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Context: Symptoms of fluid retention in GH-deficient patients dur-
ing GH replacement are greater in men than in women, suggesting
that testosterone may augment or estradiol may attenuate the an-
tinatriuretic actions of GH. The mechanisms underlying the sodium-
retaining effects of GH are poorly understood.

Aim: The aim of this study was to investigate the effects of GH and
testosterone, alone and in combination, on extracellular water (ECW)
and the hormonal mechanisms involved.

Design: Two separate, open-label, randomized, two-period, crossover
studies were performed; the first compared the effects of GH alone
with those of GH and testosterone, and the second compared the
effects of testosterone alone with those of GH and testosterone.

Participants: Twelve hypopituitary men with GH deficiency and
hypogonadism were studied.

Intervention: During the weeks of intervention, GH (0.5 mg/d) and
testosterone enanthate (250 mg) were administered by im injection.

Outcome Measures: The outcome measures were ECW, IGF-I,
plasma renin activity (PRA), aldosterone (Aldo), and atrial natriuretic
peptide (ANP).

Results: GH treatment significantly increased (P � 0.05) both IGF-I
and ECW, and these changes were enhanced by cotreatment with
testosterone (P � 0.07 for both). PRA, Aldo, and ANP levels did not
change. Testosterone treatment alone did not change the IGF-I con-
centration, whereas cotreatment with GH induced a marked increase.
Testosterone alone increased (P � 0.05) ECW, and the effect was
augmented (P � 0.01) by cotreatment with GH. Although PRA and
ANP did not change, plasma Aldo decreased after single and combined
treatments.

Conclusion: GH and testosterone exerted independent and additive
effects on ECW. The mechanisms of fluid retention for both hormones
are likely to be exerted on the renal tubules. This is the first direct
evidence that testosterone increases ECW. (J Clin Endocrinol
Metab 90: 3989–3994, 2005)

GENDER-DEPENDENT CHANGES in body composi-
tion appear at the time of puberty (1), suggesting an

important role of sex steroids. Total body water and fat-free
mass are greater, whereas total body fat is lower, in men than
in women. The proportion of fat-free mass accounted for by
water and the proportion of body weight accounted for by
extracellular water (ECW) are also greater in men (2). The
water content of body cell mass and ECW is highly consistent
between subjects and even between mammals, reflecting
strong basic regulatory mechanisms controlled by hormones
(3), including insulin, catecholamines, those of the renin-
angiotensin-aldosterone system (RAAS), and natriuretic
peptides.

The antinatriuretic effect of GH has been recognized for
decades (4). The pathophysiological importance of this effect
is evident from studies demonstrating reduced and in-
creased ECW in adults with GH deficiency and acromegaly,
respectively (4–6). Although the mechanistic processes un-
derlying the antinatriuretic action of GH have not been fully

elucidated, several have been proposed. The observations
that GH increases serum and tissue levels of IGF-I, and that
both GH and IGF-I receptors are expressed in renal tubules
(7) have suggested that both hormones could play a role in
the fluid retention (8). Evidence that the effect of GH is
exerted indirectly is conflicting, with some (9–12), but not all
(13), studies demonstrating activation of RAAS; some (14–
16), but not all (13, 17), researchers have reported that GH
may act through suppression of plasma atrial natriuretic
peptide (ANP). Although the exact mechanisms remain un-
clear, these studies indicate that the GH/IGF-I axis plays an
important role in sodium-fluid homeostasis.

The involvement of testosterone in sodium homeostasis is
less clear. Some evidence comes from early clinical obser-
vations of edema developing during treatment with supra-
physiological doses of testosterone for anemia secondary to
hematological disorders and uremia (18). High doses of tes-
tosterone have been reported to increase, decrease, or exert
no effect on plasma volume (19, 20) and to reduce urinary
sodium excretion (18, 21). Furthermore, testosterone stimu-
lates GH secretion (22) through an estrogen-dependent path-
way (23, 24), making it possible that high doses of testos-
terone in GH-replete subjects may induce sodium and water
retention indirectly through the actions of GH and IGF-I.

Evidence that sex steroids influence GH action came from
the observation that fluid retention is more marked in men
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than in women during GH replacement therapy (25). The aim
was to study the effects of GH and testosterone, alone and in
combination, on ECW. To eliminate possible indirect actions
of testosterone through the GH/IGF-I axis, subjects with
combined hypogonadotropic hypogonadism and GH defi-
ciency were studied.

Patients and Methods
Patients

Twelve hypopituitary men with GH deficiency and hypogonado-
tropic hypogonadism were recruited from the Endocrine Outpatient
Clinic at St. Vincent’s Hospital (Sydney, Australia). The clinical char-
acteristics of these patients are shown in Table 1. Two studies were
undertaken, the first compared the effects of GH alone with those of GH
and testosterone in 10 men, and the second compared the effects of
testosterone alone with those of GH and testosterone in nine men. Seven
of the 12 men participated in both studies. GH deficiency was confirmed
by a peak GH response to insulin-induced hypoglycemia of less than 3
ng/ml (26), and hypogonadotropic hypogonadism was defined as a
serum testosterone level measured in a morning sample less than 4
nmol/liter accompanied by a low serum LH level. The duration of
hypopituitarism was at least 1 yr. All subjects were receiving stable
hormone replacement for other deficiencies throughout and in between
the study periods, and they were not receiving any other treatment that
could affect their body fluid homeostasis. All subjects gave their written
informed consent to participate in the study before entering the protocol.
The study design was approved by the research ethics committee of St.
Vincent’s Hospital.

Study design

Both studies were of open-label, randomized, crossover design, and
together allowed comparison of the individual and combined effects of
testosterone and GH while taking time-dependent effects into consid-
eration. Before commencement of each study, subjects underwent a 6-wk
run-in period when testosterone and GH were withdrawn. During this
time and throughout the studies, they were instructed to follow their
usual diet and habitual activities. In both studies, GH (Humatrope, Lilly
Australia, Sydney, Australia) was administered at a dose of 1.5 IU/d (0.5
mg/d) daily, sc, by self-injection at 2000 h, and testosterone enanthate
was administered at a dose of 250 mg, im, 2 wk before measurement.

The first study compared the effects of GH alone with those of com-
bined GH and testosterone treatment in 10 subjects (Fig. 1). GH was
administered daily for 6 wk. Testosterone was administered either at
baseline (group A; n � 5) or wk 4 (group B; n � 5) of the study.
Investigations were carried out at baseline, after 2 wk, and after 6 wk,
so that the effects of testosterone were assessed 2 wk after administra-
tion. Thus, studies were carried out when subjects were not receiving

GH or testosterone replacement, during replacement with GH alone,
and during combined GH and testosterone replacement (Fig. 1).

The second study compared the effects of testosterone with those of
combined testosterone and GH treatments in nine subjects (Fig. 1).
Testosterone was administered at wk 2 and 6 of the study. GH was
administered either during the first 4 wk (group A; n � 5) or the second
4 wk (group B; n � 4) of the study. Investigations were carried out at
baseline, after 4 wk, and after 8 wk. Thus, studies were performed when
subjects were not receiving GH or testosterone replacement, during
replacement with testosterone alone, and during combined GH and
testosterone replacement (Fig. 1).

At each visit and after an overnight fast, all subjects underwent
measurements of plasma IGF-I, testosterone, plasma renin activity
(PRA), aldosterone (Aldo), ANP, and ECW using the bromide dilution
technique. For the latter, a carefully weighed amount of sodium bromide
(1.8–2.0 g) was diluted in 60 ml sterile water, of which 10 ml were
injected. Serum samples were collected before and 4 h after the injection.
All serum/plasma samples were frozen after collection and assayed in
a single run at the end of both study periods. Body weight was measured
barefoot wearing indoor clothing to the nearest 0.1 kg, and systolic and
diastolic blood pressures were measured after 5 min of supine rest using
a sphygmomanometer.

Assays

Serum IGF-I was measured by RIA after acid-ethanol extraction as
previously described (27), with intraassay coefficients of variation (CVs)
of 9.4, 8.3, and 10.3% at 48, 254, and 1510 �g/liter, respectively. Tes-
tosterone was measured by a solid-phase chemiluminescent enzyme
immunoassay (Immulite 2000, Diagnostic Products Corp., Los Angeles,
CA) that had an intraassay CV of 9.6% at 6.7 nmol/liter. PRA was
measured indirectly by RIA of angiotensin I (PerkinElmer Life Sciences,
Los Angeles, CA). The level of endogenous angiotensin I was corrected
by running an inhibited assay tube kept at 4 C while the 37 C generation
of angiotensin I was occurring. Renin activity was maximized by pre-
incubating the samples at pH 6.0. Plasma Aldo was measured by a solid
phase immunoassay (Coat-A-Count TKAL2, Diagnostic Products Corp.)
that has an interassay precision of 6.2%. Plasma samples for ANP mea-
surement was stored at �70 C before assay using a solid-phase immu-
noradiometric assay (Shionogi & Co. Ltd., Osaka, Japan) with an in-
traassay CV of 6.3% at 18.9 ng/liter and a detection limit of 2.5 ng/liter.

Serum bromide was measured by HPLC. The serum samples were
deproteinated by centrifugation through a filtration unit with cut-off size
of 10 kDa (Amicon YM10, Millipore Corp., Bedford, MA). The protein-
free ultrafiltrate was run through an anion exchange column (IC-Pak A,
Waters Corp., Milford, MA) at a flow rate of 0.35 ml/min and a detection
wavelength of 195 nm. The bromide concentration was determined
using the area under the curve and comparing with known bromide
standards. The intraassay CV for the bromide concentration determined
by HPLC was 2.1%. ECW was calculated from the change in the serum
bromide concentration 4 h after injection of a known amount of bromide
using the formula reported by Miller et al. (2): ECW (liters) � 0.9 � 0.95 �
Br dose (mmol)/� Br serum (mmol/liter), where � Br serum is the
change in serum bromide concentration, 0.9 is the correction factor for
nonextracellular distribution of bromide, and 0.95 is the correction factor
for Donnan equilibrium. The mean day to day intrasubject CV for ECW
based on four subjects studied on two occasions was 5.7%.

Statistical analysis

Data are presented as the mean � sem. The overall within-group
treatment effect in each trial was determined using Friedman’s ANOVA
for repeated measurements. Post hoc analysis was performed using Wil-
coxon’s matched pairs, signed rank-sum test corrected for the number
of measurements. The analysis of between-study levels was performed
using the Mann-Whitney U test. An analysis of interactions between
treatment and sequence was performed in which the direct and residual
effects of treatment were measured separately to detect carryover effects.
No such interaction was found. Statistical significance was considered
at P � 0.05.

TABLE 1. Clinical characteristics of the participating men with
hypopituitarism

Subject no.
(study 1 or 2)

Age
(yr) Cause of GHD Treatment Hormone

replacement

1 (1&2) 66 Pituitary macroadenoma S/X A, T, G
2 (1&2) 61 Rathke’s cyst S A, T, G, D
3 (1&2) 50 Pituitary macroadenoma S G
4 (2) 60 Pituitary macroadenoma S G
5 (2) 50 Craniopharyngioma S/X A, T, G
6 (1&2) 66 Pituitary macroadenoma S A, T, G
7 (1&2) 46 Pituitary macroadenoma S A, T, G
8 (1&2) 47 Pituitary macroadenoma S A, T, G
9 (1) 77 Pituitary macroadenoma S G

10 (1) 33 Craniopharyngioma S/X A; T, G
11 (1) 39 Pituitary macroadenoma S T, G, D
12 (1&2) 66 Pituitary macroadenoma S T, G

S, Surgery; X, irradiation; A, adrenal replacement; T, thyroid re-
placement; G, gonadal replacement; GHD, GH deficiency; D,
deamino-8-D-arginine vasopressin.
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Results

None of the patients reported side effects, and no clinical
symptoms or signs associated with excess fluid retention
were observed during treatment with the doses and regimen
used for GH, testosterone, or their combination. No sequence
effect was observed in either of the studies. Baseline values
were comparable in the two studies, with the exception of
IGF-I, which was slightly higher in study 2 (11.9 � 1.1 vs.
8.4 � 0.9 nmol/liter in study 1; P � 0.05).

GH and combined testosterone treatment (Table 2)

The serum IGF-I concentration increased in response to
GH treatment alone and increased further when testosterone
was added (P � 0.07), but the difference was not statistically
significant. Serum testosterone concentrations were subnor-
mal at baseline and during the GH treatment phase, and
increased into the normal range during testosterone replace-
ment therapy.

Mean body weight increased slightly during GH treatment
and combined treatment, although the changes were not
statistically significant. GH treatment alone increased ECW
significantly by 2.4 � 0.9 liters (P � 0.05), and combined
treatment with GH and T induced an additional expansion
of ECW by 1.2 � 0.7 liters, which approached statistical

significance (P � 0.07; Fig. 2A). Systolic and diastolic blood
pressures were unaffected by single or combined treatments.
No significant changes were seen in the plasma concentra-
tions of Aldo, PRA, ANP, or the Aldo/PRA ratio.

Testosterone and combined GH treatment (Table 3)

Testosterone treatment alone did not change the mean
serum IGF-I concentration, whereas adding GH to the treat-
ment induced an increase into the normal range. Serum
testosterone concentrations were low at baseline and in-
creased into the normal range after the two treatment phases
of testosterone alone and combined GH and testosterone.

A significant (P � 0.05) increase in body weight occurred
after treatment with testosterone alone and combined treat-
ment with GH. Mean body weight was slightly higher during
combined treatment, but this did not reach statistical signif-
icance. ECW increased significantly by 2.0 � 0.8 liter (P �
0.05) after testosterone treatment alone, and combined treat-
ment with GH caused an additional increase of 2.3 � 0.5 liters
(P � 0.006; Fig. 2B). Blood pressure was unchanged through-
out this part of the study. The plasma Aldo concentration
decreased significantly (P � 0.05) in response to both tes-
tosterone alone and combined testosterone and GH treat-

FIG. 1. Study 1 compares the effects of GH alone with com-
bined treatment with GH and testosterone (T). Ten patients
were randomized to either group A or group B. T was ad-
ministered as 250 mg testosterone enanthate, im, at wk 0
in group A and wk 4 in group B. GH was administered daily
at bedtime by sc injections at a dose of 1.5 IU for 6 wk. Study
2 compares T alone with combined treatment with T and
GH. Nine patients were randomized to either group A or B.
The same doses of GH and T were administered as in study
1. Arrows indicate the times of measurements. f, Period of
GH treatment. T, Time of testosterone administration.

TABLE 2. GH and GH plus testosterone (T) treatment in men with hypopituitarism (n � 10)

Measure Baseline GH GH � T P

IGF-I (nmol/liter) 8.4 � 0.9 28.4 � 3.2a 30.1 � 2.9a,b �0.001
T (mmol/liter) 2.6 � 0.6 1.8 � 0.7 12.2 � 1.9c 0.01
Body weight (kg) 83.8 � 5.3 84.3 � 5.3 84.4 � 5.3 0.3
ECW (kg) 15.6 � 0.9 18.0 � 1.2a 19.2 � 1.4a,b 0.007
Systolic BP (mm Hg) 146 � 9 144 � 7 143 � 7 0.5
Diastolic BP (mm Hg) 84 � 4 85 � 4 82 � 3 0.9
PRA (fmol AI/liter�sec) 336 � 83 391 � 127 383 � 106 0.2
Aldo (pmol/liter) 288 � 64 258 � 64 260 � 76 0.7
Aldo/PRA ratio 0.90 � 0.16 0.78 � 0.16 0.73 � 0.20 0.4
ANP (ng/liter) 4.80 � 1.22 4.61 � 1.91 4.39 � 1.19 0.9

Significance was determined by Friedman ANOVA, followed by Wilcoxon matched pairs test. Normative values: Aldo, 80–1000 pmol/liter;
PRA, 800–2100 fmol/liter�sec (divided by 214.2 � ng AI/liter�min); Aldo/PRA ratio, 0.4–1.6. AI, Angiotensin I; BP, blood pressure.

a P � 0.05 compared with baseline.
b P � 0.07 compared with GH alone.
c P � 0.05 compared with GH alone.
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ment. No changes occurred in PRA, the Aldo/PRA ratio, or
the serum ANP concentration.

Between-study comparisons

The average gain in body weight during testosterone treat-
ment alone in study 2 exceeded the change in body weight
during GH treatment alone in study 1 (1.5 � 0.4 vs. 0.5 � 0.3
kg; P � 0.05). There were no significant differences in the gain
in ECW induced by GH and testosterone, nor were there
differences between the gain in ECW induced by combined
GH and testosterone treatment between the two studies. No
significant correlations were found between changes in or

levels of IGF-I and ECW during the different treatment
periods.

Discussion

These two randomized, controlled trials have examined
the individual and combined effects of GH and testosterone
on ECW. The principal novel findings were that testosterone
alone significantly increased ECW and amplified the GH-
induced increase in ECW. By limiting the study to male
subjects with combined severe GH deficiency and hypogo-
nadotropic hypogonadism, the potentially confounding in-
fluence of stimulation of pituitary GH release by testosterone
was avoided.

The GH-induced increase in ECW has been consistently
reported and probably explains the dose-dependent symp-
toms related to fluid retention that commonly accompany
GH replacement in adults (28, 29). Only one study has quan-
tified changes in ECW using doses considered appropriate
for replacement therapy in adults (16). After 1 wk of treat-
ment, PRA, but not Aldo, levels increased, whereas after 12
months of treatment, the levels of both were not different
from baseline. In the present study, 2–6 wk of GH treatment
increased ECW without significantly affecting PRA or the
concentration of Aldo. These findings contrast with those of
previous shorter trials, which found stimulation of the RAAS
in normal subjects after treatment with supraphysiological
dose of GH, approximating two to three times that used in
the present study (11, 12). The collective observations suggest
that during physiological GH replacement, the sustained
increase in ECW is unlikely to be mediated through the
RAAS (16). This does not, however, rule out a role of RAAS
in the early sodium-retaining effect of GH that peaks 1–3 d
after commencing GH treatment (30).

This is the first controlled study demonstrating that tes-
tosterone increases ECW. Previous data concerning the ef-
fects of testosterone on plasma volume (19, 20) and urinary
sodium excretion (18, 21) are limited and conflicting. The
underlying mechanism is unknown, but several possibilities
exist. Testosterone could act directly on the kidney, because
androgen receptors are expressed in renal tubules (31). There
is evidence that androgens stimulate the expression of the
angiotensinogen gene in the kidney (32, 33). Therefore, an-
drogens could activate the local renal RAAS to stimulate

FIG. 2. Mean (�SE) ECW (kilograms) during study 1, comparing GH
alone with combined treatment with GH and T (A), and during study
2, comparing T treatment alone with combined T and GH treatment
(B). *, P � 0.05; and **, P � 0.01, compared with baseline values.

TABLE 3. Testosterone (T) and combined T and GH treatment in men with hypopituitarism (n � 9)

Measure Baseline T T � GH P

IGF-I (nmol/liter) 11.9 � 1.1 11.9 � 1.1 37.5 � 4.3a,b �0.001
Testosterone (mmol/liter) 2.0 � 0.5 14.8 � 1.9a 14.0 � 2.9a 0.002
Body weight (kg) 89.0 � 5.7 90.5 � 5.7a 90.8 � 5.9a 0.01
ECW (kg) 15.9 � 0.6 17.9 � 0.9a 20.2 � 1.1a,b �0.001
Systolic BP (mm Hg) 139 � 8 136 � 5 139 � 6 0.8
Diastolic BP (mm Hg) 87 � 4 86 � 4 86 � 4 0.8
PRA (fmol AI/liter�sec) 334 � 70 281 � 86 339 � 133 0.5
Aldosterone (pmol/liter) 313 � 63 226 � 58a 226 � 59a 0.02
Aldo/PRA ratio 0.93 � 0.20 0.86 � 0.25 0.71 � 0.19 0.5
ANP (ng/liter) 6.03 � 1.40 6.18 � 1.65 4.35 � 1.52 0.9

Significance was determined by Friedman ANOVA, followed by Wilcoxon matched pairs test. Normative values: Aldo, 80–1000 pmol/liter;
PRA, 800–2100 fmol/liter�sec (divided by 214.2 � ng AI/liter�min); Aldo/PRA ratio, 0.4–1.6. AI, Angiotensin I; BP, blood pressure.

a P � 0.05 compared with baseline.
b P � 0.05 compared with T alone.
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sodium and water retention through an autocrine or para-
crine mechanism (34). The epithelial sodium channel plays
an important role in the sodium balance, as demonstrated by
genetic abnormalities in its activity, such as in Liddle’s syn-
drome (35). It has recently been reported that androgens
increase mRNA expression of the �-subunit of the epithelial
sodium channel in a human renal cell line (36), providing a
potential mechanism of sodium and water retention by
testosterone.

Adults with GH deficiency have reduced ECW whether
adjusted for lean body mass or expressed as ECW/total body
water ratio (13, 37). After 4 wk of GH treatment of adult GH
deficiency patients, the level of ECW and the ECW/total
body water ratio was normalized without any significant
change in intracellular water (37). With continuing therapy,
no additional increase was noted in ECW, whereas there was
an increase in intracellular water, suggesting a preferential
increase in body cell mass (37). These data, based on bromide,
deuterium, and sodium dilution techniques, indicate that
most of the initial changes in lean body mass in response to
GH are related to changes in ECW.

Plasma Aldo levels fell significantly during testosterone
treatment, whereas a modest fall, which failed to reach sig-
nificance, occurred during GH treatment. During combined
treatments, a significant fall in Aldo was also observed. The
uniform trend toward a fall in Aldo levels observed with
single and combined treatments suggests an adaptive re-
sponse to ECW expansion. The observation that the fall in
Aldo was greater in the presence of testosterone suggests that
additional androgen-mediated mechanisms are probably in-
volved. Androgen receptors have been identified in human
adrenocortical cells and appear to exert an inhibitory influ-
ence. In vitro studies have demonstrated that testosterone
reduced the proliferation of human adrenal adenoma and
adrenocortical cancer cell lines (38). It is possible that tes-
tosterone directly suppresses Aldo biosynthesis or secretion,
but this remains to be demonstrated.

The effects of testosterone on the volume and distribution
of ECW could theoretically occur secondary to aromatization
to estrogen in peripheral tissues. Estrogen may cause fluid
retention through reduction of the plasma antidiuretic hor-
mone (arginine vasopressin)-plasma osmolality set point (39,
40) or stimulating the synthesis of hepatic angiotensinogen
(41), enhancing the overall activity of RAAS and leading to
sodium retention. However, this postulate is not supported
by the observation that urinary sodium excretion is increased
during oral contraceptive use (42) or that the plasma renin
concentration is reduced in women receiving estrogen treat-
ment (43). Moreover, estrogen reduces the plasma renin con-
centration, the activity of angiotensin-converting enzyme,
and the Aldo response to angiotensin II (44, 45). These actions
of estrogen putatively generated from aromatization of an-
drogens could explain the slight reduction in plasma Aldo
levels in response to testosterone in our study.

In hypophysectomized, castrated, male rats, testosterone
administration does not increase serum levels of IGF-I or
IGF-I gene expression in the liver (46). However, androgen-
dependent body hair growth is increased during GH re-
placement in men receiving stable testosterone treatment
(47), suggesting that tissue sensitivity to testosterone in hu-

mans is enhanced by GH action. This is supported by the
present findings that testosterone enhanced the effect of GH
on IGF-I production. Because IGF-I itself stimulates sodium
retention (48), it is possible that the greater increase in ECW
during combined treatment compared with GH alone may
have been IGF-I mediated. However, this cannot explain the
increase in ECW in response to testosterone alone, because
there was no change in the serum IGF-I concentration. This
observation provides additional support for the idea that
testosterone may exert direct effects on the renal tubules to
induce a sodium-sparing effect.

Few data exist concerning the influence of testosterone on
ANP and brain natriuretic peptide. These peptides are char-
acterized by natriuretic, diuretic, and vasodilatory activities
(49) and are stimulated by conditions of intravascular vol-
ume expansion. Short-term testosterone administration to
elderly men increased the plasma concentration of ANP (50),
possibly as a compensatory mechanism to testosterone-in-
duced fluid load or a direct effect of testosterone. In the
present study, ANP was not affected by either testosterone
or GH, indicating that it is unlikely to be a major mediator
of fluid retention induced by these two hormones.

In conclusion, we provided the first evidence that testos-
terone increased ECW volume, adding to the fluid-retaining
effects of GH during combined administration. Other endo-
crine systems known to regulate ECW were unaffected by
testosterone, suggesting a direct effect of testosterone on
renal tubular function. The positive interaction between tes-
tosterone and GH in sodium and fluid homeostasis high-
lights the greater susceptibility to the development of edema
and calls for caution in the initiation of GH replacement
therapy in men.
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