood estimator among all Q that de-
scribe an EMP,

The maximization problem is tackled using stan-
dard optimization algorithms (Brent 1973; Press et al
1990). To this end, the constrained optimization problem
needs to be mapped to an unconstrained one. For ex-
ample, we map the distribution values to the interval
(0,1) using the function x — arctan(x)/w + 0.5 and we
map the positive relative rates to the positive rea line
by the function x — exp(—Xx).

Resolvent Method

An aternative method for estimating the rate ma-
trix Q of an EMP is presented in Muller and Vingron
(2000). It is based on the relation

Q=oa — R fordla>0, (11)

where R, denotes the resolvent of the Markov chain (2).
Once the resolvent is computed, one can derive the rate



matrix by applying this formula. The problem is putting
this formalism to use in the estimation problem, where
we do not have perfect knowledge of all transition ma-
trices, but instead are given discrete sets of counts drawn
at arbitrary distances.

Let n aignments be given and assume that t, is the
degree of divergence of the sequences in alignment k.
The goal is to estimate an EMP from the alignment data
using the distances t,. We first estimate P(t,) by the em-
pirical transition frequencies in the respective align-
ments. We estimate p;(t,) by counting all occurrences of
(&, &) and (&, &), and then normalizing by the overall
frequency of amino acid i. For each alignment, this
yields one estimated transition matrix P(t,) for each time
t.. We want to approximate the integral (R); = fo
e 'p;(t) dt. Thisis done using linear interpolation of the
p;(t) and then integrating the piecewise functions. Note
that the 20 X 20 entries of the resolvent can be calcu-
lated separately and independently of each other. The-
oretically, the rate matrix is independent of «, but for
empirical integrals it is not. The approximation of the
integral (R,); = fo e °p;(t) dt is most accurate if the
lattice points p;(ty) lie in the high-density region of the
integrand. Whether this is the case or not depends on
the parameter «. Consequently, a sensitive choice for a
is called for. Our approach is likelihood based. With
eguation (3) we obtain

n

Ny = > > Nilog(mefj=!-R-9).  (12)
k=1 ]

L(o|Ng, ...

Choosing a parameter o with maximal likelihood gives
us a rate matrix. In practice, the resolvent method is
used iteratively with time estimation updates as in the
case of the maximum likelihood method.

Results

Clearly, if applied to real sequence data, the dif-
ferent estimation procedures result in different substi-
tution models. We do not see any obvious biological
criterion that can be applied to decide whether one mod-
el is superior to another. In contrast, we start from a
given model (Q, ) and a set of evolutionary degrees
of divergence t,, ..., t, and sample artificial pairwise
alignment data according to the associated distribution
M(t) = F exp(t;Q). More concretely, we draw indepen-
dent pairs of amino acids from this distribution, and the
concatenation of these pairs gives us a simulated gap-
free alignment at PAM distance t,.

We pool alignments of various degrees of diver-
gence and run the estimators on this data, which is then
used to reestimate the parameters (Q, ) that are used
for alignment generation. In this setup, estimator eval-
uation is straightforward.

The resulting estimated substitution models can be
equivaently represented by the rate matrix Q, any tran-
sition matrix P(t), or a matrix of pair frequencies M(t).
As the first two display strong diagonal dominance,
graphical comparison of them is not appropriate. Instead
we choose the M(100) pair frequencies.
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Fig. 1.—Comparison of all three methods on a small data set.
Thirty artificial alignments of length 300 sites are used. Estimated val-
ues are plotted versus the simulation parameters. The right picture
zooms into the lower left corner of the picture on the left side.

We show three simulation results. First, we test the
estimators in the case of a small input data set. We re-
estimate the model parameters from 30 alignments of
300 sites each, where the degree of divergence varies
from 10 to 300 PAMs with one alignment for each dis-
tance. The results are shown in figure 1. In this situation
the maximum likelihood method is more accurate than
either the resolvent method or Dayhoff’s method. This
is not surprising, because maximum likelihood ap-
proaches are known to yield highly efficient estimators.
Yet one can clearly improve the accuracy of estimations
by using more input data. In the case of protein evolu-
tion, tens of thousands of alignments are easily acces-
sible. Theoretically, one would assume that the maxi-
mum likelihood estimator would be superior in this set-
up, but in practice, it is not appropriate because it is
computationally too demanding. For real data sets the
evolutionary degree of divergence of all alignments is
very likely to be different. This is especialy bad as it
makes likelihood evaluations slow, see equation (10). In
order to simulate the performance of the maximum like-
lihood estimator on a data set of medium size we use a
set containing 30 alignments of 5,000 sites, for distances
ranging from 10 to 300 PAM. This yields a large set of
observed amino acid pairs but only at 30 different PAM
distances. The results are shown in figure 2. One can
clearly observe that the resolvent method catches up
when compared to the maximum likelihood method,
whereas Dayhoff’s method shows the expected bias re-
sulting from ignoring the evolutionary distances.

For huge amounts of input data, the maximum like-
lihood estimator cannot be evaluated. Figure 3 compares
Dayhoff’s method with the resolvent estimator for
10,000 alignments of length 300 with PAM distances
distributed uniformly at the interval [0, 300]. The re-
solvent method shows very satisfying accuracy, and as
one would expect, it clearly outperforms Dayhoff’s
method.
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FiG. 2—Comparison of all three methods on a medium sized data
set. Thirty artificial alignments of 5,000 sites are used. Again, esti-
mated values are plotted versus the simulation parameters. The right
picture focuses on lower probabilities.

Table 1 summarizes the three comparison experi-
ments. Here, we assess the performance of the three meth-
ods in terms of the relative entropy H(M[100] | M[100]) =
2 m;(100)log([m;{ 100} ]/[ry{ 100}]) of the joint distri-
butions M(100) of the estimated models to the model
M(100) that is underlying the simulations.

As we pointed out, a sensitive choice of the resol-
vent parameter « is critical for the performance of the
resolvent method. This is clearly supported by the sim-
ulation experiments. Figure 4 shows a plot of the av-
erage log-likelihood of the fitted model versus . It be-
comes clear that although the rate matrix Q is theoreti-
cally independent of «, numerical problems can signif-
icantly weaken the resolvent method if « is
inappropriately chosen.

Discussion

We discussed the problem of estimating amino acid
replacement freguencies from inhomogeneous divergent
alignment data. We tested the applicability of Dayhoff’s
method to this kind of data, reviewed and evaluated the
resolvent method, and devel oped a novel maximum like-
lihood estimator. All of these methods model protein
evolution by a Markov process acting independently on
each site of the proteins. Whereas the RV and ML meth-
ods take evolutionary distances into account, Dayhoff’s
method does not. In simulations with time-heteroge-
neous alignment data we prove the importance of in-
cluding distances into the model. In particular, maxi-

Table 1
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Fic. 3—Evaluation of large-scale estimations. Only results from
Dayhoff’s method and the resolvent method are shown. Ten thousand
artificial alignments of 300 sites are used. Estimated values are plotted
versus the simulation parameters. The right picture zooms into the
lower left corner of the picture on the left side.

mum likelihood proved to perform best for small data
sets, whereas for larger data sets where maximum like-
lihood becomes computationally infeasible, the resol-
vent method is a good aternative.

The EMP model reduces the phenomenon of pro-
tein evolution to 210 parameters. It is obvious that this
cannot cover the entire complexity of evolution. One
assumes that the positions in a protein evolve indepen-
dently of each other with the same dynamics for each
site, which can be modeled by a Markov chain. Of
coursg, it is well known that different sites in a protein
may evolve at different speeds and that possibly differ-
ent replacement mechanisms are operating. All of our
assumptions are questionable from a biological point of
view. However, from the perspective of data analysis it
is obvious that one needs to simplify to make model
fitting practical. The challenge is to reflect as much of
the reality as possible with 210 parameters.

In 1972 when Dayhoff et al. proposed the first so-
[ution to this problem, only a few sequences were avail-
able, and homology detection was restricted to relatively
closely related pairs of sequences. Clearly, their method
was intended for the use of this kind of data. Our use
of Dayhoff’s method in the context of divergent align-
ments is not in the sense of its authors and has no the-
oretical justification. We use it to demonstrate the prac-
tical importance of including the divergence parameter
into a model.

A Summary of the Evaluation Experiments. The Efficiency of the Estimatorsis
Measured in Terms of the Relative Entropy of the Estimated Models to the Model that is

Underlying the Simulation

Dayhoff Resolvent Maximum Likelihood
Small data set 7.1453e 4 2.9946e 4 8.6068e 5
Medium size data set 6.6340e 1.5976e 4 2.7474e°6
Huge data set 6.54e2 8.735e 3 Not computed
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A natural shortcoming of using only closely related
sequence alignments is that the estimator is biased to-
ward the evolution of fast-evolving positionsin proteins.
Thus, basing the estimation on the large and divergent
data set that we used does not only improve the model
parameters because of the much larger amount of input
data, but might also reflect protein evolution on longer
time scales more appropriately.

Our simulation results show that the maximum
likelihood estimator is more efficient than the resolvent
method. On the other hand, it is restricted to input data
sets of moderate size. But more input data clearly gives
more accurate estimates for the transition probabilities,
which may well compensate for the theoretical subop-
timality of the estimator. In principle, we have a trade
off between the statistical and the computational effi-
ciency of the estimators. For small data sets we rec-
ommend a maximum likelihood approach, whereas the
resolvent method is a practical alternative tailored for
huge data sets.
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