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S U M M A R Y
An algorithm for linear(ized) experimental design is developed for a determinant-based design
objective function. This objective function is common in design theory and is used to design
experiments that minimize the model entropy, a measure of posterior model uncertainty.
Of primary significance in design problems is computational expediency. Several earlier
papers have focused attention on posing design objective functions and opted to use global
search methods for finding the critical points of these functions, but these algorithms are too
slow to be practical. The proposed technique is distinguished primarily for its computational
efficiency, which derives partly from a greedy optimization approach, termed sequential design.
Computational efficiency is further enhanced through formulae for updating determinants
and matrix inverses without need for direct calculation. The design approach is orders of
magnitude faster than a genetic algorithm applied to the same design problem. However,
greedy optimization often trades global optimality for increased computational speed; the
ramifications of this tradeoff are discussed. The design methodology is demonstrated on a
simple, single-borehole DC electrical resistivity problem. Designed surveys are compared
with random and standard surveys, both with and without prior information. All surveys
were compared with respect to a ‘relative quality’ measure, the post-inversion model per cent
rms error. The issue of design for inherently ill-posed inverse problems is considered and an
approach for circumventing such problems is proposed. The design algorithm is also applied
in an adaptive manner, with excellent results suggesting that smart, compact experiments can
be designed in real time.

Key words: Image processing; Numerical solutions; Inverse theory; Downhole methods;
Electromagnetic theory.

1 I N T RO D U C T I O N

In exploration geophysics, standardized or ad hoc surveys cannot
guarantee optimally informative data sets; that is, data sets whose in-
versions assure high model accuracy or minimal model uncertainty.
For an arbitrary heterogeneous target, it is reasonable to conjecture
that there exists an ideal survey that optimizes the information con-
tent of the data and that standard survey geometries must almost
certainly be suboptimal in comparison.

The deliberate, computational manipulation of geophysical sur-
veys in order to create data with superior information characteris-
tics is termed optimal experimental design (OED). Tangentially, the
terms survey and experiment will be used interchangeably. OED is
distinguished principally by the fact that it treats design as a compu-
tational problem, and its prime objective is to create compact sets of
observations that produce superior data quality. Thus, experimental
design seeks to maximize the connection between the data collected
and the model from which they derive.

Geophysical constitutive equations are (typically) non-linear
functions that can be cast in terms of a forward operator g that
maps a model m to data d by means of an observation at ω,
viz.,

d = g (m, ω) . (1)

A set of observations,

� = {ω1, ω2, . . . , ωN } , (2)

constitutes an experiment, which governs collection of the data set;
the set of all experiments is experiment space; the set of all data
corresponding to individual observations is data space; and the
set of all earth models is model space. Each experiment can be
quantitatively ascribed a ‘quality metric’ indicating how strongly
it informs the connection between data and model space, and the
object of the designer is to search experiment space for the highest
quality mapping between data and model space.
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This article examines linear or linearized experimental design,
which proceeds from the linearization of eq. (1):

�d = G�m, (3)

where G is the sensitivity (Jacobian) matrix, comprising the M × D
partials of g(m, ω i ) with respect to the discretized model parameters
mj:

Gi j ≡ ∂g (m, ωi )

∂m j
=

⎡
⎢⎢⎢⎢⎣

g (m, ω1)T

...
g (m, ωi )

T

...

⎤
⎥⎥⎥⎥⎦ . (4)

The Jacobian and its inverse, G and G∗, respectively, are the objects
upon which linearized experimental design typically operates (e.g.
Atkinson et al. 2007). Curtis & Spencer (1999) and others have
pointed out that because eq. (3) is a linear approximation, it is valid
only in the neighbourhood of the Taylor expansion point in model
space, implying that G is only technically valid in this neighbour-
hood. If G depends on m, and the design objective function operates
on G, then the experimental design depends on m. For non-linear
inverse problems, an experimental design should ideally be opti-
mal with respect to the true solution and with respect to all points
in model space through which the inversion passes on its trajec-
tory to the true solution. Approaches to the fully non-linear design
problem can be found in the literature on Bayesian experimental
design methods (e.g. Sebastiani & Wynn 2000; van den Berg et al.
2003) and in novel methods for reducing non-uniqueness in non-
linear problems (Winterfors & Curtis 2008), but this article does
not delve into these. Instead, linearized design theory is adopted be-
cause its methodologies are currently more practicable, though less
general, than non-linear experimental design. However, we intro-
duce an adaptive design procedure that benefits from the expedience
of linearized design, potentially circumventing the computational
complexity of non-linear design.

The chief problem with geoscientific survey design is computa-
tional expense. There have been two reasons for this: first, design
is a challenging combinatorial optimization problem (Haber et al.
2008); second, many of the proposed design objective functions are
expensive to calculate. With regard to the former, Curtis (1999a),
Maurer et al. (2000), Barth & Wunsch (1990) and others have used
global search algorithms like the genetic algorithm, simulated an-
nealing, etc. to find critical points of their design objective functions.
Such algorithms are ideal for combinatorial optimization problems
like experimental design, but they are too slow to be practical for
many real problems. There is however an exceptional class of fast
algorithms – so-called greedy algorithms – that forms the basis for
the design methods introduced in this work. More is said about these
later.

Nearly all geoscientific design objective functions operate on G
or G∗, as pointed out above (Barth & Wunsch 1990; Rabinowitz
& Steinberg 1990; Maurer & Boerner 1998a,b; Curtis 1999a,b;
Curtis & Spencer 1999; Curtis & Maurer 2000; Maurer et al. 2000;
Stummer et al. 2002, 2004; Friedel 2003; van den Berg et al. 2003;
Curtis et al. 2004; Furman et al. 2004; Narayanan et al. 2004;
Routh et al. 2005; Wilkinson et al. 2006a; Furman et al. 2007).
These objective functions are readily understood in terms of the
eigenspectra of G (Curtis 1999a,b), and indeed many proposed
objective functions explicitly operate on the eigenspectrum (Barth &
Wunsch 1990; Curtis 1998; Maurer & Boerner 1998a; Curtis 1999b;
Maurer et al. 2000). However, Maurer et al. (2000) point out that

eigen-analysis takes O(N 3) operations, making it computationally
expensive. Even for objective functions that do not require eigen-
analysis but operate indirectly on eigenvalues through the trace
or determinant of (GT G)−1 (Kijko 1977; Rabinowitz & Steinberg
1990; Maurer et al. 2000; Narayanan et al. 2004), the computational
complexity still remains high, owing to the expense of inverting
GT G and/or taking its determinant.

Mindful that computational expense has been a hindrance to
practical OED, this paper introduces an efficient sequential de-
sign technique inspired by the works of Stummer et al. (2002,
2004), Wilkinson et al. (2006a) and Curtis et al. (2004). This ap-
proach is an example of greedy optimization (e.g. Papadimitriou &
Steiglitz 1998), which trades global optimality for faster computa-
tion times. The well-known det(GT G)−1 design objective function
is used throughout, and, critically, this function is made computa-
tionally efficient through the use of special update formulae. Ad-
ditionally, a simple, adaptive design procedure is introduced that
may serve as an alternative to (currently) impractical non-linear
design methods and which can be employed in near real time. We
demonstrate the methods on a synthetic single-borehole DC resis-
tivity problem. While the chosen example is somewhat artificial, we
emphasize that the paper is on survey design and this example does
not detract from that focus.

2 M E T H O D S

2.1 The OED objective function and update formulae

A common objective function in experimental design theory, and
the one used in this article, is

�D = ∣∣(GT G
)−1∣∣, (5)

which is minimized over the space of possible experiments (Box
& Lucas 1959; Rabinowitz & Steinberg 1990; Steinberg et al.
1995; Sebastiani & Wynn 2000; Narayanan et al. 2004). Since

(det GT G)−1 = det
(
GT G

)−1
, the design problem can also be ex-

pressed as the maximization problem,

�∗ = arg max
�

|GT G|, (6)

where � is the space of all possible experiments. The stationary
point(s) of eq. (5) have been shown to minimize the model en-
tropy (Sebastiani & Wynn 2000; van den Berg et al. 2003) or the
volume of model uncertainty (Narayanan et al. 2004), which are
mathematically equivalent measures of global model uncertainty
for linearized problems. Below we develop a novel approach for
finding quasi-stationary points of eq. (5) without the need to di-
rectly calculate expensive determinants or matrix inverses.

2.1.1 Rank-one updates to det AAT and det AT A

This section establishes update formulae for rapidly evaluating
det AAT or det AT A when rows are added to A. This anticipates
the situation where observations are sequentially added to an exist-
ing experiment, which corresponds to adding rows to the Jacobian
matrix. Proofs for all update formulae here can be found in the
Appendices.

Given a block matrix A′ = [AT BT ]T, where A ∈ R
m×n , B ∈ R

p×n

and m + p ≤ n, the determinant of A′A′T is given by

det(A′A′T ) = det(AAT ) det{B[I − AT (AAT )−1A]BT }. (7)
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Dividing by det(AAT ) and substituting aT for B (i.e., p = 1) yields

�1 ≡ det
(
A′A′T )

det
(
AAT

) = aT
[
I − AT

(
AAT

)−1
A

]
a. (8)

If m + p > n, the update for det A′T A′ is

det(A′T A′) = det(AT A) det[I + (AT A)−1BT B]. (9)

Dividing by det(AT A), substituting aT for B and manipulating terms
yields

�2 ≡ det(A′T A′)
det(AT A)

= 1 + aT (AT A)−1a. (10)

Because det AAT and det AT A are assumed known and fixed,
maximizing �1 or �2with respect to a satisfies the design criterion
in eq. (6). The utility of this fact is made clear in Section 2.3, when
the design algorithm is developed. Importantly, eqs (8) and (10)
involve only matrix–vector products, which are computationally
more efficient than explicitly evaluating determinants and inverses.

2.1.2 The Sherman–Morrison formula

The Sherman–Morrison formula (SMF) is an identity relating the
inverse of a matrix to the inverse of its rank-one update. Formally,
the SMF states

(A + uvT )−1 = A−1 − A−1uvT A−1

1 + vT A−1u
. (11)

The SMF provides a computationally inexpensive way to update a
matrix inverse without resorting to a full inverse calculation. Let
A′ = [ AT a ]T ∈ R

m+1×n where A ∈ R
m×n , a ∈ R

n and m + 1 ≥ n.
If AT A is invertible, then(

A′T A′)−1 = (AT A + aaT )−1 = (AT A)−1

− (AT A)−1aaT (AT A)−1

1 + aT (AT A)−1a
.

(12)

Since (AT A)−1 is assumed known, evaluating (A′T A′)−1 requires
only a few matrix–vector products, which is more efficient than
performing the full numerical inverse.

The situation is more complicated for A′A′T . If AAT is m × m,
then A′A′T is (m + 1)× (m + 1). The object is to relate the inverses
of two matrices of different dimensions. It is straightforward to
show that

(
A′A′T

)−1
=

(
AAT Aa

aT AT aT a

)−1

= 1

ν

[
ν(AAT )−1 + ααT −α

−αT 1

]
,

(13)

where

ν = aT
[
I − AT (AAT )−1A

]
a

α = (AAT )−1Aa.
(14)

Eq. (13) provides a way to evaluate(A′A′T )−1 cheaply, by avoiding
a full inverse computation.

Collectively, the Sherman–Morrison and determinant update for-
mulae provide an efficient way to quickly find observations satisfy-
ing eq. (6) without explicitly evaluating inverses or determinants.
These formulae will be critical for the speed of our design algo-
rithms introduced below.

2.2 OED considerations for DC resistivity

In practice, four electrodes are needed to make any single DC resis-
tivity measurement, two as the source dipole and two as the receiver
dipole. Noel & Xu (1991) and others (Xu & Noel 1993; Daily
et al. 2004; Stummer et al. 2004) have proven that, for any resistiv-
ity survey of N geoelectrodes, there are a total of

N (N − 1) (N − 2) (N − 3) /8 (15)

four-electrode observations available for experimentation, account-
ing for reciprocity and polarity switching. Noel & Xu (1991)
have further shown that the maximum number of independent
measurements is

SN = N (N − 3)

2
. (16)

That is, if one has identified a set of SN independent resistivity ob-
servations, then any other observation can be expressed as a linear
combination of these. If N = 20 geoelectrodes, for example, there
are 14535 possible four-electrode measurements but only 170 of
these are independent. This is one of the reasons why resistivity
inversion is nearly always non-unique: the amount of potential in-
formation a survey can offer is far smaller than is suggested by the
number of available observations.

Considering a generic linearization of the DC resistivity forward
problem,

G�m = �d, (17)

the fact that there are at most SN independent observations means
that the maximum attainable rank (MAR) of G cannot exceed
SN :

rank (G) ≤ SN = N (N − 3)

2
. (18)

In other words, G can never have more than SN non-zero singular
values. This concept is examined in Section 2.3.1.

2.3 Basic OED algorithm

Before describing the new design algorithm, an important detail
should be pointed out. The eigenvalues of GT G and GGT are iden-
tical up to zeros. Because the determinant operates on these eigen-
values (it equals their product), GT G and GGT effectively convey
the same information about the quality of a survey, but in two differ-
ent ways. The reason update formulae are given for inner and outer
products is because in the early stages of the algorithm, there will be
fewer observations than model parameters, so GGT will be full rank
while GT G will not; in later stages, GT G will be full rank while
GGT will not. Because their eigenvalues are the same, the trick
will be to use GGT when the design problem is ‘underdetermined’
and GT G when it is ‘overdetermined’. This avoids zero eigenvalues
which could render a determinant-based objective function useless.

Geoelectrical inverse problems are almost never full rank, how-
ever, and special consideration is made to accommodate this in
Section 2.3.1. Nevertheless, the purpose of this paper is to intro-
duce a design technique useful for a wide class of problems, so
the main algorithm is introduced first and specific modifications for
geoelectrical problems are discussed afterward.
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The following nomenclature is used in the basic OED algorithm:

�M, GM The master set of all permitted observations and its corre-
sponding Jacobian matrix.

�b, Gb The base set of observations in the designed survey and its
corresponding Jacobian matrix.

g Sensitivity kernel of a single observation [see eq. (4)].
k Iteration counter and the number of observations in �b.
s Number of observations in �M.
M Number of model parameters.

Basic sequential OED algorithm:

1. Set k = 1 and find the observation in �M whose sensitivity
kernel, g, is of maximum length (note: det gT g = gT g , so eq. 6
is satisfied). Set Gb = gT .

2. If k < M, update (GbGT
b )−1 using SMF; if k = M , evaluate

(GT
b Gb)−1 explicitly; else if k > M , update (GT

b Gb)−1 using
SMF.

3. If k < M, use eq. (8) to evaluate the candidacy of observations
in �M for transferal to �b. Eq. (8) can be efficiently executed by

�1( j) =
M∑
i=1

[(
I − GT

b

(
GbGT

b

)−1
Gb

)
GT

M

]2

i j
.

Else if k ≥ M, use eq. (11), which can be efficiently executed by

�2( j) =
k∑

i=1

[
Gb

(
GT

b Gb

)−1
GT

M

]2

i j
.

Note that j = 1, . . . , s .
4. Identify the winning candidate in �M that maximizes either �1

or �2 and transfer it to �b.
5. Set Gb ← [ GT g ]T where g is the sensitivity kernel in GM

corresponding to the winning candidate observation identified in
step 4.

6. Increment k ← k + 1.
7. Stopping criterion, e.g. if k is less than some desired number of

observations, go to 2; else exit.

The algorithm described above is plainly sequential; it proceeds
by identifying the best observation to add to an experiment (con-
ditional on the observations already in the experiment), adding it,
and repeating until a stopping criterion is met. This formulation
allows for repeat observations in the survey design, but it can easily
be modified if this is undesirable. This is an example of a greedy
algorithm (e.g. Papadimitriou & Steiglitz 1998), which is a method
of optimization that proceeds by making locally optimal updates
to a solution given the solution currently at hand. Only under strict
circumstances can greedy optimization algorithms give rise to glob-
ally optimum solutions, which is largely due to the fact that they
do not exhaustively search the entire space of possible solutions.
The utility of such algorithms lies in the fact that they execute far
more quickly than global optimization algorithms. The question is:
does the value gained in computing efficiency offset the value lost
in deviation from a globally optimum experiment? We look at this
question later in our synthetic examples.

2.3.1 Maximum attainable rank

Section 2.2 raised the possibility that the inverse problem is in-
herently ill posed, meaning the model parameters cannot be fully

resolved, no matter what is the number of data observations. The
MAR, denoted ζ , defines the highest rank any row-deleted subma-
trix of GM can attain, which is plainly

ζ ≡ rank (GM) . (19)

Special care is needed in survey design when the inverse problem
is inherently ill posed, which happens if ζ < M. In such cases,
any row-deleted submatrix, Gb of GM, that has more rows than
the MAR must also have non-trivial left and right null spaces and
hence det GT

b Gb = det GbGT
b = 0. This makes �1 and �2 both

degenerate (they vanish or become indeterminate), rendering them
useless in our algorithm.

There are a number of ways of dealing with this problem; here,
we focus on a form of information compression via singular value
decomposition (SVD). If it is unknown a priori that the inverse
problem is inherently ill posed, it shall become apparent when �1

goes to zero for all candidate observations before the number of
observations in the base experiment reaches M. This is because
�1 is maximized at each design step, so det GbGT

b must be non-
negative and vanishes only if ζ < M. In fact, it should be clear �1

automatically vanishes for all candidate observations at iteration ζ

+ 1, when the number of observations exceeds the MAR by one.
To circumvent this problem, we use the SVD of GM,

GM = U�V T , (20)

where GM has ζ non-zero singular values. GM can be exactly ex-
pressed by its truncated singular value decomposition,

GM = Ũ�̃Ṽ T , (21)

such that �̃ ∈ R
ζ×ζ , Ũ ∈ R

ζ×ζ and Ṽ ∈ R
M×ζ . We transform Gb

and GM by right multiplication with Ṽ to produce

G′
b = GbṼ

G′
M = GMṼ,

(22)

so that the number of columns in G′
b and G′

M is now ζ (ζ < M).
Critically, Ṽ is an isometric projection operator – it maps points
in model space to a transformed domain while preserving relative
distances and angles. Due to this property, the rows of G′

b and Gb

have the same L2 norms, and the angles between their row vectors
are also preserved. This means

det G′
bG′T

b =
ζ∏

i=1

σ 2
i , (23)

where the σ i ’s are the non-zero singular values of Gb and all the
singular values of Gb

′. The same applies for G′
M and GM. Effec-

tively, right multiplication by Ṽ eradicates the zero singular values
in Gb and GM, compressing the available information into a lower
dimensional space where �1 and �2 are non-degenerate.

The following modification to step 3 can be made:

Sequential OED Algorithm: Modification 1 (Diagnosis)

3′. If k < M, evaluate candidacy via

�1 ( j) =
M∑
i=1

[(
I − GT

b

(
GbGT

b

)−1
Gb

)
GT

M

]2

i j
.

.
If �1( j) = 0 for all j, the inverse problem is ill
posed. Calculate the truncated SVD of GM (GM =
Ũ�̃Ṽ

T
); evaluate G′

b and G′
M, vis-à-vis (22);
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Update Gb ← G′
b GM ← G′

M and M ← ζ .

Else, if k ≥ M, evaluate candidacy via

�2 ( j) =
k∑

i=1

[
Gb

(
GT

b Gb

)−1
GT

M

]2

i j
.

Note that j = 1, . . . , s.

If, on the other hand, it is known a priori that the inverse problem
is inherently ill posed, it is possible to perform the compression at the
beginning of the algorithm, precluding the diagnostic modification
above. The following step can simply be included at the beginning
of the basic algorithm:

Sequential OED algorithm: Modification 2 (Foreknowledge)

0. If the problem is inherently ill posed, determine G′
M by

eq. (22) and update GM ← G′
M.

The main detriment to modifications 1 and 2 is the singular
value decomposition. It is worth noting though that the SVD and
associated ‘matrix compressions’ need to be evaluated only once.
Once the compression is done, neither �1( j) nor �2( j) will evaluate
to zero for all j because the zero singular values of GM have been
removed. This approach ‘frontloads’ the additional computational
expense of the SVD and matrix compression. Nonetheless, if GM is
large, it may be infeasible to calculate its SVD. In that case, it may
be possible to perform the compression through modified Gram–
Schmidt orthogonalization. In fact, any truncated orthogonalization
of GM should suffice for the compression step.

Another way to get around the problem of determinant-based
survey designs for ill-posed inverse problems is to design with
respect to the regularized inverse problem. Constraints usually force
the inverse problem to be well posed, which would free the designer
from the SVD approach proposed here. Note that if data noise is
independent and identically distributed (iid), the posterior model
covariance matrix is Cm ≡ σ 2

d (GT G)−1. Clearly, then �D (eq. (5))
is directly proportional to the determinant of Cm. For regularized
inverse problems, the model covariance matrix is

Cm = σ 2
d

[
GT G + λ

1 − λ
LT L

]−1

GT G

[
GT G + λ

1 − λ
LT L

]−1

(24)

for iid data noise, where L is a generic regularization operator, and λ

is parameter from 0 to 1 that governs the tradeoff between data rms
error and the constraint imposed by L. It is thus natural to replace
�D with

�′
D = det

[
GT G + λ

1 − λ
LT L

]−1

GT G

[
GT G + λ

1 − λ
LT L

]−1

.

(25)

The problem with this objective function – which is why it has not
been adopted here – is that λ is a dynamic variable in the inversion,
changing from iteration to iteration by the Levenberg–Marquardt
algorithm. If λ were fixed, one could easily adapt the basic algorithm
to accommodate � ′

D, but different values of λ will mediate different
survey designs. On the other hand, since this approach employs
linearization, it effectively considers a single iteration of a non-
linear inversion. It is therefore possible (and sometimes appropriate)
to incorporate fixed λ in such cases, though we have not done so
here. Haber et al. (2008) consider design methods for fixed λ.

2.3.2 MAR and experiment size

If the MAR is ζ , should the survey be deliberately designed to have
exactly ζ design points, or is there added value in designing a larger
survey?

This is answered in part by considering the well-posed case,
where ζ = M. It is well known that the posterior model uncer-
tainties decrease as data set size increases. The simplest form of
posterior model covariance, mentioned in the last section, is Cm

≡ σ 2
d(GT G)−1, where σ 2

d is the variance of iid data noise. If each
observation were repeated once, creating an augmented Jacobian
G′ = [GT

... GT ]T , the posterior model covariance would become
C′

m = Cm/.2. The posterior model variances are halved by dou-
bling the size of the experiment. There is clearly added value in
this case to design surveys with more than ζ = M observations.
As discussed previously, an explicit relationship exists between the
posterior model covariance matrix and the design objective func-
tion in eq. (5). Minimizing eq. (5) minimizes a global measure on
the covariance matrix, so there is a direct connection between the
design criterion, posterior model uncertainties and survey size.

The situation is actually no different when the MAR is less than
M. If the inverse problem is inherently ill posed, model regular-
ization is used to stabilize the inversion and to produce a unique
solution. Taking as the posterior model covariance matrix the ex-
pression in eq. (25), if the experiment is again doubled, the posterior
model covariance matrix is again approximately C′

m ≈ Cm/2. The
exact factor by which Cm is divided is more complicated (and de-
pends on λ), but the gist of the argument is unchanged. Increasing
the survey size beyond the MAR reduces posterior model uncer-
tainty, and this is true irrespective of whether the MAR is less than
or equal to the number of model parameters.

2.4 Borehole resistivity modelling and inversion

The synthetic example we have chosen to test our OED method
on is a simple, single-borehole DC resistivity problem. Researchers
have examined various aspects of axially symmetric borehole DC
resistivity modelling and inversion for more than two decades (e.g.
Yang & Ward 1984; Zemanian & Anderson 1987; Liu & Shen
1991; Zhang & Xiao 2001; Spitzer & Chouteau 2003; Wang 2003).
These methods model the earth with a set of rectangular prisms that
are treated as being axially symmetric about the borehole. Axial
symmetry imposes a strong assumption on the lithological structure
of the earth, for there are only a limited number of scenarios where
this symmetry attains, particularly horizontal layering. Despite the
strong restriction, axially symmetric geoelectrical imaging is useful
in settings where data can only be collected from a single borehole,
despite the limitation that the azimuthal position of a discrete three-
dimensional anomaly cannot be pinpointed because of the non-
directionality of source and receiver electrodes.

The borehole problem is cast in cylindrical coordinates (Fig. 1),
and the forward and inverse problems are discretized using a trans-
mission network analogy (Swift 1971; Madden 1972; Zhang et al.
1995; Shi 1998) adapted to cylindrical coordinates. The inversion is
executed by non-linear least squares, using an L1-norm regulariza-
tion constraint on the gradient of the model parameters. Formally,
the inversion objective function is

arg min
m

(1 − λ) ‖d − Gm‖2
2 + λ ‖∇m‖1 , (26)

where d is the data vector, G is the Jacobian matrix and m is
the model vector. The Levenberg–Marquardt algorithm (Levenberg
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150 D. A. Coles and F. D. Morgan

Figure 1. Cartoon of the borehole model. With a single borehole, resistivity is treated as being azimuthally invariant, reducing the problem from 3-D to 2.5-D.

1944; Marquardt 1963) is used to regulate λ. Expanded details of
the inversion can be found in the Appendix.

2.5 Synthetic trials

The discretized model in Fig. 2 was used for testing the design
method. The model depicts a 100-�m background with 20- and
500-�m embedded anomalies. The resistive anomaly has been de-
liberately placed partially in the ‘outer space’ region (Maurer &
Friedel 2006) of the survey electrodes. It is widely recognized that
the sensitivity of resistivity arrays drops off rapidly outside their ‘in-
ner space’, the rectangular region adjacent to the array and bounded
by the outermost electrodes. This is why, for example, dipole–dipole
surveys produce geometric distortions of the inversion image at
tomogram edges (Shi 1998). The model therefore simulates any
situation where a survey has not, or cannot, incorporate anoma-
lies in its inner space, or simply where no prior information was
available to guide electrode placement. We have deliberately placed
an anomaly straddling this ‘inner/outer space’ to establish whether
the design method can provide any improvement there. To be clear,
the purpose of the design criterion is to improve overall imaging
accuracy through minimization of expected model uncertainties; it
is not simply to improve image resolution in the ‘outer space’. The
design technique might indeed improve resolution in this region,
but this should be understood as a tangential benefit mediated by
the true objective of the design criterion as just stated.

Ten borehole electrodes were simulated from the surface to a
depth of 9 m at equispaced 1-m intervals. With 10 electrodes,
eq. (15) indicates that there are 630 possible unique four-electrode
observations. A 26 × 16 irregular mesh was used (including bound-
ary condition cells), with cell sizes increasing proportionally as their
distance from the borehole array (Fig. 3), so there are 416 model
parameters in the inverse problem.

Eq. (16) tells us that the MAR for 10 electrodes used in four-
electrode setups is 35. Since there are 416 model parameters, the
un-regularized inverse problem is ill posed. The design algorithm
thus employs modification 2 in Section 2.3.1, compressing the di-
mensions of GM from 630 × 416 to 630 × 35. This eliminates

Figure 2. Resistivity model. Ten electrodes (arrows) are placed at equis-
paced intervals of 1 m along the borehole, from the surface to a depth of
9 m. Background resistivity is 100 �m and anomalies A and B are 20 and
500 �m, respectively. The discretization is an irregular mesh, as suggested
by the grid overlay, with cell size increasing as the distance from the survey.
The mesh extends beyond what is shown here to accommodate boundary
blocks needed for modelling accuracy (see Fig. 3). A total of 416 cells
(model parameters) are used.

zero singular values and ensures that the design algorithm will op-
erate properly for experiments of more than ζ observations. This
dimension reduction has the added advantage of making the design
algorithm faster.

C© 2009 The Authors, GJI, 178, 145–158

Journal compilation C© 2009 RAS

Downloaded from https://academic.oup.com/gji/article-abstract/178/1/145/2065780
by guest
on 30 July 2018



Fast, sequential experimental design 151

Figure 3. The 26 × 16 discretized mesh, at three different magnifications, that is used for forward and inverse modelling. The 10 borehole electrodes are
shown in the right-hand panel.

2.5.1 Random, standard and designed experiments with
no prior information

Designed experiments are compared with randomly generated ones
in a Monte Carlo simulation. Experiments were designed for a ho-
mogeneous earth model but deployed on the heterogeneous model in
Fig. 2, which is one way of designing surveys when no prior geolog-
ical information is available. Survey performances were evaluated
for increasing numbers of observations, from 28 to 140. For each
experiment size, 25 random experiments were generated and their
data were synthesized and inverted. A dipole–dipole survey of 28
observations and the ERL survey (Earth Resources Lab, M.I.T.)
with 140 observations were also compared as standard surveys (see
Appendix for details).

2.5.2 Two-stage design with prior information

An approach to non-linear design problems is to create adaptive
survey strategies that take advantage of linearized design. We pro-
pose an adaptive design strategy that executes in two stages. In stage
one, a standard (or optimized) data set is collected and inverted to
produce a reference model. The first stage can take advantage of
prior information if any is available, but such information is neither
needed nor assumed. In stage two, a survey is tailored to the ref-
erence model and a second data set is collected and inverted. The
reference model serves as prior information in stage two.

The technique is demonstrated by taking as a reference the inver-
sion result from a dipole–dipole data set of 28 observations (stage
one). In stage two, experiments of 28 and 140 observations were
designed with respect to the reference model and were compared
with dipole–dipole and ERL surveys, both of which were also used
as second-stage surveys. Additionally, a Monte Carlo study was
conducted using 100 random 28-observation surveys, which were
compared as second-stage surveys with a designed experiment of
the same size.

2.5.3 Greedy design

The primary contribution this paper makes to geoscientific sur-
vey design is not a new objective function – as noted earlier,
determinant-based design objective functions have been around a
long while – but rather a greedy optimization approach for find-
ing stationary points of this objective function. To demonstrate
the computational savings of our design methodology and also to
demonstrate the disadvantages of greedy optimization, we compare
it with a genetic algorithm, which produces superior experiments

Figure 4. Experiment performances, measured by post-inversion model per
cent rms error for the model in Fig. 2. Random, designed and standardized
surveys are represented. The ‘random’ curve shows the approximate p25,
p50 and p75 for inversions done with 25 randomly generated surveys (25
for each experiment size). Survey designs were generated with respect to a
homogeneous reference model but deployed on the model in Fig. 1. Data
were noiseless.

(according to a determinant design criterion) but which takes longer
to execute.

3 R E S U LT S A N D D I S C U S S I O N

3.1 Random, standard and designed experiments

Fig. 4 shows Monte Carlo experiment performance curves compar-
ing random, standard and designed experiments of different sizes.
Three important features are apparent. First, designed experiments
produce smaller model per cent rms errors than standard surveys.
Second, designed experiments consistently produce smaller relative
modelling errors than the p50 for random experiments and are gen-
erally as small, or smaller, than the p25 (meaning designed surveys
are ∼75% likely to be superior to random surveys).

Third, modelling errors asymptote for designed surveys after
about 45 observations. This is probably associated with the MAR,
which is 35 in this case. Modelling errors naturally decrease as
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experimental size increases, and the rate of decrease will be most
rapid when experiments have fewer observations than the MAR,
because each additional observation potentially reduces the solu-
tion null space by one dimension. However, the design performance
curve does not asymptote exactly at 35 observations, which would
be expected for noiseless data. This is probably because the con-
ditioning of the Jacobian is initially poor at 35 observations, even
though it has reached the MAR. Additional observations beyond this
will further increase the determinant of GT G, thereby improving
the conditioning and quickly causing errors to asymptote.

While designed surveys produce smaller model per cent rms
errors than most random surveys, they are evidently not superior to
all such surveys. It is important to remember that the sequential OED
algorithm is crafted to be expeditious, and it consequently produces
experiments that are not necessarily globally optimal. This means
that there is some probability that randomly generated experiments
can outperform ones designed by this method. Still, the odds are
in favour of the design methodology, as is clear in Fig. 4, and
it is worth stressing that the designed surveys outperform both
standard experiments in this demonstration. At the end of the day,
globality can only be guaranteed by global search algorithms, but
their computational complexity is high. We revisit this tradeoff in
Section 3.3.

Another important point to keep in mind is that the surveys
designed in this exercise were optimized with respect to a homo-
geneous earth, not the heterogeneous model in Fig. 2 on which
they were deployed. It is a revelation that geoelectrical experiments
designed for a homogeneous half space can produce such superior
results for a heterogeneous earth. This is an indication of how much
room for improvement there is in geoelectrical data acquisition.

3.2 Two-stage design with prior information

The preceding surveys were designed without prior information, but
the design technique can easily be set up for adaptive experimental
design, where surveys are adapted according to (prior) information
that becomes available over time.

Fig. 5 shows results for two-stage design technique. With prior in-
formation this adaptive strategy performs well. The 28-observation
design (panel a) reduced model per cent rms errors by over an
order of magnitude compared to the initial survey. Importantly,
the designed survey captured the correct shape of the 500-�m
resistive anomaly, which was misrepresented in the original image.
Compared with the 28-observation examples in Fig. 4, this small,
adapted experiment performs exceptionally. Panel (b) shows the re-
sult for a 140-observation designed experiment. The model per cent
rms error for this designed experiment is better than the result in
panel (a) but only marginally, suggesting that the smaller experi-
ment would practically suffice in view of financial considerations.
Both designed experiments outperform the ERL survey shown at
right in panel (b).

These results are encouraging: small, adapted experiments, using
our sequential design methodology, can significantly improve data
quality without resorting to computationally expensive non-linear
design techniques. In panel (a), only 56 observations were made
(28 for the dipole–dipole and 28 for the designed survey). By com-
parison, the ERL survey used 140 observations without producing
a better image. The conclusion is plain: rather than collect a large
data set, which might present a significant financial obstacle, this
simple two-stage technique can be employed to produce superior
imaging capabilities at a fraction of the cost.

To determine whether the 28-observation design produced a sta-
tistically significant improvement in the acquisition strategy, it was
compared with 100 random experiments of 28 observations em-
ployed as second stage surveys. The histogram in Fig. 6 shows the
result; the experiment designed with prior information from the
reference model outperformed more than 95% of random surveys,
showing that the technique produces experiments whose informa-
tion content is statistically significantly superior.

3.3 Greedy design

Fig. 7 shows the CPU time for experimental designs of increasing
numbers of observations. All computations were carried out on an
HP laptop with dual 2 GHz processors and 2 GB RAM. The key
point is that the sequential OED methodology executes in a matter
of seconds. This is in contrast to traditional global search methods
that must evaluate the objective function in eq. (5) thousands or mil-
lions of times. Importantly, global search methods must explicitly
evaluate eq. (5) for each trial experiment, without the benefit of nu-
meric tricks like the update formulae in Section 2.1. Consequently,
global search methods require orders of magnitude more CPU time
than are needed for our fast, sequential design algorithm.

The demonstration problem in this paper is small – there are
only 630 possible observations and 416 model parameters, mak-
ing GM manageably small. Larger 2.5 D geoelectrical problems
can easily have tens of thousands of permitted observations and
thousands of model parameters. However, this should pose lit-
tle problem for this design procedure because it relies on update
formulae, an approach also adopted in part by Wilkinson et al.
(2006b). Explicit evaluation of a determinant or matrix inverse is an
O(n3) operation, but these are replaced by matrix–vector multiplica-
tions, which are O(n2) operations. The computational complexity
is therefore probably comparable to the sequential design proce-
dures outlined by others (Curtis et al. 2004; Stummer et al. 2004),
though it is claimed that Stummer et al.’s procedure is actually O(n)
(Wilkinson et al. 2006b). Moreover, that resistivity data sets are gen-
erally information-limited, as discussed in Section 2.2, means that
the master Jacobian, GM, can be usefully compressed to have only
N (N − 3)/2 columns, as per eq. (16). As noted elsewhere, this op-
eration needs to be performed only once, the consequence of which
is that the dimensions of GM can be losslessly reduced, making
the design algorithm faster to execute. In this paper, we have used
the truncated SVD to effect this compression but recognize that the
SVD itself may be intractable for large problems. We have suggested
that the compression operation can equally be effected through use
of the modified Gram–Schmidt method or any other technique that
rapidly finds an orthonormal basis spanning the range of GM.

Fig. 8 compares the CPU time of our sequential design method
with that for a genetic algorithm (a global search algorithm) maxi-
mizing the same design objective function. The same earth model in
Fig. 2 was used in both design cases. The objective value (det GT G)
of each survey design is plotted against the number of observations.

The conclusions to be drawn from Fig. 8 are clear. First, the
slope of the sequential design curve is steeper than the slope for
the global design curve. This means that the quality of sequentially
designed surveys increases more rapidly per unit of computation
time than that for globally designed surveys. Second, the disparity
between the quality of sequentially and globally designed surveys
decreases as the number of observations increase. In effect, the
larger the experiment, the closer to global optimality comes the
sequential design algorithm. Hence, the sequential design produces
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Figure 5. Results of two two-stage, adaptive designs. Post-inversion model per cent rms errors are shown in the top right corner of all panels. Data were
noiseless. The stage-one survey in both examples is the 28-observation dipole–dipole survey (left-hand panels). (a) Results for a 28/28 design (28 observations
for the dipole–dipole survey, 28 for the designed experiment). (b) Results for a 28/140 design (middle panel) and those for a 28/140 ‘standard’ survey (right-hand
panel; stage one: 28-observation dipole–dipole survey; stage two: 140-observation ERL survey).

suboptimal surveys that approach optimality as the size of the ex-
periment increases and at rate significantly faster than global opti-
mization strategies.

4 C O N C LU S I O N

A novel algorithm for linear(ized) sequential experimental design
was developed and demonstrated. The design objective function
was det GT G, which is common to design theory. This objective
function is known to be a proxy for global model uncertainty, the
maximization of which is a common experimental design objective.
Determinant-based design objective functions are computationally
expensive to evaluate, making them impractical for real-world ap-

plication. Critically, we introduced update formulae that minimize
this computational expense in a greedy, sequential algorithmic
framework.

Several demonstrative examples were provided, showing the util-
ity of the design technique for a simple 2.5-D borehole example.
The first of these was a design problem with no prior information
wherein experiments were designed with respect to a homogeneous
earth model but deployed on a heterogeneous target. Designed ex-
periments in this investigation were shown to be statistically superior
to random or standard surveys deployed on the same target.

A novel, adaptive experimental design procedure was also in-
troduced that avails itself of prior information and which proceeds
by using computationally efficient linearized design theory. Results
demonstrated that this adaptive sequential design method can be
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Figure 6. Histogram showing the frequency distribution of model per cent
rms errors for random experiments of 28 observations executed as second-
stage surveys, compared with an adapted experiment also executed as a
second-stage survey (black line). The data were noiseless. The input model
for all inversions was the stage-one dipole–dipole inversion in Fig. 5. The
black line at left shows the model per cent rms error attained for the adap-
tively designed experiment of 28 observations. The model per cent rms
error of the designed experiment is in the lowest 5th percentile, meaning it
outperformed 95% of the random experiments.

Figure 7. Computational expense for the sequential design algorithm.

usefully applied in situations where incomplete or inaccurate prior
information is available. Inversions using adaptively designed sur-
veys produced statistically significant improvements in model errors
as compared with random and standard surveys, suggesting that the
approach can serve as an effective alternative to computationally
expensive non-linear design techniques.

Of primary significance is the development of a greedy algorithm
methodology that designs surveys by sequential, local optimization
of the determinant-based objective function. This methodology is
further enhanced by update formulae that reduce computational
complexity from O(n3) to O(n2). In contrast, it was shown that
a comparable global search algorithm takes orders of magnitude
more time to produce an OED. On this fact alone, it is easy to

Figure 8. Sequential design versus global optimization. The design objec-
tive function, det GT G, is plotted against CPU time for designs produced
by the sequential design algorithm (squares) and a genetic algorithm (dia-
monds). Numbers next to the ‘Sequential’ and ‘Global’ icons indicate the
number of observations for which the experiments had been designed.

appreciate that this design technique can realize substantial time
savings compared with global methods.

Lastly, it was seen that the quality of sequentially designed exper-
iments approaches global optimality as the size of the experiment
increases. Thus, the new algorithm not only requires a fraction of
the computation time but it also approaches global optimality as the
size of the experiment increases.
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A P P E N D I X A : D I P O L E – D I P O L E S U RV E Y

The dipole–dipole survey is tabulated below. A and B designate the
positive and negative transmitter electrodes, respectively; M and N
designate the positive and negative receiver electrodes, respectively.
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A P P E N D I X B : E R L S U RV E Y
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A P P E N D I X C : P RO O F S F O R U P DAT E S
T O det AAT

Given a block matrix A′ = [AT BT ]T ∈ R
(m+p)×n , where A ∈ R

m×n ,
B ∈ p×n and m + p ≤ n, the determinant of A′A′T is given by

det(A′A′T ) = det(AAT ) det{B[I − AT (AAT )−1A]BT }. (C1)

Proof: The auto-outer product of A′is

A′A′T =
[

AAT ABT

BAT BBT

]
. (C2)

Transform (C2) by the following right multiplication:[
AAT ABT

BAT BBT

] [
I −(AAT )−1ABT

0 I

]

=
[

AAT 0
BAT B(I − AT (AAT )−1A)BT

]
.

(C3)

Taking determinant produces

det
(
A′A′T )

det

([
I −(AAT )−1ABT

0 I

])

= det

([
AAT 0
BAT B(I − AT (AAT )−1A)BT

])
,

(C4)

and taking advantage of the fact that the determinant of a block
upper (or lower) triangular matrix is the product of the determinants
of its diagonal blocks (Golub & Van Loan 1996), the second and
third determinants in eq. (C4) reduce to

det

([
I −(AAT )−1ABT

0 I

])
= 1

det

([
AAT 0
BAT B(I − AT (AAT )−1A)BT

])

= det (AAT ) det(B(I − AT (AAT )−1A)BT ). (C5)

Substituting (C5) into (C4) completes the proof.
Dividing (C1) by det(AAT ) and substituting the vector aT for the

matrix B, we have

�1 ≡ det (A′A′T )

det (AAT )
= aT (I − AT (AAT )−1A)a. (C6)

Because I −AT (AAT )−1 A is idempotent, �1 can also be expressed
as

�1 = ‖(I − AT (AAT )−1A)a‖2. (C7)

Tangentially, eqs (C6) and (C7) express the squared norm of the
projection of a onto the row null space of A (because AT (AAT )−1A
is the projection matrix of A).

A P P E N D I X D : P RO O F S F O R U P DAT E S
T O det ATA

Given a block matrix A′ = [ AT BT ]T ∈ R
(m+p)×n , where A ∈

R
m×n , B ∈ R

p×n and m + p > n, we can find the determinant of
A′T A′ by starting with the expression

det

([
I B
0 I

] [
I −B

(AT A)−1BT I

])

= det

[
I + B(AT A)−1BT 0

(AT A)−1B I

]
,

(D1)

which expands to

det

([
I B
0 I

])
det

([
I −B

(AT A)−1BT I

])

= det

[
I + B(AT A)−1BT 0

(AT A)−1B I

]
.

(D2)

By virtue of the identity

det

([
W X
Y Z

])
= |W| |Z − YW−1X|; (D3)

it follows that

|I + (AT A)−1BT B| = |I + B(AT A)−1BT |; (D4)

hence,

|A′T A′| = |AT A| |I + (AT A)−1BT B|
= |AT A||I + B(AT A)−1BT |. (D5)

Defining B = aT yields

|A′T A′| = |AT A| |1 + aT (AT A)−1a|
= |AT A| (1 + aT (AT A)−1a) . (D6)

Note that

aT (AT A)−1a = aT (AT A)−1AT A(AT A)−1a,

= ‖A(AT A)−1a‖2 (D7)

so

|A′T A′| = |AT A| (1 + ‖A′(A′T A′)−1b‖2). (D8)

Dividing by det(AT A) yields

�2 ≡ det(A′T A′)
det(AT A)

= 1 + aT (AT A)−1a = 1 + ‖A(AT A)−1a‖2.

(D9)

This last expression is well-known in design theory and is used
for designing so-called D-optimal experiments (e.g. Atkinson
et al. 2007). It was independently published by Fedorov (1972)
and Wynn (1970).

A P P E N D I X E : P RO O F S F O R U P DAT E S
T O ( AAT) −1

Proofs of the SMF for updates to (AT A)−1 can easily found in any
good reference. However, updates to (AAT )−1 are not so straight-
forward, as the dimensions of AAT change if one or more rows are
appended to A.

Given a block matrix A′ = [AT BT ]T ∈ R
(m+p)×n , where A ∈

R
m×n , B ∈ R

p×n and m + p > n, it is straightforward to algebraically
derive the inverse of A′A′T , which is

(
A′A′T )−1 =

(
AAT ABT

BAT BBT

)−1

=
( (

AAT
)−1 + ��−1�T −��−1

−�−1�T �−1

)
,

(E1)

where

� ≡ (AAT )−1ABT

� ≡ B[I − AT (AAT )−1A]BT . (E2)
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Defining B = aT , eq. (E1) simplifies to

(
A′A′T )−1 =

(
AAT Aa
aT AT aT a

)−1

= 1

γ

(
γ (AAT )−1 + ϕϕT −ϕ

−ϕT 1

)
,

(E3)

where

ϕ ≡ (
AAT

)−1
Aa

γ ≡ aT [I − AT (AAT )−1A]a. (E4)

A P P E N D I X F : F O RWA R D A N D I N V E R S E
M O D E L L I N G

The model was discretized into an irregular mesh with cell size in-
creasing as a function of distance from the borehole electrodes
(Fig. 3). Resistivities were treated as azimuthally invariant, per
Fig. 1. The large, distant blocks are needed to help accurately pre-
dict electrical potentials and electrode sensitivities near the bore-
hole. Modelling was done through an adaptation of the transmission
network analogy for cylindrical coordinates.

The inversion was done by non-linear least squares and is de-
scribed below. The objective function combines data rmse and L1

smoothness regularization:

� (m) = (1 − λ) ‖d − Gm‖2
2 + λ ‖∇m‖1 , (F1)

where d is the data vector, G is the Jacobian, m is the model param-
eter vector, ∇m is the spatial gradient of the model, λ is the tradeoff
parameter between data rmse and the model smoothness constraint.
The tradeoff parameter varies dynamically from iteration to iteration
and is controlled by the Levenberg–Marquardt algorithm.

Consider the 1-norm of ∇m in eq. (F1); this is called total vari-
ation regularization in inverse theory and is inspired by methods
of image reconstruction and denoising from digital imaging theory
(Rudin et al. 1992). It has the nice property that it permits sharp
boundaries in the solution of inverse problems (Rudin et al. 1992),
which is why it has been adopted in this work.

In addition, the inversion has been further stabilized by bounding
resistivity values to between 0 and 104 �m. This was effected

through the simple parameter substitution,

mi = 104

1 + exp (γi )
, (F2)

where mi is the resistivity of the ith cell and γ i ∈R is the substitute
variable for which the inversion formally solves. The chain rule is
used to express the partials of the forward operator, call it g, with
respect to γ . If G = ∂g/∂m and S = ∂m/∂γ then

GS = ∂g

∂m

∂m

∂γ
= ∂g

∂γ
. (F3)

Non-linear updates in the inversion code therefore take the form

�γ = [(1 − λ)ST GT GS + λL̃T L̃]−1

[(1 − λ)ST GT �d − λL̃T L̃γ ], (F4)

where �d is the residual between observed and predicted
data.

The matrix L̃T L̃ relates to the L1 norm of ∇m and depends on a
modification to the ordinary first difference matrix, L. The 1-norm
of the gradient of m is approximated by

‖∇m‖1
∼= ‖Lm‖1 = |Li j m j |, (F5)

using Einstein notation. Following the ideas of Scales &
Gersztenkorn (1988), the partials of (F5) with respect to m are
given by

|Li j m j | ∂

∂m
= LT RLm, (F6)

where R ≡ diag(|Li j m j | + ε)−1 and ε is a small pre-whitening term
to prevent blow-up if any element of Lijmj is zero. Letting Lr and Lz

denote the ordinary 1st-difference operators in the radial and depth
directions, respectively, we therefore define the partials of ‖∇m‖1

as

L̃T L̃m ≡ (
LT

r Rr Lr + LT
z RzLz

)
m (F7)

and hence

L̃T L̃ ≡ LT
r Rr Lr + LT

z RzLz . (F8)
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