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Abstract

This paper addresses the computation and visualization of the un-
certainty associated with the positions of moving particles, using
temporal projections based on uncertain knowledge of previous
particle position and velocity. First, we present an algorithm for
computing the probability distribution describing the position of a
particle moving in 2D or 3D space, given the probability distribu-
tions that separately characterize the initial position, speed, and di-
rection of the particle. The initial distributions are arbitrary, but the
special case of Gaussian distributions is considered in greater detail.
We also discuss the algorithmic complexity of the algorithm, and
ways to improve its performance. Three visualization techniques
(galaxy, transparency, and pseudo-color) are developed to represent
the resulting probability distribution associated with the particle at
a later time. An appropriate time-dependent sampling approach
is adopted to make the visualizations more comprehensible to the
human viewer. Experiments with different distributions indicate
that the resulting visualizations often take the form of recognizable
real-world shapes, assisting the user in understanding the nature of
a particle’s movement.

1 Introduction

Uncertainty is a subject that must be addressed in most real-world
situations. Exact information about an object is often unknown,
and only approximations are available. For example, although
commercial Global Positioning Systems (GPS) claim to be accurate
within centimeters, there is often a large error associated with these
readings in uncertain environments. These unavoidable errors can
be mitigated by properly understanding the nature of the error. If
one has a reading and a good estimate of the accuracy of the read-
ing, errors can be dealt with more easily. Visualization techniques
provide effective and fast means of communicating that estimate,
provided that the visualization is in such a form as to be easily
understandable by a human user.

In this paper, we present an algorithm for computing a particle’s
current position given some known information about the particle,
such as a reading on the previous position, heading, and speed. If
this information is known exactly along with the time elapsed since
the previous reading, the current position can easily be determined.
However, if there is uncertainty about any of this information, the
current position can only be expressed in terms of a probability
distribution. The area where a particle is likely to be can be
visualized as a “probability cloud”. We can compute the probability
that the particle is present in any small region of the cloud (or in a
small region anywhere in space). An illustrative example of this is a
search and rescue operation for a lost hiker. If the hiker was spotted
in an area on a given day headed in a certain direction at a certain
speed, a probability cloud can be constructed from this information
such that the more “dense” areas of the cloud are the places where
the hiker is most likely to be found, identifying locations where a

search operation should commence.

A useful special case assumes that the uncertainties in position,
heading, and speed are expressed in terms of mutually indepen-
dent Gaussian distributions. In particular, such an assumption is
expected to be applicable just after an observation is made (sensing
the particle position and velocity), although other distributions
may be necessary when dealing with practical data such as those
acquired by GPS systems. The Gaussian assumption allows us
to present our basic methodology. Our algorithm for the compu-
tation of uncertainty can be modified to accept different types of
distributions of uncertainty. However, the computational algorithm
employed in this paper uses some steps that are specific to Gaussian
distributions to reduce reduce computation.

We use three techniques for visualizing probability clouds. The
first is a collection of spherical glyphs, where the relative size of the
spheres represents probability in a region. The second is a method
of transparency, where probability is shown by the opacity of a
region, like fog. The last also uses transparency, but adds the use
of color to denote probability. All three techniques are discussed in
detail in Section 3.4.

This paper is organized as follows. Section 2 describes related
work. Section 3 discusses uncertainty, the algorithm, and how
different distributions interact. Some implementation details are
also provided. Section 4 presents visualization results for different
means and covariance matrices associated with various Gaussian
distributions, and their probability clouds. Finally, Section 5 sum-
marizes these results and indicates future directions.

2 Related Work

The computation and visualization of uncertainty is an important
and challenging topic. However, the effects of uncertainty are often
ignored in visualization research due to the difficulty in quantifying
and representing uncertainty. NIST has written a standards report
identifying three ways of expressing uncertainty: statistical, error,
and range [TK94]. In an uncertainty visualization pipeline, three
primary sources of uncertainty that have been identified are —
data acquisition, data transformation, and visualization [PWL97].
Uncertainty from data acquisition comes from inaccuracies of in-
struments, mathematical modeling within sensors, and variation of
input from humans. Data transformation uncertainty results from
integration techniques, interpolation and approximation, sampling,
and other operations performed on data. Visualization also creates
its own uncertainty, associated with rendering models and algo-
rithms. Many different methods for displaying this uncertainty have
been identified, including glyphs, side-by-side comparisons, differ-
ence imaging, pseudo-coloring and sonification [CL97, LSPW96,
LWS96, LPSW96, WPL96, PWL97].

Most of the previous work cited above deals with uncertainty
that is typically measured in terms of some kinds of error such as
the root mean square error and its distribution, or ranges. In this
work, we address statistical uncertainty stemming from data acqui-



sition. Statistical variations are exhibited by nearly all data sets,
whether from instrument measurements, numerical models, or data
entry [Cha78]. For example, data collected from a GPS unit will
always have a certain error associated with it. Repeatedly taking
measurements will increase confidence, but there will always be
some statistical variation. The same is true for numerical modeling
and human observation or input. The objective of this work is to
display such statistical variations visually to convey the nature of
uncertainty about moving objects.

3 Uncertainty Computation and
Visualization

This section presents the uncertainty model, computation algo-
rithm, and the visualization techniques we propose to compute and
visualize the uncertainty associated with the position of a moving
particle.

3.1 Uncertainty Modeling

There are many approaches to uncertainty modeling depending
upon input parameters and model assumptions. These parameters
and assumptions describe the state of a particle, e.g., in terms of
the probability distributions associated with the initial position,
velocity, and acceleration, and their evolution over time. We begin
by considering a simple scenario, where the probability distribution
of a particle’s position after a specified time interval T is to be
computed based on the known (mutually independent) probability
distributions for a particle’s initial position, speed, and direction.

There are cases where the probability distribution can be com-
puted explicitly, eliminating the need for any computation algo-
rithm. However, in the interest of greater generality, we devise a
computation algorithm that works for arbitrary probability distribu-
tions.

Currently, we assume that the particle is moving at a steady
speed, ignoring acceleration and associated uncertainty. This as-
sumption is also reasonable for objects observed frequently enough
that the velocity does not change significantly (relative to the un-
certainty in the velocity observation) over the short time interval
for which the position update algorithm needs to be applied. Since
we are interested in GPS applications where the GPS receivers will
be getting constant updates on position and velocity of the object,
this assumption will be valid for objects moving on land. For fast
airborne vehicles, acceleration will also need to be incorporated
in the model in scenarios where sensors can capture independent
estimates of acceleration; our algorithm can be extended to account
for this additional parameter.

Our computation algorithm is based on the assumed availability
of three probability density functions (pdfs) that describe a parti-
cle’s initial position, direction, and speed:

1. Position pdf: fi(p) describes the pdf of the initial position p,
which may be in three or two dimensions.

2. Direction pdf: f2(d) describes the pdf of the initial direction
d measured in terms of angles (6, ¢) for the 3D case, and in
terms of a scalar random variable 8 for the 2D case.

3. Speed pdf: f3(s) describes the pdf of the initial speed s, a
scalar random variable.

3.2 Computation Algorithm

We now describe the algorithm to compute the probability dis-
tribution of the position of the particle after time T has elapsed
(abbreviated “at time T”) since the information defining the initial

position, direction, and speed was collected. As stated earlier, T' is
assumed to be small enough so that the speed and direction is not
expected to change much over T relative to the uncertainty in its
measurement.

Given a specific initial position x, the probability of a particle
being in a given region R at time 7" can be computed by integrating
(over all points y in R) the product of f2(d) and f3(s), where the
appropriate direction is Xy and the appropriate speed is |y — x|/ T.
When the initial position is also uncertain, we must consider the
probability of reaching R from all possible initial positions of the
particle, and sum the results.

Thus the probability P that the particle is in the region R
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with the integral being replaced by a summation if the space and
pdfs are discretized into a finite number of regions.

If the goal is to compute the final pdf in a specific region R of
space, one can use a backward reasoning approach, considering all
possible points from where one could have arrived at the desired
point, and integrating or summing the probabilities associated with
all the paths that lead to R. In this work, since it is necessary for
visualization purposes to obtain the position pdf over the entire
space rather than over a specific region, we instead propose a
forward approach depicted in Figure 1 for two-dimensional space.
In this approach, we start from the particle’s initial position pdf, and
consider all points it could have reached from the possible initial
positions.

In two dimensions, for example, the world is defined as a rectan-
gular grid, and the initial position of the particle is on a grid point.
After time T, all possible points that are reachable from this original
point are contained within a circular annulus as shown in the left
diagram of Figure 1. Let us first address the direction. In general,
this annulus can subtend an angle of 360° at the initial position
indicating complete uncertainty in direction. However, in many ap-
plications, this uncertainty in direction is typically confined within
a smaller limited range. Thus the size of the arc of the annulus
is based on the standard deviation of the direction. The thickness
and the center of the annulus is determined by the mean speed, the
standard deviation of the speed and the elapsed time. Similarly,
in three dimensions, all possible points that can be reached from
the initial point are contained within a spherical annulus, whose
extent is determined by the mean and standard deviation of speed,
direction, and the time elapsed.

(a) (b)

Figure 1: Uncertainty computation: the left diagram (a) depicts
an annulus from a single point, the right diagram (b) shows annuli
from the four points of a small initial position probability cloud

Given an exactly known initial position, each point within the
annulus region represents a path from that position to a specific



point, associated with some probability. All such paths are con-
sidered by the algorithm. The probability that a given path was
the one taken by the particle is calculated using Equation 1, where
our initial position is known, the direction is obtained by the arc
position within the annulus, and the speed is computed by dividing
the distance (from the starting point to the destination) by time T'.
The resulting probability value is snapped to the closest world grid
point. This computation is performed for every point in the annulus,
and probabilities collected at every world grid point are aggregated
to obtain the final probability cloud.

When the initial position is uncertain, values in an annulus
are calculated for paths beginning from every point in the initial
position’s probability cloud. The probabilities of the paths within
each annulus are then aggregated at the world grid points to find the
final probability cloud. This case is shown in the right diagram (b)
of Figure 1.

3.3 Specializing the algorithm for Gaussian
distributions

An important special case is obtained by assuming that the pdfs for
the particle’s initial position, direction and speed are Gaussian, i.e.,

—1/2
510 = el 50— ) 5 0 - i) @

where p is a 3D vector,
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where d is a 2D vector, and
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where s is a scalar.

We now specialize our algorithm to such Gaussian distributions
to speed up the algorithm. These specializations are (i) restricting
the computation to high probability regions, and (ii) precomputing
probabilities. First, the algorithm is applied only to points within
3 standard deviations from the mean for each variable (initial posi-
tion, speed, and direction). For example, if pup = (fz, py, p-) and
o2,0,,0 are the diagonal elements of X, then the grid of points
considered for the initial position p is a rectangular solid whose
coordinates are (ue + 304, ty £ 30y, p £ 302).

In the second specialization, we precompute probabilities dis-
cretizing f1(p). f2(d) and fs(s) needed in Equation 1. Since the
random variables p, d and s are independent of one another, it
is possible to precompute each separately. First, we precompute
the probabilities for the volumetric grid mentioned in the previous
paragraph. This independence also means that the probability
associated with a certain point within an annulus will be the same
for the same point within all annuli. Thus the probabilities for only
one annulus need be computed, and these probabilities can also be
stored in a table. Computation of the probability associated with
a path using Equation 1 can then be accomplished by looking up
these tables.

Computational Complexity

We now discuss the computational complexity of this algorithm.
The computation time depends upon the number of discretized
samples, and the volumetric area enclosed by the particle with
significant probability after time 7. In 2D, the circular extent of
the variation in the direction is given by the product of the angle

1 for each position sample (p) within range of initial
neighborhood (o - oy - o, samples)
2 Calculate probability of particle having initial
position p (Equation 2), enter into table
3 for each direction sample (d) along extent of
annulus (ap - a4 - 2 - T? samples)
4 Calculate probability of particle having direction d
(Equation 3), enter into table
5  for each speed sample (s) through thickness of
annulus (o - T samples)
6 Calculate probability of particle having speed s
(Equation 4), enter into table
for each position sample (p)
for each direction sample (d)
for each speed sample (s)
0 Calculate probability of path defined by p, d, s
from Equation 1 using table entries
11 Calculate endpoint of path
12 Add probability to grid point nearest endpoint
13 display results
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Figure 2: Pseudocode for the Uncertainty Computation Algorithm

subtended at the initial position and the mean radius of the annulus.
Since the original angle subtended is 6 x o and the mean distance
traveled after time T is us - T, the circular extent of the annulus
is6 - g9 - us x T. In three dimensions, the area of the sphencal
extent of the spherical annulus is given by 36 -0 -0y - p2 -T2
In 2D, the width of the circular annulus is given by the spread of
the significant probability region of the particle after time T". For
Gaussian distributions, it can be established that the variance in the
speed after time 7" is a Gaussian distribution with variance o5 - T
Therefore, the thickness of the circular annulus is given by 605 - T
In three dimensions, the thickness of the spherical annulus is given
by 6 - o5 - T as well. The initial position grid contains a volume of
360, -0y in2Dand 216 - 0 - oy - 0, in 3D.

Combining all these results, we conclude that the computational
t|me requirements associated with Equation 1 are O(o, - oy - 0 -
ps 0s-0¢-0g- T3) This calculation involves three table lookups
and two multiplications.

Although we begin with Gaussian probability distributions for
the position, speed, and the direction, the probability distributions
are no longer Gaussian when advected in time. However, there is an
alternative probability model that will yield Gaussian distributions.
In this case, one can derive closed form Gaussian probability dis-
tributions for the particle at any time 7" and therefore, eliminate the
need for the uncertainty computation algorithm described above. In
this alternative model, the velocity of the particle is modeled using
a Gaussian probability distribution in the Cartesian coordinate sys-
tem.

In this case, it can be established that the probability distribution
of the particle after time T is also a Gaussian distribution [May79].
This simpler model was also computed using the uncertainty com-
putation algorithm discussed in this work. The resulting probability
cloud in this case is Gaussian as can be seen by their elliptical
shapes in Figure 3.

3.4 Visualization

We now describe three visualization techniques that we have used to
depict the uncertainty associated with probabilistic particle move-
ments. These three techniques are — spherical glyphs or galaxy
visualization, transparency, and pseudo-coloring.

In the galaxy visualization, the probability associated with each
grid point is visualized by a spherical glyph where the radius of



the glyph is proportional to the probability. Thus, larger the size
of the glyph, higher the probability of the particle being located
at that point. One of the advantages of this method is that it uses
geometric objects (spheres) to render uncertainty. Images with a
black background in Figure 4 use this method, as do images in the
leftmost column of Figure 5.

The second technique involves a semi-transparent cloud, where
the density of the cloud represents probabilities. A more opaque
region represents a region of higher probability. A grid of rectangles
is drawn with vertices at the world grid points. A value is applied to
each pixel within a rectangle by interpolating between the probabil-
ities associated with the vertices, where higher probabilities result
in a higher value. This value defines the contribution of that pixel
to the final image, and how much it obscures objects behind it.
Thus, a region with insignificant probability will have values of
zero for pixels in that region, and thus be completely transparent.
Conversely, pixels near a world grid point with probability one will
have high values and be completely opaque. Images with a light
blue background in Figure 4 employ this technique, as do those
in the middle column of Figure 5. This method displays better
smoothness and continuity.

The third technique also uses transparency, but further color-
codes the cloud from red to blue, where red is most probable
and blue is least probable. This pseudo-coloring better highlights
regions of high probability within the cloud, and can be seen as
the red and blue pictures of Figure 4 and the rightmost column of
Figure 5.

When the probability cloud is spread over a large area, the prob-
ability at any given point within the cloud is very low. Using the
above methods alone will sometimes cause the cloud to be nearly
imperceptible. For example, the when using the second technique
the values assigned to pixels may be so low even in the region of
relatively highest probability that they appear to be zero. For this
reason, the user is allowed to scale the visualization by any factor,
such that regions of low but still significant probability are visible.
All the images in Figures 4 and 5 are thus scaled.

3.5 Implementation and Runtime

Our algorithm has been implemented and tested on a Sun Ultra-
10 at 400 Mhz with 256 MB of RAM. It was written in C using
XForms and OpenGL. Our user interface is friendly. Default values
for position, direction, and speed are provided, and the user may
enter new values through the interface. The resulting cloud may be
zoomed and viewed from any angle. Time is controlled via a slider,
allowing an easy view of the effect time has upon a probability
cloud. Since any given point in a sparse cloud will have a very low
probability, scaling of the cloud is allowed by any factor to make the
cloud visible without actually changing the probabilities. For the
2D version, calculating ten different objects simultaneously, each
with different distributions and with a high T value of 100, takes
1.04 seconds, while a single object using a 7" value of 10 takes .17
seconds. The 3D version is significantly slower, with a single object
at 7' = 10 taking 6 seconds, due to the greatly increased number of
samples that must be taken.

4 Results

Our experiments fall roughly into three categories. \We have ex-
perimented with the 2D version of the algorithm with a variety
of different parameters to see what shape the resulting probability
clouds would take, and then did the same for the 3D version. We
then used the 2D version to place multiple objects on the same
world grid. We found in most cases that not only did the clouds
form well-defined shapes, but the shapes were often recognizable

ones, such as a banana, which assists the user in understanding the
results and the effect of different distributions.

2D Results: We first describe the 2D results. In Figure 4, the
ball images represent an initial position distribution. The direction
and speed are deterministic, meaning that a change in time will only
translate the ball and not distort it. All the other distributions in this
figure with the exception of the swoosh and anisotropic appear as a
ball at time 7" = 0, and are the results of distortions applied by the
direction and speed distributions.

The banana images are the result of a significant 45° directional
standard deviation and a fairly small standard deviation for speed.
This means that we know the particle’s speed well, but the direction
is not well known, creating an arc shaped patch where the particle
is likely to be.

The fan images have a directional uncertainty similar to the
banana, but speed is not well known. In fact, the standard deviation
is high enough that there is a significant chance the particle did not
move at all, creating a fan emanating from the starting location.

The bow-tie displays the possibility that the particle may have
even moved backwards, since the standard deviation of the speed is
greater than the mean. The arc is not as large, however, since the
standard deviation for direction is smaller.

The ring has low speed uncertainty as in the case of the banana,
but directional uncertainty is very large. The particle probably
moved, but it is not clear in which direction.

With the swoosh images, the speed is fairly accurate, but the
direction probability is not. Moreover there is an asymmetry in the
X and Y directions of the starting position, where the Y coordinate
was better known than the X, creating an ellipse rather than a circle.

The anisotropic images further explore asymmetry in the proba-
bilities of the starting position. This distribution is like that of the
swoosh in that the Y coordinate is more certain that the X, but it has
been rotated by the non-diagonal elements in the covariance matrix.
The larger the numbers in those positions, the greater the rotation
in the clockwise direction. Negative numbers create a counter-
clockwise rotation.

3D Results: We now discuss the 3D results. The images in
Figure 5 are 3D extensions of the images in Figure 4, but also
display some of the particular properties of 3D distributions and
spherical coordinates. The ball images are much like the ball
images of Figure 4, but extend in all three dimensions rather than
two.

The banana images are also similar to the 2D versions, but there
is uncertainty regarding rotation about one of the axes (the 10° in
the bottom right entry of the directional covariance matrix). Thus,
the ends of the cloud are slightly thicker than the center.

The angel wings is in a similar theme to the banana, but rotation
uncertainty is greater in the upward direction due to the non-
diagonal elements in the directional covariance matrix. Similar
to the anisotropic behavior, a negative number will cause greater
uncertainty in the downward direction, or an inverted set of wings.

The dumbbell is similar to the bow-tie, but rotation about the axis
is highly uncertain. Thus the cloud is actually a solid of rotation
produced from the bow-tie shape.

Similarly, the hollow ball is analogous to the ring, but rotation is
again uncertain. Uncertainty of starting position and speed is small,
so the walls of the ball are very thin.

The porkchop is the 3D version of the swoosh, but is not pro-
duced by rotation about the axis. Rather, a very small variation of
rotation is introduced, providing some thickness. A larger uncer-
tainty of rotation would produce a thicker cloud. Zero uncertainty
of rotation produces a 2D probability cloud.

Multiple Objects: Finally, we describe the probabilistic move-
ment of several particles. In Figure 6, we see seven different
particles on the same world grid at different time steps. Qualitative
assessments of each of these particles’ distributions can be rapidly



made. At time T' = 0, we see the initial position distributions.
The blue particle has the most certain position, as its cloud is very
small, while the purple particle has a very uncertain position. The
cyan particle has more position uncertainty in the Y direction than
in the X direction, as to a lesser extent does the yellow particle. At
time T = 4, we can see the direction and speed uncertainties of the
particles. The blue particle has no variation in direction, but a very
high uncertainty of speed, where it could be positive or negative.
The red particle has a similar speed uncertainty, but the direction
is also uncertain, creating a bow-tie shape. The tan particle has a
certain direction, but a small uncertainty in speed, causing its cloud
to stretch out. The yellow and (to a greater extent) cyan particles
have very uncertain direction, but both have a reliable speed. The
green particle has a deterministic speed and direction, while the
purple particle is not moving at all. At time 7' = 15, we see that
all these trends have continued, displaying clear ring, banana, ball,
and bow-tie shapes.

5 Conclusion and Future Directions

Our algorithm now provides an excellent tool for visualizing and
understanding probabilistic movement and distributions, and how
different distributions interact with each other. It can also be easily
mapped on to a real world situation such as a city map. Cer-
tain applications that are inherently probabilistic, such as quantum
physics, could benefit greatly from this algorithm as a visual aid.

This algorithm could easily be extended for use in a variety of
applications. Since the type of distribution used is independent of
the rest of the algorithm, any sort of information could be fed to
it. It could then be applied to subjects such as Search and Rescue,
GPS accuracy measurement, and navigation.

In this work, we have used the model where the movement is
expressed in terms of direction and speed individually not only
because we believe that this reflects a more useful model in many
applications where speed and direction can be controlled indepen-
dently of each other, but also because it lays the foundation for
dealing with more general non-Gaussian probability distributions
that are likely to arise in GPS-tracked objects.

Useful extensions of this algorithm would involve tracking se-
quential sets of information, and using techniques such as re-
gression and Kalman filters to find trends in movement to better
guess the current location. Another possible extension is to handle
constraints due to interactions between the particle, the environ-
ment, and other particles, using this information in computing the
probability cloud.
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Figure 3: 2D probability clouds with Cartesian representation of movement. o, is the covariance matrix of initial position, o4 of movement.
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Figure 4: Pictures of 2D probability clouds
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Figure 5: Pictures of 3D probability clouds. identity denotes the Identity Matrix
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Figure 6: Multiple objects placed on the same world grid



