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Abstract

We study the SU(N) self-dual Chern-Simons-Higgs systems with adjoint matter
coupling, and show that the sixth order self-dual potential has p(N') gauge inequivalent
degenerate minima, where p(N) is the number of partitions of N. We compute the
masses of the gauge and scalar excitations in these different vacua, revealing an intricate
mass structure which reflects the self-dual nature of the model.

1 Introduction

Relativistic self-dual Chern-Simons-Higgs systems in 2 + 1 dimensions have been shown to
possess many remarkable properties. In the abelian theories [1], with the scalar potential of
a particular sixth order form, the energy functional is bounded below by a Bogomol’nyi style
bound [2]. This lower bound is saturated by topological solitons and nontopological vortices
[3]. Furthermore, the self-dual structure of the Chern-Simons-Higgs system is related at
a fundamental level to an N = 2 supersymmetry in 2 + 1 dimensions [4, 5, 6]. The self-
dual structure of these abelian Chern-Simons-Higgs systems has been shown to extend to
nonabelian Chern-Simons-Higgs systems with a global U(1) symmetry [7], once again with
a special sixth order scalar potential. However, while the self-dual structure generalizes in
a relatively straightforward manner, the analysis of the nonabelian self-duality equations
themselves is significantly more complicated. This complication is further compounded by
the many different choices: of gauge group, of representation, of matter coupling, etc... .
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Matter fields in the defining representation were studied in [8], while the adjoint matter
coupling, in which one can treat the gauge and matter fields in the same representation,
has been studied in [7, 9]. Recently, the SU(3) self-dual Chern-Simons-Higgs system with
adjoint coupling has been investigated in detail, with a systematic analysis of the three
distinct degenerate vacua [10]. In this paper, I present the mass spectra of the various
gauge inequivalent degenerate vacua of the SU(N) self-dual Chern-Simons-Higgs system
with adjoint coupling. While I concentrate on SU(N), the approach is readily generalizable
to other compact gauge groups. In the SU(N) case, the number of gauge inequivalent
minima is equal to the number, p(IV), of partitions of N. The mass spectra in these vacua
reveal a remarkably intricate structure, reflecting the self-duality symmetry in conjunction
with the Chern-Simons Higgs mechanism [11].

In Section 2 I introduce the model and briefly review the derivation of the relativistic
self-dual Chern-Simons equations. The potential minima are found by solving an algebraic
embedding problem, and this fact is exploited in Section 3 to provide a complete and con-
structive classification of the gauge inequivalent degenerate vacua. In Section 4 1 analyze
the masses of the gauge and scalar excitations in these various vacua, and discuss some of
the interesting features which arise. The most involved nontrivial vacuum is the maximal
symmetry breaking case, for which the complete SU(N) mass spectrum is presented. The
mass matrices of the real fields are discussed in Section 5. Section 6 is devoted to some
conclusions and suggestions for further investigation.

2 Relativistic Self-Duality Equations

Consider the following Lagrange density in 2 4+ 1 dimsensional spacetime
L= —¢ t pu pvp 2 t
= —tr ((Du9)' D¢) — ke ?tr (9,A,A, + gAuduA, ) =V (4. 4" (1)

where the gauge invariant scalar field potential V (¢, 1) is

1 t
Yy - t 2 t 2 :
V(6,60 = ot ((116.6'1.61- %) ([[6,6'].6]-0%)). (2)
The covariant derivative is D, = 3d, + [A,, ], the space-time metric is taken to be
guw = diag(—1,1,1), and tr refers to the trace in a finite dimensional representation of

the compact simple Lie algebra G to which the gauge fields A, and the charged matter fields
¢ and ¢ belong. Most of the discussion will focus on the Lie algebra of SU(N), but the
generalization to an arbitrary compact simple Lie algebra is straightforward and is indicated
at the appropriate points. The v? parameter appearing in the potential (2) plays the role of
a mass parameter.



The Euler-Lagrange equations of motion obtained from the Lagrange density (1) are

ov .
Do = 07 )
—ke"’F,, = J" (4)

where F,, = 0,A, — 0,A, +[ A,, A, ] is the gauge curvature, and the nonabelian current J#
is given by

I =i ([¢',D"6] - [(D"9)!,4]) (5)
Note that the currrent .J, is covariantly conserved, D,J* = 0, while the gauge invariant
current

Vi = —itr (6D ¢ — (D"¢)' ¢) (6)
is ordinarily conserved: 9,V* = 0.
The energy density for this system can be expressed as [7, 9, 10]

£ = tr (<D0¢_ ZL eXane v2¢>))* <D0¢7— i (IEXaRI= v2¢>)>)

+tr ((D6)! D) + tr (61 (Doo) — (Do) o) 7)

where D_ = Dy — iD,, and & has been chosen positive. The first two terms in (7) are
manifestly positive and the third gives a lower bound for the energy density, which may be
written in terms of the time component, V. of the gauge invariant current defined in (6):

v
> 0
£> -V (8)

This lower bound is saturated when the following two conditions (each first order in spacetime
derivatives) hold:

D¢ =0 (9)
Dop = - ([[4,6'],6] - v*) (10)

The consistency condition of these two equations states that

(DoD_ — D_Do) ¢ = [Fo,d]
— 516 (D01 ¢]
- i[L,(b] (11)



which expresses the gauge field Euler-Lagrange equation of motion, Fy_ = 2%@‘]—’ for the
spatial component of the current. The other gauge field equation, F,_ = %Jo, may be re-
expressed, using equation (10), in a form not involving explicit time derivatives. We thus
arrive at the “relativistic self-dual Chern-Simons equations”:

D_¢ = 0 (12)

Fyo = —5l0% 116,67 ¢]. 61 (13)

Note that if we ignore the quartic ¢ term in (13), which corresponds to taking the nonrela-
tivistic limit [9], then these relativistic self-duality equations (12, 13) reduce to the nonrela-
tivistic self-dual Chern-Simons equations studied in [12, 13, 14].

At the self-dual point, we can use equation (10) to express the energy density as

Eop = aostr (61 (176 ~ 10,61, 0])) (11

Recall that all solutions to the nonrelativistic self-duality equations correspond to the
static zero-energy solutions to the Euler-Lagrange equations of motion [13]. Here, in the
relativistic theory, the situation is rather different. First, the lower bound (8) on the energy
density is not necessarily zero, and the solutions of (10) are time dependent. Furthermore,
unlike in the nonrelativistic case, it is possible to have nontrivial solutions for ¢ while having
Fy_ = 0. These solutions do have zero energy, and are gauge equivalent to solutions of the
algebraic equation

[[¢, 6", ¢] = v?9. (15)

Solutions of this equation also correspond to the minima of the potential (2), and these
potential minima are clearly degenerate.

A class of solutions to the self-duality equations (13) is given by the following zero energy
solutions of the Euler-Lagrange equations:

¢ = g_l¢>(o)g
Ay = g 'oug
AO = g_laog (16)

where ¢ g) is any solution of (15), and g = ¢(Z,t) takes values in the gauge group. It is clear
that these solutions satisty Do¢p = 0, D_¢ = 0, F,._ = 0, as well as the algebraic equation
(15), which implies that they are self-dual, and that they have zero magnetic field and zero
charge density.

While this class of solutions looks somewhat trivial, it is still important because the
solutions, ¢, of the algebraic equation (15) classify the minima of the potential V', and
the finite nonzero energy solutions of the self-duality equations must be gauge equivalent to
such a solution at infinity:

¢ — g_1¢>(0)g as r — 00 (17)



3 Classification of Minima

As has been pointed out in the context of the SU(2) and SU(3) models [7, 10], equation (15)
is just the SU(2) commutation relation, once a factor of v has been absorbed into the field
¢. For a general gauge algebra, finding the solutions to (15) is the classic Dynkin problem
[15] of embedding SU(2) into a general Lie algebra.'

It is clear that in order to satisfy (15) for a general gauge algebra, ¢ = ¢() must be
a linear combination of the step operators for the positive roots of the algebra. Further,
since we have the freedom of global gauge invariance, we can choose representative gauge
inequivalent solutions ¢ to be linear combinations of the step operators of the positive
simple roots. It is therefore convenient to work in the Chevalley basis [16] for the gauge
algebra (for ease of presentation we shall present formulas for the simply-laced algebras). In
the Chevalley basis, the Cartan subalgebra elements, H,, and the simple root step operators,
E,, have the following simple commutation relations

[H,,Hy] = 0
[Eaa E—b] = 5abHa
[H,, Eyy] = £KpoFyy (18)

where a and b take values 1...r (r is the rank of the algebra), and K, is the Cartan matrix
which encapsulates the inner products of the simple roots a(®):

0 (19)

_ad@. gt
a

The step operators satisfy £_, = EI, and the generators are normalized in the Chevalley
basis as:

tr (HaHb) = [(ab
tr (EQE_b) = (5,15
tr (H,IE:H,) = 0 (20)

In this paper we concentrate on the gauge algebra SU(N), for which the Cartan matrix K
is the (N — 1) x (N — 1) symmetric tridiagonal matrix:

2 —1 0 0
—1 2 -1 0

K=|0 -1 2 =1 0 (21)
0 0o -1 2

Tt is interesing to note that this type of embedding problem also plays a significant role in the theory of
spherically symmetric magnetic monopoles and the Toda molecule equations [17].
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Expand ¢(g) in terms of the positive simple root step operators as:

N-1

$o)Fa (22)
a=1
Then [¢), gbzro)] is diagonal,
N-1
[¢(O)’¢)Ero)] = Z |¢’?0)|2Ha- (23)
a=1

The commutation relations in (18) then imply that

W’(O)a z_: z_: (0) KBy (24)

which, like ¢ (), is once again a linear combination of just the simple root step operators.
Thus, for suitable choices of the coefficients gb"(lo) it is possible for the SU(N) algebra element
¢(0) to satisfy the SU(2) commutation relation [[¢, ¢'], ¢] = ¢.

For example, one can always choose ¢(q) proportional to a single step operator, which by
global gauge invariance can always be taken to be Ej :

1
= —F 25
o0 = (25)
In the other extreme, the SU(N) “maximal embedding” case, with all N — 1 step operators
involved in the expansion (22), the solution for ¢ is :*

NZ\/ N—a)E, (26)

All other solutions for ¢, intermediate between the two extremes (25) and (26), can be
generated by the following systematic procedure. If one of the simple root step operators,
say FEy, is omitted from the summation in (22) then this effectively decouples the Ey,’s with
a < bfrom those with a > b. Then the coefficients for the (b—1) step operators £, with a < b
are just those for the maximal embedding (see equation (26)) in SU(b), and the coefficients
for the (N —b—1) E,’s with a > b are those for the maximal embedding in SU(N — b):

Z\/ b—a)E 7_ E Va(N —b—a)FE, (27)

a=b+

In general, the squares of the coefficients are the coefficients, in the simple root basis, of (one half times)
the sum of all positive roots of the algebra.
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Diagrammatically, we can represent the maximal embedding case (26) with the Dynkin

diagram of SU(N) :

0—0—0—...—0—0 (28)
N-1

which shows the N — 1 simple roots of the algebra, each connected to its nearest neighbours
by a single line. Omitting the b** simple root step operator from the sum in (22) can be
conveniently represented as breaking the Dynkin diagram in two by deleting the %" dot:

0—0—...—0 X 0—...—0 (29)
—_——

b—1 N—-b-1

With this deletion of the b dot, the SU(N) Dynkin diagram breaks into the Dynkin diagram
for SU(b) and that for SU(N — b). Since the remaining simple root step operators decouple
into a Chevalley basis for SU(b) and another for SU(N — b), the coefficients required for the
summation over the first b — 1 step operators are just those given in (26) for the maximal
embedding in SU(b), while the coefficients for the summation over the last N — b — 1 step
operators are given by the maximal embedding for SU(N — b), as indicated in (27).

It is clear that this process may be repeated with further roots being deleted from the
Dynkin diagram, thereby subdividing the original SU(N) Dynkin diagram, with its N — 1
consecutively linked dots, into subdiagrams of < N — 1 consecutively linked dots. The final
diagram, with M deletions made, can be characterized, up to gauge equivalence, by the
M + 1 lengths of the remaining consecutive strings of dots. A simple counting argument
shows that the total number of ways of doing this (including the case where all dots are
deleted, which corresponds to the trivial solution ¢y = 0) is given by the number, p(N), of
(unrestricted) partitions of N.

The SU(4) case is sufficient to illustrate this procedure. There are 5 partitions of 4, and
they correspond to the following solutions for ¢):

1
0—0—o0 ¢(0)=7§(\/§E1+2E2+\/§E3)

0—0 X ¢(0)=E1+E2
1 1
o X 0 ¢>(0) = 7§E1 + EEB
1
o X X ¢(0) = 7§E1
X X X ¢y =10 (30)

Thus we have a simple constructive procedure, and a correspondingly simple labelling
notation, for finding all p(NN) gauge inequivalent solutions ¢ to the algebraic embedding
condition (15). Recall that each such ¢(g) characterizes a distinct minimum of the potential
V, as well as a class of zero energy solutions to the selfduality equations (13).

7



Since each vacuum solution ¢g) corresponds to an embedding of SU(2) into SU(N), an
alternative shorthand for labelling the different vacua consists of listing the block diagonal
spin content of the SU(2) Cartan subagebra element [¢ ), ¢Io)] ~ J3. For example, consider
the matter fields ¢ taking values in the N x N defining representation. Then, for each
vacuum solution, [¢), gZ)ErO)] takes the N x N diagonal sub-blocked form:

J1

—
J2

[(0), blo)] = - _ (31)

Y

—Jm

Each spin j sub-block has dimension 25 4+ 1, and so it is therefore natural to associate this
particular ¢y with the following partition of N :

N=_2u+1D)+ 23+ +...+(2jm+ 1) (32)

For example, the SU(4) solutions listed in (30) may be labelled by the partitions 4, 3 4+ 1,
242,241+ 1,and 1 + 1+ 1+ 1, respectively.

4 Vacuum Mass Spectra

Having classified all possible gauge inequivalent vacua of the potential V, we now determine
the spectrum of massive excitations in each vacuum. In the abelian model [1, 3] there is only
one nontrivial vacuum, and a consequence of the particular 6 order self-dual form of the
potential was that in this broken vacuum the massive gauge excitation and the remaining
real massive scalar field were degenerate in mass.> In the nonabelian models considered
here the situation is considerably more complicated, due to the presence of many fields and
also due to the many different gauge inequivalent vacua. Nevertheless, we shall see that an
analogous mass degeneracy pattern exists.

3This degeneracy of the gauge and scalar masses in the broken vacuum is also true of the 241 dimensional

Abelian Higgs model [2].



The scalar masses are determined by expanding the shifted potential V(¢ + ¢(o)) to
quadratic order in the field ¢:

24
V(e+90) = 5t (6w, ') 6] + 16, 8lo). S0 + [0y Slo)s ¢ = 8°)  (33)

With the fields normalized appropriately, the masses are then given by the square roots of
the eigenvalues of the 2(N? — 1) x 2(N? — 1) mass matrix in (33). Since V is a 6" order
potential?, diagonalizing this scalar field mass matrix is considerably more complicated than
for the conventional ¢* Higgs model.

In the unbroken vacuum, with ¢y = 0, there are N? —1 complex scalar fields, each with
mass

m=— (34)

In one of the broken vacua, where ¢(0) # 0, some of these 2(N? — 1) massive scalar degrees of
freedom are converted to massive gauge degrees of freedom. The gauge masses are determined

by expanding tr <(Dﬂ <¢ + ¢(0)>>T <Du <¢) + ¢>(0)))) and extracting the piece quadratic in
the gauge field A:

v? tr ([A,, 6] 1[4, é0)]) (35)

Since the Lagrange density (1) for this model only contains a Chern-Simons term for the
gauge fields, and no Yang-Mills term, the gauge field masses are generated by the Chern-
Simons-Higgs mechanism [11, 18], which is different from the conventional Higgs mechanism.
Because the Chern-Simons term is first order in spacetime derivatives, a quadratic term
v2A,A* coming from one algebraic component of (35) leads to a gauge mode of mass ~ v?
(and not ~ v as would be the case in the conventional Higgs mechanism). Thus, the gauge
masses are determined by finding the eigenvalues (not the square roots of the eigenvalues)
of the (N? — 1) x (N? — 1) mass matrix in (35).

This procedure of finding the eigenvalues of the scalar and gauge mass matrices, must be
performed for each of the p(/N) gauge inequivalent minima ¢ of V. The results for SU(3),
SU(4) and SU(5H) are presented in Tables 1, 2 and 3. The masses for the two nontrivial
vacua in SU(3) are in agreement with the results of [10].

A number of interesting observations can be made at this point, based on the evaluation
of these mass spectra for the various vacua in SU(N) for N up to 10.

(i) All masses, both gauge and scalar, are integer or half-odd-integer multiples of the
fundamental mass scale m = v?/2k. The fact that all the scalar masses are proportional
to m is clear from the form of the potential V in (2). The fact that the gauge masses

4Note that a 6'® order potential is renormalizable in three dimensional spacetime.
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are multiples of the same mass scale depends on the fact that the Chern-Simons coupling
parameter £ has been included in the overall normalization of the potential in (2). This is a
direct consequence of the self-duality of the model.

(ii) In each vacuum, the masses of the real scalar excitations are equal to the masses of
the real gauge excitations, whereas this is not true of the complex scalar and gauge fields®.
Indeed, in some vacua the number of complex scalar degrees of freedom and complex gauge
degrees of freedom is not even the same. This will be discussed further in the next section.

(iii) In each vacuum, each mass appears at least twice, and always an even number of
times. For the complex fields this is a triviality, but for the real fields this is only true as a
consequence of the feature mentioned in (ii). This pairing of the masses is a reflection of the
N = 2 supersymmetry of the relativistic self-dual Chern-Simons systems [4].

(iv) While the distribution of masses between gauge and scalar modes is different in the
different vacua, the total number of degrees of freedom is, in each case, equal to 2(N* — 1),
as in the unbroken phase.

The most complicated, and most interesting, of the nontrivial vacua is the “maximal
embedding” case, with ¢ given by (26). For this vacuum, the gauge and scalar mass
spectra have additional features of note. First, this “maximal embedding” also corresponds
to “maximal symmetry breaking”, in the sense that in this vacuum all N? —1 gauge degrees
of freedom acquire a mass. The original 2(N? — 1) massive scalar modes divide equally
between the scalar and gauge fields. Moreover, the mass spectrum reveals an intriguing and
intricate pattern, as shown in Table 4. It is interesting to note that for the SU(N) maximal
symmetry breaking vacuum, the entire scalar mass spectrum is almost degenerate with the
gauge mass spectrum : there is just one single complex component for which the masses

differ!

5 Mass Matrices for Real Fields

The masses of the real fields exhibit special simple properties, which we discuss in this
section. As mentioned above, in each vacuum ¢y the number of real scalar modes is equal
to the number of real gauge modes. Furthermore, the two mass spectra coincide exactly, and
are all integer multiples of the mass scale m in (34). The real gauge fields come from the
diagonal algebraic components H,, while the real scalar fields come from the simple root step
operator components F,. Indeed, the real scalar fields correspond to those fields shifted by
the symmetry breaking minimum field ¢, which is decomposed in terms of the simple root
step operators as in (22). This means that the number of real scalars in a given vacuum ¢(q
is given by the number of nonzero coeflicients ¢f,, in the decomposition (22). This can be

seen explicitly for SU(3), SU(4) and SU(5) in the Tables 1, 2 and 3. This also serves as an

5By ‘complex’ gauge fields we simply mean those fields which naturally appear as complex combinations
of the (nonhermitean) step operator generators.
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easy count of the number of real gauge masses. This also means that to determine the mass
matrix for the real gauge fields we can expand A, in terms of the Cartan subalgebra elements
H, (the other, off-diagonal, algebraic components do not mix with these ones at quadratic
order). In fact, in order to normalize the gauge fields correctly, it is more convenient to
expand the A, in another Cartan subalgebra basis, h,, for which the traces are orthonormal
(in contrast to the traces (20) in the Chevalley basis which involve the Cartan matrix) :

tr (hahb) = 5ab (36)

Such basis elements, h,, are related to the Chevalley basis elements, H,, by
he = > W H, (37)
b=1
where &®) is the " fundamental weight of the algebra [16], satisfying
> wlal) =6, (38)
b=1
where a(®) is the b simple root. For SU(N) we can be more explicit:

TH S b,

The orthogonality relation (38) means that the correspondence can be inverted to give

he = (39)

H,=Y o\ by (40)
b=1
The fundamental weights &*) and simple roots @® are also related by

a =3 K, 3 (41)
b=1

These new basis elements have the following commutation relations with the simple root
step operators:

[has B] = o) By (42)

Given the traces in (36) and the commutation relations (42), it is now a simple matter to
expand the quadratic gauge field term (35) to find the following mass matrix:

MG =2m E 5o (43)
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where m is the fundamental mass scale in (34). For the maximal embedding vacuum (26) in
SU(N) this leads to a mass matrix

N-1
Mf;‘}f“ge) =m Y c¢(N—c) ole) ozgc) (44)
c=1
This matrix has eigenvalues
2, 6,12, 20, ..., N(N—-1) (45)

in multiples of m. For any vacuum ¢y other than the maximal symmetry breaking one, the
mass matrix for the real gauge fields decomposes into smaller matrices of the same form,
according to the particular partition of the original SU(N) Dynkin diagram, as described in
Section 3.

The real scalar field mass matrix can be computed by expanding the ¢ field appearing
in (33) in terms of the positive root step operators. With such a decomposition for ¢, the
quadratic term (33) simplifies considerably to give a mass (squared) matrix

MG = 41 by 3 1650 Ko K o
c=1

where K is the Cartan matrix (19). For the SU(N) maximal symmetry breaking vacuum
(26) this mass matrix is

N-1

MG =2 Jab(N —a) (N —b) 3 ¢(N = ¢) Ky K. (47)
c=1
which has eigenvalues
(2)25 (6)27 (12)25 (20)25 T (N(ZV - 1))2 (48)

in units of m?. Tt is interesting to note that the eigenvalues in (48) are the squares of the

eigenvalues (45) of M99 even though M%) is not the square of the matrix M (92us¢)
in this basis. Nevertheless, as the real scalar masses are given by the square roots of the
eigenvalues in (48), we see that the real scalar masses do indeed coincide with the real gauge
masses, a consequence of the N = 2 supersymmetry of the theory.

6 Conclusion

In this paper we have analyzed the vacuum structure of the SU(N) self-dual Chern-Simons-
Higgs systems with adjoint coupling. Finding the locations of the potential minima (which
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are degenerate) is equivalent to a classic algebraic embedding problem. A simple explicit
construction is given for enumerating and evaluating the gauge inequivalent minima for any
gauge group. For SU(N), the number of gauge inequivalent minima is equal to p(N), the
number of partitions of N. In the nontrivial vacua, the Chern-Simons-Higgs mechanism
generates masses for some of the algebraic components of the gauge field. Both the number
of and the actual mass values of these gauge excitations depend on which vacuum is being
considered. We have analyzed the resulting mass spectra, for both the gauge and scalar
fields, and identified a number of interesting symmetry properties of these spectra. There is
clearly a very rich structure present in these spectra, some of which can be understood in
terms of the self-duality, and the associated N = 2 supersymmetry, of these systems.

The picture is by no means as complete as for the corresponding nonrelativistic nonabelian
self-dual Chern-Simons-matter systems, where a classification of all finite charge solutions
is known [14], due to a deep relationship between the nonrelativistic self-duality equations
and integrable models in two dimensions. Ideally, one would like to discover more about
explicit solutions of the relativistic self-duality equations (12,13). Some properties of these
equations and their possible solutions for SU(2) and SU(3) have been discussed in [7, 10]. An
analysis of the integrability of the abelian relativistic models [19] suggests that the relativistic
nonabelian self-duality equations are not completely integrable in general. However, it would
be very interesting to learn if they may be integrable in certain special cases, as was found for
the abelian theories [19]. Such information about nonzero energy solutions to the self-duality
equations would shed some light on the quantization of this model and the quantum role of
the intricate vacuum structure.
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vacuum gauge masses
b0 real complex
fields fields
%El 2 /2 1/2 1
Eiy+Ey |2 6] 1 2 5
vacuum scalar masses
b0 real complex
fields fields
%El 2 1 3/2 3/2 2
Eiy+FEy |2 6] 2 3 5

Table 1: SU(3) vacuum mass spectra, in units of the fundamental mass scale %, for the
inequivalent nontrivial minima ¢g) of the potential V. Notice that for each vacuum the total
number of massive degrees of freedom is equal to 2(N? — 1) = 16, although the distribution

between gauge and scalar fields is vacuum dependent.
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vacuum gauge masses
b0 real complex
fields fields
T 2 12 12 12 12 1
%El + %Eg 2 1 1 1 1 2
FEi + FE, 2 6 1 1 1 2 2 )
4 (VBE +2B,+VBE;) [2 6 12| 1 2 3 5 8 Il
vacuum scalar masses
b0 real complex
fields fields
%El 2 1 1 1 1 3/2 3/2 3/2 3/2 2
%El + %Eg 2 2 1 1 1 2 2 2 2 2
FEi + F, 2 6 1 2 2 2 2 3 )
S (VBE +2B,+VBE;) [2 6 12] 2 3 4 5 8 1l

Table 2: SU(4) vacuum mass spectra, in units of the fundamental mass scale %, for the
inequivalent nontrivial minima ¢g) of the potential V. Notice that for each vacuum the total
number of massive degrees of freedom is equal to 2(N? — 1) = 30, although the distribution
between gauge and scalar fields is vacuum dependent.
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vacuuim gauge masses
é(0) real complex
fields fields
2=E 2 1/2 172 1/2 1/2 1/2 1/2 1
T E+ 5P 2 2 1/2 1/2 1/2 172 1 1 1 1
2
E| + E, 2 6 1 1 1 1 1 2 2 2
5
TE1 + B3+ By 2 2 6 12 12 1 1 3/2 32 2 5
/2 1/2
1 (VBE: + 2B, + V3Es) |2 6 12 1 3/2 3/2 2 3 1/2 7/2 5
8 11
V2B, +V3(Ba+ Es)+V2E, |2 6 12 20 1 2 3 4 5 8 11 11
16 19
vVacuum SCELIELI‘ masses
b0 real complex
fields fields
1 ¢
5 2 11 1 1 1 1 1 1
1 3/2 3/2 3/2 3/2 3/2 3/2 2
S b+ 5 Es 2 2 1 1 1 1 3/2 3/2 3/2 3/2
2 2 2 2 2
Ei + E, 2 6 11 1 1 2 2 2 2
2 2 2 3 5
5B+ Es + E 2 2 6 1 3/2 3/2 2 2 5/2 5/2 7/2
72 3 5
2= (VBB + 2B, + V3Es) |2 6 12 1 2 5/2 5/2 3 1/2 7/2 4
5 08 11
V2B, +V3(Ba+ Bs)+V2E, |2 6 12 20 2 3 4 5 5 8 11 11
16 19

Table 3: SU(5) vacuum mass spectra, in units of the fundamental mass scale %, for the
inequivalent nontrivial minima ¢(g) of the potential V. Notice that for each vacuum the total
number of massive degrees of freedom is equal to 2(N? — 1) = 48, although the distribution

between gauge and scalar fields is vacuum dependent.
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Table 4: SU(N) mass spectrum, in units of the fundamental mass scale

gauge masses
real complex
fields fields
2 1 2 3 4 5 ... N-1
6 5 8 11 14 ... 3N+
12 11 16 21 e 5N-9
20 19 26 e TN-16
30 29 9N-25
N(N-1) | N(N-1)-1
scalar masses
real complex
fields fields
2 N 2 3 4 5 ... N-1
6 5 8 11 14 ... 3N+4
12 11 16 21 e 5N-9
20 19 26 e TN-16
30 29 9N-25
N(N-1) | N(N-1)-1

25

, for the maximal

symmetry breaking vacuum, for which ¢(o) is given by (26). Notice that the gauge mass
spectrum and the scalar mass are almost degenerate - they differ in just one complex field

component.
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