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This paper is a sequel to the author’s earlier work [7]. We extend the 
ideas in a number of directions. However, once again, the key idea is to 
produce examples with unusual numbers of solutions or solution structure 
by proving rather general results on how solutions change with domain 
changes. Here the domain change is in a very general sense and the 
problem we are considering is of the form 

-Au=l.f(u) in 52 
(1) 

u=o on X2. 

First, we improve one of the main results by constructing star shaped 
sets which approximate k disjoint open star shaped sets on each of which 
our equation is non-degenerate. It follows that can construct star shaped 
domains on which our equation has many solutions. (In [7], we only 
constructed examples where there were more solutions than for a ball.) 

Second, we use our ideas to obtain quite a good global understanding of 
some convex asymptotically linear problems on domains with a narrow 
joining strip. In particular, it turns out that the positive solutions are not 
connected. This seems to provide the first example of this type with 
J(O) > 0 and f(y) > 0 for y > 0. 

Third, we prove that our techniques are valid for non-self-adjoint 
problems (including systems). This is obvious except for the spectrum. 
Under natural assumptions, we prove that the number of eigenvalues with 
negative real part changes continuously. 

Fourth, we study briefly similar results to those in [7] for the Neumann 
boundary value problem. Here we consider problems that are extremely 
sublinear. In this case, we can prove the existence of solutions under 
assumptions where the spectrum of the linear part (for Neumann boundary 
conditions) need not depend continuously upon the domain. Under addi- 
tional assumptions on the domains, our method can also be used to obtain 

316 
0022~0396/90 $3.00 
Copyright I:: IY90 hy Acadcmlc Press. Inc. 
All rights of rcpruducuon m  any lwm rescrvcd 



THE EFFECT OF DOMAIN SHAPE, II 317 

uniqueness and stability results. This can be used to give an alternative 
derivation of the result of Matano and Mimura [25] in some cases. 
Moreover, we obtain local uniqueness. Unlike the work in [25], our 
methods can be used for problems where we do not have increasing maps 
(for some order structure). Our results are less precise than those in Jimbo 
[2&22]) but hold for more general domains. They seem more flexible than 
the methods in Vegas [29]. 

Last, we briefly consider parabolic problems. In particular, we consider 
initial value problems and some problems which are periodic in time and 
where we look for periodic solutions (problems similar to those in [ 121 or 
[19]). It seems that there are many more initial value problems for 
parabolic equations which could be studied. 

I. ARBITRARILY MANY POSITIVE SOLUTIONS ON STAR SHAPED DOMAINS 

We consider the equations 

--Au =.f(u) in Q 

u=o on da. 

Suppose that D is a bounded connected open set in R” such that Q has 
smooth boundary away from 0 and such that, near 0, Sz is the interior of 
a cone C, over a convex body C not containing zero and with vertex 0. 
Here by solutions we mean elements of ri/‘,2(Q) n L”(Q). Suppose that G 
is a relatively open subset of the smooth part of da. We will prove that, 
if either f(0) = 0 or f(R) c [0, co), we can make a C2 small perturbation 
of the part of dQ in G to ensure that the solutions of (2) are non- 
degenerate. 

Assuming this for a moment, we will construct our examples. We choose 
s”l, as above such that d, u (0) is star shaped from 0 and such that a, is 
contained in the cone C,. We choose G, a relatively open subset of 80, so 
that n. r > 0 on G,, where n is the outward normal to ad,. It follows easily 
from this that, if we make a C* small perturbation of 20, near G, then the 
star shapedness condition still holds. Moreover, can be assume by the 
result mentioned in the previous paragraph that (2) for Q =8, has only 
non-degenerate solutions. Since we can choose C, to be a “narrow” cone, 
we see that we can, for any positive integer k, choose fi,, . . . . 0, as above 
such that the closure of any two of these sets intersects only at zero. Define 
Q, = U:‘=, fii. Since {0} has zero capacity, we can argue as on p. 452 of 
[13] to deduce that UE ci/‘~2(Q,)r\LZ(R0) and is a weak solution of (2) 
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on Q, if and only if u E @‘(fi,) n Lm(fii) for each i and is weak solution 
on every di. Since we have arranged above that the solutions on each di 
are non-degenerate, it follows that solutions on 52, are non-degenerate. Let 
52, = Q0 u Bli,, where B,,, denotes the ball with centre zero and radius l/n. 
Then 52, is star shaped, 52, has Lipschitz boundary and 52, + Q, as n + co 
in the sense of [7, Sect. I]. (If we prefer, we can easily modify Q, to have 
smooth boundary.) As in [7], we see that near each solution u0 of (2) for 
Q = Q, there is a unique solution of u, of (2) for 52 = 52, if n is large. Here 
I should explain what is meant by near. We choose B bounded containing 
u ,“= 0 s2, and extend u, from 52, to P by defining it to be zero outside a,,. 
If f has polynomial growth, when we say that U, is near u,, we mean that 
u,, - u0 is small in L”(B) for suitable large p. If S does not have polynomial 
growth, we use suitable Orlicz space instead of Lp spaces. Now assume that 
ug is non-negative. If u,Jx) > 0 on 52, or f(0) > 0 or u0 = 0, then u, is non- 
negative on Q, for n large. In the general case, let 52, = {x E 52,: U,,(X) = O}. 
Then a, is a union of components of Q,, possibly empty. Let 1, be the first 
eigenvalue of -A on Q,. If f’(0) < I,, then u, is non-negative for all large 
n while, if f(0) = 0 and J’(0) > i, , then u, changes sign for all large n. This 
is a slight generalization of Theorem 2 in [7] (and has essentially the same 
proof). Note that our non-degeneracy condition ensures that f’(O)# I,, 
when j(O) =O. Hence we see that, if n is large and if either f(0) > 0 or 
f(0) =f’(O) = 0, then, near every positive solution of (2) on Go, there is a 
unique positive solution of (2) on 52,. Hence we see that, if we can choose 
the fij so that (2) for Q=di has at least two non-negative solutions, and 
such that our non-degeneracy condition holds (with f’(0) < 1, if j’(0) = 0), 
then there will be at least 2k non-negative solutions of (2) for Q = Q, with 
n large. This will give our required examples of star shaped domains with 
arbitrarily many positive solutions. 

We apply this idea to two examples. The non-linearities are the two 
main ones we considered in [7]. First let f(y) = y”, where 1 < r < 
(m + 2)(m - 2) ‘. In this case, the zero solution is one solution on a,. 
We can easily obtain a second solution by maximizing In, up* ’ over 
{UC ti’*2(sz,): jfi, IVu12d.u= 1) and resealing. The standard Lp - Lq 
regularity theory as in [ 16, Theorem 8.1 S] or [28] and bootstrapping 
imply that the solutions are in L”. (Similar arguments appear in [7].) 
Thus, we see that there are star shaped domains Q for which 

-Au=u’ in Q 
u=o on dQ 

has arbitrarily many positive solutions (but a finite number). 
We now consider the case where f(y) = 1. exp y and n < 8. We will prove 

that for suitable A we can have arbitrarily many positive solutions. It 
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suffices to find a I for which (2) (with Q=52, and f(y)= AeY) has two 
solutions (necessarily positive). Note that we can choose az2, . . . . d, to be 
rotations of d, . Note also that (-A)-’ (with Dirichlet boundary 
conditions) is a continuous map of Lm(d,) into a Holder space (by 
Gilbarg and Trudinger [ 16, Theorem 8.291) and hence is a compact linear 
map of L”(fi,) into C,(s”i,), where C,(d,) denotes the continuous 
functions on the closure of fi, vanishing on as”i, . We now consider the map 
A(x,I)=1(-A)-1expxasamapofC,(S?i,)xRintoC,(S?i,).Itiseasyto 
see that it satisfies the basic assumptions on p. 142 of [lo]. Here we need 
to use the remarks following those assumptions, we need to know that the 
demi-interior elements of the natural cone K in C,(s”,) are the elements 
strictly positive in ,s”i, (by [ll, Lemma 23) and that (-A)-’ maps non- 
zero non-negative elements of L”(Q) into functions strictly positive on 51 
(by the weak maximum principle). Hence, there is an interval [O, A*] and 
an increasing map J + z(n) defined on [0, A*) such that z(n) is the minimal 
fixed point of A(, 1) and r(A:(z(J), 1)) < 1, where r denotes the spectral 
radius and Ai denotes the partial derivative in the first variable. Moreover 
there are no non-negative solutions for R > 1*. Since ey > y, easy estimates 
show that A* < co. Suppose we can prove that (z(1): 0 61 <A*} is 
bounded in C,(d,). Since z(n)=A(z(A), 1) and A is compact, it follows 
easily that {z(n): 0~ 1 <A*} is pre-compact in &(a,). Since z(n) is 
increasing, it follows that there is a z* in C,(d,) such that z(n) -+z* as 
il -+A*. Moreover z* =A(z*, A*). z* must be the minimal solution for 
A = 1* (as in [lo]) and thus r(A:(z(A*), A*)) Q 1. However, equality must 
hold since otherwise we could extend the branch beyond 1*. Note that 
N(Z- Ai(z(l), A)) is spanned by a demi-interior element of K and the f 
which spans the adjoint kernel is strictly positive on K. Using this, we can 
easily modify the argument at the beginning of Section 2 in [7] to deduce 
that there are two solutions of x=A(x, 2) near z(n*) for each I near A* 
but less than 1* and that these are non-degenerate. Thus the proof reduces 
to establishing the bound on {z(n): 062 <A*}. This follows by the 
argument of Crandall and Rabinowitz [6]. Only one thing needs to be 
changed. In their bootstrapping argument, they use that if -Au = 7, where 
f~ Lp(Q), then u E lV*,p(Q) and thus, by the Sobolev embedding theorem, 
u E L4(Q) for a certain q > p. We cannot use this argument here but instead 
use Trudinger [28] to deduce directly that UEL~(Q) for the same q. Note 
that, in the case of an exponential non-linearity, we do not need the 
domain perturbations. Note that our methods could be used to handle 
many other non-linearities J: 

It remains to prove our domain perturbation result for 0,. Choose a 
relatively open subset U of aa,, such that 0 is contained in the smooth 
part of ad, amd such that r . n > 0 on 0 where g is the outward normal. 
Finally, choose a small closed neighbourhood V of U in R”‘. Without loss 
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of generality we can assume i? and V are manifolds with boundary. We let 
W be the subspace of functions in C2.x(8,) (into R”) which vanish off 
V,. Here V, is a slight shrinking of V. We let #’ be a small open 
neighbourhood of zero in W. If the neighbourhood is small, we easily see 
that, for IC/E @, (I+$)(a,) is still a domain of the type we want. This is 
how we obtain our domain perturbations. 

Choose p > n and let X be the space of functions on 0, in LP(G,) n 
C,( Vn d,) where C, denotes the usual Holder space. It is easy to see that 
this is a Banach space under the norm ]Iu]l,,n, + llu] Vnfi,Il,,,,,~, E 

l14x. Here llo.z.Yn~, denotes the Holder norm on V n d, In all our norms, 
we will omit the set when it is clear on which set we are taking the norm. 
Let 2 = {u E ci/‘*2(fi, ): -Au E X}. This is easily seen to be a Banach space 
under the norm l]ullz = [Idull x. By standard regularity theorems, Z 
continuously embeds in L%(d,) and if UEZ, then UI ,,,~C’.~(fii n V,) 
with the corresponding estimate for the norm. We now have a similar 
situation to that in Saut and Teman [27, Sect. 41. Our proof is a slight 
modification of their proof. It is assumed that the reader has a copy 
of [27] available. We consider the map F: Z x m+ A’ defined by 
F(z, S)(x)= -A,;(I+S)(x))-f(z((l+S)(x)) for XE~,, ZEZ, SE W. 
Here .? = (I+ S)x and we calculate the Laplacian in I coordinates. Note 
that z is C* near where S(x) # x. With this remark, one can calculate the 
derivative of F by the same arguments as in [27]. Note that the regularity 
theory for the Laplacian easily ensures, if a E L”(a,) n C,(V), then the 
annihilator of the range of -A - al considered as a map of Z into X is the 
same as the annihilator on ri/‘.‘(d,). Using these remarks, we’can easily 
reduce the proof that 0 is a regular value of F to showing that, if 
-Au,=f(u,) in a, (where u,EZ) and if jn, A(S.Vu,)w=O for all SE W, 
then w  = 0 (cf. [27]). Here w  E Z is a solution of the linearized equation of 
(2) at ug (for Q = a,). Note that our integrands have support away from 
zero. Since our integrals are supported away from zero, we can argue as in 
[27, p. 3133, to deduce that our integral condition becomes 

i,, (s.vu,)/‘(u”)w-jr(s.vuo)~=o 
for every SE W (where f = ad, ). Hence jn, (S . VuO) f’(uo) w  = 0 for every 
C2 function S with support in V, and vanishing on ZY It follows easily that 
VuJ’(uO) w  vanishes in fi, n V, . Since S is zero outside k’, , it follows from 
(3) that j’,-S.Vu,(aw/&z)=O for all SE W. It follows easily that 
Vu,(aw/an) = 0 on I/n V,. Since aw/dn cannot vanish on a relatively open 
subset of ad, (cf. the argument on p. 314 of [27]), it follows by continuity 
that there is a relatively open subset U, of U on which aw/an is never zero. 
Hence Vu0 vanishes on U, . In particular 8u0/dn vanishes on U, . If f(0) = 0, 
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u0 satisfies the linear equation - du = uh( U) where h(y) = y -‘f( y ). Hence, 
by the same argument as in [27], u0 vanishes identically. Hence, if 
f(0) =O, we have proved that zero is a regular value of F unless 1 is an 
eigenvalue of --A, Since we can always ensure that this is not the case by 
choosing a small S which shrinks the domain first, we have completed the 
proof that zero is a regular value of F if f(0) = 0. If f(0) > 0 and f(R) c 
[0, co), every solution u0 is non-negative and non-trivial. The maximum 
principle then ensures that &@n >O on 80, and hence we have a 
contradiction. This completes the proof that 0 is a regular value of F. We 
can now use a similar argument to that in [27] to show that for most 
SE @, (2) has only non-degenerate solutions for Sz = (I+ S)(fi,). This 
completes the proof. 

Remark. In fact, our domain perturbation result for positive solutions 
holds if we only assume that f(0) 20. If f(0) > 0, we note that positive 
solutions u0 on fi, satisfy &+,/&r > 0 on as”il\{O}. Hence, if we choose a 
small neighbourhood T of the positive solutions in Z, then every solution 
u in T satisfies au/&r > 0 on U (by continuity). We then complete the proof 
as before by considering F as a map of T x fi into X. 

2. SOME ASYMPTOTICALLY LINEAR EXAMPLES 

We construct asymptotically linear C2 convex functions f with f(0) > 0, 
f(y) > 0 on (0, co) for which the set of positive solutions of 

-Au = /If(u) in 52 

u=o on LK2 
(4) 

is not connected. These seem to be the first such examples. We also 
construct similar examples with f(0) = 0 and f’(0) > 0. We ‘always assume 
that v-‘f(y)+ 1 as lyl --) co. We will construct examples with 52 star 
shaped. 

As in [S], we say that 52, + O0 as n -+ co if 0, and 0, are bounded 
open sets in R” with 0, connected and if there is a compact subset E of 
R” of measure zero and a compact subset K in R” of capacity zero such 
that 

(i) if K, is a compact subset of Q,\K, K, c Q, for large n, 

(ii) if U is an open neighbourhood of fi,, u E, then 8, E U for 
large n, 

(iii) whenever UE W’72(Rm) and U(X) = 0 a.e. on Rm\Do, then 
2.4 E @2(Q,). 
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Remark. Very general conditions ensuring that (iii) holds can be found 
in Hedberg [17]. 

LEMMA 1. Assume that Q, + 9, as n + co, that f is as above and that 
(u,, I,,) are positive solutions of (4) for 52 = i2, such that IIu,II z,R. + 30 and 
I., + a as n + co. Then 0 <a < 30 and the equation 

-Au=ru in a, 

u=o on aa, 

has a non-trivial non-negative solution. 

Proof. First assume that a < cc. Let f(y) = y + r(y) where 
y - ‘r(y) -+ 0 as y + a, i.e., for every E > 0, there exists M, > 0 such that 
r(y)Gv+M, on CO, ~0). Hence Il~(u,)IIoo.n~f~ll~,I15.D~+ME. Thus we 
see that 1) -Av,,-~.,,v,,JJ,~~~~ (E+ (Ilu,ll,,n,)-‘ME)(2a+ 1) for large n 
where ~,=(lI~,I13C.Rn)-‘~,. Hence v, E L”(s2,) n ri/‘-‘(Q,), JIv,II m,Qo = 1 
and -Au,-a u,+O in L”(Q,) as n -+ m. Using the independence of the 
constants upon n in the standard Lp - Ly estimates (cf. [7, Lemma 1 I), we 
easily prove from the equation for v, (by bootstrapping) that ))v,,))=.,~~ is 
small if Il~nl12.R, is small. Thus llt~,,II~,~~ is not small. Since u, is uniformly 
bounded in ri”*2(s2,) (by the equation for u,,), we can, by choosing a sub- 
sequence if necessary, assume that u, converges weakly in k@‘(P) (and 
thus strongly in L2(&) to v. Here 1?1Q,,u u,“=, a,, and B is bounded. 
Since II 0, II 2.R. is bounded below, t’ # 0. Since IJ,, 2 0 on a,,, u > 0 on Q,. By 
the equation for u, and by the arguments in [8], we see that UE @‘~2(Q,) 
and - Au = av in 52,. (Similar arguments appear in [7], Sect. 11.) 

It remains to prove that a < cc. By our assumptions there is a K> 0 such 
that f(y) > Ky on R +. It follows easily that (4) for Sz = Q, can only have 
a positive solution if I. < K- ‘1,(52,). (We take the scalar product of (4) for 
52 = Sz, with an eigenfunction of -A corresponding to i,(Q,)). Since 
1,(52,) -+ I.,@?,,) as n + co (cf. [7] or [26]), the result follows. 

If s2, has k components, it is easy to see that there are at most k possible 
values of r. 

We now construct our examples. Suppose we can construct f as above 
such that for 52 the unit ball B,, (4) has exactly one positive solution for 
3. < i,(B,), exactly two positive solutions for I.,(B,) < I. < A*, a unique 
positive solution for I. = R, and no positive solutions for 1. > 1, and such 
that all positive solutions for 0 <i. < I., are non-degenerate. We will con- 
struct such an f a little later. Suppose we choose a second disjoint ball B2 
of small radius r so that B, and B, touch and A,( B, )r ’ < A*. By a simple 
scaling, the solutions of (4) for Q = B, have similar properties to those on 
B, except for a larger 2, > A,,. As in [73, we easily see that the positive 
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FIGURE 1 

solutions for Q = B, u B, are as in Fig. I. Note that large solutions only 
occur near 1,(B,) and ,I,(&). Suppose Q,, are star shaped sets such that 
Q,, -+ Q, = B, u B, as n + cc. As in [7, Sect. 23, we see that the positive 
solutions of (4) (for Q,) in {(x, 2) E ~!,‘(a,,) x R’: llxl12 + I < k f are curves 
almost the same as those in Fig. 1 for n large (where n depends on k). On 
the other hand, by Lemma 1, we see that, if E > 0 and n is large, the positive 
solutions with Ii.--E,,(B,)) + Ii.-l,(B,)I >E are bounded (uniformly in n) 
in L”. Consider a component of positive solutions of (4) for 52 = Q,, which 
contains points near the higher curve T, in Fig. 1. By our comments above, 
it will contain a curve of solutions near the bounded part of T,. This will 
be in {(x, I.): I. Z ,I,( B2) - E}. Any other solutions (x, 1) for n large will lie 
near the other curve T, or will have [lxllz large. Hence the only way the 
two components for Q=52, can join up is through large solutions. 
However, by Lemma 1, large solutions can only occur for ,I close to I-,( B,) 
or i,,(B,). Thus there is no way for the components to join up. Hence we 
see that our solution structure is like that in Fig. 2. Note that the 
component T1 close to T, on bounded sets must be a bounded component 
since, for fixed n, there are no possible asymptotic bifurcation points for 
positive solutions near A,(B,). (n,(Q,,) is the only point of asymptotic 
bifurcation of positive solutions.) I do not claim that Fig. 2 is exact in that 
I do not claim that there are no extra components or further bifurcations 



324 E. N. DANCER 

FIGURE 2 

near the relatively large solutions in T1. However, I suspect the picture in 
Fig. 2 is correct. (One can choose the 52, and f so that any bifurcations on 
T, are simply changes of direction.) 

It remains to construct f with the required properties on B,. This 
follows easily from Theorem 2 in [2] and its proof. Note that it is easy 
to construct an f satisfying the assumptions there. A more convenient 
assumption guaranteeing that i, > i,( B,) than the one in [23 can be 
found in [ 10, Sect. 43. 

Suppose that, we use a similar construction with B, and B, of the same 
radius and with the Q, preserving the 2, symmetry (due to reflection in the 
plane P of points equidistant from the centres of the two balls). We would 
obtain a solution structure as in Fig. 3 where once again the solution 
structure of the large non-symmetric solutions could be a little different to 
that in the diagram (though the branches must join up and the branch of 
symmetric solutions only changes direction once). 

Finally, our methods can also be used to obtain corresponding results 
for the case where f (0) = 0 and f ‘(0) > 0. The only point to note is that, 
if the solution structure for 52, (and posirioe solutions) is as in Fig. 4 then 
the lower part of the right hand branch will leave the cone and we will 
obtain a diagram similar to that in Fig. 5 for 52 = a,. In the symmetric case 
(as above), we will obtain a diagram similar to that in Fig. 6 for 52 = 52,. 
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FIGURE 5 

3. ON THE SPECTRA OF LINEARIZATIONS 

In the theory in [7], we proved a result which essentially showed that, 
if f2, -P f& as n + 30 and if u,, is the unique solution of (1) on 0, which 
is near uC (under appropriate hypotheses), then the spectrum of 
-A -S’(U,,)~ on Q,, (with Dirichlet boundary conditions) is near that of 
-A -f’(u,,)l on sZO. (More precisely the kth eigenvalue 2.; of the first 

operator approaches the corresponding eigenvalue j.z of the second 
operator as n + 03 (where the eigenvalues are repeated according to multi- 
plicity). To prove this, we used the variational structure of the problem. In 
fact, this was the only point where we used the variational structure of 
the problem. Here we present a method of obtaining this continuous 
dependence of eigenvalues which extends immedciately to non-self adjoint 
problems and to weakly non-linear systems. We illustrate the method by 
applying it to the equation 

-Au+a-Vu=f(u) on R 

u=o on 132, 
(5) 

where a E L”(R”). We assume that u. is a solution of (5) for D = Q, in 
I’m* n L”(0,) and that u. is a non-degenerate solution. Assume for 
simplicity that f has polynomial growth. Then for n large, there is a unique 
solution U,E P.*(sZ,) n L”(l2,) of (5) (for Q= f2,) near u. in Lp(B) 
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for suitable large p. Moreover, U, are uniformly bounded on L”(B) 
and U, are non-degenerate solutions. This follows by a minor modification 
of the proof of Theorem 1 in [73. We now compare the spectra of 
-A+a.V+b,(x)lon Q, and -A +a.V+b,Z on Q, (both with Dirichlet 
boundary conditions). Here h, := -f’(u,) and b0 = -f’(u,). Note that the 
b,, are uniformly bounded in L”(B) and h, + b0 in LP(@ as n + co for 
every p < CC. Note also that when we write -A henceforth in this section, 
we also include the appropriate boundary condition. 

THEOREM 1. (i) Assume that &, is a (possibly complex) eigenvalue of 
-A + a -V + hoI on 52, of algebraic multiplicity 6 and E > 0. Then, for n 
large, there are exactly 61 eigenvalues of -A -I a. V -I- h,I on S2, counting 
multiplicity in {i. E C: I;1 - &I < E j. 

(ii) Moreover, ~fsr~R, any eigenvalue of -A+a.V+b,iin (%EC: 
Re i. < cc} is near an eigenvalue - A + a . V + b0 I for n large. 

Remark. This is the desired result on the continuity of the spectrum. 
One can prove analogous results for the spectral projections (in IL,‘). 

Proof Step 1. If 9 is not an eigenvalue of .-A + a 1 V + b,I, then there 
is a K>O such that ))-Av+a.Vv+(b,-~)v112.n,~Kl(v(12.P, for all v in 
T, = {M: E ri/‘~~(L?,): AWE L’(Q,)}. This follows because, if it were false, 

FIGURE 6 
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there would exist U,E T, such that IJv,(I~,~, = 1 and --Au, + a .Vu, + 
(b, - p)u, + 0 in L’(Q,) as n + co. By multiplying the equation by u, and 
using the Cauchy-Schwartz inequality, we see that 

s IV~,12~~~~ll~,ll:,sa,+~,. 
0” 

Hence { ll~nllI,2,n,~ are uniformly bounded. Here I( 11 l,Z,Rn denotes the 
usual W1,2 norm on a,. We can now obtain a contradiction by a similar 
argument to that in the proof of Step 1 of the proof of Theorem 1 in [7]. 

Let R,,, denote the inverse of -A + a .V + (b, - p)Z for p as in Step 1. 

Step 2. If f~ L2(B) and p is as in Step 1, then R,,,i, f + R,, p i,,T in 
L’(B) as n + co. Here i, is the natural restriction map from e(B) to 
L2(Q,) and we extend elements from L2(Q,) to L2(8) by defining them to 
be zero outside Sz,,. (Equivalently we use the obvious extension operator 
E,). To prove this, note that, by Step 1, IIR,,,i,~l12 are uniformly bounded. 
In fact, the proof of Step 1 shows that a, = R,,,i,y are uniformly bounded 
in @s2(B). Thus, by choosing a subsequence if necessary, we can assume 
that u, --+ u. weakly in I@1*2(8) and strongly in L*(8). By the proof of 
Theorem 1 in [7], USE I@i~‘(Q,) and 

-Au,+a~Vu,=f’(u,)u,+pu,+~ in Sz,. 

Hence u. = Ro,,ioJ Since the limit is independent of the choice of sub- 
sequence, u, + u. in L2(8) as n + co. This proves Step 2. 

If A: E+E, R(A)sM where M is a subspace, UEM, veE, AEC and 
u - 1Au = U, then u E M. It follows easily that, if A : E + E is compact and 
linear and R(A) is contained in the closed subspace M, then A has the same 
algebraic multiplicity on A4 or E. It follows easily from this that 1 has the 
same multiplicity as an eigenvalue of R,,, on I@2(sZ,) or as an eigenvalue 
of E,R,,,i, on I@,2(8). Since it is easy to see that A is an eigenvalue of T,+ 
of multiplicity fi if and only if A-’ is an eigenvalue of -A + a .Vu + b,Z (of 
multiplicity G), the proof of Theorem l(i) now reduces to proving the 
same result for E, R,, i,. Now, since E, R,,, i, are uniformly bounded as 
maps of L2(B) to I@2(& we see from Step 1 that E,R,,,i, are a 
collectively compact sequence of linear maps on L*(B) in the sense of [4]. 
Hence (i) follows from [4]. 

We now prove (ii). First note. that, by the collective compactness (or by 
the proof of Step l), if &,E~(H,) and A,, + I as n + co, then n-ea(H,). 
Here H, = -A + a. V + b,Z with the appropriate boundary condition and 
Ho is defined analogously. Hence we see that the proof of Theorem l(ii) 
reduces to showing that if a > 0, there is a K(a) > 0 independent of n such 
that the spectrum of H, in {A E C: Re A d a} is contained in a ball centre 
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0 with radius K(a). Choose ,ii > 0 such that b,(x) < Z? for all x E 52, and all 
IZ. (This is possible because u, are uniformly bounded in Z,“(s2,).) The 
weak maximum principle implies that there can be no real spectrum with 
R 6 fi. Since the eigenvalue of smallest real part of H,, is real, it follows that 
all the spectra lie in {A E C: Re II > ,ii}. Hence it suffices to prove that we 
have a contradiction if there exist eigenvalues r, + i/3, in a(H,J such that 
fi < r, < c( for all n and Ifl,I + cc as n + co. We will prove in. a moment that 
II(-A+i/?JplI) -0 as n-cc, considered as a map of L*(sZ,) to 
I’m*. Assuming this, we will obtain a contradiction. If H,w, = 
(T, -t 82,wm where w, # 0, then 

w,=(-A-i&J-‘((T,-b,)w,-a~Vw,). (6) 

By standard estimates, we see that 

Hence, by (6) 

Ilw II n ,,*,a.6~II(-~-~~,~)-‘II II%ll1,2,R,, 

where the inverse is considered as a map of L2(Q,) to F@*(sZ,). By our 
estimate for the inverse, this implies that w, = 0. 

It remains to prove our estimate for (-d - @,I)- ‘. By a standard 
estimate for self adjoint operators (cf. Kato [23, Theorem V.3.161) 
I( ( -A - ipnZ) -I (I < IB,I -’ when the inverse is considered as a map of 
L’(s2,) into itself. Let u, = (-A - $,I)-‘f where MEL*. Thus 
-Au, - ipn u, =T in Sz,,. By multiplying by V, and taking the real part, we 
see that 

IlU.II:.2,n.=jQ~~n~ llfll*,sr. ll~nlI*,R, 

G IBnI -‘(llfll*,n,)* 

(by our estimate for (-A-$,,I)-’ on L*(sZ,)). Thus I[( -A- $,I)-‘(( d 
@,I -‘I2 where the inverse is considered as a map of L2(Q,) to F@‘(Q,,). 
This is the required estimate and hence we have completed the proof. 

Remark. The proof can be generalized to cover a large class of systems 
whose top order terms are in diagonal form. We only need to make one 
change in the proof. To show that the real part of the spectrum is bounded 
below, we need to use a simple Garding type inequality for Re(Lu, u) 
where L is the linear part (cf. Gilbarg and Trudinger [ 16, Lemma 8.41. 
Indeed, it is not difficult to show our methods can be generalized to the 
very strongly uniformly elliptic systems in the sense of Amann [3]. Note 



330 E.N.DANCER 

also that the result implies that the dimension of the unstable manifold of 
u,, is the same as that of u,, for large n provided that the linearization at 
u. has no purely imaginary eigenvalues. 

4. NEUMANN PROBLEMS 

In this section, we indicate very briefly that the ideas we introduced in 
[7] can be used to study some Neumann problems. We obtain weaker 
results for more general domains when compared with those in [25, 203. 
In particular, we do not need the order properties used in [25, 203. Our 
methods have the advantage of being readily adaptable to many systems 
and to looking for non-negative solutions. On the other hand, they are not 
so good for studying stability (except under assumptions which force 
uniqueness). Our methods have an advantage over those in [29] in that 
they allow a more general 52, and they apply in nonself-adjoint problems 
and systems. Moreover, our methods can be used to produce star shaped 
examples. Note that Neumann problems are more difficult than Dirichlet 
problems even in the linear case (cf. the introduction to [7]). 

We will say Sz,, -+,, Q, if Q,, and Q, are all bounded open sets with Q, 
connected such that 

(i) f2,~ Q. for all n and each Sz, has Lipschitz boundary, 

(ii) m(S2,,\Q,) + 0 as n -+ cc, and 

(iii) there is a continuous linear map E: W’.‘(sZo) + W’.‘(Rm) such 
that Eflno =f for all 3~ W’*2(Qo). This last property holds if 52, has 
Lipschitz boundary (cf. Adams [ 1, Theorem 4.321). 

Note that, because the spaces are Hilbert spaces, our last assumption is 
equivalent to assuming that each 3~ fV’.2(Qo) can be extended to 
W’*‘(R”). 

THEOREM 2. Assume that Q, +,, Q. as n + 30 and that u. is a non- 
degenerate solution of 

-du =f(u) in 52 

au 0 -= 
av 

in da 

for D =Q, in Lx(Qo)n W1~2(Qo). Here dJav is the normal derivative. In 
addition, assume that there exists a, fi>O such that yf(y) <0 on 
R\[ -a, 81. Then for each large n, there is a solution u, of (7) on Q, near 
Eu, in Lp(Q,,), where p is fixed and 1 < p < co. 
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Proof (Sketch). Define E, : W’~‘(QO) + II”*’ by E, g = Eg IQ,. Then 

II& gll1.2 d ll~:ll1.2 6 Kllgll1.2 for gE W’.2(Q,). Choose a > 0 such that 
y(j(y) + ay) < 0 at -2 and fl. We can modify S on R\[ -a, /I] to f so 
that y(ji(y)+uy)<O on R\[-r,/3] andy(y)+uy is bounded on R. 

Choose p > 2a ’ supp{ If(y) + uyj: y E R} and then choose I$ C”, non- 
decreasing and bounded on R so that 4(x)=x if (xl < 2~. Define 
,!?, g = #(E, g). Note that there is a R > 0 such that I,!?,, g(x)( ,< R always 
and that E,g(x) =g(x) on 52, if Ig(x)l<2~ on Q,. 

Now one easily sees that finding solutions of (7) for Q = 52, is equivalent 
to finding fixed points of A,= (-A + al);‘(y+al) in L2(Q,), where 
( -A + al),;’ is the inverse of -A + al on Q,, with Neumann boundary 
conditions. On the other hand, the equation on Sz, is equivalent to the 
equation 

u,=E,(-A+al),‘(S+al)R,u,-a,u 

on L’(Q,,) where R, is the natural restriction mapping of L’(Q,) onto 
L’(Q,). One then proves that, if r is small and positive, 

u # tA,(u) + (1 - r) A,(u) (8) 

if 0 < t < 1 and IIu - ,!?,,~+,ll~,~, = r. The result then follows easily from this 
and a simple degree argument (rather like that in the proof of Theorem 1 
in [7]) once we note that the commutativity theorem for the degree (cf. 
Deimling [ 14, p. 2141) enables one to reduce the calculation of the degree 
of A,, on the with centre E,uo and radius r in L2(Q,) to a much more 
natural equation on L’(Q,). (In fact, this more natural equation is the 
natural analogue of A, on Q,.) 

It remains to prove (8). If u,= r,A,(u,) + (1 -I,,) A,(u,,) when 
II%l- E,uollz.n. = r, we easily obtain a uniform bound for lj~,,Il~.~, + 
llU”Il 1.2.0. and thus 11% - kll2.~~ + r as n -+ 30. We can, by choosing a 
subsequence, ensure that U, I n0 converges weakly in W’*2(Q0) to w. By 
using Lemma 2 below and uniform bound for (A + al);- I in L’(Q,), we 
easily deduce that w  is a solution of (7) for 52 = Q, with II w  - uOll 2.Ro = r. 
This is impossible if T is small by the non-degeneracy assumption. This 
completes our sketch of the proof. 

LEMMA 2. Suppose that g E L2( R”), a > 0 and 0, +” Do as n + 00. If u, 
denotes the solution of 

-Au+au= g in l2, 

dU 
-=o 
aV on X2, (in the weak sense), 
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then u,,InO+ u,, weakly in W’.*(Q,) and strongly in L*(Q,). Here u0 is 
defined analogously to u,, but on a,,. 

Proof (Sketch). We easily see that IIu,,II ,.Z,R. is uniformly bounded and 
thus by choosing a subsequence, we can assume u, In,, converges weakly in 
W’,*(Q,) and strongly in L’(Q,) to I+*. Suppose #E W’.2(Q,). By our 
assumptions, we can extend 4 to $E I+“.*( R”). Now jn, Vu, VT + au, $= 
fn. g$. By our estimates on U, and since m(Q,\Q,) + 0 as n -+ co, we easily 
deduce that Jno Vu,@+ au,,& gi+ 0 as n -+ CCL Passing to the limit, we 
see that SD0 VW V$ + aw$- gi = 0 and the result follows easily. 

Remarks. (1) A variant of the result can be used to construct star 
shaped Q’s with more solutions than one might expect. For simplicity 
assume that m = 2. We consider star shaped Q’s approximating Sz, where 
Q, is two squares touching only at one vertex as in Fig. 7. We cannot apply 
Theorem 2 directly because, in this case, R, does not have the extension 
property (iii). However, with care, one can prove that the conclusion of 
Theorem 2 holds. The key points is that the proof of Theorem 2 can be 
generalized to cover some cases where enough functions (in particular, in 
our case, functions vanishing near the vertex) extend to W’.‘(Rm). 

(2) The results in [20 223 show that we do not always expect local 
uniqueness or that the solutions u, are non-degenerate. However, if Q,, 
“nicely” approach Q,, where Q, is as in Remark 1 or a,, is two suitable 
domains sufficiently close together, one can prove that local uniqueness 
and non-degeneracy both hold (and in fact we obtain the expected number 
of negative eigenvalues of the linearization). We sketch rery briefly the idea 
for the proof of non-degeneracy. The others are similar. If 

-Ah, = f’(U”)h” on CI, 

ah,=0 
dV 

on XI, 
(9) 

FIGURE 7 
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and IV II n 2.9, = 1, one proves using the non-degeneracy assumption on Q, 
that h, is uniformly small except near the vertex of Sr, in the case of the 
example in Remark ! (and close to the joining strip in the case where 52, 
consists of two domains). We consider the first case. (The other is similar.) 
We let h,=Q,nB,(O) where E-‘>2sup{f’(y): YE C-r,/?)} -s. Then 
Ihll2.n. is close to 1. We consider h, = h,,b where 4 is 1 on B+,(O) and I$ 
has support in B,,,(O). One proves that 11~J2,~. is close to 1 while, by mul- 
tiplying (9) by z,, IIVh,IIz.~n~s’~Z for large n. On the other hand by 
integrating on horizontal lines and noting that s;I (w’(x))‘>,a ’ Jg W(X)’ 
if M(U) =0 we can deduce that ja. IVY,,]* >,c-* IIL,,Ji.n,. This gives a 
contradiction to our earlier estimate for ll~,llz,~,. 

5. THE PARABOLIC CASE 

In this section, we rather briefly discuss the simplest parabolic problems. 
We prove results on the continuous dependence of the initial value problem 
upon the domain and some simple results for the periodic parabolic 
problem. However, it seems that much more can be done. 

We first consider the initial value problem. Let r,,(f) denote the semi- 
group on L’(Q,,) generated by -A with Dirichlet boundary conditions and 
let P, be the restriction map from L*(8) to L’(Q,,), where as before B is 
a ball containing 52, u U,T=, 52,. T,,(r) and Q, are defined analogously. If 
52, + Q, as n + c;c in our earlier sense and X?,, has zero measure, then it 
is easy to see that P,o -+ P,v in L’(B) for each u E L’(B) (since 52, and 52, 
only differ by sets of small measure). Note that the example in Gelbaum 
and Olmsted [ 15, p. 1491, can be used to show that the condition that 352, 
has zero measure is independent of assumption (iii) in the definition that 
Q,, + 52,. In fact there are examples where (iii) holds, Q, is a manifold with 
boundary but d.Q,, has positive measure. In fact, we could replace the 
assumption that ~32, has zero measure by m(Q,\Q,) -+ 0 as n + co. 

LEMMA 3. Assume that dQ, has zero measure und l2, -+ f2, us n + x. 
For each L;E L’(p), T,(r)P,v + T,(r) PO v uniformly on bounded t intervals in 
co, a). 

Proof First note that, by the parabolic maximum principle, 
T,(r) P,o < T(r)u whenever I; E L2( B) and v is non-negative (since the solu- 
tion on B is a super-solution). Here F(r) is the corresponding semigroup on 
8. It follows easily that II T,(t)/1 3D s K where K is independent of n. That 
T,(t) P,v + T,(r) P,u in L2(8) for each t > 0 is a simple modification of the 
proof of Theorem 1.2 in Rauch and Taylor [26]. Note that the analogue 
of [26, Lemma 1.11 follows easily from the proof of Theorem 2. It remains 
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to prove the uniformity in t on an interval [0, to]. Since there is a K, >O 
such that IIT,,(t)P,- r,,(r)Poll,<K, on [0, r,] where K, is independenty 
of n, it s&ices to prove the uniformity on a dense subset of L’(B). Let W 
be the subset of L*(B) of functions which vanish on a neighbourhood of 
Jf& u E u K and which are smooth on 52,. Since 8QRo has zero measure, it 
is easy to show that W is dense in L’(B). Hence it sutlkes to show that, 
for each WE W, T,,(r)P,,u~+ T,(~)P,H’ in L*(P) as n+ cc uniformly on 
[0, to]. Since the convergence holds for each t, it sutfkes to show that 
{ Tn(t)P,w- ~owo~f,:~, is equicontinuous in t. Since the second term 
is independent of n and continuous in t, it suffices to show that 
{T,(r) P,,IG},“_ , is equicontinuous in 1. Since w  E W, P,w = win0 for large 
n. (Technically, it is an extension of this to Q,, where the other values are 
zero.) Hence we only have to prove that { T,,(t)w~lnO}~=, are equi- 
continuous. Now it-1 R,, is smooth and of compact support in Q, and hence 
it is in the domain of the inlinitesimal generator of T,,(t). Hence, if t > s, 

T,,(r)w- T,(s)n=J r:,(u)w~u=l’d~,,(u)wdu 
1 .s 

-’ = J T,(u) dw du 
5 

since a semigroup and its infinitesimal generator commute. Thus, since 
II ~n(u)ll CO 6 19 

IlT,(t)w- 7JS)NlI*4’ ll~~llzd46 It-4 Il~wllz. 
5 

Hence we have the required equicontinuity property and the result follows. 

This shows that we have the required continuity property for 
homogeneous linear equations. We now use a contraction mapping 
argument to prove a similar result for non-linear equations. We consider 
the equation 

%u+f(u) at inQ,x [0, cc) 
(10) 

u(x, r)=O if x E X2, and U(X, 0) = U,,(X). 

Assume that u0 E Lac(QO). We first assume that f is Lipschitz on R. Let p 
denote the Lipschitz constant. We first prove that, if USE L”(sZ,) and 
4 + ~0 in L’(h if I l1411,.o.j,“=1 are uniformly bounded and if u,, denotes 
the mild solution of (10) with initial condition uz, then u,(t) + uo(t) 
in C[O, r, L’(B)] where rp < 1. Here C[O, r, L’(8)] denotes the set of 
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continuous functions from [0, T] to L’(B) with the usual norm. It follows 
easily from this after a finite number of iterations that u,(t) --) u,(t) in 
C[O, to, L’(B)] for each lo > 0. This is the required result. Here, by a mild 
solution we mean a solution of 

u(f)=Tn(f)P”u;;+ ’ T,,(f-s)f(u(s))ds. I 0 (11) 

Note that easy estimates show that our solution is less than or equal to the 
solution of 

40) = Ilu;;ll x 3 u’(r) =f(4f)) 

(with an analogous lower estimate) and hence we do not have growth 
troubles. Simple estimates prove that the right hand side of (11) defines a 
contraction on CIO, T, L’(Q,)] and that the contraction constant is 
independent of n. Hence we see that the required result will follow if we 
prove, for each k, the k th iterate u:(t) on Sr,, approaches the iterate u:(r) 
on Q0 in C[O, r, L*(s)] as n -+ cc. Here the iterates are the usual iterates 
for a contraction mapping starting with a constant function (in I) satisfying 
the initial condition. This is an easy induction from Lemma 3 once we note 
that, by our L’” estimate, L* norms on sets of small measure are uniformly 
small in L*(B). (Thus, we do not need to worry about behaviour on the set 
(Q,\Q,) u (Q,\Q,).) Hence we find that u,(t) + u,,(t) in C[O, f,, L2(8)] as 
n+ co for each tO>O. 

By simple truncation argument, we can prove an analogous result if .f is 
only locally Lipschitz provided that the solution of (12) (and the 
corresponding lower equation) exist on [0, lo]. In fact, by using a suitable 
subdivision of [O, I,,], we easily see that if suffices to assume that the 
solution of 

u’=du+f(u) in Qo, u(0) = U” 

exists on [0, lo] and is in L”([O, r,] x Q,). Similar results hold if f 
depends on t as well. 

It seems very likely that one can prove results on how stable and 
unstable manifolds of critical points vary under domain perturbations. It 
would be interesting to use this to construct examples on the global 
structure of the solutions of the parabolic problem. To do this, we need to 
know when stable and unstable manifolds intersect transversally. 

Second, for this section, we consider the periodic boundary value 
problem. We only consider the simplest case, though more general results 
are true. Note that the reason for the interest in this problem is that there 
are a number of physical models which are of this type. (See [9, 12, 19, 251.) 
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We consider 

4 
;=u(r)du+./(r,u) 0nQx [0, T] 

u(x, r) = 0 if x E K?, u is T-periodic in 1. 

Here it is assumed that a(t) > 0 on [0, T] and Q and f are T-periodic in 
f. By a simple change of variable in I, we can assume that u(f) = 1 on 
[0, T]. We assume this henceforth. We first consider the linear problem. By 
using an obvious Fourier series expansion, we see that, for the equation 

au 
-=Au+g 
at 

on Sz x [0, T], 

with the above boundary conditions, )I uI] ,,2,R x r,,. Tl < K 11 gll 2,9 x yo, r,, where 
K is independent of Q provided that i,(Q) is bounded below. We can 
obtain better bounds if Q c B where B is a fixed ball. To do this, we note 
that the above estimate implies that II~l,,ll~,~, is bounded in L2(Q,) for 
most f. Here Q, = Q x {t } and we are assummg g is in L2 on 52 x [0, T]. 
Hence, cf. [ I8 1, 

U(f) =T(f-f”)U(lo)+j’ 7-(I-s)g(s)ds 
41 

(13) 

d(f-ft,)u(f,)+ i’ F(f-.s)g(s)ds, (14) 
* 10 

where, as above, 7 is the heat semigroup on B and g is defined to be zero 
outside of f2. Using this and standard estimates from the heat equation on 
8, we see that for each p B 2 there is a q(p) > p such that, if g is bounded 
in L&Q x [0,7,]), then the second term of ( 13) is bounded in 
L,,,,(sZ x [0, ?,I). Here q(p) depends continuously on p in a natural sense 
and q(p) = 30 if pa p. where po< co. Here we use [24, Sects. III.8-111.91. 
By our construction, the corresponding norm estimate for the second term 
is independent of CL?. Since we can estimate the first term in L” on [to + 1, 
to + T+ I], we find that the solution of the linear periodic boundary-value 
problem defines a continuous map of Lp( [0, T] x i2) --t Lqcp’( [0, T] x Q) n 
IV’.2( [IO, T] x Q), where the constants are independent of Q (for 52 E 8). 

Suppose that u is a solution of the problem 

al4 
Ti;=Au+f on 0 x [0, T], u(x, f)=O ifxELK2 
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and u is T-periodic (where ,f~ L’). If we extend u to be zero in 
(8x [0, T])\(Q x [0, T]) then UE W’.‘(~X [O, T]). One way to see this is 
to note that the series expansion for u = xp=, I,:=, U&~(X) exp(Qs) 
converges in W’.‘(Qx [0, T]) (where ~=2nT-’ and @k(~) are the eigen- 
functions for the Dirichlet problem on Q). Since each element extends to 
W’.‘(B x [0, T]) without increasing its norm, the result follows. Moreover, 
we can easily use the series expansion to show that, if f~ t2( B x [0, T]), 
and if u,, is a solution of the periodic boundary problem on Q,, with 3 
replace by 31 lj. x co. rl y then U, + u. in L2(B x [0, T]) as n + co. Recall that 
;.i and 4: converges in R and L’(B), respectively, where i.: and &! are the 
eigenvalues and eigenfunctions for -A on Sz,,. Note also that one can 
easily show a uniform estimate in L2 for the “tail” of the series. Let 1?, 
denote the map which takes 3~ L*(B x [0, T]) to u,, except that we extend 
U, to B x [0, T] by defining U, to be zero outside of Q,, x [0, T]. R, is 
delined analogously. From our last result, our earlier W’.2 estimates and 
the Sobolev embedding theorem, see that {w,}:= o is a collectively compact 
sequence of linear operators on L2(8 x [0, T]). 

Now consider the equation 

$- Au=/(t, u) on Q,, (15) 

with T-periodic and Dirichlet boundary conditions. Then, if we look for 
solutions in L”(Q,), this is equivalent to the problem 

u= ~n/k 40,x y0.q) on L”(B x [0, T] ). 

As in [7], a solution u. of (15) in L”(0,) is said to be non-degenerate if 
the linearized T-periodic Dirichlet problem 

in 52, 

has only the trivial solution. The following result now follows by a simple 
modification of the proof of Theorem 1 in [7]. 

THEOREM 3. Assume that 52, + Sz, as n + co in our earlier sense, that j 
has polynomial growth and that u. is a non-degenerate T-periodic solution of 
( 15) for Q = Sz, and the boundary conditions in L”(Q, x [O, T]). Then, for 
large n, there is a unique solution u, of ( 15) (for 52 = Q,) and the boundary 
conditions near u. in Lp(B x [O, T] ) f or a suitable large p (independent of 
n). In addition, u, is non-degenerate. Moreover, given K > 0, every solution 
u .for Q = Q,, and the boundary conditions with 11~11 r,R, x ,(,. 7., < K must he 
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close in LP(B x [0, T]) to a soh4tion on Q, x [0, T] for n 2 n, (where n, is 
independent of the solution u). 

Remarks. Note that we do not need 852, to have measure zero. A 
similar result holds for systems with diagonal linear part. In particular, our 
result can be easily used to prove the existence of many positive solutions 
for some of the models in [12, 191 and time dependent competing species 
population models as in Cosner and Lazer [S] (but with Dirichlet 
boundary conditions). This is similar to [7 3. With more care, it is possible 
to prove results relating the spectra of the linearization at u,, and U, (at 
least if dQo has zero measure). 
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