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With the purpose of clarifying characteristic difference of the optimum collective submanifolds 
between in nonresonant and resonant cases, we propose an improved method of solving the basic 
equations of the self-consistent collective-coordinate (See) method, which describes optimum 
("maximally-decoupled") large-amplitude collective motion within the time-dependent Hartree-Fock 
theory. It is shown that, in the resonant cases, there inevitably arise essential coupling terms which 
break the maximal-decoupling property of the collective motion, so that we have to extend the 
optimum collective submanifold so as to properly treat the degrees of freedom bringing about the 
resonances. An illustrative example is given with a simple model Hamiltonian. 

§ 1. Introduction and summary 

The self-consistent collective-coordinate (See) methodl),**) has been proposed as 

a microscopic theory to properly define global collective coordinates which specify an 
"optimum" collective submanifold in the huge-dimensional time-dependent Hartree­
Fock (TDHF) manifold. The basic principle of the see method is to define the 
optimum collective submanifold (surface) in such a way that the expectation value of 
the Hamiltonian with the TDHF wave function is stationary at each point on the 
surface with respect to variations perpendicular to the surface. This principle is 
called the maximal-decoupling condition and has been formulated in the form named 
the invariance principle of the time-dependent Schrodinger equation_ 1

)-3) The global 

collective coordinates are thus defined as canonical variables to specify the optimum 
surface, and the collective Hamiltonian is simply given by the expectation value of the 
Hamiltonian on the surface. 

The basic equations of the see method have been proved to be of the very simple 
form, and self-consistent solutions of the set of the basic equations have been easily 
obtained in terms of the power series expansion of the basic equations with respect to 
the collective variables. 1

).2) In this expansion method, it is necessary to set up a 
specific "boundary condition" characterizing the collective motion under considera­
tion. Supposing the larg~-amplitudecollective vibration in soft nuclei, for example, 
we may set up the boundary condition in such a way that the large-amplitude 

*) A preliminary version of this paper has been presented in the International Workshop on Semiclassical 
and Phase Space Approaches to the Dynamics of the Nucleus, Aussois, France, 16-20 March, 1987. 

**) The detailed and self-contained explanation of the basic idea of the see method and its recent 
development are given in Refs. 2) and 3), respectively. 
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Optimum Collective Submani/old in Resonant Cases 1365 

collective motion is connected with the lowest-energy RP A ("phonon") mode in the 
"small-amplitude" (harmonic) limit. With this boundary condition, it has been shown 
thatthe set of the basic equations can be uniquely solved, provided that the frequency 
of the RP A phonon mode is in a nonresonant case. In this nonresonant case, the 
frequency of the RP A phonon mode does not satisfy the resonance condition 

no=2, 3, ... , (1·1) 

WA=O and wi.t1=I, 2, ... ) being the frequencies of the RPA phonon mode and the other 
RP A normal modes, respectively. 

In the realistic large-amplitude collective motion of soft nuclei, however, we may 
often encounter the resonant cases satisfying Eq. (1·1).4) In such resonant cases, the 
power-series expansion method with respect to the collective variables has the 
well-known difficulty of small denominator in the expansion series, and we have to 
properly take into account the degrees of freedom which bring about the resonance 
difficulty in the power series expansion. 

With the purpose of investigating behaviour of the optimum collective sub­
manifold in the resonant cases, in this paper we propose an improved method of 
solving the basic equations of the sec method. In § 2, the see method is recapitulat­
ed in a form suitable for our purpose. The basic idea of the improved method is to 
employ a specific representation of the collective (canonical) variables, in which the 
collective Hamiltonian in the nonresonant cases is brought into a normal (diagonal) 
form in the collective variables. This representation is just the c-number version of 
the "physical boson" representation5

).6) where the optimum collective Hamiltonian has 
a diagonal form with respect to the number of physical bosons. It is shown in § 3 that 
we can easily obtain the normal (diagonal) collective Hamiltonian in the nonresonant 
cases, by positively making use of the degrees of freedom in the canonical-variable 
condition for collective variables. In the resonant case, the initially chosen collective 
submanifold has to be extended so as to include a new set of canonical variables 
responsible for the resonance. This is formulated in § 4, and it is shown that the 
optimum collective Hamiltonian in the extended submanifold can never be expressed 
in the normal (diagonal) form within the representation of the collective variables 
which have the boundary condition to be connected with RP A modes in the small­
amplitude limit. Then, the collective Hamiltonian inevitably has to have off-diagonal 
coupling terms originating from the resonances. An illustrative example is given in 
§ 5 with a simple model Hamiltonian. 

§ 2. Basic equations of the see method 

We start with the basic equation of the TDHF theory, 

(2 ·1) 

where the time-dependent Slater determinant I¢(t» is given by 

*) Throughout this paper. we adopt the convention of using n=l. 
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1366 Y. Hashimoto, T. Marumori and F. Sakata 

1<p(t»=eiF(t)I<po)-e-iEot, 

F(t)= l:{fl'i(t)al' t bi t + Iff;(t)bial'} . (2-2) 
1" 

Here l<Po) denotes the Hartree-Fock ground state with energy Eo=<<PoIHI<Po), and al't 
and bi t represent the particle- and hole-creation operators with respect to 1 <Po): 

al'l<po)=o, 

bil<Po)=O, 

,u=1, 2, "', M , 

i=l, 2, ···,N. 

M(N) being a number of single-particle (hole) states under consideration. 

(2-3) 

Through a variable transformation Il'i = 11';( C*, C), it is always possible7
) to 

introduce a set of canonical variables {C;i, Cl'i} , by which the TDHF equation (2 -I) 
can be expressed as the canonical equations of motion in classical mechanics: 

iCl'i= aHjaC;i , iC;i= - aHjaCl'i , 

H=<<pole-iFHeiFI<po) : (2-4) 

The condition for the variables {C;i, Cl'i} to be canonical is that their local 
infinitesimal generators 

have to satisfy the "weak" boson-like commutation relations 

Since the TDHF equation (2 -I) can be written as 

o<<poli~(Cl'iOJi- c;J5Pi)-e-iFHeiFI<po)=O , 
Pi 

(2-5) 

(2-6) 

(2-7) 

we can easily see that, with the use of Eq. (2 -6), the canonical equations of motion 
(2-4) are derived from the TDHF equation (2-7), by taking lo<PO)OC:Ol'i:l<Po) and :OJi:l<Po). 

One of the simplest choices of the canonical variables {C ;i, CI';} satisfying 
Eq. (2 -6) is7

) 

C*.=..., F*.- [Sin/FFf ] 
1" ~ v. JFFt v!" 

(2-8) 

which is derived by the so-called "canonical-variable condition"I),2) 

(2-9) 

The set of canonical variables {C;i, Cl'i} thus determined is known7
) to be the c­

number correspondent of the set of Holstein-Primakoff-type bosons {BJi, Bl'i} em­
ployed in the nuclear boson-expansion theory.B) 

The see method intends to extract an optimum collective surface (submanifold) 
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Optimum Collective Submani/old in Resonant Cases 1367 

out of the TDHF phase space (manifold) characterized by {C;i, CN }, in such a way 
that the Hamiltonian H is stationary at each point on the sur/ace with respect to . 
variations perpendicular to the surface. Supposing the dimension of the surface to be 
2L which is much smaller than the dimension 2MN of the TDHF phase space, we may 
introduce L-pairs of global collective variables {7}a *, 7}a; a= 1, 2, ... L} to specify the 
surface. The canonical variables {C;i, CPi} on the sur/ace are then regarded as 
functions of the collective variables {7}a *, 7}a}: 

(2'10) 

For any function K of the canonical variables {C;i, Cp ;}, hereafter, we use a symbol 
[K] to denote the function on the sur/ace: 

(2'11) 

In the neighborhood 0/ the sur/ace, thus, the TDHF equation (2'7) is reduced to 

(2'12) 

where Oa t and Oa are the local infinitesimal generators with respect tothe collective 
variables, defined by 

(2'13) 

Equation (2 '12) is just the starting basic equation of the see method, which is called 
the invariance principle 0/ the time-dependent Schrodinger equation. 1),2),9) 

The condition for the global collective variables {7}a *, 7}a} to be canonical is that 
the weak boson-like commutation relations 

(2'14) 

have to be satisfied: By taking the variation lo¢o) in Eq. (2 '12) to be collective 
directions IOIl¢O)cx:::Oa:l¢o) and :Oat:l¢o), with the use of Eq. (2'14), we obtain the 
canonical equations 0/ collective motion 

i.e., 

qa=3[H]/3Pa, 

qa=(7}a*+7}a)/./2 , 

iija*=-3[H]/37}a, 

(2'15a) 

Pa= -3[H]/3qa, 

Pa= i(7}a * -7}a)/./2 . (2'15b) 

Downloaded from https://academic.oup.com/ptp/article-abstract/78/6/1364/1907098
by guest
on 30 July 2018



1368 Y. Hashimoto, T. Marumori and F. Sakata 

By taking the variation lo<po> in Eq. (2 ·12) to be perpendicular to the collective 
directions, i.e., 10-L<P0> satisfying < O-L <Po 1 011 <P0>=0, we also obtain from Eq. (2·12) 

(2·16) 

which explicitly demonstrates that the Hamiltonian H on the surface, i.e., [H], has to 
be stationary with respect to the variations perpendicular to the surface. With the 
aid of the equations of collective motion (2 ·15a), Eq. (2 ·16) can be written as 

o<<pole-;(F] Hei[F] -:L;( a[H) )Oa t - :L;( a[H] )Oal <Po> 
a ar;a a ar;a 

[I] 

(2 ·17) 

which is called the equation of collective submani/old and is denoted by [I] hereafter. 
So far we have seen that the condition (2 ·14) for the generators {Oa t, Oa} enables 

us to decompose the basic equation (2 ·12) into a) the canonical equations of collective 
motion (2 ·15) and b) the equation of collective submanifold [1]. It has been proved1

),2) 

that the generators {Oa t, Oa} which have to satisfy the condition (2 ·14) are generally 
determined through the relations: 

[II] 

(2·18) 

where S(r;*, r;) is an arbitrary real function of the collective variables {r;a*, r;a}. 
From Eq. (2 ·18), we can easily obtain the condition (2 ·14) through 

- a~a {<<poIOptl<po>- t r;p*}=<<Pol[Oa t
, O/]<Po>=O. (2·19) 

We may thus express the condition (2 ·14) in the following form: 

(2·20) 

Equation (2·18) is the second of the basic equations of the see method, which is 
hereafter called the canonical-variable condition and is denoted by [II]. (In the 
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Optimum Collective 5ubmani/old in Resonant Cases 1369 

previous expansion method/),2) we have fixed the special canonical variables {7]a *, 7]a} 
from the outset so as to satisfy the simplest case with 5(7]*, 7])=0 in [II].) The 
canonical-variable condition [II] means that we can generally keep the degrees of 
freedom to choose canonical collective variables {7]a *, 7]a} through the arbitrary real 
function 5(7]*,7]).10) 

§ 3. Self-consistent solutions of the see equations (I) 
--Nonresonant Cases--

An essential idea of the present improved method of solving the basic equations 
of the see method is to choose the canonical collective variables {7]a *, 7]a} so as to put 
the collective Hamiltonian into the normal (diagonal) form 

j(7]*, 7])=[H] - Eo=<¢ole-i[Flilei[Fll¢o>- Eo 

[III] 
(3 '1) 

by adopting an appropriate function 5(7]*,7]) in [11].*) According to the Birkhoff­
Gustavson normal-form expansion method/I) it is always possible to choose such 
canonical collective variables {7]a *, 7]a}, provided that the frequencies of the RP A 
normal modes are in the nonresonant case. The requirement (3'1) is called [III] 
hereafter. 

It is easily seen that the problem of solving the set of basic equations [I] ~ [III] 
self-consistently can be reduced to finding the hermitian operator [F] (in the unitary 
operator exp(i[F]) satisfying the set of equations. In order to simplify the presenta­
tion, hereafter, we restrict ourselves to the simplest case L=l corresponding to a 
single pair of collective variables {7]*, 7]}. 

Since the hermitian operator [F] is a one-body operator by definition, we can 
express it in the form 

(3·2) 

where {X,! t , X,! ; A = 0, 1, 2, ... , MN - I} is the complete set of creation and annihilation 
operators of the RP A normal modes: 

(3'3) 

satisfying the RP A equation 

o<¢ol[il, X/]-co'!X/I¢o>=o, CO,! >0 , 

<¢ol[X'!, X}]I¢o>=o'!'!" <¢ol[X'!, X'!,]I¢o>=o. (3'4) 

We then expand the coefficient gi7]*, 7]) in Eq. (3'2) as a power series of {7]*, 7]}: 

r+s=n, (3'5) 

*) It is notable that the requirement (3 ·1) has been just what employed in realizing the original idea') of 
the invariance principle of the time-dependent Schrodinger equation. 
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1370 Y. Hashimoto, T. Marumori and F. Sakata 

so that the operator iC(r;*, 71) in Eq. (3·2) is expressed as 

iC(r;*, 71)= ~ iC(n) , 
n;;'l 

(3'6) 

The important input of this power-series expansion is to set up a specific boundary 
condition appropriate for the collective motion under consideration. Here we set up 
the following boundary condition: 

i.e., iC( n = 1) = r;Xo t - 71* Xo , (3'7) 

where X}=o is the creation operator of the RP A phonon mode. The condition (3· 7) 
means that the large-amplitude collective vibration under consideration is connected 
with RPA phonon mode in its small-amplitude harmonic limit. 

The basic equations [1] ~ [III] in the present case are 

(ii) i 171 S(r;*, 71)= T(r;*, 71) , i.e., i 171 S(n+ 1)= T(n) , 

_.- 8·- 1 
T(r;*, r;)==<cPole IGa77eIGlcPo>-2r;*=~T(n), 

S(r;*, r;)=~S(n), S(n)=S*(n)= ~ Srs'(r;*Y(r;Y, 
n r,s 

(r+s=n) 

(W.l=o: the frequency of the RPA phonon mode) , 

where we use the relations 

-iC-..i iC = 8iC +..1..[ 8iC 'C-] +..1..[[ 8iC 'C-] 'C-] + ... 
e 871 e 871 2 ! 871' Z 3 ! 871' Z ,Z 

(m-i) 

== 8iC + ~ _1 [ .. [8iC 'iC] .. ~] iC]' 
871 m;;'2 m! 871 , , , , 

(3'8) 

(3'9) 

(3'10) 

(3'11) 

*) The equation of collective submanifold [I] is decomposed into Eq. (3'8) and an identical equation 

(¢ol[ 6, e-;CHe;C-( ~~)6' -( aa~)6 ]I¢o>=o, 6'=e-.c; ~e'G 

Because the generator 6' is a one·body operator by definition and the set eX), XA; ..1=0,1, "', MN -1} is the 
complete set, the identical equation becomes equivalent to 

(¢ol[ XA~O, e-;G{ H -( ~~) a~ +( aa~) a;* }e'G ]I¢o>=o , 

provided that Eq. (3· 8) is satisfied. 
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Optimum Collective 5ubmani/old in Resonant Cases 1371 

-- - - - - 1 - - -e-iGHeiG=H +[H, iC]+2T[[H, iC], iC]+··· 

(m) 

- 1 -~ 
=H + ~ m' [. ·[H, iCJ, ... J, iC] . 

m:<:l • 
(3·12) 

In the following, we show how to determine iG('Tj*, 'Tj) in Eq. (3·6) as well as the 
normal collective Hamiltonian .j{('Tj*, 'Tj) in Eq. (3·10) by choosing an appropriate real 
function 5('Tj*, 'Tj) in Eq. (3·9). 

The boundary condition (3·7) leads us to 

T(n=l)=O, 5(n=1)=5(n=2)=0, 

.j{(n=2)=wo'Tj*'Tj . (3 ·13) 

The equation of submanifold (3·8) directly determines g;.(n=2) with A=I=O in Eq. (3·6): 

{ WA - wo( 'Tj h -'Tj* a~* ) }g;.(2) 

1 - - - -= -Z<¢OI[XA, [[H, iC(l)], iC(l)]]I¢o> , A=I=O, (3·14a) 

i.e., 

r+s=2, 

(3·14b) 

where the symbol [A]rs for an arbitrary function A('Tj*, 'Tj) represents the coefficient of 
the power-series expansion: 

Ars=[A]rs. (3·15) 

To determine gA=o(2), we employ Eqs. (3·9) and (3·10). 
With the use of Eq. (3 ·n), we easily obtain 

T(2)= ~<¢ol[ ai~?), iG(2)]I¢o>+ ~ <¢ol[ ai~~2), iG(l)]I¢o> 

= ~go*(2)+ ~{'Tj* a~go(2)-'Tj hgo*(2)}. (3·16) 

Integrating T(2) with respect to 'Tj, we thus have 

(3·17) 

with 

2gJ~1+gnl*=0 , (3·18) 

where we have used the condition 5(3)=5*(3) by definition. 
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With the use of Eq. (3 '12), the third-order part of the collective Hamiltonian 
j{(n=3) is written as 

j{(3) = wO{71*' go(2) + 71' go*(2)} + Llj{(3) , 

1 - - - -Llj{(3) =31< cPol[[[H, iG(I)], iG(I)], iG(I)]1 cPo> . (3'19) 

The condition (3'10) for j{(71*, 71)" to be normal demands j{(3)=0, by which we obtairi 

wogJ8J + [Llj{(3)]30=0 , 

(3'20) 

The set of Eqs. (3'18) and (3·20) is enough to determine go(2) specifying the optimum 
choice of S(3) in Eq. (3 '17). 

We now go on to determine g;.(3). The fourth-order part of the collective 
Hamiltonian j{(n=4) is written as 

j{(4) = wO{71*' go(3) + 71' go*(3)} + Llj{(4) , 

where Llj{(4) is a known function, defined by 

1 - - -Llj{(4)=Z<cPol[[H, iG(2)], iG(2)]lcPo> 

1 -- - - -- - -+31< cPol[[[H, iG(I)], iG(I)], iG(2)] + [[[H, iG(I)], iG(2)], iG(I)] 

+ [[[il, iG(2)], iG(I)], iG(I)]lcPo> 

1 - - - - -
+-:rr<cPol[[[[H, iG(I)], iG(I)], iG(I)], iG(I)]lcPo>. 

For T(n=3) in Eq. (3'9), we also have 

T(n=3)= ~go*(3)+ ~ {71* :71go(3)-71 :71go*(3)}+LlT(3), 

where LlT(3)· is a known function, defined by 

LlT(3)= ~ <cPol[ iJi~~2), iG(2)]lcPo> 

+ 4\ <cPol[[[ iJi~~l), iG(l)J, iG(l)J, iG(l)] 1 cPo> . 

(3'21) 

(3·22) 

(3'23) 

(3· 24) 

Now, in the analogous way to the case of gi2), the equation of submanifold (3·8) 
directly determines gkloo(3): 

r+s=3, 

x [ - i! <cPol[X,\, ([[il, iG(I)], iG(2)] + [[il, iG(2)], iG(I)])]1 cPo> 
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1 - - - - -+3T<cPol[X\, [[[H, iG(l)], iG(l)], iG(l)]]lcPo> 

+ l! < cPo I [ itA, [[ { cvo( 7J 17J - 7J* a~* ) iG(l) }, iG(l) J, iG(1)]] I cPo> ] rs . 

(3·25) 

To determine gA=0(3) by choosing an appropriate function 5(4), we use Eqs. (3·9) and 
(3·10) together with the expressions (3·21) and (3·23). 

By integrating T(3) in Eq. (3·23) with respect to 7J and then by setting the 
condition 5(4)=5*(4), we obtain 

with 

5(4)= - i{ - ! ( -gJ8l + [LlT(3)]t3)(7J*)4+ ! ( -gJgl* + [LlT(3)]03)7}4 

3gJgl + gJ~l*= - [LlT(3)]12-3[LlT(3)H'0, 

gt~l + gW*= -[LlT(3)b - [LlT(3)]fl . 

(3·26) 

(3·27a) 

(3·27b) 

Demanding j{(4) in Eq. (3·21) to be normal according to Eq. (3·10), i.e., demanding 
[j{(4)]rs=0 for r""rs, we have the relations 

cvogJ8l + [Llj{(4) ]40= 0 , 

(3·28) 

It is clear that Eqs. (3·27a) and (3·28) are enough to determine gJ8l, gJgl and gJ~l. 
The coefficient hr=2 of the diagonal term in j{(4) in Eq. (3·10) is given as 

hr=2=[j{(4)]z2 

= cvo(gW + gW*)+ [Llj{(4)]zz 

= [Llj{(4)]zz- cvo{[LlT(3)b + [LlT(3)]fl} , 

where we have used Eq. (3·27b). 

(3·29) 

Thus, we have obtained the fourth-order Hamiltonian in diagonal form. In Dfder 
to determine gt~l which is not specified yet, we make use ofthe fact thatthe function 
5( 7J*, 7J) is a generating function of canonical transformation and the choice of the 
functional form of 5( 7J*, 7J) just corresponds to fixing the degree of freedom of 
canonical transformation. Therefore, here, we choose a simple functional form of 
5( 7J*, 7J) so that it has no terms with the diagonal forms of 7J* and 7J, such as (7J* 7J Y, 
by which the collective Hamiltonian (3 ·10) is expressed. According to this choice, we 
obtain the following relation to determine gW, 

(3· 30) 
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Thus, starting with the boundary condition (3, 7) and evaluating each power of 
{7]*, 77} in the basic equations (3·8)~(3·10) step by step, we can determine the higher 
order terms gin) in Eq. (3·5) as well as the collective Hamiltonian 3{(n) in Eq. (3,10), 
provided that the frequency of the RPA-phonon mode Wo is in a nonresonant case. 

§ 4. Self-consistent solutions of the see equations (II) 
-- Resonant Cases--

When there exists a resonance condition (1'1), i.e., WI- nowo~O, with an integer 
no(~2), the power-series expansion in § 3 encounters the well-known problems of the 
app~arance of "zero-denominator", 1/( WI - nowo), in the coefficients of the power 
series expansion with the collective variables {7]*, 77}. In such a resonant case, 
therefore, we have to properly take into account a set of degrees of freedom {7]1*, 771}, 
which is connected with the RPA normal mode with the frequency WI in the small­
amplitude harmonic limit, by extending the collective submanifold to {77*, 77; 771*, 771}. 

In this case the basic equations [I] and [II] are 

(0 <¢ol[ XA, e-iG{H -( ~~) ~ +( aa~) a~* 

-( :~ ) a~1 +( ~!) a~* }e
iG 

]1¢0)=0, k*O, 1, 

(ii) i ~ 5(77*, 77; 77/, 771)= To(77*, 77; 771*, 771) , 

i-a
a 

5(77*,77; 771*, 771)= TI(77*, 77; 771*, 771), 
771 

7'( * . * )-<,1..1 -iG a iGI,I..) 1 * 10 77 ,77,771 ,771 = <po e a;;e <pO -'[77 , 

T( * . * )-<,l..I-iG a iGI,I..) 1 * I 77 , 77, 771 , 771 = <pO e a771 e <po -'[771 , 

where 

(4,1) 

(4 ,2) 

In the resonant case, it is impossible to demand the condition [III], which puts the 
collective Hamiltonian into the complete normal (diagonal) form. By choosing an 
appropriate function 5(77*, 77; 771*, 771) in Eq. (4,2), however, we can put the collective 
Hamiltonian into a form being as normal (diagonal) as possible. (The detail is given 
in the Appendix.) Thus, the "maximally" normal (diagonal) Hamiltonian finally has 
the following form: 

[III]' 3{(77*, 77; 771*, 771)=<¢ole- iGHe iGI¢o)- Eo 

=3{(0) +3{(1) + 3{(O-I) + 3{(res) , (4·4a) 

(4·4b) 
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(4·4c) 

.j{(O-I)= ~ h~-1).(7J*7JY(7JI*7/IY, (4·4d) 
r,s:::?:l 

(4·4e) 

where the term .j{(res) can never be expressed in the normal (diagonal) form and 
displays an essential coupling between the {r;*, 7J}-mode and the {r;l*, 7JI}-mode through 
the resonance condition all - nowo~O. 

With the boundary condition in the small-amplitude harmonic limit, 

ggoA7J*, 7J; 7JI*, 7JI)---70, (4·5) 

the set of the basic equations, (4·1) ~(4 ·3), enables us to determine g.(7J*, 7J; 7JI*, 7JI) in 
the power-series expansion form, 

as well as the coefficients hr(O), hr(1), h~-l) and M~~S) in the collective Hamiltonian (4·4). 
It turns out that the optimum function S(7J*, 7J; 7JI*, 7JI) in this case has the following 
form: It contains no terms with the forms of 7J*, 7J, 7J/ and 7JI like (7J*7JY(7JI*7JI)S 
(r, s ~O), (7JI*(7J)no)1 and ((7J*)no7JI)I(l ~l), by which the maximally normal Hamiltonian 
(4 ·4) is expressed. A full detail of the method is given in the Appendix. 

§ 5. Illustrative example of solutions 

In order to illustrate the solutions in the resonant and non-resonant cases, let us 
consider a simple model Hamiltonian 

H = Ho + Hint, 

Ho = coKoo + cIKll + c2K22 + c3K33 , 

Hint= VI2·{KI2KlO + K01K21}+ VI3·{KI3KlO+ KOIK31} . (5·1) 

There are four levels with energies co< CI < c2< C3 and each level has N-fold degener­
acy. The fermion pair operators are defined as 

i,j=O,1,2,3. (5·2) 

The lowest energy state without the interaction, i.e., V12 = VI3=O, is 

N 

I¢o>= II c6mlO> , 
m=l 

C;mlo>=o. (5·3) 
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1376 Y. Hashimoto, T. Marumori and F. Sakata 

The time-dependent single Slater determinant is given as 

1¢(t»=eiF(t)I¢o> , 

.- 1 - - -
zF(t)= m{fI(t)KlO + Iz(t)Kzo+ 13(t)K30}-h.c., (5-4) 

where the basic excitation modes are KlO, Kzo and K30. The excitation energies 
corresponding to {(VA; ;\=0,1,2, ... } in the previous sections are ElO== EI- Eo, Ezo== Ez- Eo 
and E30 == E3 - Eo. 

Instead of the variables {fi*,/i; i=l, 2, 3}, it is convenient to use the following 
canonical variables: 

C Ii. fQ i= - mS1nv,:,& , 

Then, the TDHF equation 

o<¢ole-iF(i %t -H)eiFI¢o>=O 

is simply reduced to a set of classical equations of motion 

iCk=oH/oCk*, iCk*=-oH/oCk, k=l, 2, 3, 

H == < ¢ol e- iF He iF 1 ¢o> - < ¢olHI ¢o> . 

(5-5) 

(5-6) 

(5-7) 

A solution of the canonical equations of motion (5-7) gives a TDHF-trajectory in a 
6-dimensional phase space {qk, Pk; k=l, 2, 3} with 

(5-S) 

In the nonresonant case, the boundary condition in the small-amplitude (har­
monic) limit is given by 

[/;] ~ r; -Oi,1 , (5-9) 

where the symbol [/;] is defined by Eq. (2 -11) and a function of the collective variables 
r;* and r;. Following the method given in § 3 by reading Xo t as KlO and {X/Fa} as {Kzo, 
K30}, we then can obtain the solution satisfying the basic equations (3-S)~(3-10). 
The normal-form Hamiltonian thus obtained is written (up to the fourth order) as 

ITr( *)_ * 1 [{(N-1)Vd
z
+{(N-1)VI3F]( * )z 

.J1, r; , r; - ElO r; r; - N 2 2 r; r; , 
Ezo- - ElO E30- -ElO 

(5-10) 

and the see trajectories are obtained by the equations of collective motion 

i i; = oj{ /or;* , ii;*=-oj{/or; . (5-11) 

In Fig. 1, we show the TDHF trajectory from Eq. (5 -7) and the see trajectory from 
Eq. (5 -11) in the nonresonant case by making use of the Lissajous figures. We can see 
that the see trajectory obtained by our power-series expansion method reproduces the 
gross property of the TDHF trajectory very well. In the nonresonant case it is seen 
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that the time-dependence of the amplitude !i(t) is regular and energy exchange among 
the !/s is quite small. 

When the resonance condition Ezo-2ElQ=O is satisfied, according to the method in 
§ 4, we have to introduce a new set of variables {7]I*, 7]1} which corresponds to the 
degree of freedom of Kzo. The boundary condition in the small-amplitude (harmonic) 
limit is given in this case as 

(5 ·12) 

and X!. in Eq. (4·1) should be read as K03. Solving the basic equations (4·1), (4·2) and 
(4·4), we obtain the maximally normal Hamiltonian (up to the fourth order) 

(5·13a) 

(5 ·13b) 

The see trajectory in this resonant case is then obtained by solving the equations of 

1.5 

1.0 

0.5 

(j) 

>< 0.0 
<{ 

I 
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-0.5 

-1.0 

-1.5 '-'-'~-"-'---~--L.....~'-'---'.~-->-.L~---<-.L~~ 
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

X-AXIS 

(a) 

0.8 

. IflO.6 

0.4 

0.2 
I' ;---" "\ r\ /'\ /........ ;, /' 

0.0 ).;Y·../\.D.~V,-,-..x:;L-./'<.J._~,-,,-~"0.~_\:,..-...~ 
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(c) 

1.5 r-r-c~,...,~,-,-~-,---r~~~~~~ 

1.0 
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(j) 
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-0.5 

-1.0 

-1.5 '---'-'~-"-,---~--'--'-~~~'-'---'.~-L-L~...w 
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 

X - AXIS 

(b) 

Fig. 1.(a) A TDHF trajectory projected on the 
plane spanned by Re(f,) (X -axis) and Re(f» 
(Y-axis) in the nonresonant case. 
The parameters are: 1010=1., czo=1.7, 1030=3.2, 
V,z=0.033 and V,3=0.033 . 

(b) An SCC-method trajectory corresponding 
to Fig. 1 (a). 

(c) Time dependence of Ifilz U=l, 2, 3) for 

the trajectory in Fig. lea), denoted by solid 
curve U=l), broken curve U=2) and dash­
dotted curve U=3), respectively. The curve 
for i=3 is magnified by ten times. The unit of 
time is 0.1. 
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motion 

i i; = oj{ /o'fj* , i i; * = - oj{ /o'fj , 

(5·14) 

In Fig. 2, we show a TDHF trajectory from Eq. (5·7) and an see trajectory from 
Eq. (5 ·14) in the resonant case. As is seen from the figure, the TDHF trajectory is 
drastically different from those in the nonresonant cases. Demonstrating the effects 
of the resonance condition, the trajectory goes around on the plane spanned by 11 and 
12, and it is essentially necessary to introduce a pair of new dynamical variables to 
describe such a motion. The see trajectory obtained from Eq. (5 ·14) approximates 
the TDHF trajectory very well, thus showing that the method given in § 4 enables us 
to clarify dynamical structure of the effects of resonance: In this resonant case it is 
seen that the time-dependence of the amplitude li(t) (i=1,2) is large, indicating 
appreciable energy exchange between 11 and fz. In our method, the source of the 
energy exchange is simply visualized as the essential coupling terms J{(res) in the 
maximally normal collective Hamiltonian (5 ·13). 
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0.5 
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(b) 

Fig. 2.(a) A TDHF trajectory in the resonant case 
with the parameters given by 1010=1., czo=2., 1030 
=3.2, V,z=0.033 and V,3=0.033. 

(b) An SCC-method trajectory corresponding 
to Fig. 2(a). 

(c) Time dependence of 1/;lz (i=l, 2, 3) for 
the trajectory in Fig~ 2(a). The solid curve, 
broken curve and dash-dotted curve correspond 
to i=l, 2, 3, respectively. The curve for i=3 
is magnified by ten times. The unit of time is 

0.1. 
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Appendix 

In this appendix, we show how to determine iG(TJ*, TJ; TJI*, TJI) in Eq. (4·3) and the 
maximally-normal collective Hamiltonian &(TJ*, TJ; TJI*, TJI) in Eq. (4'4), by choosing 
an optimum real function S(TJ*, TJ; TJI*, TJI) in Eq. (4' 2) in the power-series expansion 
forms with respect to TJ*, TJ, TJI* and TJI. For the sake of simplicity, here we adopt the 
resonant case with no=2; i.e., 

alI -2(()o~0 . (A'I) 

With the use of Eq. (4'6), the expansion form of iG(7J*, TJ; 7JI*, TJI) is written as 

where iG(n=l) is given from the outset by the boundary condition (4'5) as 

(A·3) 

In the similar way, we expand the quantities S(TJ*, 7J; TJI*, 7JI) and Tk(TJ*, TJ; TJI*, TJI) 
(k=O,I) in Eq. (4'2) as 

k=O,I, 

Tk(n)=[<¢ole- iG a~k eiGI¢o>Jn)~ ~ TJk*'On,l, (A'5) 

where the symbol [ ... lIn) denotes the n-th order part of the quantity [ ... 1 with respect 
to the power series expansion. From Eq. (A· 3) we have 

S(I)=S(2)=0. (A·6) 

[I] Determination of iG(n=2) 

The equation of submanifold (4'1) directly determines g;.{n=2) with ;\*0 and 1 as 
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1 - - - -=-Z<rPOI[XA, [[H, iC(l)], iC(l)]]lrPo> , ;1=1=0,1 (7Jk=O=7J). (A·7) 

To determine gA=o(2) and gA=I(2), we employ the generalized canonical-variable condi­
tion (4·2). With this purpose, we divide g/2) in Eq. (4·6) with ;1=0 and 1 into 

g/2)=gA(2117J*7J) + gA[lJ(211 7J*7J; 7JI*7JI)+gA(2117JI*7JI), ;1=0,1, 

g/2117J*7J)= ~rs g[AJ(rs, OO)(7J*Y(7J)S , (r+s=2) 

Similarly we divide 5(n=3) in Eq. (A ·4) into 

5(3) = 5(3117J*7J) + 5[rJ(3117J*7J; 7Jr* 7Jr) + 5[IIJ(3117J*7]; 7JI * 7JI) +5(3117Jr * 7Jr) , 

5(3117J*7J)= ~rs 5(rs, OO)(7J*Y(7J)S , (r+s=3) 

(A·8) 

(A·9) 

where 5[lJ(3117J*7J; 7Jr*7Jl) and 5[IIJ(3117J*7J; 7Jl*7Jl) denote terms being linear and quadratic 
with respect to 7JI* and 7Jl, respectively. The third-order part of the collective 
Hamiltonian is also classified by the powers of 7Jl* and 7Jl: 

j{(n=3)=[ <rPole- iG HeiGl rPo> ]<n=3) 

= j{(3117J* 7J) + j{[rJ(311 ~* 7J; 7Jr * 7Jr) + j{[IIJ(3117J* 7J; 7Jl * 7Jl) + j{(3117Jr* 7Jl) . 
(A·10) 

Now, with use of Eq. (3·11), we easily obtain 

To(2)=[ <rPole- iG ~ eiGlrPo> r=2) 
= ~ < rPol [ ai~;1) , iC(2) ] I rPo> + ~ < rPol [ ai~?) , iC(l) ] I rPo> 

= ~ go*(2) + ~ {7J* :7J go(2)-7J ~ go*(2) + 7Jl* :7J gl(2)-7JI :7J gl*(2)} , 

(A . 11 a) 

TI(2)= ~ gr*(2) + ~ {7J1* a~l gl(2)-7Jl :7J gr*(2) + 7J* a~l go(2)-7J a~l go*(2)}. 

(A ·11b) 

(I-1) Choice of 5(3117J* 7J) and of 5(3II7Jl* 7Jl) 
Substituting (A· 8) into (A ·11a) and integrating To(2) with respect to 7J, and then 

setting the condition 5(3)=5*(3) by definition, for 5(3117J*7J) we obtain 
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5(3117]*7]) = - { ~ {g[OJ*(02, 00) + g[OJ(l1, 00)}(7]*)27] 

+ ~ gl°J(02, 00) 7]*7]2- ~ g[oJ*(20, 00) 7]3 + ~ g[OJ(20, 00)( 7]*)3] (A ·12) 

with 

2·g[OJ(02, OO)+g[OJ*(l1, 00)=0. (A ·13) 

The way of determination of the optimum function 5(3117]* 7]) is thus completely the 
same as one given in § 3. 

With the use of Eq. (3·2), the third-order part of the collective Hamiltonian 
&(n=3) in (A ·10) is written as 

&(3) = (Oo{ 7]*. go(2) + 7]. go*(2)} + (01 {7]1 *. gl(2) + 7]1 . gl*(2)} + Ll&(3) , (A·14) 

1 - - - -Ll&(3)==3T<¢01[[[H, iG(l)], iG(l)], iG(l)]I¢o>. (A·15) 

We thus have 

(A ·16) 

where we have classified Ll&(3) according to the powers with respect to 7]1* and 7]1: 

Ll&(3) = Ll&(311 7]* 7] ) + Ll&[IJ(3117]*7]; 7]1*7]1) 

+Ll&[IIJ(3117]*7]; 7]1*7]1) + Ll&(311 7]1*7]1) . (A ·17) 

The condition for j(0)(7]*, 7]) in Eq. (4·4b) to be normal demands &(3117]*7])=0, by 
which we obtain the relations 

(Oog[OJ(20, 00) + [Ll&(3117]*7])ho=0 , 

(Oo{g[OJ(l1, 00)+gl°J*(02, 00)}+[Ll&(3117]*7])]z1=0, 

(A ·18) 

(A ·19) 

where the symbol [ ... ]rs is defined in Eq. (3 ·15). It is now clear that the set of (A ·13), 
(A·18) and (A·19) determines go(2117]*7]) in (A·8), which specifies the optimum choice 
of 5(3117]*7]) in (A ·9). 

In the same manner, we can also determine gl(2117]1*7]I) in (A ·8) specifying the 
optimum choice of 5(3117]1*7]1) in (A ·9). 

(1-2) Appearance of Essential Coupling &(res) and Choice of 5[1](3117]*7]; TJI*TJI) 
Substituting (A· 8) into (A· 11 a) and integrating To(2) with respect to 7], for 

5[IJ(3117]*7]; 7]1*7]1) we obtain 

05[1J(3117]*7]; 7]1* 7]1) == - i ~ 7]1*· [{g[OJ*(Ol, 01) + gl°J(Ol, 10) 

+ g[IJ(l1, 00)}7] * 7] + g[lJ(02, 00)7]2+ g[Il(20, 00)(7]*)2] 

- i ~ 7]1· [{g[OJ( 01, 01) + g[OJ*( 01, 10) - g[lJ*(l1, 00)}7]* 7] 
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(A·20) 

with 

gl°](OI, Ol)+g[O]*(OI, 10)=0, (A·21) 

where we have used the condition for S[I](3\\1]*1]; 1]1*1]1) to be a real function by 
definition. 

Similarly, substituting (A· 8) into (A . lIb) and integrating TI(2) with respect to 1]1, 
for S[I](3\\1]*1]; 1]1*1]1) we obtain 

IS[I](3\\1]*1]; 1]1*1]I)=i ~ 1]1*· [{g[1l(20, 00)-g[O](10, 10)}(1]*)2 

+ {g[I](lI, OO)+g[O]*(OI, 01)-g[O](01, 10)} 1]*1] 

+ {g[1] (02, 00)+g[0]*(10, 01)}1]2]-i ~ 1]d{g[I]*(02, 00) 

+ g[0](10, 01)}(1]*)2+ {g[1]*(lI, 00) + g[O](OI, 01) 

- g[O]*(OI, 10)} 1]*1] + {g[I]*(20, 00) - g[0]*(10, 10)}1]2] .. 

By the definition of S in Eq. (4·2), we have to have the condition 

S[I](3\\1]*1]; 1]1*1]I)=oS[I](3\\1]*1]; 1]1*1]I)=IS[I](3\\1]*1]; 1]1*1]1), 

from which we obtain the following relations: 

2g[I](20, 00)-g[0](10, 10)=0, 

g[1](lI, OO)+g[O]*(OI, 01)=0, 

2g[1](02, 00)+g[0]*(10, 01)=0. 

(A ·22) 

(A·23) 

(A·24a) 

(A·24b) 

(A ·24c) 

Now, with the use of (A·l4) and (A·17), the part &[1](3\\1]*1]; 1]1*1]1) in (A·I0) is 
written as 

&[1](3\\1]*1]; 1]1*1]1)= wO{1]*· go[I](2\\ 1]* 1]; 1]1*1]1) 

+ 1] . go[I]*(2\\1]* 1]; 1]1* 1]1)} + WI {1]1 *. gl (2111]* 1]) 

+ 1]1 . gl *(2111]* 1])} + Ll&[I](3\\1]* 1]; 1]1*1]1) . (A ·25) 

In the nonresonant cas.e where the resonance condition (A ·1) is not satisfied, the 
requirement &[1](3\\1]*1]; 1]1*1]1)=0 (implying the collective Hamiltonian to be normal) 
always enables us to determine go[I](2\\1]*1]; 1]1*1]1) and gl(2\\1]*1]) in (A·8), together with 
the relations (A· 21) and (A· 24). We can thus specify the appropriate choice for 
S[I](3111]*1]; 1]1*1]1) in the nonresonant case. 

In the resonant case with (A ·1) under consideration, however, it is impossible to 
demand &[1](3\\1]*1]; 1]1*1]1)=0, because &[1](3\11]*1]; 1]1*1]1) includes the following term: 

{wo1]21]1*· g[0]*(10, 01) + WI 1]1*1]2 . g[1](02, 00) + 1]1*1]2[Ll& [1](3\\1]*1]) ]02} + c.c. 

(A ·26) 
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where we have used the notation 

(A·27) 

and the symbol[······]rs is defined in Eq. (3·15). In the resonant case with the relation 
ah =2wo given in (A· 1), Eq. (A· 26) is simply reduced to 

(A ·28) 

Because of the existence of the relation (A '24c), this term never vanishes within any 
choice of S[I](31\7]*7]; 7]1*7]1) and there inevitably appears the essential coupling term in 
the third order: 

(A ·29) 

By using the fact that the choice of the functional form of S(7]*7]; 7]1*7]1) just 
corresponds to fixing the degree of freedom of canonical transformation, in this case, 
an optimum function S[I](3117]*7]; 7]1*7]1) in this resonant case is determined by choosing 
the following form of it: Both oS[I](31\7]*7]; 7]1*7]1) in (A '20) and 1S[I](3I\7]*7]; 7)1*7)1) in 
(A·22) have no terms with the forms, 7]1*7)2 and 7]1(7]*)2, by which 3C(res)(3) is expressed. 
This is satisfied by setting 

g[l](02, 00)=g[0](10, 01)=0. (A'30) 

The other terms in 3C[I](31\7]*7]; 7]1*7]1) except for 3C(reS)(n=3) can be made to 
vanish by setting 

WO{g[O](OI, 10) + g[O]*(OI, 01)} + w1g[l](11, 00) + [L13C[I] (31\ 7]* 7])]1l =0 , 

Wog[0](10, 10)+w1g[1](20, 00)+ [L13C [I] (31\ 7]* 7])]z0 =0 . 

(A·31) 

(A ·32) 

It is now clear that the set of (A' 21), (A' 24), (A· 30), (A· 31) and (A· 32) is enough 
to determine go[0](21\7]*7]; 7]1*7]1) and g1(21\7)*7]) in the resonant case, which specify the 
optimum choice of S[I](31\7]*7]; 7]1*7]1). 

0-3) Choice of S[II](31\7]*7]; 7]1*7]1) 

Substituting (A· 8) into (A . 11 a) and integrating To(2) with respect to 7], and then 
using the condition S(3)=S*(3), for S [Il] (31\ 7]* 7]; 7]1*7]1) we obtain 

oS[I1](31\7]*7]; 7]1*7]1) 

=-'-i ~ (7]1*)2' [{g[1](0l, 10)+g[O]*(00, 02)}7]-{g[0](00, 20)-g[l](10, 10)}7]*] 

- i ~ (7]1* 7]1)' [(g[l](OI, 01) - g[l]*(10, 01) + g[O]*(OO, 11)}7] 

- {g[1]*(01, 01) - g[ll(10, 01) + g[°l(OO, 11)}7]*] 

- i ~ (7]12). [{g[O]*(OO, 20) - g[*(10, 10)}7] 

-{g[1]*(01, 10)+g[0](00, 02)} 7]*] . (A '33) 
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Similarly, from T I (2) in (A . lIb), we obtain 

IS[IIJ(31177*77; 771*771) 

== - i ~ (771*)2· [g[OJ(OO, 20)7]* - g[oJ*(OO, 02).11] 

- i ~ (771*771)· [{g[IJ*(Ol, 01) + g[IJ(10, 01) + g[OJ(OO, 11)}7]* 

+ {g[IJ*(10, 01) + glIJ(Ol, 01) - g[OJ*(OO, 11)}7]] 

-i~ (771)2. [gl°J(OO, 02)77*-g[OJ*(00, 20)77]. 

The condition 

S[Il](31177* 77; 771* 771) ==oS[IIJ(31177* 77; 771* 771) = I S[Il](31177* 77; 771*771) 

leads to the relations 

2g[oJ(00, 20)- g[lJ(10, 10)=0, 

2g[OJ*(00, 02)+g[IJ(01, 10)=0, 

g[°l(oo, l1)+g[lJ*(Ol, 01)=0, 

g[oJ*(OO, 11) - g[lJ*(10, 01)=0 . 

(A ·34) 

(A·35) 

(A ·36) 

With the use of (A·14) and (A·17), the part j{[IIJ(31177*77; 771*771) of the collective 
Hamiltonian (A ·10) can be written as 

j{[11](31177* 77; 771* 771) = wo{ 77*· go(211771 * 771) + 77· go *(211771 * 771)} 

+ WI {771 *. gl [1](21177* 77; 771* 771) + 771 • gl [1]*(21177* 77; 77/771)} 

(A ·37) 

By the definition in (A ·17), Llj{[Il](31177*77; 771*771) is a known function obtained from 
(A ·15), and we express it as " 

Llj{[IIJ(31177* 77; 771* 771) == Llj{(fR)(31177* 77)· (771 *)2 

+ Llj{[hV(31177*77)· (771* 771) + Llj{[?N(3II77*77)· (771)2 . (A· 38) 

Demanding j{[IIJ(31177*77; 771*771)=0, we thus have 

Wo· g[OJ(OO, 20) + Wo· g[lJ(10, 10) + [Llj{(fP/(3II77* 77) ]10=0 , 

Wo· g[OJ*(OO, 02) + WI· g[IJ(Ol, 10) + [Llj{(fP/(31177* 77) ]01 =0 , 

Wo· g[OJ(OO, 11) + WI {g[lJ(10, 01) + g[lJ*(Ol, 01)} + [Llj{Hli(31177*77) ]10=0 , 

where the symbol [······]rs is defined in Eq. (3·15). 

(A ·39) 

It is clear that the set of (A· 36) and (A· 39) is enough to determine go(211771 * 77/) 
and gl[I](21177*77; 771*771), which specify the optimum choice of S[IIJ(31177*77; 771*771). 
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[II] Determination of iG(n=3) 

We go on to determine iG(n=3) in (A·2): 

iG(3)=~{gi3)X. t -g.*(3)X.} , 
• 

(A·40) 

provided that iG(l) and iG(2) are known. 
In the analogous way to the case of iG(2), the equation of submanifold (4·1) 

directly determines g.(3) with i!*O and 1. We use the canonical-variable condition 
(4·2), in order to determine g.=o(3) and g.=1(3) by choosing an optimum function 5(4) 
in (A·4). 

With the use of Eq. (3·11), for To(3) and T I (3) in (A ·5) we have 

To(3) = [<¢ole- iG :lJ eiGI¢o> In=3) 

1 1{ 0 0 =Zgo*(3)+Z lJ*a;;go(3)-lJa;;go*(3) 

+lJI* ~gl(3)-lJI ~gl*(3)}+LlTo(3), (A ·41a) 

1 1{ 0 0 TI(3)=Zgl*(3)+Z lJ* OlJI go(3)-lJ OlJI go*(3) 

+lJI* -:J0 gl(3)-lJI -:Jo gl*(3)}+LlTI(3) , 
ulJI UlJI 

(A ·41b) 

where LlTk(3) (k=O, 1) are known functions, defined by 

LlTk(3)= ~ <¢ol[ oig:2) , iG(2)]I¢o> 

+ 4\ <¢ol[[[ ozg:l) , iG(l) 1 iG(l) 1 iG(l) ]I¢o> , 

k=O,l, lJk=O= lJ .. (A ·42) 

With the use of Eq. (3 ·12), for the fourth-order part of the collective Hamiltonian we 
have 

j((n=4)=[ <¢ole-iGHeiGI ¢o> ](n=4) 

= coo{7}*· go(3) + lJ· go*(3)} + COl {lJI*· gl(3) + lJI . gl *(3)} + Llj(( 4) , (A· 43) 

where Llj{(4) is a known function, defined by 

1 - - -Llj((4)=Z<¢ol[[H, iG(2)], iG(2)]I¢o> 

1 -- - - -- - -+3T< ¢ol[[[H, iG(l)], iG(l)], iG(2)] + [[[H, iG(l)], iG(2)], iG(l)] 
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1386 Y. Hashimoto, T. Marumori and F. Sakata 

+ [[[H, iC(2)], iC(I)], iC(I)]1 cPo> 

1 - - - - -+-;rr< cPol[[[[H, iC(I)], iC(I)], iC(I)], iC(I)]1 cPo> . (A ·44) 

In the similar way to the case of iC(2), we classify go(3), gl(3), S(4) and 3C(4) 
according to the powers of 7]J* and 7)1: 

g/3)= gi3117)* 7) + g}ll(3117)*7); 7)1* 7)1) 

+g}Ill(3117)*7); 7)1*7)1) +g/311 7)/7)1) , ,,1=0,1, 

The known quantity Ll3C(4) is also classified and is expressed as 

Ll3C[ll(4117)*7); 7)1*7)1) = Ll3CHf)(4117)*7)' 7)1* + Ll3ClU) ( 4117)*7)' 7)1 , 

Ll3C[Ill(4117)*7); 7)1* 7)1) = ~Ll3C\~'P(4117)*iJ)' (7)1 *)P(7)I)Q, p+ q = 2 , 
p,q 

(II-I) Choice of S(4117)*7) and of S(417)1*7)I) 

(A ·45) 

(j\. ·46) 

(A '47) 

(A ·48) 

Substituting (A '45) into (A '41a) and integrating To(3) with respect to 7), we 
obtain an expression for S(4117)*7) similar to Eq. (3'26) in § 3. The condition S(4117)*7) 
=S*(4117J*7) leads us to the relation 

(A·49) 

where LlTk =0,1(3) is classified according to the powers of 7)1* and 7)1: 

k=O, 1, (A ·50) 

and the symbol [· .. · .. ]rs is defined in Eq. (3'15). Demanding 3C(4117)*7) to be normal, 
i.e., [3C(4117)*7)]rs=0 for r=t=s, from (A '43) we obtain the relations 

wog[01(30, 00) + [Ll3C(4117)* 7) ]40=0 , 

(A ·51) 

which is similar to Eq. (3'28). An optimum functional form of S(4117)*7) is so chosen 
that it contains no terms with the diagonal form (7)*7))2. This leads to 

g[°l(12, 00)+ [LlTo(3117)*7)]21=0 , 

which is similar to Eq. (3'30). 

(A·52) 

Downloaded from https://academic.oup.com/ptp/article-abstract/78/6/1364/1907098
by guest
on 30 July 2018



Optimum Collective 5ubmani/old in Resonant Cases 1387 

The relations (A·49), (A·51) and (A·52) are enough to determine the function 
go(31117*17), specifying the optimum choice of 5(41117*17). The coefficient hn2 of j{(0)(17*, 17) 
in Eq. (4·4b) is now given by . 

h~ol2= [j{(41117*17) b= wo{g[0](12, 00) + g[0]*(12, OO)} + [,dj{(41117*17) h2 

= [,dj{(411 17* 17 ) b - wo{[,dTo(31117* 17) hI + [,dTo(31117*17)]fI} , 
(A·53) 

where we have used (A ·52). 
In the same manner, we can also determine gl(311171*171), as well as the coefficient 

hVl2 of j{(l)(171*, 171) in Eq. (4·4c). 

(II-2) Choice of 5[I] (41117*17; 171*171) 

By substituting (A ·45) into (A . 41 a) and integrating To(3) with respect to 17, and 
then by setting the condition 5(4)=5*(4), we obtain an explicit expression for 
5[1](41117*17; 171*171) which is denoted by 05[1](41117*17; 171*171)' The condition 05[1](41117*17; 
171*171)=05[1]*(41117*17; 171*171) leads us to the relations 

gl°](02, 01)+ ~ g[O]*(ll, 10)= -[,dTo~Wl(17*17)H'o- ~[,dTo~W(17*17)]ll , 

g[0]*(02, 10)+ ~ g[O](ll, 01)= -[,dTo~W(17*17)ho- ~[,dTo~Wl(17*17)]fl' 

where we have used for ,dT~~J.l(31117*17; 171*171) in Eq. (A·50) the expression 

,dTk[N](31117*17; 171*171)= ~P.q ,dnfr~h(31117*17)·(171*)P(171)q, k=O,l, (P+q=N) 

and the symbol [······]rs is defined in Eq. (3·15). 

(A ·54) 

(A ·55) 

Similarly, by integrating Tl(3) in Eq. (A ·41b) with respect to 171 and setting 5(4) 
=5*(4), for 5[1](41117*17; 171*171) we have an explicit expression denoted by 15[1](41117*17; 
171*171)' The condition, 5[1](41117*17; 171*171)=05[1](41117*17; 171*171)=15[1](41117*17; 171*171), leads 
us to the relations 

- ~ g[0](20, 10)+g[I](30, 00)= -[,dTl(31117*17)JTs+ ~[,dTo~W(31117*17)]02' 

g[0]*(02, 01) + g[I](21, 00)= - [,dT1(31117*17) ]f2 - [,dTo~Wl(31117*17) ho , 

~ g[O]*(ll, 01)+g[I](12, 00)= -[,dT1(31117*17)]to- ~[,dTo~Wl(31117*17)]1l' 

~ g[0]*(20, 01)+g[l](03, 00)==-[,dT1(31117*17)]t0- ~ [,dTo~Wl(31117*17)]02. (A ·56) 

The part j{U](41117*17; 171*171) of the fourth-order Hamiltonian j{(4) in (A·47) is 
written as 

j{[1]( 41117* 17; 171* 171) = WO{ 17*· go [1] (311 17* 17; 171* 171) + 17· go[I]*(31117* 17; 171* 171)} 

+ WI bl *. gl (31117* 17) + 171· gl *(31117* 17)} + ,dj{[I]( 41117* 17; 171*171) . (A ·57) 
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Demanding 3([1](4117]*7]; 7]1*7]1)=0, we obtain 

wog[0](20, 10)+wlg[I](30, 00)+ [Ll3(HP)(411 7]* 7])ho=O , 

wo{g[O](l1, 10) + gl°]*(02, 01)} + wIg[I](21, 00) + [Ll3(HP) (4 II 7]*7] ) b = 0 , 

wo{g[0](02, 10) + g[O]*(l1, 01)} + wlg[I](12, 00) + [Ll3(HP) ( 4117]* 7]) b=O , 

wog[0]*(20, 01) + Wlg[I](03, 00) + [Ll3(HP)(4117]*7]) ]03=0 . (A'58) 

The set of the relations (A· 54), (A· 56) and (A· 58) is enough to determine the functions 
go[I](3117]*7]; 7]1*7]1) and gl(3117]*, 7]) in (A ·45), which specify the optimum choice of 
5[1](4117]*7]; 7]1*7]1). 

(II-3) Choice of 5[II](4117]*7]; 7]1*7]1) 

By integrating To(3) with respect to 7] and setting 5(4)=5*(4), for 5[11](4117]*7]; 
7]1*7]1) we obtain an explicit expression denoted by 05[11](4117]*7]; 7]1*7]1). The condition 
05[11](4117]*7]; 7]1*7]1)=05[11]*(4117]*7]; 7]1*7]1) leads us to the relations 

(A '59) 

Similarly, by integrating T1(3) with respect to 7]1, we have an explicit expression for 
5[11](4117]*7]; 7]1*7]1). The optimum functional form of 5[11](4117]*7]; 7]1*7]1) is so chosen 
that both 05[11](4117]*7]; 7]1*7]1) and 15[11](4117]*7]; 7]1*7]1) have no terms with the normal 
form such as (7]*7])(7]1*7]1), in terms of which the fourth-order part 3(0-1)(7]*,7]; 7]1*, 7]1) 
in Eq. (4,4 d) is expressed. Imposing this condition on 05[11](4117]*7]; 7]1*7]1) and 
15[11](4117]*7]; 7]1*7]1), respectively, we obtain 

g[O]*(OI, 11) + g[O](OI, 11) + g[I](l1, 01)- g[I]*(l1, 01)+ 2[LlTo:UM7]*7])]1O=0 , 
(A '60a) 

g[O](OI, 11) - g[O]*(OI, 11) + g[l](l1, 01) + g[I]*(l1, 01) + 2[LlTl:Wl(7]* 7])]1l =0 . 
(A '60b) 

The equivalence condition, 5[11](4117]* 7]; 7]1* 7]1)=05[11](4117]* 7]; 7]1* 7]1) = 15[11](4117]* 7]; 7]1* 7]1), 
leads us to the relations 

g[0](10, 02)+ g[I]*(02, 10)= - [LlT1:W(7]*7])ho- [LlTo:WM7]*7] )]tl , 

2gl°]*(01, 20)- g[I]*(l1, 10)=[LlTl:~H(7]*7])]1l-2[LlTo:~rM7]*7])Jw, 

g[0]*(10, 20) - g[I]*(20, 10)= [LlT1:W( 7]*7]) ]02 - [LI'To:WM7]* 7]) ]01 , 

2g[I]*(02, 01) + g[0](10, 11) = - 2[LlTl:W{(7]*7]) ho - [LI To:HM 7]* 7] ) ]tl , 

2g[I]*(20, 01) - g[O]*(J..O, 11)= - 2[LITl:Wl(7]* 7] ) ]02 + [LlTo:UM 7]*7]) ]01 . 

The part 3([11](4117]*7]; 7]1*7]1) in (A ,47) is written as 

3([11](4117]*7]; 7]1*7]1) 

= wo{7]*· go[II](3117]* 7]; 7]1* 7]1) + 7] • go [II] *(3117J* 7]; 7]1* 7]1)} 

+ WI {7]1 * • gl [1](3117]* 7]; 7]1* 7]1) + 7]1 • gl [1]*(3117]* 7]; 7]1* 7]1)} 

(A ,61) 
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(A -62) 

Demanding the off-diagonal terms of 3([IIJ(4111]*1]; 1]1*T}I) to vanish, we obtain the 
relations 

cvog[oJ(10, 02) + CVIg[IJ*(02, 10)= - [Ll3(!?N(4111]*1]) Jzo , 

cvo{gl°J(Ol, 02) + g[oJ*(Ol, 20)} + cvIgl1J*(1l, 10) = - [Ll3(!m( 4111]*1])]11 , 

CVog[OJ*(10, 20) + CVIg[lJ*(20, 10) = - [Ll3(!m(4111]* 1]) ]02 , 

cvog[OJ(10., ll) + cvI{g[lJ(20, 01) + g[lJ*(02, 01)} = - [Ll3(UN( 4111]* 1]) Jzo . (A -63) 

The set of the relations (A-59), (A -60), (A -61) and (A -63) is enough to determine 
the function gl[IJ(3111]*1]; T}1*1]I) and go[IIJ(3111]*1]; 1]1*1]1) specifying the optimum choice of 
5[11](4111]*1]; 1]1*1]1). The diagonal part of 3([IIJ(4111]*1]; 1]1*1]1), i.e., the coefficient hi~~l) in 
3(Q-l)(1]*1]; 1]1*1]1) of Eq. (4-4d) is given by 

h \~~I) =cvo{g[OJ(Ol, ll)+g[OJ*(Ol, ll)}+cvI{g[lJ(ll, 01)+g[lJ*(1l, 01)} 
+ [Ll 3( UN (1]*T})]11 

= - cvo{[LlTo~HM1]* 1]) ho + [LlTo~HM1]* T}) ][o} 

- cvI{[LlTI~W?(1]*1])]11 + [LlTI~W?(1]* 1])]M + [Ll3(UN(1]* 1])]1l , 

where we have used the relations (A -60a) and (A -60b). 

(II-4) Choice of 5[IIIJ (4111]*1]; 1]1*T}1) 

(A -64) 

From To(3) and T1(3), for 5[IIIJ(4111]*1]; 1]1*1]1) we obtain two expressions 
05[IIIJ(4111]*1]; T}1*1]I) and 15[IIIJ(4111]*1]; 1]1*1]1). The condition 5(4)=5*(4) then leads us 
to the relations 

2 -g[IJ(Ol, 02) + g[IJ*(10, ll) 

= -2- [LlTI~WM3111]*T} )][0- [LlTnn(3II1]*1])]ol , 

2-gl1l(10, 02)+g[IJ*(01, ll) 

= - 2- [LlTI~1?M3111]*1] )]3'1- [LlTWM311 1]* 1] )]10 . (A-65) 

From the equivalence condition, 5[IIIJ(4111]*1]; 1]1*1]I)=05[IIIJ(4111]*T}; 1]1*1]I)=15[IIIJ(4111]*T}; 
1]1*1]1), we obtain 

- g[ll(10, 20) + 3gl°J(00, 30)= [LlTI~~rM3111]* 1]) ]3'1 - 3([LlTo(311 T}I *1]1) ]03)* , 

g[lJ(Ol, 20) + 3g[OJ*(00, 03) = [LlTI~~rM3111]*1] )][0 + 3 - [LlTo(311 T}1*1]I)rO , 

g[lJ*(Ol, 02) + g[OJ(OO, 21)= - [LlTI~WM3111]*1]) ho - ([LlTo(3111]1*1]I) ]12)* , 

g[IJ*(10, 02) - g[oJ*(OO, 12) = - [LlTI~WM3111]*1]) ]01 + [LlTo(3111]1 *1]1))21 , (A -66) 

where the symbol [B(1]I*, 1]1)rS for an arbitrary function B(T}I*, T}I) represents the 
coefficient of the power-series expansion with respect to 1]1* aI1d T}I: 

(A-67) 
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The part j([IlIJ(4117J*7J; 7JI*7JI) in (A ·47) is written as 

j([IIl]( 4117J* 7J; TJI * 7JI) = wo{ 7J*. go(3117JI * 7JI) + 7J. go *(3117JI * 7JI)} 

+ WI {7}1 *. gl [IlJ(3117J* 7J; TJI * 7JI) + TJI • gl [IIJ*(3117J* 7J; TJI * 7JI)} 

+ Llj([lIlJ(4117J*7J; 7JI*7JI) . (A ·68) 

Demanding j([Ill](4117J*7J; 7JI*7JI)=O, we have 

wog[OJ(OO, 30) + WlglIJ(10, 20)= - [L1j(f~PM4117J*7J)]10 , 

wog[OJ*(OO, 03) + wIg[IJ(Ol, 20)= - [Llj(mM4117J*7J )]01, 

Wog[OJ(OO, 21) + WI{g[IJ(10, 11) + glIJ*(Ol, 02)} = - [Llj(ffA) (411 7J* 7J ) Jro , 

wogl°J*(OO, 12) + wI{g[I](Ol, 11) + glIJ*(10, 02)}= - [Llj(ffN/4117J*7J)]01 . (A ·69) 

The set of the relations (A· 65), (A· 66) and (A· 69) is enough to determine the functions 
gl[IIJ(3117J*7J; 7JI*7JI) and go(3117JI*7JI), which specify the optimum choice of S[lIlJ(4117J*7J; 
7JI * 7JI). 

[III] Rules for the Optimum Choice of S(7J*, 7J;7Jl*, 7Jl) 

From the above discussion it turns out that, starting with the boundary condition 
(A·3) and evaluating each power of 7J*, 7J, 7JI* and 7JI, we can determine the higher 
order terms gi n) in (A· 2) as well as the maximally normal Hamiltonian (4·4) step by 
step, by choosing an optimum function S(n+1) in (A·4). 

The rules for choosing the optimum function S(7J*, 7J; 7JI*, 7JI) (in (A ·4» are the 
following: 

i) By integrating To(7J*, 7J; 7JI*, 7JI) and T I(7J*, 7J; 7JI*, 7JI) (in (A·5» with respect to· 
7J and 7JI, respectively, we obtain two expressions for S(7J*, 7J; 7Jr*, 7JI). Demanding 
these two expressions to be real and to be completely equivalent to each other, a set 
of conditions to determine iC(7J*, 7J; 7JI*, 7JI) (in (A ·2» is obtained. 

ii) The rest of the conditions is given by choosing the functional form of S(7J*, 7J; 
7JI*, 7JI) so that it contains no terms with the forms of 7J*, 7J, 7JI* and 7JI, such as 
(7J*7JY(7JI*7JIY(r, s~O), (7JI*(7J)no)1 and «7J*)no7JI)I(l~l), in terms of which the maximal­
ly normal Hamiltonian (4·4) is expressed. 

References 

1) T. Marumori, T. Maskawa, F. Sakata and A. Kuriyama, Prog. Theor. Phys. 64 (1980), 1294. 
2) T. Marumori, F. Sakata, T. Maskawa, T. Une and Y. Hashimoto, Nuclear Collective Dynamics 

(Lecture of the 1982 International Summer School of Nuclear Physics, Brasov, Romania), ed. D. 
Bucurescu, V. Ceausescu and N. V. Zamfir (World Scientific, 1985), p. l. 

3) T. Marumori and F. Sakata, Particles and Nuclei, ed. H. Terazawa (World Scientific, 1986), p. 207. 
4) M. Matsuo and K. Matsuyanagi, Kyoto Univ. Preprint KUNS 86l. 
5) A. Klein, Dynamical Structure of Nuclear States, ed. D. J. Rowe (University of Toront Press, 1972), 

p.38. 
6) T. Marumori, A. Hayashi, T. Tomoda, A. Kuriyama and T. Maskawa, Prog. Theor. Phys. 63 

(1980), 1576. 
7) A. Kuriyama and M. Yamamura, Prog. Theor. Phys. 66 (1981), 2130, 2147. 

F. Sakata, T. Marumori, Y. Hashimoto and T. Une, Prog. Theor. Phys. 70 (1983), 424. 
8) S. T. Beliaev and V. G. Zelevinsky, Nuc!. Phys. 39 (1962), 582. 

Downloaded from https://academic.oup.com/ptp/article-abstract/78/6/1364/1907098
by guest
on 30 July 2018



Optimum Collective Submani/old in Resonant Cases 

T. Marumori, M. Yamamura and A. Tokunaga, Prog. Theor. Phys. 31 (1964), 1009. 
E. R. Marshalek, Nucl. Phys. A347 (1980), 253. . 
P. Ring and P. Shuck, The Nuclear Many-Body Problem (Springer-Verlag, 1980), Chap. 9. 
T. Marumori, K. Takada and F. Sakata, Prog. Theor. Phys. Suppl. No. 71 (1981), l. 

1391 

T. Marumori, K. Takada and F. Sakata, Proceedings of the Winter College on Fundamental 
Nuclear Physics, ed. K. Dietrich, M. Di Toro and H. ]. Mang (World Scientific, 1985), p. 897. 

9) T. Marumori, Prog. Theor. Phys. 57 (1977), 112. 
10) A. Kuriyama and M. Yamamura, Prog. Theor. Phys. 70 (1983), 1675. 
11) G. D. Birkhoff, Dynamical Systems (Am. Math. Soc. New York, 1927), vol. IX. 

F. G. Gustavson, Astron. ]. 71 (1966), 670. 

Downloaded from https://academic.oup.com/ptp/article-abstract/78/6/1364/1907098
by guest
on 30 July 2018


