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To my son, Miles, one of my favorite people. I
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“It’s like the mo money we come across,

the mo problems we see.”

– Notorious B.I.G.



Introduction

“Am I the only [person] who cares about mixtapes?”
– Chance the Rapper

I like to think of causal inference as the space between theory and
estimation. It’s where we test primarily social scientific hypotheses
in the wild. Some date the beginning of modern causal inference with
Fisher [1935], Haavelmo [1943], Rubin [1974] or applied labor eco-
nomics studies; but whenever you consider its start, causal inference
is now a distinct field within econometrics. It’s sometimes listed as
a lengthy chapter on “program evaluation” [Wooldridge, 2010], or
given entire book-length treatments. To name just a few textbooks
in the growing area, there’s Angrist and Pischke [2009], Morgan
and Winship [2014], Imbens and Rubin [2015] and probably a half
dozen others, not to mention numerous, lengthy treatments of spe-
cific strategies such as Imbens and Lemieux [2008] and Angrist and
Krueger [2001]. The field is crowded and getting more crowded every
year.

So why does my book exist? I believe there’s some holes in the
market, and this book is an attempt to fill them. For one, none of
the materials out there at present are exactly what I need when I
teach my own class on causal inference. When I teach that class, I use
Morgan and Winship [2014], Angrist and Pischke [2009], and a bunch
of other stuff I’ve cobbled together. No single book at present has
everything I need or am looking for. Imbens and Rubin [2015] covers
the potential outcomes model, experimental design, matching and
instrumental variables, but does not contain anything about directed
acyclical graphical models, regression discontinuity, panel data or
synthetic control.1 Morgan and Winship [2014] covers DAGs, the 1 But hopefully volume 2 will build on

volume 1 and continue to build out
this material, at which point my book
becomes obsolete.

potential outcomes model, and instrumental variables, but is miss-
ing adequate material on regression discontinuity, panel data and
synthetic control. Angrist and Pischke [2009] is very close, but does
not include anything on synthetic control nor the graphical models
that I find so useful. But maybe most importantly, Imbens and Rubin
[2015], Angrist and Pischke [2009] and Morgan and Winship [2014]
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do not provide enough practical guidance in Stata, which I believe is
invaluable for learning and becoming confident in this area.2 2 Although Angrist and Pischke [2009]

provides an online data warehouse
from dozens of papers, I find that
students need more pedagogical walk-
throughs and replications for these
ideas to become concrete and familiar.

This book was written for a few different people. It was written
first and foremost for practitioners, which is why it includes easy
to download datasets and programs. It’s why I have made several
efforts to review papers as well as replicate them as much as possible.
I want readers to both understand this field, but also importantly, to
feel empowered to apply these methods and techniques to their own
research questions.

Another person I have in mind is the experienced social scientist
wanting to retool. Maybe these are people with more of a theoretical
bent or background, or maybe it’s people who simply have some
holes in their human capital. This book, I hope, can help guide
them through the modern theories of causality so common in the
social sciences, as well as provide a calculus in directed acyclical
graphical models that can help connect their knowledge of theory
with econometric identification.

Finally, this book is written for people very early in their careers,
be it undergraduates, graduate students, or newly minted PhDs.
My hope is that this book can give you a jump start so that you
don’t have to, like many of us had to, meander through a somewhat
labyrinthine path to these methods.

Giving it away

“Did what I wanted, didn’t care about a hater
Delivered my tape to the world as a caterer”
– Lil Yachty

For now, I have chosen to give this book away, for several reasons.
First, the most personal ones. I derive satisfaction in knowing that
I can take what I’ve learned, and my personal philosophies about
this material, including how it’s taught, and give it away to people.
This is probably because I remain deep down a teacher who cares
about education. I love helping students discover; I love sharing in
that discovery. And if someone is traveling the same windy path that
I traveled, then why not help them by sharing what I’ve learned and
now believe about this field? I could sell it, and maybe one day I will,
but for the moment I’ve decided to give it away – at least, the first
few versions.

The second reason, which supports the first, is something that Al
Roth once told me. He had done me a favor, which I could never
repay, and I told him that. To which he said:

“Scott, intergenerational favors aren’t supposed to be repaid, they’re
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supposed to be passed forward to the next generation.”

I’ve given a lot of thought to what he said3 , and if you’ll indulge 3 I give a lot of thought to anything and
everything that Roth says or has ever
said actually.

me, I’d like to share my response to what Roth said to me. Every
person must decide what their values are, how they want to live their
life, and what they want to say about the life they were given to live
when they look back on it. Economic models take preferences as
given and unchanging [Becker, 1993], but I have found that figuring
out one’s preferences is the hard work of being a moral person.

Love for others, love for my students, love for my senior mentors,
love for my friends, love for my peers, love for junior faculty, love
for graduate students, love for my family – these are the things that
motivate me. I want my life to be of service to others, but I’m a
teacher and a researcher, not Mother Theresa. So I have to figure out
what it means to be of service to others as a teacher and a researcher,
given that is a major part of my life. Each of us have to figure out
what it means to be a neighbor with the resources we’ve been given
and the path we’ve chosen. So, somewhat inspired by Roth and
various senior mentors’ generosities towards me, I decided that at
least for now giving away the book is one very small way to live
consistently with these values.

Plus, and maybe this is actually one of the more important reasons,
I figure if I give away the book, then you, the reader, will be patient
with me as I take my time to improve the book. Not everything is
in this book. I see it as foundational, not comprehensive. A useful
starting point, not an ending point. If you master the material in this
book, then you’ll have a solid foundation to build on. You might ex-
plore the exciting new area of causal inference and machine learning
by Athey, Imbens and others, structural econometrics [Rust, 1987],
synthetic control with multiple treatments [Cavallo et al., 2013], ran-
domized controlled trials and field experiments, and the seemingly
never-ending innovations and updates in econometrics.

Another more playful reason I am giving it away is because I find
Chance the Rapper’s mentality when it comes to mixtapes infectious.
A mixtape is a collection of one’s favorite songs given away to friends
in the hopes they’ll have fun listening to it. Consider this my mix-
tape of research designs that I hope you’ll find fun, interesting, and
powerful for estimating causal effects. It’s not everything you need
to know; more like the seminal things you should know as of this
book’s writing. There’s far more to learn, and I consider this to be the
first book you need, not the only book you need. This book is meant
to be a complement to books like Angrist and Pischke [2009] rather
than a substitute.
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How I got here

“Started from the bottom now we’re here”
– Drake

Figure 1: xkcd

It may be interesting to hear how I got to the point of wanting to
write this book. The TL;DR version is that I followed a windy path
from poetry to economics to research. I fell in love with economics,
then research, and causal inference was a constant throughout all of
it. But now the longer version.

I majored in English at the University of Tennessee at Knoxville
and graduated with a serious ambition of becoming a professional
poet. But, while I had been successful writing poetry in college,
I quickly realized that the road to success beyond that point was
probably not realistic. I was newly married with a baby on the way,
and working as a qualitative research analyst doing market research
and slowly, stopped writing poetry altogether.4 4 Rilke said you should quit writing

poetry when you can imagine yourself
living without it [Rilke, 2012]. I could
imagine living without poetry, so I
took his advice and quit. I have no
regrets whatsoever. Interestingly, when
I later found economics, I believed I
would never be happy unless I was a
professional economist doing research
on the topics I found interesting. So I
like to think I followed Rilke’s advice
on multiple levels.

My job as a qualitative research analyst was eye opening in part
because it was my first exposure to empiricism. My job was to do
“grounded theory” – a kind of inductive approach to generating ex-
planations of human behavior based on focus groups and in-depth
interviews, as well as other ethnographic methods. I approached
each project as an opportunity to understand why people did the
things they did (even if what they did was buy detergent or pick a ca-
ble provider). While the job inspired me to develop my own theories
about human behavior, it didn’t provide me a way of falsifying those
theories.

I lacked a background in the social sciences, so I would spend
my evenings downloading and reading articles from the Internet. I
don’t remember how I ended up there, but one night I was on the
University of Chicago Law and Economics working paper series
when a speech by Gary Becker caught my eye. It was his Nobel

http://xkcd.com/552/


17

Prize acceptance speech on how economics applied to all of human
behavior [Becker, 1993], and reading it changed my life. I thought
economics was about stock markets and banks until I read that
speech. I didn’t know economics was an engine that one could use
to analyze all of human behavior. This was overwhelmingly exciting,
and a seed had been planted.

But it wasn’t until I read Lott and Mustard [1997] that I became
truly enamored with economics. I had no idea that there was an
empirical component where economists sought to estimate causal ef-
fects with quantitative data. One of the authors in Lott and Mustard
[1997] was David Mustard, then an Associate Professor of economics
at the University of Georgia, and one of Becker’s former students. I
decided that I wanted to study with Mustard, and therefore applied
for University of Georgia’s doctoral program in economics. I moved
to Athens, Georgia with my wife, Paige, and our infant son, Miles,
and started classes in the fall of 2002.

After passing my prelims, I took Mustard’s labor economics field
class, and learned about the kinds of topics that occupied the lives
of labor economists. These topics included the returns to education,
inequality, racial discrimination, crime and many other fascinating
and important topics. We read many, many empirical papers in that
class, and afterwards I knew that I would need a strong background
in econometrics to do the kind of empirical work I desired to do.
And since econometrics was the most important area I could ever
learn, I decided to make it my main field of study. This led to me
working with Christopher Cornwell, an econometrician at Georgia
from whom I learned a lot. He became my most important mentor, as
well as a coauthor and friend. Without him, I wouldn’t be where I am
today.

Econometrics was difficult. I won’t pretend I was a prodigy. I took
all the econometrics courses offered at the University of Georgia,
and some more than once. They included probability and statistics,
cross-section, panel data, time series, and qualitative dependent
variables. But while I passed my field exam in econometrics, I failed
to understand econometrics at deeper, more basic levels. You might
say I lost sight of the forest for the trees.

I noticed something while I was writing the third chapter of my
dissertation that I hadn’t noticed before. My third chapter was an in-
vestigation of the effect of abortion legalization on longrun risky sex-
ual behavior [Cunningham and Cornwell, 2013]. It was a revisiting of
Donohue and Levitt [2001]. One of the books I read in preparation of
the study was Levine [2004], which in addition to reviewing the the-
ory of and empirical studies on abortion had a little table explaining
the differences-in-differences identification strategy. The University
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of Georgia had a traditional econometrics pedagogy, and most of my
field courses were theoretical (e.g., Public and Industrial Organiza-
tion), so I never really had heard the phrase “identification strategy”
let alone “causal inference”. That simple difference-in-differences
table was eye-opening. I saw how econometric modeling could be
used to isolate the causal effects of some treatment, and that put me
on a new research trajectory.

Optimization Makes Everything Endogeneous

“I gotta get mine, you gotta get yours”
– MC Breed

Causal inference is often accused of being a-theoretical, but noth-
ing could be further from the truth [Imbens, 2009, Deaton and
Cartwright, 2018]. Economic theory is required in order to justify
a credible claim of causal inference. And economic theory also high-
lights why causal inference is necessarily a thorny task. Let me
explain.

There’s broadly thought to be two types of data. There’s experi-
mental data and non-experimental data. The latter is also sometimes
called observational data. Experimental data is collected in something
akin to a laboratory environment. In a traditional experiment, the
researcher participates actively in the process being recorded. It’s
more difficult to obtain data like this in the social sciences due to
feasibility, financial cost or moral objections, although it is more
common now than was once the case. Examples include the Oregon
Medicaid Experiment, the RAND health insurance experiment, the
field experiment movement inspired by Michael Kremer, Esther Duflo
and John List, and many others.

Observational data is usually collected through surveys on a
retrospective manner, or as the byproduct of some other business
activity (“big data”). That is, in observational studies, you collect
data about what has happened previously, as opposed to collecting
data as it happens. The researcher is also a passive actor in this
process. She observes actions and results, but is not in a position to
interfere with the outcomes. This is the most common form of data
that social scientists use.

Economic theory tells us we should be suspicious of correlations
found in observational data. In observational data, correlations are
almost certainly not reflecting a causal relationship because the
variables were endogenously chosen by people who were making
decisions they thought were best. In pursuing some goal while facing
constraints, they chose certain things that created a spurious corre-
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lation with other things. The reason we think is because of what we
learn from the potential outcomes model: a correlation, in order to be
a measure of a causal effect, must be completely independent of the
potential outcomes under consideration. Yet if the person is making
some choice based on what she thinks is best, then it necessarily vio-
lates this independence condition. Economic theory predicts choices
will be endogenous, and thus naive correlations are misleading.

But theory, combined with intimate knowledge of the institutional
details surrounding the phenomena under consideration, can be used
to recover causal effects. We can estimate causal effects, but only with
assumptions and data.

Now we are veering into the realm of epistemology. Identifying
causal effects involves assumptions, but it also requires a particular
kind of belief about the work of scientists. Credible and valuable
research requires that we believe that it is more important to do
our work correctly than to try and achieve a certain outcome (e.g.,
confirmation bias, statistical significance, stars). The foundations
of scientific knowledge are scientific methodologies. Science does
not collect evidence in order to prove what we want to be true or
what people want others to believe. That is a form of propaganda, not
science. Rather, scientific methodologies are devices for forming a
particular kind of belief. Scientific methodologies allow us to accept
unexpected, and sometimes, undesirable answers. They are process
oriented, not outcome oriented. And without these values, causal
methodologies are also not credible.

Example: Identifying price elasticity of demand

“Oh, they just don’t understand
Too much pressure, it’s supply demand.”
– Zhu & Alunageorge

One of the cornerstones of scientific methodologies is empirical
analysis.5 By empirical analysis, I mean the use of data to test a the- 5 It is not the only cornerstone, nor

even necessarily the most important
cornerstone, but empirical analysis
has always played an important role in
scientific work.

ory or to estimate a relationship between variables. The first step in
conducting an empirical economic analysis is the careful formulation
of the question we would like to answer. In some cases, we would
like to develop and test a formal economic model that describes
mathematically a certain relationship, behavior or process of interest.
Those models are valuable insofar as they both describe the phenom-
ena of interest as well as make falsifiable (testable) predictions. A
prediction is falsifiable insofar as we can evaluate, and potentially re-
ject the prediction, with data.6 The economic model is the framework 6 You can also obtain a starting point

for empirical analysis less formally
through an intuitive and less formal rea-
soning process. But economics favors
formalism and deductive methods.
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with which we describe the relationships we are interested in, the
intuition for our results and the hypotheses we would like to test.7 7 Economic models are abstract, not

realistic, representations of the world.
George Box, the statistician, once
quipped that “all models are wrong,
but some are useful.”

After we have specified an economic model, we turn it into what is
called an econometric model that we can estimate directly with data.
One clear issue we immediately face is regarding the functional form
of the model, or how to describe the relationships of the variables
we are interested in through an equation. Another important issue is
how we will deal with variables that cannot be directly or reasonably
observed by the researcher, or that cannot be measured very well, but
which play an important role in our economic model.

A generically important contribution to our understanding of
causal inference is the notion of comparative statics. Comparative
statics are theoretical descriptions of causal effects contained within
the model. These kinds of comparative statics are always based on
the idea of ceteris paribus – holding all else constant. When we are
trying to describe the causal effect of some intervention, we are
always assuming that the other relevant variables in the model are
not changing. If they weren’t, then it confounds our estimation.

One of the things implied by ceteris paribus that comes up re-
peatedly in this book is the idea of covariate balance. If we say that
everything is the same except for the movement of one variable, then
everything is the same on both sides of that variable’s changing value.
Thus, when we invoke ceteris paribus, we are implicitly invoking
covariate balance – both the observable and unobservable covariates.

To illustrate this idea, let’s begin with a basic economic model:
supply and demand equilibrium and the problems it creates for
estimating the price elasticity of demand. Policy-makers and business
managers have a natural interest in learning the price elasticity
of demand. Knowing this can help firms maximize profits, help
governments choose optimal taxes, as well as the conditions under
which quantity restrictions are preferred [Becker et al., 2006]. But, the
problem is that we do not observe demand curves, because demand
curves are theoretical objects. More specifically, a demand curve is
a collection of paired potential outcomes of price and quantity. We
observe price and quantity equilibrium values, not the potential price
and potential quantities along the entire demand curve. Only by
tracing out the potential outcomes along a demand curve can we
calculate the elasticity.

To see this, consider this graphic from Philip Wright’s Appendix
B [Wright, 1928], which we’ll discuss in greater detail later (Figure 2).
The price elasticity of demand is the ratio of percentage changes in
quantity to price for a single demand curve. Yet, when there are shifts in
supply and demand, a sequence of quantity and price pairs emerge
in history which reflect neither the demand curve nor the supply
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curve. In fact, connecting the points does not reflect any meaningful
object.
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Exhibit 1 
The Graphical Demonstration of the Identification Problem in Appendix B (p. 296) 

FicruRB 4. Price-output Data Fail to Revbal Either Supply 
or Demand Curve. 

without affecting cost conditions or which (B) affect cost conditions without 

affecting demand conditions. 

Appendix B then provides two derivations of the instrumental variable estimator 
as the solution to the identification problem. The first (pp. 313-314) is the "limited- 

information," or single-equation, approach, in which the instrumental variable A is 
used to estimate the supply elasticity; this derivation is summarized in Exhibit 2. The 
second derivation (pp. 315-316) is the "full-information," or system, derivation and 
uses Sewall Wright's (1921,1923) method of path coefficients, extended to a system of 
two simultaneous equations. This derivation in effect solves the two simultaneous 

equations so that price and quantity are expressed as functions of A and B. Because A 
and B are exogenous, the resulting coefficients can be estimated by ordinary least 

squares, and thence, the supply and demand elasticities can be deduced. In modern 

terminology, this estimator of the elasticities is the indirect least squares estimator that, 
because the system is exacdy identified, is the instrumental variables estimator obtained 
in the first derivation.4 

The author of Appendix B refers to instrumental variable estimation as "the 
method of introducing external factors," which he then uses to estimate the supply 
and demand elasticities for butter and flaxseed. The external factors actually used 

4 From a modern perspective, the only flaw in the derivations is the loose treatment of the distinction 
between sample and population moments. This strikes us as a minor slip that can be excused by the early 
date at which Appendix B was written. 

Figure 2: Wright’s graphical demonstra-
tion of the identification problem

The price elasticity of demand is the solution to the following
equation:

e =
∂ log Q
∂ log P

But in this example, the change in P is exogenous. For instance, it
holds supply fixed, the prices of other goods fixed, income fixed,
preferences fixed, input costs fixed, etc. In order to estimate the
price elasticity of demand, we need changes in P that are completely
and utterly independent of the otherwise normal determinants of
supply and the other determinants of demand. Otherwise we get
shifts in either supply or demand, which creates new pairs of data for
which any correlation between P and Q will not be a measure of the
elasticity of demand.

Nevertheless, the elasticity is an important object, and we need
to know it. So given this theoretical object, we must write out an
econometric model as a starting point. One possible example of an
econometric model would be a linear demand function:

log Qd = a + d log P + gX + u

where a is the intercept, d is the elasticity of demand, X is a matrix
of factors that determine demand like the prices of other goods or
income g is the coefficient on the relationship between X and Qd and
u is the error term.8 8 More on the error term later.
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Foreshadowing the rest of the lecture notes, to estimate price
elasticity of demand, we need two things. First, we need numerous
rows of data on price and quantity. Second, we need for the variation
in price in our imaginary dataset to be independent of u. We call this
kind of independence exogeneity. Without both, we cannot recover the
price elasticity of demand, and therefore any decision that requires
that information will be based on flawed or incomplete data.

In conclusion, simply finding an association between two vari-
ables might be suggestive of a causal effect, but it also might not.
Correlation doesn’t mean causation unless key assumptions hold.
Before we start digging into causal inference, we need to lay down a
foundation in simple regression models. We also need to introduce a
simple program necessary to do some of the Stata examples. I have
uploaded numerous datasets to my website which you will use to
perform procedures and replicate examples from the book. That file
can be downloaded from http://scunning.com/scuse.ado. Once it’s
downloaded, simply copy and paste the file into your personal Stata
ado subdirectory.9 You’re all set to go forward! 9 To find that path, type in sysdir at

the Stata command line. This will tell
you the location of your personal ado
subdirectory. If you copy scuse.ado it
into this subdirectory, then you can call
all the datasets used in the book.

http://scunning.com/scuse.ado
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“Numbers is hardly real and they never have feelings
But you push too hard, even numbers got limits”
– Mos Def

Basic probability theory We begin with some definitions. A random
process is a process that can be repeated many times with different
outcomes. The sample space is the set of all possible outcomes of a
random process. We distinguish between discrete and continuous
random process in the following table.

Description Type Potential outcomes

Coin Discrete Heads, Tails
6-sided die Discrete 1, 2, 3, 4, 5, 6

Deck of cards Discrete 2 }, 3 }, . . . King ~, Ace ~
Housing prices Continuous P � 0

Table 1: Examples of Discrete and
Continuous Random Processes.

We define independent events two ways. The first definition refers
to logical independence. For instance, two events occur but there is
no reason to believe that two events affect one another. The logical
fallacy is called post hoc ergo propter hoc. The second definition is
statistical independence. We’ll illustrate the latter with an example
from the idea of sampling with and without replacement. Let’s use a
randomly shuffled deck of cards for example. For a deck of 52 cards,
what is the probability that the first card will be an Ace?

Pr(Ace) =
Count Aces

Sample Space
=

4
52

=
1

13
= 0.077

There are 52 possible outcomes, which is the sample space – it is
the set of all possible outcomes of the random process. Of those 52

possible outcomes, we are concerned with the frequency of an Ace
occurring. There are four Aces in the deck, so 4

52 = 0.077.
Assume that the first card was an ace. Now we ask the question

again. If we shuffle the deck, what is the probability the next card
drawn is an Ace? It is no longer 1

13 because we did not “sample
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with replacement”. We sampled without replacement. Thus the new
probability is

Pr(Ace | Card 1 = Ace) =
3

51
= 0.059

Under sampling without replacement, the two events – Ace on Card
1 and an Ace on Card 2 if Card 1 was an Ace – aren’t independent
events. To make the two events independent, you would have to
put the Ace back and shuffle the deck. So two events, A and B, are
independent if and only if (iff):

Pr(A|B) = Pr(A)

An example of two independent events would be rolling a 5 with
one die after having rolled a 3 with another die. The two events are
independent, so the probability of rolling a 5 is always 0.17 regardless
of what we rolled on the first die.10

10 The probability rolling a 5 using one
die is 1

6 = 0.167.But what if we are wanting to know the probability of some event
occurring that requires multiple events, first, to occur? For instance,
let’s say we’re talking about the Cleveland Cavaliers winning the
NBA championship. In 2016, the Golden State Warriors were 3-0 in
a best of seven playoff. What had to happen for the Warriors to lose
the playoff? The Cavaliers had to win four in a row. In this instance,
to find the probability, we have to take the product of all marginal
probabilities, or Pr(·)n where Pr(·) is the marginal probability of one
event occurring, and n is the number of repetitions of that one event.
If the probability of each win is 0.5, and each game is independent,
then it is the product of each game’s probability of winning:

Win probability = Pr(W, W, W, W) = (0.5)4 = 0.0625

Another example may be helpful. Let’s say a batter has a 0.3 probabil-
ity of getting a hit. Then what is the probability of him getting two
hits in a row? The two hit probability is Pr(HH) = 0.32 = 0.09 and the
three hit probability is Pr(HHH) = 0.33 = 0.027. Or to keep with our
poker example, what is the probability of being dealt pocket Aces?
It’s 4

52 ⇥
3

51 = 0.0045 or 0.45%.
Let’s now formalize what we’ve been saying for a more general-

ized case. For independent events, calculating joint probabilities is to
multiply the marginal probabilities:

Pr(A, B) = Pr(A)Pr(B)

where Pr(A, B) is the joint probability of both A and B occurring, and
Pr(A) is the marginal probability of A event occurring.

Now for a slightly more difficult application. What is the prob-
ability of rolling a 7 using two dice, and is it the the same as the
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probability of rolling a 3? To answer this, let’s compare the two. We’ll
use a table to help explain the intuition. First, let’s look at all the
ways to get a 7 using two six-sided die. There are 36 total possible
outcomes (62 = 36) when rolling two dice. In Table 2 we see that
there are six different ways to roll a 7 using only two dice. So the
probability of rolling a 7 is 6/36 = 16.67%. Next, let’s look at all the
ways to get a 3 using two six-sided dice. Table 3 shows that there are
only two ways to get a 3 rolling two six-sided dice. So the probability
of rolling a 3 is 2/36 = 5.56%. So, no, the probabilities are different.

Die 1 Die 2 Outcome

1 6 7

2 5 7

3 4 7

4 3 7

5 2 7

6 1 7

Table 2: Total number of ways to get a 7

with two six-sided dice.

Die 1 Die 2 Outcome

1 2 3

2 1 3

Table 3: Total number of ways to get a 3

using two six-sided dice.

Events and Conditional Probability First, before we talk about the
three ways of representing a probability, I’d like to introduce some
new terminology and concepts: events and conditional probabilities.
Let A be some event. And let B be some other event. For two events,
there are four possibilities.

1. A and B: Both A and B occur.

2. ⇠ A and B: A does not occur, but B occurs.

3. A and ⇠ B: A occurs but B does not occur.

4. ⇠ A and ⇠ B: Neither A nor B occurs.

I’ll use a couple of different examples to illustrate how to represent a
probability.

Probability tree Let’s think about a situation where you are trying
to get your driver’s license. Suppose that in order to get a driver’s
license, you have to pass the written and the driving exam. However,
if you fail the written exam, you’re not allowed to take the driving
exam. We can represent these two events in a probability tree.
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Written
exam

Car
exam

P(Pass \ Pass ) = 0.9 · 0.6 = 0.54

Pass
0.6

P(Pass \ Fail) = 0.9 · 0.4 = 0.36
Fail

0.4

Pass
0.9

No
driver’s
license

P(Fail) = 0.1

Fail

0.1

Probability trees are intuitive and easy to interpret. First, we see
that the probability of passing the exam is 0.9 and the probability of
failing the exam is 0.1. Second, at every branching off from a node,
we can further see that the probabilities are summing to 1.0. For
example, the probability of failing the written exam (0.1) plus the
probability of passing it (0.9) equals 1.0. The probability of failing the
car exam (0.4) plus the probability of passing the car exam (0.6) is 1.0.
And finally, the joint probabilities are also all summing to 1.0. This
is called the law of total probability is equal to the sum of all joint
probability of A and Bn events occurring.

Pr(A) = Â
n

Pr(A \ Bn)

We also see the concept of a conditional probability in this tree.
For instance, the probability of failing the car exam conditional on
passing the written exam is represented as Pr(Fail|Pass) = 0.4.

Venn Diagram A second way to represent multiple events occurring
is with a Venn diagram. Venn diagrams were first conceived by John
Venn in 1880 and are used to teach elementary set theory, as well as
express set relationships in probability and statistics. This example
will involve two sets, A and B.

U

A B

Let’s return to our earlier example of your team making the play-
offs, which determines whether your coach is rehired. Here we
remind ourselves of our terms. A and B are events, and U is the uni-
versal set of which A and B are subsets. Let A be the probability that
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your team makes the playoffs and B is the probability your coach is
rehired. Let Pr(A) = 0.6 and let Pr(B) = 0.8. Let the probability that
both A and B occur be Pr(A, B) = 0.5.

Note, that A+ ⇠ A = U, where ⇠ A is the complement of A. The
complement means that it is everything in the universal set that is
not A. The same is said of B. The sum of B and ⇠ B = U. Therefore:

A+ ⇠ A = B+ ⇠ B

We can rewrite out the following definitions:

B = A+ ⇠ A� ⇠ B

A = B+ ⇠ B� ⇠ A

Additionally, whenever we want to describe a set of events in
which either A or B could occur, it is: A [ B.

So, here again we can also describe the shaded region as the union
of the ⇠ A[ ⇠ B sets. Where ⇠ A and ⇠ B occurs is the outer area of
the A [ B. So again,

A \ B+ ⇠ A\ ⇠ B = 1

Finally, the joint sets. These are those subsets wherein both A and
B occur. Using the set notation, we can calculate the probabilities
because for a Venn diagram with the overlapping circles (events),
there are four possible outcomes expressed as joint sets.

Notice these relationships

A [ B = A\ ⇠ B + A \ B+ ⇠ A \ B

A = A\ ⇠ B + A \ B

B = A \ B+ ⇠ A \ B

Now it is just simple addition to find all missing values. Recall
the A is your team making playoffs and Pr(A) = 0.6. And B is the
probability the coach is rehired, Pr(B) = 0.8. Also, Pr(A, B) = 0.5
which is the probability of both A and B occurring. Then we have:

A = A\ ⇠ B + A \ B

A\ ⇠ B = A� A \ B

Pr(A,⇠ B) = Pr(A)� Pr(A, B)

Pr(A,⇠ B) = 0.6� 0.5

Pr(A,⇠ B) = 0.1

When working with set objects, it is important to understand that
probabilities should be measured by considering the share of the
larger subset, say A, that some subset takes, such as A \ B. When
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we write down that the probability of A \ B occurs at all, it is with
regards to U. But what if we were to ask the question as “What share
of A is due to A \ B?” Notice, then, that we would need to do this:

? = A \ B ÷ A

? = 0.5 ÷ 0.6

? = 0.83

I left this intentionally undefined on the left hand side so as to focus
on the calculation itself. But now let’s define what we are wanting to
calculate. “In a world where A has occurred, what is the probability
B will also occur?” This is:

Prob(B | A) =
Pr(A, B)

Pr(A)
=

0.5
0.6

= 0.83

Prob(A | B) =
Pr(A, B)

Pr(B)
=

0.5
0.8

= 0.63

Notice, these conditional probabilities are not as easily seen in the
Venn diagram. We are essentially asking what percent of a subset
– e.g., Pr(A) – is due to the joint, for example Pr(A, B). That is the
notion of the conditional probability.

Contingency tables The last way that we can represent events is with
a contingency table. Contingency tables are also sometimes called
two way tables. Table 4 is an example of a contingency table. We
continue our example about the coach.

Event labels Coach is not rehired (B) Coach is rehired (⇠ B) Total

(A) team playoffs Pr(A,⇠ B)=0.1 Pr(A, B)=0.5 Pr(A)=0.6
(⇠ A) no playoffs Pr(⇠ A,⇠ B)=0.1 Pr(⇠ A, B)=0.3 Pr(B)=0.4

Total Pr(⇠ B)=0.2 Pr(B)=0.8 1.0

Table 4: Two way contingency table.

Recall that Pr(A)=0.6, Pr(B)=0.8, and Pr(A, B)=0.5. All probabilities
must sum correctly. Note that to calculate conditional probabilities,
we must ask the frequency of the element in question (e.g., Pr(A, B))
relative to some other larger event (e.g., Pr(A)). So if we want to ask,
“what is the conditional probability of B given A?”, it’s:

Pr(B | A) =
Pr(A, B)

Pr(A)
=

0.5
0.6

= 0.83

but note to ask the frequency of A [ B in a world where B occurs is to
ask the following:

Pr(A | B) =
Pr(A, B)

Pr(B)
=

0.5
0.8

= 0.63
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So, we can use what we have done so far to write out a defini-
tion of joint probability. Let’s start with a definition of conditional
probability first. Given two events, A and B:

Pr(A|B) =
Pr(A, B)

Pr(B)
(1)

Pr(B|A) =
Pr(B, A)

Pr(A)
(2)

Pr(A, B) = Pr(B, A) (3)

Pr(A) = Pr(A,⇠ B) + Pr(A, B) (4)

Pr(B) = Pr(A, B) + Pr(⇠ A, B) (5)

Using equations 1 and 2, I can simply write down a definition of joint
probabilities.

Pr(A, B) = Pr(A|B)Pr(B) (6)

Pr(B, A) = Pr(B|A)Pr(A) (7)

And this is simply the formula for joint probability. Given equa-
tion 3, and using the definitions of Pr(A, B and Pr(B, A)), I can also
rearrange terms, make a substitution and rewrite it as:

Pr(A|B)Pr(B) = Pr(B|A)Pr(A)

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)
(8)

Equation 8 is sometimes called the naive version of Bayes Rule. We
will now decompose this more fully, though, by substituting equation
5 into equation 8.

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(A, B) + Pr(⇠ A, B)
(9)

Substituting equation 6 into the denominator for equation 9 yields:

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B|A)Pr(A) + Pr(⇠ A, B)
(10)

Finally, we note that using the definition of joint probability, that
Pr(B,⇠ A) = Pr(B|⇠ A)Pr(⇠ A), which we substitute into the
denominator of equation 10 to get:

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B|A)Pr(A) + Pr(B|⇠ A)Pr(⇠ A)
(11)

That’s a mouthful of substitutions so what does equation 11 mean?
This is the Bayesian decomposition version of Bayes rule. Let’s use
our example again of a team making the playoffs. A is your team
makes the playoffs and B is your coach gets rehired. And A \ B is the
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joint probability that both events occur. We can make each calculation
using the contingency tables. The questions here is “if coach is
rehired, what’s the probability that my team made the playoffs?” Or
formally, Pr(A|B). We can use the Bayesian decomposition to find
what this equals.

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B|A)Pr(A) + Pr(B|⇠ A)Pr(⇠ A)

=
0.83 · 0.6

0.83 · 0.6 + 0.75 · 0.4

=
0.498

0.498 + 0.3

=
0.498
0.798

Pr(A|B) = 0.624

Check this against the contingency table using the definition of joint
probability:

Pr(A|B) =
Pr(A, B)

Pr(B)
=

0.5
0.8

= 0.625

Why are they different? Because 0.83 is an approximation of Pr(B|A)
which was technically 0.833. . . trailing. So, if my coach is rehired,
there is a 63 percent chance we will win.

Monty Hall example Let’s use a different example. This is a fun one,
because most people find it counterintuitive. It even used to stump
mathematicians and statisticians.11 But Bayes rule makes the answer 11 There’s a fun story in which someone

posed this question to the columnist,
Marilyn vos Savant, and she got it right.
People wrote in, calling her stupid, but
it turns out she was right. You can read
the story here.

very clear.
Let’s assume three closed doors: Door 1 (D1), Door 2 (D2) and

Door 3 (D3). Behind one of the doors is a million dollars. Behind
each of the other two doors is a goat. Monty Hall, the game show
host in this example, asks the contestants to pick a door. After they
had picked the door, but before he opens their door, he opens one
of the other two doors to reveal a goat. He then ask the contestant,
“would you like to switch doors?”

Many people answer say it makes no sense to change doors, be-
cause (they say) there’s an equal chance that the million dollars is
behind either door. Therefore, why switch? There’s a 50/50 chance
it’s behind the door picked and there’s a 50/50 chance it’s behind the
remaining door, so it makes no rational sense to switch. Right? Yet, a
little intuition should tell you that’s not the right answer, because it
would seem that when Monty Hall opened that third door, he told us
something. But what did he tell us exactly?

Let’s formalize the problem using our probability notation. As-
sume that you chose door 1, D1. What was the probability that

https://priceonomics.com/the-time-everyone-corrected-the-worlds-smartest/
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D1 had a million dollars when you made that choice? Pr(D1 =
1 million) = 1

3 . We will call that event A1. And the probability that D1
has a million dollars at the start of the game is 1

3 because the sample
space is 3 doors, of which one has a million dollars. Thus, Pr(A1) = 1

3 .
Also, by the law of total probability, Pr(⇠ A1) = 2

3 . Let’s say that
Monty Hall had opened door 2, D2, to reveal a goat. Then he then
asked you “would you like to change to door number 3?”

We need to know the probability that door 3 has the million dol-
lars and compare that to Door 1’s probability. We will call the open-
ing of door 2 event B. We will call the probability that the million
dollars is behind door i, Ai. We now write out the question just asked
formally and decompose it using the Bayesian decomposition. We are
ultimately interested in knowing, “what is the probability that Door
1 has a million dollars (event A1) given Monty Hall opened Door 2

(event B)”, which is a conditional probability question. Let’s write
out that conditional probability now using the Bayesian decomposi-
tion from equation 11.

Pr(A1|B) =
Pr(B|A1)Pr(A1)

Pr(B|A1)Pr(A1) + Pr(B|A2)Pr(A2) + Pr(B|A3)Pr(A3)
(12)

There’s basically two kinds of probabilities on the right-hand-side.
There’s the marginal probability that the million dollars is behind a
given door Pr(Ai). And there’s the conditional probability that Monty
Hall would open Door 2 given the million dollars is behind Door Ai,
Pr(B|Ai).

The marginal probability that Door i has the million dollars with-
out any additional information is 1

3 . We call this the prior probability,
or prior belief. It may also be called the unconditional probability.

The conditional probability, Pr(B|Ai), require a little more careful
thinking. Take the first conditional probability, Pr(B|A1). In a world
where Door 1 has the million dollars, what’s the probability Monty
Hall would open door number 2? Think about it for a second.

Let’s think about the second conditional probability: Pr(B|A2). In a
world where the money is behind Door 2, what’s the probability that
Monty Hall would open Door 2? Think about it, too, for a second.

And then the last conditional probability, Pr(B|A3). In a world
where the money is behind Door 3, what’s the probability Monty
Hall will open Door 2?

Each of these conditional probabilities require thinking carefully
about the feasibility of the events in question. Let’s examine the
easiest question: Pr(B|A2). In a world where the money is behind
Door 2, how likely is it for Monty Hall to open that same door, Door
2? Keep in mind: this is a game show. So that gives you some idea
about how the game show host will behave. Do you think Monty
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Hall would open a door that had the million dollars behind it? After
all, isn’t he opening doors that don’t have it to ask you whether you
should switch? It makes no sense to think he’d ever open a door
that actually had the money behind it. Historically, even, he always
opens a door with a goat. So don’t you think he’s only opening doors
with goats? Let’s see what happens if take that intuition to its logical
extreme and conclude that Monty Hall never opens a door if it has
a million dollars. He only opens doors if those doors have a goat.
Under that assumption, we can proceed to estimate Pr(A1|B) by
substituting values for Pr(B|Ai) and Pr(Ai) into the right-hand-side
of equation 12.

What then is Pr(B|A1)? That is, in a world where you have chosen
Door 1, and the money is behind Door 1, what is the probability that
he would open Door 2? There are two doors he could open if the
money is behind Door 1 – he could open either Door 2 or Door 3, as
both have a goat. So Pr(B|A1) = 0.5.

What about the second conditional probability, Pr(B|A2)? In a
world where the money is behind Door 2, what’s the probability he
will open it? Under our assumption that he never opens the door if
it has a million dollars, we know this probability is 0.0. And finally,
what about the third probability, Pr(B|A3)? What is the probability
he opens Door 2 given the money is behind Door 3? Now consider
this one carefully - you have already chosen Door 1, so he can’t open
that one. And he can’t open Door 3, because that has the money. The
only door, therefore, he could open is Door 2. Thus, this probability
is 1.0. And all the Pr(Ai) = 1

3 , allowing us to solve for the conditional
probability on the left hand side through substitution, multiplication
and division.

Pr(A1|B) =
1
2 · 1

3
1
2 · 1

3 + 0 · 1
3 + 1.0 · 1

3

=
1
6

1
6 + 2

6

=
1
3

Now, let’s consider the probability that Door 3 has the million
dollars, as that’s the only door we can switch to since door two has
been opened for us already.

Pr(A3|B) =
Pr(B|A3)Pr(A3)

Pr(B|A3)Pr(A3) + Pr(B|A2)Pr(A2) + Pr(B|A1)Pr(A1)

=
1.0 · 1

3
1.0 · 1

3 + 0 · 1
3 + 1

2 · 1
3

=
2
3
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Ah hah. Now isn’t that just a little bit surprising? The probability
you are holding the correct door is 1

3 just as it was before Monty
Hall opened Door 2. But now the probability that it is in Door 2 has
increased from its prior probability. The prior probability, Pr(A3) = 1

3 ,
changed to a new conditional probability value, Pr(A3|B) = 2

3 . This
new conditional probability is called the posterior probability, or
posterior belief.12 Given the information you learned from witnessing 12 It’s okay to giggle every time you say

“posterior”. I do!B, we correctly updated our beliefs about the likelihood that Door 3

had the million dollars.

Exercises Driving while intoxicated is defined as operating a mo-
tor vehicle with a blood alcohol content (BAC) at or above 0.08%.
Standardized field sobriety tests (SFSTs) are often used as tools by
officers in the field to determine if an arrest followed by a breath test
is justified. However, breath tests are often not available in court for
a variety of reasons, and under those circumstances, the SFSTs are
frequently used as an indication of impairment and sometimes as an
indicator that the subject has a BAC�0.08%.

Stuster and Burns [1998] conducted an experiment to estimate
the accuracy of SFSTs. Seven San Diego Police Department officers
administered STSTs on those stopped for suspicion of driving under
the influence of alcohol. The officers were then instructed to carry out
the SFSTs on the subjects, and then to note an estimated BAC based
only on the SFST results.13 Subjects driving appropriately were not 13 In case you’re interested, the SFST

consists of three tests: the walk and
turn test, the one leg stand test, and the
horizontal gaze nystagmus test.

stopped or tested. However, “poor drivers” were included because
they attracted the attention of the officers.14 The officers were asked

14 The data collected included gender
and age, but not race, body weight,
presence of prior injuries and other
factors that might influence SFSTs of the
measured BAC.

to estimate the BAC values using SFSTs only. Some of the subjects
were arrested and given a breath test. The criteria used by the officers
for estimation of BAC was not described in the Stuster and Burns
[1998] study, and several studies have concluded that officers were
using the SFSTs to then subjectively guess at the subjects’ BAC. There
were 297 subjects in the original data. The raw data is reproduced
below.

MBAC<0.08% MBAC�0.08%

EBAC�0.08% n =24 n =210

EBAC<0.08% n =59 n =4

1. Represent the events above using a probability tree, two way
tables, and a Venn Diagram. Calculate the marginal probability of
each event, the joint probability, and the conditional probability.

2. Let F be the event where a driver fails the SFST with an estimated
BAC (EBAC) at or above 0.08, and ⇠ F be an event where the
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driver passes (EBAC< 0.08). Let I be the event wherein a driver is
impaired by alcohol with an actual or measured BAC (MBAC) is
at or above 0.08%, and ⇠ I be an event where MBAC< 0.08. Use
Bayes Rule to decompose the conditional probability, Pr(I|F), into
it the correct expression. Label the prior beliefs, posterior beliefs,
false and true positive, false and true negative if and where they
apply. Show that the posterior belief calculated using Bayes Rule
is equal to the value that could be directly calculated using the
sample information above. Interpret the posterior belief in plain
language. What does it mean?

3. Assume that because of concerns about profiling, a new policy
is enacted. Police must randomly pull over all automobiles for
suspected driving while intoxicated and apply the SFST to all
drivers. Using survey information, such as from Gallup or some
other reputable survey, what percent of the US population drinks
and drives? If the test statistics from the sample are correct, then
how likely is it that someone who fails the SFST is impaired under
this new policy?



Properties of Regression

“I like cool people, but why should I care?
Because I’m busy tryna fit a line with the least squares”
– J-Wong

Summation operator Now we move on to a review of the least
squares estimator.15 Before we begin, let’s introduce some new nota- 15 This chapter is heavily drawn from

Wooldridge [2010] and Wooldridge
[2015]. All errors are my own.

tion starting with the summation operator. The Greek letter Â (the
capital Sigma) denotes the summation operator. Let x1, x2, . . . , xn be
a sequence of numbers. We can compactly write a sum of numbers
using the summation operator as:

n

Â
i=1

xi ⌘ x1 + x2 + · · · + xn

The letter i is called the index of summation. Other letters are some-
times used, such as j or k, as indices of summation. The subscripted
variable simply represents a specific value of a random variable,
x. The numbers 1 and n are the lower limit and upper limit of the
summation. The expression Ân

i=1 can be stated in words as “sum
the numbers xi for all values of i from 1 to n”. An example can help
clarify:

9

Â
i=6

xi = x6 + x7 + x8 + x9

The summation operator has three properties. The first property is
called the constant rule. Formally, it is:

For any constant c :
n

Â
i=1

c = nc (13)

Let’s consider an example. Say that we are given:

3

Â
i=1

5 = (5 + 5 + 5) = 3 · 5 = 15

A second property of the summation operator is:
n

Â
i=1

cxi = c
n

Â
i=1

xi (14)
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Again let’s use an example. Say we are given:

3

Â
i=1

5xi = 5x1 + 5x2 + 5x3

= 5(x1 + x2 + x3)

= 5
3

Â
i=1

xi

We can apply both of these properties to get the following third
property:

For any constant a and b :
n

Â
i=1

(axi + byi) = a
n

Â
i=1

xi + b
n

Â
j=1

Before leaving the summation operator, it is useful to also note
things which are not properties of this operator. Two things which
summation operators cannot do:

n

Â
i

xi
yi
6= Ân

i=1 xi

Ân
i=1 yi

n

Â
i=1

x2
i 6=

✓ n

Â
i=1

xi

◆2

We can use the summation indicator to make a number of calcu-
lations, some of which we will do repeatedly over the course of this
book. For instance, we can use the summation operator to calculate
the average:

x =
1
n

n

Â
i=1

xi

=
x1 + x2 + · · · + xn

n
(15)

where x is the average (mean) of the random variable xi. Another
calculation we can make is a random variable’s deviations from its
own mean. The sum of the deviations from the mean is always equal
to zero:

n

Â
i=1

(xi � x) = 0 (16)

Let’s illustrate this with an example in Table 5:
Consider a sequence of two numbers {y1, y2, . . . , yn} and {x1, x2, . . . , xn}.

Then we may consider double summations over possible values of
x’s and y’s. For example, consider the case where n = m = 2. Then,
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x x� x

10 2

4 -4
13 5

5 -3

Mean=8 Sum=0

Table 5: Sum of deviations equalling
zero

Â2
i=1 Â2

j=1 xiyj is equal to x1y1 + x1y2 + x2y1 + x2y2. This is because:

x1y1 + x1y2 + x2y1 + x2y2 = x1(y1 + y2) + x2(y1 + y2)

=
2

Â
i=1

xi(y1 + y2)

=
2

Â
i=1

xi

✓ 2

Â
j=1

yj

◆

=
2

Â
i=1

✓ 2

Â
j=1

xiyj

◆

=
2

Â
i=1

2

Â
j=1

xiyj

One result that will be very useful throughout the semester is:

n

Â
i=1

(xi � x)2 =
n

Â
i=1

x2
i � n(x)2 (17)

An overly long, step-by-step, proof is below. Note that the summa-
tion index is suppressed after the first line for brevity sake.

n

Â
i=1

(xi � x)2 =
n

Â
i=1

(x2
i � 2xix + x2)

= Â x2
i � 2x Â xi + nx2

= Â x2
i � 2

1
n Â xi Â xi + nx2

= Â x2
i + nx2 � 2

n

✓
Â xi

◆2

= Â x2
i + n

✓
1
n Â xi

◆2
� 2n

✓
1
n Â xi

◆2

= Â x2
i � n

✓
1
n Â xi

◆2

= Â x2
i � nx2
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A more general version of this result is:

n

Â
i=1

(xi � x)(yi � y) =
n

Â
i=1

xi(yi � y)

=
n

Â
i=1

(xi � x)yi

=
n

Â
i=1

xiyi � n(xy) (18)

Or:
n

Â
i=1

(xi � x)(yi � y) =
n

Â
i=1

xi(yi � y) =
n

Â
i=1

(xi � x)yi =
n

Â
i=1

xiyi � n(xy) (19)

Expected value The expected value of a random variable, also called
the expectation and sometimes the population mean, is simply
the weighted average of the possible values that the variable can
take, with the weights being given by the probability of each value
occurring in the population. Suppose that the variable X can take
on values x1, x2, . . . , xk each with probability f (x1), f (x2), . . . , f (xk),
respectively. Then we define the expected value of X as:

E(X) = x1 f (x1) + x2 f (x2) + · · · + xk f (xk)

=
k

Â
j=1

xj f (xj) (20)

Let’s look at a numerical example. If X takes on values of -1, 0 and 2

with probabilities 0.3, 0.3 and 0.4,16 respectively. Then the expected 16 Recall the law of total probability
requires that all marginal probabilities
sum to unity.

value of X equals:

E(X) = (�1)(0.3) + (0)(0.3) + (2)(0.4)

= 0.5

In fact you could take the expectation of a function of that variable,
too, such as X2. Note that X2 takes only the values 1, 0 and 4 with
probabilities 0.3, 0.3 and 0.4. Calculating the expected value of X2

therefore is:

E(X2) = (�1)2(0.3) + (0)2(0.3) + (2)2(0.4)

= 1.9

The first property of expected value is that for any constant, c,
E(c) = c. The second property is that for any two constants, a and b,
then E(aX + b) = E(aX) + E(b) = aE(X) + b. And the third property
is that if we have numerous constants, a1, . . . , an and many random
variables, X1, . . . , Xn, then the following is true:

E(a1X1 + · · · + anXn) = a1E(X1) + · · · + anE(Xn)
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We can also express this using the expectation operator:

E
✓ n

Â
i=1

aiXi

◆
= Â

i=1
aiE(Xi)

And in the special case where ai = 1, then

E
✓ n

Â
i=1

Xi

◆
=

n

Â
i=1

E(Xi)

Variance The expectation operator, E(·), is a population concept. It
refers to the whole group of interest, not just the sample we have
available to us. Its intuition is loosely similar to the average of a
random variable in the population. Some additional properties for
the expectation operator can be explained assuming two random
variables, W and H.

E(aW + b) = aE(W) + b for any constants a, b

E(W + H) = E(W) + E(H)

E(W � E(W)) = 0

Consider the variance of a random variable, W:

V(W) = s

2 = E[(W � E(W))2] in the population

We can show that:
V(W) = E(W2)� E(W)2 (21)

In a given sample of data, we can estimate the variance by the follow-
ing calculation:

bS2 = (n� 1)�1
n

Â
i=1

(xi � x)2

where we divide by n� 1 because we are making a degrees of freedom
adjustment from estimating the mean. But in large samples, this
degree of freedom adjustment has no practical effect on the value of
bS2.17

17 Whenever possible, I try to use the
“hat” to represent an estimated statistic.
Hence bS2 instead of just S2. But it is
probably more common to see the
sample variance represented as S2.

A few more properties of variance. First, the variance of a line is:

V(aX + b) = a2V(X)

And the variance of a constant is zero (i.e., V(c) = 0 for any
constant, c). The variance of the sum of two random variables is
equal to:

V(X + Y) = V(X) + V(Y) + 2(E(XY)� E(X)E(Y)) (22)

If the two variables are independent, then E(XY) = E(X)E(Y) and
V(X + Y) is just equal to the sum of V(X) + V(Y).
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Covariance The last part of equation 22 is called the covariance.
The covariance measures the amount of linear dependence between
two random variables. We represent it with the C(X, Y) operator.
C(X, Y) > 0 indicates that two variables move in the same direction,
whereas C(X, Y) < 0 indicates they move in opposite directions. Thus
we can rewrite Equation 22 as:

V(X + Y) = V(X) + V(Y) + 2C(X, Y)

While it’s tempting to say that a zero covariance means two random
variables are unrelated, that is incorrect. They could have a nonlinear
relationship. The definition of covariance is

C(X, Y) = E(XY)� E(X)E(Y) (23)

As we said, if X and Y are independent, then C(X, Y) = 0 in the
population.18 The covariance between two linear functions is: 18 It may be redundant to keep saying

this, but since we’ve been talking about
only the population this whole time, I
wanted to stress it again for the reader.

C(a1 + b1X, a2 + b2Y) = b1b2C(X, Y)

The two constants, a1 and a2, zero out because their mean is them-
selves and so the difference equals zero.

Interpreting the magnitude of the covariance can be tricky. For
that, we are better served looking at correlation. We define correla-
tion as follows. Let W = X�E(X)p

V(X) and Z = Y�E(Y)p
V(Y) . Then:

Corr(W, Z) =
C(X, Y)p
V(X)V(Y)

(24)

The correlation coefficient is bounded between –1 and 1. A posi-
tive (negative) correlation indicates that the variables move in the
same (opposite) ways. The closer to 1 or –1 the stronger the linear
relationship is.

Population model We begin with cross-sectional analysis. We will
also assume that we can collect a random sample from the popu-
lation of interest. Assume there are two variables, x and y, and we
would like to see how y varies with changes in x.19

19 Notice – this is not necessarily
causal language. We are speaking
first and generally just in terms of
two random variables systematically
moving together in some measurable
way.

There are three questions that immediately come up. One, what if
y is affected by factors other than x? How will we handle that? Two,
what is the functional form connecting these two variables? Three,
if we are interested in the causal effect of x on y, then how can we
distinguish that from mere correlation? Let’s start with a specific
model.

y = b0 + b1x + u (25)

This model is assumed to hold in the population. Equation 25 defines
a linear bivariate regression model. For causal inference, the terms
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on the left-hand-side are usually thought of as the effect, and the
terms on the right-hand-side are thought of as the causes.

Equation 25 explicitly allows for other factors to affect y by includ-
ing a random variable called the error term, u. This equation also
explicitly models the functional form by assuming that y is linearly
dependent on x. We call the b0 coefficient the intercept parameter,
and we call the b1 coefficient the slope parameter. These, note, de-
scribe a population, and our goal in empirical work is estimate their
values. I will emphasize this several times throughout this book: we
never directly observe these parameters, because they are not data.
What we can do, though, is estimate these parameters using data and
assumptions. We just have to have credible assumptions to accurately
estimate these parameters with data. We will return to this point later.
In this simple regression framework, all unobserved variables are
subsumed by the error term.

First, we make a simplifying assumption without loss of generality.
Let the expected value of u be zero in the population. Formally:

E(u) = 0 (26)

where E(·) is the expected value operator discussed earlier. Normal-
izing ability to be zero in the population is harmless. Why? Because
the presence of b0 (the intercept term) always allows us this flexibility.
If the average of u is different from zero – for instance, say that it’s
a0 – then we just adjust the intercept. Adjusting the intercept has no
effect on the b1 slope parameter, though.

y = (b0 + a0) + b1x + (u� a0)

where a0 = E(u). The new error term is u� a0 and the new intercept
term is b0 + a0. But while those two terms changed, notice what did
not change: the slope, b1, has not changed.

Mean independence An assumption that meshes well with our ele-
mentary treatment of statistics involves the mean of the error term for
each “slice” of the population determined by values of x:

E(u|x) = E(u) for all values x (27)

where E(u|x) means the “expected value of u given x”. If equation
27 holds, then we say that u is mean independent of x. An example
might help here. Let’s say we are estimating the effect of schooling
on wages, and u is unobserved ability. Mean independence requires
that E[ability|x = 8] = E[ability|x = 12] = E[ability|x = 16] so that the
average ability is the same in the different portions of the population
with an 8th grade education, a 12th grade education and a college
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education. Because people choose education, though, based partly
on that unobserved ability, equation 27 is almost certainly violated in
this actual example.

Combining this new assumption, E[u|x] = E[u] (a non-trivial
assumption to make), with E[u] = 0 (a normalization and trivial
assumption), and you get the following new assumption:

E(u|x) = 0, for all values x (28)

Equation 28 is called the zero conditional mean assumption and
is a key identifying assumption in regression models. Because the
conditional expected value is a linear operator, E(u|x) = 0 implies

E(y|x) = b0 + b1x

which shows the population regression function is a linear function
of x, or what Angrist and Pischke [2009] call the conditional expec-
tation function.20 This relationship is crucial for the intuition of the 20 Notice that the conditional expecta-

tion passed through the linear function
leaving a constant, because of the first
property of the expectation operator,
and a constant times x. This is be-
cause the conditional expectation of
E[X|X] = X. This leaves us with E[u|X]
which under zero conditional mean is
equal to zero.

parameter, b1, as a causal parameter.

Least Squares Given data on x and y, how can we estimate the

population parameters, b0 and b1? Let
⇢

(xi , yi) : i = 1, 2, . . . , n
�

be

a random sample of size n (the number of observations) from the
population. Plug any observation into the population equation:

yi = b0 + b1xi + ui

where i indicates a particular observation. We observe yi and xi but
not ui. We just know that ui is there. We then use the two population
restrictions that we discussed earlier:

E(u) = 0

C(x, u) = 0

to obtain estimating equations for b0 and b1. We talked about the
first condition already. The second one, though, means that x and u
are uncorrelated because recall covariance is the numerator of correla-
tion equation (equation 24). Both of these conditions imply equation
28:

E(u|x) = 0

With E(xu) = 0, we get E(u) = 0, C(x, u) = 0. Notice that if C(x, u) = 0,
it implies x and u are independent.21 Next we plug in for u, which is 21 See equation 23.

equal to y� b0 � b1x:

E(y� b0 � b1x) = 0

E(x[y� b0 � b1x]) = 0
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These are the two conditions in the population that effectively deter-
mine b0 and b1. And again, note that the notation here is population
concepts. We don’t have access to populations, though we do have
their sample counterparts:

1
n

n

Â
i=1

(yi �cb0 �cb1xi) = 0 (29)

1
n

n

Â
i=1

(xi[yi �cb0 �cb1xi]) = 0 (30)

where bb0 and bb1 are the estimates from the data.22 These are two lin- 22 Notice that we are dividing by n, not
n� 1. There is no degrees of freedom
correction, in other words, when using
samples to calculate means. There is a
degrees of freedom correction when we
start calculating higher moments.

ear equations in the two unknowns bb0 and bb1. Recall the properties
of the summation operator as we work through the following sample
properties of these two equations. We begin with equation 29 and
pass the summation operator through.

1
n

n

Â
i=1

(yi �cb0 �cb1xi) =
1
n

n

Â
i=1

(yi)�
1
n

n

Â
i=1

c
b0 �

1
n

n

Â
i=1

c
b1xi

=
1
n

n

Â
i=1

yi �cb0 �cb1

✓
1
n

n

Â
i=1

xi

◆

= y�cb0 �cb1x

where y = 1
n Ân

i=1 yi which is the average of the n numbers {yi :
1, . . . , n}. For emphasis we will call y the sample average. We have
already shown that the first equation equals zero (Equation 29), so
this implies y = cb0 +cb1x. So we now use this equation to write the
intercept in terms of the slope:

c
b0 = y�cb1x

We now plug cb0 into the second equation, Ân
i=1 xi(yi �cb0 �cb1xi) = 0.

This gives us the following (with some simple algebraic manipula-
tion):

n

Â
i=1

xi[yi � (y�cb1x)�cb1xi] = 0

n

Â
i=1

xi(yi � y) = c
b1

 n

Â
i=1

xi(xi � x)
�

So the equation to solve is23

23 Recall from much earlier that:
n

Â
i=1

(xi � x)(yi � y) =
n

Â
i=1

xi(yi � y)

=
n

Â
i=1

(xi � x)yi

=
n

Â
i=1

xiyi � n(xy)

n

Â
i=1

(xi � x)(yi � y) = cb1

 n

Â
i=1

(xi � x)2
�

If Ân
i=1(xi � x)2 6= 0, we can write:

b
b1 = Ân

i=1(xi � x)(yi � y)
Ân

i=1(xi � x)2

=
Sample covariance(xi , yi)

Sample variance(xi)
(31)
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The previous formula for bb1 is important because it shows us
how to take data that we have and compute the slope estimate. The
estimate, bb1, is commonly referred to as the ordinary least squares
(OLS) slope estimate. It can be computed whenever the sample
variance of xi isn’t zero. In other words, if xi is not constant across all
values of i. The intuition is that the variation in x is what permits us
to identify its impact in y. This also means, though, that we cannot
determine the slope in a relationship if we observe a sample where
everyone has the same years of schooling, or whatever causal variable
we are interested in.

Once we have calculated bb1, we can compute the intercept value,
b
b0 as bb0 = y � bb1x. This is the OLS intercept estimate because it is
calculated using sample averages. Notice that it is straightforward be-
cause bb0 is linear in bb1. With computers and statistical programming
languages and software, we let our computers do these calculations
because even when n is small, these calculations are quite tedious.24

24 Back in the old days, though? Let’s
be glad that the old days of calculating
OLS estimates by hand is long gone.

For any candidate estimates, bb0, bb1, we define a fitted value for
each i as:

byi = bb0 + bb1xi

Recall that i = {1, . . . , n} so we have n of these equations. This is the
value we predict for yi given that x = xi. But there is prediction error
because y 6= yi. We call that mistake the residual, and here use the bui
notation for it. So the residual equals:

bui = yi � byi

bui = yi �cb0 �cb1xi

Suppose we measure the size of the mistake, for each i, by squaring it.
Squaring it will, after all, eliminate all negative values of the mistake
so that everything is a positive value. This becomes useful when
summing the mistakes if we aren’t wanting positive and negative
values to cancel one another out. So let’s do that: square the mistake
and add them all up to get, Ân

i=1 bui
2:

n

Â
i=1
bui

2 =
n

Â
i=1

(yi � byi)2

=
n

Â
i=1

(yi �cb0 �cb1xi)2

This equation is called the sum of squared residuals because the
residual is bui = yi � by. But, the residual is based on estimates of the
slope and the intercept. We can imagine any number of estimates of
those values. But what if our goal is to minimize the sum of squared
residuals by choosing cb0 and cb1? Using calculus, it can be shown that



properties of regression 45

the solutions to that problem yields parameter estimates that are the
same as what we obtained before.

Once we have the numbers bb0 and bb1 for a given dataset, we write
the OLS Regression line:

by = cb0 +cb1x (32)

Let’s consider an example in Stata.

set seed 1

clear

set obs 10000

gen x = rnormal()

gen u = rnormal()

gen y = 5.5*x + 12*u

reg y x

predict yhat1

gen yhat2 = 0.0732608 + 5.685033*x

sum yhat*
predict uhat1, residual

gen uhat2=y-yhat2

sum uhat*
twoway (lfit y x, lcolor(black) lwidth(medium)) (scatter

y x, mcolor(black) msize(tiny) msymbol(point)), title(OLS

Regression Line)

rvfplot, yline(0)

Run the previous lines verbatim into Stata. Notice that the esti-
mated coefficients – y-intercept and slope parameter – are repre-
sented in blue and red below in Figure 3.

Recall that we defined the fitted value as byi and we defined the
residual, bui, as yi � byi. Notice that the scatter plot relationship be-
tween the residuals and the fitted values created a spherical pattern
suggesting that they are uncorrelated (Figure 4).

Once we have the estimated coefficients, and we have the OLS
regression line, we can predict y (outcome) for any (sensible) value of
x. So plug in certain values of x, we can immediately calculate what
y will probably be with some error. The value of OLS here lies in how
large that error is: OLS minimizes the error for a linear function. In
fact, it is the best such guess at y for all linear estimators because it
minimizes the prediction error. There’s always prediction error, in
other words, with any estimator, but OLS is the least worst.

Notice that the intercept is the predicted value of y if and when
x = 0. Since here that value is 0.0732608, it’s a little hard to read, but
that’s because x and u were random draws and so there’s a value of
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Slope=5.685033

y-intercept = 0.0732609
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OLS Regression Line
Figure 3: Graphical representation of
bivariate regression from y on x

zero for y on average when x = 0.25 The slope allows us to predict 25 This is because on average u and x
are independent, even if in the sample
they aren’t. Sample characteristics tend
to be slightly different from population
properties because of sampling error.

changes in y for any reasonable change in x according to:

Dby = bb1Dx

And if Dx = 1, then x increases by one unit, and so Dby = 5.685033 in
our numerical example because bb1 = 5.685033.

Now that we have calculated bb0 and bb1, we get the OLS fitted
values by plugging the xi into the following equation for i = 1, . . . , n:

byi = bb0 + bb1xi

The OLS residuals are also calculated by:

bui = yi � bb0 � bb1xi

Most residuals will be different from zero (i.e., they do not lie on the
regression line). You can see this in Figure 3. Most of the residuals
are not on the regression line. Some are positive, and some are
negative. A positive residual indicates that the regression line (and
hence, the predicted values) underestimates the true value of yi. And
if the residual is negative, then it overestimated.

Algebraic Properties of OLS Remember how we obtained bb0 and bb1?
When an intercept is included, we have:

n

Â
i=1

(yi � bb0 � bb1xi) = 0
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The OLS residual always adds up to zero, by construction.

n

Â
i=1
bui = 0 (33)

Sometimes seeing is believing, so let’s look at this together. Type the
following into Stata verbatim.

. clear

. set seed 1234

. set obs 10

. gen x = 9*rnormal()

. gen u = 36*rnormal()

. gen y = 3 + 2*x + u

. reg y x

. predict yhat

. predict residuals, residual

. su residuals

. list

. collapse (sum) x u y yhat residuals

. list

Output from this can be summarized in the following table (Table 6).
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no. x u y by bu xbu bybu

1. -4.381653 -32.95803 -38.72134 -3.256034 -35.46531 155.3967 115.4762

2. -13.28403 -8.028061 -31.59613 -26.30994 -5.28619 70.22192 139.0793

3. -.0982034 17.80379 20.60738 7.836532 12.77085 -1.254141 100.0792

4. -.1238423 -9.443188 -6.690872 7.770137 -14.46101 1.790884 -112.364

5. 4.640209 13.18046 25.46088 20.10728 5.353592 24.84179 107.6462

6. -1.252096 -34.64874 -34.15294 4.848374 -39.00131 48.83337 -189.0929

7. 11.58586 9.118524 35.29023 38.09396 -2.80373 -32.48362 -106.8052

8. -5.289957 82.23296 74.65305 -5.608207 80.26126 -424.5786 -450.1217

9. -.2754041 11.60571 14.0549 7.377647 6.677258 -1.838944 49.26245

10. -19.77159 -14.61257 -51.15575 -43.11034 -8.045414 159.0706 346.8405

Sum -28.25072 34.25085 7.749418 7.749418 1.91e-06 -6.56e-06 .0000305

Table 6: Simulated data showing the
sum of residuals equals zero

Notice the difference between the u, by and bu columns. When we
sum these ten lines, neither the error term nor the fitted values of
y sum to zero. But the residuals do sum to zero. This is, as we said,
one of the algebraic properties of OLS – coefficients were optimally
chosen to ensure that the residuals sum to zero.

Because yi = byi + bui by definition (which we can also see in the
above table), we can take the sample average of both sides

1
n

n

Â
i=1

yi =
1
n

n

Â
i=1
byi +

1
n

n

Â
i=1
bui

and so y = by because the residuals sum to zero. Similarly, the way
that we obtained our estimates yields,

n

Â
i=1

xi(yi � bb0 � bb1xi) = 0

The sample covariance (and therefore the sample correlation) be-
tween the explanatory variables and the residuals is always zero (see
Table 6):

n

Â
i=1

xi bui = 0

Because the byi are linear functions of the xi, the fitted values and
residuals are uncorrelated too (See Table 6):

n

Â
i=1
byi bui = 0

Both properties hold by construction. In other words, bb0 and bb1 were
selected to make them true.26

26 Using the Stata code from Table
6, you can show all these algebraic
properties yourself. I encourage you
to do so by creating new variables
equalling the product of these terms
and collapsing as we did with the other
variables. This will help you believe
these algebraic properties hold.

A third property is that if we plug in the average for x, we predict
the sample average for y. That is, the point, (x, y) is on the OLS
regression line, or:

y = bb0 + bb1x
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Goodness of Fit For each observation, we write

yi = byi + bui

Define the total (SST), explained (SSE) and residual (SSR) sum of
squares as

SST =
n

Â
i=1

(yi � y)2 (34)

SSE =
n

Â
i=1

(byi � y)2 (35)

SSR =
n

Â
i=1
bui

2 (36)

These are sample variances when divided by n � 1.27

SST
n�1 is the 27 Recall the earlier discussion about

degrees of freedom correction.sample variance of yi, SSE
n�1 is the sample variance of byi, and SSR

n�1 is
the sample variance of bui. With some simple manipulation rewrite
equation 34:

SST =
n

Â
i=1

(yi � y)2

=
n

Â
i=1


(yi � byi)� (byi � y)

�2

=
n

Â
i=1


bui � (byi � y)

�2

And then using that the fitted values are uncorrelated with the
residuals (equation 34), we can show that:

SST = SSE + SSR

Assuming SST > 0, we can define the fraction of the total variation in
yi that is explained by xi (or the OLS regression line) as

R2 =
SSE
SST

= 1� SSR
SST

which is called the R-squared of the regression. It can be shown to
be equal to the square of the correlation between yi and byi. Therefore
0  R2  1. An R-squared of zero means no linear relationship
between yi and xi and an R-squared of one means a perfect linear
relationship (e.g., yi = xi + 2). As R2 increases, the yi are closer and
closer to falling on the OLS regression line.

You don’t want to fixate on R2 in causal inference, though. It’s
a useful summary measure but it does not tell us about causality.
Remember, we aren’t trying to explain y; we are trying to estimate
causal effects. The R2 tells us how much of the variation in yi is
explained by the explanatory variables. But if we are interested in the
causal effect of a single variable, R2 is irrelevant. For causal inference,
we need equation 28.
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Expected Value of OLS Up to now, we motivated simple regression
using a population model. But our analysis has been purely algebraic
based on a sample of data. So residuals always average to zero when
we apply OLS to a sample, regardless of any underlying model.
But now our job gets tougher. Now we have to study the statistical
properties of the OLS estimator, referring to a population model and
assuming random sampling.28

28 This section is a review of a tradi-
tional econometrics pedagogy. We
cover it for the sake of completeness, as
traditionally, econometricians motivated
their discuss of causality through ideas
like unbiasedness and consistency.

Mathematical statistics is concerned with questions like “how do
our estimators behave across different samples of data?” On average,
for instance, will we get the right answer if we could repeatedly
sample? We need to find the expected value of the OLS estimators
– in effect the average outcome across all possible random samples –
and determine if we are right on average. This leads naturally to a
characteristic called unbiasedness, which is a desirable characteristic
of all estimators.

E(bb) = b (37)

Remember our objective is to estimate b1, which is the slope population
parameter that describes the relationship between y and x. Our es-
timate, cb1 is an estimator of that parameter obtained for a specific
sample. Different samples will generate different estimates (cb1) for
the “true” (and unobserved) b1. Unbiasedness is the idea that if
we could take as many random samples on Y as we want from the
population and compute an estimate each time, the average of these
estimates would be equal to b1.

There are several assumptions required for OLS to be unbiased.
We will review those now. The first assumption is called “linear in
the parameters”. Assume a population model of:

y = b0 + b1x + u

where b0 and b1 are the unknown population parameters. We view
x and u as outcomes of random variables generated by some data
generating process. Thus, since y is a function of x and u, both of
which are random, then y is also random. Stating this assumption
formally shows our goal is to estimate b0 and b1.

Our second assumption is “random sampling”. We have a random
sample of size n, {(xi , yi) : i = 1, . . . , n}, following the population
model. We know how to use this data to estimate b0 and b1 by OLS.
Because each i is a draw from the population, we can write, for each
i:

yi = b0 + b1xi + ui

Notice that ui here is the unobserved error for observation i. It is not
the residual that we compute from the data.
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The third assumption is called the “sample variation in the ex-
planatory variable”. That is, the sample outcomes on xi are not all
the same value. This is the same as saying the sample variance of x
is not zero. In practice, this is no assumption at all. If the xi are all
the same value (i.e., constant), we cannot learn how x affects y in the
population. Recall that OLS is the covariance of y and x divided by
the variance in x and so if x is constant, then we are dividing by zero,
and the OLS estimator is undefined.

The fourth assumption is where our assumptions start to have
real teeth. It is called the “zero conditional mean” assumption and
is probably the most critical assumption in causal inference. In the
population, the error term has zero mean given any value of the
explanatory variable:

E(u|x) = E(u) = 0

This is the key assumption for showing that OLS is unbiased, with
the zero value being of no importance once we assume E(u|x) does
not change with x. Note that we can compute the OLS estimates
whether or not this assumption holds, or even if there is an underly-
ing population model.29

29 We will focus on cb1. There are a few
approaches to showing unbiasedness.
One explicitly computes the expected
value of cb1 conditional on x, {xi : i =
1, . . . , n}. Even though this is the more
proper way to understand the problem,
technically we can obtain the same
results by treating the conditioning
variables as if they were fixed in
repeated samples. That is, to treat the xi
as nonrandom in the derivation. So, the
randomness in cb1 comes through the
ui (equivalently, the yi). Nevertheless,
it is important to remember that x
are random variables and that we are
taking expectations conditional on
knowing them. The approach that
we’re taking is called sometimes “fixed
in repeated samples”, and while not
realistic in most cases, it gets us to the
same place. We use it as a simplifying
device because ultimately this chapter
is just meant to help you understand
this traditional pedagogy better.

So, how do we show c
b1 is an unbiased estimate of b1 (Equation

37)? We need to show that under the four assumptions we just
outlined, the expected value of cb1, when averaged across random
samples, will center on b1. In other words, unbiasedness has to be
understood as related to repeated sampling. We will discuss the
answer as a series of steps.

Step 1: Write down a formula for cb1. It is convenient to use the
C(x,y)
V(x) form:

c
b1 = Ân

i=1(xi � x)yi

Ân
i=1(xi � x)2

Now get rid of some of this notational clutter by defining Ân
i=1(xi �

x)2 = SSTx (i.e., the total variation in the xi). Rewrite as:

c
b1 = Ân

i=1(xi � x)yi
SSTx

Step 2: Replace each yi with yi = b0 + b1xi + ui which uses the
first linear assumption and the fact that we have sampled data (our



52 causal inference: the mixtape

second assumption). The numerator becomes:

n

Â
i=1

(xi � x)yi =
n

Â
i=1

(xi � x)(b0 + b1xi + ui)

= b0

n

Â
i=1

(xi � x) + b1

n

Â
i=1

(xi � x)xi +
n

Â
i=1

(xi + x)ui

= 0 + b1

n

Â
i=1

(xi � x)2 +
n

Â
i=1

(xi � x)ui

= b1SSTx +
n

Â
i=1

(xi � x)ui

Note, we used Ân
i=1(xi � x) = 0 and Ân

i=1(xi � x)xi = Ân
i=1(xi � x)2 to do

this.30

30 Told you we would use this result a
lot.We have shown that:

c
b1 =

b1SSTx + Ân
i=1(xi � x)ui

SSTx

= b1 + Ân
i=1(xi � x)ui

SSTx

Note how the last piece is the slope coefficient from the OLS regres-
sion of ui on xi , i : 1, . . . , n.31 We cannot do this regression because 31 I find it interesting that we see so

many cov
var terms when working with

regression. It shows up constantly.
Keep your eyes peeled.

the ui are not observed. Now define wi = (xi�x)
SSTx

so that we have the
following:

c
b1 = b1 +

n

Â
i=1

wiui

Note the following things that this showed: first, cb1 is a linear
function of the unobserved errors, ui. The wi are all functions of
{x1, . . . , xn}. Second, the random difference between b1 and the
estimate of it, cb1, is due to this linear function of the unobservables.

Step 3: Find E(cb1). Under the random sampling assumption and
the zero conditional mean assumption, E(ui|x1, . . . , xn) = 0, that
means conditional on each of the x variables:

E(wiui|x1, . . . , xn) = wiE(ui|x1, . . . , xn) = 0

because wi is a function of {x1, . . . , xn}. This would be true if in the
population u and x are correlated.

Now we can complete the proof: conditional on {x1, . . . , xn},
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E(cb1) = E
✓

b1 +
n

Â
i=1

wiui

◆

= b1 +
n

Â
i=1

E(wiui)

= b1 +
n

Â
i=1

wiE(ui)

= b1 + 0

= b1

Remember, b1 is the fixed constant in the population. The estimator,
c
b1, varies across samples and is the random outcome: before we
collect our data, we do not know what cb1 will be. Under the four
aforementioned assumptions, E(cb0) = b0 and E(cb1) = b1.

I find it helpful to be concrete when we work through exercises
like this. So let’s visualize this in Stata. Let’s create a Monte Carlo
simulation in Stata. We have the following population model:

y = 3 + 2x + u (38)

where x ⇠ Normal(0, 9), u ⇠ Normal(0, 36). Also, x and u are
independent. The following Monte Carlo simulation will estimate
OLS on a sample of data 1,000 times. The true b parameter equals 2.
But what will the average bb equal when we use repeated sampling?

clear all

program define ols, rclass

version 14.2

syntax [, obs(integer 1) mu(real 0) sigma(real 1) ]

clear

drop _all

set obs 10000

gen x = 9*rnormal()

gen u = 36*rnormal()

gen y = 3 + 2*x + u

reg y x

end

simulate beta=_b[x], reps(1000): ols

su

hist beta

Table 7 gives us the mean value of cb1 over the 1,000 repetitions
(repeated sampling). While each sample had a different estimate, the
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Variable Obs Mean St. Dev.

beta 1,000 2.000737 0.0409954

Table 7: Monte Carlo simulation of OLS

average for cb1 was 2.000737, which is close to the true value of 2 (see
Equation 38). The standard deviation in this estimator was 0.0409954,
which is close to the standard error recorded in the regression itself.32

32 The standard error I found from
running on one sample of data was
0.0393758.

Thus we see that the estimate is the mean value of the coefficient
from repeated sampling, and the standard error is the standard
deviation from that repeated estimation. We can see the distribution
of these coefficient estimates in Figure 5.
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Figure 5: Distribution of coefficients
from Monte Carlo simulation.

The problem is, we don’t know which kind of sample we have. Do
we have one of the “almost exactly 2” samples or do we have one of
the “pretty different from 2” samples? We can never know whether
we are close to the population value. We hope that our sample is
“typical” and produces a slope estimate close to cb1 but we can’t know.
Unbiasedness is a property of the procedure of the rule. It is not a
property of the estimate itself. For example, say we estimated an
8.2% return on schooling. It is tempting to say 8.2% is an “unbiased
estimate” of the return to schooling, but that’s incorrect technically.
The rule used to get cb1 = 0.082 is unbiased (if we believe that u is
unrelated to schooling) – not the actual estimate itself.
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Law of iterated expectations As we said earlier in this chapter, the
conditional expectation function (CEF) is the mean of some outcome
y with some covariate x held fixed. Now we focus more intently on
this function.33 Let’s get the notation and some of the syntax out of 33 This section is based heavily on

Angrist and Pischke [2009].the way. As noted earlier, we write the CEF as E(yi|xi). Note that the
CEF is explicitly a function of xi. And because xi is random, the CEF
is random – although sometimes we work with particular values for
xi, like E(yi|xi = 8 years schooling) or E(yi|xi = Female). When there
are treatment variables, then the CEF takes on two values: E(yi|di = 0)
and E(yi|di = 1). But these are special cases only.

An important complement to the CEF is the law of iterated expec-
tations (LIE). This law says that an unconditional expectation can
be written as the unconditional average of the CEF. In other words
E(yi) = E{E(yi|xi)}. This is a fairly simple idea to grasp. What it
states is that if you want to know the unconditional expectation of
some random variable y, you can simply calculate the weighted sum
of all conditional expectations with respect to some covariate x. Let’s
look at an example. Let’s say that average GPA for females is 3.5,
average GPA for males is a 3.2, half the population is females, and
half is males. Then:

E[GPA] = E{E(GPAi|Genderi)}
= (0.5⇥ 3.5) + (3.2⇥ 0.5)

= 3.35

You probably use LIE all the time and didn’t even know it. The proof
is not complicated. Let xi and yi each be continuously distributed.
The joint density is defined as fxy(u, t). The conditional distribution
of y given x = u is defined as fy(t|xi = u). The marginal densities are
gy(t) and gx(u).

E{E(y|x)} =
Z

E(y|x = u)gx(u)du

=
Z  Z

t fy|x(t|x = u)dt
�

gx(u)du

=
Z Z

t fy|x(t|x = u)gx(u)dudt

=
Z

t
 Z

fy|x(t|x = u)gx(u)du
�

dt

=
Z

t[ fx,ydu]dt

=
Z

tgy(t)dt

= E(y)

The first line uses the definition of expectation. The second line uses
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the definition of conditional expectation. The third line switches the
integration order. The fourth line uses the definition of joint density.
The sixth line integrates joint density over the support of x which is
equal to the marginal density of y. So restating the law of iterated
expectations: E(yi) = E{E(y|xi)}.

CEF Decomposition Property The first property of the CEF we will
discuss is the CEF Decomposition Property. The power of LIE comes
from the way it breaks a random variable into two pieces – the CEF
and a residual with special properties. The CEF Decomposition
Property states that

yi = E(yi|xi) + #i

where (i) #i is mean independent of xi, that is

E(#i|xi) = 0

and (ii) #i is uncorrelated with any function of xi.
The theorem says that any random variable yi can be decomposed

into a piece that is “explained by xi” (the CEF) and a piece that is left
over and orthogonal to any function of xi. The proof is provided now.
I’ll prove the (i) part first. Recall that #i = yi � E(yi|xi) as we will make
a substitution in the second line below.

E(#i|xi) = E(yi � E(yi|xi)|xi)

= E(yi|xi)� E(yi|xi)

= 0

The second part of the theorem states that #i is uncorrelated with
any function of xi. Let h(xi) be any function of xi. Then E(h(xi)#i) =
E{h(xi)E(#i|xi)} The second term in the interior product is equal to
zero by mean independence.34

34 Let’s take a concrete example of
this proof. Let h(xi) = a + gxi .
Then take the joint expectation
E(h(xi)#i) = E([a + gxi]#i) Then
take conditional expectations
E(a|xi) + E(g|xi)E(xi |xi)E(#|xi)} =
a + xiE(#i |xi) = 0 after we pass the
conditional expectation through.

CEF Prediction Property The second property is the CEF Prediction
Property. This states that E(yi|xi) = arg minm(xi)E[(y�m(xi))2]where
m(xi) is any function of xi. In words, this states that the CEF is the
minimum mean squared error of yi given xi. By adding E(yi|xi)�
E(yi|xi) = 0 to the right hand side we get

[yi �m(xi)]2 = [(yi � E[yi|xi]) + (E(yi|xi)�m(xi))]2

I personally find this easier to follow with simpler notation. So
replace this expression with the following terms:

(a� b + b� c)2
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Distribute the terms, rearrange, and replace the terms with their
original values until you get the following

arg min (yi�E(yi|xi))2 + 2(E(yi|xi)�m(xi))⇥ (yi�E(yi|xi)) + (E(yi|xi) + m(xi))2

Now minimize the function with respect to m(xi). When mini-
mizing this function with respect to m(xi), note that the first term
(yi � E(yi|xi))2 doesn’t matter because it does not depend on m(xi).
So it will zero out. The second and third terms, though, do depend
on m(xi). So rewrite 2(E(yi|xi)� m(xi)) as h(xi). Also set #i equal to
[yi � E(yi|xi)] and substitute

arg min #

2
i + h(xi)#i + [E(yi|xi) + m(xi)]2

Now minimizing this function and setting it equal to zero we get

h0(xi)#i

which equals zero by the Decomposition Property.

ANOVA Theory The final property of the CEF that we will discuss
is the analysis of variance theorem, or ANOVA. It is simply that
the unconditional variance in some random variable is equal to the
variance in the conditional expectation plus the expectation of the
conditional variance, or

V(yi) = V[E(yi|xi)] + E[V(yi|xi)]

where V is the variance and V(yi|xi) is the conditional variance.

Linear CEF Theorem Angrist and Pischke [2009] give several argu-
ments as to why linear regression may be of interest to a practitioner
even if the underlying CEF itself is not linear. I will review of those
linear theorems now. These are merely arguments to justify the use of
linear regression models to approximate the CEF.35

35 Note, Angrist and Pischke [2009]
make their arguments for using regres-
sion, not based on unbiasedness and
the four assumptions that we discussed,
but rather because regression approxi-
mates the CEF. I want to emphasize that
this is a subtly different direction. I in-
cluded the discussion of unbiasedness,
though, to be exhaustive. Just note,
there is a slight change in pedagogy
though.

The Linear CEF Theorem is the most obvious theorem of the
three that Angrist and Pischke [2009] discuss. Suppose that the CEF
itself is linear. Then the population regression is equal to the CEF.
This simply states that you should use the population regression to
estimate the CEF when you know that the CEF is linear. The proof is
provided. If E(yi|xi) is linear, then E(yi|xi) = x0bb for some K vector bb.
By the Decomposition Property

E(x(y� E(y|x)) = E(x(y� x0bb)) = 0

Solve this and get bb = b. Hence E(y|x) = x0b.
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Best Linear Predictor Theorem Recall that the CEF is the minimum
mean squared error predictor of y given x in the class of all functions
according to the CEF prediction property. Given this, the population
regression function, E(X0Y)E(X0X)�1 is the best that we can do in
the class of all linear functions.36 Proof: b solves the population 36 Note that E(X0Y)E(X0X)�1 is the

matrix notation expression of the
population regression, or what we have
discussed as C(X,Y)

V(X) .

minimum mean squared error problem.

Regression CEF Theorem The function Xb provides the minimum
mean squared error linear approximation to the CEF. That is,

b = arg minbE{[E(yi|xi)� x0ib]2}

Regression anatomy theorem In addition to our discussion of the CEF
and regression theorems, we now dissect the regression itself. Here
we discuss the regression anatomy theorem. The regression anatomy
theorem is based on earlier work by Frisch and Waugh [1933] and
Lovell [1963].37 I find it more intuitive when thinking through a 37 A helpful proof of the Frisch-Waugh-

Lovell theorem can be found at Lovell
[2008].

specific example and offering up some data visualization. In my
opinion, the theorem helps us interpret the individual coefficients of
a multiple linear regression model. Say that we are interested in the
causal effect of family size on labor supply. We want to regress labor
supply onto family size:

Yi = b0 + b1Xi + ui

where Y is labor supply and X is family size.
If family size is truly random, then the number of kids is uncor-

related with the unobserved error term. This implies that when we
regress labor supply onto family size, our estimate bb1 can be inter-
preted as the causal effect of family size on labor supply. Visually, we
could just plot the regression coefficient in a scatter plot showing all
i pairs of data, and the slope coefficient would be the best fit of this
data through this data cloud. That slope would tell us the average
causal effect of family size on labor supply.

But how do we interpret bb1 if the family size is not random? Af-
ter all, we know from living on planet Earth and having even half
a brain that a person’s family size is usually chosen, not randomly
assigned to them. And oftentimes, it’s chosen according to something
akin to an optimal stopping rule. People pick both the number of
kids to have, as well as when to have them, and in some instance,
even attempt to pick the gender, and this is all based on a variety
of observed and unobserved economic factors that are directly
correlated with the decision to supply labor. In other words, us-
ing the language we’ve been using up til now, it’s unlikely that
E(u|X) = E(u) = 0.
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But let’s say that we have reason to think that the number of kids
is conditionally random. That is, for a given person of a certain race
and age, any remaining variation in family size across a population is
random.38 Then we have the following population model: 38 Almost certainly not a credible

assumption, but stick with me.
Yi = b0 + b1Xi + g1Ri + g2 Ai + ui

where Y is labor supply, X is family size, R is race, A is age, and u is
the population error term.

If we want to estimate the average causal effect of family size on
labor supply, then we need two things. First, we need a sample of
data containing all four of these variables. Without all four of the
variables, we cannot estimate this regression model. And secondly,
we need for number of kids, X, to be randomly assigned for a given
set of race/age.

Now how do we interpret bb1? And for those who like pictures,
how might we visualize this coefficient given there’s six dimensions
to the data? The regression anatomy theorem tells us both what this
coefficient estimate actually means, and it also lets us visualize the
data in only two dimensions.

To explain the intuition of the regression anatomy theorem, let’s
write down a population model with multiple variables. Assume that
your main multiple regression model of interest is

yi = b0 + b1x1i + · · · + bkxki + · · · + bKxKi + ei (39)

Now assume an auxiliary regression in which the variable x1i is
regressed on all the remaining independent variables

x1i = g0 + gk�1xk�1i + gk+1xk+1i + · · · + gKxKi + fi (40)

and x̃1i = x1i � bx1i being the residual from that auxiliary regression.
Then the parameter b1 can be rewritten as:

b1 =
C(yi , x̃i)

V(x̃i)
(41)

Notice that again we see the coefficient estimate being a scaled co-
variance, only here the covariance is with respect to the outcome and
residual from the auxiliary regression and the scale is the variance of
that same residual.

To prove the theorem, note that E[x̃ki] = E[xki]� E[bxki] = E[ fi],
and plug yi and residual x̃ki from xki auxiliary regression into the
covariance cov(yi , xki).

bk =
cov(b0 + b1x1i + · · · + bkxki + · · · + bKxKi + ei , x̃ki)

var(x̃ki)

=
cov(b0 + b1x1i + · · · + bkxki + · · · + bKxKi + ei , fi)

var( fi)
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Since by construction E[ fi] = 0, it follows that the term b0E[ fi] = 0.
Since fi is a linear combination of all the independent variables with
the exception of xki, it must be that

b1E[ fix1i] = · · · = bk�1E[ fixk�1i] = bk+1E[ fixk+1i] = · · · = bKE[ fixKi] = 0

Consider now the term E[ei fi]. This can be written as

E[ei fi] = E[ei fi]

= E[ei x̃ki]

= E[ei(xki � bxki)]

= E[eixki]� E[ei x̃ki]

Since ei is uncorrelated with any independent variable, it is also
uncorrelated with xki. Accordingly, we have E[eixki] = 0. With regard
to the second term of the subtraction, substituting the predicted value
from the xki auxiliary regression, we get

E[ei x̃ki] = E[ei(bg0 + bg1x1i + · · · + bgk�1i + bgk+1xk+1i + · · · + bxKxKi)]

Once again, since ei is uncorrelated with any independent variable,
the expected value of the terms is equal to zero. Then it follows that
E[ei fi] = 0.

The only remaining term then is [bkxki fi] which equals E[bkxki x̃ki]
since fi = x̃ki. The term xki can be substituted using a rewriting of the
auxiliary regression model, xki, such that

xki = E[xki|X�k] + x̃ki

This gives

E[bkxki x̃ki] = bkE[x̃ki(E[xki|X�k] + x̃ki)]

= bk{E[x̃2
ki] + E[(E[xki|x�k]x̃ki)]}

= bkvar(x̃ki)

which follows directly from the orthogonality between E[xki|X�k]
and x̃ki. From previous derivations we finally get

cov(yi , x̃ki) = bkvar(x̃ki)

which completes the proof.
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I find it helpful to visualize things. Let’s look at an example in
Stata.

. ssc install reganat, replace

. sysuse auto.dta, replace

. regress price length

. regress price length weight headroom mpg

. reganat price length weight headroom mpg, dis(length) biline

Let’s walk through the regression output. The first regression of

Figure 6: Regression anatomy display.

price on length yields a coefficient of 57.20 on length. But notice the
output from the fourth line. The effect on length is �94.5. The first
regression is a bivariate regression and gives a positive slope, but the
second regression is a multivariate regression and yields a negative
slope.

One of the things we can do with regression anatomy (though
this isn’t its main purpose) is visualize this negative slope from the
multivariate regression in nevertheless two dimensional space. Now
how do we visualize this first multivariate slope coefficient, given
our data has four dimensions? We run the auxiliary regression, use
the residuals, and then calculate the slope coefficient as cov(yi ,x̃i)

var(x̃i)
. We

can also show scatter plots of these auxiliary residuals paired with
their outcome observations and slice the slope through them (Figure
6). Notice that this is a useful way to preview the multidimensional
correlation between two variables from a multivariate regression.
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And as we discussed before, the solid black line is negative while
the slope from the bivariate regression is positive. The regression
anatomy theorem shows that these two estimators – one being a
multivariate OLS and the other being a bivariate regression price and
a residual – are identical.

Variance of the OLS Estimators In this chapter we discuss inference
under a variety of situations. Under the four assumptions we men-
tioned earlier, the OLS estimators are unbiased. But these assump-
tions are not sufficient to tell us anything about the variance in the
estimator itself. These assumptions help inform our beliefs that the
estimated coefficients, on average, equal the parameter values them-
selves. But to speak intelligently about the variance of the estimator,
we need a measure of dispersion, or spread, in the sampling distri-
bution of the estimators. As we’ve been saying, this leads us to the
variance and ultimately the standard deviation. We could character-
ize the variance of the OLS estimators under the four assumptions.
But for now, it’s easiest to introduce an assumption that simplifies the
calculations. We’ll keep the assumption ordering we’ve been using
and call this the fifth assumption.

The fifth assumption is the homoskedasticity or constant variance
assumption. This assumption stipulates that our population error
term, u, has the same variance given any value of the explanatory
variable, x. Formally, it’s:

V(u|x) = s

2 > 0 (42)

where s is some finite, positive number. Because we assume the zero
conditional mean assumption, whenever we assume homoskedastic-
ity, we can also write:

E(u2|x) = s

2 = E(u2) (43)

Now, under the first, fourth and fifth assumptions, we can write:

E(y|x) = b0 + b1x

V(y|x) = s

2 (44)

So the average, or expected, value of y is allowed to change with
x, but the variance does not change with x. The constant variance
assumption may not be realistic; it must be determined on a case-by-
case basis.

Theorem: Sampling variance of OLS. Under assumptions 1 and 2,
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we get:

V(cb1|x) =
s

2

Ân
i=1(xi � x)2

=
s

2

SSTx
(45)

V(cb0|x) =
s

2( 1
n Ân

i=1 x2
i )

SSTx
(46)

To show this, write, as before,

c
b1 = b1 +

n

Â
i=1

wiui (47)

where wi = (xi�x)
SSTx

. We are treating this as nonrandom in the deriva-
tion. Because b1 is a constant, it does not affect V(cb1). Now, we need
to use the fact that, for uncorrelated random variables, the variance
of the sum is the sum of the variances. The {ui : i = 1, . . . , n} are
actually independent across i and are uncorrelated. Remember: if we
know x, we know w. So:

V(cb1|x) = Var(b1 +
n

Â
i=1

wiui|x) (48)

= Var
✓ n

Â
i=1

wiui|x
◆

(49)

=
n

Â
i=1

Var(wiui|x) (50)

=
n

Â
i=1

w2
i Var(ui|x) (51)

=
n

Â
i=1

w2
i s

2 (52)

= s

2
n

Â
i=1

w2
i (53)

where the penultimate equality condition used the fifth assumption
so that the variance of ui does not depend on xi. Now we have:

n

Â
i=1

w2
i =

n

Â
i=1

(xi � x)2

SST2
x

(54)

= Ân
i=1(xi � x)2

SST2
x

(55)

=
SSTx
SST2

x
(56)

=
1

SSTx
(57)
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We have shown:

V(cb1) =
s

2

SSTx
(58)

A couple of points. First, this is the “standard” formula for the vari-
ance of the OLS slope estimator. It is not valid if the fifth assumption
(“homoskedastic errors”) doesn’t hold. The homoskedasticity as-
sumption is needed, in other words, to derive this standard formula.
But, the homoskedasticity assumption is not used to show unbi-
asedness of the OLS estimators. That requires only the first four
assumptions we discussed.

Usually, we are interested in b1. We can easily study the two
factors that affect its variance: the numerator and the denominator.

V(cb1) =
s

2

SSTx
(59)

As the error variance increases – that is, as s

2 increases – so does
the variance in our estimator. The more “noise” in the relationship
between y and x (i.e., the larger the variability in u) – the harder it is
to learn something about b1. By contrast, more variation in {xi} is a
good thing. As SSTx ", V(cb1) #.

Notice that SSTx
n is the sample variance in x. We can think of this

as getting close to the population variance of x, s

2
x , as n gets large.

This means:
SSTx ⇡ ns

2
x (60)

which means that as n grows, V(cb1) shrinks at the rate of 1
n . This

is why more data is a good thing – because it shrinks the sampling
variance of our estimators.

The standard deviation of cb1 is the square root of the variance. So:

sd(cb1) =
sp

SSTx
(61)

This turns out to be the measure of variation that appears in confi-
dence intervals and test statistics.

Next we look at estimating the error variance. In the formula,
V(cb1) = s

2

SSTx
, we can compute SSTx from {xi : i = 1, . . . , n}. But we

need to estimate s

2. Recall that s

2 = E(u2). Therefore, if we could
observe a sample on the errors, {ui : i = 1, . . . , n}, an unbiased
estimator of s

2 would be the sample average:

1
n

n

Â
i=1

u2
i (62)

But this isn’t an estimator that we can compute from the data we
observe because ui are unobserved. How about replacing each ui
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with its “estimate”, the OLS residual bui:

ui = yi � b0 � b1xi (63)

bui = yi �cb0 �cb1xi (64)

Whereas ui cannot be computed, bui can be computed from the data
because it depends on the estimators, cb0 and cb1. But, except by fluke,
ui 6= bui for any i.

bui = yi �cb0 �cb1xi (65)

= (b0 + b1xi + ui)�cb0 �cb1xi (66)

= ui � (cb0 � b0)� (cb1 � b1)xi (67)

Note that E(cb0) = b0 and E(cb1) = b1, but the estimators almost always
differ from the population values in a sample. So what about this as
an estimator of s

2?
1
n

n

Â
i=1
bui

2 =
1
n

SSR (68)

It is a true estimator and easily computed from the data after OLS.
As it turns out, this estimator is slightly biased: its expected value
is a little less than s

2. The estimator does not account for the two
restrictions on the residuals used to obtain cb0 and cb1:

n

Â
i=1
bui = 0 (69)

n

Â
i=1

xi bui = 0 (70)

There is no such restriction on the unobserved errors. The unbiased
estimator, therefore, of s

2 uses a degrees of freedom adjustment. The
residuals have only n� 2 degrees-of-freedom, not n. Therefore:

b
s

2 =
1

n� 2
SSR (71)

We now propose the following theorem. The Unbiased Estimator
of s

2 under the first five assumptions is:

E(bs2) = s

2 (72)

In regression output, this is the usually reported:

b
s =

p
b
s

2 (73)

=

s
SSR

(n� 2)
(74)

This is an estimator of sd(u), the standard deviation of the population
error. One small glitch is that bs is not unbiased for s.39 This will 39 There does exist an unbiased esti-

mator of s but it’s tedious and hardly
anyone in economics seems to use it.
See Holtzman [1950].
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not matter for our purposes. bs is called the standard error of the
regression, which means it is an estimate of the standard deviation of
the error in the regression. Stata calls it the root mean squared error.

Given bs, we can now estimate sd(cb1) and sd(cb0). The estimates
of these are called the standard errors of the bb j. We will use these a
lot. Almost all regression packages report the standard errors in a
column next to the coefficient estimates. We just plug bs in for s:

se(cb1) =
b
sp

SSTx
(75)

where both the numerator and denominator are computed from the
data. For reasons we will see, it is useful to report the standard errors
below the corresponding coefficient, usually in parentheses.

Cluster robust standard errors Some phenomena do not affect obser-
vations individually, but rather, affect groups of observations which
contain individuals. And then it affects those individuals within
the group in a common way. Say you wanted to estimate the effect
of class size on student achievement, but you know that there exist
unobservable things (like the teacher) which affects all the students
equally. If we can commit to independence of these unobservables
across classes, but individual student unobservables are correlated
within a class, then we have a situation where we need to cluster the
standard errors. Here’s an example:

yig = x0igb + #ig where 1, . . . , G

and
E[#ig#

0
jg]

which equals zero if g = g0 and equals s(ij)g if g 6= g0.
Let’s stack the data by cluster first.

yg = x0gb + #g

The OLS estimator is still bb = E[X0X]�1X0Y. We just stacked the
data which doesn’t affect the estimator itself. But it does change the
variance.

V(b) = E[[X0X]�1X0WX[X0X]�1]

With this in mind, we can now write the variance-covariance matrix
for clustered data as

bV(bb) = [X0X]�1[
G

Â
i=1

x0gb#gb#0g][X0X]�1



Directed acyclical graphs

“Everyday it rains, so everyday the pain
Went ignored and I’m sure ignorance was to blame
But life is a chain, cause and effected”
– Jay-Z

Here we take a bit of a detour, because this material is not com-
monly featured in the economist’s toolbox. It is nonetheless ex-
tremely valuable, and worth spending some time learning because I
will try to convince you that these graphical models can help you to
identify causal effects in observational data.

The history of graphical causal modeling in science goes back
to Phillip Wright, an economist and the father of Sewell Wright,
the father of modern genetics. Sewell developed path diagrams
for genetics and Philip, we believe, adapted them for econometric
identification [Matsueda, 2012].40

40 We will discuss Wright again in the
chapter on instrumental variables.The use of graphs in causal modeling has been largely ignored

by the economics profession with only a few exceptions [Heckman
and Pinto, 2015]. It was not revitalized for the purposes of causal
inference until Judea Pearl began developing his own unique theory
of causation using them [Pearl, 2009]. Pearl’s influence has been
immense outside of economics, including many of the social sciences,
but few economists are familiar with him or use graphical models in
their work. Since I think graphical models are immensely helpful for
designing a credible identification strategy, I have chosen to include
these models for your consideration. We will now have a simple
review of graphical models, one of Pearl’s contributions to the theory
of causal inference.41

41 This section is heavily influenced by
Morgan and Winship [2014].

Introduction to DAG notation

Before we begin, I’d like to discuss some limitations to the directed
acyclical graphical (DAG) representation of causality. The first to
note in the DAG notation is causality runs in one direction. There
are no cycles in a DAG. To show reverse causality, one would need
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to create multiple nodes, most likely with two versions of the same
node separated by a time index. Secondly, DAGs may not be built
to handle simultaneity according to Heckman and Pinto [2015]. But
with those limitations in mind, we proceed forward as I have found
DAGs to be extremely valuable otherwise.

A DAG is a way of modeling a causal effect using graphs. The
DAG represents these causal effects through a set of nodes and
arrows, or directed edges. For a complete understanding of the
notation, see Pearl [2009]. I will use a modified shorthand that I
believe is sufficient for my purposes in the book.

A DAG contains nodes which represent random variables. These
random variables are assumed to be created by some data generating
process that is often left out of the DAG itself, though not always. I
leave them out because it clutters the graph unnecessarily. Arrows
represent a causal effect between two random variables moving
in the intuitive direction of the arrow. The direction of the arrow
captures cause and effect, in other words. Causal effects can happen
in two ways. They can either be direct (e.g., D ! Y), or they can
be mediated by a third variable (e.g., D ! X ! Y). When they
are mediated by the third variable, technically speaking we are
not capturing the effect of D on Y, but rather we are capturing a
sequence of events originating with D, which may or may not be
important to you depending on the question you’re asking.

A DAG is meant to be a complete description of all causal relation-
ships relevant to some phenomena relevant to the effect of D on Y.
What makes the DAG distinctive is both the explicit commitment to
a causal effect pathway, but also the complete commitment to the lack
of a causal pathway represented by missing arrows. A complete DAG
will have all direct causal effects among the variables in the graph, as
well as all common causes of any pair of variables in the graph.

At this point, you may be wondering, “where does the DAG come
from?” It’s an excellent question. A DAG is a theoretical represen-
tation of some phenomena, and it comes from a variety of sources.
Examples would include economic theory, economic models, your
own observations and experiences, literature reviews, as well as your
own intuition and hypotheses.

I will argue that the DAG, at minimum, is useful for a few reasons.
One, it is helpful for students to better understand research designs
and estimators for the first time. This is, in my experience, especially
true for instrumental variables which has a very intuitive DAG
representation. Two, through concepts such as the backdoor criterion
and collider bias, a well-designed DAG can help you develop a
credible research design for identifying the causal effects of some
intervention.
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A Simple DAG Let’s begin with a concrete example. Consider the
following DAG. We begin with a basic DAG to illustrate a few ideas,
but will expand it to slightly more complex ones later.

D

X

Y

In this DAG, we have three random variables: X, D and Y. There is
a direct path from D to Y, which represents a causal effect. There are
two paths from D to Y – one direct path, and one backdoor path. The
direct path, or causal effect, is D ! Y.

The idea of the backdoor path is one of the most important things
that we learn from the DAG. It is similar to the notion of omitted
variable bias in that it represents a determinant of some outcome that
is itself correlated with a variable of interest. Just as not controlling
for a variable like that in a regression creates omitted variable bias,
leaving a backdoor open creates bias. The backdoor path is D  
X !. We therefore call X a confounder in the sense that because it
jointly determines D and Y, it confounds our ability to discern the
effect of D on Y in naive comparisons.

Think of the backdoor path like this: sometimes when D takes
on different values, Y takes on different values because D causes Y.
But sometimes D and Y take on different values because X takes on
different values, and that bit of the correlation between D and Y is
purely spurious. The existence of two causal pathways is contained
within correlation between D and Y. When a backdoor path has a
confounder on it and no “collider”, we say that backdoor path is
open.42

42 More on colliders in a moment.

Let’s look at a second DAG, this one more problematic than the
one before. In the previous example, X was observed. We know it
was observed because the direct edges from X to D and Y were solid
lines. But sometimes there exists a confounder that is unobserved,
and when there is, we represent its direct edges with dashed lines.
Consider the following DAG:

D

U

Y

Same as before, U is a noncollider along the backdoor path from D
to Y, but unlike before, U is unobserved to the researcher. It exists,
but it may simply be missing from the dataset. In this situation,
there are two pathways from D to Y. There’s the direct pathway,
D ! Y, which is the causal effect, and there’s the backdoor pathway
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D  U ! Y. And since U is unobserved, that backdoor pathway is
open.

Let’s now move to another example, one that is slightly more real-
istic. A traditional in labor economics is whether college education
increases earnings. According to the Becker human capital model
[Becker, 1994], education increases one’s marginal product, and since
workers are paid their marginal product in competitive markets, it
also increases their earnings. But, college education is not random;
it is optimally chosen given subjective preferences and resource con-
straints. We will represent that with the following DAG. As always,
let D be the treatment (e.g., college education) and Y be the outcome
of interest (e.g., earnings). Furthermore, let PE be parental education,
I be family income, and B be unobserved background factors, such as
genetics, family environment, mental ability, etc.

D Y

IPE

B

This DAG is telling a story. Can you interpret that story for yourself?
Here is my interpretation. Each person has some background. It’s

not contained in the most datasets, as it measures things like intelli-
gence, contentiousness, mood stability, motivation, family dynamics,
and other environmental factors. Those environmental factors are
likely correlated between parent and child, and therefore are sub-
sumed in the variable B. Background causes a relevant parent to
herself choose some level of education, and that choice also causes
the child to choose a level of education through a variety of channels.
First, there is the shared background factors, B. Those background
factors cause the child to herself choose a level of education, just as it
had with the parent. Second, there’s a direct effect, perhaps through
simple modeling of achievement, a kind of peer effect. And third,
there’s the effect that parental education has on family earnings, I,
which in turn affects how much schooling the child receives. Fam-
ily earnings may itself affect earnings through bequests and other
transfers, as well as external investments in the child’s productivity.

This is a simple story to tell, and the DAG tells it well, but I want
to alert your attention to some subtle points contained in this DAG.
One, notice that B has no direct effect on the child’s earnings except
through its effect on schooling. Is this realistic, though? Economists
have long maintained that unobserved ability both determines how
much schooling a child gets, but also directly affects their earnings,
insofar as intelligence and motivation can influence careers. But in
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this DAG, there is no relationship between background and earnings,
which is itself an assumption.

Now that we have a DAG, what do we do? We want to list out all
the direct paths and indirect paths (i.e., backdoor paths) between D
and Y.

1. D ! Y (the causal effect of education on earnings)

2. D  I ! Y (backdoor path # 1)

3. D  PE! I ! Y (backdoor path # 2)

4. D  B! PE! I ! Y (backdoor path # 3)

Thus, we have four paths between D and Y: one direct causal effect
and three backdoor paths. And since none of the variables along the
backdoor paths are colliders, each of these backdoors paths are open,
creating systematic and independent correlations between D and Y.

Colliding But what is this term “collider”. It’s an unusual term, one
you may have never seen before, so let’s introduce it with another
example. We’ll use a simple DAG to illustrate what a collider is.

D

X

Y

Notice in this graph there are two paths from D to Y as before.
There’s the direct (causal) path, D ! Y. And there’s the backdoor
path, D ! X  Y. Notice the subtle difference in this backdoor
path than in the previous one. This time the X has two arrows from
D and Y point to it. X on this backdoor path is called a “collider”
(as opposed to a confounder) because D and Y’s causal effects are
colliding at X. But first, let’s list all paths from D to Y.

1. D ! Y (causal effect of D on Y)

2. D ! X  Y (backdoor path # 1)

Here we have one backdoor path. And because along that backdoor
path is a collider, it is currently closed. Colliders, when they are left
alone, always close a specific backdoor path.

Backdoor criterion Open backdoor paths create systematic, non-
causal correlations between D and Y. Thus, usually our goal is to
close that specific backdoor path. And if we can close all backdoor
paths, then we can isolate the causal effect of D on Y using one of the
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research designs and identification strategies discussed in this book.
So how do we close a backdoor path?

There are two ways to close a backdoor path. First, if you have
a confounder that has created an open backdoor path, then you
can close that path by conditioning on the confounder. Conditioning
requires holding the variable fixed using something like subclassifica-
tion, matching, regression, or some other method. It is equivalent to
“controlling for” the variable in a regression. The second way to close
a backdoor path is if along that backdoor path appears a collider.
Since colliders always close backdoor paths, and conditioning on a
collider always opens a backdoor path, you want to leave colliders
alone. That is, don’t control for colliders in any way, and you will
have closed that backdoor path.

When all backdoor paths have been closed, we say that you have
met the backdoor criterion through some conditioning strategy. Let’s
formalize it: a set of variables X satisfies the backdoor criterion in
a DAG if and only if X blocks every path between confounders
that contain an arrow from D to Y. Let’s review our original DAG
involving parental education, background and earnings.

D Y

IPE

B

The minimally sufficient conditioning strategy necessary to achieve
the backdoor criterion is the control for I, because I appeared as a
non-collider along every backdoor path (see earlier).

But maybe in hearing this story, and studying it for yourself by
reviewing the literature and the economic theory surrounding it, you
are skeptical of this DAG. Specifically, you are skeptical that B has no
relationship to Y except through D or PE. That skepticism leads you
to believe that there should be a direct connection from B to Y, not
merely one mediated through own education.

D Y

IPE

B

Note that including this new backdoor path has created a prob-
lem because no longer is our conditioning strategy satisfying the
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backdoor criterion. Even controlling for I, there still exists spurious
correlations between D and Y, and without more information about
the nature of B! Y and B! D, we cannot say much more about the
partial correlation between D and Y – only that it’s biased.

In our earlier DAG with collider bias, we conditioned on some
variable X that was a collider – specifically, though, it was a descen-
dent of D and Y. But sometimes, colliders are more subtle. Let’s
consider the following scenario. Again, let D and Y be child school-
ing and child earnings. But this time we introduce three new vari-
ables – U1, which is father’s unobserved genetic ability, U2, which
is mother’s unobserved genetic ability, and I which is joint family
income. Assume that I is observed, but Ui is unobserved for both
parents.

DI

U1

U2

Y

Notice in this DAG, there are several backdoor paths from D to Y.
They are:

1. D  U2! Y

2. D  U1! Y

3. D  U1! I  U2! Y

4. D  U2! I  U1! Y

Notice, the first two are open backdoor paths, and as such, cannot
be closed because U1 and U2 are not observed. But what if we con-
trolled for I anyway? Controlling for I only makes matters worse,
because then it opens the third and fourth backdoor paths, as I was a
collider along both of them. It does not appear that any conditioning
strategy could meet the backdoor criterion in this DAG.

So to summarize, satisfying the backdoor criterion requires simply
a few steps. First, write down all paths – both directed and backdoor
paths – between D and Y. Second, note whether each backdoor path
is open or closed by checking for whether there are any colliders
along those backdoor paths or confounders. Third, check whether
you can close all backdoor paths through some conditioning strat-
egy. If you can do that, then that conditioning strategy satisfies the
backdoor criterion and thus you can identify the causal effect of D on
Y.
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Examples of collider bias: Gender disparities controlling for occupation
The issue of conditioning on a collider is important, so how do we
know if we have that problem or not? No dataset is going to come
with a flag saying “collider” and “confounder”. Rather, the only
way to know if you have satisfied the backdoor criterion is with a
DAG, and a DAG requires a model. It requires in-depth knowledge
of the data generating process for the variables in your DAG, but it
also requires ruling out pathways too. And the only way to rule out
pathways is through logic and models. There is no way to avoid it –
all empirical work requires theory to guide the work. Otherwise, how
do you know if you’ve conditioned on a collider or a noncollider?
Put differently, you cannot identify treatment effects without making
assumptions.

Collider bias is a difficult concept to understand at first, so I’ve
included a couple of examples to help you sort through it. So let’s
first examine a real world example. It is common to hear someone
deny the existence of gender disparities in earnings by saying that
once occupation or other characteristics of a job are conditioned on,
the wage disparity disappears or gets smaller. For instance, the NYT
claimed that Google systematically underpaid its female employees.
But Google responded that their data showed that when you take
“location, tenure, job role, level and performance” into consideration,
female pay is basically identical to that of male counterparts. In other
words, controlling for characteristics of the job, women received the
same pay.

But what if one of the ways in which gender discrimination creates
gender disparities in earnings is through occupational sorting? Then
naive regressions of wages onto a gender dummy controlling for
occupation characteristics will be biased towards zero, thus understat-
ing the degree of discrimination in the marketplace. Put differently,
when there exists occupational sorting based on unobserved ability
then assuming gender discrimination we cannot identify the actual
discrimination effect controlling for occupation. Let’s first give a
DAG to illustrate the problem.

F

d

y

o A

Notice that there is in fact no effect of females on earnings, be-
cause they are assumed to be just as productive of males. Thus if we
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could control for discrimination, we’d get a coefficient of zero as in
this example women are just as productive as men.

But in this example, we aren’t interested in estimating the effect
of female on earnings; we are interested in estimating the effect
of discrimination itself. Now you can see several backdoor paths
between discrimination and earnings. They are:

1. d  F ! o ! y

2. d ! o ! y

3. d  F ! o  A

4. d ! o  A! y

So let’s say we regress y onto d (which will always pick up the
discrimination effect). This is biased because it picks up the effect
of discrimination on occupation and earnings, as well as gender’s
effect on occupation and earnings. So naturally, we might want to
control for occupation, but notice when we do this, we close down
those two backdoor paths but open a new path (the last one). That is
because F ! o  A ! y has a collider (o). So when we control for
occupation, we open up a new path. This is the reason we cannot
merely control for occupation. Such a control ironically introduces
new patterns of bias.

What is needed rather is to control for occupation and ability, but
since ability is unobserved, we cannot do that, and therefore we
do not possess an identification strategy that satisfies the backdoor
criterion. Let’s now look at Stata code created by Erin Hengel at the
University of Liverpool which she has graciously lent to me with
permission to reproduce here.43

43 Erin has done very good work
on gender discrimination. See her
website for more of this http://www.
erinhengel.com.* Create confounding bias for female occupation and gender gap

clear all
set obs 10000

* Half of the population is female.

generate female = runiform()>=0.5

* Innate ability is independent of gender.

generate ability = rnormal()

* All women experience discrimination.

generate discrimination = female

http://www.erinhengel.com
http://www.erinhengel.com
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* Continuum of occupations ranked monotonically according to
ability, conditional

* on discrimination—i.e., higher ability people are allocated to
higher ranked

* occupations, but due to discrimination, women are sorted into
lower ranked

* occupations, conditional on ability. Also assumes that in the
absence of

* discrimination, women and men would sort into identical occu-
pations (on average).

generate occupation = (1) + (2)*ability + (0)*female + (-2)*discrimination
+ rnormal()

* The wage is a function of discrimination even in identical jobs,
occupational

* choice (which is also affected by discrimination) and ability.

generate wage = (1) + (-1)*discrimination + (1)*occupation + 2*abil-
ity + rnormal()

* Assume that ability is unobserved. Then if we regress female on
wage, we get a

* a consistent estimate of the unconditional effect of discrimination—
i.e.,

* both the direct effect (paying women less in the same job) and
indirect effect

* (occupational choice).

regress wage female

* But occupational choice is correlated with the unobserved factor
ability *and*

* it is correlated with female, so renders our estimate on female
and occupation

* no longer informative.

regress wage female occupation

* Of course, if we could only control for ability...

regress wage female occupation ability
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Covariates: Biased unconditional Biased Unbiased conditional

Female -3.074*** 0.601*** -0.994***
(0.000) (0.000) (0.000)

Occupation 1.793*** 0.991***
(0.000) (0.000)

Ability 2.017***
(0.000)

N 10,000 10,000 10,000

Mean of dependent variable 0.45 0.45 0.45

Table 8: Regressions illustrating con-
founding bias with simulated gender
disparity

Examples of collider bias #2: qualitative change in sign Sometimes the
problem with conditioning on a collider, though, can be so severe
that the correlation becomes statistically insignificant, or worse, even
switches sign. Let’s see an example where that is true.

clear all

set seed 541

* Creating collider bias

* Z -> D -> Y

* D ->X <- Y

* 2500 independent draws from standard normal distribution

clear

set obs 2500

gen z = rnormal()

gen k = rnormal(10,4)

gen d = 0

replace d =1 if k>=12

* Treatment effect = 50. Notice y is not a function of X.

gen y = d*50 + 100 + rnormal()

gen x = d*50 + y + rnormal(50,1)

* Regression

reg y d, robust

reg y x, robust

reg y d x, robust

Okay, so let’s walk through this exercise. We can see from the
above code that the treatment effect is 50, because we coded y as gen

y = d*50 + 100 + rnormal(). It is for this reason when we run the
first regression, we get a coefficient of 49.998 (column 1). Next we ran
a regression of Y on X. Here when we do this, we find a significant
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Covariates: 1 2 3

d 50.004*** -0.757

(0.044) (1.024)
x 0.500*** 0.508***

(0.000) (0.010)

N 2,500 2,500 2,500

Mean of dependent variable 114.90 114.90 114.90

Table 9: Regressions illustrating collider
bias

effect, yet recall that Y is not a function of X. Rather, X is a function
of Y. So this is a spurious result driven by reverse causality. That
said, surely we can at least control for X in a regression of Y on D,
right? Column 3 shows the impossibility of this regression; it makes
it impossible to recover the causal effect of D on Y when we control
for X. Why? Because X is a collider, and by conditioning on it, we
are introducing new systematic correlations between D and Y that
are wiping out the causal effect.

Examples of collider bias: Nonrandom sample selection Maybe this is still
not clear. I hope that the following example, therefore, will clarify
matters, as it will end in a picture and a picture speaks a thousand
words.

A 2009 CNN.com article stated that Megan Fox, of Transformers,
was voted the worst and most attractive actress of 2009. While not
explicit in the article, the implication of the article was that talent and
beauty were negatively correlated. But are they? What if they are in
fact independent of each other, but the negative correlation found is a
result of a collider bias? What would that look like?44

44 I wish I had thought of this example,
but alas, I didn’t. Gabriel Rossman gets
full credit.

To illustrate, we will generate some data based on the following
DAG:

Movie Star

Talent Beauty

Run the following program in Stata.
clear all

set seed 3444

* 2500 independent draws from standard normal distribution

set obs 2500

generate beauty=rnormal()

generate talent=rnormal()

* Creating the collider variable (star)

http://marquee.blogs.cnn.com/2009/12/30/megan-fox-voted-worst-but-sexiest-actress-of-2009/
https://codeandculture.wordpress.com/2010/01/04/sampling-on-the-independent-variables/
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gen score=(beauty+talent)

egen c85=pctile(score), p(85)

gen star=(score>=c85)
label variable star "Movie star"

* Conditioning on the top 15%

twoway (scatter beauty talent, mcolor(black) msize(small)

msymbol(smx)),

ytitle(Beauty) xtitle(Talent) subtitle(Aspiring actors and

actresses) by(star, total)

-4
-2

0
2

4
-4

-2
0

2
4

-4 -2 0 2 4

-4 -2 0 2 4

0 1

TotalBe
au

ty

Talent
Graphs by Movie star

Aspiring actors and actresses
Figure 7: Top left figure: Non-star
sample scatter plot of beauty (vertical
axis) and talent (horizontal axis). Top
right right figure: Star sample scatter
plot of beauty and talent. Bottom left
figure: Entire (stars and non-stars
combined) sample scatter plot of beauty
and talent.

The bottom left panel shows the scatterplot between talent and
beauty. Notice that the two variables are independent draws from
the standard normal distribution, creating an oblong data cloud. But,
because “movie star” is in the top 15 percentile of the distribution
of a linear combination of talent and beauty, the movie star sample
is formed by a frontier of the combined variables. This frontier
has a negative slope and is in the upper right portion of the data
cloud, creating a negative correlation between the observations in the
movie star sample. Likewise, the collider bias has created a negative
correlation between talent and beauty in the non-movie star sample
as well. Yet we know that there is in fact no relationship between
the two variables. This kind of sample selection creates spurious
correlations.45

45 A random sample of the full popula-
tion would be sufficient to show that
there is no relationship between the two
variables.
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Conclusion In conclusion, DAGs are powerful tools. There is far
more to them than I have covered here. If you are interested in learn-
ing more about them, then I encourage you to carefully read Pearl
[2009], which is his magnum opus. It’s a major contribution to the
theory of causation, and in my opinion, his ideas merit inclusion in
your toolkit as you think carefully about identifying causal effects
with observational data. DAGs are helpful at both clarifying the rela-
tionships between variables, but more importantly than that, DAGs
make explicit whether you can identify a causal effect in your dataset.
The concept of the backdoor criterion is one way by which you can
hope to achieve that identification, and DAGs will help guide you to
the identification strategy that satisfies that criterion. Finally, I have
found that students learn a lot through this language of DAGs, and
since Pearl [2009] shows that DAGs subsume the potential outcomes
model (more on that in the next chapter), you need not worry that
it is creating unnecessary complexity and contradictions in your
pedagogy.



Potential outcomes causal model

“And if you had the chance to go back to her pad
for a passionate act you wont allow it.
But if your plans for a chance to go back ain’t even had.
Then the passionate act won’t happen,
’cause you plan not to have the chance.”
- The Street

Practical questions about causation has been a preoccupation of
economists for several centuries. Adam Smith wrote about the causes
of the wealth of nations [Smith, 2003]. Karl Marx was interested in
the transition of society from capitalism to socialism [Needleman and
Needleman, 1969]. The 20

th century Cowles Commission sought to
better understand the identification problem [Heckman and Vytlacil,
2007].46

46 This brief history will focus on the
development of the potential outcomes
model. See Morgan [1991] for a more
comprehensive history of econometric
ideas.

We can see the development of the modern causality concepts
in the writings of several philosophers. Hume [1993] described
causation as sequence of temporal events in which had the first event
not occurred, the subsequent ones would not either. An example of
this is where he said:

“[w]e may define a cause to be an object, followed by another, and
where all the objects similar to the first are followed by objects similar
to the second. Or in other words where, if the first object had not been,
the second never had existed”

Mill [2010] devised five methods for inferring causation. Those
methods were (1) the method of agreement, (2) the method of differ-
ence, (3) the joint method, (4) the method of concomitant variation
and (5) the method of residues. The second method, the method of
differences, is most similar to the idea of causation as a comparison
among counterfactuals. For instance, he wrote:

“If a person eats of a particular dish, and dies in consequence, that is,
would not have died if he had not eaten it, people would be apt to say
that eating of that dish was the source of his death.”
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Statistical inference A major jump in our understanding of causa-
tion occurs coincident with the development of modern statistics.
Probability theory and statistics revolutionized science in the 19th
century, originally with astronomy. Giuseppe Piazzi, an early 19

th

century astronomer, discovered the dwarf planet Ceres, located be-
tween Jupiter and Mars, in 1801. Piazzi observed it 24 times before
it was lost again. Carl Friedrich Gauss proposed a method which
could successfully predict Ceres’ next location using data on its prior
location. His method minimized the sum of the squared errors, or
ordinary least squares. He discovered it at age 18 and published it in
1809 at age 24 [Gauss, 1809]. Other contributors include LaPlace and
Legendre.

Regression analysis enters the social sciences through the work of
statistician G. Udny Yule. Yule [1899] was interested in the causes of
poverty in England. Poor people depended on either poor-houses
or the local authorities. Yule wanted to know if public assistance
increased the number of paupers, which is a causal question. Yule
used Gauss’s least squares method to estimate the partial correlation
between public assistance and poverty. Here was his data, drawn
from the English Censuses of 1871 and 1881. Download it using
scuse.

. scuse yule

Each row is a particular location in England (e.g., Chelsea, Strand).
And the second through fourth columns are growth rates. Yule
estimated a model similar to the following:

Pauper = b0 + b1Outrelie f + b2Old + b3Pop + u

Using our data, we would estimate this using the regress command:

. regress paup outrelief old pop

His results are reported in Table 13.
In words, a 10 percentage point change in the outrelief growth rate

is associated with a 7.5 percentage point increase in the pauperism
growth rate, an elasticity of 0.75. Yule used regression to isolate the
effects of out-relief, and his principal conclusion was that welfare
increased pauper growth rates. What’s wrong with his statistical rea-
soning? Do we think that the unobserved determinants of pauperism
growth rates are uncorrelated with out-relief growth rates? After all,
he does not control for any economic factors which surely affect both
poverty and the amount of resources allocated to out-relief. Like-
wise, he may have the causality backwards – perhaps the growth in
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Dependent variable
Covariates Pauperism growth

Outrelief 0.752

(0.135)
Old 0.056

(0.223)
Pop -0.311

(0.067)

Table 10: Yule regressions [Yule, 1899].

pauperism is the cause of the growth in out-relief, not the other way
around. But, despite its flaws, it represented the first known instance
where statistics (and regression in particular) was used to estimate a
policy-relevant causal effect.

Physical randomization The notion that physical randomization was
the foundation of causal inference was in the air in the 19th and early
20th century, but it was not until Fisher [1935] that it crystalized.
The first historically recognized randomized experiment was fifty
years earlier in psychology [Peirce and Jastrow, 1885]. But interest-
ingly, their reason for randomization was not as the basis for causal
inference. Rather, they proposed randomization as a way of fooling
subjects in their experiments. Peirce and Jastrow [1885] were using
an experiment on subjects that had a sequence of treatments, and
they used physical randomization so that participants couldn’t guess
at what would happen next. But Peirce appears to have anticipated
Neyman’s concept of unbiased estimation when using random sam-
ples and appears to have even thought of randomization as a physical
process to be implemented in practice, but no one can find any sug-
gestion for the physical randomization of treatments to units as a
basis for causal inference until Splawa-Neyman [1923] and Fisher
[1925].

Splawa-Neyman [1923] develops the very useful potential out-
comes notation, and while he proposes randomization, it is not taken
to be literally necessary until Fisher [1925]. Fisher [1925] proposes
the explicit use of randomization in experimental design for causal
inference.47

47 For more on the transition from
Splawa-Neyman [1923] to Fisher [1925],
see Rubin [2005].

Fisher [1935] described a thought experiment in which a lady
claims she can discern whether milk or tea was poured first in a
cup of tea. While he does not give her name, we now know that
the lady in the thought experiment was Muriel Bristol and that the
thought experiment in fact did happen.48 Muriel Bristol established 48 Apparently, Bristol correctly guessed

all four cups of tea.the Rothamstead Experiment Station in 1919 and was a PhD scientist
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back in the days when women weren’t PhD scientists. One day
during afternoon tea, Muriel claimed that she could tell whether the
milk was added to the cup before or after the tea, which as one might
guess, got a good laugh from her male colleagues. Fisher took the
bait and devised the following randomized experiment.

Given a cup of tea with milk, a lady claims she can discern
whether milk or tea was first added to the cup. To test her claim,
8 cups of tea were prepared, 4 of which the milk was added first, and
4 where the tea was added first. How many cups does she have to
correctly identify to convince us of her uncanny ability?

Fisher [1935] proposed a kind of permutation-based inference – a
method we now call the Fisher exact test. She possesses the ability
probabilistically, not with certainty, if the likelihood of her guessing
all four correctly was sufficiently low. There are 8⇥ 7⇥ 6⇥ 5 = 1, 680
ways to choose a first cup, a second cup, a third cup, and a fourth
cup, in order. There are 4⇥ 3⇥ 2⇥ 1 = 24 ways to order 4 cups. So
the number of ways to choose 4 cups out of 8 is 1680

24 = 70. Note, the
lady performs the experiment by selecting 4 cups. The probability
that she would correctly identify all 4 cups is 1

70 . Either she has no
ability, and has chosen the correct 4 cups by chance alone, or she has
the discriminatory ability that she claims. Since choosing correctly is
highly unlikely (one chance in 70), we decide for the second.

To only get 3 right, she would have to choose 3 from the 4 correct
ones. She can do this by 4⇥ 3⇥ 2 = 24 with order. Since 3 cups can
be ordered in 3⇥ 2 = 6 ways, there are 4 ways for her to choose 3
correct. Since she can now choose 1 incorrect cup 4 ways, there are a
total of 4⇥ 4 = 16 ways for her to choose exactly 3 right and 1 wrong.
Hence the probability that she chooses exactly 3 correctly is 16

70 . If she
got only 3 correct and 1 wrong, this would be evidence for her ability,
but not persuasive evidence, since getting 3 correct is 16

70 = 0.23.
Causal inference, in this context, is a probabilistic idea wherein

the observed phenomena is compared against permutation-based
randomization called the null hypothesis. The null hypothesis is a
specific description of a possible state of nature. In this example,
the null hypothesis is that the lady has no special ability to discern
the order in which milk is poured into tea, and thus, the observed
phenomena was only by chance. We can never prove the null, but
the data may provide evidence to reject it. In most situations, we are
trying to reject the null hypothesis.

Medicine and Economics Physical randomization had largely been
the domain of agricultural experiments until the mid-1950s when it
began to be used in medical trials. One of the first major randomized
experiments in medicine were polio vaccination trials. The Salk polio
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vaccine field trials was one of the largest randomized experiments
ever attempted, as well as one of the earliest. In 1954, the Public
Health Service set out to answer whether the Salk vaccine prevented
polio. Children in the study were assigned at random to receive the
vaccine or a placebo.49 Also the doctors making the diagnoses of 49 In the placebo, children were inocu-

lated with a saline solution.polio did not know whether the child had received the vaccine or
the placebo. The polio vaccine trial was a double-blind, randomized
controlled trial. It was necessary for the field trial to be very large
because the rate at which polio occurred in the population was 50 per
100,000. The treatment group, which contained 200,745 individuals,
saw 33 polio cases. The control group who had been inoculated had
201,229 individuals, and saw 115 cases. The probability of seeing
this big a difference by chance alone is about 1 in a billion. The only
plausible explanation, it was argued, was that the polio vaccine
caused a reduction in the risk of polio.

A similar large scale randomized experiment occurred in eco-
nomics in the 1970s. Between 1971 and 1982, the Rand corporation
conducted a large-scale randomized experiment studying the causal
effect of healthcare insurance on healthcare utilization. For the study,
Rand recruited 7,700 individuals under age 65. The experiment was
somewhat complicated with multiple treatment arms. Participants
were randomly assigned to one of five health insurance plans: free
care, three types with varying levels of cost sharing, and an HMO
plan. Participants with cost sharing made fewer physician visits and
had fewer hospitalizations than those with free care. Other declines
in health care utilization, such as we fewer dental visits, were also
found among the cost-sharing treatment groups. Overall, participants
in the cost sharing plans tended to spend less on health which came
from using fewer services. The reduced use of services occurred
mainly because participants in the cost sharing treatment groups
were opting not to initiate care.50

50 More information about this fasci-
nating experiment can be found in
Newhouse [1993].

Potential outcomes While the potential outcomes ideas were around,
it did not become the basis of causal inference in the social sciences
until Rubin [1974].51 In the potential outcomes tradition [Splawa- 51 The idea of causation as based on

counterfactuals appears in philosophy
independent of Rubin [1974] with Lewis
[1973]. Some evidence for it may exist
in John Stuart Mill’s methods for causal
inference as well.

Neyman, 1923, Rubin, 1974], a causal effect is defined as a compar-
ison between two states of the world. In the first state of the world,
a man takes aspirin for his headache and one hour later reports the
severity of his headache. In the second state of the world, that same
man refused aspirin and one hour later reported the severity of his
headache. What was the causal effect of the aspirin? According to
Rubin, the causal effect of the aspirin is the difference in the severity
of his headache between two states of the world: one where he took
the aspirin (the actual state of the world) and one where he never
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took the aspirin (the counterfactual state of the world). The difference
between these two dimensions, if you would, at the same point in
time represents the causal effect of the intervention itself.

To ask questions like this is to engage in a kind of storytelling.
Humans have always been interested in stories exploring counter-
factuals. Examples include Christmas Carol, It’s a Wonderful Life
and Man in the High Castle, just to name just a few. What if Bruce
Wayne’s parents had never been murdered? What if that waitress
had won the lottery? What if your friend from high school had never
taken that first drink? What if Neo had taken the blue pill? These are
the sort of questions that can keep a person up at night.

But it’s important to note that these kinds of questions are by
definition unanswerable.52 To wonder how life would be different 52 It is also worth noting that counterfac-

tual reasoning appears to be a hallmark
of the human mind. We are unusual
among creatures in that we are capable
of asking and imagining these types of
what-if questions.

had one single event been changed is to indulge in counterfactual
reasoning, and since counterfactuals by definition don’t exist, the
question cannot be answered. History is a sequence of observable,
factual events, one after another. We don’t know what would have
happened had one event changed because we are missing data on the
counterfactual. Potential outcomes exist ex ante as a set of possibilities,
but once a decision is made, all but one of them disappears.

Donald Rubin, and statisticians Roland Fisher and Jerzy Neyman
before him, take as a starting point that a causal effect is a compar-
ison across two potential outcomes.53 To make this concrete, we 53 This analysis can be extended to more

than two potential outcomes, but for
simplicity we will stick with just two.

introduce some notation and language. For simplicity, we will as-
sume a dummy variable that takes on a value of one if a particular
unit i receives the treatment and a zero if they do not.54 Each unit 54 The treatment here is any particular

intervention, or causal variable of
interest. In economics, it is usually the
comparative statics exercise.

will have two potential outcomes, but only one observed outcome. Po-
tential outcomes are defined as Y1

i if the unit received the treatment
and Y0

i if the unit did not. We’ll call the state of the world where no
treatment occurred the control state. Notice the superscripts and the
subscripts – each unit i has exactly two potential outcomes: a poten-
tial outcome under a state of the world where the treatment occurred
(Y1) and a potential outcome where the treatment did not occur (Y0).

Observable outcomes, Yi, are distinct from potential outcomes.
Whereas potential outcomes are hypothetical random variables that
differ across the population, observable outcomes are factual random
variables. A unit’s observable outcome is determined according to a
switching equation:

Yi = DiY1
i + (1� Di)Y0

i (76)

where Di equals one if the unit received the treatment and zero if it
did not. Notice the logic of the equation. When Di = 1, then Yi = Y1

i
because the second term zeroes out. And when Di = 0, the first term
zeroes out and therefore Yi = Y0

i .
Rubin defines a treatment effect, or causal effect, as simply the
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difference between two states of the world:

di = Y1
i �Y0

i

Immediately we are confronted with a problem. If a treatment effect
requires knowing two states of the world, Y1

i and Y0
i , but by the

switching equation we only observe one, then we cannot calculate the
treatment effect.

Average treatment effects From this simple definition of a treatment
effect come three different parameters that are often of interest to
researchers. They are all population means. The first is called the
average treatment effect and it is equal to

E[di] = E[Y1
i �Y0

i ] = E[Y1
i ]� E[Y0

i ]

Notice, as with our definition of individual level treatment effects, the
average treatment effect is unknowable as well because it requires
two observations per unit i, one of which is a counterfactual. Thus
the average treatment effect, ATE, like the individual treatment effect,
is not a quantity that can be calculated with any data set known to
man.

The second parameter of interest is the average treatment effect for
the treatment group. That’s a mouthful, but let me explain. There exist
two groups of people: there’s a treatment group and there’s a control
group. The average treatment effect for the treatment group, or ATT
for short, is simply that population mean treatment effect for the
group of units that have been assigned the treatment in the first place.
Insofar as di differs across the population, the ATT may be different
from the ATE. In observational data, it almost always will be in fact
different from the ATE. And, like the ATE, it is unknowable, because
like the ATE, it requires two observations per treatment unit i:

ATT = E[di|Di = 1]

= E[Y1
i � E0

i |Di = 1]

= E[Y1
i |Di = 1]� E[Y0

i |Di = 1]

The final parameter of interest is called the average treatment effect
for the control group, or untreated group. It’s shorthand is ATU which
stands for average treatment effect for the untreated. And like it’s
ATT brother, the ATU is simply the population mean treatment effect
for the units in the control group. Given heterogeneous treatment
effects, it’s probably the case that the ATT 6= ATU – especially in an
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observational setting. The formula for the ATU is

ATU = E[di|Di = 0]

= E[Y1
i �Y0

i |Di = 0]

= E[Y1
i |Di = 0]� E[Y0

i |Di = 0]

Depending on the research question, one or all three of these
parameters are interesting. But the two most common ones of interest
are the ATE and the ATT.

Simple difference in means decomposition This has been somewhat
abstract, so let’s be concrete. Let’s assume there are ten patients i
who have cancer, and two medical procedures or treatments. There is
a surgery intervention, Di = 1, and there is a chemotherapy interven-
tion, Di = 0. Each patient has the following two potential outcomes
where a potential outcome is defined as post-treatment lifespan in
years:

Patients Y1 Y0
d

1 7 1 6

2 5 6 -1
3 5 1 4

4 7 8 -1
5 4 2 2

6 10 1 9

7 1 10 -9
8 5 6 -1
9 3 7 -4

10 9 8 1

Table 11: Potential outcomes for ten
patients receiving surgery Y1 or chemo
Y0.

We can calculate the average treatment effect if we have this matrix
of data because the average treatment effect is simply the mean
difference between columns 2 and 3. That is E[Y1] = 5.6 and E[Y0] =
5, which means that ATE = 0.6. In words, the average causal effect
of surgery for these ten patients is 0.6 additional years (compared to
chemo).55

55 Note that causality always involves
comparisons.Now notice carefully: not everyone benefits from surgery. Patient

7, for instance, lives only 1 additional year post-surgery versus 10

additional years post-chemo. But the ATE is simply the average over
these heterogeneous treatment effects.

To maintain this fiction, let’s assume that there exists the perfect
doctor.56 The perfect doctor knows each person’s potential outcomes 56 I credit Donald Rubin with this

example [Rubin, 2004]and chooses the treatment that is best for each person. In other
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words, he chooses to put them in surgery or chemotherapy depend-
ing on whichever treatment has the longer post-treatment lifespan.
Once he makes that treatment assignment, he observes their post-
treatment actual outcome according to the switching equation we
mentioned earlier.

Patients Y D

1 7 1

2 6 0

3 5 1

4 8 0

5 4 1

6 10 1

7 10 0

8 6 0

9 7 0

10 9 1

Table 12: Post-treatment observed
lifespans in years for surgery D = 1
versus chemotherapy D = 0.

Table 12 differs from Table 11 because Table 11 shows only the
potential outcomes, but Table 12 shows only the observed outcome
for treatment and control group. Once treatment has been assigned,
we can calculate the average treatment effect for the surgery group
(ATT) versus the chemo group (ATU). The ATT equals 4.4 and the
ATU equals –3.2. In words, that means that the average post-surgery
lifespan for the surgery group is 4.4 additional years, whereas the
average post-surgery lifespan for the chemotherapy group is 3.2
fewer years.57

57 The reason that the ATU is negative
is because the treatment here is the
surgery, which was the worse treatment
of the two of them. But you could just
as easily interpret this as 3.2 additional
years of life if they had received chemo
instead of surgery.

Now the ATE is 0.6, which is just a weighted average between the
ATT and the ATU.58 So we know that the overall effect of surgery is

58 ATE = p⇥ ATT + (1� p)⇥ ATU =
0.5⇥ 4.4 + 0.5⇥�3.2 = 0.6.

positive, though the effect for some is negative. There exist heteroge-
neous treatment effects in other words, but the net effect is positive.
But, what if we were to simply compare the average post-surgery
lifespan for the two groups? This is called an estimate of the ATE – it
takes observed values, calculates means, in an effort to estimate the
parameter of interest, the ATE. We will call this simple difference in
mean outcomes the SDO,59 and it is simply equal to 59 Morgan and Winship [2014] call this

estimator the naive average treatment
effect or NATE for short.E[Y1|D = 1]� E[Y0|D = 0]

which can be estimated using samples of data

SDO = E[Y1|D = 1]� E[Y0|D = 0]

=
1

NT

n

Â
i=1

(yi|di = 1)� 1
NC

n

Â
i=1

(yi|di = 0)
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which in this situation is equal to 7� 7.4 = �0.4. Or in words, the
treatment group lives 0.4 fewer years post-surgery than the chemo
group. Notice how misleading this statistic is, though. We know that
the average treatment effect is positive, but the simple difference in
mean outcomes is negative. Why is it different? To understand why
it is different, we will decompose the simple difference in mean out-
comes using LIE and the definition of ATE. Note there are three parts
to the SDO. Think of the left hand side as the calculated average, but
the right hand side as the truth about that calculated average.

E[Y1|D = 1]� E[Y0|D = 0] = ATE

+E[Y0|D = 1]� E[Y0|D = 0]

+(1� p)(ATT � ATU) (77)

To understand where these parts on the right-hand-side originate,
we need to start over and decompose the parameter of interest, ATE,
into the sum of four parts using the law of iterated expectations. ATE
is equal to sum of conditional average expectations, ATT and ATU,
by LIE

ATE = E[Y1]� E[Y0]

= {pE[Y1|D = 1] + (1� p)E[Y1|D = 0]}
�{pE[Y0|D = 1] + (1� p)E[Y0|D = 0]}

where p is the share of patients who received surgery and 1� p is the
share of patients that received chemotherapy. Because the conditional
expectation notation is a little cumbersome, let’s exchange each term
on the left hand side, ATE, and right hand side, the part we got from
LIE, using some letters. This will allow the proof to be a little less
cumbersome to follow.

E[Y1|D = 1] = a

E[Y1|D = 0] = b

E[Y0|D = 1] = c

E[Y0|D = 0] = d

ATE = e

Now through the following algebraic manipulation.
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e = {pa + (1� p)b}� {pc + (1� p)d}
e = pa + b� pb� pc� d + pd

e = pa + b� pb� pc� d + pd + (a� a) + (c� c) + (d� d)

0 = e� pa� b + pb + pc + d� pd� a + a� c + c� d + d

a� d = e� pa� b + pb + pc + d� pd + a� c + c� d

a� d = e + (c� d) + a� pa� b + pb� c + pc + d� pd

a� d = e + (c� d) + (1� p)a� (1� p)b + (1� p)d� (1� p)c

a� d = e + (c� d) + (1� p)(a� c)� (1� p)(b� d)

Now substituting our definitions, we get the following:

E[Y1|D = 1]� E[Y0|D = 0] = ATE

+(E[Y0|D = 1]� E[Y0|D = 0])

+(1� p)(ATT � ATU)

And the proof ends. Now the left hand side can be estimated with a
sample of data. And the right-hand-side is equal to the following:

1
NT

n

Â
i=1

(yi|di = 1)� 1
NC

n

Â
i=1

(yi|di = 0)

| {z }
SDO

= E[Y1]� E[Y0]| {z }
Average Treatment Effect

+ E[Y0|D = 1]� E[Y0|D = 0]| {z }
Selection bias

+ (1� p)(ATT � ATU)| {z }
Heterogenous treatment effect bias

Let’s discuss each of these in turn. The left-hand-side is the simple
difference in mean outcomes and we know it is equal to �0.4. Thus it
must be the case that the right hand side sums to �0.4. The first term
is the average treatment effect, which is the parameter of interest. We
know that it is equal to +0.6. Thus the remaining two terms must be
the source of the bias that is causing our SDO < ATE. The second
term is called the selection bias which merits some unpacking. The
selection bias is the inherent differences between the two groups if
they both received chemo. Usually, though, it’s just a description of
the differences between the two if there had never been a treatment
in the first place. There are in other words two groups: there’s a
surgery group and there’s a chemo group. How do their potential
outcomes under control differ? Notice that the first is a counterfac-
tual, whereas the second is an observed outcome according to the
switching equation. We can calculate this difference here because we
have the complete potential outcomes in Table 11. That difference
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is equal to �4.8. The third term is a lesser known form of bias, but
we include it to be comprehensive, and because we are focused on
the ATE.60 The heterogenous treatment effect bias is simply the differ- 60 Note that Angrist and Pischke [2009]

have a slightly different decomposition
where the SDO = ATT + selection bias,
but that is because their parameter of
interest is the ATT and therefore the
third term doesn’t appear.

ent returns to surgery for the two groups multiplied by the share of
the population that is in the chemotherapy group at all. This final
term is 0.5⇥ (4.4� (�3.2)) which is 3.8. Note in case it’s not obvious,
the reason that p = 0.5 is because 5 units out of 10 units are in the
chemotherapy group.

Now that we have all three parameters on the right-hand-side, we
can see why the SDO is equal to �0.4.

�0.4 = 0.6� 4.8 + 3.8

Notice that the SDO actually does contain the parameter of interest.
But the problem is that that parameter of interest is confounded by
two forms of bias, the selection bias and the heterogeneous treat-
ment effect bias. If there is a constant treatment effect, di = d 8i, then
ATU = ATT and so SDO = ATE + selection bias. A large part of em-
pirical research is simply trying to develop a strategy for eliminating
selection bias.

Let’s start with the most credible situation for using SDO to esti-
mate ATE: when the treatment itself (e.g., surgery) has been assigned
to patients independent of their potential outcomes. Notationally
speaking, this is

(Y1, Y0) ?? D

Now in our example, we already know that this is violated because
the perfect doctor specifically chose surgery or chemo based on their
potential outcomes. Specifically, they received surgery if Y1 > Y0 and
chemo if Y1 < Y0. Thus in our case, the perfect doctor ensured that D
depended on Y1, Y0.

But, what if he hadn’t done that? What if he had chosen surgery in
such a way that did not depend on Y1 or Y0? What might that look
like? For instance, maybe he alphabetized them by last name, and
the first five received surgery and the last five received chemotherapy.
Or maybe he used the second hand on his watch to assign surgery to
them: if it was between 1� 30 seconds, he gave them surgery, and if it
was between 31� 60 seconds he gave them chemotherapy.61 In other 61 In Craig [2006], a poker-playing

banker used his watch as a random
number generator to randomly bluff in
certain situations.

words, let’s say that he chose some method for assigning treatment
that did not depend on the values of potential outcomes under either
state of the world. What would that mean in this context? Well, it
would mean that

E[Y1|D = 1]� E[Y1|D = 0] = 0

E[Y0|D = 1]� E[Y0|D = 0] = 0
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Or in words, it would mean that the mean potential outcome for Y1

or Y0 is the same (in the population) for either the surgery group or
the chemotherapy group. This kind of randomization of the treatment
assignment would eliminate both the selection bias and the heteroge-
neous treatment effect bias. Let’s take it in order. The selection bias
zeroes out as follows:

E[Y0|D = 1]� E[Y0|D = 0] 0

And thus the SDO no longer suffers from selection bias. How does
randomization affect heterogeneity treatment bias from the third line?
Rewrite definitions for ATT and ATU:

ATT = E[Y1|D = 1]� E[Y0|D = 1]

ATU = E[Y1|D = 0]� E[Y0|D = 0]

Rewrite the third row bias after 1� p:

ATT � ATU = E[Y1 | D=1]� E[Y0|D = 1]

�E[Y1 | D=0] + E[Y0|D = 0]

= 0

If treatment is independent of potential outcomes, then:

1
NT

n

Â
i=1

(yi|di = 1)� 1
NC

n

Â
i=1

(yi|di = 0) = E[Y1]� E[Y0]

SDO = ATE

What’s necessary in this situation is simply (a) data on observable
outcomes, (b) data on treatment assignment, and (c) (Y1, Y0) ?? D. We
call (c) the independence assumption. To illustrate that this would
lead to the SDO, we will use the following Monte Carlo simulation.
Note that ATE in this example is equal to 0.6.

clear all

program define gap, rclass

version 14.2

syntax [, obs(integer 1) mu(real 0) sigma(real 1) ]

clear

drop _all

set obs 10

gen y1 = 7 in 1

replace y1 = 5 in 2

replace y1 = 5 in 3

replace y1 = 7 in 4
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replace y1 = 4 in 5

replace y1 = 10 in 6

replace y1 = 1 in 7

replace y1 = 5 in 8

replace y1 = 3 in 9

replace y1 = 9 in 10

gen y0 = 1 in 1

replace y0 = 6 in 2

replace y0 = 1 in 3

replace y0 = 8 in 4

replace y0 = 2 in 5

replace y0 = 1 in 6

replace y0 = 10 in 7

replace y0 = 6 in 8

replace y0 = 7 in 9

replace y0 = 8 in 10

drawnorm random

sort random

gen d=1 in 1/5

replace d=0 in 6/10

gen y=d*y1 + (1-d)*y0

egen sy1 = mean(y) if d==1

egen sy0 = mean(y) if d==0

collapse (mean) sy1 sy0

gen sdo = sy1 - sy0

keep sdo

summarize sdo

gen mean = r(mean)

end

simulate mean, reps(10000): gap

su _sim_1

This Monte Carlo runs 10,000 times, each time calculating the
average SDO under independence – which is ensured by the random
number sorting that occurs. In my running of this program, the ATE
is 0.6 and the SDO is on average equal to 0.59088.62

62 Because it’s not seeded, when you run
it, your answer will be close but slightly
different due to the randomness of the
sample drawn.

Before we move on from the SDO, let’s just re-emphasize some-
thing that is often lost on students first learning the independence
concept and notation. Independence does not imply that E[Y1|D =
1]� E[Y0|D = 0] = 0. Nor does it imply that E[Y1|D = 1]� E[Y0|D =
1] = 0. Rather, it implies

E[Y1|D = 1]� E[Y1|D = 0] = 0

in a large population. That is, independence implies that the two
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groups of units, surgery and chemo, have the same potential outcome
on average in the population.

How realistic is independence in observational data? Economics
– maybe more than any other science – tells us that independence is
unlikely to hold observationally. Economic actors are always attempt-
ing to achieve some optima. For instance, parents are putting kids in
what they perceive to be the best school for them and that is based
on potential outcomes. In other words, people are choosing their in-
terventions and most likely that decision is related to the potential
outcomes, which makes simple comparisons improper. Rational
choice is always pushing against the independence assumption, and
therefore simple comparison in means will not approximate the true
causal effect. We need unit randomization for simple comparisons to
tell us anything meaningful.

One last thing. Rubin argues that there are a bundle of assump-
tions behind this kind of calculation, and he calls these assumptions
the stable unit treatment value assumption or SUTVA for short. That’s a
mouthful, but here’s what it means. It means that we are assuming
the unit-level treatment effect (“treatment value”) is fixed over the en-
tire population, which means that the assignment of the treatment to
one unit cannot affect the treatment effect or the potential outcomes
of another unit.

First, this implies that the treatment is received in homogenous
doses to all units. It’s easy to imagine violations of this though – for
instance if some doctors are better surgeons than others. In which
case, we just need to be careful what we are and are not defining as
the treatment.

Second, this implies that there are no externalities, because by
definition, an externality spills over to other units untreated. In other
words, if unit 1 receives the treatment, and there is some externality,
then unit 2 will have a different Y0 value than she would have if unit
1 had not received the treatment. We are assuming away this kind of
spillover.

Related to that is the issue of general equilibrium. Let’s say we
are estimating the causal effect of returns to schooling. The increase
in college education would in general equilibrium cause a change
in relative wages that is different than what happens under partial
equilibrium. This kind of scaling up issue is of common concern
when one consider extrapolating from the experimental design to the
large scale implementation of an intervention in some population.

STAR Experiment Now I’d like to discuss a large-scale randomized
experiment to help explain some of these abstract concepts. Krueger
[1999] analyzed a 1980s randomized experiment in Tennessee called
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the Student/Teacher Achievement Ratio (STAR). This was a state-
wide randomized experiment that measured the average treatment
effect of class size on student achievement. There were two arms to
the treatment: a small class of 13-17 students, and a regular sized
classroom of 22-25 students with a full-time teacher’s aide. The
control group was a regular sized classroom of 22-25 students with
no aide. Approximately 11,600 students and their teachers were
randomly assigned to one of the three groups. After the assignment,
the design called for the students to remain in the same class type
for four years (K-3). Randomization occurred within schools at the
kindergarten level.

For this section, we will use Krueger’s data and attempt to repli-
cate as closely as possible his results. Type in (ignoring the period):

. clear

. scuse star_sw

Note that insofar as it was truly a randomized experiment, then
the average potential outcomes for students in a small class will be
the same as the average potential outcomes for each of the other
treatment arms. As such we can simply calculate the mean outcomes
for each group and compare them to determine the average treatment
effect of a small class size. Nonetheless, it is useful to analyze exper-
imental data with regression analysis because in this instance the
randomization was conditional on the school itself.

Assume for the sake of argument that the treatment effects are
constant. This implies two things: it implies that Y1

i � Y0
i = d 8i, first

of all. And second, it implies that ATE = ATT = ATU. Thus the
simple difference in outcomes SDO is equal to ATE plus selection
bias because the heterogenous treatment effect bias zeroes out.

Let’s write out the regression equation by first writing out the
switching equation:

Yi = DiY1
i + (1� Di)Y0

i

Distributing the Y0
i we get

Yi = Y0
i + Di(Y1

i �Y0
i )

which is equal to
Yi = Y0

i + dDi

given the definition of the treatment effect from earlier. Now add
E[Y0

i ]� E[Y0
i ] = 0 to the right-hand side and rearrange the terms to get

Yi = E[Y0
i ] + dDi + Y0

i � E[Y0
i ]

and then rewrite as the following regression equation

Yi = a + dDi + ui
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where ui is the random part of Y0
i . This is a regression equation we

could use to estimate the average treatment effect of D on Y.
We will be evaluating experimental data, and so we could just

compare the treatment group to the control group. But we may want
to add additional controls in a multivariate regression model for a
couple of reasons. The multivariate regression model would be

Yi = a + dDi + Xig + ui

where X is a matrix of unit specific predetermined covariates unaf-
fected by D. There are two main reasons for including additional
controls in the experimental regression model.

1. Conditional random assignment. Sometimes randomization is
done conditional on some observable. In this example, that’s the
school, as they randomized within a school. We will discuss the
“conditional independence assumption” later when we cover
matching.

2. Additional controls increase precision. Although control variables
Xi are uncorrelated with Di, they may have substantial explana-
tory power for Yi. Therefore including them reduces variance in
the residuals which lowers the standard errors of the regression
estimates.

Krueger estimates the following econometric model

Yics = b0 + b1SMALLcs + b2REG/Acs + as + #ics (78)

where i indexes a student, c a class, s a school, Y a student’s per-
centile score, SMALL a dummy equalling 1 if the student was in a
small class, REG/A a dummy equalling 1 if the student was assigned
a regular class with an aide and a is a school fixed effect. A school fixed
effect is simply a dummy variable for each school, and controlling
for that means that the variance in SMALL and REG/A is within
each school. He did this because the STAR program was random-
ized within a school – treatment was conditionally independent of the
potential outcomes.

First, I will produce Krueger’s actual estimates, then I will pro-
duce similar regression output using the star_sw.dta file we down-
loaded. Figure 8 shows estimates from this equation using least
squares. The first column is a simple regression of the percentile
score onto the two treatment dummies with no controls. The effect
of a small class is 4.82 which means that the kids in a small class
moved 4.82 points up the distribution at the end of year. You can
see by dividing the coefficient by the standard error that this is sig-
nificant at the 5% level. Notice there is no effect of a regular sized
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classroom with an aide on performance, though. The coefficient is
both close to zero and has large standard errors. The R2 is very small
as well – only 1% of the variation in percentile score is explained by
this treatment variable.

Columns 2-4 add in additional controls. First Krueger controls
for school fixed effects which soaks up a lot of the variation in Y
evidenced by the larger R2. It’s interesting that the R2 has increased,
but the coefficient estimates have not really changed. This is evidence
of randomization. The coefficient on small class size is considerably
more precise, but not materially different from what was shown in
column 1. This coefficient is also relatively stable when additional
student demographics (column 3) and teacher characteristics (column
4) are controlled for. This is a reassuring table in many respects
because it is showing that E[d|X] = E[d] which is an extension of
the independence assumption. That suggests that D is assigned
independent of the potential outcomes, because d is a function of Y1

and Y0.

whether the teacher has a master’s degree—does not have a
systematic effect. Hardly any of the teachers are male, so the
gender results are not very meaningful. Teacher experience has a
small, positive effect. Experimentation with a quadratic in experi-
ence indicated that the experience proéle tends to peak at about

TABLE V
OLS AND REDUCED-FORM ESTIMATES OF EFFECT OF CLASS-SIZE ASSIGNMENT ON

AVERAGE PERCENTILE OF STANFORD ACHIEVEMENT TEST

Explanatory
variable

OLS: actual class size Reduced form: initial class size

(1) (2) (3) (4) (5) (6) (7) (8)

A. Kindergarten

Small class 4.82 5.37 5.36 5.37 4.82 5.37 5.36 5.37
(2.19) (1.26) (1.21) (1.19) (2.19) (1.25) (1.21) (1.19)

Regular/aide class .12 .29 .53 .31 .12 .29 .53 .31
(2.23) (1.13) (1.09) (1.07) (2.23) (1.13) (1.09) (1.07)

White/Asian (1 5 — — 8.35 8.44 — — 8.35 8.44
yes (1.35) (1.36) (1.35) (1.36)

Girl (1 5 yes) — — 4.48 4.39 — — 4.48 4.39
(.63) (.63) (.63) (.63)

Free lunch (1 5 — — 213.15 213.07 — — 213.15 213.07
yes) (.77) (.77) (.77) (.77)

White teacher — — — 2.57 — — — 2.57
(2.10) (2.10)

Teacher experience — — — .26 — — — .26
(.10) (.10)

Master’s degree — — — 2.51 — — — 2.51
(1.06) (1.06)

School éxed effects No Yes Yes Yes No Yes Yes Yes
R2 .01 .25 .31 .31 .01 .25 .31 .31

B. First grade

Small class 8.57 8.43 7.91 7.40 7.54 7.17 6.79 6.37
(1.97) (1.21) (1.17) (1.18) (1.76) (1.14) (1.10) (1.11)

Regular/aide class 3.44 2.22 2.23 1.78 1.92 1.69 1.64 1.48
(2.05) (1.00) (0.98) (0.98) (1.12) (0.80) (0.76) (0.76)

White/Asian (1 5 — — 6.97 6.97 — — 6.86 6.85
yes) (1.18) (1.19) (1.18) (1.18)

Girl (1 5 yes) — — 3.80 3.85 — — 3.76 3.82
(.56) (.56) (.56) (.56)

Free lunch (1 5 — — 213.49 213.61 — — 213.65 213.77
yes) (.87) (.87) (.88) (.87)

White teacher — — — 24.28 — — — 24.40
(1.96) (1.97)

Male teacher — — — 11.82 — — — 13.06
(3.33) (3.38)

Teacher experience — — — .05 — — — .06
(0.06) (.06)

Master’s degree — — — .48 — — — .63
(1.07) (1.09)

School éxed effects No Yes Yes Yes No Yes Yes Yes
R2 .02 .24 .30 .30 .01 .23 .29 .30
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Figure 8: Regression of kindergarten
percentile scores onto treatments
[Krueger, 1999].
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Next Krueger [1999] estimated the effect of the treatments on the
first grade outcomes. Note that this is the same group of students
from the kindergarten sample, just aged one year. Figure 9 shows
the results from this regression. Here we find coefficients that are
about 40% larger than the ones we found for kindergarteners. Also,
the regular sized classroom with an aide, while smaller, is no longer
equal to zero or imprecise. Again, this coefficient is statistically stable
across all specifications.

Figure 9: Regression of first grade
percentile scores onto treatments
[Krueger, 1999].

A common problem in randomized experiments involving human
beings, that does not plague randomized experiments involving non-
humans, is attrition. That is, what if people leave the experiment? If
attrition is random, then attrition affects the treatment and control
groups in the same way (on average). Random attrition means that
our estimates of the average treatment effect remain unbiased.

But in this application, involving schooling, attrition may be
non-random. For instance, especially good students placed in large
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classes may leave the public school for a private school under the
belief that large class sizes will harm their child’s performance. Thus
the remaining students will be people for whom Y0 is lower, thus
giving the impression the intervention was more effective than maybe
it actually was. Krueger [1999] addresses this concern by imputing
the test scores from their earlier test scores for all children who leave
the sample and then re-estimates the model including students with
imputed test scores.

had higher test scores, on average, than students assigned to
small classes who also left the sample, then the small class effects
will be biased upwards. One reason why this pattern of attrition
might occur is that high-income parents of children in larger
classes might have been more likely to subsequently enroll their
children in private schools over time than similar parents of
children in small classes. At heart, adjusting for possible nonran-
dom attrition is a matter of imputing test scores for students who
exited the sample. With longitudinal data, this can be done
crudely by assigning the student’s most recent test percentile to
that student in years when the student was absent from the
sample.15

The sample used in the érst panel of Table VI includes the
largest number of students with nonmissing data available each
grade. These results correspond to the model estimated in column
7 of Table V, except the free lunch variable is omitted because it

15. In the case of a student who left the sample but later returned, the
average test score in the years surrounding the student’s absence was used. Test
scores were also imputed for students who had a missing test score but did not exit
the sample (e.g., because they were absent when the test was conducted). This
technique is closely related to the ‘‘last-observation-carry-forward’’ method that
has been used in clinical studies.

TABLE VI
EXPLORATION OF EFFECT OF ATTRITION DEPENDENT VARIABLE: AVERAGE

PERCENTILE SCORE ON SAT

Grade

Actual test data
Actual and imputed

test data

Coefficient
on small

class dum.
Sample

size

Coefficient
on small

class dum.
Sample

size

K 5.32 5900 5.32 5900
(.76) (.76)

1 6.95 6632 6.30 8328
(.74) (.68)

2 5.59 6282 5.64 9773
(.76) (.65)

3 5.58 6339 5.49 10919
(.79) (.63)

Estimates of reduced-form models are presented. Each regression includes the following explanatory
variables: a dummy variable indicating initial assignment to a small class; a dummy variable indicating initial
assignment to a regular/aide class, unrestricted school effects; a dummy variable for student gender; and a
dummy variable for student race. The reported coefficient on small class dummy is relative to regular classes.
Standard errors are in parentheses.
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Figure 10: Regression of first grade
percentile scores onto treatments for
K-3 with imputed test scores for all
post-kindergarten ages [Krueger, 1999].

As you can see in Figure 10, there is nothing in the analysis that
suggests bias has crept in because of attrition.

Whereas attrition is a problem of units leaving the experiment alto-
gether, there’s also a problem in which students switch between treat-
ment status. A contemporary example of this was in the antiretrovial
treatment experiments for HIV in the 1980s. These experiments were
often contaminated by the fact that secondary markets for the ex-
perimental treatments formed in which control groups purchased
the treatment. Given the high stakes of life and death associated
with HIV at the time, this is understandable, but scientifically, this
switching of treatment status contaminated the experiment making
estimates of the ATE biased. Krueger writes that in this educational
context

“It is virtually impossible to prevent some students from switching
between class types over time.” (Krueger [1999] p. 506)

To illustrate this problem of switching, Krueger created a helpful
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transition matrix which is shown in Figure 11. If students in the
second grade had remained in their first grade classes, then the
off-diagonal elements of this transition matrix would be zero. But
because they are not zero, it means there was some switching. Of
the 1,482 first graders assigned to small classrooms, 1,435 remained
in small classes, and 23 and 24 switched into the other kinds. If
students with stronger expected academic potential were more likely
to move into small classes, then these transitions would bias the
simple comparison of outcomes upwards, making small class sizes
appear to be more effective than they really are.

To address this potential problem, and the variability of class
size for a given type of assignment, in some of the analysis that
follows initial random assignment is used as an instrumental
variable for actual class size.

B. Data and Standardized Tests

Students were tested at the end of March or beginning of
April of each year. The tests consisted of the Stanford Achieve-
ment Test (SAT), which measured achievement in reading, word
recognition, and math in grades K–3, and the Tennessee Basic
Skills First (BSF) test, which measured achievement in reading
and math in grades 1–3. The tests were tailored to each grade
level. Because there are no natural units for the test results, I
scaled the test scores into percentile ranks. Speciécally, in each
grade level the regular and regular/aide students were pooled

TABLE IV
TRANSITIONS BETWEEN CLASS-SIZE IN ADJACENT GRADES

NUMBER OF STUDENTS IN EACH TYPE OF CLASS

A. Kindergarten to érst grade

First grade

Kindergarten Small Regular Reg/aide All
Small 1292 60 48 1400
Regular 126 737 663 1526
Aide 122 761 706 1589
All 1540 1558 1417 4515

B. First grade to second grade

Second grade

First grade Small Regular Reg/aide All
Small 1435 23 24 1482
Regular 152 1498 202 1852
Aide 40 115 1560 1715
All 1627 1636 1786 5049

C. Second grade to third grade

Third grade

Second grade Small Regular Reg/aide All
Small 1564 37 35 1636
Regular 167 1485 152 1804
Aide 40 76 1857 1973
All 1771 1598 2044 5413

EXPERIMENTAL ESTIMATES 507

Figure 11: Switching of students into
and out of the treatment arms between
first and second grade [Krueger, 1999].

What can be done to address switching under random assign-
ment? Well, one thing that could’ve been done is to make it very
difficult. One of the things that characterizes the modern random
experiment is designing the experiment in such a way that makes
switching very hard. But this may be practically infeasible, so a sec-
ond best solution is to regress the student’s outcome against the origi-
nal randomized kindergarten class size, as opposed to the actual class
size – a kind of reduced form instrumental variables approach.63 If 63 We will discuss this in more detail

when we cover instrumental variables
(IV). But it is necessary to at least cover
bits of IV now since this is a common
second best solution in a randomized
experiment when switching occurs.

a student had been randomly assigned to a small class, but switched
to a regular class in the first grade, we would regress scores on the
original assignment since the original assignment satisfies the inde-
pendence assumption. So long as this original assignment is highly
correlated with the first through third grade class size (even if not
perfectly correlated), then this regression is informative of the effect
of class size on test scores. This is what makes the original assign-
ment a good instrumental variable – because it is highly correlated
with subsequent class size, even with switching.

In this approach, kindergarten is the same for both the OLS and
reduced form IV approach, because the randomization assignment
and the actual classroom enrollment are the same in kindergarten.
But from grade 1 onwards, OLS and reduced form IV differ because
of the switching.

Figure 12 shows eight regressions – four per approach, where
each four is like the ones shown in previous figures. Briefly, just
notice that while the two regressions yield different coefficients, their
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Figure 12: IV reduced form approach
compared to the OLS approach
[Krueger, 1999].

magnitudes and precision are fairly similar. The reduced form IV
approach yields coefficients that are about 1 percentage point lower
on average than what he got with OLS.

Some other problems worth mentioning when it comes to ran-
domized experiments. First, there could be heterogeneous treatment
effects. In other words, perhaps di differs across i students. If this
is the case, then ATT 6= ATU though in large enough samples, and
under the independence assumption, this difference should be negli-
gible.

Now we do our own analysis. Go back into Stata and type:

. reg tscorek sck rak

Krueger standardized the test scores into percentiles, but I will
keep the data in its raw form simplicity. This means the results will
be dissimilar to what is shown in his Figure 6.

Dependent variable Total kindergarten score (unscaled)

Small class 13.90

(2.41)
Regular/aide class 0.314

(2.310)

Table 13: Krueger regressions [Krueger,
1999].

In conclusion, we have done a few things in this chapter. We’ve
introduced the Rubin causal model by introducing its powerful po-
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tential outcomes notation. We showed that the simple difference in
mean outcomes was equal to the sum of the average treatment effect,
a term called the selection bias, and a term called the weighted het-
erogeneous treatment effect bias. Thus the simple difference in mean
outcomes estimator is biased unless those second and third terms
zero out. One situation in which they zero out is under independence
of the treatment, which is when the treatment has been assigned
independently of the potential outcomes. When does independence
occur? The most commonly confronted situation where it would
occur is under physical randomization of the treatment to the units.
Because physical randomization assigns the treatment for reasons
that are independent of the potential outcomes, the selection bias ze-
roes out as does the heterogeneous treatment effect bias. We now
move to discuss a second situation where the two terms zero out:
conditional independence.





Matching and subclassification

“I’m Slim Shady, yes I’m the real Shady
All you other Slim Shadys are just imitating
So won’t the real Slim Shady, please stand up,
Please stand up,
Please stand up”
– Eminem
One of the main things I wanted us to learn from the chapter

on directed acylical graphical models is the idea of the backdoor
criterion. Specifically, if there exists a conditioning strategy that
will satisfy the backdoor criterion, then you can use that strategy to
identify your causal effect of interest. We now discuss three different
kinds of conditioning strategies. They are subclassification, exact
matching, and approximate matching. I will discuss each of them
now.

Subclassification

Subclassification is a method of satisfying the backdoor criterion
by weighting differences in means by strata-specific weights. These
strata-specific weights will, in turn, adjust the differences in means
so that their distribution by strata is the same as that of the counter-
factual’s strata. This method implicitly achieves distributional balance
between the treatment and control in terms of that known, observable
confounder. This method was created by statisticians like Cochran
[1968] when trying to analyze the causal effect of smoking on lung
cancer, and while the methods today have moved beyond it, we in-
clude it because some of the techniques implicit in subclassification
are present throughout the rest of the book.64

64 To my knowledge, Cochran [1968] is
the seminal paper on subclassification.One of the concepts that will thread through this chapter is the

concept of the conditional independence assumption, or CIA. In the
previous example with the STAR test, we said that the experimenters
had assigned the small classes to students conditionally randomly.
That is, conditional on a given school, as, the experimenters ran-
domly assigned the treatment across teachers and students. This
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technically meant that treatment was independent of potential out-
comes for any given school. This is a kind of independence assumption,
but it’s one that must incorporate the conditional element to the
independent assignment of the treatment. assumption is written as

(Y1, Y0) ?? D|X

where again ?? is the notation for statistical independence and X
is the variable we are conditioning on. What this means is that the
expected values of Y1 and Y0 are equal for treatment and control
group for each value of X. Written out this means:

E[Y1|D = 1, X] = E[Y1|D = 0, X]

E[Y0|D = 1, X] = E[Y0|D = 0, X]

Put into words, the expected value of each potential outcome is equal
for the treatment group and the control group, once we condition on
some X variable. If CIA can be credibly assumed, then it necessarily
means you have selected a conditioning strategy that satisfies the
backdoor criterion. They are equivalent concepts as far as we are
concerned.

An example of this would mean that for the ninth school in our
sample, a9 = 1, the expected potential outcomes are the same for
small and large classes, and so on. When treatment is conditional
on observable variables, such that the CIA is satisfied, we say that
the situation is one of selection on observables. If one does not directly
address the problem of selection on observables, estimates of the
treatment effect will be biased. But this is remedied if the observable
variable is conditioned on. The variable X can be thought of as an
n⇥ k matrix of covariates which satisfy the CIA as a whole.

I always find it helpful to understand as much history of thought
behind econometric estimators, so let’s do that here. One of the pub-
lic health problems of the mid to late 20th century was the problem
of rising lung cancer. From 1860 to 1950, the incidence of lung cancer
in cadavers grew from 0% of all autopsies to as high as 7% (Figure
13). The incidence appeared to be growing at an increasing rate. The
mortality rate per 100,000 from cancer of the lungs in males reached
80-100 per 100,000 by 1980 in the UK, Canada, England and Wales.
From 1860 to 1950, the incidence of lung cancer in cadavers grew
from 0% of all autopsies to as high as 7% (Figure 13). The incidence
appeared to be growing at an increasing rate. The mortality rate per
100,000 from cancer of the lungs in males reached 80-100 per 100,000

by 1980 in the UK, Canada, England and Wales.
Several studies were found to show that the odds of lung cancer

was directly related to the amount of cigarettes the person smoked
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Figure 1 
Lung Cancer at Autopsy: Combined Results from 18 Studies 
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The Registrar General of England and Wales began publishing the num- 
bers of deaths for specific cancer sites in 1911.W The death rates for can- 
cer of the lung from 1911 to 1955 were published by Percy Stocks.26 The 
rates increased exponentially over the period: 10% per year in males 
and 6% per year in females. Canadian rates for the period 1931-52 were 
published by A. J. Phillips.27 The rates were consistently lower in Canada 
than in England and Wales, but also increased exponentially at 8% per 
year in males and 4% per year in females. 

The British and Canadian rates are shown in Figure 2. The rates (a) for 
males, and (b) for females have been age-standardized,28 and the trends 
extended to 1990, using data published by Richard Peto and colleagues, 29 
and by Statistics Canada.30 In British males the rates reached a maxi- 

I mum in the mid-1970's and then declined. In Canadian males the initial 
rise was more prolonged, reaching a maximum in 1990. Among females 
the age-standardized rates continue to climb in both countries, the rise 
being steeper in Canada than in Britain. 

The fact that mortality was lower at first in Canada than in Britain 
may be explained by the difference in smoking in the two countries. 
Percy Stocks31 cited data on the annual consumption per adult of ciga- 
rettes in various countries between 1939 and 1957. In 1939 the con- 
sumption in Canada was only half that in the United Kingdom, while in 
1957 the consumption in Canada was 5% higher than in the United 
Kingdom. 

The trends in the age-standardized rates in most developed countries 
between 1953 and 1992 have been published recently by the International 
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Figure 2(a) 
Mortality from Cancer of the Lung in Males 
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Figure 2(b) 
Mortality from Cancer of the Lung in Females 
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Figure 13: Lung cancer at autopsy
trends
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a day. Figure 14 shows that the relationship between daily smoking
and lung cancer in males was monotonic in the number of cigarettes
the male smoked per day. Smoking, it came to be believed, was
causing lung cancer. But some statisticians believed that scientists
couldn’t draw that conclusion because it was possible that smoking
was not independent of health outcomes. Specifically, perhaps the
people who smoked cigarettes differed from one another in ways that
were directly related to the incidence of lung cancer.

This was a classic “correlation does not necessarily mean causa-
tion” kind of problem. Smoking was clearly correlated with lung
cancer, but does that necessarily mean that smoking caused lung
cancer? Thinking about the simple difference in means notation,
we know that a comparison of smokers and non-smokers will be
biased in observational data is the independence assumption does
not hold. And because smoking is endogenous, meaning people
choose to smoke, it’s entirely possible that smokers differed from the
non-smokers in ways that were directly related to the incidence of
lung cancer. Criticisms at the time came from such prominent statis-
ticians as Joseph Berkson, Jerzy Neyman and Ronald Fisher. Their
reasons were as follows. First, it was believed that the correlation was
spurious because of a biased selection of subjects. The samples were
non-random in other words. Functional form complaints were also
common. This had to do with people’s use of risk ratios and odds
ratios. The association, they argued, was sensitive to those kinds of
functional form choices.

Probably most damning, though, was the hypothesis that there
existed an unobservable genetic element that both caused people
to smoke and which, independently, caused people to develop lung
cancer [Pearl, 2009]. This confounder meant that smokers and non-
smokers differed from one another in ways that were directly related
to their potential outcomes, and thus independence did not hold.
Other studies showed that cigarette smokers and non-smokers dif-
fered on observables. For instance, smokers were more extroverted
than non-smokers, as well as differed in age, income, education, and
so on.

Other criticisms included that the magnitudes relating smoking
and lung cancer were considered implausibly large. And again, the
ever present criticism of observational studies, there did not exist any
experimental evidence that could incriminate smoking as a cause of
lung cancer.

But think about the hurdle that that last criticism actually cre-
ates. Imagine the hypothetical experiment: a large sample of people,
with diverse potential outcomes, are assigned to a treatment group
(smoker) and control (non-smoker). These people must be dosed
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to the publication of the London results later that year73 and the com- 
plete study, involving 1,465 pairs of lung cancer patients and controls, in 
1952.54 The results were consistent with earlier studies, but the large 
number of patients involved, and the more detailed questions asked, 
led to a more searching analysis and the elimination of possible con- 
founding factors. 

After 1950 the number of case-coytrol studies mushroomed. The accu- 
mulating evidence from these studies was reviewed successively by 
Richard Doll75 Harold Dorn,56 and the Surgeon General of the United 
States.57 Initially the results of the case-control studies were expressed 
simply in terms of the proportions of smokers among cases and con- 
trols (p1 and p2,say), but in a seminal paper in 1951 Jerome Cornfield58 
showed that the odds ratio, pl/(l - pl): p241 - p2), in a case-control 
study is an estimate of the ratio of the risk of lung cancer among smok- 

' ers to that among non-smokers. This paper was the first major contri- 
bution to epidemiological methods produced by the problem of lung 
cancer and smoking. 

Figure 4 summarizes the results of 24 case-control studies in males and 
12 such studies in females. Many of the studies were small so that the 
estimates of the odds ratio varied considerably. In Figure 4 a weighted 
mean is shown, calculated by a method described by Barnet Woolf in 
1955.59 The risk of lung cancer is greater in males than females, and 
increases with the amount smoked. 

Figure 4 
Smoking and Lung Cancer Case-control Studies 
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Cohort Studies 60 

Cohort studies, though less prone to bias, are much more difficult to 
perform than case-control studies, since it is necessary to assemble many 
thousands of individuals, determine their smoking status, and follow 
them up for several years to determine how many develop lung cancer. 
Four such studies were mounted in the 1950s. The subjects used were 
British doctors,61 United States veterans,62 Canadian veterans,63 and vol- 
unteers assembled by the American Cancer Society.@ All four used mor- 
tality as the end-point. 

Figure 5 shows the combined mortality ratios for cancer of the lung in 
males by level of cigarette smoking. Two of the studies involved females, 
but the numbers of lung cancer deaths were too small to provide precise 
estimates. Since all causes of death were recorded in the cohort studies it 
was possible to determine the relationship between smoking and dis- 
eases other than lung cancer. Sigruficant associations were found in rela- ' 

tion to several types of cancer (e.g. mouth, pharynx, larynx, esophagus, 
bladder) and with chronic respiratory disease and cardiovascular disease. 

Figure 5 
Smoking and Lung cancer Cohort Studies in Males 
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The epidemiological studies of smoking and cancer of the lung stim- 
ulated debates within two areas of discourse: (1) the scientific literature, 
and (2) the medical establishment and government agencies. The first of 
these is most relevant to the development of epidemiology as a scientific 
discipline. 

Figure 14: Smoking and Lung Cancer
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with their corresponding treatments long enough for us to observe
lung cancer develop – so presumably years of heavy smoking. How
could anyone ever run an experiment like that? To describe it is to
confront the impossibility of running such a randomized experiment.
But how then do we answer the causal question without indepen-
dence (i.e., randomization)?

It is too easy for us to criticize Fisher and company for their stance
on smoking as a causal link to lung cancer because that causal link
is now universally accepted as scientific fact. But remember, it was
not always. And the correlation/causation point is a damning one.
Fisher’s arguments, it turns out, was based on sound science.65 Yet, 65 But, it is probably not a coincidence

that Roland Fisher, the harshest critic
of the epidemiological theory that
smoking caused lung cancer, was
himself a chain smoker. When he died
of lung cancer, he was the highest paid
expert witness for the tobacco industry
in history.

we now know that in fact the epidemiologists were right. Hooke
[1983] wrote:

“the [epidemiologists] turned out to be right, but only because bad
logic does not necessarily lead to wrong conclusions.”

To motivate what we’re doing in subclassification, let’s work with
Cochran [1968], which was a study trying to address strange patterns
in smoking data by adjusting for a confounder.66 Cochran lays out 66 I first learned of this paper from

Alberto Abadie in a lecture he gave
at the Northwestern Causal Inference
workshop.

mortality rates by country and smoking type (Table 14).

Smoking group Canada British US

Non-smokers 20.2 11.3 13.5
Cigarettes 20.5 14.1 13.5
Cigars/pipes 35.5 20.7 17.4

Table 14: Death rates per 1,000 person-
years [Cochran, 1968]

As you can see, the highest death rate among Canadians is the
cigar and pipe smokers, which is considerably higher than that
of non-smokers or cigarettes. Similar patterns show up in both
countries, though smaller in magnitude than what we see in Canada.

This table suggests that pies and cigar smoking are more dan-
gerous than cigarette smoking which, to a modern reader, sounds
ridiculous. The reason it sounds ridiculous is because cigar and pipe
smokers often do not inhale, and therefore there is less tar that accu-
mulates in the lungs than with cigarettes. And insofar as it’s the tar
that causes lung cancer, it stands to reason that we should see higher
mortality rates among cigarette smokers.

But, recall the independence assumption. Do we really believe
that:

E[Y1|Cigarette] = E[Y1|Pipe] = E[Y1|Cigar]

E[Y0|Cigarette] = E[Y0|Pipe] = E[Y0|Cigar]

Is it the case that factors related to these three states of the world
are truly independent to the factors that determine death rates? One

http://www.york.ac.uk/depts/maths/histstat/smoking.htm
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way to check this is to see if the three groups are balanced on pre-
treatment covariates. If the means of the covariates are the same for
each group, then we say those covariates are balanced and the two
groups are exchangeable with respect to those covariates.

One variable that appears to matter is the age of the person. Older
people were more likely at this time to smoke cigars and pipes, and
without stating the obvious, older people were more likely to die. In
Table 15 we can see the mean ages of the different groups.

Smoking group Canada British US

Non-smokers 54.9 49.1 57.0
Cigarettes 50.5 49.8 53.2
Cigars/pipes 65.9 55.7 59.7

Table 15: Mean ages, years [Cochran,
1968].

The high means for cigar and pip smokers are probably not terri-
bly surprising to most of you. Cigar and pipe smokers are typically
older than cigarette smokers, or at least were in 1968 when this was
written. And since older people die at a higher rate (for reasons
other than just smoking cigars), maybe the higher death rate for cigar
smokers is because they’re older on average. Furthermore, maybe by
the same logic the reason that cigarette smoking has such a low mor-
tality rate is because cigarette smokers are younger on average. Note,
using DAG notation, this simply means that we have the following
DAG:

D

A

Y

where D is smoking, Y is mortality, and A is age of the smoker.
Insofar as CIA is violated, then we have a backdoor path that is open,
which also means in the traditional pedagogy that we have omitted
variable bias. But however we want to describe it, the common
thing it will mean is that the distribution of age for each group
will be different – which is what I mean by covariate imbalance. My
first strategy for addressing this problem of covariate balance is by
condition on the key variable, which in turn will balance the treatment
and control groups with respect to this variable.67

67 This issue of covariate balance runs
throughout nearly every identification
strategy that we will discuss, in some
way or another.

So how do we exactly close this backdoor path using subclassi-
fication? We calculate the mortality rate for some treatment group
(cigarette smokers) by some strata (here, that is age). Next, we then
weight the mortality rate for the treatment group by a strata (age)-
specific weight that corresponds to the control group. This gives us
the age adjusted mortality rate for the treatment group. Let’s explain
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with an example by looking at Table 16. Assume that age is the only
relevant confounder between cigarette smoking and mortality. Our
first step is to divide age into strata: say 20-40, 41-70, and 71 and
older.

Death rates Number of
Cigarette-smokers Cigarette-smokers Pipe/cigar-smokers

Age 20-40 20 65 10

Age 41-70 40 25 25

Age �71 60 10 65

Total 100 100

Table 16: Subclassification example.

What is the average death rate for pipe smokers without subclas-
sification? It is the weighted average of the mortality rate column
where each weight is equal to Nt

N and Nt and N are the number of
people in each group and the total number of people, respectively.
Here that would be 20⇥ 65

100 + 40⇥ 25
100 + 60⇥ 10

100 = 29. That is, the
mortality rate of smokers in the population is 29 per 100,000.

But notice that the age distribution of cigarette smokers is the
exact opposite (by construction) of pipe and cigar smokers. Thus the
age distribution is imbalanced. Subclassification simply adjusts the
mortality rate for cigarette smokers so that it has the same age distri-
bution of the comparison group. In other words, we would multiple
each age-specific mortality rate by the proportion of individuals in
that age strata for the comparison group. That would be

20⇥ 10
100

+ 40⇥ 25
100

+ 60⇥ 65
100

= 51

That is, when we adjust for the age distribution, the age-adjusted
mortality rate for cigarette smokers (were they to have the same age
distribution as pipe and cigar smokers) would be 51 per 100,000 –
almost twice as large as we got taking a simple naive calculation
unadjusted for the age confounder.

Cochran uses a version of this subclassification method in his
paper and recalculates the mortality rates for the three countries and
the three smoking groups. See Table 17. As can be seen, once we
adjust for the age distribution, cigarette smokers have the highest
death rates among any group.

Which variables should be used for adjustments? This kind of adjust-
ment raises a question – which variable should we use for adjust-
ment. First, recall what we’ve emphasized repeatedly. Both the
backdoor criterion and CIA tell us precisely what we need to do. We
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Smoking group Canada UK US

Non-smokers 20.2 11.3 13.5
Cigarettes 29.5 14.8 21.2
Cigars/pipes 19.8 11.0 13.7

Table 17: Adjusted mortality rates using
3 age groups [Cochran, 1968].

need to choose a variable that once we condition on it, all backdoor
paths are closed and therefore the CIA is met. We call such a variable
the covariate. A covariate is usually a random variable assigned to the
individual units prior to treatment. It is predetermined and therefore
exogenous. It is not a collider, nor is it endogenous to the outcome
itself (i.e., no conditioning on the dependent variable). A variable is
exogenous with respect to D is the value of X does not depend on
the value of D. Oftentimes, though not always and not necessarily,
this variable will be time invariant, such as race.

Why shouldn’t we include in our adjustment some descendent of
the outcome variable itself? We saw this problem in our first collider
example from the DAG chapter. Conditioning on a variable that is a
descendent of the outcome variable can introduce collider bias, and it
is not easy to know ex ante just what kind of bias this will introduce.

Thus, when trying to adjust for a confounder using subclassifica-
tion, let the DAG help you choose which variables to include in the
conditioning strategy. Your goal ultimately is to satisfy the backdoor
criterion, and if you do, then the CIA will hold in your data.

Identifying assumptions Let me now formalize what we’ve learned.
In order to estimate a causal effect when there is a confounder, we
need (1) CIA and (2) the probability of treatment to be between 0 and
1 for each strata. More formally,

1. (Y1, Y0) ?? D|X (conditional independence)

2. 0 < Pr(D = 1|X) < 1 with probability one (common support)

These two assumptions yield the following identity

E[Y1 �Y0|X] = E[Y1 �Y0|X, D = 1]

= E[Y1|X, D = 1]� E[Y0|X, D = 0]

= E[Y|X, D = 1]� E[Y|X, D = 0]

where each value of Y is determined by the switching equation.
Given common support, we get the following estimator:

[
dATE =

Z
(E[Y|X, D = 1]� E[Y|X, D = 0]) dPr(X)
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These assumptions are necessary to identify the ATE, but fewer as-
sumptions are needed. They are that D is conditionally independent
of Y0, and that there exists some units in the control group for each
treatment strata. Note, the reason for the common support assump-
tion is because we are weighting the data; without common support,
we cannot calculate the relevant weights.

Subclassification exercise: Titanic dataset For what we are going to do
next, I find it useful to move into actual data. We will use a dataset
to conduct subclassification which I hope you find interesting. As ev-
eryone knows, the Titanic ocean cruiser hit an iceberg and sank on its
maiden voyage. A little over 700 passengers and crew survived out of
the 2200 total. It was a horrible disaster. Say that we are curious as to
whether or not seated in first class, were you more likely to survive.
To answer this, as always, we need two things: data and assumptions.

. scuse titanic, clear

Our question as to whether first class seating increased the prob-
ability of survival is confounded by the oceanic norms during disas-
ters. Women and children should be escorted to the lifeboats before
the men in the event of a disaster requiring exiting the ship. If more
women and children were in first class, then maybe first class is sim-
ply picking up the effect of that social norm, rather than the effect of
class and wealth on survival. Perhaps a DAG might help us here, as
a DAG can help us outline the sufficient conditions for identifying
the causal effect of first class on survival.

D

C

W

Y

Now before we commence, let’s review what it means. This says
that being a female made you more likely to be in first class, but also
made you more likely to survive because lifeboats were more likely
to be allocated to women. Furthermore, being a child made you more
likely to be in first class and made you more likely to survive. Finally,
there are no other confounders, observed or unobserved.68

68 I’m sure you can think of others,
though, in which case this DAG is
misleading.

Here we have one direct path (the causal effect) between first class
(D) and survival (Y) and that’s D ! Y. But, we have two backdoor
paths. For instance, we have the D  C ! Y backdoor path and
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we have the D  W ! Y backdoor path. But fortunately, we have
data that includes both age and gender, so it is possible to close each
backdoor path and therefore satisfy the backdoor criterion. We will
use subclassification to do that.

But, before we use subclassification to achieve the backdoor cri-
terion, let’s calculate a naive simple difference in outcomes (SDO)
which is just

E[Y|D = 1]� E[Y|D = 0]

for the sample.

. gen female=(sex==0)

. label variable female "Female"

. gen male=(sex==1)

. label variable male "Male"

. gen s=1 if (female==1 & age==1)

. replace s=2 if (female==1 & age==0)

. replace s=3 if (female==0 & age==1)

. replace s=4 if (female==0 & age==0)

. gen d=1 if class==1

. replace d=0 if class!=1

. summarize survived if d==1

. gen ey1=r(mean)

. summarize survived if d==0

. gen ey0=r(mean)

. gen sdo=ey1-ey0

. su sdo

* SDO says that being in first class raised the probability of survival by 35.4%

When you run this code, you’ll find that the people in first class were
35.4% more likely to survive than people in any other group of pas-
sengers including the crew. But note, this does not take into account
the confounders of age and gender. So next we use subclassification
weighting to control for these confounders. Here’s the steps that that
will entail:

1. Stratify the data into four groups: young males, young females,
old males, old females

2. Calculate the difference in survival probabilities for each group

3. Calculate the number of people in the non-first class groups and
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divide by the total number of non-first class population. These are
our strata specific weights.

4. Calculate the weighted average survival rate using the strata
weights.

Let’s do this in Stata, which hopefully will make these steps more
concrete.
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. cap n drop ey1 ey0

. su survived if s==1 & d==1

. gen ey11=r(mean)

. label variable ey11 "Average survival for male child in treatment"

. su survived if s==1 & d==0

. gen ey10=r(mean)

. label variable ey10 "Average survival for male child in control"

. gen diff1=ey11-ey10

. label variable diff1 "Difference in survival for male children"

. su survived if s==2 & d==1

. gen ey21=r(mean)

. su survived if s==2 & d==0

. gen ey20=r(mean)

. gen diff2=ey21-ey20

. su survived if s==3 & d==1

. gen ey31=r(mean)

. su survived if s==3 & d==0

. gen ey30=r(mean)

. gen diff3=ey31-ey30

. su survived if s==4 & d==1

. gen ey41=r(mean)

. su survived if s==4 & d==0

. gen ey40=r(mean)

. gen diff4=ey41-ey40

. count if s==1 & d==0

. count if s==2 & d==0

. count if s==3 & d==0

. count if s==4 & d==0

. count

. gen wt1=425/2201

. gen wt2=45/2201

. gen wt3=1667/2201

. gen wt4=64/2201

. gen wate=diff1*wt1 + diff2*wt2 + diff3*wt3 + diff4*wt4

. sum wate sdo
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Here we find that once we condition on the confounders, gender and
age, we find a much lower probability of survival associated with
first class (though frankly, still large). The weighted ATE is 16.1% vs
the SDO which is 35.4%.

Curse of dimensionality Here we’ve been assuming two covariates
each of which has two possible set of values. But this was for conve-
nience. Our Titanic dataset, for instance, only came to us with two
possible values for age – child and adult. But what if it had come to
us with multiple values for age, like specific age? Then once we con-
dition on individual age and gender, it’s entirely likely that we will
not have the information necessary to calculate differences within
strata, and therefore be unable to calculate the strata-specific weights
that we need for subclassification.

For this next part, let’s assume that we have precise data on Titanic
survivor ages. But because this will get incredibly laborious, let’s just
focus on a few of them.

Survival Prob Number of
Age and Gender 1st Class Controls Diff. 1st Class Controls

Male 11-yo 1.0 0 1 1 2

Male 12-yo – 1 – 0 1

Male 13-yo 1.0 0 1 1 2

Male 14-yo – 0.25 – 0 4

. . .

Table 18: Subclassification example of
Titanic survival for large K

Here we see an example of the common support assumption
being violated. The common support assumption requires that
for each strata, there exist observations in both the treatment and
control group, but as you can see, there are not any 12 year old
male passengers in first class. Nor are there any 14-year old male
passengers in first class. And if we were to do this for every age
⇥ gender combination, we would find that this problem was quite
common. Thus we cannot calculate the ATE.

But, let’s say that the problem was always on the treatment group,
not the control group. That is, let’s assume that there is always some-
one in the control group for a given gender ⇥ age combination, but
there isn’t always for the treatment group. Then we can calculate the
ATT. Because as you see in this table, for those two strata, 11 and 13

year olds, there is both treatment and control group values for the cal-
culation. So long as there exists controls for a given treatment strata,
we can calculate the ATT. The equation to do so can be compactly
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written as:

b
dATT =

K

Â
k=1

(Y1,k �Y0,k)⇥
✓

Nk
T

NT

◆

Plugging in values for those summations, we get
We’ve seen now a problem that arises with subclassification – in a

finite sample, subclassification becomes less feasible as the number
of covariates grows because as K grows, the data becomes sparse. We
will at some point be missing values, in other words, for those K cat-
egories. Imagine if we tried to add a third strata, say race (black and
white). Then we’d have two age categories, two gender categories
and two race categories, giving us eight possibilities. In this small
sample, we probably will end up with many cells having missing
information. This is called the curse of dimensionality. If sparseness
occurs, it means many cells may contain either only treatment units,
or only control units, but not both. If that happens, we can’t use
subclassification, because we do not have common support. And
therefore we are left searching for an alternative method to satisfy the
backdoor criterion.

Exact matching

Subclassification uses the difference between treatment and control
group units, and achieves covariate balance by using the K probabil-
ity weights to weight the averages. It’s a simple method, but it has
the aforementioned problem of the “curse of dimensionality”. And
probably, that’s going to be an issue practically in any research you
undertake because it may not be merely one variable you’re worried
about, but several. In which case, you’ll already be running into the
curse. But the thing that we emphasize here is that the subclassifica-
tion method is using the raw data, but weighting it so as to achieve
balance. We are weighting the differences, and then summing over
those weighted differences.

But there’s alternative approaches. For instance, what if we esti-
mated bdATT by imputing the missing potential outcomes by condition-
ing on the confounding, observed covariate? Specifically, what if we
filled in the missing potential outcome for each treatment unit using
a control group unit that was “closest” to the treatment group unit
for some X confounder. This would give us estimates of all the coun-
terfactuals from which we could simply take the average over the
differences. As we will show, this will also achieve covariate balance.
This method is called matching.

There are two broad types of matching that we will consider: exact
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matching and approximate matching. We will first start by describing
exact matching. Much of what I am going to be discussing is based
on Abadie and Imbens [2006].69

69 I first learned about this form of
matching from lectures by Alberto
Abadie at the Northwestern Causal
Inference workshop – a workshop that I
highly recommend.

A simple matching estimator is the following:

b
dATT =

1
NT

Â
Di=1

(Yi �Yj(i))

where Yj(i) is the jth unit matched to the ith unit based on the jth being
“closest to” the ith unit for some X covariate. For instance, let’s say
that a unit in the treatment group has a covariate with value 2 and
we find another unit in the control group (exactly one unit) with
a covariate value of 2. Then we will impute the treatment unit’s
missing counterfactual with the matched unit’s, and take a difference.

But, what if there’s more than one variable “closest to” the ith

unit? For instance, say that the same ith unit has a covariate value
of 2 and we find two j units with a value of 2. What can we then
do? Well, one option is to simply take the average of those two units’
Y outcome value. What if we find 3? What if we find 4, and so on?
However many matches M that we find, we would assign the average
outcome ( 1

M ) as the counterfactual for the treatment group unit.
Notationally, we can describe this estimator as

b
dATT =

1
NT

Â
Di=1

✓
Yi �


1
M

M

Â
m=1

Yjm(1)

�◆

This really isn’t too different of an estimator from the one before it;
the difference is the 1

M which is the averaging over closest matches
that we were talking about. This approach works well when we can
find a number of good matches for each treatment group unit. We
usually define M to be small, like M = 2. If there are more than 2,
then we may simply randomly select two units to average outcomes
over.70

70 Note that all of these approaches
require some programming, as they’re
algorithms.

Those were all average treatment effects on the treatment group
estimators. You can tell that these are bdATT estimators because of the
summing over the treatment group.71 But we can also estimate the 71 Notice the Di = 1 in the subscript of

the summation operator.ATE. But note, when estimating the ATE, we are filling in both (a)
missing control group units like before and (b) missing treatment
group units. If observation i is treated, in other words, then we
need to fill in the missing Y0

i using the control matches, and if the
observation i is a control group unit, then we need to fill in the
missing Y1

i using the treatment group matches. The estimator is
below. It looks scarier than it really is. It’s actually a very compact,
nicely written out estimator equation.
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b
dATE =

1
N

N

Â
i=1

(2Di � 1)


Yi �
✓

1
M

M

Â
m=1

Yjm(i)

◆�

The 2Di � 1 is the nice little trick. When Di = 1 then that leading term
becomes a 1.72 And when Di = 0, then that leading term becomes 72 2⇥ 1� 1 = 1.

a negative 1, and the outcomes reverse order so that the treatment
observation can be imputed. Nice little mathematical form!

Let’s see this work in action by working with an example. Table 19

shows two samples: a list of participants in a job trainings program
and a list of non-participants, or non-trainees. The left-hand-side
group is the treatment group and the right-hand-side group is the
control group. The matching algorithm that we defined earlier will
create a third group called the matched sample consisting of each
treatment group unit’s matched counterfactual. Here we will match
on the age of the participant.

Trainees Non-Trainees
Unit Age Earnings Unit Age Earnings

1 18 9500 1 20 8500

2 29 12250 2 27 10075

3 24 11000 3 21 8725

4 27 11750 4 39 12775

5 33 13250 5 38 12550

6 22 10500 6 29 10525

7 19 9750 7 39 12775

8 20 10000 8 33 11425

9 21 10250 9 24 9400

10 30 12500 10 30 10750

11 33 11425

12 36 12100

13 22 8950

14 18 8050

15 43 13675

16 39 12775

17 19 8275

18 30 9000

19 51 15475

20 48 14800

Mean 24.3 $11,075 31.95 $11,101.25

Table 19: Training example with exact
matching

Before we do this, though, I want to show you how the ages of
the trainees differs on average with the ages of the non-trainees.
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We can see that in Table 19 – the average age of the participants is
24.3 and the average age of the non-participants is 31.95. Thus the
people in the control group are older, and since wages typically rise
with age, we may suspect that part of the reason that their average
earnings is higher ($11,075 vs. $11,101) is because the control group
is older. We say that the two groups are not exchangeable because the
covariate is not balanced. Let’s look at the age distribution ourselves
to see. To illustrate this, let’s download the data first. We will create
two histograms – the distribution of age for treatment and non-
trainee group – as well as summarize earnings for each group. That
information is also displayed in Figure 15.

. scuse training_example, clear

. histogram age_treat, bin(10) frequency

. histogram age_controls, bin(10) frequency

. su age_treat age_controls

. su earnings_treat earnings_control

As you can see from Figure 15, these two populations not only
have different means (Table 19), but the entire distribution of age
across the samples is different. So let’s use our matching algorithm
and create the missing counterfactuals for each treatment group
unit. This method, since it only imputes the missing units for each
treatment unit, will yield an estimate of the bdATT .

Now let’s move to creating the matched sample. As this is exact
matching, the distance traveled to the nearest neighbor will be zero
integers. This won’t always be the case, but note that as the control
group sample size grows, the likelihood we find a unit with the same
covariate value as one in the treatment group grows. I’ve created a
dataset like this. The first treatment unit has an age of 18. Searching
down through the non-trainees, we find exactly one person with
an age of 18 and that’s unit 14. So we move the age and earnings
information to the new matched sample columns.

We continue doing that for all units, always moving the control
group unit with the closest value on X to fill in the missing coun-
terfactual for each treatment unit. If we run into a situation where
there’s more than one control group unit “close”, then we simply av-
erage over them. For instance, there are two units in the non-trainees
group with an age of 30, and that’s 10 and 18. So we averaged their
earnings and matched that average earnings to unit 10. This is filled
out in Table 20.

Now we see that the mean age is the same for both groups. We
can also check the overall age distribution (Figure 16). As you can
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Figure 15: Covariate distribution by job
trainings and control.
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Trainees Non-Trainees Matched Sample
Unit Age Earnings Unit Age Earnings Unit Age Earnings

1 18 9500 1 20 8500 14 18 8050

2 29 12250 2 27 10075 6 29 10525

3 24 11000 3 21 8725 9 24 9400

4 27 11750 4 39 12775 8 27 10075

5 33 13250 5 38 12550 11 33 11425

6 22 10500 6 29 10525 13 22 8950

7 19 9750 7 39 12775 17 19 8275

8 20 10000 8 33 11425 1 20 8500

9 21 10250 9 24 9400 3 21 8725

10 30 12500 10 30 10750 10,18 30 9875

11 33 11425

12 36 12100

13 22 8950

14 18 8050

15 43 13675

16 39 12775

17 19 8275

18 30 9000

19 51 15475

20 48 14800

Mean 24.3 $11,075 31.95 $11,101.25 24.3 $9,380

Table 20: Training example with exact
matching (including matched sample)
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see, the two groups are exactly balanced on age. Therefore we describe
the two groups as exchangeable. And the difference in earnings be-
tween those in the treatment group and those in the control group is
$1,695. That is, we estimate that the causal effect of the program was
$1,695 in higher earnings.73

73 I included code for reproducing this
information as well.

. scuse training_example, clear

. histogram age_treat, bin(10) frequency

. histogram age_matched, bin(10) frequency

. su age_treat age_controls

. su earnings_matched earnings_matched

Let’s summarize what we’ve learned. We’ve been using a lot of
different terms, drawn from different authors and different statistical
traditions, so I’d like to map them onto one another. The two groups
were different in ways that were directly related to both the treatment
and the outcome itself. This mean that the independence assumption
was violated. Matching on X meant creating an exchangeable set of
observations – the matched sample – and what characterized this
matched sample was balance.

Approximate matching

The previous example of matching was relatively simple – find a unit
or collection of units that have the same value of some covariate X
and substitute their outcomes as some unit j’s counterfactuals. Once
you’ve done that, average the differences and you have an estimate of
the ATE.

But what if when you had tried to find a match, you couldn’t find
another unit with that exact same value? Then you’re in the world of
a set of procedures that I’m calling approximate matching.

Nearest Neighbor Covariate Matching One of the instances where
exact matching can break down is when the number of covariates, K,
grows large. And when we have to match on more than one variable,
but are not using the sub-classification approach, then one of the first
things we confront is the concept of distance. What does it mean for
one unit’s covariate to be “close” to someone else’s? Furthermore,
what does it mean when there are multiple covariates with therefore
measurements in multiple dimensions?

Matching on a single covariate is straightforward because distance
is measured in terms of the covariate’s own values. For instance, a
distance in age is simply how close in years or months or days the
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Figure 16: Covariate distribution by job
trainings and matched sample.
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person is to another person. But what if we have several covariates
needed for matching? Say it’s age and log income. A one point
change in age is very different from a one point change in log income,
not to mention that we are now measuring distance in two, not one,
dimensions. When the number of matching covariates is more than
one, we need a new definition of distance to measure closeness. We
begin with the simplest measure of distance: the Euclidean distance:

||Xi � Xj|| =
q

(Xi � Xj)0(Xi � Xj)

=

vuut
k

Â
n=1

(Xni � Xnj)2

The problem with this measure of distance is that the distance mea-
sure itself depends on the scale of the variables themselves. For this
reason, researchers typically will use some modification of the Eu-
clidean distance, such as the normalized Euclidean distance, or they’ll
use an alternative distance measure altogether. The normalized Eu-
clidean distance is a commonly used distance and what makes it
different is that the distance of each variable is scaled by the vari-
able’s variance. The distance is measured as:

||Xi � Xj||=
q

(Xi � Xj)0 bV�1(Xi � Xj)

where
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Notice that the normalized Euclidean distance is equal to:

||Xi � Xj||=

vuut
k

Â
n=1

(Xni � Xnj)
b
s

2
n

Thus if there are changes in the scale of X, these changes also affect
its variance, and so the normalized Euclidean distance does not
change.

Finally, there is the Mahalanobis distance which like the normalized
Euclidean distance measure is a scale-invariant distance metric. It is:

||Xi � Xj||=
q

(Xi � Xj)0bS�1
X (Xi � Xj)

where bSX is the sample variance-covariance matrix of X.



128 causal inference: the mixtape

Basically, more than one covariate creates a lot of headaches. Not
only does it create the curse of dimensionality problem, but it also
makes measuring distance harder. All of this creates some challenges
for finding a good match in the data. As you can see in each of
these distance formulas, there are sometimes going to be matching
discrepancies. Sometimes Xi 6= Xj. What does this mean though? It
means that some unit i has been matched with some unit j on the
basis of a similar covariate value of X = x. Maybe unit i has an age
of 25, but unit j has an age of 26. Their difference is 1. Sometimes
the discrepancies are small, sometimes zero, sometimes large. But, as
they move away from zero, they become more problematic for our
estimation and introduce bias.

How severe is this bias? First, the good news. What we know
is that the matching discrepancies tend to converge to zero as the
sample size increases – which is one of the main reasons that ap-
proximate matching is so data greedy. It demands a large sample
size in order for the matching discrepancies to be trivially small. But
what if there are many covariates? The more covariates, the longer
it takes for that convergence to zero to occur. Basically, if it’s hard to
find good matches with an X that has a large dimension, then you
will need a lot of observations as a result. The larger the dimension, the
greater likelihood of matching discrepancies, the more data you need.

Bias correction This material is drawn from Abadie and Imbens
[2011] which introduces bias correction techniques with matching
estimators when there are matching discrepancies in finite samples.
So let’s begin.

Everything we’re getting at is suggesting that matching is biased
due to these poor matching discrepancies. So let’s derive this bias.
First, we write out the sample ATT estimate and then we subtract out
the true ATT.

b
dATT =

1
NT

Â
Di=1

(Yi �Yj(i))

where each i and j(i) units are matched, Xi ⇡ Xj(i) and Dj(i) = 0. Next
we define the conditional expection outcomes

µ

0(x) = E[Y|X = x, D = 0] = E[Y0|X = x]

µ

1(x) = E[Y|X = x, D = 1] = E[Y1|X = x]

Notice, these are just the expected conditional outcome functions
based on the switching equation for both control and treatment
groups.



matching and subclassification 129

As always, we write out the observed value as a function of ex-
pected conditional outcomes and some stochastic element:

Yi = µ

Di (Xi) + #i

Now rewrite the ATT estimator using the above µ terms:

b
dATT =

1
NT

Â
Di=1

[(µ1(Xi) + #i)� (µ0(Xj(i)) + # j(i))

=
1

NT
Â

Di=1
(µ1(Xi)� µ

0(Xj(i))) +
1

NT
Â

Di=1
(#i � # j(i))

Notice, the first line is just the ATT with the stochastic element
included from the previous line. And the second line rearranges it so
that we get two terms: the estimated ATT plus the average difference
in the stochastic terms for the matched sample.

Now we compare this estimator with the true value of ATT.

b
dATT � dATT =

1
NT

Â
Di=1

(µ1(Xi)� µ

0(Xj(i))� dATT

+
1

NT
Â

Di=1
(#i � # j(i))

which with some simple algebraic manipulation is:

b
dATT � dATT =

1
NT

Â
Di=1

⇣
µ

1(Xi)� µ

0(Xi)� dATT

⌘

+
1

NT
Â

Di=1
(#i � # j(i))

+
1

NT
Â

Di=1

⇣
µ

0(Xi)� µ

0(Xj(i))
⌘

.

Applying the central limit theorem and the difference,
p

NT(bdATT �
dATT) converges to a normal distribution with zero mean. But, how-
ever,

E[
p

NT(bdATT � dATT)] = E[
p

NT(µ0(Xi)� µ

0(Xj(i)))|D = 1].

Now consider the implications if the number of covariates is large.
First, the difference between Xi and Xj(i) converges to zero slowly.
This therefore makes the difference µ

0(Xi)� µ(Xj(i)) converge to zero
very slowly. Third, E[

p
NT(µ0(Xi)� µ

0(Xj(i)))|D = 1] may not converge
to zero. And fourth, E[

p
NT(bdATT � dATT)] may not converge to zero.

As you can see, the bias of the matching estimator can be severe
depending on the magnitude of these matching discrepancies. How-
ever, one good piece of news is that these discrepancies are observed.
We can see the degree to which each unit’s matched sample has se-
vere mismatch on the covariates themselves. Secondly, we can always
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make the matching discrepancy small by using a large donor pool of
untreated units to select our matches, because recall, the likelihood
of finding a good match grows as a function of the sample size, and
so if we are content to estimating the ATT, then increasing the size
of the donor pool can buy us out of this mess. But, let’s say we can’t
do that and the matching discrepancies are large. Then we can apply
bias correction methods to minimize the size of the bias. So let’s see
what the bias correction method looks like. This is based on Abadie
and Imbens [2011].

Note that the total bias is made up of the bias associated with
each individual unit i. Thus, each treated observation contributes
µ

0(Xi)� µ

0(Xj(i)) to the overall bias. The bias-corrected matching is the
following estimator:

b
d

BC
ATT =

1
NT

Â
Di=1


(Yi �Yj(i))� (bµ0(Xi)� bµ0(Xj(i)))

�

where bµ0(X) is an estimate of E[Y|X = x, D = 0] using, for example,
OLS. Again, I find it always helpful if we take a crack at these estima-
tors with concrete data. Table 21 contains more make-believe data for
8 units, 4 of whom are treated and the rest of whom are functioning
as controls. According to the switching equation, we only observe the
actual outcomes associated with the potential outcomes under treat-
ment or control, which therefore means we’re missing the control
values for our treatment group.

Unit Y1 Y0 D X

1 5 1 11

2 2 1 7

3 10 1 5

4 6 1 3

5 4 0 10

6 0 0 8

7 5 0 4

8 1 0 1

Table 21: Another matching example
(this time to illustrate bias correction)

Notice in this example, we cannot implement exact matching
because none of the treatment group units have exact matches in
the control group. It’s worth emphasizing that this is a consequence
of finite samples; the likelihood of finding an exact match grows
when the sample size of the control group grows faster than that
of the treatment group. Instead, we use nearest neighbor matching,
which is simply going to be the matching, to each treatment unit,
the control group unit whose covariate value is nearest to that of the
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treatment group unit itself. But, when we do this kind of matching,
we necessarily create matching discreprancies, which is simply another
way of saying that the covariates are not perfectly matched for every
unit. Nonetheless, the nearest neighbor “algorithm” creates Table 22.

Unit Y1 Y0 D X

1 5 4 1 11

2 2 0 1 7

3 10 5 1 5

4 6 1 1 3

5 4 0 10

6 0 0 8

7 5 0 4

8 1 0 1

Table 22: Nearest neighbor matched
sample

Recall that the bdATT � 5�4
4 + 2�0

4 + 10�5
4 + 6�1

4 = 3.25. With the
bias correction, we need to estimate bµ0(X).74 We’ll use OLS. Let’s 74 Hopefully, now it will be obvious

what exactly bµ0(X) is. All that it is is the
fitted values from a regression of Y on
X.

illustrate this using another Stata dataset based on Table 22.

. scuse training_bias_reduction, clear

. reg Y X

. predict muhat

. list

When we regress Y onto X and D, we get the following estimated
coefficients:

b
µ

0(X) = b
b0 + bb1X

= 4.42� 0.49X

This give us the following table of outcomes, treatment status and
predicted values.

And then this would be done for the other three simple differ-
ences, each of which is added to a bias correction term based on the
fitted values from the covariate values.

Now care must be given when using the fitted values for bias cor-
rection, so let me walk you through it. You are still going to be taking
the simple differences (e.g., 5-4 for row 1), but now you will also sub-
tract out the fitted values associated with each observation’s unique
covariate. So for instance, in row 1, the outcome 5 has a covariate of
11, which gives it a fitted value of 3.89, but the counterfactual has a
value of 10 which gives it a predicted value of 3.94. So therefore we
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Unit Y1 Y0 Y D X b
µ

0(X)

1 5 4 5 1 11 3.89

2 2 0 2 1 7 4.08

3 10 5 10 1 5 4.18

4 6 1 6 1 3 4.28

5 4 4 0 10 3.94
6 0 0 0 8 4.03
7 5 5 0 4 4.23
8 1 1 0 1 4.37

Table 23: Nearest neighbor matched
sample with fitted values for bias
correction

would use the following bias correction:

b
d

BC
ATT =

5� 4� (3.89� 3.94)
4

+ . . .

Now that we see how a specific fitted value is calculated and how
it contributes to the calculation of the ATT, let’s look at the entire
calculation now.

b
d

BC
ATT =

(5� 4)� (cµ0(11)�cµ0(10))
4

+
(2� 0)� (cµ0(7)�cµ0(8))

4

+
(10� 5)� (cµ0(5)�cµ0(4))

4
+

(6� 1)� (cµ0(3)�cµ0(1))
4

= 3.28

which is slightly higher than the unadjusted ATE of 3.25. Note that
this bias correction adjustment becomes more significant as the
matching discrepancies themselves become more common. But, if
the matching discrepancies are not very common in the first place,
then practically by definition, then bias adjustment doesn’t change
the estimated parameter very much.

Bias arises because of the effect of large matching discrepancies.
To minimize these discrepancies, we need a small number of M (e.g.,
M = 1). Larger values of M produce large matching discrepancies.
Second, we need matching with replacement. Because matching
with replacement can use untreated units as a match more than once,
matching with replacement produces smaller discrepancies. And
finally, try to match covariates with a large effect on µ

0(.) well.
The matching estimators have a normal distribution in large sam-

ples provided the bias is small. For matching without replacement,
the usual variance estimator is valid. That is:

b
s

2
ATT =

1
NT

Â
Di=1

✓
Yi �

1
M

M

Â
m=1

Yjm(i) � bdATT

◆2
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For matching with replacement:

b
s

2
ATT =

1
NT

Â
Di=1

 
Yi �

1
M

M

Â
m=1

Yjm(i) � bdATT

!2

+
1

NT
Â

Di=0

✓
Ki(Ki � 1)

M2

◆
cvar(#|Xi , Di = 0)

where Ki is the number of times that observation i is used as a match.
cvar(Yi|Xi , Di = 0) can be estimated also by matching. For example,
take two observations with Di = Dj = 0 and Xi ⇡ Xj, then

cvar(Yi|Xi , Di = 0) =
(Yi �Yj)2

2

is an unbiased estimator of cvar(#i|Xi , Di = 0). The bootstrap, though,
doesn’t work.

Propensity score methods There are several ways of achieving the
conditioning strategy implied by the backdoor criterion. One addi-
tional one was developed by Donald Rubin in the mid-1970s to early
1980s called the propensity score method [Rubin, 1977, Rosenbaum
and Rubin, 1983]. The propensity score is very similar in spirit to
both nearest neighbor covariate matching by Abadie and Imbens
[2006] and subclassification. It’s a very popular method, particularly
in the medical sciences, of addressing selection on observables and
has gained some use among economists as well [Dehejia and Wahba,
2002].

Before we dig into it, though, a couple of words to help manage
your expectations. Propensity score matching has not been as widely
used by economists as other methods for causal inference because
economists are oftentimes skeptical that CIA can be achieved in any
dataset. This is because for many applications, economists as a group
are more concerned about selection on unobservables than they are
of selection on observables, and as such, have not found matching
methods to be used as often. I am agnostic as to whether CIA holds
or doesn’t in your particular application, though. Only a DAG will
tell you what the appropriate identification strategy is, and insofar
as the backdoor criterion can be met, then matching methods may be
appropriate.

Propensity score matching is used when treatment is nonrandom
but is believed to be based on a variety of observable covariates. It
requires that the CIA hold in the data. Propensity score matching
takes those covariates needed to satisfy CIA, estimates a maximum
likelihood model of the conditional probability of treatment, and uses
the predicted values from that estimation to collapse those covariates
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into a single scalar. All comparisons between the treatment and
control group are then based on that value.75 But I cannot emphasize 75 There are multiple methods that use

the propensity score, as we will see, but
they all involve using the propensity
score to make valid comparisons
between the treatment group and
control group.

this enough – this method, like regression more generally, only
has value for your project if you can satisfy the backdoor criterion
by conditioning on X. If you cannot satisfy the backdoor criterion
in your data, then the propensity score gains you nothing. It is
absolutely critical that your DAG be, in other words, defensible and
accurate, as you depend on those theoretical relationships to design
the appropriate identification strategy.76

76 We will discuss in the instrumental
variables chapter a common method
for addressing a situation where the
backdoor criterion cannot be met in
your data.

The idea with propensity score methods is to compare units who,
based on observables, had very similar probabilities of being placed
into the treatment group even though those units differed with
regards to actual treatment assignment. If conditional on X, two
units have the same probability of being treated, then we say they
have similar propensity scores. If two units have the same propensity
score, but one is the treatment group and the other is not, and the
conditional independence assumption (CIA) credibly holds in the data,
then differences between their observed outcomes are attributable
to the treatment. CIA in this context means that the assignment of
treatment, conditional on the propensity score, is independent of
potential outcomes, or “as good as random”.77

77 This is what meant by the phrase
selection on observables.One of the goals when using propensity score methods is to create

covariate balance between the treatment group and control group
such that the two groups become observationally exchangeable.78

78 Exchangeable simply means that
the two groups appear similar to one
another on observables.

There are three steps to using propensity score matching. The first
step is to estimate the propensity score; the second step is to select an
algorithmic method incorporating the propensity score to calculate
average treatment effects; the final step is to calculate standard errors.
The first is always the same regardless of which algorithmic method
we use in the second stage: we use maximum likelihood models to
estimate the conditional probability of treatment, usually probit or
logit. Before walking through an example using real data, let’s review
some papers that use it.

Example: the NSW Job Trainings Program The National Supported
Work Demonstration (NSW) job trainings program was operated by
the Manpower Demonstration Research Corp (MRDC) in the mid-
1970s. The NSW was a temporary employment program designed
to help disadvantaged workers lacking basic job skills move into
the labor market by giving them work experience and counseling
in a sheltered environment. It was also unique in that it randomly
assigned qualified applicants to training positions. The treatment
group received all the benefits of the NSW program. The controls
were basically left to fend for themselves. The program admitted
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AFDC females, ex-drug addicts, ex-criminal offenders, and high
school dropouts of both sexes.

Treatment group members were guaranteed a job for 9-18 months
depending on the target group and site. They were then divided into
crews of 3-5 participants who worked together and met frequently
with an NSW counselor to discuss grievances and performance.
Finally, they were paid for their work. NSW offered the trainees
lower wage rates than they would’ve received on a regular job, but
allowed their earnings to increase for satisfactory performance and
attendance. After their term expired, they were forced to find regular
employment. The kinds of jobs varied within sites – some were gas
station attendants, some worked at a printer shop – and males and
females were frequently performing different kinds of work.

The MDRC collected earnings and demographic information from
both the treatment and the control group at baseline as well as every
9 months thereafter. MDRC also conducted up to 4 post-baseline
interviews. There were different sample sizes from study to study,
which can be confusing, but it has simple explanations.

NSW was a randomized job trainings program; therefore the
independence assumption was satisfied. So calculating average
treatment effects was straightforward – it’s the simple difference in
means estimator that we discussed in the Rubin causal chapter.79

79 Remember, randomization means
that the treatment was independent
of the potential outcomes, so simple
difference in means identifies the
average treatment effect.

1
NT

Â
Di=1

Yi �
1

NC
Â

Di=0
Yi ⇡ E[Y1 �Y0]

The good news for MDRC, and the treatment group, was that the
treatment worked.80 Treatment group participants’ real earnings 80 Lalonde [1986] lists several studies

that discuss the findings from the
program in footnote 3.

post-treatment in 1978 was larger than that of the control group by
approximately $900 [Lalonde, 1986] to $1,800 [Dehejia and Wahba,
2002], depending on the sample the researcher used.

Lalonde [1986] is an interesting study both because he is evaluat-
ing the NSW program, and because he is evaluating commonly used
econometric methods from that time. He evaluated the econometric
estimators’ performance by trading out the experimental control
group data with non-experimental control group data drawn from
the population of US citizens. He used three samples of the Current
Population Survey (CPS) and three samples of the Panel Survey of
Income Dynamics (PSID) for this non-experimental control group
data. Non-experimental data is, after all, the typical situation an
economist finds herself in. But the difference with the NSW is that it
was a randomized experiment, and therefore we know the average
treatment effect. Since we know the average treatment effect, we can
see how well a variety of econometric models perform. If the NSW
program increased earnings by ⇡ $900, then we should find that if
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the other econometrics estimators does a good job, right?
Lalonde [1986] reviewed a number of popular econometric meth-

ods from this time using both the PSID and the CPS samples as
non-experimental comparison groups, and his results were consis-
tently bad. Not only were his estimates usually very different in
magnitude, but his results are almost always the wrong sign! This
paper, and its pessimistic conclusion, was influential in policy circles
and led to greater push for more experimental evaluations.81 We can 81 It’s since been cited a little more than

1,700 times.see these results in the following tables from Lalonde [1986]. Figure
17 shows the effect of the treatment when comparing the treatment
group to the experimental control group. The baseline difference
in real earnings between the two groups were negligible,82 But the 82 The treatment group made $39

more than the control group in the
simple difference and $21 less in the
multivariate regression model, but
neither is statistically significant.

post-treatment difference in average earnings was between $798 and
$886.

Figure 17: Lalonde [1986] Table 5(a)

Figure 18 shows the results he got when he used the non-experimental
data as the comparison group. He used three samples of the PSID
and three samples of the CPS. In nearly every point estimate, the
effect is negative.

So why is there such a stark difference when we move from the
NSW control group to either the PSID or CPS? The reason is because
of selection bias. That is

E[Y0|D = 1] 6= E[Y0|D = 0]

In other words, it’s highly like that the real earnings of NSW par-
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Figure 18: Lalonde [1986] Table 5(b)

ticipants would have been much lower than the non-experimental
control group’s earnings. As you recall from our decomposition of
the simple difference in means estimator, the second form of bias is
selection bias, and if E[Y0|D = 1] < E[Y0|D = 0], this will bias the
estimate of the ATE downward (e.g., estimates that show a negative
effect).

But a violation of independence also implies that the balancing
property doesn’t hold. Table 24 shows the mean values for each
covariate for the treatment and control groups where the control is
the 15,992 observations from the CPS. As you can see, the treatment
group appears to be very different on average from the control
group CPS sample along nearly every covariate listed. The NSW
participants are more black, more hispanic, younger, less likely to be
married, more likely to have no degree, less schooling, more likely
to be unemployed in 1975 and have considerably lower earnings in
1975. In short, the two groups are not exchangeable on observables
(and likely not exchangeable on unobservables either).

The first paper to re-evaluate Lalonde [1986] using propensity
score methods was Dehejia and Wahba [1999].83 Their interest was 83 Lalonde [1986] did not review propen-

sity score matching in this study. One
possibility is that he wasn’t too familiar
with the method. Rosenbaum and Ru-
bin [1983] was relatively new, after all,
when LaLonde had begun his project
and had not yet been incorporated into
most economists’ toolkit.

two fold - to examine whether propensity score matching could be an
improvement in estimating treatment effects using non-experimental
data. And two, to show the diagnostic value of propensity score
matching. The authors used the same non-experimental control
group datasets from the CPS and PSID as Lalonde [1986].
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CPS NSW
All Controls Trainees

Nc = 15, 992 Nt = 297
covariate mean (s.d.) mean mean t-stat diff

Black 0.09 0.28 0.07 0.80 47.04 -0.73

Hispanic 0.07 0.26 0.07 0.94 1.47 -0.02

Age 33.07 11.04 33.2 24.63 13.37 8.6
Married 0.70 0.46 0.71 0.17 20.54 0.54

No degree 0.30 0.46 0.30 0.73 16.27 -0.43

Education 12.0 2.86 12.03 10.38 9.85 1.65

1975 Earnings 13.51 9.31 13.65 3.1 19.63 10.6
1975 Unemp 0.11 0.32 0.11 0.37 14.29 -0.26

Table 24: Completed matching example
with single covariate

Let’s walk through what the authors did in steps, and what they
learned from each of these steps. First, the authors estimated the
propensity score. Then the authors sought to create balance on
observable covariates through trimming. By trimming I mean that
the authors discarded control units with propensity score values
outside the range of the treatment group in order to impose common
support.

����� -RXUQDO�RI�WKH�$PHULFDQ�6WDWLVWLFDO�$VVRFLDWLRQ��'HFHPEHU������

ZKHWKHU�ZH�VXFFHHG�LQ�EDODQFLQJ�WKH�FRYDULDWHV�ZLWKLQ�HDFK�
VWUDWXP��:H�XVH�WHVWV�IRU�WKH�VWDWLVWLFDO�VLJQLILFDQFH�RI�GLI��
IHUHQFHV�LQ�WKH�GLVWULEXWLRQ�RI�FRYDULDWHV��IRFXVLQJ�RQ�ILUVW�
DQG�VHFRQG�PRPHQWV��VHH�5RVHQEDXP�DQG�5XELQ��������,I�
WKHUH�DUH�QR�VLJQLILFDQW�GLIIHUHQFHV�EHWZHHQ�WKH�WZR�JURXSV�
ZLWKLQ�HDFK�VWUDWXP��WKHQ�ZH�DFFHSW�WKH�VSHFLILFDWLRQ��,I�
WKHUH�DUH�VLJQLILFDQW�GLIIHUHQFHV��WKHQ�ZH�DGG�KLJKHU�RUGHU�
WHUPV�DQG�LQWHUDFWLRQV�RI�WKH�FRYDULDWHV�XQWLO�WKLV�FRQGLWLRQ�
LV�VDWLVILHG��,Q�6HFWLRQ���ZH�GHPRQVWUDWH�WKDW�WKH�UHVXOWV�DUH�
QRW�VHQVLWLYH�WR�WKH�VHOHFWLRQ�RI�KLJKHU�RUGHU�DQG�LQWHUDFWLRQ�
YDULDEOHV��
,Q�WKH�VHFRQG�VWHS��JLYHQ�WKH�HVWLPDWHG�SURSHQVLW\�VFRUH��

ZH�QHHG�WR�HVWLPDWH�D� XQLYDULDWH�QRQSDUDPHWULF�UHJUHV��
VLRQ��(�<M7L� 7� M�S�;L���� IRU�M�  � �����:H�IRFXV�RQ�
VLPSOH�PHWKRGV�IRU�REWDLQLQJ�D�IOH[LEOH�IXQFWLRQDO�IRUP��
VWUDWLILFDWLRQ�DQG�PDWFKLQJ�EXW�LQ�SULQFLSOH�RQH�FRXOG�XVH�
DQ\�RI�WKH�VWDQGDUG�DUUD\�RI�QRQSDUDPHWULF�WHFKQLTXHV��VHH��
H�J���+DUGOH�DQG�/LQWRQ�������+HFNPDQ��,FKLPXUD��DQG�7RGG�
�������
:LWK�VWUDWLILFDWLRQ��REVHUYDWLRQV�DUH�VRUWHG�IURP�ORZHVW�WR�

KLJKHVW�HVWLPDWHG�SURSHQVLW\�VFRUH��:H�GLVFDUG�WKH�FRPSDU��
LVRQ�XQLWV�ZLWK�DQ�HVWLPDWHG�SURSHQVLW\�VFRUH�OHVV�WKDQ�WKH�
PLQLPXP��RU�JUHDWHU�WKDQ�WKH�PD[LPXP��HVWLPDWHG�SURSHQ��
VLW\�VFRUH�IRU�WUHDWHG�XQLWV��7KH�VWUDWD��GHILQHG�RQ�WKH�HV��
WLPDWHG�SURSHQVLW\�VFRUH��DUH�FKRVHQ�VR�WKDW�WKH�FRYDULDWHV�
ZLWKLQ�HDFK�VWUDWXP�DUH�EDODQFHG�DFURVV�WKH�WUHDWPHQW�DQG�
FRPSDULVRQ�XQLWV���:H�NQRZ�WKDW�VXFK�VWUDWD�H[LVW�IURP�VWHS�
����%DVHG�RQ������ZLWKLQ�HDFK�VWUDWXP�ZH�WDNH�D�GLIIHUHQFH�
LQ�PHDQV�RI�WKH�RXWFRPH�EHWZHHQ�WKH�WUHDWPHQW�DQG�FRP��
SDULVRQ�JURXSV��WKHQ�ZHLJKW�WKHVH�E\�WKH�QXPEHU�RI�WUHDWHG�
REVHUYDWLRQV�LQ�HDFK�VWUDWXP��:H�DOVR�FRQVLGHU�PDWFKLQJ�RQ�
WKH�SURSHQVLW\�VFRUH��(DFK�WUHDWPHQW�XQLW�LV�PDWFKHG�ZLWK�
UHSODFHPHQW�WR�WKH�FRPSDULVRQ�XQLW�ZLWK�WKH�FORVHVW�SURSHQ��
VLW\�VFRUH��WKH�XQPDWFKHG�FRPSDULVRQ�XQLWV�DUH�GLVFDUGHG�
�VHH�'HKHMLD�DQG�:DKED������IRU�PRUH�GHWDLOV��DOVR�+HFN��
PDQ��,FKLPXUD��6PLWK��DQG�7RGG�������+HFNPDQ��,FKLPXUD��
DQG�7RGG�������5XELQ��������
7KHUH�DUH�D�QXPEHU�RI�UHDVRQV�IRU�SUHIHUULQJ�WKLV�WZR��

VWHS�DSSURDFK�WR�GLUHFW�HVWLPDWLRQ�RI������)LUVW��WDFNOLQJ�����
GLUHFWO\�ZLWK�D�QRQSDUDPHWULF�UHJUHVVLRQ�ZRXOG�HQFRXQWHU�
WKH�FXUVH�RI�GLPHQVLRQDOLW\�DV�D�SUREOHP�LQ�PDQ\�GDWDVHWV�
VXFK�DV�RXUV�WKDW�KDYH�D�ODUJH�QXPEHU�RI�FRYDULDWHV��7KLV�
ZRXOG�DOVR�RFFXU�ZKHQ�HVWLPDWLQJ�WKH�SURSHQVLW\�VFRUH�XV��

LQJ�QRQSDUDPHWULF�WHFKQLTXHV��+HQFH�ZH�XVH�D�SDUDPHWULF�
PRGHO�IRU�WKH�SURSHQVLW\�VFRUH��7KLV�LV�SUHIHUDEOH�WR�DS��
SO\LQJ�D�SDUDPHWULF�PRGHO�GLUHFWO\�WR�����EHFDXVH��DV�ZH�
ZLOO�VHH��WKH�UHVXOWV�DUH�OHVV�VHQVLWLYH�WR�WKH�ORJLW�VSHFLIL��
FDWLRQ�WKDQ�UHJUHVVLRQ�PRGHOV��VXFK�DV�WKRVH�LQ�7DEOH����
)LQDOO\��GHSHQGLQJ�RQ�WKH�HVWLPDWRU�WKDW�RQH�DGRSWV��H�J���
VWUDWLILFDWLRQ���D�SUHFLVH�HVWLPDWH�RI�WKH�SURSHQVLW\�VFRUH�LV�
QRW�UHTXLUHG��7KH�SURFHVV�RI�YDOLGDWLQJ�WKH�SURSHQVLW\�VFRUH�
HVWLPDWH�SURGXFHV�DW�OHDVW�RQH�SDUWLWLRQ�VWUXFWXUH�WKDW�EDO��
DQFHV�SUHLQWHUYHQWLRQ�FRYDULDWHV�DFURVV�WKH�WUHDWPHQW�DQG�
FRPSDULVRQ�JURXSV�ZLWKLQ�HDFK�VWUDWXP��ZKLFK��E\������LV�
DOO�WKDW�LV�QHHGHG�IRU�DQ�XQELDVHG�HVWLPDWH�RI�WKH�WUHDWPHQW�
LPSDFW��

��� 5(68/76�86,1*�7+(�3523(16,7<� 6&25(�

8VLQJ�WKH�PHWKRG�RXWOLQHG�LQ�WKH�SUHYLRXV�VHFWLRQ��ZH�
VHSDUDWHO\�HVWLPDWH�WKH�SURSHQVLW\�VFRUH�IRU�HDFK�VDPSOH�
RI�FRPSDULVRQ�XQLWV�DQG�WUHDWPHQW�XQLWV��)LJXUHV���DQG���
SUHVHQW�KLVWRJUDPV�RI�WKH�HVWLPDWHG�SURSHQVLW\�VFRUHV�IRU�
WKH�WUHDWPHQW�DQG�36,'���DQG�&36���FRPSDULVRQ�JURXSV��
0RVW�RI�WKH�FRPSDULVRQ�XQLWV��������RI�D�WRWDO�RI�������
36,'���XQLWV�DQG��������RI��������&36���XQLWV��DUH�GLV��
FDUGHG�EHFDXVH�WKHLU�HVWLPDWHG�SURSHQVLW\�VFRUHV�DUH�OHVV�
WKDQ�WKH�PLQLPXP�IRU�WKH�WUHDWPHQW�XQLWV��(YHQ�WKHQ��WKH�
ILUVW�ELQ��XQLWV�ZLWK�DQ�HVWLPDWHG�SURSHQVLW\�VFRUH�RI����
�����FRQWDLQV�PRVW�RI�WKH�UHPDLQLQJ�FRPSDULVRQ�XQLWV�DQG�
IHZ�WUHDWPHQW�XQLWV��$Q�LPSRUWDQW�GLIIHUHQFH�EHWZHHQ�WKH�
ILJXUHV�LV�WKDW�)LJXUH���KDV�PDQ\�ELQV�LQ�ZKLFK�WKH�WUHDW��
PHQW�XQLWV�JUHDWO\�RXWQXPEHU�WKH�FRPSDULVRQ�XQLWV���,Q��
GHHG��IRU�WKUHH�ELQV�WKHUH�DUH�QR�FRPSDULVRQ�XQLWV���,Q�FRQ��
WUDVW��LQ�)LJXUH���IRU�&36�����HDFK�ELQ�FRQWDLQV�DW�OHDVW�D�
IHZ�FRPSDULVRQ�XQLWV��2YHUDOO��IRU�36,'����WKHUH�DUH����
�PRUH�WKDQ�KDOI�WKH�WRWDO�QXPEHU��WUHDWHG�XQLWV�ZLWK�DQ�HVWL��
PDWHG�SURSHQVLW\�VFRUH�LQ�H[FHVV�RI�����DQG�RQO\���FRPSDU��
LVRQ�XQLWV��FRPSDUHG�WR����WUHDWHG�DQG���FRPSDULVRQ�XQLWV�
IRU�&36����
)LJXUHV���DQG���LOOXVWUDWH�WKH�GLDJQRVWLF�YDOXH�RI�WKH�

SURSHQVLW\�VFRUH��7KH\�UHYHDO�WKDW�DOWKRXJK�WKH�FRPSDUL��
VRQ�JURXSV�DUH�ODUJH�UHODWLYH�WR�WKH�WUHDWPHQW�JURXS��WKHUH�
LV�OLPLWHG�RYHUODS�LQ�WHUPV�RI�SUHLQWHUYHQWLRQ�FKDUDFWHULV��
WLFV��+DG�WKHUH�EHHQ�QR�FRPSDULVRQ�XQLWV�RYHUODSSLQJ�ZLWK�
D�EURDG�UDQJH�RI�WKH�WUHDWPHQW�XQLWV��WKHQ�LW�ZRXOG�QRW�KDYH�
EHHQ�SRVVLEOH�WR�HVWLPDWH�WKH�DYHUDJH�WUHDWPHQW�HIIHFW�RQ�WKH�

���� L� �� L� ,�O� ,�O� O� O�

R� L� M�
��������� ��

&D���;P�� �O)�OQ�
�� ���� ���� ���� ���� ���� ���� ���� ���� ���� ��

(VWLPDWHG�S�;L��������FRPSDULVRQ�XQLWV�GLVFDUGHG��ILUVW�ELQ�FRQWDLQV�����FRPSDULVRQ�XQLWV�

)LJXUH���� +LVWRJUDP�RI�WKH�(VWLPDWHG�3URSHQVLW\�6FRUH�IRU�16:�7UHDWHG�8QLWV�DQG�36,'� &RPSDULVRQ�8QLWV��7KH�������36,'� XQLWV�ZKRVH�
HVWLPDWHG�SURSHQVLW\�VFRUH�LV�OHVV�WKDQ�WKH�PLQLPXP�HVWLPDWHG�SURSHQVLW\�VFRUH�IRU�WKH�WUHDWPHQW�JURXS�DUH�GLVFDUGHG��7KH�ILUVW�ELQ�FRQWDLQV�����
36,'�XQLWV��7KHUH�LV�PLQLPDO�RYHUODS�EHWZHHQ�WKH�WZR�JURXSV��7KUHH�ELQV������������������DQG��������� FRQWDLQ�QR�FRPSDULVRQ�XQLWV��7KHUH�DUH����
WUHDWHG�XQLWV�ZLWK�DQ�HVWLPDWHG�SURSHQVLW\�VFRUH�JUHDWHU�WKDQ����DQG�RQO\���FRPSDULVRQ�XQLWV��

Figure 19: Dehejia and Wahba [1999]
Figure 1, overlap in the propensity
scores (using PSID)

Fig 19 shows the overlap in the propensity score for the treatment
and control group units using the PSID comparison units. 1,333 com-
parison units were discarded because they fell outside the range of
the treatment group’s propensity score distribution. As can be seen,
there is a significant number of PSID control group units with very
low propensity score values – 928 comparison units are contained
in the first bin. This is not surprising because, after all, most of the
population differed significantly from the treatment group, and thus
had a low probability of treatment.

Next the authors do the same for the CPS sample. Here the over-
lap is even worse. They dropped 12,611 observations in the control
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Figure 20: Dehejia and Wahba [1999]
Figure 2, overlap in the propensity
scores (using CPS)

group because their propensity scores were outside the treatment
group range. Also, a large number of observations have low propen-
sity scores, evidenced by the fact that the first bin contains 2,969

comparison units. While there is minimal overlap between the two
groups, the overlap is greater in Figure 20 than Figure 19.
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Figure 21: Dehejia and Wahba [1999]
Table 3 results.

Figure 21 shows the results using propensity score weighting/matching.84

84 Let’s hold off digging into exactly
how they used the propensity score to
generate these estimates.

As can be seen, the results are a considerable improvement over
Lalonde [1986]. I won’t review every treatment effect they estimate,
but I will note that they are all positive and similar in magnitude to
what they found in columns 1-2 using only the experimental data.

Finally, the authors examined the balance between the covariates
in the treatment group (NSW) and the various non-experimental
(matched) samples. Recall that the balancing property suggests
that covariate values will be the same for treatment and control
group after they trim the outlier propensity score units from the data.
Figure 22 shows the sample means of characteristics in the matched
control sample versus the experimental NSW sample (first row).
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Figure 22: Dehejia and Wahba [1999]
Table 4, covariate balance

Trimming on the propensity score, in effect, satisfied the balancing
property. Covariates are much closer in mean value to the NSW
sample after trimming on the propensity score.

Estimation Propensity score is best explained, in my opinion as with
other methods, using actual data. We will use data from Dehejia and
Wahba [2002] for the following exercises. I encourage you to copy
these commands into a do file and run them on your own so that
you can see the analysis directly. First we need to download the data.
Then we will calculate the ATE using the experimental treatment and
control units.

. scuse nsw_dw

. su re78 if treat

. gen y1 = r(mean)

. su re78 if treat==0

. gen y0 = r(mean)

. gen ate = y1-y0

. su ate

. di 6349.144 - 4554.801

Which yields an ATE of $1,794.343. Next we do the same for the
CPS data. We will not include the analysis of the PSID control group
for brevity. So first we append the main dataset with the CPS files:

. append using “http://scunning.com/teaching/cps_controls”

Next we construct the controls discussed in the footnote of Table 2

in Dehejia and Wahba [2002]:
. gen agesq=age*age

. gen agecube=age^3

. ren education school

. gen schoolsq=school^2

. gen u74 = 0 if re74!=.

. replace u74 = 1 if re74==0

. gen u75 = 0 if re75!=.

. replace u75 = 1 if re75==0
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. gen interaction1 = school*re74

. gen re74sq=re74^2

. gen re75sq=re75^2

. gen interaction2 = u74*hispanic

Now we are ready to estimate the propensity score. We will use a
logit model to be consistent with Dehejia and Wahba [2002].

. logit treat age agesq agecube school schoolsq married

nodegree black hispanic re74 re75 u74 u75 interaction1

. predict pscore

The predict command uses the estimated coefficients from our
logit model and then estimates the conditional probability of treat-
ment using:

Pr(D = 1|X) = F(b0 + gTreat + aX)

where F() = e
(1+e) is the cumulative logistic distribution.

The propensity score used the fitted values from the maximum
likelihood regression to calculate each unit’s conditional probability
of treatment regardless of their actual treatment status. The propensity
score is just the predicted conditional probability of treatment or
fitted value for each unit.85

85 It is advisable to use maximum like-
lihood when estimating the propensity
score because so that the fitted values
are in the range [0, 1]. We could use
a linear probability model, but linear
probability models routinely create
fitted values below 0 and above 1,
which are not true probabilities since
0  p  1.

The definition of the propensity score is the selection probability
conditional on the confounding variables; p(X) = Pr(D = 1|X).
There are two identifying assumptions for propensity score methods.
The first is CIA. That is, (Y0, Y1) ?? D|X. The second is called the
common support assumption. That is, 0 < Pr(D = 1|X) < 1 which is
the common support assumption.86 The conditional independence

86 This simply means that for any
probability, there must be units in both
the treatment group and the control
group.

assumption simply means that the backdoor criterion is met in the
data by conditioning on a vector X. Or, put another way, conditional
on X, the assignment of units to the treatment is as good as random.87

87 CIA is expressed in different ways
according to the econometric/statistical
tradition. Rosenbaum and Rubin
[1983] called it the ignorable treatment
assignment, or unconfoundedness. Pearl
calls it the backdoor criterion. Barnow
et al. [1981] and Dale and Krueger
[2002] call it selection on observables. In
the traditional econometric pedagogy,
as we discussed earlier, it’s called the
zero conditional mean assumption as
we see below.

This is

Y0
i = a + bXi + #i

Y1
i = Y0

i + d

Yi = a + dDi + bXi + #i

Conditional independence is the same as assuming #i ?? Di|Xi. One
last thing before we move on: CIA is not testable because it requires
potential outcomes, which we do not have. We only have observed
outcomes according to the switching equation. CIA is an assumption,
and it may or may not be a credible assumption depending on your
application.

The second identifying assumption is called the common support
assumption. It is required to calculate any particular kind of defined
average treatment effect, and without it, you will just get some kind
of weird weighted average treatment effect for only those regions that
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do have common support. Common support requires that for each
value of X, there is a positive probability of being both treated and
untreated, or 0 < Pr(Di = 1|Xi) < 1. This implies that the probability
of receiving treatment for every value of the vector X is strictly
within the unit interval. Common support ensures there is sufficient
overlap in the characteristics of treated and untreated units to find
adequate matches. Unlike CIA, the common support requirement
is testable by simply plotting histograms or summarizing the data.
Here we do that two ways: by looking at the summary statistics and
looking at a histogram.

. su pscore if treat==1, detail

Treatment group
Percentiles Values Smallest

1% .0022114 .0018834

5% .0072913 .0022114

10% .0202463 .0034608

25% .0974065 .0035149

50% .1938186

Percentiles Values Largest

75% .3106517 .5583002

90% .4760989 .5698137

95% .5134488 .5705917

99% .5705917 .5727966

Table 25: Distribution of propensity
score for treatment group.

. su pscore if treat==0, detail

CPS Control group
Percentiles Values Smallest

1% 5.14e-06 4.69e-07

5% .0000116 6.79e-07

10% .0000205 7.78e-07

25% .0000681 9.12e-07

50% .0003544

Percentiles Values Largest

75% .0021622 .5727351

90% .0085296 .5794474

95% .0263618 .5929902

99% .2400503 .5947019

Table 26: Distribution of propensity
score for CPS Control group.

The mean value of the propensity score for the treatment group
is 0.22 and the mean for the CPS control group is 0.009. The 50th
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percentile for the treatment group is 0.194 but the control group
doesn’t reach that high a number until almost the 99th percentile.
Let’s look at the distribution of the propensity score for the two
groups using a histogram now.

. histogram pscore, by(treat) binrescale

0
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Graphs by treatment status

Figure 23: Histogram of propensity
score by treatment status

These two simple diagnostic tests show what is going to be a prob-
lem later when we use inverse probability weighting. The probability
of treatment is spread out across the units in the treatment group,
but there is a very large mass of nearly zero propensity scores in the
CPS. How do we interpret this? What this means is that the char-
acteristics of individuals in the treatment group are rare in the CPS
sample. This is not surprising given the strong negative selection into
treatment. These individuals are younger, less likely to be married,
and more likely to be uneducated and a minority. The lesson is if the
two groups are significantly different on background characteristics,
then the propensity scores will have grossly different distributions by
treatment status. We will discuss this in greater detail later.

For now, let’s look at the treatment parameter under both assump-
tions.

E[di(Xi)] = E[Y1
i �Y0

i |Xi = x]

= E[Y1
i |Xi = x]� E[Y0

i |Xi = x]

The conditional independence assumption allows us to make the
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following substitution

E[Y1
i |Di = 1, Xi = x] = E[Yi|Di = 1, Xi = x]

and same for the other term. Common support means we can esti-
mate both terms. Therefore under both assumptions

d = E[d(Xi)]

From these assumptions we get the propensity score theorem, which
states that if (Y1, Y0) ?? D|X (CIA) then (Y1, Y0) ?? D|p(X) where
p(X) = Pr(D = 1|X), the propensity score. This means that condi-
tioning on the propensity score is sufficient to have independence.
Conditioning on the propensity score is enough to have indepen-
dence between the treatment and the potential outcomes.

This is an extremely valuable theorem because stratifying on X
tends to run into the sparseness-related problems (i.e., empty cells)
in finite samples for even a moderate number of covariates. But the
propensity scores is just a scalar. So stratifying across a probability is
going to reduce that dimensionality problem.

The proof of the propensity score theorem is fairly straightfor-
ward as it’s just an application of the law of iterated expectations
with nested conditioning.88 If we can show that the probability an 88 See Angrist and Pischke [2009] p.

80-81.individual receives treatment conditional on potential outcomes and
the propensity score is not a function of potential outcomes, then we
will have proven that there is independence between the potential
outcomes and the treatment conditional on X. Before diving into the
proof, first recognize that

Pr(D = 1|Y0, Y1, p(X)) = E[D|Y0, Y1, p(X)]

because

E[D|Y0, Y1, p(X)] = 1⇥ Pr(D = 1|Y0, Y1, p(X))

+0⇥ Pr(D = 0|Y0, Y1, p(X))

and the second term cancels out because it’s multiplied zero. The
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formal proof is as follows:

Pr(D = 1|Y1, Y0, p(X)) = E[D|Y1, Y0, p(X)]
| {z }

See previous description

= E[E[D|Y1, Y0, p(X), X]|Y1, Y0, p(X)]
| {z }

by LIE

= E[E[D|Y1, Y0, X]|Y1, Y0, p(X)]
| {z }

Given X, we know p(X)

= E[E[D|X]|Y1, Y0, p(X)]
| {z }
by conditional independence

= E[p(X)|Y1, Y0, p(X)]
| {z }
propensity score definition

= p(X)

Using a similar argument, we obtain:

Pr(D = 1|p(X)) = E[D|p(X)]
| {z }

Previous argument

= E[E[D|X]|p(X)]
| {z }

LIE

= E[p(X)|p(X)]
| {z }

definition

= p(X)

and Pr(D = 1|Y1, Y0, p(X)) = Pr(D = 1|p(X)) by CIA.
Like the omitted variable bias formula for regression, the propen-

sity score theorem says that you need only control for covariates
that determine the likelihood a unit receives the treatment. But it
also says something more than that. It technically says that the only
covariate you need to condition on is the propensity score. All of
the information from the X matrix has been collapsed into a single
number: the propensity score.

A corollary of the propensity score theorem, therefore, states that
given CIA, we can estimate average treatment effects by weighting
appropriately the simple difference in means.89. 89 This all works if we match on the

propensity score and then calculate
differences in means. Direct propensity
score matching works in the same way
as the covariate matching we discussed
earlier (e.g., nearest neighbor matching)
except that we match on the score
instead of the covariates directly.

Because the propensity score is a function of X, we know

Pr(D = 1|X, p(X)) = Pr(D = 1|X)

= p(X)

Therefore conditional on the propensity score, the probability that
D = 1 does not depend on X any longer. That is, D and X are inde-
pendent of one another conditional on the propensity score, or

D ?? |p(X)
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So from this we also obtain the balancing property of the propensity
score:

Pr(X|D = 1, p(X)) = Pr(X|D = 0, p(X))

which states that conditional on the propensity score, the distribution
of the covariates is the same for treatment as it is for control group
units. See this in the following DAG.

D

p(X)

X

Y

Notice that there exists two paths between X and D. There’s the
direct path of X ! p(X) ! and there’s the backdoor path X !
Y  D. The backdoor path is blocked by a collider, so there is not
systematic correlation between X and D through it. But there is
systematic correlation between X and D through the first directed
path. But, when we condition on p(X), the propensity score, notice
that D and X are statistically independent. This implies that D ??
X|p(X) which implies

Pr(X|D = 1, bp(X)) = Pr(X|D = 0, bp(X))

This is something we can directly test, but note the implication:
conditional on the propensity score, treatment and control should on
average be the same with respect to X. In other words, the propensity
score theorem implies balanced observable covariates.90

90 I will have now officially beaten the
dead horse. But please understand -
just because something is exchangeable
on observables does not make it
exchangeable on unobservables. The
propensity score theorem does not
imply balanced unobserved covariates.
See Brooks and Ohsfeldt [2013].

Estimation using propensity score matching

Inverse probability weighting has become a common approach
within the context of propensity score estimation. We have the follow-
ing proposition related to weighting. If CIA holds, then

dATE = E[Y1 �Y0]

= E


Y · D� p(X)
p(X) · (1� p(X))

�

dATT = E[Y1 �Y0|D = 1]

=
1

Pr(D = 1)
· E


Y · D� p(X)
1� p(X)

�
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The proof for this is:

E


Y
D� p(X)

p(X)(1� p(X))

���X
�

= E


Y
p(X)

���X, D = 1
�

p(X)

+E

�Y

1� p(X)

���X, D = 0
�

(1� p(X))

= E[Y|X, D = 1]� E[Y|X, D = 0]

and the results follow from integrating over P(X) and P(X|D = 1).
The sample versions of both ATE and ATT are suggested by a

two-step estimator. Again, first estimate the propensity score. Second,
use the estimated score to produce sample estimators.

b
dATE =

1
N

N

Â
i=1

Yi ·
Di � bp(Xi)

bp(Xi) · (1� bp(Xi))

b
dATT =

1
NT

N

Â
i=1

Yi ·
Di � bp(Xi)
1� bp(Xi)

Using our earlier discussion of steps, this is technically the second
step.

Let’s see how to do this in Stata. I will move in steps because I
want to illustrate to you the importance of trimming the data. First,
we need to rescale the outcome variable, as the teffects command
chokes on large values. So:

. gen re78_scaled = re78/10000

. cap n teffects ipw (re78_scaled) (treat age agesq

agecube school schoolsq married nodegree black hispanic re74

re75 u74 u75 interaction1, logit), osample(overlap)

. keep if overlap==0

. drop overlap

. cap n teffects ipw (re78_scaled) (treat age agesq

agecube school schoolsq married nodegree black hispanic re74

re75 u74 u75 interaction1, logit), osample(overlap)

. cap drop overlap

Notice the estimated ATE: -0.70. We have to multiply this by
10,000 since we originally scaled it by 10,000 which is �0.70⇥ 10, 000 =
�7, 000. In words, inverse probability weighting methods found an
ATE that was not only negative, but very negative. Why? What
happened?

Recall what inverse probability weighting is doing. It is weighting
treatment and control units according to bp(X) which is causing the
unit to blow up for very small values of the propensity score. Thus,
we will need to trim the data. Here we will do a very small trimming
to eliminate the mass of values at the far left tail. Crump et al. [2009]
develop a principled method for addressing a lack of overlap. A
good rule of thumb, they note, is to keep only observations on the
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interval [0.1,0.9], but here I will drop drop the ones with less then
0.05, and leave it to you to explore this in greater detail.

. drop if pscore <= 0.05

Now let us repeat the analysis and compare our answer both to
what we found when we didn’t trim, but also what we got with the
experimental ATE.

. cap n teffects ipw (re78_scaled) (treat age agesq

agecube school schoolsq married nodegree black hispanic re74

re75 u74 u75 interaction1, logit), osample(overlap)

Here we find an ATE of $918 which is significant at p < 0.12.
Better, but still not exactly correct and not very precise.

An alternative approach to inverse probability weighting is nearest
neighbor matching on both the propensity score and covariates them-
selves. The standard matching strategy is nearest neighbor matching
where you pair each treatment unit i with one or more comparable
control group units j, where comparability is measured in terms of
distance to the nearest propensity score. This control outcome is then
plugged into a matched sample, and then we simple calculate

[ATT =
1

NT
(Yi �Yi(j)

where Yi(j) is the matched control group unit to i. We will focus on
the ATT because of the problems with overlap that we discussed
earlier.

For this next part, rerun your do file up to the point where you
estimated your inverse probability weighting models. We want to go
back to our original data before we dropped the low propensity score
units as I want to illustrate how nearest neighbor works. Now type in
the following command:

. teffects psmatch (re78) (treat age agesq agecube school

schoolsq married nodegree black hispanic re74 re75 u74 u75

interaction1, logit), atet gen(pstub_cps) nn(3)

A few things to note. First, we are re-estimating the propensity
score. Notice the command in the second set of parentheses. We
are estimating that equation with logit. Second, this is the ATT, not
the ATE. The reason being, we have too many near zeroes in the
data to find good matches in the treatment group. Finally, we are
matching with three nearest neighbors. Nearest neighbors, in other
words, will find the three nearest units in the control group, where
“nearest” is measured as closest on the propensity score itself. We
then average their actual outcome, and match that average outcome
to each treatment unit. Once we have that, we subtract each unit’s
matched control from its treatment value, and then divide by NT , the
number of treatment units. When we do that in Stata, we get an ATT
of $1,407.75 with a p < 0.05. Thus it is both relatively precise and
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closer in magnitude to what we find with the experiment itself.

Coarsened Exact Matching There are two kinds of matching we’ve re-
viewed so far. There’s exact matching which matches a treated unit to
all of the control units with the same covariate value. But sometimes
this is impossible and therefore there are matching discrepancies.
For instance, say that we are matching continuous age and continu-
ous income. The probability we find another person with the exact
same value of both is very small if not zero. This leads therefore to
mismatching on the covariates which introduces bias.

The second kind of matching we’ve discussed are approximate
matching methods which specify a metric to find control units that
are “close” to the treated unit. This requires a distance metric, such
as Euclidean, Mahalanobis or the propensity score. All of these can
be implemented in Stata’s teffects.

Iacus et al. [2012] introduced a kind of exact matching called
coarsened exact matching. The idea is very simple. It’s based on the
notion that sometimes it’s possible to do exact matching if we coarsen
the data enough. Thus, if we coarsen the data, meaning we create
categorical variables (e.g., 0-10 year olds, 11-20 year olds, etc.), then
oftentimes we can find exact matches. Once we find those matches,
we calculate weights based on where a person fits in some strata and
those weights are used in a simple weighted regression.

First, we begin with covariates X and make a copy called X⇤.
Next we coarsen X⇤ according to user-defined cutpoints or CEM’s
automatic binning algorithm. For instance schooling becomes less
than high school, high school only, some college, college graduate,
post college. Then we create one stratum per unique observation
of X⇤ and place each observation in a stratum. Assign these strata
to the original and uncoarsened data, X, and drop any observation
whose stratum doesn’t contain at least one treated and control unit.
You then add weights for stratum size and analyze without matching.

But there are tradeoffs. Larger bins mean more coarsening of the
data, which results in fewer strata. Fewer strata result in more di-
verse observations within the same strata and thus higher covariate
imbalance. CEM prunes both treatment and control group units,
which changes the parameter of interest, but so long as you’re trans-
parent about this and up front about it, readers are willing to give
you the benefit of the doubt. Just know, though, that you are not
estimating the ATE or the ATT when you start pruning (just as you
aren’t doing so when you trim propensity scores).

The key benefit of CEM is that it is part of a class of matching
methods called monotonic imbalance bounding (MIB). MIB methods
bound the maximum imbalance in some feature of the empirical
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distributions by an ex ante decision by the user. In CEM, this ex ante
choice is the coarsening decision. By choosing the coarsening before-
hand, users can control the amount of imbalance in the matching
solution. It’s also much faster.

There are several ways of measuring imbalance, but here we focus
on the L1( f , g) measure which is

L1( f , g) =
1
2 Â

l1...lk

| fl1...lk � gl1...lk |

where f and g record the relative frequencies for the treatment and
control group units. Perfect global balance is indicated by L1 = 0.
Larger values indicate larger imbalance between the groups, with a
maximum of L1 = 1. Hence the “imbalance bounding” between 0 and
1.

Now let’s get to the fun part: estimation. Here’s the command in
Stata:

. ssc install cem

. cem age (10 20 30 40 60) agesq agecube school schoolsq

married nodegree black hispanic re74 re75 u74 u75 interaction1,

treatment(treat)

. reg re78 treat [iweight=cem_weights], robust

The estimated ATE is $2,771.06, which is much larger than our
estimated experimental effect. But, this ensured a high degree of
balance on the covariates as can be seen from the output from cem

command itself.
As can be seen from Table 27, the values of L1 are close to zero in

most cases. The largest it gets is 0.12 for age squared.

Conclusions Matching methods are an important member of the
causal inference arsenal. Propensity scores are an excellent tool to
check the balance and overlap of covariates. It’s an under appreciated
diagnostic and one that you might miss if you only ran regressions.
There are extensions for more than two treatments, like multinomial
models, but we don’t cover those here. The propensity score can
make groups comparable but only on the variables used to estimate
the propensity score in the first place. There is no guarantee you
are balancing on unobserved covariates. If you know that there are
important, unobservable variables, you will need another tool. Ran-
domization for instance ensures that observable and unobservable
variables are balanced.
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Covariate L1 Mean Min 25% 50% 75% Max

age .08918 .55337 1 1 0 1 0

agesq .1155 21.351 33 35 0 49 0

agecube .05263 626.9 817 919 0 1801 0

school 6.0e-16 -2.3e-14 0 0 0 0 0

schoolsq 5.4e-16 -2.8e-13 0 0 0 0 0

married 1.1e-16 -1.1e-16 0 0 0 0 0

nodegree 4.7e-16 -3.3e-16 0 0 0 0 0

black 4.7e-16 -8.9e-16 0 0 0 0 0

hispanic 7.1e-17 -3.1e-17 0 0 0 0 0

re74 .06096 42.399 0 0 0 0 -94.801

re75 .03756 -73.999 0 0 0 -222.85 -545.65

u74 1.9e-16 -2.2e-16 0 0 0 0 0

u75 2.5e-16 -1.1e-16 0 0 0 0 0

interaction1 .06535 425.68 0 0 0 0 -853.21

Table 27: Balance in covariates after
coarsened exact matching.





Regression discontinuity

“Jump around!
Jump around!
Jump up, jump up and get down!
Jump!”
– House of Pain

Over the last twenty years, there has been significant interest in
the regression-discontinuity design (RDD). Cook [2008] provides a
fascinating history of the procedure, dating back to Thistlehwaite
and Campbell [1960] and the multiple implementations of it by its
originator, Donald Campbell, an educational psychologist. Cook
[2008] documents the early years of the procedure involving Camp-
bell and his students, but notes that by the mid-1970s, Campbell was
virtually alone in his use of and interest in this design, despite sev-
eral attempts to promote it. Eventually he moved on to other things.
Campbell and his students made several attempts to bring the pro-
cedure into broader use, but despite the publicity, it was not widely
adopted in either psychology or education.

The earliest appearance of RDD in economics is an unpublished
paper [Goldberger, 1972]. But neither this paper, nor Campbell’s
work, got into the microeconomist’s toolkit until the mid-to-late 1990s
when papers using RDD started to appear. Two of the first papers in
economics to use a form of it were Angrist and Lavy [1999] and Black
[1999]. Angrist and Lavy [1999], which we discuss in detail later,
studied the effect of class size on pupil achievement using an unusual
feature in Israeli public schools that mechanically created smaller
classes when the number of students went over a particular threshold.
Black [1999] used a kind of RDD approach when she creatively
exploited discontinuities at the geographical level created by school
district zoning to estimate people’s willingness to pay for better
schools. Both papers appear to be the first time since Goldberger
[1972] that RDD showed back up in the economics literature.

But 1972 to 1999 is a long time without so much as a peep for
what is now considered to be one of the most credible research
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designs in all of causal inference, so what gives?91 Cook [2008] says 91 I should say, for the class of obser-
vational data designs. Man, though
not all, applied economists and econo-
metricians consider the randomized
experiment the gold standard for causal
inference.

that RDD was “waiting for life” during this time. The conditions in
empirical microeconomics had to change before microeconomists
realized its potential. Most likely, this was both due to the growing
influence of the Rubin causal model among labor economists, as
well as the increased availability of large administrative datasets,
including their unusual quirks and features.

In Thistlehwaite and Campbell [1960], the first publication using
RDD, the authors studied the effect of merit awards on future aca-
demic outcomes. Merit awards were given out to students based
on a score, and anyone with a score above some cutoff received the
merit award, whereas everyone below that cutoff did not. In their
application, the authors knew the mechanism by which the treatment
was being assigned to each individual unit – treatment was assigned
based on a cutoff in some continuous running variable. Knowing the
treatment assignment allowed them to carefully estimate the causal
effect of merit awards on future academic performance.

The reason that RDD was so appealing was because of underlying
selection bias. They didn’t believe they could simply compare the
treatment group (merit award recipients) to the control group (merit
award non-recipients), because the two groups were likely very dif-
ferent from one another – on observables, but even more importantly,
on unobservables. To use the notation we’ve been using repeatedly,
they did not believe

E[Y0|D = 1]� E[Y0|D = 0] = 0

It was very likely that the recipients were on average of higher overall
ability, which directly affects future academic performance. So their
solution was to compare only certain students from the treatment
and control groups who they thought were credibly equivalent – those
students who had just high enough scores to get the award and those
students with just low enough scores not to get the award.

It’s a simple idea, really. Consider the following DAG that illus-
trates what I mean.
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D

c0

X

Y

If there is some variable, X, that determines treatment, D, by trig-
gering treatment at c0, then isn’t this just another form of selection
on observables? If a unit receives treatment because some variable
exceeds some threshold, then don’t we fully know the treatment as-
signment? Under what conditions would a comparison of treatment
and control group units, incorporating information from the cutoff,
yield a credible estimate of the causal effect of treatment?

RDD is appropriate in any situation where a person’s entry into
the treatment group jumps in probability when some running vari-
able, X, exceeds a particular threshold, c0. Think about this for a
moment: aren’t jumps of any kind sort of unnatural? The tendency
is for things to change gradually. Charles Darwin once wrote Natura
non facit saltum, or “nature does not make jumps.” Jumps are so
unusual that when we see them happen, they beg for some expla-
nation. And in the case of RDD, that “something” is that treatment
assignment is occurring based on some running variable, and when
that running variable exceeds a particular cutoff value, c0, that unit i
either gets placed in the treatment group, or that person is more likely
to be placed in the treatment group. But whichever, the probability of
treatment is jumping discontinuously at c0.

That’s the heart and soul of RDD. We use our knowledge about
selection into treatment in order to estimate average treatment ef-
fects. More specifically, since we know the probability of treatment
assignment changes discontinuously at c0, then we will compare
people above and below c0 to estimate a particular kind of average
treatment effect called the local average treatment effect, or LATE for
short [Imbens and Angrist, 1994]. To help make this method concrete,
we’ll first start out by looking carefully at one of the first papers in
economics to use this method [Angrist and Lavy, 1999].

Maimonedes Rule and Class Size Krueger [1999] was interested in
estimating the causal effect of class size on student test scores using
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the Tennessee randomized experiment STAR. The same year, an-
other publication came out interested in the same question which
used a natural experiment [Angrist and Lavy, 1999]. Both students
were interested in estimating the causal effect of class size on pupil
achievement, but went about the question in very different ways.

One of the earliest references to class size occurs in the Babylonian
Talmud, a holy Jewish text completed around the 6

th century. One
section of the Talmud discusses rules for the determination of class
size and pupil-teacher ratios in bible studies. Maimonides was a 12

th

century Rabbinic scholar who interpreted the Talmud’s discussion of
class size in what is now known as Maimonides’ Rule:

“Twenty-five children may be put in charge of one teacher. If the
number in the class exceeds twenty-five, but is not more than forty, two
teachers must be appointed.”

So what? What does a 12

th century Rabbi’s interpretation of a 6

th

century text have to do with causal inference? Because “since 1969,
[Maimonides’ Rule] has been used to determine the division of
enrollment cohorts into classes in Israeli public schools” [Angrist and
Lavy, 1999].

The problem with studying the effect of class size on pupil achieve-
ment is that class size is likely correlated with the unobserved de-
terminants of pupil achievement too. As a result, any correlation we
find is likely biased, and that bias may be large. It may even dom-
inate most of the correlation we find in the first place, making the
correlation practically worthless for policy purposes. Those unob-
servables might include poverty, affluence, enthusiasm/skepticism
about the value of education, special needs of students for remedial
or advanced instruction, obscure and barely intelligible obsessions of
bureaucracies, and so on. Each of these things both determines class
size and clouds the effect of class size on pupil achievement because
each is independently correlated with pupil achievement.92

92 Put another way, (Y1, Y0) ?? D likely
does not hold, because D is correlated
with the underlying potential outcomes.

However, if adherence to Maimonides’ Rule is perfectly rigid, then
what would separate a school with a single class of size 40 from the
same school with two classes whose average size is 20.5?93 The only 93

41
2 = 20.5.

difference between them would be the enrollment of a single student.
In other words, that one additional student is causing the splitting
off of the classes into smaller class sizes. But the two classes should
be basically equivalent otherwise. Maimonides’ Rule, they argue,
appears to be creating exogenous variation in class size.

It turns out Maimonides’ Rule has the largest impact on a school
with about 40 students in a grade cohort. With cohorts of size 40,80

and 120 students, the steps down in average class size required by
Maimonides’ Rule when an additional student enrolls are from 40 to
20.5 ( 41

2 ), 40 to 27 ( 81
3 ) and 40 to 30.25 ( 121

4 ).94

94 Schools also use the percent dis-
advantaged in a school to allocate
supplementary hours of instruction and
other school resources which is why
Angrist and Lavy [1999] control for it in
their regressions.



regression discontinuity 157

Their pupil achievement data are test scores from a short-lived
national testing program in Israeli elementary schools. Achievement
tests were given in June 1991 and 1992, near the end of the school
year, to measure math and reading skills. Average math and reading
test scores were rescaled to be on a 100-point scale. The authors then
linked this data on test scores with other administrative data on
class size and school characteristics.95 The unit of observation in the 95 This has become increasingly com-

mon as administrative data has become
digitized and personal computers have
become more powerful.

linked data sets is the class and includes data on average test scores
in each class, spring class size, beginning-of-year enrollment for each
school and grade, a town identifier, school-level index of student SES
called “percent disadvantaged” and variables identifying the ethnic
and religious composition of the school. Their study was limited to
Jewish public schools which account for the vast majority of school
children in Israel.

TABLE I
UNWEIGHTED DESCRIPTIVE STATISTICS

Var iable Mean S.D.

Quant iles

0.10 0.25 0.50 0.75 0.90

A. Full sample
5th grade (2019 classes, 1002 schools, tested in 1991)

Class size 29.9 6.5 21 26 31 35 38
Enrollment 77.7 38.8 31 50 72 100 128
Percent disadvantaged 14.1 13.5 2 4 10 20 35
Reading size 27.3 6.6 19 23 28 32 36
Math size 27.7 6.6 19 23 28 33 36
Average verba l 74.4 7.7 64.2 69.9 75.4 79.8 83.3
Average math 67.3 9.6 54.8 61.1 67.8 74.1 79.4

4th grade (2049 classes, 1013 schools, tested in 1991)

Class size 30.3 6.3 22 26 31 35 38
Enrollment 78.3 37.7 30 51 74 101 127
Percent disadvantaged 13.8 13.4 2 4 9 19 35
Reading size 27.7 6.5 19 24 28 32 36
Math size 28.1 6.5 19 24 29 33 36
Average verba l 72.5 8.0 62.1 67.7 73.3 78.2 82.0
Average math 68.9 8.8 57.5 63.6 69.3 75.0 79.4

3rd grade (2111 classes, 1011 schools, tested in 1992)

Class size 30.5 6.2 22 26 31 35 38
Enrollment 79.6 37.3 34 52 74 104 129
Percent disadvantaged 13.8 13.4 2 4 9 19 35
Reading size 24.5 5.4 17 21 25 29 31
Math size 24.7 5.4 18 21 25 29 31
Average verba l 86.3 6.1 78.4 83.0 87.2 90.7 93.1
Average math 84.1 6.8 75.0 80.2 84.7 89.0 91.9

B. !/" 5 Discont inu ity sample (enrollment 36–45, 76–85, 116–124)

5th grade 4th grade 3rd grade

Mean S.D. Mean S.D. Mean S.D.

(471 classes,
224 schools)

(415 classes,
195 schools

(441 classes,
206 schools)

Class size 30.8 7.4 31.1 7.2 30.6 7.4
Enrollment 76.4 29.5 78.5 30.0 75.7 28.2
Percent disadvantaged 13.6 13.2 12.9 12.3 14.5 14.6
Reading size 28.1 7.3 28.3 7.7 24.6 6.2
Math size 28.5 7.4 28.7 7.7 24.8 6.3
Average verba l 74.5 8.2 72.5 7.8 86.2 6.3
Average math 67.0 10.2 68.7 9.1 84.2 7.0

Var iable definit ions are as follows: Class size # number of students in class in the spr ing, Enrollment #
September grade enrollment , Percent disadvantaged # percent of students in the school from ‘‘disadvantaged
backgrounds,’’Reading size # number of students who took the reading test , Math size # number of students
who took the math test , Average verba l # average composite reading score in the class, Average math #
average composite math score in the class.

US ING MAIMONIDES ’ RULE 539

Page 539
@xyserv1/disk4/CLS_jrnlkz/GRP_qjec/JOB_qjec114-2/DIV_064a01 dans

 at B
aylor U

niversity on February 27, 2013
http://qje.oxfordjournals.org/

D
ow

nloaded from
 

Figure 24: Angrist and Lavy [1999]
descriptive statistics

Figure 24 shows the mean, standard deviation and quantile values
for seven variables for the 5th grade across 1,002 schools (from 1991).
As can be seen, the mean class size is almost 30 students.

TABLE I
UNWEIGHTED DESCRIPTIVE STATISTICS

Var iable Mean S.D.

Quant iles

0.10 0.25 0.50 0.75 0.90

A. Full sample
5th grade (2019 classes, 1002 schools, tested in 1991)

Class size 29.9 6.5 21 26 31 35 38
Enrollment 77.7 38.8 31 50 72 100 128
Percent disadvantaged 14.1 13.5 2 4 10 20 35
Reading size 27.3 6.6 19 23 28 32 36
Math size 27.7 6.6 19 23 28 33 36
Average verba l 74.4 7.7 64.2 69.9 75.4 79.8 83.3
Average math 67.3 9.6 54.8 61.1 67.8 74.1 79.4

4th grade (2049 classes, 1013 schools, tested in 1991)

Class size 30.3 6.3 22 26 31 35 38
Enrollment 78.3 37.7 30 51 74 101 127
Percent disadvantaged 13.8 13.4 2 4 9 19 35
Reading size 27.7 6.5 19 24 28 32 36
Math size 28.1 6.5 19 24 29 33 36
Average verba l 72.5 8.0 62.1 67.7 73.3 78.2 82.0
Average math 68.9 8.8 57.5 63.6 69.3 75.0 79.4

3rd grade (2111 classes, 1011 schools, tested in 1992)

Class size 30.5 6.2 22 26 31 35 38
Enrollment 79.6 37.3 34 52 74 104 129
Percent disadvantaged 13.8 13.4 2 4 9 19 35
Reading size 24.5 5.4 17 21 25 29 31
Math size 24.7 5.4 18 21 25 29 31
Average verba l 86.3 6.1 78.4 83.0 87.2 90.7 93.1
Average math 84.1 6.8 75.0 80.2 84.7 89.0 91.9

B. !/" 5 Discont inu ity sample (enrollment 36–45, 76–85, 116–124)

5th grade 4th grade 3rd grade

Mean S.D. Mean S.D. Mean S.D.

(471 classes,
224 schools)

(415 classes,
195 schools

(441 classes,
206 schools)

Class size 30.8 7.4 31.1 7.2 30.6 7.4
Enrollment 76.4 29.5 78.5 30.0 75.7 28.2
Percent disadvantaged 13.6 13.2 12.9 12.3 14.5 14.6
Reading size 28.1 7.3 28.3 7.7 24.6 6.2
Math size 28.5 7.4 28.7 7.7 24.8 6.3
Average verba l 74.5 8.2 72.5 7.8 86.2 6.3
Average math 67.0 10.2 68.7 9.1 84.2 7.0

Var iable definit ions are as follows: Class size # number of students in class in the spr ing, Enrollment #
September grade enrollment , Percent disadvantaged # percent of students in the school from ‘‘disadvantaged
backgrounds,’’Reading size # number of students who took the reading test , Math size # number of students
who took the math test , Average verba l # average composite reading score in the class, Average math #
average composite math score in the class.
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Figure 25: Angrist and Lavy [1999] de-
scriptive statistics for the discontinuity
sample.

Angrist and Lavy [1999] present descriptive statistics for what
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they call a discontinuity sample which is a sample defined as only
schools with enrollments greater or less than 5 students: 36,45; 76,85;
and 116,125. Average class size is a bit larger in this discontinuity
sample than in the overall sample but otherwise very similar to the
full sample (see Figure 25).

Papers like these have to figure out how to model the underlying
running variable that determines treatment, and in some cases that
can be complicated. This is one of those cases. The authors attempt
to capture the fact that Maimonides’ Rule allows enrollment cohorts
of 1-40 to be grouped in a single class, but enrollment cohorts of 41-
80 are split into two classes of average size 20.5-40 Enrollment cohorts
of 81-120 are split into three classes of average size 27-40 and so on.
Their class size equation is

fsc =
es

int es�1
40 + 1

where es is the beginning-of-year enrollment in school s in a given
grade (e.g., 5th grade); fsc is class size assigned to class c in school
s for that grade; int(n) is the largest integer less than or equal to n.
They call this the class size function. Although the class size func-
tion is fixed within schools, in practice enrollment cohorts are not
necessarily divided into classes of equal size. But, even though the
actual relationship between class size and enrollment size involves
many factors, in Israel it clearly has a lot to do with fsc. The authors
show this by laying on top of one another fsc from Maimonides’ Rule
and actual class sizes (Figure 26). Notice the very strong correlation
between the two.

one-quar ter of the classes are of equa l size. On the other hand,
even though the actua l rela t ionsh ip between class size and
enrollment size involves many factors, in Israel it clear ly has a lot
to do with fsc. This can be seen in Figures Ia and Ib, which plot the
average class size by enrollment size for fifth and four th grade
pupils, a long with the class-size funct ion . The dashed hor izonta l

FIGURE I
Class Size in 1991 by In it ia l Enrollment Count , Actua l Average Size and as

Predicted by Maimonides’Rule
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Figure 26: Maimonides’ Rule vs. actual
class size [Angrist and Lavy, 1999].

Before moving on, look at how great this graph is. The identifi-
cation strategy told in one picture. Angrist made some really great
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graphs. Good graphs tell the story. It’s worth your time trying to
figure out a figure that really conveys your main results or your iden-
tification strategy. Readers would prefer it. Okay back to business.

The class size function, fsc, is a mechanical representation of
Maimonides’ Rule and is highly correlated with actual class size. But
it’s also highly correlated with average test scores of the fourth and
fifth graders. The following picture plots average reading test scores
and average values of fsc by enrollment size in enrollment intervals
of ten for fifth graders (Figure 27). The figure shows that test scores
are generally higher in schools with larger enrollments and larger
predicted class sizes, but it also shows an up-and-down pattern
in which average scores by enrollment size mirror the class-size
function.

In addit ion to exhibit ing a st rong associa t ion with average
class size, the class-size funct ion is a lso cor rela ted with the
average test scores of four th and fifth graders (a lthough not th ird
graders). This can be seen in Figures IIa and IIb, which plot
average reading test scores and average va lues of fsc by enrollment
size, in enrollment in terva ls of ten . F igure IIa plots the scores of

FIGURE II
Average Reading Scores by Enrollment Count , and the Corresponding Average

Class Size Predicted by Maimonides’Rule
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Figure 27: Average reading scores vs.
enrollment size [Angrist and Lavy,
1999].

The overall positive correlation between test scores and enrollment
is partly attributable to larger schools in Israel being geographically
concentrated in larger, more affluent cities. Smaller schools are in
poorer “developmental towns” outside the major urban centers. An-
grist and Lavy [1999] note that the enrollment size and the percent
disadvantaged index measuring the proportion of students from dis-
advantaged backgrounds are negatively correlated. They control for
the “trend” association between test scores and enrollment size and
plot the residuals from regressions of average scores and the average
of fsc on average enrollment and the percent disadvantaged index
for each interval. The estimates for fifth graders imply a reduction
in predicted class size of ten students is associated with a 2.2 point
increase in average reading scores – a little more than one-quarter
of a standard deviation in the distribution of class averages. See the
following figures showing the correlation between score residuals
and the class size function by enrollment.
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do not provide a framework for formal sta t ist ica l in ference.
Although the micro da ta for four th and fifth graders are un-
ava ilable, a model for individua l pupils’ test scores is used to
descr ibe the causa l rela t ionsh ips to be est imated. For the ith
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Figure 28: Reading score residual and
class size function by enrollment count
[Angrist and Lavy, 1999].
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Figure 29: Math score residual and
class size function by enrollment count
[Angrist and Lavy, 1999].

The visual evidence is strong that class size causes test scores to
decrease.96 Next, Angrist and Lavy [1999] estimate regression models 96 As we will see, graphical evidence is

very common in RDD.of the following form

yisc = bXs + dnsc + hsµc + #sc

where yisc is pupil i’s score, Xs is a vector of school characteristics,
sometimes including functions of enrollment, and nsc is the size
of class c in school s. The µc is an identical and independently dis-
tributed class component, and the term hs is an identical and inde-
pendently distributed school component. The class-size coefficient, d,
is the primary parameter of interest.

This equation describes the average potential outcomes of students
under alternative assignments of nsc controlling for any effects of Xs.
If nsc was randomly assigned conditional on Xs, then d would be the
weighted average response to random variation in class size along the
length of the individual causal response functions connecting class
size and pupil scores. But nsc is not randomly assigned. Therefore in
practice, it is likely correlated with potential outcomes – in this case,
the error components in the equation. Estimates of this OLS model
are contained in Figure 30.

Though OLS may not have a causal interpretation, using RDD
might. The authors go about estimating an RDD model in multiple
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TABLE II
OLS ESTIMATES FOR 1991

5th Grade 4th Grade

Reading comprehension Math Reading comprehension Math

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Mean score 74.3 67.3 72.5 69.9
(s.d .) (8.1) (9.9) (8.0) (8.8)
Regressors
Class size .221 !.031 !.025 .322 .076 .019 0.141 !.053 !.040 .221 .055 .009

(.031) (.026) (.031) (.039) (.036) (.044) (.033) (.028) (.033) (.036) (.033) (.039)
Percent disadvantaged !.350 !.351 !.340 !.332 !.339 !.341 !.289 !.281

(.012) (.013) (.018) (.018) (.013) (.014) (.016) (.016)
Enrollment !.002 .017 !.004 .014

(.006) (.009) (.007) (.008)
Root MSE 7.54 6.10 6.10 9.36 8.32 8.30 7.94 6.65 6.65 8.66 7.82 7.81
R 2 .036 .369 .369 .048 .249 .252 .013 .309 .309 .025 .204 .207
N 2,019 2,018 2,049 2,049

The unit of observa t ion is the average score in the class. Standard er rors are repor ted in paren theses. Standard er rors were cor rected for with in-school cor rela t ion between classes.
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Figure 30: OLS regressions [Angrist and
Lavy, 1999].

steps. In the first stage, they estimate the following model:

nsc = p0Xs + p fsc + ysc

where pj are parameters and the error term is defined as the residual
from the population regression of nsc onto Xs and fsc and captures
other things that are associated with enrollment. Results from this
first stage regressions are presented in Figures 31.

In the second step, the authors calculate the fitted values from the
first regression, bnsc and then estimate the following regression model

ysc = bXs + d

bnsc + hs + [µc + #sc]

Results from this second stage regression are presented in Figure 32.
Compare these second stage regressions to the OLS regressions

from earlier (Figure 30). The second stage regressions are all negative
and larger in magnitude.

Pulling back for a moment, we can take these results and compare
them to what Krueger [1999] found in the Tennessee STAR experi-
ment. Krueger [1999] found effect sizes of around 0.13 - 0.2 standard
deviations among pupils and about 0.32 - 0.66 standard deviations
in the distribution of class means. Angrist and Lavy [1999] compare
their results by calculating the effect size associated with reducing
class size by eight pupils (same as STAR). They then multiple this
number times their second step estimate for reading scores for fifth
graders (-0.275) which gives them an effect size of around 2.2 points
or 0.29 standard deviation. Their estimates of effect size for fifth
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TABLE III
REDUCED-FORM ESTIMATES FOR 1991

5th Graders 4th Graders

Class size
Reading

comprehension Math Class size
Reading

comprehension Math

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

A. Full sample

Means 29.9 74.4 67.3 30.3 72.5 68.9
(s.d .) (6.5) (7.7) (9.6) (6.3) (8.0) (8.8)
Regressors
fsc .704 .542 !.111 !.149 !.009 !.124 .772 .670 !.085 !.089 .038 !.033

(.022) (.027) (.028) (.035) (.039) (.049) (.020) (.025) (.031) (.040) (.037) (.047)
Percent disadvantaged !.076 !.053 !.360 !.355 !.354 !.338 !.054 !.039 !.340 !.340 !.292 !.282

(.010) (.009) (.012) (.013) (.017) (.018) (.008) (.009) (.013) (.014) (.016) (.016)
Enrollment .043 .010 .031 .027 .001 .019

(.005) (.006) (.009) (.005) (.007) (.009)
Root MSE 4.56 4.38 6.07 6.07 8.33 8.28 4.20 4.13 6.64 6.64 7.83 7.81
R 2 .516 .553 .375 .377 .247 .255 .561 .575 .311 .311 .204 .207
N 2,019 2,019 2,018 2,049 2,049 2,049

B. Discont inu ity sample

Means 30.8 74.5 67.0 31.1 72.5 68.7
(s.d .) (7.4) (8.2) (10.2) (7.2) (7.8) (9.1)
Regressors
fsc .481 .346 !.197 !.202 !.089 !.154 .625 .503 !.061 !.075 .059 .012

(.053) (.052) (.050) (.054) (.071) (.077) (.050) (.053) (.056) (.063) (.072) (.080)
Percent disadvantaged !.130 !.067 !.424 !.422 !.435 !.405 !.068 !.029 !.348 !.343 !.306 !.291

(.029) (.028) (.027) (.029) (.039) (.042) (.029) (.028) (.032) (.034) (.041) (.043)
Enrollment .086 .003 .041 .063 .007 .024

(.015) (.015) (.022) (.014) (.017) (.022)
Root MSE 5.95 5.58 6.24 6.24 8.58 8.53 5.49 5.26 6.57 6.57 8.26 8.25
R 2 .360 .437 .421 .421 .296 .305 .428 .475 .299 .299 .178 .182
N 471 471 471 415 415 415

The funct ion fsc is equa l to enrollment /[in t ((enrollment ! 1)/40) " 1]. Standard er rors are repor ted in paren theses. Standard er rors were cor rected for with in-school cor rela t ion
between classes. The unit of observa t ion is the average score in the class.
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Figure 31: First stage regression [An-
grist and Lavy, 1999].

TABLE IV
2SLS ESTIMATES FOR 1991 (F IFTH GRADERS)

Reading comprehension Math

Full sample

!/" 5
Discont inu ity

sample Full sample

!/" 5
Discont inu ity

sample

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Mean score 74.4 74.5 67.3 67.0
(s.d .) (7.7) (8.2) (9.6) (10.2)
Regressors
Class size ".158 ".275 ".260 ".186 ".410 ".582 ".013 ".230 ".261 ".202 ".185 ".443

(.040) (.066) (.081) (.104) (.113) (.181) (.056) (.092) (.113) (.131) (.151) (.236)
Percent disadvantaged ".372 ".369 ".369 ".477 ".461 ".355 ".350 ".350 ".459 ".435

(.014) (.014) (.013) (.037) (.037) (.019) (.019) (.019) (.049) (.049)
Enrollment .022 .012 .053 .041 .062 .079

(.009) (.026) (.028) (.012) (.037) (.036)
Enrollment squared/100 .005 ".010

(.011) (.016)
Piecewise linear t rend .136 .193

(.032) (.040)
Root MSE 6.15 6.23 6.22 7.71 6.79 7.15 8.34 8.40 8.42 9.49 8.79 9.10
N 2019 1961 471 2018 1960 471

The unit of observa t ion is the average score in the class. Standard er rors are repor ted in paren theses. Standard er rors were cor rected for with in-school cor rela t ion between classes.
All est imates use fsc as an inst rument for class size.
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Figure 32: Second stage regressions
[Angrist and Lavy, 1999].
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graders are at the low end of the range that Krueger [1999] found in
the Tennessee experiment.

Observational are often confounded by a failure to isolate a cred-
ible source of exogenous variation in school inputs which leads
some researchers to conclude that school inputs don’t matter in
pupil achievement. But RDD overcomes problems of confounding
by exploiting exogenous variation created by administrative rules,
and as with the STAR experiment, shows that smaller classes appear
beneficial to student academic achievement.

Data requirements for RDD RDD is all about finding “jumps” in the
probability of treatment as we move along some running variable X.
So where do we find these jumps? Where do we find these discon-
tinuities? The answer is that humans often embed jumps into rules.
Sometimes these embedded rules give us a designs for a careful
observational study.

The validity of an RDD doesn’t require that the assignment rule
be arbitrary. It only requires that it be known, precise and free of
manipulation. The most effective RDD studies involve programs
where X has a “hair trigger’ that is not tightly related to the outcome
being studied. Examples the probability of being arrested for DWI
jumping at > 0.08 [Hansen, 2015]; the probability of receiving health-
care insurance jumping at age 65 [Card et al., 2008]; the probability
of receiving medical attention jumping when birthweight falls below
1,500 grams [Almond et al., 20010]; the probability of attending sum-
mer school when grades fall below some minimum level [Jacob and
Lefgen, 2004].

In all these kinds of studies, we need data. But specifically, we
need a lot of data around the discontinuities which itself implies
that the datasets useful for RDD are likely very large. In fact, large
sample sizes are characteristic features of the RDD. This is also
because in the face of strong trends, one typically needs a lot of data.
Researchers are typically using administrative data or settings such
as birth records where there are many observations.

Definition There are generally accepted two kinds of RDD studies.
There are designs where the probability of treatment goes from 0

to 1 at the cutoff, or what is called a “sharp” design. And there are
designs where the probability of treatment discontinuously increases
at the cutoff. These are often called “fuzzy” designs. In all of these,
though, there is some running variable X that upon reaching a cutoff
c0 the likelihood of being in treatment group switches. van der
Klaauw [2002] presents the following diagram showing the difference
between the two designs:
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manner but in such a way that the propensity score function Pr(T = 1 I S) is again 
known to have a discontinuity at S. The fuzzy design can occur in case of misassign- 
ment relative to the cutoff value in a sharp design, with values of S near the cutoff 
appearing in both treatment and control groups. Alternatively, in addition to the 
position of the individual's score relative to the cutoff value, assignment may be 
based on additional variables observed by the administrator, but unobserved by 
the evaluator. Compared to the sharp design, selection here is both on observables 
and unobservables. Instead of having the step function Pr(T = 1 I S) = 1{S > 3), 
the selection probability as a function of S may now appear as the S-shaped func- 
tion shown in Figure 2. 

As in the sharp RD design case, it is again possible to exploit the discontinuity in 
the selection rule to identify a treatment effect under continuity assumption Al. 
To see this, note that if the conditional mean function E[u I S] is continuous at S = 
5, then lims, E[YI S] - limst E[YI S] = a(limsts E[T I S] - lims E[T I S]). It 
follows that the treatment effect a is identified by 

limss E[YI S] - limsts E[YI S] 
lims,s E[TI S] - limsts E[TI S] 

where the denominator in (9) is nonzero because of the known discontinuity of 
E[TIS] at S. 

(9) 

1261 

Figure 33: Sharp vs. Fuzzy RDD
[van der Klaauw, 2002].

Sharp RDD is where treatment is a deterministic function of the
running variable X.97 An example might be Medicare enrollment 97 Figure 33 calls the running variable

“selection variable”. This is because
van der Klaauw [2002] is an early
paper in the new literature, and the
terminology hadn’t yet been hammered
out. But they are the same thing.

which happens sharply at age 65 including disability situations. A
fuzzy RDD represents a discontinuous “jump” in the probability of
treatment when X > c0. In these fuzzy designs, the cutoff is used as
an instrumental variable for treatment, like [Angrist and Lavy, 1999]
who instrument for class size with the class size function.

More formally, in a sharp RDD, treatment status is a deterministic
and discontinuous function of a running variable Xi where

Di =

8
<

:
1 if Xi � c0

0 if Xi < c0

where c0 is a known threshold or cutoff. In other words, if you know
the value of Xi for unit i, then you know treatment assignment for
unit i with certainty. For this reason, people ordinarily think of RDD
as a selection on observables observational study.

If we assume constant treatment effects, then in potential outcomes
terms, we get

Y0
i = a + bXi

Y1
i = Y0

i + d
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Using the switching equation we get

Yi = Y0
i + (Y1

i �Y0
i )Di

Yi = a + bXi + dDi + #i

where the treatment effect parameter, d, is the discontinuity in the
conditional expectation function:

d = limXi!X0 E[Y1
i |Xi = X0]� limX0 Xi E[Y0

i |Xi = X0]

= limXi!X0 E[Yi|Xi = X0]� limX0 Xi E[Yi|Xi = X0]

The sharp RDD estimation is interpreted as an average causal effect
of the treatment at the discontinuity, which is a kind of local average
treatment effect (LATE).

dSRD = E[Y1
i �Y0

i |Xi = X0]

Notice the role that extrapolation plays in estimating treatment effects
with sharp RDD. If unit i is just below c0, the Di = 0. But if unit i is
just above c0, then the Di = 1. See Figure 34.
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Figure 34: Dashed lines are extrapola-
tions

The key identifying assumption in an RDD is called the continuity
assumption. It states

E[Y0
i |X = c0] and E[Y1

i |X = c0]

are continuous (smooth) in X at c0. In words, this means that popula-
tion average potential outcomes, Y0 and Y1, are continuous functions
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of X at the cutoff, c0. That is, the continuity assumption requires that
the expected potential outcomes remain continuous through c0. Ab-
sent the treatment, in other words, the expected potential outcomes
wouldn’t have jumped; they would’ve remained smooth functions
of X. This implies that all other unobserved determinants of Y are
continuously related to the running variable X. Such an assumption
should remind you of omitted variable bias. Does there exist some
omitted variable wherein the outcome would jump at c0 even if we dis-
regarded the treatment altogether? If so, then the continuity assumption
is violated and our methods do not require the LATE.

Sometimes these abstract ideas become much easier to understand
with data, so here is an example of what we mean using a simulation.

/// --- Examples using simulated data

. clear

. capture log close

. set obs 1000

. set seed 1234567

. * Generate running variable

. gen x = rnormal(50, 25)

. replace x=0 if x < 0

. drop if x > 100

. sum x, det

. * Set the cutoff at X=50. Treated if X > 50

. gen D = 0

. replace D = 1 if x > 50

. gen y1 = 25 + 0*D + 1.5*x + rnormal(0, 20)

. twoway (scatter y1 x if D==0, msize(vsmall) msymbol(circle_hollow)) //

(scatter y1 x if D==1, sort mcolor(blue) msize(vsmall) msymbol(circle_hollow)) //

(lfit y1 x if D==0, lcolor(red) msize(small) lwidth(medthin) lpattern(solid)) //

(lfit y1 x, lcolor(dknavy) msize(small) lwidth(medthin) lpattern(solid)), //

xtitle(Test score (X)) xline(50) legend(off)

Figure 35 shows the results from this simulation. Notice that the
value of Y is changing continuously over X and through c0. This is an
example of the continuity assumption. It means absent the treatment
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itself, the potential outcomes would’ve remained a smooth function
of X. It is therefore only the treatment, triggered at c0, that causes the
jump. It is worth noting here, as we have in the past, that technically
speaking the continuity assumption is not testable because it is based
on counterfactuals as so many other identifying assumptions we’ve
reviewed are.
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Figure 35: Display of observations from
simulation.

Next we look at an example of discontinuities using simulated
data (Figure 36).

. gen y = 25 + 40*D + 1.5*x + rnormal(0, 20)

. scatter y x if D==0, msize(vsmall) || scatter y x if D==1, msize(vsmall) legend(off) //

xline(50, lstyle(foreground)) || lfit y x if D ==0, color(red) || //

lfit y x if D ==1, color(red) ytitle("Outcome (Y)") xtitle("Test Score (X)")

Notice the jump at the discontinuity in the outcome.

Implementation It is common for authors to transform the running
variable X by re-centering at c0:

Yi = a + b(Xi � c0) + dDi + #i

This doesn’t change the interpretation of the treatment effect – only
the interpretation of the intercept. Let’s use Card et al. [2008] as an
example. Medicare is triggered when a person turns 65. So re-center
the running variable (age) by subtracting 65:
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Vertical distance is the LATE

Vertical distance is the LATE
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Figure 36: Display of observations
discontinuity simulation.

Y = b0 + b1(Age� 65) + b2Edu

= b0 + b1 Age� b165 + b2Edu

= (b0 � b165) + b1 Age + b2Edu

= a + b1 Age + b2Edu

where a = b0 + b165. All other coefficients, notice, have the same
interpretation except for the intercept.

Another practical question is nonlinearity. Because sometimes
we are fitting local linear regressions around the cutoff, we will pick
up an effect because of the imposed linearity if the underlying data
generating process is nonlinear. Here’s an example from Figure 37:

capture drop y

gen x2=x^2

gen x3=x^3

gen y = 25 + 0*D + 2*x + x2 + rnormal(0, 20)

scatter y x if D==0, msize(vsmall) || scatter y x if D==1, msize(vsmall) legend(off) //

xline(50, lstyle(foreground)) ytitle("Outcome (Y)") xtitle("Test Score (X)")

In this situation, we would need some way to model the nonlin-
earity below and above the cutoff to check whether, even given the
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Figure 37: Simulated nonlinear data
from Stata

nonlinearity, there had been a jump in the outcome at the discontinu-
ity.

Suppose that the nonlinear relationships is

E[Y0
i |Xi] = f (Xi)

for some reasonably smooth function f (Xi). In that case, we’d fit the
regression model:

Yi = f (Xi) + dDi + hi

Since f (Xi) is counterfactual for values of Xi > c0, how will we model
the nonlinearity? There are two ways of approximating f (Xi). First,
let f (Xi) equal a pth order polynomial:

Yi = a + b1xi + b2x2
i + · · · + bpxp

i + dDi + hi

This approach, though, has recently been found to introduce bias
[Gelman and Imbens, 2016]. Those authors recommend using local
linear regressions with linear and quadratic forms only. Another way
of approximating f (Xi) is to use a nonparametric kernel, which I will
discuss later.

But let’s stick with this example where we are using pth order
polynomials, just so you know the history of this method and un-
derstand better what is being done. We can generate this function,
f (Xi), by allowing the xi terms to differ on both sides of the cutoff by
including them both individually and interacting them with Di. In
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that case, we have:

E[Y0
i |Xi] = a + b01X̃i + · · · + b0pX̃p

i

E[Y1
i |Xi] = a + b11X̃i + · · · + b1pX̃p

i

where X̃i is the re-centered running variable (i.e., Xi � c0). Centering
at c0 ensures that the treatment effect at Xi = X0 is the coefficient
on Di in a regression model with interaction terms. As Lee and
Lemieux [2010] note, allowing different functions on both sides of the
discontinuity should be the main results in an RDD paper.

To derive a regression model, first note that the observed values
must be used in place of the potential outcomes

E[Y|X]E[Y0|X] + (E[Y1|X� E[Y0|X])D

Your regression model then is

Y = a + b01 x̃i + · · · + b0px̃p
i + dDi

+b

⇤
1 x̃i + · · · + b

⇤
pDix̃

p
i + #i

where b

⇤
1 = b11 � b01, and b

⇤
p = b1p � b0p. The equation we looked at

earlier was just a special case of the above equation with b

⇤
1 = b

⇤
p = 0.

The treatment effect at c0 is d. And the treatment effect at Xi � c0 > 0
is d + b

⇤
1c + · · · + b

⇤
pcp.

. capture drop y x2 x3

. gen x2 = x*x

. gen x3 = x*x*x

. gen y = 10000 + 0*D - 100*x +x2 + rnormal(0, 1000)

. reg y D x x2 x3

. predict yhat

. scatter y x if D==0, msize(vsmall) || scatter y x if D==1,

msize(vsmall) legend(off) xline(140, lstyle(foreground)) ylabel(none) ||

line yhat x if D ==0, color(red) sort || line yhat x if D ==1, sort color(red)

xtitle("Test Score (X)") ytitle("Outcome (Y)")

But, as we mentioned earlier, Gelman and Imbens [2016] has
recently discouraged the use of higher order polynomials when
estimating local linear regressions. The alternative is to use kernel
regression. The nonparametric kernel method has problems because
you are trying to estimate regressions at the cutoff point which can
result in a boundary problem (see Figure 38 from Hahn et al. [2001]).

While the true effect in this diagram is AB, with a certain band-
width a rectangular kernel would estimate the effect as A0B0, which
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The Kernel Method

The nonparametric kernel method has its problems in this case
because you are trying to estimate regressions at the cuto§ point.
This results in a "boundary problem".

While the "true" e§ect is AB, with a certain bandwidth a rectangular
kernel would estimate the e§ect as A’B’.
There is therefore systematic bias with the kernel method if the f (X )
is upwards or downwards sloping.
Waldinger (Warwick) 21 / 48

Figure 38: Illustration of a boundary
problem

is as you can see a biased estimator. There is systematic bias with the
kernel method if the underlying nonlinear function, f (X), is upwards
or downwards sloping.

The standard solution to this problem is to run local linear non-
parametric regression [Hahn et al., 2001]. In the case described above,
this would substantially reduce the bias. So what is that? Think of
kernel regression as a weighted regression restricted to a window
(hence “local”). The kernel provides the weights to that regression.
Stata’s poly command estimates kernel-weighted local polynomial
regression. A rectangular kernel would give the same result as taking
E[Y] at a given bin on X. The triangular kernel gives more impor-
tance to the observations closest to the center.

The model is some version of:

(ba,bb) =a,b

n

Â
i=1

(yi � a� b(xi � c0))2K(
xi � co

h
)1(xi > c0) (79)

While estimating this in a given window of width h around the
cutoff is straightforward, what’s not straightforward is knowing how
large or small to make the window.98 So this method is sensitive to 98 You’ll also see the window referred to

as the bandwidth. They mean the same
thing.

the choice of bandwidth. Optimal bandwidth selection has become
available [Imbens and Kalyanaraman, 2011].

Card et al. [2008] Card et al. [2008] is an example of a sharp RDD,
because it focuses on the provision of universal healthcare insur-
ance for the elderly – Medicare at age 65. What makes this a policy-
relevant question is because questions regarding universal insurance
have become highly relevant because of the debates surrounding the
Affordable Care Act. But also because of the sheer size of Medicare.
In 2014, Medicare was 14% of the federal budget at $505 billion.
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Approximately 20% of non elderly adults in the US lacked insur-
ance in 2005. Most were from lower-income families, and nearly half
were African American or Hispanic. Many analysts have argued
that unequal insurance coverage contributes to disparities in health
care utilization and health outcomes across socioeconomic status.
But, even among the insurance, there is heterogeneity in the form of
different copays, deductibles and other features that affect use. Evi-
dence that better insurance causes better health outcomes is limited
because health insurance suffers from deep selection bias. Both sup-
ply and demand for insurance depend on health status, confounding
observational comparisons between people with different insurance
characteristics.

The situation for elderly looks very different, though. Less than
1% of the elderly population are uninsured. Most have fee-for-service
Medicare coverage. And that transition to Medicare occurs sharply at
age 65 – the threshold for Medicare eligibility.

The authors estimate a reduced form model measuring the causal
effect of health insurance status on health care usage:

yija = Xijaa + fk(a; b) + Â
k

Ck
ijad

k + uija

where i indexes individuals, j indexes a socioeconomic group, a in-
dexes age, uija indexes the unobserved error, yija health care usage,
Xija a set of covariates (e.g., gender and region), f j(a; b) a smooth
function representing the age profile of outcome y for group j, and
Ck

ija (k = 1, 2, . . . , K) are characteristics of the insurance coverage held
by the individual such as copayment rates. The problem with esti-
mating this model, though, is that insurance coverage is endogenous:
cov(u, C) 6= 0. So the authors use as identification of the age threshold
for Medicare eligibility at 65, which they argue is credibly exogenous
variation in insurance status. See Figure 39 as an example of the
correlation between age and insurance status.

Suppose health insurance coverage can be summarized by two
dummy variables: C1

ija (any coverage) and C2
ija (generous insurance).

Card et al. [2008] estimate the following linear probability models:

C1
ija = Xijab

1
j + g1

j (a) + Dap

1
j + v1

ija

C2
ija = Xijab

2
j + g2

j (a) + Dap

2
j + v2

ija

where b

1
j and b

2
j are group-specific coefficients, g1

j (a) and g2
j (a) are

smooth age profiles for group j, and Da is a dummy if the respon-
dent is equal to or over age 65. Recall the reduced form model:

yija = Xijaa + fk(a; b) + Â
k

Ck
ijad

k + uija
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where hj 1a 2 5 fj 1a 2 1 d1g1
j 1a 2 1 d2

 g
2
j 1a 2 represents the reduced-form age profile for group j, p yj  

5  p
1
j d

1 1 p2
j d

2, and vy
ija 5  uija 1 v1

ija d
1
  1 v2

ija d
2  is an error term. Assuming that the profiles 

fj 1a 2 , g1
j 1a 2 , and g2

j 1a 2 are all continuous at age 65, any discontinuity in y can be attributed to 
discontinuities in insurance. The magnitude depends on the size of the insurance changes at 65 
1p1

j and p2
j 2 , and on the associated causal effects 1d1 and d22 .

For some basic health care services—for example, routine doctor visits—it is arguable that 
only the presence of insurance matters. In this case, the implied discontinuity in y at age 65 for 
group j will be proportional to the change in insurance coverage experienced by the group. For 
more expensive or elective services, the generosity of coverage may also matter, if patients are 
unwilling to cover the required copayment or if managed care programs will not cover the ser-
vice. This creates a potential identification problem in interpreting the discontinuity in y for any 
one group. Since py

j is a linear combination of the discontinuities in coverage and generosity, d1 
and d2 can be estimated by a regression across groups:

(4)  py
j  5  d 0 1 d1

 p
1
j 1 d2

 p
2
j 1 ej ,

where ej is an error term reflecting a combination of the sampling errors in py
j , p

1
j , and p2

j .
This framework can be extended to include additional dimensions of insurance coverage. In 

practice, however, a key limitation is the lack of information on the insurance packages held by dif-
ferent individuals. In the absence of more complete data, we use the presence of at least two forms 
of coverage as an indicator of “generous” coverage. We also explore a simple measure of gatekeeper 
limitations, based on whether an individual’s primary insurer is a managed care provider.

In our empirical analysis, we fit regression discontinuity (RD) models like (2a), (2b), and (3) by 
demographic subgroup to individual data using OLS estimators. We then combine the estimates 

Figure 1. Coverage by Any Insurance and by Two or More Policies, by Age and Demographic Group

Figure 39: Insurance status and age

Combining the Cija equations, and rewriting the reduced form model,
we get:

yija = Xija

✓
aj + b

1
j d

1
j + b

2
j d

2
j

◆
hj(a) + Dap

y
j + vy

ija

where h(a) = f j(a) + d

1g1
j (a) + d

2g2
j (a) is the reduced form age profile

for group j, p

y
j = p

1
j d

1 + p

2
j d

2 and vy
ija = uija + v1

ijad

1 + v2
ijad

2 is the error
term. Assuming that the profiles f j(a), gj(a) and g2

j (a) are continuous
at age 65 (i.e., the continuity assumption necessary for identification),
then any discontinuity in y is due to insurance. The magnitudes will
depend on the size of the insurance changes at age 65 (p1

j and p

2
j )

and on the associated causal effects (d1 and d

2).
For some basic health care services, such as routine doctor visits,

it may be that the only thing that matters is insurance. But, in those
situations, the implied discontinuity in Y at age 65 for group j will
be proportional to the change in insurance status experienced by
that group. For more expensive or elective services, the generosity
of the coverage may matter. For instance, if patients are unwilling
to cover the required copay or if the managed care program won’t
cover the service. This creates a potential identification problem in
interpreting the discontinuity in y for any one group. Since p

y
j is a

linear combination of the discontinuities in coverage and generosity,
d

1 and d

2 can be estimated by a regression across groups:

p

y
j = d

0 + d

1
p

1
j + d

2
j p

2
j + ej

where ej is an error term reflecting a combination of the sampling
errors in p

y
j , p

1
j and p

2
j .



174 causal inference: the mixtape

Card et al. [2008] use a couple of different datasets – one a stan-
dard survey and the other administrative records from hospitals in
three states. First, they use the 1992-2003 National Health Interview
Survey (NHIS) . The NHIS reports respondents’ birth year, birth
month, and calendar quarter of the interview. Authors used this
to construct an estimate of age in quarters at date of interview. A
person who reaches 65 in the interview quarter is coded as age 65

and 0 quarters. Assuming a uniform distribution of interview dates,
one-half of these people be 0-6 weeks younger than 65 and one-half
will be 0-6 weeks older. Analysis is limited to people between 55 and
75. The final sample has 160,821 observations.

The second dataset is hospital discharge records for California,
Florida and New York. These records represent a complete census of
discharges from all hospitals in the three states except for federally
regulated institutions. The data files include information on age in
months at the time of admission. Their sample selection criteria is to
drop records for people admitted as transfers from other institutions,
and limit people between 60 and 70 years of age at admission. Sam-
ple sizes are 4,017,325 (California), 2,793,547 (Florida) and 3,121,721

(New York).
Some institutional details about the Medicare program may be

helpful. Medicare is available to people who are at least 65 and
have worked 40 quarters or more in covered employment or have a
spouse who did. Coverage is available to younger people with severe
kidney disease and recipients of Social Security Disability Insurance.
Eligible individuals can obtain Medicare hospital insurance (Part A)
free of charge, and medical insurance (Part B) for a modest monthly
premium. Individuals receive notice of their impending eligibility
for Medicare shortly before their 65

th birthday and are informed they
have to enroll in it and choose whether to accept Part B coverage.
Coverage begins on the first day of the month in which they turn 65.

There are five insurance-related variables: probability of Medicare
coverage, any health insurance coverage, private coverage, two or
more forms of coverage, and individual’s primary health insurance is
managed care. Data are drawn from the 1999-2003 NHIS and for each
characteristic, authors show the incidence rate at ages 63-64 and the
change at age 65 based on a version of the CK equations that include
a quadratic in age, fully interacted with a post-65 dummy as well
as controls for gender, education, race/ethnicity, region and sample
year. Alternative specifications were also used, such as a parametric
model fit to a narrower age window (ages 63-67) and a local linear
regression specification using a chosen bandwidth. Both show similar
estimates of the change at age 65.

The authors present their findings in Table, which is reproduced
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here as Figure 40. The way that you read this table is that the odd
numbered columns show the mean values for comparison group
(63-64 year olds) and the even numbered columns show the average
treatment effect for this population that complies with the treatment.
We can see, not surprisingly, that the effect of receiving Medicare is to
cause a very large increase of being on Medicare, as well as reducing
coverage on private and managed care.

DECEMBER 20082246 THE AMERICAN ECONOMIC REVIEW

Medicare coverage rises by 60 percentage points at age 65, from a base level of 12 percent 
among 63- 64-year-olds. Consistent with DI enrollment patterns (David H. Autor and Mark G. 
Duggan 2003), Medicare enrollment prior to 65 is higher for minorities and people with below-
average schooling, and these groups experience relatively smaller gains at age 65 (see rows 2–7). 
The pattern is reversed for the probability of any insurance coverage (columns 3 and 4): groups 
with lower insurance coverage rates prior to 65 experience larger gains at age 65. There is still 
some disparity in insurance coverage after 65, but the 28-point gap between more educated whites 
and less  educated minorities narrows to about 10 points. Similarly, as shown in rows 8–10, the 
21-point gap in coverage between whites and Hispanics before age 65 closes to only 12 points after. 
Thus, the onset of Medicare eligibility dramatically reduces disparities in insurance coverage.

Columns 5 and 6 present information on the prevalence of private insurance coverage (i.e., 
employer-provided or purchased coverage). Prior to age 65 private coverage rates range from 33 
percent for less educated minorities to 86 percent for better educated whites. The RD estimates 
in column 6 show that these differences are hardly affected by the onset of Medicare eligibility. 
This stability reflects the fact that most people who hold private coverage before 65 transition 
to a combination of Medicare and supplemental coverage, either through an employer-provided 
plan or an individually purchased Medigap policy.3 Columns 7 and 8 of Table 1 analyze the 
age patterns of multiple coverage (i.e., reporting two or more policies). Prior to age 65, the rate 

3  Across the six groups in rows 2–7 of Table 1, for example, the correlation between the private coverage rate at ages 
63–64 shown in column 5 and the fraction of 65- 66-year-olds with private supplemental Medicare coverage is 0.97.

Table 1—Insurance Characteristics Just before Age 65 and Estimated Discontinuities at Age 65

On Medicare Any insurance Private coverage 21 Forms coverage Managed care

Age
63–4

RD
 at 65

Age
 63–4

RD
 at 65

Age 
63–4

RD 
at 65

Age 
63–4

RD 
at 65

Age
 63–4

RD
 at 65

112 122 132 142 152 162 172 182 192 1102

Overall sample 12.3 59.7 87.9 9.5 71.8 22.9 10.8 44.1 59.4 228.4
14.12 10.62 11.12 12.82 12.12

Classified by ethnicity and education:
White non-Hispanic:
 High school dropout 21.1 58.5 84.1 13.0 63.5 26.2 15.0 44.5 48.1 225.0

14.62 12.72 13.32 14.02 14.52
 High school graduate 11.4 64.7 92.0 7.6 80.5 21.9 10.1 51.8 58.9 230.3

15.02 10.72 11.62 13.82 12.62
 At least some college 6.1 68.4 94.6 4.4 85.6 22.3 8.8 55.1 69.1 240.1

14.72 10.52 11.82 14.02 12.62
Minority:
 High school dropout 19.5 44.5 66.8 21.5 33.2 21.2 11.4 19.4 39.1 28.3

13.12 12.12 12.52 11.92 13.12
 High school graduate 16.7 44.6 85.2 8.9 60.9 25.8 13.6 23.4 54.2 215.4

14.72 12.82 15.12 14.82 13.52
 At least some college 10.3 52.1 89.1 5.8 73.3 25.4 11.1 38.4 66.2 222.3

14.92 12.02 14.32 13.82 17.22
Classified by ethnicity only:
White non-Hispanic 10.8 65.2 91.8 7.3 79.7 22.8 10.4 51.9 61.9 233.6
 1all 2 14.62 10.52 11.42 13.52 12.32
Black non-Hispanic 17.9 48.5 84.6 11.9 57.1 24.2 13.4 27.8 48.2 213.5
 1all 2 13.62 12.02 12.82 13.72 13.72
Hispanic 1all 2 16.0 44.4 70.0 17.3 42.5 22.0 10.8 21.7 52.9 212.1

13.72 13.02 11.72 12.12 13.72

Note: Entries in odd-numbered columns are percentages of age 63- 64-year-olds in group with insurance characteristic 
shown in column heading. Entries in even-numbered columns are estimated regression discontinuties at age 65, from 
models that include quadratic control for age, fully interacted with dummy for age 65 or older. Other controls include 
indicators for gender, race/ethnicity, education, region, and sample year. Estimates are based on linear probability 
 models fit to pooled samples of 1999–2003 NHIS.

Figure 40: Card et al. [2008] Table 1

Formal identification in an RDD relating to some outcome (insur-
ance coverage) to a treatment (MEdicare age-eligibility) that itself
depends on some running variable, age, relies on the continuity as-
sumptions that we discussed earlier. That is, we must assume that
the conditional expectation functions for both potential outcomes is
continuous at age=65. This means that both E[Y0|a] and E[Y1|a] are
continuous through age of 65. If that assumption is plausible, then
the average treatment effect at age 65 is identified as:

lim65 aE[y1|a]� lima!65E[y0|a]

The continuity assumption requires that all other factors, observed
and unobserved, that affect insurance coverage are trending smoothly
at the cutoff, in other words. But what else changes at age 65 other
than Medicare eligibility? Employment changes. Typically, 65 is
the traditional age when people retire from the labor force. Any
abrupt change in employment could lead to differences in health care
utilization if non workers have more time to visit doctors.
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The authors need to, therefore, investigate this possible con-
founder. They do this by testing for any potential discontinuities
at age 65 for confounding variables using a third dataset – the March
CPS 1996–2004. And they ultimately find no evidence for discontinu-
ities in employment at age 65 (Figure 41).
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 gender, and show no large discontinuities for either men or women.6 As an additional check, 
we used longitudinal data from the 2001 Survey of Income and Program Participation to esti-
mate month-to-month changes in individual employment (see the online Appendix). Consistent 
with the results here, we found no evidence of a discontinuity in employment at age 65. We also 
investigated the age profiles of marriage, being classified as poor, and receiving food stamps in 
the NHIS, as well as residential mobility, marital status, and the incidence of low income in the 
CPS. As summarized in the online Appendix to this paper, none of these outcomes shows sig-
nificant discontinuities at age 65 for the overall sample or the subgroups used in Tables 1 and 2. 
We conclude that employment, family structure, family income, and location, taken as a whole,  
all trend relatively smoothly at age 65, and are unlikely to confound our analysis of the impact 
of Medicare eligibility.

III. Changes in Health Care Access and Utilization at Age 65

We now turn to an analysis of the effects of reaching age 65 on access to care and utilization 
of health care services. Since 1997 the NHIS has asked two questions: (1) “During the past 12 
months has medical care been delayed for this person because of worry about the cost?” and (2) 
“During the past 12 months was there any time when this person needed medical care but did not 
get it because (this person) could not afford it?” Columns 1 and 3 of Table 2 show the fractions of 
people ages 63–64 in the pooled 1997–2003 NHIS who responded positively to these two ques-
tions. Overall, about 7 percent of the near-elderly reported delaying care, and 5 percent reported 
not getting care, with relatively higher rates for less educated minorities and for Hispanics. Our 
RD estimates in columns 2 and 4 imply significant declines at age 65 in both measures of access 

6 Graphs similar to Figure 2 by gender are available in our online Appendix.

Figure 2. Employment Rates by Age and Demographic Group (1992–2003 NHIS)

Figure 41: Investigating the CPS for
discontinuities at age 65 [Card et al.,
2008]

Next the authors investigate the impact that Medicare had on
access to care and utilization using the NHIS data. Since 1997, NHIS
has asked four questions. They are:

“During the past 12 months has medical care been delayed for this
person because of worry about the cost?”

“During the past 12 months was there any time when this person
needed medical care but did not get it because (this person) could not
afford it?”

“Did the individual have at least one doctor visit in the past year?”

“Did the individual have one or more overnight hospital stays in the
past year?”

Estimates from this analysis are in Figure 42. Again, the odd
numbered columns are the baseline, and the even numbered columns
are the average treatment effect. Standard errors are in parenthesis
below coefficient estimates in the even numbered columns. There’s
a few encouraging findings from this table. First, the share of the
relevant population who delayed care the previous year fell 1.8
points, and similar for the share who did not get care at all in the
previous year. The share who saw a doctor went up slightly, as did
the share who stayed at a hospital. These are not very large effects in
magnitude, it is important to note, but they are relatively precisely
estimated. Note that these effects differed considerably by race and
ethnicity as well as education.
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problems, especially for less educated minorities and Hispanics. The onset of Medicare eligibil-
ity leads to a fall in cost-related access problems and a narrowing of intergroup disparities in 
access.7

The right-hand columns of Table 3 present results for two key measures of health care utili-
zation: (1) “Did the individual have at least one doctor visit in the past year?” and (2) “Did the 
individual have one or more overnight hospital stays in the past year?” based on pooled samples 
of the 1992–2003 NHIS. Inspection of the utilization rates among 63- 64-year-olds shows a well-
known fact: less educated and minority groups are less likely to have a routine doctor visit than 
better educated and nonminority groups, but more likely to have had a hospital spell. The RD 
estimates in column 6 suggest that the age 65 threshold is associated with a (modest) increase in 
routine doctor visits, with relatively larger gains for the groups with lower rates before 65.8 For 
example, among the near-elderly there is a 7.4 percentage point gap in the probability of a routine 

7 Because the questions refer to the previous year, our estimates of the effect of reaching 65 on access problems may 
be attenuated. Specifically, people who recently turned 65 could have had problems in the past year, but before their 
birthday. Such attenuation may be reduced if people tend to recall only their most recent experiences.

8  Lichtenberg (2002) also found a discontinuous rise in physician visits in the National Ambulatory Medical Care 
Surveys, but did not disaggregate visits by race/ethnic group.

Table 3—Measures of Access to Care Just before 65 and Estimated Discontinuities at 65

1997–2003 NHIS 1992–2003 NHIS

Delayed care last year Did not get care last year Saw doctor last year Hospital stay last year

Age 63–64 RD at 65 Age 63–64 RD at 65 Age 63264 RD at 65 Age 63264 RD at 65
112 122 132 142 152 162 172 182

Overall sample 7.2 21.8 4.9 21.3 84.8 1.3 11.8 1.2
10.42 10.32 10.72 10.42

Classified by ethnicity and education:
White non-Hispanic:
 High school dropout 11.6 21.5 7.9 20.2 81.7 3.1 14.4 1.6

11.12 11.02 11.32 11.32
 High school graduate 7.1 0.3 5.5 21.3 85.1 20.4 12.0 0.3

12.82 12.82 11.52 10.72
 At least some college 6.0 21.5 3.7 21.4 87.6 0.0 9.8 2.1

10.42 10.32 11.32 10.72
Minority:
 High school dropout 13.6 25.3 11.7 24.2 80.2 5.0 14.5 0.0

11.02 10.92 12.22 11.42
 High school graduate 4.3 23.8 1.2 1.5 84.8 1.9 11.4 1.8

13.22 13.72 12.72 11.42
 At least some college 5.4 20.6 4.8 20.2 85.0 3.7 9.5 0.7

11.12 10.82 13.92 12.02

Classified by ethnicity only:
White non-Hispanic 6.9 21.6 4.4 21.2 85.3 0.6 11.6 1.3

10.42 10.32 10.82 10.52
Black non-Hispanic 1all 2 7.3 21.9 6.4 20.3 84.2 3.6 14.4 0.5

11.12 11.12 11.92 11.12
Hispanic 1all 2 11.1 24.9 9.3 23.8 79.4 8.2 11.8 1.0

10.82 10.72 10.82 11.62

Note: Entries in odd numbered columns are mean of variable in column heading among people ages 63–64. Entries in 
even numbered columns are estimated regression discontinuties at age 65, from models that include linear control for 
age interacted with dummy for age 65 or older (columns 2 and 4) or quadratic control for age, interacted with dummy 
for age 65 and older (columns 6 and 8). Other controls in models include indicators for gender, race/ethnicity, educa-
tion, region, and sample year. Sample in columns 1–4 is pooled 1997–2003 NHIS. Sample in columns 5–8 is pooled 
1992–2003 NHIS. Samples for regression models include people ages 55–75 only. Standard errors (in parentheses) are 
clustered by quarter of age.

Figure 42: Investigating the NHIS for
the impact of Medicare on care and
utilization [Card et al., 2008]

Having shown modest effects on care and utilization, the authors
turn to examining the kinds of care they received by examining
specific changes in hospitalizations. Figure 43 shows the effect of
Medicare on hip and knee replacements by race. The effects are
largest for Whites.

In conclusion, the authors find that universal healthcare coverage
for the elderly increases care and utilization, as well as coverage.
In a subsequent study [Card et al., 2009], the authors examined
the impact of Medicare on mortality and find slight decreases in
mortality rates (see Figure 44).

We will return to the question of healthcare coverage when we
cover the Medicaid Oregon experiment in the instrumental variables
chapter, but for now we stop.

Fuzzy RDD In the sharp RDD, treatment was determined when
Xi � c0. But that kind of deterministic assignment does not always
happen. Sometimes there is a discontinuity, but it’s not entirely
deterministic, though it nonetheless is associated with a discontinuity
in treatment assignment. When there is an increase in the probability
of treatment assignment, we have a fuzzy RDD. The formal definition
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Hispanic-white differences in admission rates narrow at age 65, as whites gain relative to blacks 
and Hispanics gain relative to whites.

For reference, the bottom row of Table 4 shows insurance coverage rates among 60- 64-year-
olds in the three states, along with estimated jumps in insurance coverage at 65.11 Coverage rates 
in the three states are below the national average prior to 65, but rise by more (15 percent versus 
a national average of about 10 percent). Consistent with the national data in Table 1, the gains in 
insurance coverage in the three states are largest for Hispanics (20.3 versus 17.3 percent nation-
ally), a little smaller for blacks (17.6 versus 11.9 percent nationally) and smallest for whites (12.7 
versus 7.3 percent nationally).

A key advantage of our hospital data is that we can break down admissions by route into 
the hospital, and by admission diagnosis and primary procedure. A comparison of rows 2 and 
3 in Table 4 shows that most of the jump in admissions at age 65 is driven by non–emergency 
room admissions, although for each race/ethnic group there is also some increase in ER admis-
sions.12 Further insights can be gleaned from the admissions patterns across diagnoses. The most 
common admission diagnosis for near-elderly patients is chronic ischemic heart disease (IHD), 
which is often treated by coronary artery bypass surgery. There are substantial disparities in IHD 

11 These data are drawn from the 1996–2004 CPS data for California, New York, and Florida. Given the small 
sample sizes and the coarseness of the age measure in the CPS, we estimated the insurance RDs assuming a linear age 
profile but allowing a different slope before and after 65.

12 ER admissions include extremely urgent cases (which one might expect to be unresponsive to insurance status) 
as well as patients who have presented at the ER without being referred by a physician. Some analysts have argued that 
provision of health insurance would reduce ER use and shift patients to outpatient care. Nevertheless, our results are 
consistent with the RAND Health Insurance Experiment, which found ER use as responsive to copayment rates as use 
of outpatient care (Joseph P. Newhouse 1993). 

Figure 3. Hospital Admission Rates by Race/Ethnicity

Figure 43: Changes in hospitalizations
[Card et al., 2008]
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TABLE V
REGRESSION DISCONTINUITY ESTIMATES OF CHANGES IN MORTALITY RATES

Death rate in

7 days 14 days 28 days 90 days 180 days 365 days

Estimated discontinuity at age 65 (×100)
Fully interacted quadratic with no −1.1 −1.0 −1.1 −1.1 −1.2 −1.0

additional controls (0.2) (0.2) (0.3) (0.3) (0.4) (0.4)
Fully interacted quadratic plus −1.0 −0.8 −0.9 −0.9 −0.8 −0.7

additional controls (0.2) (0.2) (0.3) (0.3) (0.3) (0.4)
Fully interacted cubic plus additional −0.7 −0.7 −0.6 −0.9 −0.9 −0.4

controls (0.3) (0.2) (0.4) (0.4) (0.5) (0.5)
Local linear regression procedure fit −0.8 −0.8 −0.8 −0.9 −1.1 −0.8

separately to left and right with (0.2) (0.2) (0.2) (0.2) (0.3) (0.3)
rule-of-thumb bandwidths

Mean of dependent variable (%) 5.1 7.1 9.8 14.7 18.4 23.0

Notes. Standard errors in parentheses. Dependent variable is indicator for death within interval indicated by column heading. Entries in rows (1)–(3) are estimated coefficients of
dummy for age over 65 from models that include a quadratic polynomial in age (rows (1) and (2)) or a cubic polynomial in age (row (3)) fully interacted with a dummy for age over 65.
Models in rows (2) and (3) include the following additional controls: a dummy for people who are within 1 month of their 65 birthdays, dummies for year, month, sex, race/ethnicity,
and Saturday or Sunday admissions, and unrestricted fixed effects for each ICD-9 admission diagnosis. Entries in row (4) are estimated discontinuities from a local linear regression
procedure, fit separately to the left and right, with independently selected bandwidths from a rule-of-thumb procedure suggested by Fan and Gijbels (1996). Sample includes 407,386
observations on patients between the ages of 60 and 70 admitted to California hospitals between January 1, 1992, and November 30, 2002, for unplanned admission through the ED
who have nonmissing Social Security numbers. All coefficients and their SEs have been multiplied by 100.
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Figure 44: Mortality and Medicare
[Card et al., 2009]
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of a probabilistic treatment assignment is

limXi!c0 Pr(Di = 1|Xi = X0) 6= limc0 Xi Pr(Di = 1|Xi = X0)

In other words, the conditional probability is becoming discontinuous
as X approaches c0 in the limit. A visualization of this is presented
from Imbens and Lemieux [2008] in Figure 45:

 

 

 

 

Figure 45: Imbens and Lemieux [2008],
Figure 3. Horizontal axis is the running
variable. Vertical axis is the conditional
probability of treatment at each value of the
running variable.

As you can see in this picture, the treatment assignment is increas-
ing even before c0, but is not fully assigned to treatment above c0.
Rather, the fraction of the units in the treatment jumps at c0. This is
what a fuzzy discontinuity looks like.

The identifying assumptions are the same under fuzzy designs as
they are under sharp designs: they are the continuity assumptions.
For identification, we must assume that the conditional expectation
of the potential outcomes (e.g., E[Y0|X < c0]) is changing smoothly
through c0. What changes at c0 is the treatment assignment prob-
ability. An illustration of this identifying assumption is in Figure
46.

 

 

 

 

Figure 46: Potential and observed
outcome regressions [Imbens and
Lemieux, 2008]

Calculating the average treatment effect under a fuzzy RDD is
very similar to how we calculate an average treatment effect with
instrumental variables. Specifically, it’s the ratio of a reduced form
difference in mean outcomes around the cutoff and a reduced form
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difference in mean treatment assignment around the cutoff.

dFuzzy RDD =
limX!X0 E[Y|X = X0]� limX0 XE[Y|X = X0]
limX!X0 E[D|X = X0]� limX0 XE[D|X = X0]

This can be calculated with software in Stata, such as ivregress

2sls. The assumptions for identification are the same as those with
instrumental variables: there are caveats about the complier vs. the
defier populations, statistical tests (e.g., weak instrument using F
tests on the first stage), etc.

One can use both Ti as well as the interaction terms as instruments
for the treatment Di. If one uses only Ti as an instrumental variable,
then it is a “just identified” model which usually has good finite
sample properties. In the just identified case, the first stage would be:

Di = g0 + g1Xi + g2X2
i + · · · + gpXp

i + pTi + z1i

where p is the causal effect of T on the conditional probability of
treatment. The fuzzy RDD reduced form is:

Yi = µ + k1Xi + k2X2
i + · · · + kpXp

i + rpTi + z2i

As in the sharp RDD case, one can allow the smooth function to be
different on both sides of the discontinuity. The second stage model
with interaction terms would be the same as before:

Yi = a + b01 x̃i + b02 x̃2
i + · · · + b0px̃p

i

+rDi + b

⇤
1Dix̃i + b

⇤
2Dix̃2

i + · · · + b

⇤
pDix̃

p
i + hi

Where x̃ are now not only normalized with respect to c0 but are also
fitted values obtained from the first stage regressions. Again, one can
use both Ti as well as the interaction terms as instruments for Di. If
we only used T, the estimated first stage would be:

Di = g00 + g01X̃i + g02X̃2
i + · · · + g0pX̃p

i

+pTi + g

⇤
1 X̃iTi + g

⇤
2 X̃2

i Ti + · · · + g

⇤
pTi + z1i

We would also construct analogous first stages for X̃iDi , . . . , X̃p
i Di.

As Hahn et al. [2001] point out, one needs the same assumptions
for identification as one needs with IV. As with other binary instru-
mental variables, the fuzzy RDD is estimating the local average
treatment effect (LATE) [Imbens and Angrist, 1994], which is the
average treatment effect for the compliers. In RDD, the compliers are
those whose treatment status changed as we moved the value of xi
from just to the left of c0 to just to the right of c0.
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Challenges to identification The identifying assumption for RDD
to estimate a causal effect are the continuity assumptions. That is,
the expected potential outcomes change smoothly as a function of
the running variable through the cutoff. In words, this means that
nothing that determines the potential outcomes changes abruptly at
c0 except for the treatment assignment. But, this can be violated in
practice if:

1. the assignment rule is known in advance

2. agents are interested in adjusting

3. agents have time to adjust

Examples include re-taking an exam, self-reported income, etc. But
some other unobservable characteristic change could happen at the
threshold, and this has a direct effect on the outcome. In other words,
the cutoff is endogenous. An example would be age thresholds used
for policy, such as when a person turns 18 and faces more severe
penalties for crime. This age threshold both with the treatment (i.e.,
higher penalties for crime), but is also correlated with variables that
affect the outcomes such as graduating from high school, voting
rights, etc.

Because of these challenges to identification, a lot of work by
econometricians and applied microeconomists has gone to trying
to figure out solutions to these problems. The most influential is a
density test by Justin McCrary, now called the McCrary density test
[McCrary, 2008]. The McCrary density is used to check for whether
units are sorting on the running variable. Imagine that there were
two rooms – room A will receive some treatment, and room B will
receive nothing. There are natural incentives for the people in room
B to get into room A. But, importantly, if they were successful, then
the two rooms would look different. Room A would have more
observations than room B – thus evidence for the manipulation.

Manipulation on the sorting variable always has that flavor. As-
suming a continuous distribution of units, manipulation would mean
that more units are showing up just on the other side of the cut off.
Formally, if we assume a desirable treatment D and as assignment
rule X � c0. If individuals sort into D by choosing X such that
X � c0, then we say individuals are sorting on the running variable.

The kind of test needed to investigate whether manipulation is
occurring is a test that checks whether there is bunching of units at
the cutoff. In other words, we need a denstiy test. McCrary [2008]
suggests a formal test where under the null, the density should be
continuous at the cutoff point. Under the alternative hypothesis,
the density should increase at the kink.99 Mechanically, partition 99 In those situations, anyway, where the

treatment is desirable to the units.
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the assignment variable into bins and calculate frequencies (i.e., the
number of observations) in each bin. Treat the frequency counts
as the dependent variable in a local linear regression. If you can
estimate the conditional expectations, then you have the data on
the running variable, so in principle you can always do a density
test. You can download the (no longer supported) Stata ado package
DCdensity100 or the package rddensity, or you can install it for R as 100 http://eml.berkeley.edu/ jmc-

crary/DCdensity/well.101

101 http://cran.r-
project.org/web/packages/rdd/rdd.pdfFor RDD to be useful, you already need to know something about

the mechanism generating the assignment variable and how suscep-
tible it could be to manipulation. Note the rationality of economic
actors that this test is built on. A discontinuity in the density is con-
sidered suspicious and suggestive of manipulation around the cutoff.
This is a high-powered test. You need a lot of observations at c0 to
distinguish a discontinuity in the density from noise. McCrary [2008]
presents a helpful picture of a situation with and without manipula-
tion in Figure 47.

also necessary, and we may characterize those who reduce their labor supply as those with coaipc=f i and
bi4aið1" f iÞ=d.

Fig. 2 shows the implications of these behavioral effects using a simulated data set on 50,000 agents with
linear utility. The simulation takes ðai;biÞ to be distributed as independent normals, with E½ai% ¼ 12, V ½ai% ¼ 9,
E½bi% ¼ 0, and V ½bi% ¼ 1, and the f i distribution to be uniform on ½0; 1% and independent of ðai; biÞ. The
earnings threshold is set at c ¼ 14.

This data generating process is consistent with (A0). If the program did not exist, then period 1 earnings
would be Ri0 ¼ ai. The conditional expectation of ai given Ri0 is thus just the 45

' line, which is continuous; the
conditional expectation of bi given Ri0 is flat, which is likewise continuous; and the density of Ri0 is the normal
density, hence continuous. Panel A of Fig. 2 is a local linear regression estimate of the conditional expectation
of bi given Ri0. The smoothness of the conditional expectation indicates the validity of (A0).

However, even though (A0) is satisfied, agents’ endogenous labor supply creates an identification problem.
The actual running variable is not Ri0, but Ri, which is manipulated by those agents who find it worthwhile to
do so. Panel B gives a local linear regression estimate of the conditional expectation of bi given Ri. This panel

ARTICLE IN PRESS

Fig. 1. The agent’s problem.
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Fig. 2. Hypothetical example: gaming the system with an income-tested job training program: (A) conditional expectation of returns to
treatment with no pre-announcement and no manipulation; (B) conditional expectation of returns to treatment with pre-announcement
and manipulation; (C) density of income with no pre-announcement and no manipulation; (D) density of income with pre-announcement
and manipulation.

J. McCrary / Journal of Econometrics 142 (2008) 698–714706

Figure 47: Panel C is density of income
when there is no pre-announcement and
no manipulation. Panel D is the density of
income when there is pre-announcement and
manipulation. From McCrary [2008].

There are also helpful visualization of manipulation from other
contexts, such as marathon running. Allen et al. [2013] shows a pic-
ture of the kinds of density jumps that occur in finishing times. The
reason for these finishing time jumps is because many marathon
runners have target times that they’re shooting for. These are usu-
ally 30 minute intervals, but also include unique race qualification
times (e.g., Boston qualifying times). The panel on the top shows a
histogram of times with black lines showing jumps in the number of
observations. Density tests are provided on the bottom.

Testing for validity It is become common in this literature to provide
evidence for the credibility of the underlying identifying assump-
tions. While the assumptions cannot be directly tested, indirect
evidence may be persuasive. We’re already mentioned one such test
– the McCrary density test. A second test is a covariate balance test.
For RDD to be valid in your study, there must not be an observable
discontinuous change in the average values of the covariates around
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Figure 2: Distribution of marathon finishing times (n = 9, 378, 546)

NOTE: The dark bars highlight the density in the minute bin just prior to each 30 minute threshold.

12

Figure 3: Running McCrary z-statistic
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NOTE: The McCrary test is run at each minute threshold from 2:40 to 7:00 to test whether there is a significant discontinuity
in the density function at that threshold.
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the cutoff. As these are pretreatment characteristics, they should be
invariant to change in treatment assignment. An example of this is
from 102 where they evaluated the impact of Democratic voteshare, 102 David S. Lee. Randomized experi-

ments from non-random selection in u.s.
house elections. Journal of Econometrics,
142:675–697, 2008

just at 50%, on various demographic factors (Figure 48).

share. The coefficient reported in column (6) is the predicted
difference at 50 percent. The table confirms that, for many ob-
servable characteristics, there is no significant difference in a
close neighborhood of 50 percent. One important exception is the
percentage black, for which the magnitude of the discontinuity is
statistically significant.23

As a consequence, estimates of the coefficients in Table I from
regressions that include these covariates would be expected to
produce similar results—as in a randomized experiment—since

23. This is due to few outliers in the outer part of the vote share range. When
the polynomial is estimated including only districts with vote share between 25
percent and 75 percent, the coefficients becomes insignificant. The gap for percent
urban and open seats, while not statistically significant at the 5 percent level, is
significant at the 10 percent level.

FIGURE III
Similarity of Constituents’ Characteristics in Bare Democrat and Republican

Districts–Part 1
Panels refer to (from top left to bottom right) the following district character-

istics: real income, percentage with high-school degree, percentage black, percent-
age eligible to vote. Circles represent the average characteristic within intervals
of 0.01 in Democrat vote share. The continuous line represents the predicted
values from a fourth-order polynomial in vote share fitted separately for points
above and below the 50 percent threshold. The dotted line represents the 95
percent confidence interval.
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Figure 48: Panels refer to (top left to
bottom right) district characteristics:
real income, percent high school degree,
percent black, and percent eligible to
vote. Circles represent the average
characteristic within intervals of 0.01 in
Democratic vote share. The continuous
line represents the predicted values
from a fourth-order polynomial in vote
share fitted separately for points above
and below the 50 percent threshold.
The dotted line represents the 95

percent confidence interval.

This test is basically what is sometimes called a placebo test. That
is, you are looking for there to be no effects where there shouldn’t be
any. So a third kind of test is an extension of that – just as there
shouldn’t be effects at the cutoff on pretreatment values, there
shouldn’t be effects on the outcome of interest at arbitrarily cho-
sen cutoffs. Imbens and Lemieux [2008] suggest to look at one side
of the discontinuity, take the median value of the running variable in
that section, and pretend it was a discontinuity, c00. Then test whether
there is a discontinuity in the outcome at c00. You do not want to find
anything.

Data visualization RDD papers are intensive data visualization
studies. You typically see a lot of pictures. The following are modal.
First, a graph showing the outcome variable by running variable is
standard. You should construct bins and average the outcome within
bins on both sides of the cutoff. You should also look at different
bin sizes when constructing these graphs [Lee and Lemieux, 2010].
Plot the running variables Xi on the horizontal axis and the average
for Yi for each bin on the vertical axis. Inspect whether there is a
discontinuity at c0. Also inspect whether there are other unexpected
discontinuities at other points on Xi. An example of what you want
to see is in Figure 49.



regression discontinuity 185Example: Outcomes by Forcing Variable
From Lee and Lemieux (2010) based on Lee (2008)

Waldinger (Warwick) 26 / 48

Figure 49: Example of outcome plotted
against the running variable.

If it’s a fuzzy design, then you want to see a graph showing the
probability of treatment jumps at c0. This tells you whether you have
a first stage. You also want to see evidence from your placebo tests.
As I said earlier, there should be no jump in some covariate at c0, so
readers should be shown this lack of an effect visually, as well as in a
regression.
Example Covariates by Forcing Variable
From Lee and Lemieux (2010) based on Lee (2008)

Waldinger (Warwick) 29 / 48

Figure 50: Example of covariate plotted
against the running variable.

Another graph that is absolutely mandatory is the McCrary den-
sity test. The reader must be shown that there is no sign of manip-
ulation. One can either use a canned routine to do this, such as
rddensity or DCDensity, or do it oneself. If one does it oneself, then
the method is to plot the number of observations into bins. This
plots allows us to investigate whether there is a discontinuity in the
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distribution of the running variable at the threshold. If so, this sug-
gests that people are manipulating the running variable around the
threshold. This is an indirect test of the identifying assumption that
each individual has imprecise control over the assignment variable.
An example of a dataset where manipulation seems likely is the Na-
tional Health Interview Survey where respondents were asked about
participation in the Supplemental Nutrition Assistance Program
(SNAP). I merged into the main survey data imputed income data.
As SNAP eligibility is based in part on gross monthly income and
family size, I created a running variable based on these two variables.
Individuals with income that surpassed some given monthly income
level appropriate for their family size were then eligible for SNAP.
But if there was manipulation, meaning some people misreported
their income in order to become eligible for SNAP, we would expect
the number of people with income just below that threshold would
jump. I estimated a McCrary density test to evaluate whether there
was evidence for that. I present that evidence in Figure 51.

0
.0
2

.0
4

.0
6

-200 -100 0 100 200

Figure 51: McCrary density test, NHIS
data, SNAP eligibility against a running
variable based on income and family
size.

That, in fact, is exactly what I find. And statistical tests on this
difference are significant at the 1% level, suggesting there is evidence
for manipulation.

Example: Elect or Affect [Lee et al., 2004] To illustrate how to imple-
ment RDD in practice, we will replicate the Lee et al. [2004] paper.
First install the data. It’s large, so it will take a moment to get fully
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downloaded.

. scuse lmb-data

The big question motivating this paper has to do with whether
and in what way voters affect policy. There are two fundamentally
different views of the role of elections in a representative democracy.
They are:

1. Convergence: Heterogeneous voter ideology forces each candidate
to moderate his or her position (e.g., similar to the median voter
theorem).

“Competition for votes can force even the most partisan Republicans
and Democrats to moderate their policy choices. In the extreme case,
competition may be so strong that it leads to ‘full policy conver-
gence’: opposing parties are forced to adopt identical policies.” [Lee
et al., 2004]

2. Divergence: When partisan politicians cannot credibly commit
to certain policies, then convergence is undermined. The result
can be fully policy divergence. Divergence is when the winning
candidate, after taking office, simply pursues his most-preferred
policy. In this case, voters fail to compel candidates to reach any
kind of policy compromise.

The authors present a model, which I’ve simplified. Let R and
D be candidates in a Congressional race. The policy space is a sin-
gle dimension where D and R’s policy preferences in a period are
quadratic loss functions, u(l) and v(l), and l is the policy variable.
Each player has some bliss point, which is their most preferred lo-
cation along the unidimensional policy range. For Democrats, it’s
l⇤ = c(> 0) and for Republicans it’s l⇤ = 0. Here’s what this means.

Ex ante, voters expect the candidate to choose some policy and
they expect the candidate to win with probability P(xe, ye) where
xe and ye are the policies chosen by Democrats and Republicans,
respectively. When x>ye, then ∂P

∂xe > 0, ∂P
∂ye < 0.

P⇤ represents the underlying popularity of the Democratic party,
or put differently, the probability that D would win if the policy
chosen x equalled the Democrat’s bliss point c.

The solution to this game has multiple Nash equilibria, which I
discuss now.

1. Partial/Complete Convergence: Voters affect policies.

• The key result under this equilibrium is ∂x⇤
∂P⇤ > 0.
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• Interpretation: if we dropped more Democrats into the district
from a helicopter, it would exogenously increase P⇤ and this
would result in candidates changing their policy positions, i.e.,
∂x⇤
∂P⇤ > 0

2. Complete divergence: Voters elect politicians with fixed policies
who do whatever they want to do.103

103 The “honey badger” don’t care. It
takes what it wants. See https://www.
youtube.com/watch?v=4r7wHMg5Yjg.• Key result is that more popularity has no effect on policies. That

is ∂x⇤
∂P⇤ = 0.

• An exogenous shock to P⇤ (i.e., dropping Democrats into the
district) does nothing to equilibrium policies. Voters elect politi-
cians who then do whatever they want because of their fixed
policy preferences.

Potential roll-call voting record outcomes of the representative follow-
ing some election is

RCt = Dtxt + (1� Dt)yt

where Dt indicates whether a Democrat won the election. That is,
only the winning candidate’s policy is observed. This expression can
be transformed into regression equations:

RCt = a0 + p0P⇤t + p1Dt + #t

RCt+1 = b0 + p0P⇤t+1 + p1Dt+1 + #t+1

where a0 and b0 are constants.
This equation can’t be directly estimated because we never observe

P⇤. But suppose we could randomize Dt. Then Dt would be indepen-
dent of P⇤t and #t. Then taking conditional expectations with respect
to Dt we get:

E[RCt+1|Dt = 1]� E[RCt+1|Dt = 0]| {z }
Observable

= p0[P⇤Dt+1 � P⇤Rt+1]

+ p1[PD
t+1 � PR

t+1]
| {z }

Observable

= g|{z}
Total effect of initial win on future roll call votes

(80)

E[RCt|Dt = 1]� E[RCt|Dt = 0]| {z }
Observable

= p1 (81)

E[Dt+1|Dt = 1]� E[Dt+1|Dt = 0]| {z }
Observable

= PD
t+1 � PR

t+1 (82)

The “elect” component is p1[PD
t+1 � PR

t+1] and it’s estimated as the
difference in mean voting records between the parties at time t.
The fraction of districts won by Democrats in t + 1 is an estimate of

https://www.youtube.com/watch?v=4r7wHMg5Yjg
https://www.youtube.com/watch?v=4r7wHMg5Yjg
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[PD
t+1 � PR

t+1]. Because we can estimate the total effect, g, of a Democrat
victory in t on RCt+1, we cna net out the elect component to implicitly
get the “affect” component.

But random assignment of Dt is crucial. For without it, this equa-
tion would reflect p1 and selection (i.e., Democratic districts have
more liberal bliss points). So the authors aim to randomize Dt using
a RDD, which I’ll now discuss in detail.

There are two main datasets in this project. The first is a measure
of how liberal an official voted. This is collected from the Americans
for Democratic Action (ADA) linked with House of Representatives
election results for 1946-1995. Authors use the ADA score for all
US House Representatives from 1946 to 1995 as their voting record
index. For each Congress, the ADAD chose about 25 high-profile
roll-call votes and created an index varying from 0 to 100 for each
Representative. Higher scores correspond to a more “liberal” voting
record.

The running variable in this study is the voteshare. That is the
share of all votes that went to a Democrat. ADA scores are then
linked to election returns data during that period.

Recall that we need randomization of Dt. The authors have a
clever solution. They will use arguably exogenous variation in Demo-
cratic wins to check whether convergence or divergence is correct.
Their exogenous shock comes from the discontinuity in the running
variable. At a voteshare of just above 0.5, the Democratic candidate
wins. They argue that just around that cutoff, random chance de-
termined the Democratic win - hence the random assignment of
Dt.

primarily elect policies (full divergence) rather than affect poli-
cies (partial convergence).

Here we quantify our estimates more precisely. In the analy-
sis that follows, we restrict our attention to “close elections”—
where the Democrat vote share in time t is strictly between 48
and 52 percent. As Figures I and II show, the difference between
barely elected Democrat and Republican districts among these
elections will provide a reasonable approximation to the discon-
tinuity gaps. There are 915 observations, where each observation
is a district-year.20

Table I, column (1), reports the estimated total effect !, the
size of the jump in Figure I. Specifically, column (1) shows the
difference in the average ADAt"1 for districts for which the
Democrat vote share at time t is strictly between 50 percent and
52 percent and districts for which the Democrat vote share at
time t is strictly between 48 percent and 50 percent. The esti-
mated difference is 21.2.

In column (2) we estimate the coefficient #1, which is equal to
the size of the jump in Figure IIa. The estimate is the difference
in the average ADAt for districts for which the Democrat vote

20. In 68 percent of cases, the representative in period t " 1 is the same as
the representative in period t. The distribution of close elections is fairly uniform
across the years. In a typical year there are about 40 close elections. The year with
the smallest number is 1988, with twelve close elections. The year with the largest
number is 1966, with 92 close elections.

TABLE I
RESULTS BASED ON ADA SCORES—CLOSE ELECTIONS SAMPLE

Variable

Total effect Elect component Affect component
! #1 (Pt"1

D $ Pt"1
R ) #1[(Pt"1

D $ Pt"1
R )] #0[P*t "1

D $ P*t "1
R ]

ADAt"1 ADAt DEMt"1 (col. (2)*(col. (3)) (col. (1)) $ (col. (4))
(1) (2) (3) (4) (5)

Estimated gap 21.2 47.6 0.48
(1.9) (1.3) (0.02)

22.84 $1.64
(2.2) (2.0)

Standard errors are in parentheses. The unit of observation is a district-congressional session. The
sample includes only observations where the Democrat vote share at time t is strictly between 48 percent and
52 percent. The estimated gap is the difference in the average of the relevant variable for observations for
which the Democrat vote share at time t is strictly between 50 percent and 52 percent and observations for
which the Democrat vote share at time t is strictly between 48 percent and 50 percent. Time t and t " 1 refer
to congressional sessions. ADAt is the adjusted ADA voting score. Higher ADA scores correspond to more
liberal roll-call voting records. Sample size is 915.

832 QUARTERLY JOURNAL OF ECONOMICS

 at B
aylor U

niversity on A
pril 7, 2014

http://qje.oxfordjournals.org/
D

ow
nloaded from

 

Figure 52: Lee, Moretti and Butler
(2004)’s Table 1. Main results.

You should have the data in memory, but if not, recall that the
command is:
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. scuse lmb-data

First we will replicate the first column of Figure 52 by typing (with
output below each command):

. reg score lagdemocrat if lagdemvoteshare>.48 & lagdemvote-
share<.52, cluster(id)

Number of obs = 915

<snip>
——————————————————————————
score | Coef. Std. Err.
————-+—————————————————————-
lagdemocrat | 21.28387 1.951234

——————————————————————————

. reg score democrat if lagdemvoteshare>.48 & lagdemvote-
share<.52, cluster(id)

Number of obs = 915

<snip>
——————————————————————————
score | Coef. Std. Err.
————-+—————————————————————-
democrat | 47.7056 1.356011

——————————————————————————

. reg democrat lagdemocrat if lagdemvoteshare>.48 & lagdemvote-
share<.52, cluster(id)

Number of obs = 915

<snip>
——————————————————————————
democrat | Coef. Std. Err.
————-+—————————————————————-
lagdemocrat | .4843287 .0289322

——————————————————————————

Okay, a few things. First, notice the similarity between each re-
gression output and the regression output in Figure 52. So as you
can see, when we say we are estimating global regressions, it means
we are simply regressing some outcome onto a treatment variable.
Here what we did was simply run “local” linear regressions, though.
Notice the bandwidth - we are only using observations between 0.48

and 0.52 voteshare. So this regression is estimating the coefficient on
Dt right around the cutoff. What happens if we use all the data?
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. reg score democrat, cluster(id2)

Number of obs = 13588

————-+—————————————————————-
score | Coef. Std. Err.
————-+—————————————————————-
democrat | 40.76266 1.495659

————-+—————————————————————-

Notice when we use all the data, the effect on the democrat vari-
able becomes smaller. It remains significant, but it no longer includes
in its confidence interval the coefficient we found earlier.

Recall we said that it is common to center the running variable.
Centering simply means subtracting from the running variable the
value of the cutoff so that values of 0 are where the voteshare equals
0.5, negative values are Democratic voteshares less than 0.5, and
positive values are Democratic voteshares above 0.5. To do this, type
in the following lines:

. gen demvoteshare_c = demvoteshare - 0.5

. reg score democrat demvoteshare_c, cluster(id2)

Number of obs = 13577

——————————————————————————–
score | Coef. Std. Err.
—————+—————————————————————-
democrat | 58.50236 1.555847

demvoteshare_c | -48.93761 4.441693

—————+—————————————————————-

Notice, now controlling for the running variable causes the coeffi-
cient on democrat – using all the data – to get much larger than when
we didn’t control for the running variable.

It is common, though, to allow the running variable to vary on
either side of the discontinuity, but how exactly do we implement
that? Think of it - we need for a regression line to be on either side,
which means necessarily that we have two lines left and right of the
discontinuity. To do this, we need an interaction - specifically an
interaction of the running variable with the treatment variable. So to
do that in Stata, we simply type:

. xi: reg score i.democrat*demvoteshare_c, cluster(id2)

Number of obs = 13577

<snip>
——————————————————————————–
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score | Coef. Std. Err.
—————+—————————————————————-
_Idemocrat_1 | 55.43136 1.448568

demvoteshare_c | -5.682785 5.939863

_IdemXdemvo_1 | -55.15188 8.236231

——————————————————————————–

But notice, we are still estimating global regressions. And it is for
that reason, as I’ll show now, that the coefficient is larger. This sug-
gests that there exist strong outliers in the data which are causing the
distance at c0 to spread more widely. So a natural solution, therefore,
is to again limit our analysis to a smaller window. What this does
is drop the observations far away from c0, and therefore omit the
influence of outliers from our estimation at the cutoff. Since we used
+/� -.02 last time, we’ll use +/� -.05 this time just to mix things up.

. xi: reg score i.democrat*demvoteshare_c if demvoteshare>.45

& demvoteshare<.55, cluster(id2)

Number of obs = 2387

<snip>
——————————————————————————–
score | Coef. Std. Err.
—————+—————————————————————-
_Idemocrat_1 | 46.77845 2.491464

demvoteshare_c | 54.82604 50.12314

_IdemXdemvo_1 | -91.1152 81.05893

——————————————————————————–

As can be seen, when we limit our analysis to +/� 0.05 around the
cutoff, we are dropping observations from the analysis. That’s why
we only have 2,387 observations for analysis as opposed to the 13,000

we had before. This brings us to an important point. The ability to
do this kind of local regression analysis necessarily requires a lot
of data around the cutoff. If we don’t have a lot of data around the
cutoff, then we simply cannot estimate local regression models, as the
data simply becomes too noisy. This is why I said RDD is “greedy”.
It needs a lot of data because it uses only a portion of it for analysis.

But putting that aside, think about what this did. This fit a model
where it controlled for a straight line below the cutoff (demvote-
share_c) and above the cutoff (_IdemXdemvo_1). Controlling for
those two things, the remainder is a potential gap at voteshare=0.5,
which is captured by the democrat dummy. It does this through
extrapolation.

I encourage you to play around with the windows. Try +/�0.1
and +/�0.01. Notice how the standard errors get larger the more
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narrow you make the band. Why do you think that is? Think about
that - narrowing the band decreases bias, but strangely increases
variance. Do you know why?

Recall what we said about nonlinearities and strong trends in
the evolution of the potential outcomes. Without controlling for
nonlinearities, we may be misattributing causal effects using only
linear functions of the running variable. Therefore next we will show
how to model polynomials in the running variable. Gelman and
Imbens [2017] recommend polynomials up to a quadratic to avoid the
problem of overfitting. So we will follow their advice now.

First, we need to generate the polynomials. Then we need to
interact them with the treatment variable which as we alluded to
earlier will allow us to model polynomials to the left and right of the
cutoff.

. gen x_c = demvoteshare - 0.5

. gen x_c2 = x_c^2

. reg score democrat##(c.x_c c.x2_c)

Number of obs = 13,577

———————————————————————————
score | Coef. Std. Err.
—————-+—————————————————————-
1.democrat | 44.40229 1.008569

x_c | -23.8496 8.209109

x_c2 | -41.72917 17.50259

democrat#c.x_c |
1 | 111.8963 10.57201

democrat#c.x_c2 |
1 | -229.9544 21.10866

———————————————————————————

Notice now that using all the data gets us closer to the estimate.
And finally, we can use the a narrow bandwidth.

. reg score democrat##(c.x_c c.x2_c) if demvoteshare>0.4

& demvoteshare<0.6

Number of obs = 4,632

———————————————————————————
score | Coef. Std. Err.
—————-+—————————————————————-
1.democrat | 45.9283 1.892566

x_c | 38.63988 60.77525

x_c2 | 295.1723 594.3159

democrat#c.x_c |
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1 | 6.507415 88.51418

democrat#c.x_c2 |
1 | -744.0247 862.0435

———————————————————————————

Once we controlled for the quadratic polynomial, the advantage of
limiting the bandwidth was a smaller than when we were either not
controlling for the running variable at all or controlling only a linear
running variable.

Hahn et al. [2001] clarified assumptions about RDD – specifically,
that continuity of the conditional expected potential outcomes. They
also framed estimation as a non-parametric problem and emphasized
using local polynomial regressions.

Nonparametric methods mean a lot of different things to different
people in statistics, but in RDD contexts, the idea is to estimate a
model that doesn’t assume a functional form for the relationship
between the outcome variable (Y) and the running variable (X). The
model would be something like this:

Y = f (X) + #

A very basic method would be to calculate E[Y] for each bin on X,
like a histogram. And Stata has an option to do this called cmogram

created by Christopher Robert. The program has a lot of useful op-
tions, and we can recreate Figures I, IIA and IIB from Lee et al. [2004].
Here is Figure I which is the relationship between the democratic win
(as a function of the running variable, democratic vote share) and the
candidates second period ADA score (Figure 53).

First you will need to install cmogram from ssc, the Statistical
Software Components archive.

. ssc install cmogram

Next we calculate the conditional mean values for the observations
according to an automated binning algorithm generated by cmogram.

. cmogram score lagdemvoteshare, cut(0.5) scatter line(0.5)

qfitci

Figure 54 shows the output from this program. Notice the simi-
larities between what we produced here and what Lee et al. [2004]
produced in their Figure I. The only difference is subtle differences in
the binning used for the two figures. The key arguments used in this
command are the listing of the outcome (score) and the running vari-
able (lagdemvoteshare), the designation of where along the running
variable the cutoff is (cut(0.5)), whether to produce the visualization
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be a continuous and smooth function of vote shares everywhere,
except at the threshold that determines party membership. There
is a large discontinuous jump in ADA scores at the 50 percent
threshold. Compare districts where the Democrat candidate
barely lost in period t (for example, vote share is 49.5 percent),
with districts where the Democrat candidate barely won (for
example, vote share is 50.5 percent). If the regression disconti-
nuity design is valid, the two groups of districts should appear ex
ante similar in every respect—on average. The difference will be
that in one group, the Democrats will be the incumbent for the
next election (t ! 1), and in the other it will be the Republicans.
Districts where the Democrats are the incumbent party for elec-
tion t ! 1 elect representatives who have much higher ADA
scores, compared with districts where the Republican candidate

FIGURE I
Total Effect of Initial Win on Future ADA Scores: "

This figure plots ADA scores after the election at time t ! 1 against the
Democrat vote share, time t. Each circle is the average ADA score within 0.01
intervals of the Democrat vote share. Solid lines are fitted values from fourth-
order polynomial regressions on either side of the discontinuity. Dotted lines are
pointwise 95 percent confidence intervals. The discontinuity gap estimates
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Figure 53: Lee et al. [2004], Figure I

of the scatter plots (scatter), whether to show a dashed vertical line at
the cutoff (line(0.5)) and what kind of polynomial to fit left and right
of the cutoff (qfitci).

We have options other than a quadratic fit, though, and I think
it’s useful to compare this graph with one where we only fit a linear
model. Now because there are strong trends in the running variable,
we probably just want to use the quadratic, but let’s see what we get
when we use simple lines.

. cmogram score lagdemvoteshare, cut(0.5) scatter line(0.5)

lfit

Figure 55 shows what we get when we only use a linear fit of the
data left and right of the cutoff. Notice the influence that outliers
far from the actual cutoff play in the estimate of the causal effect
at the cutoff. Now some of this would go away if we restricted the
bandwidth to be shorter distances to and from the cutoff, but I leave
it to you to do that yourself.

Finally, we can use a lowess fit. A lowess fit more or less crawls
through the data running small regressions on small cuts of data.
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Figure 54: Reproduction of Lee et al.
[2004] Figure I using cmogram with
quadratic fit and confidence intervals

This can give the picture a zig zag appearance. We nonetheless show
it here:

. cmogram score lagdemvoteshare, cut(0.5) scatter line(0.5)

lowess

It is probably a good idea to at least run all of these, but your
final selection of what to report as your main results should be
that polynomial that best fits the data. Some papers only report a
linear fit because there weren’t very strong trends to begin with. For
instance, consider Carrell et al. [2011]. The authors are interested
in the causal effect of drinking on academic test outcomes. Their
running variable is the precise age of the student, which they have
because they know the student’s date of birth and they know the
date of every exam taken at the Air Force Academy. Because the
Air Force Academy restricts the social lives of its students, there is a
more stark increase in drinking at age 21 on its campus than might
be on a typical university campus. They examined the causal effect
of drinking age on normalized grades using RDD, but because there
weren’t strong trends in the data, they only fit a linear model (Figure
57).

It would no doubt have been useful for this graph to include
confidence intervals, but the authors did not. Instead, they estimated
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Figure 55: Reproduction of Lee et al.
[2004] Figure I using cmogram with
linear fit

As can be seen from both the graphical data and the regression
analysis, there appears to be a break in the outcome (normalized
grade) at the point of age 21, suggesting that alcohol has a negative
causal effect on academic performance.104

104 Many, many papers have used
RDD to look at alcohol using both
age as the running variable or blood
alcohol content as the running variable.
Examples include Carpenter and
Dobkin [2009] and Hansen [2015] just to
name a couple.

Hahn et al. [2001] have shown that the one-sided kernel estimation
estimation such as lowess may suffer from poor properties because
the point of interest is at the boundary (i.e., the discontinuity). This is
called the “boundary problem”. They propose instead to use “local
linear nonparametric regressions” instead. In these regressions, more
weight is given to the observations at the center.

You can implement this using Stata’s poly command which es-
timates kernel-weighted local polynomial regressions. Think of it
as a weighted regression restricted to a window like we’ve been
doing (hence the word “local”) where the chosen kernel provides
the weights. A rectangular kernel would give the same results as
E[Y] at a given bin on X, but a triangular kernel would give more
importance to observations closest to the center. This method will be
sensitive to how large the bandwidth, or window, you choose. But in
that sense, it’s similar to what we’ve been doing.

. * Note kernel-weighted local polynomial regression is a

smoothing method.

. lpoly score demvoteshare if democrat == 0, nograph

kernel(triangle) gen(x0 sdem0) bwidth(0.1)

. lpoly score demvoteshare if democrat == 1, nograph
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Figure 56: Reproduction of Lee et al.
[2004] Figure I using cmogram with
lowess fit

kernel(triangle) gen(x1 sdem1) bwidth(0.1)

. scatter sdem1 x1, color(red) msize(small) || scatter

sdem0 x0, msize(small) color(red) xline(0.5,lstyle(dot))

legend(off) xtitle("Democratic vote share") ytitle("ADA

score")

Figure 60 shows this visually.
A couple of final things. First, I’m not showing this, but recall the

continuity assumption. Because the continuity assumption specifi-
cally involves continuous conditional expectation functions of the
potential outcomes throughout the cutoff, it therefore is untestable.
That’s right – it’s an untestable assumption. But, what we can do is
check for whether there are changes in the conditional expectation
functions for other exogenous covariates that cannot or should not
be changing as a result of the cutoff. So it’s very common to look at
things like race or gender around the cutoff. You can use these same
methods to do that, but I do not do them here. Any RDD paper will
always involve such placebos; even though they are not direct tests of
the continuity assumption, they are indirect tests. Remember, your
reader isn’t as familiar with this thing you’re studying, so your task
is teach them. Anticipate their objections and the sources of their
skepticism. Think like them. Try to put yourself in a stranger’s shoes.
And then test those skepticisms to the best of your ability.

Second, we saw the importance of bandwidth selection, or win-
dow, for estimating the causal effect using this method, as well as
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In summary, our results yield two notable findings. We find that
there is a large and statistically significant discontinuous drop in
college performance at age 21 that is robust across various
bandwidths and functional forms. The drop in performance from
the increase in drinking in the weeks prior to the final exams is
economically significant, as it is approximately the same as the effect
of being assigned to a professor whose quality is one standard
deviation below the mean in quality for the entire semester. We also
find that the largest negative effects of drinking are on the high-ability
students.

3.4. Robustness tests

To test the robustness of our findings, in Table 6, Column 2,we show
that our results are virtually unchanged when including freshman
students. In Column 3, we show similar results when we include
students who attended military preparatory schools prior to entering
the USAFA. As a third robustness check, in Column 4 we restrict our
observations to the required core courses taken by all students at the
USAFA. These courses have the advantage of common examinations for
all students taking the course in a given semester and eliminate any
possible concerns of self-selection of courses during the semester in
which a student turns 21 years of age. Again, our results remainvirtually
unchanged compared to our main specification.

Fig. 3. Regression discontinuity estimates of the effect of drinking on achievement.

Table 3
Regression discontinuity estimates of the effect of drinking on academic performance.

Specification 1 2 3

Discontinuity at
age 21

−0.092⁎⁎⁎

(0.03)
−0.114⁎⁎⁎

(0.02)
−0.106⁎⁎⁎

(0.03)
Observations 38,782 38,782 38,782
Age polynomial Linear Linear Quadratic
Control
variables

No Yes Yes

Notes: Each cell contains results for separate regression where the dependent variable
is normalized course grade and the key independent variable is an indicator for age 21.
Standard errors clustered by age are in parentheses. All specifications control for a
flexible polynomial of age in which the slope is allowed to vary on either side of the
cutoff. Data include all observations on student performance within 180 days of their
21st birthday. Controls include course by semester by section fixed effects, graduating
class by semester by year at USAFA fixed effects, birth year fixed effects, SAT math and
verbal scores, academic composite score, leadership composite score, fitness score, and
indicator variables for Black, Hispanic, Asian, and recruited athlete. The bandwidth of
the data is 180 days on either side of Age 21.
⁎⁎⁎ Significant at the 0.01 level. Ta
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Figure 57: Carrell et al. [2011] Figure 3

In summary, our results yield two notable findings. We find that
there is a large and statistically significant discontinuous drop in
college performance at age 21 that is robust across various
bandwidths and functional forms. The drop in performance from
the increase in drinking in the weeks prior to the final exams is
economically significant, as it is approximately the same as the effect
of being assigned to a professor whose quality is one standard
deviation below the mean in quality for the entire semester. We also
find that the largest negative effects of drinking are on the high-ability
students.

3.4. Robustness tests

To test the robustness of our findings, in Table 6, Column 2,we show
that our results are virtually unchanged when including freshman
students. In Column 3, we show similar results when we include
students who attended military preparatory schools prior to entering
the USAFA. As a third robustness check, in Column 4 we restrict our
observations to the required core courses taken by all students at the
USAFA. These courses have the advantage of common examinations for
all students taking the course in a given semester and eliminate any
possible concerns of self-selection of courses during the semester in
which a student turns 21 years of age. Again, our results remainvirtually
unchanged compared to our main specification.

Fig. 3. Regression discontinuity estimates of the effect of drinking on achievement.

Table 3
Regression discontinuity estimates of the effect of drinking on academic performance.

Specification 1 2 3

Discontinuity at
age 21

−0.092⁎⁎⁎

(0.03)
−0.114⁎⁎⁎

(0.02)
−0.106⁎⁎⁎

(0.03)
Observations 38,782 38,782 38,782
Age polynomial Linear Linear Quadratic
Control
variables

No Yes Yes

Notes: Each cell contains results for separate regression where the dependent variable
is normalized course grade and the key independent variable is an indicator for age 21.
Standard errors clustered by age are in parentheses. All specifications control for a
flexible polynomial of age in which the slope is allowed to vary on either side of the
cutoff. Data include all observations on student performance within 180 days of their
21st birthday. Controls include course by semester by section fixed effects, graduating
class by semester by year at USAFA fixed effects, birth year fixed effects, SAT math and
verbal scores, academic composite score, leadership composite score, fitness score, and
indicator variables for Black, Hispanic, Asian, and recruited athlete. The bandwidth of
the data is 180 days on either side of Age 21.
⁎⁎⁎ Significant at the 0.01 level. Ta
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Figure 58: Carrell et al. [2011] Table 3

the importance of selection of polynomial length. There’s always
a tradeoff when choosing the bandwidth between bias and vari-
ance - the shorter the window, the lower bias, but because you have
less data, the variance in your estimate increases. Recent work has
been focused on optimal bandwidth selection, such as Imbens and
Kalyanaraman [2011] and Calonico et al. [2014]. The latter can be
implemented with the user-created rdrobust command. These meth-
ods ultimately choose optimal bandwidths which may differ left and
right of the cutoff based on some bias-variance tradeoff. Here’s an
example:

. ssc install rdrobust

. rdrobust score demvoteshare, c(0.5)

Sharp RD estimates using local polynomial regression.
Cutoff c = .5 | Left of c Right of c Number of obs = 13577
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Figure 59: Local linear nonparametric
regressions

——————-+———————- BW type = mserd
Number of obs | 5480 8097 Kernel = Triangular
Eff. Number of obs | 2096 1882 VCE method = NN
Order est. (p) | 1 1

Order bias (q) | 2 2

BW est. (h) | 0.085 0.085

BW bias (b) | 0.140 0.140

rho (h/b) | 0.607 0.607

Outcome: score. Running variable: demvoteshare.
——————————————————————————–
Method | Coef. Std. Err.
——————-+————————————————————
Conventional | 46.483 1.2445

Robust | - - 31.3500

——————————————————————————–
This method, as we’ve repeatedly said, is data greedy because

it gobbles up data at the discontinuity. So ideally these kinds of
methods will be used when you have large numbers of observations
in the sample so that you have a sizable number of observations
at the discontinuity. When that is the case, there should be some
harmony in your findings across results. If there isn’t, then it calls
into question whether you have sufficient power to pick up this
effect.

Finally, we look at the implementation of the McCrary density
test. Justin McCrary has graciously made this available to us, though
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rdrobust also has a density test built into it. But for now, we will
use McCrary’s ado package. This cannot be downloaded from ssc,
so you must download it directly from McCrary’s website and move
it into your Stata subdirectory that we listed earlier. The website is
https://eml.berkeley.edu/~jmccrary/DCdensity/DCdensity.ado.
Note this will automatically download the file.

Once the file is installed, you use the following command to check
for whether there is any evidence for manipulation in the running
variable at the cutoff.

. DCdensity demvoteshare_c if (demvoteshare_c>-0.5 &

demvoteshare_c<0.5), breakpoint(0) generate(Xj Yj r0 fhat

se_fhat)

Using default bin size calculation, bin size = .003047982

Using default bandwidth calculation, bandwidth = .104944836

Discontinuity estimate (log difference in height): .011195629

(.061618519)
Performing LLR smoothing.
296 iterations will be performed

Figure 60: Local linear nonparametric
regressions

And visually inspecting the graph, we see no signs that there was
manipulation in the running variable at the cutoff.

https://eml.berkeley.edu/~jmccrary/DCdensity/DCdensity.ado
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Regression Kink Design

A couple of papers came out by David Card and coauthors. The
most notable is Card et al. [2015]. This paper introduced us to a
new method called regression kink design, or RKD. The intuition is
rather simple. Rather than the discontinuity creating a discontinuous
jump in the treatment variable at the cutoff, it created a change in
the first derivative. They use essentially a “kink” in some policy rule
to identify the causal effect of the policy using a jump in the first
derivative.

Their paper applies the design to answer the question whether
the level of unemployment benefits affects the length of time spent
unemployed in Austria. Here’s a brief description of the policy. Un-
employment benefits are based on income in a base period. The
benefit formula for unemployment exhibits two kinks. There is a min-
imum benefit level that isn’t binding for people with low earnings.
Then benefits are 55% of the earnings in the base period. Then there
is a maximum benefit level that is adjusted every year. People with
dependents get small supplements, which is the reason there are five
“solid” lines in the following graph. Not everyone receives benefits
that correspond one to one to the formula because mistakes are made
in the administrative data (Figure 61).Base Year Earnings and Unemployment Benefits

The graph shows unemployment benefits (vertical axis) as a function of
pre-unemployment earnings (horizontal axis).

Waldinger (Warwick) 46 / 48

Figure 61: RKD kinks from Card et al.
[2015]

The graph shows unemployment benefits on the vertical axis as
a function of pre-unemployment earnings on the horizontal axis.
Next we look at the relationship between average daily unemploy-
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ment insurance benefits and base year earnings, where the running
variable has re-centered. The bin-size is 100 euros. For single indi-
viduals unemployment insurance benefits are flat below the cutoff.
The relationship is still upward sloping, though, because of family
benefits.Base Year Earnings and Benefits for Single Individuals

Bin-Size: 100 Euros
For single individuals UI benefits are flat below the cuto§. The
relationship is still upward sloping because of family benefits.
Waldinger (Warwick) 47 / 48

Figure 62: Base year earnings and
benefits for single individuals from
Card et al. [2015]

Next we look at the main outcome of interest – time unemployed,
which is the time the individual spent until they got another job. As
can be seen in Figure 63, people with higher base earnings have less
trouble finding a job (which gives it the negative slope). But there is a
king - the relationship becomes shallower once benefits increase more.
This suggests that as unemployment benefits increased, the time
spent unemployed was longer – even though it continued to rise, the
slope shifted and got flatter. A very interesting and policy-relevant
result.
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Time to Next Job For Single Individuals

People with higher base earnings have less trouble finding a job
(negative slope).
There is a kink: the relationship becomes shallower once benefits
increase more.
Waldinger (Warwick) 48 / 48

Figure 63: Log(duration unemployed)
and benefits for single individuals from
Card et al. [2015]



Instrumental variables

“I made Sunday Candy, I’m never going to hell
I met Kanye West, I’m never going to fail.”
- Chance the Rapper

Instrumental variables is maybe one of most important econo-
metric strategies ever devised. Just as Archimedes said “Give me a
fulcrum, and I shall move the world”, so it could be said that with a
good enough instrument, we can identify any causal effect.

But, while that is hyperbole for reasons we will soon see, it is
nonetheless the case that instrumental variables is an important
contribution to causal inference, and an important tool to have in
your toolkit. It is also, interestingly, unique because it is one of those
instances where the econometric estimator was not simply ripped
off from statistics (e.g., Eicker-Huber-White standard errors) or
some other field (e.g., regression discontinuity). Its history is, in
my opinion, quite fascinating, and before we dive into the technical
material, I’d like to tell you a story about its discovery.

History of Instrumental Variables: Father and Son

Philip Wright was born in 1861 and died in 1934. He received his
bachelor’s degree from Tufts in 1884 and a masters degree from
Harvard in 1887.105 His son, Sewall Wright, was born in 1889 when 105 This biographical information is

drawn from Stock and Trebbi [2003].Philip was 28. The family moved from Massachusetts to Illinois
where Philip took a position as professor of mathematics and eco-
nomics at Lombard College. Philip was so unbelievably busy with
teaching and service that is astonishing he had any time for re-
search, but he did. He published numerous articles and books over
his career, including poetry. You can see his vita here at https:
//scholar.harvard.edu/files/stock/files/wright_cv.pdf.106

106 Interesting side note: Philip had a
passion for poetry, and even published
some in his life, and he used his
school’s printing press to publish
the first book of poems by the great
American poet, Carl Sandburg.

Sewell attended Lombard College and took his college mathematics
courses from his father.

In 1913, Philip took a position at Harvard, and Sewell entered as
a graduate student. Eventually Philip would leave for the Brookings

https://scholar.harvard.edu/files/stock/files/wright_cv.pdf
https://scholar.harvard.edu/files/stock/files/wright_cv.pdf
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Institute, and Sewell would take his first job in the Department of
Zoology at the University of Chicago where he would eventually be
promoted to professor in 1930.

Philip was prolific which given his teaching and service require-
ments is amazing. He published in top journals such as the Quarterly
Journal of Economics, Journal of the American Statistical Association, Jour-
nal of Political Economy and American Economic Review. A common
theme across many publications was the identification problem. He
was acutely aware of it and was intent on solving it.

In 1928, Philip was writing a book about animal and vegetable oils
of all the things. The reason? He believed that recent tariff increases
were harming international relations. Thus he wrote passionately
about the damage from the tariffs, which affected animal and veg-
etable oils. We will return to this book again, as it’s an important
contribution to our understanding of instrumental variables.

While Philip was publishing like a fiend in economics, Sewall
Wright was revolutionizing the field of genetics. He invented path
analysis, a precursor to Pearl’s directed acyclical graphical models, as
well as made important contributions to the theory of evolution and
genetics. He was a genius.

The decision to not follow in the family business (economics) cre-
ated a bit of tension between the two men, but all evidence suggests
that they found one another intellectually stimulating. In his book
on vegetable and oil tariffs, there is an Appendix (entitled Appendix
B) in which the calculus of the instrumental variables estimator
was worked out. Elsewhere, Philip thanked his son for his valuable
contributions to what he had written, referring to the path analysis
primarily which Sewell taught him. This path analysis, it turned out,
played a key role in Appendix B.

The Appendix shows a solution to the identification problem.
So long as the economist is willing to impose some restrictions
on the problem, then the system of equations can be identified.
Specifically, if there is one instrument for supply, and the supply and
demand errors are uncorrelated, then the elasticity of demand can be
identified.

But who wrote this Appendix B? Either man could’ve done so. It
is an economics article, which points to Philip. But it used the path
analysis, which points to Sewell. Historians have debated this, even
going so far as to accuse Philip of stealing the idea from his son. If
Philip stole the idea, by which I mean when he published Appendix
B, he failed to give proper attribution to his son, then it would at the
very least have been a strange oversight which was possibly out of
character for a man who by all evidence loved his son very much. In
comes Stock and Trebbi [2003].
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Stock and Trebbi [2003] tried to determine the authorship of
Appendix B using “stylometric analysis”. Stylometric analysis had
been used in other applications, such as to identify the author of
the political novel Primary Colors (Joseph Klein) and the unsigned
Federalist Papers. But Stock and Trebbi [2003] is the first application of
it in economics to my knowledge.107

107 Maybe the only one?

The method is akin to contemporary machine learning methods.
The authors collected raw data containing the known original aca-
demic writings of each man, plus the first chapter and Appendix B of
the book in question. The writings were edited to exclude footnotes,
graphs and figures. Blocks of 1,000 words were selected from the files.
A total of 54 blocks were selected: 20 written by Sewall with certainty,
25 by Philip, six from Appendix B, and three from chapter 1. Chapter
1 has always been attributed to Philip, but Stock and Trebbi [2003]
treat the three blocks as unknown to “train” the data. That is, they
use it to check if their model is correctly predicting authorship.

The stylometric indicators that they used included the frequency
of occurrence in each block of 70 function words. The list was taken
from a separate study. These 70 function words produced 70 nu-
merical variables, each of which is a count, per 1,000 words, of an
individual function word in the block. Some words were dropped
because they occurred only once (“things”), leaving 69 function word
counts.

The second set of stylometric indicators, taken from another study,
concerned grammatical constructions. Stock and Trebbi [2003] used
18 grammatical constructions, which were frequency counts. They
included things like noun followed by an adverb, total occurrences
of prepositions, coordinating conjunction followed by noun, and so
on. There was one dependent variable in their analysis, and that
was authorship. The independent variables were 87 covariates (69

function word counts and 18 grammatical statistics).
The results of this analysis are absolutely fascinating. For instance,

many covariates have very large t-statistics, which would be unlikely
if there really were no stylistic differences between the authors and
indicators were independently distributed.

So what do they find. The results that I find the most interesting is
their regression analysis. They write:

“We regressed authorship against an intercept, the first two principal
components of the grammatical statistics and the first two principal
components of the function word counts, and we attribute authorship
depending on whether the predicted value is greater or less than 0.5.”

Note, they used principal component analysis because they had more
covariates than observations, and needed the dimension reduction.
A more contemporary method might be LASSO or ridge regression.
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But, given this analysis, what did they find? They found that all of
the Appendix B and chapter 1 blocks were assigned to Philip, not
Sewell. They did other robustness checks, and all of them point to
Philip as the author.

I love this story for many reasons. First, I love the idea that an
econometric estimator as important as instrumental variables was
in fact created by an economist. I’m so accustomed to stories in
which the actual econometric estimator was lifted from statistics
(Huber-White standard errors) or educational psychology (regression
discontinuity). It is nice to know economists have added their own
to the seminal canon of econometrics. But the other part of the story
that I love is the father/son component. I find it encouraging to know
that a father and son can overcome differences through intellectual
collaborations such as this. Such relationships are important, and
tensions, when they arise, should be vigorously pursued until those
tensions to dissipate if possible. And Philip and Sewell give a story
of that, which I appreciate.

Natural Experiments and the King of the North

While natural experiments are not technically instrumental variables
estimator, they can be construed as such if we grant that they are the
reduced form component of the IV strategy. I will begin by describing
one of the most famous, and my favorite, example of a natural experi-
ment - John Snow’s discovery that cholera was a water borne disease
transmitted through the London water supply.

Natural experiments are technically, though, not an estimator or
even an experiment. Rather they are usually nothing more than an
event that occurs naturally which causes exogenous variation in some
treatment variable of interest.108

108 Instruments don’t have to be simply
naturally occurring random variables.
Sometimes they are lotteries, such as
in the Oregon Medicaid Experiment.
Other times, they are randomized peer
designs to induce participation in an
experiment.

When thinking about these, effort is spent finding some rare
circumstance such that a consequential treatment was handed to
some people or units but denied to others “haphazardly”. Note I
did not say randomly, though ideally it was random or conditionally
random. Rosenbaum [2010] wrote:

“The word ’natural’ has various connotations, but a ’natural experi-
ment’ is a ’wild experiment’ not a ’wholesome experiment,’ natural in
the way that a tiger is natural, not in the way that oatmeal is natural.”

Before John Snow was the King of the North, he was a 19th cen-
tury physician in London during several cholera epidemics. He
watched helplessly as patient after patient died from this mysterious
illness. Cholera came in waves. Tens of thousands of people died hor-
rible deaths from this disease, and doctors were helpless at stopping
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it, let alone understanding why it was happening. Snow tried his best
to save his patients, but despite that best, they still died.

Best I can tell, Snow was fueled by compassion, frustration and
curiosity. He observed the progression of the disease and began
forming conjectures. The popular theory of the time was miasmis.
Miasmis was the majority view about disease transmission, and
proponents of the theory claimed that minute, inanimate particles in
the air were what caused cholera to spread from person to person.
Snow tried everything he could to block the poisons from reaching
the person’s body, a test of miasmis, but nothing seemed to save his
patients. So he did what any good scientist does - he began forming
a new hypothesis.

It’s important to note something: cholera came in three waves in
London, and Snow was there for all of them. He was on the front
line, both as a doctor and an epidemiologist. And while his patients
were dying, he was paying attention - making guesses, testing them,
and updating his beliefs along the way.

Snow observed the clinical course of the disease and made the
following conjecture. He posited that the active agent was a living
organism that entered the body, got into the alimentary canal with
food or drink, multiplied in the body, and generated a poison that
caused the body to expel water. The organism passed out of the body
with these evacuations, then entered the water supply, re-infected
new victims who unknowingly drank from the water supply. This
process repeated causing a cholera epidemic.

Snow had evidence for this based on years of observing the pro-
gression of the disease. For instance, cholera transmission tended to
follow human commerce. Or the fact that a sailor on a ship from a
cholera-free country who arrived at a cholera-stricken port would
only get sick after landing or taking on supplies. Finally, cholera
hit the poorest communities the worst, who also lived in the most
crowded housing with the worst hygiene. He even identified Patient
Zero - a sailor named John Harnold who arrived to London by the
Elbe ship from Hamburg where the disease was prevailing.

It seems like you can see Snow over time moving towards cleaner
and cleaner pieces of evidence in support of a waterborne hypothesis.
For instance, we know that he thought it important to compare two
apartment buildings - one which was heavily hit with cholera, but
a second one that wasn’t. The first building was contaminated by
runoff from privies but the water supply in the second was cleaner.
The first building also seemed to be hit much harder by cholera
than the second. These facts, while not entirely consistent with the
miasma theory, were still only suggestive.

How could Snow test a hypothesis that cholera was transmitted
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via poisoned water supplies? Simple! Randomly assign half of Lon-
don to drink from water contaminated by the runoff from cholera
victims, and the other half from clean water. But it wasn’t merely
that Snow predated the experimental statisticians, Jerzy Neyman
and Roland Fisher, that kept him from running an experiment like
that. An even bigger constraint was that even if he had known about
randomization, there’s no way he could’ve run an experiment like
that. Oftentimes, particularly in social sciences like epidemiology
and economics, we are dealing with macro-level phenomena and
randomized experiments are simply not realistic options.

I present that kind of thought experiment, though, not to advocate
for the randomized controlled trial, but rather to help us understand
the constraints we face, as well as to help hone in on what sort of
experiment we need in order to test a particular hypothesis. For one,
Snow would need a way to trick the data such that the allocation of
clean and dirty water to people was not associated with the other
determinants of cholera mortality, such as hygiene and poverty.
He just would need for someone or something to be making this
treatment assignment for him.

Fortunately for Snow, and the rest of London, that someone or
something existed. In the London of the 1800s, there were many
different water companies serving different areas of the city. Some
were served by more than one company. Several took their water
from the Thames, which was heavily polluted by sewage. The service
areas of such companies had much higher rates of cholera. The
Chelsea water company was an exception, but it had an exceptionally
good filtration system. That’s when Snow had a major insight. In
1849, Lambeth water company moved the intake point upstream
along the Thames, above the main sewage discharge point, giving its
customers purer water. Southwark and Vauxhall water company, on
the other hand, left their intake point downstream from where the
sewage discharged. Insofar as the kinds of people that each company
serviced were approximately the same, then comparing the cholera
rates between the two houses could be the experiment that Snow so
desperately needed to test his hypothesis.

Snow’s Table IX
Company name Number of houses Cholera deaths Deaths per 10,000 houses
Southwark and Vauxhall 40,046 1,263 315

Lambeth 26,107 98 37

Snow wrote up his results in a document with many tables and
a map showing the distribution of cholera cases around the city -
one of the first statistical maps, and one of the most famous. Table
9, above, shows the main results. Southwark and Vauxhall, what
I call the treatment case, had 1,263 cholera deaths, which is 315
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per 10,000 houses. Lambeth, the control, had only 98, which is 37

per 10,000 houses. Snow spent the majority of his time in the write
up tediously documenting the similarities between the groups of
domiciles serviced by the two companies in order to rule out the
possibility that some other variable could be both correlated with
Southwark and Vauxhall and associated with miasmis explanations.
He was convinced – cholera was spread through the water supply,
not the air. Of this table, Freedman [1991] the statistician wrote:

“As a piece of statistical technology, [Snow’s Table IX] is by no means
remarkable. But the story it tells is very persuasive. The force of the
argument results from the clarity of the prior reasoning, the bringing
together of many different lines of evidence, and the amount of shoe
leather Snow was willing to use to get the data. Snow did some
brilliant detective work on nonexperimental data. What is impressive is
not the statistical technique but the handling of the scientific issues. He
made steady progress from shrewd observation through case studies
to analyze ecological data. In the end, he found and analyzed a natural
experiment.”

The idea that the best instruments come from shoeleather is echoed
in Angrist and Krueger [2001] when the authors note that the best
instruments come from in-depth knowledge of the institutional
details of some program or intervention.

Instrumental variables DAG

To understand the instrumental variables estimator, it is helpful to
start with a DAG. This DAG shows a chain of causal effects that
contains all the information needed to understand the instrumental
variables strategy. First, notice the backdoor path between D and Y:
D  u!. Furthermore, note that u is unobserved by the econometri-
cian which causes the backdoor path to remain open. If we have this
kind of selection on unobservables, then there does not exist a condition-
ing strategy that will satisfy the backdoor criterion (in our data). But,
before we throw up our arms, let’s look at how Z operates through
these pathways.

Z D

U

Y

First, there is a mediated pathway from Z to Y via D. When Z
varies, D varies, which causes Y to change. But, even though Y
is varying when Z varies, notice that Y is only varying because D
has varied. You sometimes hear people describe this as the “only
through” assumption. That is, Z affects Y “only through” D.
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Imagine this for a moment though. Imagine D consists of people
making choices. Sometimes these choices affect Y, and sometimes
these choices merely reflect changes in Y via changes in U. But along
comes some shock, Z, which induces some but not all of the people in
D to make different decisions. What will happen?

Well, for one, when those people’s decisions change, Y will change
too, because of the causal effect. But, notice, all of the correlation
between D and Y in that situation will reflect the causal effect. The
reason being, D is a collider along the backdoor path between Z and
Y.

But I’m not done with this metaphor. Let’s assume that in this
D variable, with all these people, only some of the people change
their behavior because of D. What then? Well, in that situation, Z
is causing a change in Y for just a subset of the population. If the
instrument only changes the behavior of women, for instance, then
the causal effect of D on Y will only reflect the causal effect of female
choices, not males.

There’s two ideas inherent in the previous paragraph that I want
to emphasize. First, if there are heterogeneous treatment effects
(e.g., males affect Y differently than females), then our Z shock only
identified some of the causal effect of D on Y. And that piece of the
causal effect may only be valid for the female population whose
behavior changed in response to Z; it may not be reflective of how
male behavior would affect Y. And secondly, if Z is only inducing
some of the change in Y via only a fraction of the change in D, then
it’s almost as though we have less data to identify that causal effect
than we really have.

Here we see two of the difficulties in both interpreting instrumen-
tal variables, as well as identifying a parameter with it. Instrumental
variables only identifies a causal effect for any group of units whose
behaviors are changed as a result of the instrument. We call this
the causal effect of the complier population; in our example, only
females “complied” with the instrument, so we only know its effect
for them. And secondly, instrumental variables are typically going
to have larger standard errors, and as such, will fail to reject in many
instances if for no other reason than because they are under-powered.

Moving along, let’s return to the DAG. Notice that we drew the
DAG such that Z has no connection to U. Z is independent of U.
That is called the “exclusion restriction” which we will discuss in
more detail later. But briefly, the IV estimator assumes that Z is
independent of the variables that determine Y except for D.

Secondly, Z is correlated with D and because of its correlation
with D (and D’s effect on Y), Z is correlated with Y but only through
its effect on D. This relationship between Z and D is called the “first
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stage”, named that because of the two stage least squares estimator,
which is a kind of IV estimator. The reason it is only correlated with
Y via D is because D is a collider along the path Z ! D  u! Y.

How do you know when you have a good instrument? One, it
will require a DAG - either an explicit one, or an informal one. You
can only identify a causal effect using IV if you can theoretically
and logically defend the exclusion restriction, since the exclusion
restriction is an untestable assumption technically. That defense
requires theory, and since some people aren’t comfortable with
theoretical arguments like that, they tend to eschew the use of IV.
More and more, applied microeconomists are skeptical of IV for this
reason.

But, let’s say you think you do have a good instrument. How
might you defend it as such to someone else? A necessary but not
a sufficient condition for having an instrument that can satisfy the
exclusion restriction is if people are confused when you tell them
about the instrument’s relationship to the outcome. Let me explain.
No one is going to be confused when you tell them that you think
family size will reduce female labor supply. They don’t need a Becker
model to convince them that women who have more children prob-
ably work less than those with fewer children. It’s common sense.
But, what would they think if you told them that mothers whose first
two children were the same gender worked less than those whose
children had a balanced sex ratio? They would probably give you a
confused look. What does the gender composition of your children
have to do with whether a woman works?

It doesn’t – it only matters, in fact, if people whose first two chil-
dren are the same gender decide to have a third child. Which brings
us back to the original point – people buy that family size can cause
women to work less, but they’re confused when you say that women
work less when their first two kids are the same gender. But if when
you point out to them that the two children’s gender induces people
to have larger families than they would have otherwise, the person
“gets it”, then you might have an excellent instrument.

Instruments are, in other words, jarring. They’re jarring precisely
because of the exclusion restriction – these two things (gender com-
position and work) don’t seem to go together. If they did go together,
it would likely mean that the exclusion restriction was violated. But
if they don’t, then the person is confused, and that is at minimum a
possible candidate for a good instrument. This is the common sense
explanation of the “only through” assumption.

The following two sections differ from one another in the follow-
ing sense: the next section makes the traditional assumption that all
treatment effects are constant for all units. When this is assumed,
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then the parameter estimated through an IV methodology equals
the ATE equals the ATT equals the ATU. The variance will still be
larger, because IV still only uses part of the variation in D, but the
compliers are identical to the non-compliers so the causal effect for
the compliers is the same as the causal effect for all units.

The section after the next one is explicitly based on the potential
outcomes model. It assumes the more general case where each unit
has a unique treatment effect. If each unit can have a different effect
on Y, then the causal effect itself is a random variable. We’ve called
this heterogeneous treatment effects. It is in this situation that the
complier qualification we mentioned earlier matters, because if we
are only identifying a causal effect for just a subset of the column
of causal effects, then we are only estimating the treatment effects
associated with the compliers themselves. This estimand is called
the local average treatment effect (LATE), and it adds another wrinkle
to your analysis. If the compliers’ own average treatment effects are
radically different from the rest of the population, then the LATE
estimand may not be very informative. Heck, under heterogeneous
treatment effects, there’s nothing stopping the sign of the LATE to be
different than the sign of the ATE!

For this reason, we want to think long and hard about what our IV
estimate means under heterogenous treatment effects, because policy-
makers will be implementing a policy, not based on assigning Z but
rather based on assigning D. And as such, both compliers and non-
compliers will matter for the policy-makers, yet IV only identifies
the effect for one of these. Hopefully this will become clearer as we
progress.

Homogenous treatment effects and 2SLS

Instrumental variables methods are typically used to address omitted
variable bias, measurement error, and simultaneity. For instance,
quantity and price is determined by the intersection of supply and
demand, so any observational correlation between price and quantity
is uninformative about the unique elasticities associated with supply
or demand curves. Wright understood this, which was why he
investigated the problem so intensely.

We begin by assuming homogenous treatment effects. Homoge-
nous treatment effects assumes that the treatment effect is the same
for every unit. This is the traditional econometric pedagogy and not
based explicitly on the potential outcomes notation.

Let’s start by illustrating the omitted variable bias problem again.
Assume the classical labor problem where we’re interested in the
causal effect of schooling on earnings, but schooling is endogenous
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because of unobserved ability. Let the true model of earnings be:

Yi = a + dSi + gAi + #i

where Y is the log of earnings, S is schooling measured in years, A is
individual “ability”, and # is an error term uncorrelated with school-
ing or ability. The reason A is unobserved is simply because the
surveyor either forgot to collect it or couldn’t collect it and therefore
it’s missing from your dataset.109 For instance, the CPS tells us noth- 109 Unobserved ability doesn’t mean it’s

literally unobserved, in other words. It
could be just missing from your dataset,
and therefore is unobserved to you.

ing about respondents’ family background, intelligent, motivation or
non-cognitive ability. Therefore, since ability is unobserved, we have
the following equation instead:

Yi = a + dSi + hi

where hi is a composite error term equalling gAi + #i. We assume that
schooling is correlated with ability, so therefore it is correlated with
hi, making it endogenous in the second, shorter regression. Only #i is
uncorrelated with the regressors, and that is by definition.

We know from the derivation of the least squares operator that the
estimated value of bd is:

b
d =

C(Y, S)
V(S)

=
E[YS]� E[Y]E[S]

V(S)

Plugging in the true value of Y (from the longer model), we get the
following:

b
d =

E[aS + S2
d + gSA + #S]� E(S)E[a + dS + gA + #]

V(S)

=
dE(S2)� dE(S)2 + gE(AS)� gE(S)E(A) + E(#S)� E(S)E(#)

V(S)

= d + g

C(AS)
V(S)

If g > 0 and C(A, S) > 0, then bd, the coefficient on schooling, is
upward biased. And that is probably the case given that it’s likely
that ability and schooling are positively correlated.

Now, consistent with the IV DAG we discussed earlier, suppose
there exists a variable, Zi, that is correlated with schooling. We can
use this variable, as I’ll now show, to estimate d. First, calculate the
covariance of Y and Z:

C(Y, Z) = C(adS + gA + #, Z)

= E[(a + dS + gA + #), Z]� E(S)E(Z)

= {aE(Z)� aE(Z)} + d{E(SZ)� E(S)E(Z)} + g{E(AZ)� E(A)E(Z)} + {E(#Z)� E(#)E(Z)}
= dC(S, Z) + gC(A, Z) + C(#, Z)
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Notice that the parameter of interest, d is on the right hand side. So
how do we isolate it? We can estimate it with the following:

b
d =

C(Y, Z)
C(S, Z)

so long as C(A, Z) = 0 and C(#, Z) = 0.
These zero covariances are the statistical truth contained in the

IV DAG from earlier. If ability is independent of Z, then this second
covariance is zero. And if Z is independent of the structural error
term, #, then it too is zero. This, you see, is what is meant by the
“exclusion restriction”: the instrument must be independent of both
parts of the composite error term.

But the exclusion restriction is only a necessary condition for IV
to work; it is not a sufficient condition. After all, if all we needed
was exclusion, then we could use a random number generator for an
instrument. Exclusion is not enough. We also need the instrument
to be highly correlated with the endogenous variable. And the higher
the better. We see that here because we are dividing by C(S, Z), so it
necessarily requires that this covariance be non-zero.

The numerator in this simple ratio is sometimes called the “re-
duced form”, while the denominator is called the “first stage”. These
terms are somewhat confusing, particularly the former as “reduced
form” means different things to different people. But in the IV ter-
minology, it is that relationship between the instrument and the
outcome itself. The first stage is less confusing, as it gets its name
from the two stage least squares estimator, which we’ll discuss next.

When you take the probability limit of this expression, then assum-
ing C(A, Z) = 0 and C(#, Z) = 0 due to the exclusion restriction, you
get

plim b
d = d

But if Z is not independent of h (either because it’s correlated with A
or #), and if the correlation between S and Z is weak, then bd becomes
severely biased.

Two stage least squares One of the more intuitive instrumental vari-
ables estimators is the two-stage least squares (2SLS). Let’s review an
example to illustrate why I consider it helpful for explaining some of
the IV intuition. Suppose you have a sample of data on Y, S and Z.
For each observation i, we assume the data are generated according
to:

Yi = a + dSi + #i

Si = g + bZi + ei
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where C(Z, #) = 0 and b 6= 0. Now using our IV expression, and using
the result that Ân

i=1(xi � x̄) = 0, we can write out the IV estimator as:

b
d =

C(Y, Z)
C(S, Z)

=
1
n Ân

i=1(Zi � Z)(Yi �Y)
1
n Ân

i=1(Zi � Z)(Si � S)

=
1
n Ân

i=1(Zi � Z)Yi
1
n Ân

i=1(Zi � Z)Si

When we substitute the true model for Y, we get the following:

b
d =

1
n Ân

i=1(Zi � Z){a + dS + #}
1
n Ân

i=1(Zi � Z)Si

= d +
1
n Ân

i=1(Zi � Z)#i
1
n Ân

i=1(Zi � Z)Si

= d + “small if n is large”

So, let’s return to our first description of bd as the ratio of two co-
variances. With some simple algebraic manipulation, we get the
following:

b
d =

C(Y, Z)
C(S, Z)

=
C(Z,Y)
V(Z)

C(Z,S)
V(Z)

where the denominator is equal to bb.110 We can rewrite bb as: 110 That is, Si = g + bZi + ei

b
b =

C(Z, S)
V(Z)

b
bV(Z) = C(Z, S)

Then we rewrite the IV estimator and make a substitution:

b
dIV =

C(Z, Y)
C(Z, S)

=
b
bC(Z, Y)
b
bC(Z, S)

=
b
bC(Z, Y)
b
b

2V(Z)

=
C(bbZ, Y)

V(bbZ)
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Recall that S = g + bZ + e; bd = C(bbZY)
V(bbZ)

and let bS = bg + bbZ. Then the 2SLS
estimator is:

b
dIV =

C(bbZ, Y)
V(bbZ)

=
C(bS, Y)

V(bS)

I will now show that bbC(Y, Z) = C(bS, Y), and leave it to you to show
that V(bbZ) = V(bS).

C(bS, Y) = E[bSY]� E[bS]E[Y]

= E(Y[bg + bbZ])� E(Y)E(bg + bbZ)

= b
gE(Y) + bbE(YZ)� bgE(Y)� bbE(Y)E(Z)

= b
b[E(YZ)� E(Y)E(Z)]

C(bS, Y) = b
bC(Y, Z)

Now let’s return to something I said earlier – learning 2SLS can
help you better understand the intuition of instrumental variables
more generally. What does this mean exactly? It means several
things. First, the 2SLS estimator used only the fitted values of the
endogenous regressors for estimation. These fitted values were
based on all variables used in the model, including the excludable
instrument. And as all of these instruments are exogenous in the
structural model, what this means is that the fitted values themselves
have become exogenous too. Put differently, we are using only the
variation in schooling that is exogenous. So that’s kind of interesting,
as now we’re back in a world where we are identifying causal effects.
B

But, now the less exciting news. This exogenous variation in S
driven by the instruments is only a subset of the total variation in
the variable itself. Or put differently, IV reduces the variation in the
data, so there is less information available for identification, and what
little variation we have left comes from the complier population only.
Hence the reason in large samples we are estimating the LATE – that
is, the causal effect for the complier population, where a complier is
someone whose behavior was altered by the instrument.

Example 1: Meth and Foster Care

As before, I feel that an example will help make this strategy more
concrete. To illustrate, I’m going to review one of my papers with
Keith Finlay examining the effect of methamphetamine abuse on
child abuse and foster care admissions [Cunningham and Finlay,
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2012]. It has been claimed that substance abuse, notably drug use,
has a negative impact on parenting, such as neglect, but as these
all occur in equilibrium, it’s possible that the correlation is simply
reflective of selection bias. In other words, perhaps households with
parents who abuse drugs would’ve had the same negative outcomes
had the parents not used drugs. After all, it’s not like people are
flipping coins when deciding to use meth. So let me briefly give you
some background to the study so that you better understand the data
generating process.

First, d-methamphetamine is like poison to the mind and body
when abused. Effects meth abuse increase energy and alertness,
decreased appetite, intense euphoria, impaired judgment, and psy-
chosis. Second, the meth epidemic, as it came to be called, was geo-
graphically concentrated initially on the west coast before gradually
making its way eastward over the 1990s.

What made this study possible, though, was meth’s production
process. Meth is synthesized from a reduction of ephedrine or pseu-
doephedrine, which is also the active ingredient in many cold med-
ications, such as the behind-the-counter Sudafed. It is also worth
noting that that key input (precursor) experienced a bottleneck in
production. In 2004, nine factories manufactured the bulk of the
world supply of ephedrine and pseudoephedrine. The DEA cor-
rectly noted that if they could regulate access to ephedrine and
pseudoephedrine, then they could effectively interrupt the produc-
tion of d-methamphetamine, and in turn, reduce meth abuse and its
associated social harms.

To understand this, it may be useful to see the two chemical
molecules side by side. While the actual process of production is
more complicated than this, the chemical reduction is nonethe-
less straightforward: start with ephedrine or pseudoephdrine, re-
move the hydroxyl group, add back the hydrogen. This gives you
d-methamphetamine (see Figure 64).

So, with input from the DEA, Congress passed the Domestic
Chemical Diversion Control Act in August 1995 which provided
safeguards by regulating the distribution of products that contained
ephedrine as the only medicinal ingredient. But the new legislation’s
regulations applied to ephedrine, not pseudoephedrine, and since the
two precursors were nearly identical, traffickers quickly substituted
from ephedrine to pseudoephedrine. By 1996, pseudoephedrine
was found to be the primary precursor in almost half of meth lab
seizures.

Therefore, the DEA went back to Congress, seeking greater control
over pseudoephedrine products. And the Comprehensive Metham-
phetamine Control Act of 1996 went into effect between October
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Figure 64: Pseudoephedrine (top) vs
d-methamphetamine (bottom)

and December 1997. This Act required distributors of all forms of
pseudoephedrine to be subject to chemical registration. Dobkin and
Nicosia [2009] argued that these precursor shocks may very well have
been the largest supply shocks in the history of drug enforcement.

The effect of the two interventions were dramatic. The first supply
intervention caused retail (street) prices (adjusted for purity, weight
and inflation) to more than quadruple. The second more like 2-3
times its longrun trend. See Figure 65.

We are interested in the causal effect of meth abuse on child abuse,
and so our first stage is necessarily a proxy for meth abuse – the
number of people entering treatment who listed meth as one of the
substances they used in their last substance abuse episode. As I said
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FIGURE 3
Ratio of Median Monthly Expected Retail Prices of Meth, Heroin, and Cocaine Relative to Their

Respective Values in January 1995, STRIDE, 1995–1999

Notes: Authors’ calculations from STRIDE. Expected price estimates come from random coefficient models of both purity
and price, following the methodology of Arkes et al. (2004). Estimates from these models are available from the authors.
Prices are inflated to 2002 dollars by the All Urban CPI series.

In the early 1990s, there was little use of
pseudoephedrine as a precursor. In 1994, ephed-
rine was identified as the source material in 79%
of meth lab seizures, while pseudoephedrine
was only found in 2% (Suo 2004). Congress
sought to close the legal loophole in 1993
by passing the Domestic Chemical Diversion
Control Act, which became effective August
1995. This new regulation provided additional
safeguards by regulating the distribution of
products that contained ephedrine as the only
active medicinal ingredient (Cunningham and
Liu 2003; U.S. DEA 1995). The new legislation
ignored pseudoephedrine tablets, so traffickers
soon took advantage of the omission by sub-
stituting toward pseudoephedrine as a precur-
sor. By 1996, pseudoephedrine was found to be
the primary precursor in almost half of meth
lab seizures (U.S. DEA 1997). From 1996 to
1997, pseudoephedrine imports grew by 27%
while sales of all cold medications grew only 4%
(Suo 2004). As a consequence, the DEA sought
greater controls over pseudoephedrine products.
The Comprehensive Methamphetamine Control
Act of 1996 went into effect between October
and December 1997 and required distributors of
almost all forms of pseudoephedrine to be sub-
ject to chemical registration (U.S. DEA 1997).

Due to the concentration of meth precur-
sor markets, these two regulations may be the
largest supply shocks in the history of U.S. drug
enforcement (Dobkin and Nicosia 2009). To
estimate the effect of the interdictions on meth
markets, we construct a monthly series for the
expected retail price of a pure gram of d-meth
from January 1995 to December 1999 using
the DEA’s seizure database, System to Retrieve
Information from Drug Evidence (STRIDE).4,5

Figure 3 shows the median monthly expected
retail prices of meth, heroin, and cocaine rela-
tive to their respective medians in January 1995.
The 1995 interdiction caused a dramatic spike
in meth prices, but the effect was relatively
short lived. After 6 months, the prices returned
to their pre-interdiction level. The 1997 regu-
lation had a smaller but more sustained effect
on prices—lasting approximately 12 months. It
is these rapid shocks to the supply and mar-
ket price of meth that we exploit to understand

4. See the Supporting Information for an explanation of
the construction of the meth price series.

5. There is a debate about the ability of researchers
to recover the distribution of market prices from STRIDE
because its sampling is determined by law enforcement
actions. See Horowitz (2001) for the critical argument and
Arkes et al. (2008) for a rebuttal.

Figure 65: Figure 3 from Cunningham
and Finlay [2012] showing changing
street prices following both supply
shocks.

before, since pictures speak a thousand words, I’m going to show
you pictures of both the first stage and the reduced form. Why do I
do this instead of going directly to the tables of coefficients? Because
quite frankly, you are more likely to find those estimates believable if
you can see evidence for the first stage and the reduced form in the
raw data itself.111

111 While presenting figures of the first
stage and reduced form isn’t mandatory
in the way that it is for regression
discontinuity, it is nonetheless very
commonly done. Ultimately, it is done
because seeing is believing.

In Figure 66, we show the first stage and you can see several
things. All of these data come from the Treatment Episode Data Set
(TEDS), which is all people going into treatment for substance abuse
for federally funded clinics. Patients list the last three substances
used in the most recent “episode”. We mark anyone who listed meth,
cocaine or heroin as counts by month and state. Here we aggregate
to the national level in Figure 66. You can see evidence for the effect
the two interventions had on meth flows, particularly the ephedrine
intervention. Self-admitted meth admissions dropped significantly, as
did total meth admissions, but there’s no effect on cocaine or heroin.
The effect of the pseudoephedrine is not as dramatic, but it appears
to cause a break in trend as the growth in meth admissions slows
during this period of time.

In Figure 67, we graphically show the reduced form. That is, the
effect of the price shocks on foster care admissions. Consistent with
what we found in our first stage graphic, the ephedrine intervention
in particular had a profoundly negative effect on foster care admis-
sions. They fell from around 8,000 children removed per month to
around 6,000, then began rising again. The second intervention also
had an effect, though it appears to be milder. The reason we believe
that the second intervention had a more modest effect than the first
is because (1) the effect on price as we saw earlier was about half the
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FIGURE 5
Total Admissions to Publicly Funded Treatment Facilities by Drug and Month, Selected States,

Whites, TEDS, Seasonally Adjusted, 1995–1999

Notes: Authors’ calculations from TEDS. Arizona, the District of Columbia, Kentucky, Mississippi, West Virginia, and
Wyoming are excluded because of poor data quality. Patients can report the use of more than one drug.

Figure 5 shows the seasonally adjusted trends
for whites in treatment for meth (total cases
and self-referred cases separately), juxtaposed
with the trends for cocaine and heroin. Meth has
the largest percentage rise in treatment in-flows
for the sample period due in part to its lower
prevalence overall in 1995 relative to cocaine
and heroin. There appears to have been a drop
in the level of meth admissions following the
1995 intervention, followed by a rebound in the
rate of growth afterwards, whereas the 1997
intervention appears to be mainly associated
with flat growth rates. Although suggestive that
meth admissions may have fallen in response
to rising meth prices, the fact that there are
similar movements in the series outside the
interventions suggests more rigorous statistical
analysis is necessary.

We include a number of controls to address
potential confounds to identification. Meth use
may be correlated with other drug use, so
we include the number of alcohol use treat-
ment cases for whites from TEDS. In some
robustness checks, we also include the num-
ber of cocaine, heroin, and marijuana cases
for whites. Meth use may be a function of
local economic conditions, so we control for
the state unemployment rate estimated from

the Current Population Survey. (The Bureau
of Labor Statistics does not disaggregate these
statistics by race, so we control for the over-
all unemployment rate.) Finally, we include a
relatively exogenous measure of the price of a
substitute drug. Orzechowski and Walker (2008)
report the cigarette tax in each state. We also
control for the state population of whites aged
0 to 19 years and aged 15 to 49 years. We see
these as the appropriate denominators for foster
care and drug use rates, respectively.

IV. MODEL AND IDENTIFICATION

In this section, we develop an empirical
approach that examines the extent to which
increases in meth use caused increases in foster
care admissions from January 1995 to December
1999. Further, we use data on the reasons for a
child’s removal to identify the precise mecha-
nisms that translate growth in meth use to an
increase in foster care admissions. As we state
above, we proxy for meth use with the number
of self-referred meth treatment admissions.

Steady-state treatment admissions are deter-
mined jointly by the population of meth users
in an area and the average effectiveness of
local treatment options. First, it is reasonable

Figure 66: Figure 5 from Cunningham
and Finlay [2012] showing first stage.

size of the first intervention, and (2) domestic meth production was
being replaced by Mexican imports of d-meth over the late 1990s.
Thus, by the end of the 1990s, domestic meth production played
a smaller role in total output, hence why the effect on price and
admissions was probably smaller.
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FIGURE 4
Number of Children Removed to and Discharged from Foster Care in a Set of Five States by

Month, AFCARS, Seasonally Adjusted, 1995–1999

Sources: Authors’ calculations from AFCARS. This figure contains AFCARS data only from California, Illinois,
Massachusetts, New Jersey, and Vermont. These states form a balanced panel through the entire sample period.

TABLE 1
Foster Care Selected Descriptive Statistics, Adoption and Foster Care Analysis and Reporting

System (AFCARS), 1995–1999

All Whites Only Regression Sample

Child Characteristics M (SD) Obs. M (SD) Obs. M (SD) Obs.

Female 0.48 8,376,410 0.48 1,829,309 0.48 1,810,777
White 0.54 7,485,566 1.00 1,356,475 1.00 1,340,894
Black 0.41 7,485,566 — — — —
Other race 0.05 7,485,566 — — — —
Hispanic ethnicity 0.18 7,123,489 0.31 1,425,139 0.31 1,413,088
Age at first removal 6.89 8,101,436 7.58 1,706,948 7.57 1,691,607

(5.44) (5.42) (5.42)
Age at latest removal 7.18 8,355,884 7.79 1,825,189 7.79 1,806,628

(5.51) (5.45) (5.45)
Total number of removals 1.29 8,300,811 1.28 1,812,239 1.28 1,793,777

(0.72) (0.77) (0.78)
Route of most recent removal

Parental drug use 0.16 7,567,806 0.11 1,615,805 0.12 1,541,297
Parental abuse 0.17 7,623,928 0.17 1,632,596 0.16 1,619,836
Parental neglect 0.52 7,645,084 0.45 1,636,756 0.45 1,623,995
Parental incarceration 0.05 7,496,838 0.04 1,575,780 0.04 1,563,020

Notes: Authors’ calculations from AFCARS. Children may have no reported route or more than one route of admission
to foster care, so proportions may not add to one. See Supporting Information for the sample restrictions used to generate the
sample in the final column.

Child welfare workers can report more than
one reason for removal. For each category, we
classify a child as following that route if it
ever shows up in his file. Thus, the route of

admission proportions can add up to more than
one. We report summary statistics for only the
four most commonly cited reasons for removal.
The most commonly cited reason for removal

Figure 67: Figure 4 from Cunningham
and Finlay [2012] showing reduced
form effect of interventions on children
removed from families and placed into
foster care.

In Figure 68, we reproduce Table 3 from my article with Keith.
There are a few pieces of key information that all IV tables should
have. First, there is the OLS regression. As the OLS regression suffers
from endogeneity, we want the reader to see it so that they what



instrumental variables 223

to compare the IV model with. Let’s focus on column 1 where the
dependent variable is total entry into foster care. We find no effect,
interestingly, of meth onto foster care.

CUNNINGHAM & FINLAY: SUBSTANCE USE AND FOSTER CARE 13

TABLE 3
OLS and 2SLS Regressions of Foster Care Admissions on Meth Treatment Admissions with State

Linear Trends, Whites, 1995–1999

Log Latest Entry into
Foster Care

Log Latest Entry via
Parental Incarceration

Log Latest Entry via
Child Neglect

Covariates OLS (1) 2SLS (2) OLS (3) 2SLS (4) OLS (5) 2SLS (6)

Log self-referred meth treatment rate 0.01 1.54∗∗∗ 0.23∗∗∗ −0.38 0.03 1.03∗∗

(0.02) (0.59) (0.05) (0.32) (0.02) (0.41)
Unemployment rate −0.06∗∗ −0.00 −0.04 −0.04 −0.07∗∗∗ −0.03

(0.02) (0.05) (0.06) (0.06) (0.02) (0.04)
Cigarette tax per pack −0.01 0.02 −2.02∗∗∗ −1.96∗∗∗ 0.15 0.16

(0.10) (0.17) (0.42) (0.42) (0.12) (0.16)
Log alcohol treatment rate −0.04 −1.26∗∗∗ −0.37 0.13 −0.05 −0.85∗∗∗

(0.03) (0.46) (0.09) (0.28) (0.03) (0.32)
Log population 0–19 year old 3.68 2.25 −42.61∗ −40.43∗ 2.12 1.28

(2.59) (3.60) (22.74) (22.24) (2.66) (3.21)
Log population 15–49 year old −15.48∗∗∗ −10.61∗ −27.20 −32.24 −8.93∗ −5.66

(5.44) (6.19) (22.20) (21.35) (5.11) (5.52)
Month-of-year fixed effects x x x x x x
State fixed effects x x x x x x
State linear time trends x x x x x x

First stage
Price deviation instrument −0.0005∗∗∗ −0.0009∗∗∗ −0.0005∗∗∗

(0.0001) (0.0002) (0.0001)
F -statistic for IV in first stage 17.60 25.99 18.78
R2 0.864 0.818 0.855
N 1,343 1,343 1,068 1,068 1,317 1,317

Log Latest Entry via
Parental Drug Use

Log Latest Entry via
Physical Abuse

Log Number of Exits
from Foster Care

OLS (7) 2SLS (8) OLS (9) 2SLS (10) OLS (11) 2SLS (12)

Log self-referred meth treatment rate 0.21∗∗∗ −0.20 0.04 1.49∗∗ 0.06∗ −0.14
(0.04) (0.34) (0.03) (0.62) (0.03) (0.28)

Unemployment −0.17∗∗∗ −0.18∗∗∗ −0.11∗∗∗ −0.05 −0.02 −0.03
(0.05) (0.05) (0.04) (0.06) (0.03) (0.03)

Cigarette tax per pack −2.80∗∗∗ −2.80∗∗∗ 0.17 0.20 −1.05∗∗∗ −1.05∗∗∗

(0.37) (0.36) (0.14) (0.19) (0.15) (0.15)
Log alcohol treatment rate −0.24∗∗∗ 0.10 −0.01 −1.16∗∗ −0.04 0.12

(0.07) (0.28) (0.05) (0.49) (0.04) (0.22)
Log population 0–19 year old −13.30 −10.59 0.81 −0.44 9.50∗∗∗ 9.69∗∗∗

(17.74) (18.22) (3.73) (4.18) (3.60) (3.51)
Log population 15–49 year old −0.71 −6.01 −8.74 −4.01 −20.22∗∗∗ −20.90∗∗∗

(33.63) (34.71) (6.83) (7.01) (5.39) (5.33)
Month-of-year fixed effects x x x x x x
State fixed effects x x x x x x
State linear time trends x x x x x x

First stage
Price deviation instrument −0.0007∗∗∗ −0.0005∗∗∗ −0.0005∗∗∗

(0.0001) (0.0001) (0.0001)
F -statistic for IV in first stage 24.45 18.29 17.70
R2 0.90 0.80 0.84
N 1,161 1,161 1,293 1,293 1,318 1,318

Notes: ‘Log latest entry into foster care” is the natural log of the sum of all new foster care admissions by state, race,
and month. Models 3 to 10 denote the flow of children into foster care via a given route of admission denoted by the column
heading. Models 11 and 12 use the natural log of the sum of all foster care exits by state, race and month.

∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Figure 68: Table 3 Cunningham and
Finlay [2012] showing OLS and 2SLS
estimates of meth on foster care admis-
sions.

The second piece of information that one should report in a 2SLS
table is the first stage itself. We report the first stage at the bottom
of each even numbered column. As you can see, for each one unit
deviation in price from its longrun trend, meth admissions into treat-
ment (our proxy) fell by -0.0005 log points. This is highly significant
at the 1% level, but we check for the strength of the instrument using
the F statistic [Staiger and Stock, 1997].112 We have an F statistic 112 In a sense, I am probably getting

ahead of myself as we technically
haven’t introduced weak instrument
tests. But I wanted to walk you through
an IV paper before getting too far into
the weeds. We will circle back around
and discuss weak instruments later, but
for now know that Staiger and Stock
[1997] suggested that weak instruments
were a problem when an F test on the
excludability of the instrument from
the first stage was less than 10. That
paper was not the last word. See Stock
and Yogo [2005] if you’re interested in
precise, quantitative definitions of weak
instruments.

of 17.6, which suggests that our instrument is strong enough for
identification.

Finally, the 2SLS estimate of the treatment effect itself. Notice
using only the exogenous variation in log meth admissions, and
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assuming the exclusion restriction holds in our model, we are able to
isolate a causal effect of log meth admissions on log aggregate foster
care admissions. As this is a log-log regression, we can interpret
the coefficient as an elasticity. We find that a 10% increase in meth
admissions for treatment appears to cause around a 15% increase
in children removed from their homes and placed into foster care.
This effect is both large and precise. And notice, it was not detectable
otherwise (the coefficient was zero).

Why are they being removed? Our data (AFCARS) lists several
channels: parental incarceration, child neglect, parental drug use, and
physical abuse. Interestingly, we do not find any effect of parental
drug use or parental incarceration, which is perhaps somewhat
counterintuitive. Their signs are negative and their standard errors
are large. Rather, we find effects of meth admissions on removals for
physical abuse and neglect. Both are elastic (i.e., > 1).

What did we learn from this paper? Well, we learned two kinds
of things. First, we learned how a contemporary piece of applied
microeconomics goes about using instrumental variables to identify
causal effects. We saw the kinds of graphical evidence mustered,
the way in which knowledge about the natural experiment and the
policies involved helped the authors argue for the exclusion restric-
tion (since it cannot be tested), and the kind of evidence presented
from 2SLS, including the first stage tests for weak instruments. Hope-
fully seeing a paper at this point was helpful. But the second thing
we learned concerned the actual study itself. We learned that for
the group of meth users whose behavior was changed as a result of
rising real prices of a pure gram of d-methamphetamine (i.e., the
complier subpopulation), their meth use was causing child abuse and
neglect that was so severe that it merited removing their children and
placing those children into foster care. If you were only familiar with
Dobkin and Nicosia [2009], who found no effect of meth on crime
using county level data from California and only the 1997 ephedrine
shock, you might incorrectly conclude that there are no social costs
associated with meth abuse. But, while meth does not appear to
cause crime, it does appear to harm the children of meth users and
place strains on the foster care system.

Example 2: Compulsory Schooling and Weak Instruments

I am not trying to smother you with papers. But before we move
back into the technical material itself, I’d like to discuss one more
paper. This paper is interesting and important in and of itself, but
even putting that aside, it will also help you better understand the
weak instrument literature which followed.
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As we’ve said since the beginning, with example of example, there
is a very long tradition in labor economics of building models that
can credibly identify the returns to schooling. This goes back to
Becker [1994] and the Labor workshop at Columbia that Becker ran
for years with Jacob Mincer. This has been an important task given
education’s growing importance in the distribution of income and
wealth in the latter 20th century due to the increasing returns to skill
in the marketplace [Juhn et al., 1993].

One of the more seminal papers in instrumental variables for the
modern period is Angrist and Krueger [1991]. The idea is simple
and clever; a quirk in the United States educational system is that a
child is chosen for one grade based on when their birthday is. For a
long time, that cutoff was late December. If a child was born on or
before December 31st, then they were assigned to the first grade. But
if their birthday was on or after January 1st, they were assigned to
kindergarten. Thus these two people – one born on December 31st
and one born on January 1st – were exogenously assigned different
grades.

Now there’s nothing necessarily relevant here because if they
always stay in school for the duration of time necessary to get a high
school degree, then that arbitrary assignment of start date won’t
affect high school completion. It’ll only affect when they get that high
school degree. But this is where the quirk gets interesting. For most
of the 20th century, the US had compulsory schooling laws which
forced a person to remain in high school until they reached age 16.
After they hit age 16, they could legally drop out. Figure 69 explains
visually their instrumental variable.

Instrument for Education using Compulsory Schooling Laws

In practice it is often di¢cult to find convincing instruments (in
particular because many potential IVs do not satisfy the exclusion
restriction).
In the returns to education literature Angrist and Krueger (1991) had
a very influential study where they used quarter of birth as an
instrumental variable for schooling.
In the US you could drop out of school once you turned 16.
Children have di§erent ages when they start school and thus di§erent
lengths of schooling at the time they turn 16 when they can
potentially drop out.

Waldinger (Warwick) 9 / 45

Figure 69: Angrist and Krueger [1991]
explanation of their instrumental
variable.

Angrist and Krueger had the insight that that small quirk was
exogenously assigning more schooling to people born later in the
year. The person born in December would reach age 16 with more
education than the person born in January, in other words. Thus, the
authors had exogenous variation in schooling.113

113 Notice how similar their idea was to
regression discontinuity. That’s because
IV and RDD are conceptually very
similar strategies.

In Figure 70, Angrist and Krueger [1991] visually show the reader
the first stage, and it is really interesting. There’s a clear pattern -
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First Stages

Men born earlier in the year have lower schooling. This indicates that
there is a first stage.

Waldinger (Warwick) 10 / 45

Figure 70: Angrist and Krueger [1991]
first stage relationship between quarter
of birth and schooling.

3rd and 4th quarter birth days have more schooling than 1st and 2nd
quarter births on average. That relationship gets weaker as we move
into later cohorts, but that is probably because for later cohorts, the
price on higher levels of schooling was rising so much that fewer and
fewer people were dropping out before finishing their high school
degree.

Reduced Form

Do di§erences in schooling due to di§erent quarter of birth translate
into di§erent earnings?

Waldinger (Warwick) 11 / 45

Figure 71: Angrist and Krueger [1991]
reduced form visualization of the
relationship between quarter of birth
and log weekly earnings.

Figure 71 shows the reduced form visually. That is, here we see a
simple graph showing the relationship between quarter of birth and
log weekly earnings.114 You have to squint your eye a little bit, but 114 I know, I know. No one has ever

accused me of being subtle. But it’s an
important point - a picture speaks a
thousand words. If you can communi-
cate your first stage and reduced form
in pictures, you always should, as it will
really captivate the reader’s attention
and be far more compelling than a
simple table of coefficients ever could.

you can see the pattern – all along the top of the jagged path are 3s
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and 4s, and all along the bottom of the jagged path are 1s and 2s. Not
always, but it’s correlated.

Let’s take a sidebar. Remember what I said about how instruments
have a certain ridiculousness to them? That is, you know you have
a good instrument if the instrument itself doesn’t seem relevant for
explaining the outcome of interest because that’s what the exclusion
restriction implies. Why would quarter of birth affect earnings? It
doesn’t make any obvious, logical sense why it should. But, if I told
you that people born later in the year got more schooling than those
with less because of compulsory schooling, then the relationship between
the instrument and the outcome snaps into place. The only reason
we can think of as to why the instrument would affect earnings is if
the instrument was operating through schooling. Instruments only
explain the outcome, in other words, when you understand their
effect on the endogenous variable.115

115 This is why I chose those particular
Chance the Rapper lyrics as this chap-
ter’s epigraph. There’s no reason why
making “Sunday Candy” would keep
Chance from going to hell. Without
knowing the first stage, it makes no
obvious sense!

Angrist and Krueger use three dummies as their instruments: a
dummy for first quarter, a dummy for second quarter and a dummy
for third quarter. Thus the omitted category is the fourth quarter,
which is the group that gets the most schooling. Now ask yourself
this: if we regressed years of schooling onto those three dummies,
what should the signs and magnitudes be? That is, what would we
expect the relationship between the first quarter (compared to the
fourth quarter) and schooling? Let’s look at their first stage results
and see if it matched your intuition (Figure 72).

First Stage Regressions in Angrist & Krueger (1991)

Waldinger (Warwick) 14 / 45

Figure 72: Angrist and Krueger [1991]
first stage for different outcomes.
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Figure 72 shows the first stage from a regression of the following
form:

Si = Xp10 + Z1p11 + Z2p12 + Z3p13 + h1

where Zi is the dummy for the first three quarters, and pi is the
coefficient on each dummy. Now we look at what they produced
in Figure 72. Consistent with our intuition, the coefficients are all
negative and significant for the total years of education and the high
school graduate dependent variables. Notice, too, that the relation-
ship gets much weaker once we move beyond the groups bound by
compulsory schooling: the number of years of schooling for high
school students (no effect), and probability of being a college gradu-
ate (no effect).

Regarding those college non-results. Ask yourself this question:
why should we expect quarter of birth to affect the probability of
being a high school graduate, but not on being a college grad? What
if we had found quarter of birth predicted high school completion,
college completion, post-graduate completion, and total years of
schooling beyond high school? Wouldn’t it start to seem like this
compulsory schooling instrument was not what we thought it was?
After all, this quarter of birth instrument really should only impact
high school completion; since it doesn’t bind anyone beyond high
school, it shouldn’t affect the number of years beyond high school
or college completion probabilities. If it did, we might be skeptical
of the whole design. But here it didn’t, which to me makes it even
more convincing that they’re identifying a compulsory high school
schooling effect.116

116 These kinds of falsifications are
extremely common in contemporary ap-
plied work. This is because many of the
identifying assumptions in any research
design are simply untestable. And so
the burden of proof is on researchers
to convince the reader, oftentimes with
intuitive and transparent falsification
tests.

Now we look at the second stage for both OLS and 2SLS (which
they label TSLS, but means the same thing). Figure 73 shows these
results. The authors didn’t report the first stage in this table because
they reported it in the earlier table we just reviewed.117 For small

117 My personal preference is to report
everything in the same table, mainly for
design reasons. I like fewer tables with
each table having more information. In
other words, I want someone to look
at an instrumental variables table and
immediately see the OLS result, the
2SLS result, the first stage relationship,
and the F statistic on that first stage.
See Figure 68 for an example.

values, the log approximates a percentage change, so they are finding
a 7.1% return for every additional year of schooling, but with 2SLS
it’s higher (8.9%). That’s interesting, because if it was merely ability
bias, then we’d expect the OLS estimate to be too large, not too small.
So something other than mere ability bias must be going on here.

For whatever it’s worth, I am personally convinced at this point
that quarter of birth is a valid instrument, and that they’ve identified
a causal effect of schooling on earnings, but Angrist and Krueger
[1991] want to go further, probably because they want more precision
in their estimate. And to get more precision, they load up the first
stage with even more instruments. Specifically, they use specifications
with 30 dummies (quarter of birth ⇥ year) and 150 dummies (quarter
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IV Results
IV Estimates Birth Cohorts 20-29, 1980 Census

Waldinger (Warwick) 17 / 45

Figure 73: Angrist and Krueger [1991]
OLS and 2SLS results for the effect of
education on log weekly earnings.

of birth ⇥ state) as instruments. The idea is that the quarter of birth
effect may differ by state and cohort. Because they have more vari-
ation in the instrument, the predicted values of schooling also have
more variation, which brings down the standard errors.

But at what cost? Many of these instruments are only now weakly
correlated with schooling - in some locations, they have almost no
correlation, and for some cohorts as well. We got a flavor of that,
in fact, in Figure 70 where the later cohorts show less variation in
schooling by quarter of birth than the earlier cohorts. What is the
effect, then, of reducing the variance in the estimator by loading up
the first stage with a bunch of noise?

Work on this starts with Bound et al. [1995] and is often called the
“weak instrument” literature. It’s in this paper that we learn some ba-
sic practices for determining if we have a weak instrument problem,
as well as an understanding of the nature of the bias of IV in finite
samples and under different violations of the IV assumptions. Bound
et al. [1995] sought to understand what IV was identifying when
the first stage was weak, as it was when Angrist and Krueger [1991]
loaded up their first stage with 180 instruments, many of which were
very weak.

Let’s review Bound et al. [1995] now and consider their model
with a single endogenous regressor and a simple constant treatment
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effect. The causal model of interest here is as before:

y = bs + #

where y is some outcome and s is some endogenous regressor, such
as schooling. The matrix of IVs is Z with the first stage equation

s = Z0p + h

If # and h are correlated, then estimating the first equation by OLS
would lead to biased results, wherein the OLS bias is:

E[bbOLS � b] =
C(#, s)
V(s)

We will rename this ratio as s

#h

s

2
s

. It can be shown that the bias of 2SLS
is approximately:

E[bb2SLS � b] ⇡
s

#h

s

2
h

1
F + 1

where F is the population analogy of the F-statistic for the joint
significance of the instruments in the first stage regression. If the first
stage is weak, then F ! 0, then the bias of 2SLS approaches s

#h

s

2
h

. But

if the first stage is very strong, F ! •, then the 2SLS bias goes to 0.
Returning to our rhetorical question from earlier, what was the

cost of adding instruments without predictive power? Adding more
weak instruments causes the first stage F statistic to approach zero
and increase the bias of 2SLS.

What if the model is “just identified”, meaning there’s the same
number of instruments as there are endogenous variables? Bound
et al. [1995] studied this empirically, replicating Angrist and Krueger
[1991], and using simulations. Figure 74 shows what happens once
they start adding in controls. Notice that as they do, the F statistic on
the excludability of the instruments falls from 13.5 to 4.7 to 1.6. So by
the F statistic, they are already running into a weak instrument once
they include the 30 quarter of birth ⇥ year dummies, and I think
that’s because as we saw, the relationship between quarter of birth
and schooling got smaller for the later cohorts.

Next, they added in the weak instruments – all 180 of them –
which is shown in Figure 75. And here we see that the problem
persists. The instruments are weak, and therefore the bias of the 2SLS
coefficient is close to that of the OLS bias.

But the really damning part of the Bound et al. [1995] paper was
their simulation. The authors write:

“To illustrate that second-stage results do not give us any indication
of the existence of quantitatively important finite-sample biases, we
reestimated Table 1, columns (4) and (6) and Table 2, columns (2)
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 448 Journal of the American Statistical Association, June 1995

 Table 1. Estimated Effect of Completed Years of Education on Men's Log Weekly Earnings
 (standard errors of coefficients in parentheses)

 (1) (2) (3) (4) (5) (6)
 OLS IV OLS IV OLS IV

 Coefficient .063 .142 .063 .081 .063 .060
 (.000) (.033) (.000) (.016) (.000) (.029)

 F (excluded instruments) 13.486 4.747 1.613
 Partial R2 (excluded instruments, X100) .012 .043 .014
 F (overidentification) .932 .775 .725

 Age Control Variables

 Age, Age2 x x x x
 9 Year of birth dummies x x x x

 Excluded Instruments

 Quarter of birth x x x
 Quarter of birth x year of birth x x
 Number of excluded instruments 3 30 28

 NOTE: Calculated from the 5% Public-Use Sample of the 1980 U.S. Census for men born 1930-1939. Sample size is 329,509. All specifications include
 Race (1 = black), SMSA (1 = central city), Married (1 = married, living with spouse), and 8 Regional dummies as control variables. F (first stage) and partial
 R2 are for the instruments in the first stage of IV estimation. F (overidentification) is that suggested by Basmann (1960).

 finite-sample bias. Because quarter of birth is related, by def-
 inition, to age measured in quarters within a single year of
 birth, and because age is an important determinant of earn-
 ings, we find the specification using within-year age controls

 [column (6) ] to be more sensible than the specification that
 does not [column (4) ]. The F statistic on the excluded in-
 struments in column (6) indicates that quantitatively im-
 portant finite-sample biases may affect the estimate. Com-
 paring the partial R2 in columns (2) and (6) shows that
 adding 25 instruments does not change the explanatory
 power of the excluded instruments by very much, explaining
 why the F statistic deteriorates so much between the two
 specifications.

 Compulsory attendance laws, and the degree to which
 these laws are enforced, vary by state. In AK-9 1 the authors
 used this cross-state variation to help identify the coefficient
 on education by including state of birth X quarter of birth
 interactions as instruments in some of their specifications.
 Besides improving the precision of the estimates, using vari-
 ation across state of birth should mitigate problems of mul-
 ticollinearity between age and quarter of birth. In Table 2
 we report replications of AK-9 I's Table VII, columns (5)
 through (8). These models use quarter of birth X state of
 birth interactions in addition to quarter of birth and quarter
 of birth X year of birth interactions as instruments for ed-
 ucational attainment.

 Including the state of birth X quarter of birth interactions
 reduces the standard errors on the IV results by more than
 a factor of two and stabilizes the point estimates considerably.
 The F statistics on the excluded instruments in the first stage
 of IV do not improve, however. These F statistics indicate
 that although including state of birth X quarter of birth in-
 teractions improves the precision arn I reduces the instability
 of the estimates, the possibility that small-sample bias may
 be a problem remains.

 To illustrate that second-stage results do not give us any
 indication of the existence of quantitatively important finite-
 sample biases, we reestimated Table 1, columns (4) and (6),

 and Table 2, columns (2) and (4), using randomly generated
 information in place of the actual quarter of birth, following
 a suggestion by Alan Krueger. The means of the estimated
 standard errors reported in the last row are quite close to the
 actual standard deviations of the 500 estimates for each
 model. Moreover, the distribution of the estimates appears
 to be quite symmetric. In these cases, therefore, the asymp-
 totic standard errors give reasonably accurate information
 on the sampling variability of the IV estimator. This is specific
 to these cases, however. Nelson and Startz (I 990a) showed,
 in the context of a different example, that asymptotic stan-
 dard errors can give very misleading information about the
 actual sampling distribution of the IV estimator when the
 correlation between the instrument and the endogenous
 variable is weak.

 Table 2. Estimated Effect of Completed Years of Education on
 Men's Log Weekly Earnings, Controlling for State of Birth

 (standard errors of coefficients in parentheses)

 (1) (2) (3) (4)
 OLS IV OLS IV

 Coefficient .063 .083 .063 .081
 (.000) (.009) (.000) (.01 1)

 F (excluded instruments) 2.428 1.869
 Partial R2 (excluded instruments, X100) .133 .101
 F (overidentification) .919 .917

 Age Control Variables

 Age, Age2 x x
 9 Year of birth dummies x x x x

 Excluded Instruments

 Quarter of birth x x
 Quarter of birth x year of birth x x
 Quarter of birth x state of birth x x
 Number of excluded instruments 180 178

 NOTE: Calculated from the 5% Public-Use Sample of the 1980 U.S. Census for men bom 1930-
 1939. Sample size is 329,509. All specifications include Race (1 = black), SMSA (1 = central
 city), Maried (1 = maried, living with spouse), 8 Regional dummies, and 50 State of Birth dummies
 as control variables. F (first stage) and partial R2 are for the instruments in the first stage of IV
 estimation. F (overidentification) is that suggested by Basmann (1960).
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Figure 74: Bound et al. [1995] OLS and
2SLS results for the effect of education
on log weekly earnings.

and (4), using randomly generated information in place of the actual
quarter of birth, following a suggestion by Alan Krueger. The means
of the estimated standard errors reporting in the last row are quite
close to the actual standard deviations of the 500 estimates for each
model. . . . It is striking that the second-stage results reported in Table
3 look quite reasonable even with no information about educational
attainment in the simulated instruments. They give no indication that
the instruments were randomly generated. . . . On the other hand, the
F statistics on the excluded instruments in the first-stage regressions
are always near their expected value of essentially 1 and do give a clear
indication that the estimates of the second-stage coefficients suffer from
finite-sample biases.”

So, what can you do if you have weak instruments. First, you can
use a just identified model with your strongest IV. Second, you can
use a limited information maximum likelihood estimator (LIML).
This is approximately median unbiased for over identified constant
effects models. It provides the same asymptotic distribution as 2SLS
under homogenous treatment effects, but provides a finite-sample
bias reduction.

But, let’s be real for a second. If you have a weak instrument prob-
lem, then you only get so far by using LIML or estimating a just
identified model. The real solution for a weak instrument problem is
get better instruments. Under homogenous treatment effects, you’re al-
ways identifying the same effect so there’s no worry about a complier
only parameter. So you should just continue searching for stronger
instruments that simultaneously satisfy the exclusion restriction.118

118 Good luck with that. Seriously, good
luck.In conclusion, circling back to where we started, I think we’ve

learned a lot about instrumental variables and why it is so powerful.
The estimators based on this design are capable of identifying causal
effects when your data suffer from selection on unobservables. Since
selection on unobservables is believed to be very common, this is a
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 Table 1. Estimated Effect of Completed Years of Education on Men's Log Weekly Earnings
 (standard errors of coefficients in parentheses)

 (1) (2) (3) (4) (5) (6)
 OLS IV OLS IV OLS IV

 Coefficient .063 .142 .063 .081 .063 .060
 (.000) (.033) (.000) (.016) (.000) (.029)

 F (excluded instruments) 13.486 4.747 1.613
 Partial R2 (excluded instruments, X100) .012 .043 .014
 F (overidentification) .932 .775 .725

 Age Control Variables

 Age, Age2 x x x x
 9 Year of birth dummies x x x x

 Excluded Instruments

 Quarter of birth x x x
 Quarter of birth x year of birth x x
 Number of excluded instruments 3 30 28

 NOTE: Calculated from the 5% Public-Use Sample of the 1980 U.S. Census for men born 1930-1939. Sample size is 329,509. All specifications include
 Race (1 = black), SMSA (1 = central city), Married (1 = married, living with spouse), and 8 Regional dummies as control variables. F (first stage) and partial
 R2 are for the instruments in the first stage of IV estimation. F (overidentification) is that suggested by Basmann (1960).

 finite-sample bias. Because quarter of birth is related, by def-
 inition, to age measured in quarters within a single year of
 birth, and because age is an important determinant of earn-
 ings, we find the specification using within-year age controls

 [column (6) ] to be more sensible than the specification that
 does not [column (4) ]. The F statistic on the excluded in-
 struments in column (6) indicates that quantitatively im-
 portant finite-sample biases may affect the estimate. Com-
 paring the partial R2 in columns (2) and (6) shows that
 adding 25 instruments does not change the explanatory
 power of the excluded instruments by very much, explaining
 why the F statistic deteriorates so much between the two
 specifications.

 Compulsory attendance laws, and the degree to which
 these laws are enforced, vary by state. In AK-9 1 the authors
 used this cross-state variation to help identify the coefficient
 on education by including state of birth X quarter of birth
 interactions as instruments in some of their specifications.
 Besides improving the precision of the estimates, using vari-
 ation across state of birth should mitigate problems of mul-
 ticollinearity between age and quarter of birth. In Table 2
 we report replications of AK-9 I's Table VII, columns (5)
 through (8). These models use quarter of birth X state of
 birth interactions in addition to quarter of birth and quarter
 of birth X year of birth interactions as instruments for ed-
 ucational attainment.

 Including the state of birth X quarter of birth interactions
 reduces the standard errors on the IV results by more than
 a factor of two and stabilizes the point estimates considerably.
 The F statistics on the excluded instruments in the first stage
 of IV do not improve, however. These F statistics indicate
 that although including state of birth X quarter of birth in-
 teractions improves the precision arn I reduces the instability
 of the estimates, the possibility that small-sample bias may
 be a problem remains.

 To illustrate that second-stage results do not give us any
 indication of the existence of quantitatively important finite-
 sample biases, we reestimated Table 1, columns (4) and (6),

 and Table 2, columns (2) and (4), using randomly generated
 information in place of the actual quarter of birth, following
 a suggestion by Alan Krueger. The means of the estimated
 standard errors reported in the last row are quite close to the
 actual standard deviations of the 500 estimates for each
 model. Moreover, the distribution of the estimates appears
 to be quite symmetric. In these cases, therefore, the asymp-
 totic standard errors give reasonably accurate information
 on the sampling variability of the IV estimator. This is specific
 to these cases, however. Nelson and Startz (I 990a) showed,
 in the context of a different example, that asymptotic stan-
 dard errors can give very misleading information about the
 actual sampling distribution of the IV estimator when the
 correlation between the instrument and the endogenous
 variable is weak.

 Table 2. Estimated Effect of Completed Years of Education on
 Men's Log Weekly Earnings, Controlling for State of Birth

 (standard errors of coefficients in parentheses)

 (1) (2) (3) (4)
 OLS IV OLS IV

 Coefficient .063 .083 .063 .081
 (.000) (.009) (.000) (.01 1)

 F (excluded instruments) 2.428 1.869
 Partial R2 (excluded instruments, X100) .133 .101
 F (overidentification) .919 .917

 Age Control Variables

 Age, Age2 x x
 9 Year of birth dummies x x x x

 Excluded Instruments

 Quarter of birth x x
 Quarter of birth x year of birth x x
 Quarter of birth x state of birth x x
 Number of excluded instruments 180 178

 NOTE: Calculated from the 5% Public-Use Sample of the 1980 U.S. Census for men bom 1930-
 1939. Sample size is 329,509. All specifications include Race (1 = black), SMSA (1 = central
 city), Maried (1 = maried, living with spouse), 8 Regional dummies, and 50 State of Birth dummies
 as control variables. F (first stage) and partial R2 are for the instruments in the first stage of IV
 estimation. F (overidentification) is that suggested by Basmann (1960).
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Figure 75: Bound et al. [1995] OLS and
2SLS results for the effect of education
on log weekly earnings with the 100+
weak instruments.

very useful methodology for addressing it. But, that said, we also
have learned some of its weaknesses, and hence why some people
eschew it. Let’s now move to heterogeneous treatment effects so that
we can better understand some of its limitations a bit better.

Heterogenous treatment effects

Now we turn to the more contemporary pedagogy where we relax
the assumption that treatment effects are the same for every unit.
Now we will allow for each unit to have a unique response to the
treatment, or

Y1
i �Y0

i = di

Note that the treatment effect parameter now differs by individual i.
The main questions we have now are: (1) what is IV estimating

when we have heterogenous treatment effects, and (2) under what
assumptions will IV identify a causal effect with heterogenous treat-
ment effects? The reason why this matters is that once we introduce
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heterogenous treatment effects, we introduce a distinction between
the internal validity of a study and its external validity. Internal va-
lidity means our strategy identified a causal effect for the population
we studied. But external validity means the study’s finding applied to
different populations (not in the study). As we’ll see, under homoge-
nous treatment effects, there is no such tension between external and
internal validity because everyone has the same treatment effect. But
under heterogenous treatment effects, there is a huge tension; the
tension is so great, in fact, that it may even undermine an otherwise
valid IV design.

Heterogenous treatment effects are built on top of the potential
outcomes notation, with a few modifications. Since now we have two
arguments - D and Z - we have to modify the notation slightly. We
say that Y is a function of D and Z as Yi(Di = 0, Zi = 1), which is
represented as Yi(0, 1).

Potential outcomes as we have been using the term refers to the
Y variable, but now we have a new potential variable – potential
treatment status (as opposed to observed treatment status). Here’s the
characteristics:

• D1
i = i’s treatment status when Zi = 1

• D0
i = i’s treatment status when Zi = 0

• And observed treatment status is based on a treatment status
switching equations:

Di = D0
i + (D1

i � D0
i )Zi

= p0 + p1Zi + fi

where p0i = E[D0
i ], p1i = (D1

i � D0
i ) is the heterogenous causal effect

of the IV on Di, and E[p1i] = the average causal effect of Zi on Di.

There are considerably more assumptions necessary for identifica-
tion once we introduce heterogenous treatment effects – specifically
five assumptions. We now review each of them. And to be concrete,
I will use repeatedly as an example the effect of military service on
earnings using a draft lottery as the instrumental variable [Angrist,
1990].

First, as before, there is a stable unit treatment value assumption
(SUTVA) which states that the potential outcomes for each person
i are unrelated to the treatment status of other individuals. The
assumption states that if Zi = Z0i , then Di(Z) = Di(Z0). And if Zi = Z0i
and Di = D0i , then Yi(D, Z) = Yi(D0, Z0). An violation of SUTVA would
be if the status of a person at risk of being drafted was affected by the
draft status of others at risk of being drafted. Such spillovers violate
SUTVA.119

119 Probably no other identifying
assumption is given shorter shrift
than SUTVA. Rarely is it mentioned
in applied studies, let alone taken
seriously.
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Second, there is the independence assumption. The independence
assumption is also sometimes call the “as good as random assign-
ment” assumption. It states that the IV is independent of the poten-
tial outcomes and potential treatment assignments. Notationally, it
is

{Yi(D1
i , 1), Yi(D0

i , 0), D1
i , D0

i } ?? Zi

The independence assumption is sufficient for a causal interpretation
of the reduced form:

E[Yi|Zi = 1]� E[Yi|Zi = 0] = E[Yi(D1
i , 1)|Zi = 1]� E[Yi(D0

i , 0)|Zi = 0]

= E[Yi(D1
i , 1)]� E[Yi(D0

i , 0)]

Independence means that the first stage measures the causal effect of
Zi on Di:

E[Di|Zi = 1]� E[Di|Zi = 0] = E[D1
i |Zi = 1]� E[D0

i |Zi = 0]

= E[D1
i � D0

i ]

An example of this is if Vietnam conscription for military service was
based on randomly generated draft lottery numbers. The assignment
of draft lottery number was independent of potential earnings or
potential military service because it was “as good as random”.

Third, there is the exclusion restriction. The exclusion restriction
states that any effect of Z on Y must be via the effect of Z on D. In
other words, Yi(Di , Zi) is a function of Di only. Or formally:

Yi(Di , 0) = Yi(Di , 1) for D = 0, 1

Again, our Vietnam example. In the Vietnam draft lottery, an individ-
ual’s earnings potential as a veteran or a non-veteran are assumed to
be the same regardless of draft eligibility status. The exclusion restric-
tion would be violated if low lottery numbers affected schooling by
people avoiding the draft. If this was the case, then the lottery num-
ber would be correlated with earnings for at least two cases. One,
through the instrument’s effect on military service. And two, through
the instrument’s effect on schooling. The implication of the exclusion
restriction is that a random lottery number (independence) does not
therefore imply that the exclusion restriction is satisfied. These are
different assumptions.

Fourth is the first stage. IV under heterogenous treatment effects
requires that Z be correlated with the endogenous variable such that

E[D1
i � E0

i ] 6= 0

Z has to have some statistically significant effect on the average
probability of treatment. An example would be having a low lottery
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number. Does it increase the average probability of military service?
If so, then it satisfies the first stage requirement. Note, unlike inde-
pendence and exclusion, the first stage is testable as it is based solely
on D and Z, both of which you have data on.

And finally, the monotonicity assumption. This is only strange
at first glance, but is actually quite intuitive. Monotonicity requires
that the instrumental variable (weakly) operate in the same direction
on all individual units. In other words, while the instrument may
have no effect on some people, all those who are affected are affected
in the same direction (i.e., positively or negative, but not both). We
write it out like this:

Either p1i � 0 for all i or p1i  0 for all i = 1, . . . , N

What this means, as an example, using our military draft example, is
that draft eligibility may have no effect on the probability of military
service for some people, like patriots, but when it does have an effect,
it shifts them all into service, or out of service, but not both. The
reason that we have to make this assumption is that without mono-
tonicity, IV estimators are not guaranteed to estimate a weighted
average of the underlying causal effects of the affected group.

If all five assumptions are satisfied, then we have a valid IV strat-
egy. But that being said, while valid, it is not doing what it was doing
when we had homogenous treatment effects. What, then, is the IV
strategy estimating under heterogenous treatment effects? Answer:
the local average treatment effect (LATE) of D on Y:

dIV,LATE =
Effect of Z on Y
Effect of Z on D

=
E[Yi(D1

i , 1)�Yi(D0
i , 0)]

E[D1
i � D0

i ]

= E[(Y1
i �Y0

i )|D1
i � D0

i = 1]

The LATE parameters is the average causal effect of D on Y for
those whose treatment status was changed by the instrument, Z.
For instance, IV estimates the average effect of military service on
earnings for the subpopulations who enrolled in military service
because of the draft but who would not have served otherwise. It
doesn’t identify the causal effect on patriots who always serve, for
instance, because those individuals did not have their military service
pushed or pulled by the draft number. It also won’t tell us the effect
of military service on those who were exempted from military service
for medical reasons.120

120 We have reviewed the properties
of IV with heterogenous treatment
effects using a very simple dummy
endogenous variable, dummy IV,
and no additional controls example.
The intuition of LATE generalizes to
most cases where we have continuous
endogenous variables and instruments,
and additional control variables, as
well.

The LATE framework has even more jargon, so let’s review it
now. The LATE framework partitions the population of units with



236 causal inference: the mixtape

an instrument into potentially four mutually exclusive groups. Those
groups are:

1. Compliers: this is the subpopulation whose treatment status is
affected by the instrument in the correct direction. That is, D1

i = 1
and D0

i = 0.

2. Defiers: this is the subpopulation whose treatment status is af-
fected by the instrument in the wrong direction. That is, D1

i = 0
and D0

i = 1.121

121 So for instance, say that we have
some instrument for attending a private
school. Compliers go to the school if
they win the lottery, and don’t go to the
school if they don’t. Defiers attend the
school if they don’t win, but attend the
school if they do win. Defiers sound
like jerks.

3. Never takers: this is the subpopulation of units that never take the
treatment regardless of the value of the instrument. So, D1

i = D0
i =

0. They simply never take the treatment.122

122 Sticking with our private school
lottery example. This is a group of
people who believe in public education,
and so even if they win the lottery, they
won’t go. They’re never-takers; they
never go to private school no matter
what.

4. Always takers: this is the subpopulation of units that always
take the treatment regardless of the value of the instrument. So,
D1

i = D0
i = 1. They simply always take the instrument.123

123 This is a group of people who
always send their kids to private school,
regardless of the number on their
voucher lottery.

As outlined above, with all five assumptions satisfied, IV estimates
the average treatment effect for compliers. Contrast this with the
traditional IV pedagogy with homogenous treatment effects. In that
situation, compliers have the same treatment effects as non-compliers,
so the distinction is irrelevant. Without further assumptions, LATE
is not informative about effects on never-takers or always-takers
because the instrument does not affect their treatment status.

Does this matter? Yes, absolutely. It matters because in most
applications, we would be mostly interested in estimating the average
treatment effect on the whole population, but that’s not usually
possible with IV.124

124 This identification of the LATE under
heterogenous treatment effects material
was worked out in Angrist et al. [1996].
See it for more details.

Now that we have reviewed the basic idea and mechanics of
instrumental variables, including some of the more important tests
associated with it, let’s get our hands dirty with some data. We’ll
work with a couple of datasets now to help you better understand
how to implement 2SLS in real data.

Stata exercise #1: College in the county

We will once again look at the returns to schooling since it is such
a historically popular topic for causal questions in labor. In this
application, we will simply show how to use the Stata command
ivregress with 2SLS, calculate the first stage F statistic, and compare
the 2SLS results with the OLS results. I will be keeping it simple,
because my goal is just to help the reader become familiarized with
the procedure.

The data comes from the NLS Young Men Cohort of the National
Longitudinal Survey. This data began in 1966 with 5,525 men aged
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14-24 and continued to follow up with them through 1981. These
data come from 1966, the baseline survey, and there’s a number of
questions related to local labor markets. One of them is whether the
respondent lives in the same county as a 4-year (and a 2-year) college.

Card [1995] is interested in estimating the following regression
equation:

Yi = a + dSi + gXi + #i

where Y is log earnings, S is years of schooling, X is a matrix of
exogenous covariates and # is an error term that contains among
other things unobserved ability. Under the assumption that # contains
ability, and ability is correlated with schooling, then C(S, #) 6= 0
and therefore schooling is biased. Card [1995] proposes therefore
an instrumental variables strategy whereby he will instrument for
schooling with the college-in-the-county dummy variable.

It is worth asking ourselves why the presence of a four year col-
lege in one’s county would increase schooling. The main reason that
I can think of is that the presence of the 4-year-college increases the
likelihood of going to college by lowering the costs, since the student
can live at home. This therefore means, though, that we are selecting
on a group of compliers whose behavior is affected by the variable.
Some kids, in other words, will always go to college regardless of
whether a college is in their county, and some will never go despite
the presence of the nearby college. But there may exist a group of
compliers who go to college only because their county has a col-
lege, and if I’m right that this is primarily picking up people going
because they can attend while living at home, then it’s necessarily
people at some margin who attend only because college became
slightly cheaper. This is, in other words, a group of people who are
liquidity constrained. And if we believe the returns to schooling for
this group is different that of the always-takers, then our estimates
may not represent the ATE. Rather, they would represent the LATE.
But in this case, that might actually be an interesting parameter since
it gets at the issue of lowering costs of attendance for poorer families.

Here we will do some simple analysis based on Card [1995].

. scuse card

. reg lwage educ exper black south married smsa

. ivregress 2sls lwage (educ=nearc4) exper black south married smsa, first

. reg educ nearc4 exper black south married smsa

. test nearc4

And our results from this analysis have been arranged into Table
28. First, we report our OLS results. For every one year additional
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of schooling, respondents’ earnings increase by approximately 7.1%.
Next we estimated 2SLS using the ivregress 2sls command in Stata.
Here we find a much larger return to schooling than we had found
using OLS - around 75% larger in fact. But let’s look at the first stage
first. We find that the college in the county is associated with a 0.327

more years of schooling. This is highly significant (p < 0.001). The
F-statistic exceeds 15, suggesting we don’t have a weak instrument
problem. The return to schooling associated with this 2SLS estimate
is 0.124 – that is, for every additional year of schooling, earnings
increases by 12.4%. Other covariates are listed if you’re interested in
studying them as well.

Dependent variable Log earnings
OLS 2SLS

educ 0.071*** 0.124**
(0.003) (0.050)

exper 0.034*** 0.056***
(0.002) (0.020)

black -0.166*** -0.116**
(0.018) (0.051)

south -0.132*** -0.113***
(0.015) (0.023)

married -0.036*** -0.032***
(0.003) (0.005)

smsa 0.176*** 0.148***
(0.015) (0.031)

First Stage Instrument
College in the county 0.327***
Robust standard error (0.082)
F statistic for IV in first stage 15.767

N 3,003 3,003

Mean Dependent Variable 6.262 6.262

Std. Dev. Dependent Variable 0.444 0.444

Standard errors in parenthesis. * p<0.10, ** p<0.05, *** p<0.01

Table 28: OLS and 2SLS regressions of
Log Earnings on Schooling

Why would the return to schooling be so much larger for the
compliers than for the general population? After all, we showed
earlier that if this was simply ability bias, then we’d expect the 2SLS
coefficient to be smaller than the OLS coefficient, because ability bias
implies that the coefficient on schooling is too large. Yet we’re finding
the opposite. So a couple of things it could be. First, it could be that
schooling has measurement error. Measurement error would bias the
coefficient towards zero, and 2SLS would recover its true value. But
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I find this explanation to be unlikely, because I don’t foresee people
really not knowing with accuracy how many years of schooling they
currently have. Which leads us to the other explanation, and that
is that compliers have larger returns to schooling. But why would
this be the case? Assuming that the exclusion restriction holds, then
why would compliers returns be so much larger? We’ve already
established that these people are likely being shifted into more
schooling because they live with their parents, which suggests that
the college is lowering the marginal cost of going to college. All we
are left saying is that for some reason, the higher marginal cost of
attending college is causing these people to under invest in schooling;
that in fact their returns are much higher. I welcome your thoughts,
though, on why this number might be so different.

Stata exercise #2: Fulton fish markets

The second exercise that we’ll be doing is based on Graddy [2006].
My understanding is that Graddy hand collected these data herself
by recording prices of fish at the actual Fulton fish market. I’m not
sure if that is true, but I like to believe it’s true, because I like to
believe in shoe leather research of that kind. Anyhow, the Fulton
Fish Market operated in NYC on Fulton Street for 150 years. In
November 2005, they moved it from the lower Manhattan to a large
facility building for the market in the South Bronx. At the time of the
article’s writing, it was called the New Fulton Fish Market. It’s one of
the world’s largest fish markets, second only to the Tsukiji in Tokyo.

This is an interesting market because fish are heterogenous, highly
differentiated products. There are anywhere between 100 to 300

different varieties of fish sold at the market. There are over 15 differ-
ent varieties of shrimp alone. Within each variety, there’s small fish,
large fish, medium fish, fish just caught, fish that have been around
a while. There’s so much heterogeneity in fact that customers often
want to examine fish personally. You get the picture. This fish market
functions just like a two-sided platform matching buyers to sellers,
which is made more efficient by the thickness the market produces.
It’s not surprising, therefore, that Graddy found the market such an
interesting thing to study.

Let’s move to the data. I want us to estimate the price elasticity of
demand for fish, which makes this problem much like the problem
that Philip Wright faced in that price and quantity are determined
simultaneously. The elasticity of demand is a sequence of quantity
and price pairs, but with only one pair observed at a given point in
time. In that sense, the demand curve is itself a sequence of potential
outcomes (quantity) associated with different potential treatments
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(price). This means the demand curve is itself a real object, but
mostly unobserved. Therefore, to trace out the elasticity, we need an
instrument that is correlated with supply only. Graddy proposes a
few of them, all of which have to do with the weather at sea in the
days before the fish arrived to market.

The first instrument is the average max last 2 days wave height.
The model we are interested in estimating is:

Q = a + dP + gX + #

where Q is log quantity of whiting sold in pounds, P is log average
daily price per pound, X are day of the week dummies and a time
trend, and # is the structural error term. Table 29 presents the results
from estimating this equation with OLS (first column) and 2SLS
(second column). The OLS estimate of the elasticity of demand
is -0.549. It could’ve been anything given price is determined by
how many sellers and how many buyers there are at the Market
on any given day. But when we use the average wave height as the
instrument for price, we get a �0.96 price elasticity of demand. A
10% increase in the price causes quantity to decrease by 9.6%. The
instrument is strong (F > 22). For every one unit increase in the wave
height, price rose 10%.

I suppose the question we have to ask ourselves, though, is what
exactly is this instrument doing to supply. What are higher waves
doing exactly? It’s making it more difficult to fish, but is it also
changing the composition of the fish caught? If so, then it would
seem that the exclusion restriction is violated because that would
mean the wave height is directly causing fish composition to change
which will directly determine quantities bought and sold.

Now let’s look at a different instrument: windspeed. Specifically,
it’s the 3 day lagged max windspeed. We present these results in
Table 29. Here we see something we did not see before, which is that
this is a weak instrument. The F statistic is less than 10 (approxi-
mately 6.5). And correspondingly, the estimated elasticity is twice as
large as what we found with wave height. Thus we know from our
earlier discussion of weak instruments that this estimate is likely bi-
ased, and therefore less reliable than the previous one – even though
the previous one itself (1) may not convincingly satisfy the exclusion
restriction and (2) is at best a LATE relevant to compliers only. But
as we’ve said, if we think that the compliers’ causal effects are sim-
ilar to that of the broader population, then the LATE may itself be
informative and useful.

We’ve reviewed the use of IV in identifying causal effects when
some regressor is endogenous in observational data. But increasingly,
you’re seeing it used with randomized trials. In many randomized
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Dependent variable Log quantity
OLS 2SLS

Log(Price) -0.549*** -0.960**
(0.184) (0.406)

Monday -0.318 -0.322

(0.227) (0.225)
Tuesday -0.684*** -0.687***

(0.224) (0.221)
Wednesday -0.535** -0.520**

(0.221) (0.219)
Thursday 0.068 0.106

(0.221) (0.222)
Time trend -0.001 -0.003

(0.003) (0.003)

First Stage Instrument
Average wave height 0.103***
Robust standard error (0.022)
F statistic for IV in first stage 22.638

N 97 97

Mean Dependent Variable 8.086 8.086

Std. Dev. Dependent Variable 0.765 0.765

Standard errors in parenthesis. * p<0.10, ** p<0.05, *** p<0.01

Table 29: OLS and 2SLS regressions of
Log Quantity on Log Price with wave
height instrument



242 causal inference: the mixtape

Dependent variable Log quantity
OLS 2SLS

Log Price -0.549*** -1.960**
(0.184) (0.873)

Monday -0.318 -0.332

(0.227) (0.281)
Tuesday -0.684*** -0.696**

(0.224) (0.277)
Wednesday -0.535** -0.482*

(0.221) (0.275)
Thursday 0.068 0.196

(0.221) (0.285)
Time trend -0.001 -0.007

(0.003) (0.005)

First Stage Instrument
Wind Speed 0.017**
Robust standard error (0.007)
F statistic for IV in first stage 6.581

N 97 97

Mean Dependent Variable 8.086 8.086

Std. Dev. Dependent Variable 0.765 0.765

Standard errors in parenthesis. * p<0.10, ** p<0.05, *** p<0.01

Table 30: OLS and 2SLS regressions
of Log Quantity on Log Price with
windspeed instrument
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trials, participation is voluntary among those randomly chosen to
be in the treatment group. On the other hand, persons in the control
group usually don’t have access to the treatment. Only those who are
particularly likely to benefit from treatment therefore will probably
take up treatment which almost always leads to positive selection
bias. If you just compare means between treated and untreated in-
dividuals using OLS, you will obtain biased treatment effects even
for the randomized trial due to non-compliance. So a solution is to
instrument for treatment with whether you were offered treatment
and estimate the LATE. Thus even when treatment itself is randomly
assigned, it is common for people to use a randomized lottery as
an instrument for participation. For a modern example of this, see
Baicker et al. [2013] who used the randomized lottery to be on Ore-
gon’s Medicaid as an instrument for being on Medicaid.

In conclusion, instrumental variables is a powerful design for
identifying causal effects when your data suffer from selection on un-
observables. But even with that in mind, it has many limitations that
has in the contemporary period caused many applied researchers
to eschew it. First, it only identifies the LATE under heterogeneous
treatment effects, and that may or may not be a policy relevant vari-
able. It’s value ultimately depends on how closely the compliers’
average treatment effect resembles that of the other subpopulations’.
Second, unlike RDD which has only 1 main identifying assumption
(the continuity assumption), IV has up to 5 assumptions! Thus, you
can immediately see why people find IV estimation less credible –
not because it fails to identify a causal effect, but rather because it’s
harder and harder to imagine a pure instrument that satisfies all
five conditions. But all this is to say, IV is an important strategy and
sometimes the opportunity to use it will come along, and you should
be prepared for when that happens by understanding it and how to
implement it in practice.





Panel data

“That’s just the way it is
Things will never be the same
That’s just the way it is
Some things will never change.”
– 2-Pac

Introduction

One of the most important tools in the causal inference toolkit are the
panel data estimators. These are estimators designed explicitly for
longitudinal data – the repeated observing of a unit over time. Under
certain situations, repeatedly observing the same unit over time can
overcome a particular kind of omitted variable bias, though not all
kinds. While it is possible that observing the same unit over time will
not resolve the bias, there are still many applications where it can,
and that’s why this method is so important. We review first the DAG
describing just such a situation, followed by discussion of a paper,
and then present a dataset exercise in Stata.

DAG Example

Before I dig into the technical assumptions and estimation method-
ology for panel data techniques, I wanted to review a simple DAG
illustrating those assumptions. This DAG comes from Imai and
Kim [2017]. Let’s say that we have data on a column of outcomes,
Yi, which appear in three time periods. In other words, Yi1, Yi2, and
Yi3 where i indexes a particular unit and t = 1, 2, 3 index the time
period where each i unit is observed. Likewise, we have a matrix of
covariates, Di, which also vary over time – Di1, Di2, and Di3. And
finally there exists a single unit-specific unobserved variable, ui,
which varies across units, but which does not vary over time for that
unit. Hence the reason that there is no t = 1, 2, 3 subscript for our
ui variable. Key to this variable is (a) it is unobserved in the dataset,
(b) it is unit-specific, and (c) it does not change over time for a given
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unit i. Finally there exists some unit-specific time-invariant variable,
Xi. Notice that it doesn’t change over time, just ui, but unlike ui it is
observed.

Yi2Yi1 Yi3

Di1 Di2 Di3

Xi

ui

As this is the busiest DAG we’ve seen so far, it merits some dis-
cussion. First, note that Di1 causes both its own outcome Yi1 is also
correlated with the next period Di2. Secondly, ui is correlated with
all the Yit and Dit variables, which technically makes Dit endogenous
since ui is unobserved and therefore gets absorbed into a composite
error term. Thirdly, there is no time-varying unobserved confounder
correlated with Dit - the only confounder is ui, which we call the un-
observed heterogeneity. Fourth, past outcomes do not directly affect
current outcomes (i.e., no direct edge between the Yit variables). Fifth,
past outcomes do not directly affect current treatments (i.e., no direct
edge from Yi,t�1 to Dit). And finally, past treatments, Di,t�1 do not
directly affect current outcomes, Yit (i.e., no direct edge from Di,t�1
and Yit). It is under these assumptions that we can a particular panel
method called fixed effects to isolate the causal effect of D on Y.

What might an example of this be? Let’s return to our story about
the returns to education. Let’s say that we are interested in the effect
of schooling on earnings, and schooling is partly determined by
unchanging genetic factors which themselves determine unobserved
ability, like intelligence, contentiousness and motivation [Conley
and Fletcher, 2017]. If we observe the same people’s time varying
earnings and schoolings over time, then if the situation described
by the above DAG describes both the directed edges and the missing
edges, then we can use panel fixed effects models to identify the
causal effect of schooling on earnings.

Estimation

When we use the term “panel data”, what do we mean? We mean a
dataset where we observe the same units (individuals, firms, coun-
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tries, schools, etc.) over more than one time period. Often our out-
come variable depends on several factors, some of which are ob-
served and some of which are unobserved in our data, and insofar as
the unobserved variables are correlated with the treatment variable,
then the treatment variable is endogenous and correlations are not
estimates of a causal effect. This chapter focuses on the conditions
under which a correlation between D and Y reflects a causal effect
even with unobserved variables that are correlated with the treatment
variable. Specifically, if these omitted variables are constant over time,
then even if they are heterogeneous across units, we can use panel
data estimators to consistently estimate the effect of our treatment
variable on outcomes.

There are several different kinds of estimators for panel data, but
we will in this chapter only cover two: pooled ordinary least squares
(POLS) and fixed effects (FE).125

125 A common third type of panel esti-
mator is the random effects estimator,
but in my experience, I have used it less
often than fixed effects, so I decided
to omit it. Again, this is not because it
is unimportant. It is important. I just
have chosen to do fewer things in more
detail based on whether I think they
qualify as the most common methods
used in the present period by applied
empiricists. See Wooldridge [2010] for a
more comprehensive treatment, though,
of all panel methods including random
effects.

First we need to set up our notation. With some exceptions, panel
methods are usually based on the traditional notation and not the
potential outcomes notation. One exception, though, includes the
matrix completion methods by Athey et al. [2017], but at the moment,
that material is not included in this version. So we will use, instead,
the traditional notation for our motivation.

Let Y and D ⌘ (D1, D2, . . . , Dk) be observable random variables
and u be an unobservable random variable. We are interested in the
partial effects of variable Dj in the population regression function:

E[Y|D1, D2, . . . , Dk , u]

We observe a sample of i = 1, 2, . . . , N cross-sectional units for
t = 1, 2, . . . , T time periods (a balanced panel). For each unit i, we
denote the observable variables for all time periods as {(Yit, Dit) : t =
1, 2, . . . , T}.126 Let Dit ⌘ (Dit1, Dit2, . . . , Ditk) is a 1⇥ K vector. We 126 For simplicity, I’m ignoring the time-

invariant observations, Xi from our
DAG for reasons that will hopefully
soon be made clear.

typically assume that the actual cross-sectional units (e.g., individuals
in a panel) are identical and independent draws from the population
in which case {Yi , Di , ui}N

i=1 ⇠ i.i.d., or cross-sectional independence.
We describe the main observables, then, as Yi ⌘ (Yi1, Yi2, . . . , YiT)0 and
Di ⌘ (Di1, Di2, . . . , DiT).

It’s helpful now to illustrate the actual stacking of individual units
across their time periods. A single unit i will have multiple time
periods t
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And the entire panel itself with all units included will look like
this:

Y =

0

BBBBBBB@
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...
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...
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1
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D =

0
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DN

1

CCCCCCCA

NT⇥K

For a randomly drawn cross-sectional unit i, the model is given by

Yit = dDit + ui + #it, t = 1, 2, . . . , T

As always, we use our schooling-earnings example for motivation.
Let Yit be log earnings for a person i in year t. Let Dit be schooling
for person i in year t. Let d be the returns to schooling. Let ui be
the sum of all time-invariant person-specific characteristics, such as
unobserved ability. This is often called the unobserved heterogeneity.
And let #it be the time-varying unobserved factors that determine a
person’s wage in a given period. This is often called the idiosyncratic
error. We want to know what happens when we regress Yit on Dit.

Pooled OLS The first estimator we will discuss is the pooled Ordi-
nary Least Squares or POLS estimator. When we ignore the panel
structure and regress Yit on Dit we get

Yit = dDit + hit; t = 1, 2, . . . , T

with composite error hit ⌘ ci + #it. The main assumption necessary to
obtain consistent estimates for d is:

E[hit|Di1, Di2, . . . , DiT] = E[hit|Dit] = 0 for t = 1, 2, . . . , T

While our DAG did not include #it, this would be equivalent to
assuming that the unobserved heterogeneity, ci, was uncorrelated
with Dit for all time periods.

But this is not an appropriate assumption in our case because
our DAG explicitly links the unobserved heterogeneity to both the
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outcome and the treatment in each period. Or using our schooling-
earnings example, schooling is likely based on unobserved back-
ground factors, ui, and therefore without controlling for it, we have
omitted variable bias and bd is biased. No correlation between Dit and
hit necessarily means no correlation between the unobserved ui and
Dit for all t and that is just probably not a credible assumption. An
additional problem is that hit is serially correlated for unit i since ui
is present in each t period. And thus pooled OLS standard errors are
also invalid.

Fixed Effects (Within Estimator) Let’s rewrite our unobserved effects
model so that this is still firmly in our minds:

Yit = dDit + ui + #it; t = 1, 2, . . . , T

If we have data on multiple time periods, we can think of ui as fixed
effects to be estimated. OLS estimation with fixed effects yields

(bd, bu1, . . . , buN) = argmin
b,m1,...,mN

N

Â
i=1

T

Â
t=1

(Yit � Ditb�mi)2

this amounts to including N individual dummies in regression of Yit
on Dit.

The first-order conditions (FOC) for this minimization problem
are:

N

Â
i=1

T

Â
t=1

D0it(Yit � Ditbd� bui) = 0

and
T

Â
t=1

(Yit � Ditbd� bui) = 0

for i = 1, . . . , N.
Therefore, for i = 1, . . . , N,

bui =
1
T

T

Â
t=1

(Yit � Ditbd) = Yi � Dibd,

where

Di ⌘
1
T

T

Â
t=1

Dit; Ȳi ⌘
1
T

T

Â
t=1

Yit

Plug this result into the first FOC to obtain:

b
d =

✓ N

Â
i=1

T

Â
t=1

(Dit � Di)0(Dit � Di)
◆�1✓ N

Â
i=1

T

Â
t=1

(Dit � Di)0(Yit �Y)
◆

b
d =

✓ N

Â
i=1

T

Â
t=1

D̈0itD̈it

◆�1✓ N

Â
i=1

T

Â
t=1

D̈0itD̈it

◆
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with time-demeaned variables D̈it ⌘ Dit � D, Ÿit ⌘ Yit �Yi.
In case it isn’t clear, though, running a regression with the time-

demeaned variables Ÿit ⌘ Yit � Yi and D̈it ⌘ Dit � D is numerically
equivalent to a regression of Yit on Dit and unit specific dummy
variables. Hence the reason this is sometimes called the “within”
estimator, and sometimes called the “fixed effects” estimator. They
are the same thing.127

127 One of the things you’ll find over
time is that things have different names,
depending on the author and tradition,
and those names are often completely
uninformative.

Even better, the regression with the time demeaned variables is
consistent for d even when C[Dit, ui] 6= 0 because time-demeaning
eliminates the unobserved effects. Let’s see this now:

Yit = dDit + ui + #it

Yi = dDi + ui + #i

(Yit �Yi) = (dDit � dD) + (ui � ui) + (#it � #i)

Ÿit = dD̈it + #̈it

Where’d the unobserved heterogeneity go?! It was deleted when we
time demeaned the data. And as we said, including individual fixed
effects does this time demeaning automatically so that you don’t have
to go to the actual trouble of doing it yourself manually.128

128 Though feel free to do it if you want
to convince yourself that they are
numerically equivalent, probably just
starting with a bivariate regression for
simplicity.

So how do we precisely do this form of estimation? There are
three ways to implement the fixed effects (within) estimator. They
are:

1. Demean and regress Ÿit on D̈it (need to correct degrees of free-
dom)

2. Regress Yit on Dit and unit dummies (dummy variable regression)

3. Regress Yit on Dit with canned fixed effects routine in Stata

. xtreg y d, fe i(PanelID)

More on the Stata implementation later at the end of this chapter.
We’ll review an example from my research and you’ll estimate a
POLS, a FE and a demeaned OLS model on real data so that you can
see how to do this.

Identifying Assumptions We kind of reviewed the assumptions
necessary to identify d with our fixed effects (within) estimator
when we walked through that original DAG, but let’s supplement
that DAG intuition with some formality. The main identification
assumptions are:

1. E[#it|Di1, Di2, . . . , DiT , ui] = 0; t = 1, 2, . . . , T
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• This means that the regressors are strictly exogenous condi-
tional on the unobserved effect. This allows Dit to be arbitrarily
related to ui, though. It only concerns the relationship between
Dit and #it, not Dit’s relationship to ui.

2. rank
✓

ÂT
t=1 E[D̈0itD̈it]

◆
= K

• It shouldn’t be a surprise to you by this point that we have a
rank condition, because even when we were working with the
simpler linear models, the estimated coefficient was always a
scaled covariance, where the scaling was by a variance term.
Thus regressors must vary over time for at least some i and not
be collinear in order that bd ⇡ d.

The properties of the estimator under assumptions 1-2 are that bdFE is
consistent ( plim

N!•
b
dFE,N = d) and bdFE is unbiased conditional on D

I only briefly mention inference. But the standard errors in this
framework must be “clustered” by panel unit (e.g., individual) to
allow for correlation in the #it’s for the same person i over time. In
Stata, this is implemented as follows:

. xtreg y d , fe i(PanelID) cluster(PanelID)

This yields valid inference so long as the number of clusters is
“large”.129

129 In my experience, when an econome-
trician is asked how large is large, they
say “the size of your data”. But that
said, there is a small clusters literature
and usually it’s thought that fewer
than 30 clusters is too small (as a rule
of thumb). So it may be that having
around 30-40 clusters is sufficient for
the approaching of infinity. This will
usually hold in most panel applications
such as US states or individuals in the
NSLY, etc.

Caveat #1: Fixed Effects Cannot Address Reverse Causality But, there
are still things that fixed effects (within) estimators cannot solve. For
instance, let’s say we regressed crime rates onto police spending
per capita. Becker [1968] argues that increases in the probability of
arrest, usually proxied by police per capita or police spending per
capita, will reduce crime. But at the same time, police spending per
capita is itself a function of crime rates. This kind of reverse causality
problem shows up in most panel models when regressing crime rates
onto police. For instance, see Cornwell and Trumbull [1994], Table
3, column 2 (Figure 76). Focus on the coefficient on “POLICE”. The
dependent variable is crime rates by county in North Carolina for a
panel, and they find a positive correlation between police and crime
rates. Does this mean the more police in an area causes higher crime
rates? Or does it likely reflect the reverse causality problem?

Traditionally, economists have solved this kind of reverse causality
problem by using instrumental variables. Examples include Evans
and Owens [2007] and Draca et al. [2011]. I produce one example
from Draca et al. [2011]. In this study, the authors used as an instru-
ment in which police were deployed in response to terrorist attacks
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 NOTES 365

 TABLE 3.-RESULTS FROM ESTIMATION
 (standard errors in parentheses)

 2SLS 2SLS
 Between Within (fixed effects) (no fixed effects)

 CONSTANT -2.097 -3.719
 (2.822) (8.189)

 PA -0.648 - 0.355 -0.455 - 0.507
 (0.088) (0.032) (0.618) (0.251)

 PC - 0.528 - 0.282 - 0.336 - 0.530
 (0.067) (0.021) (0.371) (0.110)

 Pp 0.297 -0.173 -0.196 0.200
 (0.231) (0.032) (0.200) (0.343)

 S -0.236 - 0.00245 -0.0298 -0.218
 (0.174) (0.02612) (0.0300) (0.185)

 POLICE 0.364 0.413 0.504 0.419
 (0.060) (0.027) (0.617) (0.218)

 DENSITY 0.168 0.414 0.291 0.226
 (0.077) (0.283) (0.785) (0.103)

 PERCENT -0.0951 0.627 0.888 -0.145
 YOUNG MALE (0.1576) (0.364) (0.139) (0.336)
 WCON 0.195 -0.0378 -0.0358 0.329

 (0.210) (0.0391) (0.0467) (0.279)
 WTUC -0.196 0.0455 0.0398 -0.197

 (0.170) (0.0190) (0.0282) (0.197)
 WTRD 0.129 -0.0205 -0.0196 0.0293

 (0.278) (0.0405) (0.0426) (0.3240)
 WFIR 0.113 -0.00390 -0.00700 0.0506

 (0.220) (0.02806) (0.03270) (0.3224)
 WSER -0.106 0.00888 0.00600 -0.127

 (0.163) (0.01913) (0.02536) (0.176)
 WMFG - 0.0249 - 0.360 - 0.406 - 0.0493

 (0.1339) (0.112) (0.217) (0.1672)
 WFED 0.156 -0.309 -0.273 0.170

 (0.287) (0.176) (0.296) (0.327)
 WSTA -0.284 0.0529 -0.0129 -0.181

 (0.256) (0.114) (0.2599) (0.300)
 WLOC 0.0103 0.182 0.136 0.0237

 (0.4635) (0.118) (0.165) (0.5187)
 WEST -0.229 -0.198

 (0.108) (0.117)
 CENTRAL -0.164 -0.173

 (0.064) (0.067)
 URBAN -0.0346 -0.0874

 (0.1324) (0.1508)
 PERCENT 0.148 0.174
 MINORITY (0.049) (0.057)
 s.e. 0.216 0.137 0.141 0.224

 crime. In both fixed effects 2SLS and within regres-

 sions, the estimated coefficient of WMFG is statisti-

 cally significant and at least as large in absolute value

 as any of the deterrent variables' coefficient estimates.

 The other variable revealed to influence the crime rate

 statistically significantly is PERCENT YOUNG MALE,

 whose estimated coefficient is 0.888. The large, positive

 effect of PERCENT YOUNG MALE is consistent with

 the fact that young males commit most of the crime.

 Interestingly, the effects of WMFG and PERCENT

 YOUNG MALE are not statistically significant in re-

 gressions that do not account for unobserved hetero-

 geneity.

 One interpretation of our fixed effects 2SLS esti-

 mates is that the efficacy of labor market solutions to

 the problem of crime exceeds that of traditional crimi-

 nal justice strategies (along the lines of Myers (1983)).

 However, a Wu-Hausman test of the contrast between

 the within and fixed effects 2SLS estimates cannot

 reject the null hypothesis that PA and POLICE are

 uncorrelated with E.7 Therefore, on efficiency grounds

 we prefer the within estimates, and conclude that both

 labor market and law enforcement incentives matter

 (consistent with Grogger (1991)).

 Although estimators that ignore unobserved hetero-

 geneity are inconsistent, it is instructive to contrast our

 fixed effects 2SLS estimates with those obtained from

 7 The value of the test-statistic, which is asymptotically dis-
 tributed as X2, is 0.031.
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Figure 76: Table 3 from Cornwell and
Trumbull [1994]

in London in a program called Operation Theseus. The authors
present both a pooled OLS estimate (which is positive on the effect
that police have on crime) and the 2SLS estimate (which is negative,
consistent with Becker’s hypothesis). See Figure 77.

So, one situation in which you wouldn’t want to use panel fixed ef-
fects is if you have reverse causality or simultaneity bias. And specifi-
cally when that reverse causality is very strong in observational data.
This would technically violate the DAG, though, that we presented
at the start of the chapter. Notice that if we had reverse causality,
then Y ! D, which is explicitly ruled out by this theoretical model
contained in the DAG. But obviously, in the police - crime example,
that DAG would be inappropriate, and any amount of reflection on
the problem should tell you that that DAG is inappropriate. Thus it
requires, as I’ve said repeatedly, some careful reflection, and writing
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 VOL. 101 NO. 5 DRACA ETAL.: PANIC ON THE STREETS OF LONDON 2169

 Table 2—Difference-In-Differences Regression Estimates, Police Deployment and Total Crimes,
 2004-2005.

 Full Split +Controls +Trends
 0) (2) (3) (4)

 Panel A. Police deployment (Hours worked per 1,000 population)
 T x Post-Attack 0.081***

 (0.010)
 T x Post-Attackl 0.341*** 0.342*** 0.356***

 (0.028)  (0.029)  (0.027)
 T x Post-Attackl  -0.001  0.001  0.014

 (0.011)  (0.010)  (0.016)
 Controls  No  No  Yes  Yes

 Trends  No  No  No  Yes

 Number of boroughs  32  32  32  32

 Observations  1,664  1,664  1,664  1,664

 Full Split -fControls +Trends
 (1) (2) (3) (4)

 Panel B. Total crimes (Crimes per 1,000 population)
 T x Post-Attack —0.052**

 (0.021)
 T x Post-Attackl  -0.111***  -0.109***  -0.056*

 (0.027)  (0.027)  (0.030)
 T x Post-Attack2  -0.033  -0.031  0.024

 (0.027)  (0.028)  (0.054)
 Controls  No  No  Yes  Yes

 Trends  No  No  No  Yes

 Number of boroughs  32  32  32  32

 Observations  1,664  1,664  1,664  1,664

 OLS Estimates  IV Estimates

 Levels  Differences  Full  Split  +Trends

 (1)  (2)  (3)  (4)  (5)

 Panel C. Structural form

 ln(police hours)  0.785***

 (0.053)

 Aln(police hours)  -0.031  -0.641**  -0.318***  -0.183***

 (0.051)  (0.301)  (0.093)  (0.066)
 Controls  Yes  Yes  Yes  Yes  Yes

 Trends  No  No  No  No  Yes

 Number of boroughs  32  32  32  32  32

 Observations  3,328  1,664  1.664  1,664  1,664

 Notes: All specifications include week fixed effects. Standard errors clustered by borough in parentheses.
 Weighted by borough population. "Full" post-period for baseline models in column 1 of panels A and B defined
 as all weeks after 7/7/2005 until 31/12/2005 attack inclusive. Weeks defined in a Thursday-Wednesday inter
 val throughout to ensure a clean pre- and post-split in the attack weeks. T x Post-Attack is then defined as
 interaction of treatment group with a dummy variable for the post-period. T x Post-Attackl is defined as inter
 action of treatment group with a deployment "policy" dummy for weeks 1-6 following the July 7, 2005, attack.
 T x Post-Attack2 is defined as treatment group interaction for all weeks subsequent to the main Operation
 Theseus deployment. Treatment group defined as boroughs of Westminster, Camden, Islington, Tower Hamlets,
 and Kensington-Chelsea. Police deployment defined as total weekly hours worked by all police staff at borough
 level. Controls based on Quarterly Labour Force Survey (QLFS) data and include: borough unemployment rate,
 employment rate, males under 25 as proportion of population, and whites as proportion of population (follow
 ing QLFS ethnic definitions).

 ***Significant at the 1 percent level.
 ** Significant at the 5 percent level.
 *Significant at the 10 percent level.
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Figure 77: Table 2 from Draca et al.
[2011]

out exactly what the relationship is between the treatment variables
and the outcome variables in a DAG can help you develop a credible
identification strategy.

Caveat #2: Fixed Effects Cannot Address Time-variant Unobserved Hetero-
geneity The second situation in which panel fixed effects don’t buy
you anything is if the unobserved heterogeneity is time varying. In
this situation, the demeaning has simply demeaned an unobserved
time-variant variable, which is then moved into the composite er-
ror term, and which since time demeaned üit correlated with D̈it,
D̈it remains endogenous. Again, look carefully at the DAG - panel
fixed effects is only appropriate if ui is unchanging. Otherwise it’s
just another form of omitted variable bias. So, that said, don’t just
blindly use fixed effects and think that it solves your omitted variable
bias problem – in the same way that you shouldn’t use matching
just because it’s convenient to do. You need a DAG, based on an ac-
tual economic model, which will allow you to build the appropriate
research design. Nothing substitutes for careful reasoning and eco-
nomic theory, as they are the necessary conditions for good research
design.

Example: Returns to Marriage and Unobserved Heterogeneity

When might this be true? Let’s use an example from Cornwell and
Rupert [1997] in which the authors attempt to estimate the causal
effect of marriage on earnings. It’s a well known stylized fact that
married men earn more than unobserved men, even controlling for
observables. But the question is whether that correlation is causal, or
whether it reflects unobserved heterogeneity, or selection bias.

So let’s say that we had panel data on individuals. These indi-
viduals i are observed for four periods t. We are interested in the
following equation:130

130 We use the same notation as used
in their paper, as opposed to the Ÿ
notation presented earlier.Yit = a + dMit + bXit + Ai + gi + #it
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Let the outcome be their wage Yit observed in each period, and
which changes each period. Let wages be a function of marriage
which changes over time Mit, other covariates the change over time
Xit, race and gender which do not change over the panel period
Ai, and an unobserved variable we call unobserved ability gi. This
could be intelligence, non-cognitive ability, motivation, or some other
unobserved confounder. The key here is that it is unit-specific, unob-
served, and time-invariant. The #it is the unobserved determinants
of wages which are assumed to be uncorrelated with marriage and
other covariates.

Cornwell and Rupert [1997] estimate both a feasible generalized
least squares model and three fixed effects models (each of which
includes different time-varying controls). The authors call the fixed
effects regression a “within” estimator, because it uses the within
unit variation for eliminating the confounding Their estimates are
presented in Figure 78.

Notice that the FGLS (column 1) finds a strong marriage premium
of around 8.3%. But, once we begin estimating fixed effects models,
the effect gets smaller and less precise. The inclusion of marriage
characteristics, such as years married and job tenure, causes the
coefficient on marriage to fall by around 60% from the FGLS estimate,
and is no longer statistically significant at the 5% level.

One of the interesting features of this analysis is the effect of
dependents on wages. Even under the fixed effects estimation, the
relationship between dependents and wages is positive, robust and
statistically significant. The authors explore this in more detail by
including interactions of marriage variables with dependents (Figure
79). Here we see that the coefficient on marriage falls and is no
longer statistically significant, but there still exists a positive effect of
dependents on earnings.

Stata example: Survey of Adult Service Providers

Next I’d like to introduce a Stata exercise based on data collection
for my own research: a survey of sex workers. You may or may not
know this, but the Internet has had a profound effect on sex markets.
It has moved women indoor from the streets while simultaneously
breaking the link with pimps. It has increased safety and anonymity,
too, which has had the effect of causing new entrants. The marginal
sex worker has more education and better outside options than tra-
ditional US sex workers [Cunningham and Kendall, 2011, Cornwell
and Cunningham, 2016]. The Internet, in sum, caused the marginal
sex worker to shift towards women more sensitive to detection, harm
and arrest.
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290 ECONOMIC INQUIRY 

TABLE I1 
Estimated Wage Regressions 

(Standard Errors in Parentheses) 
(1) (3 1 (4) 

Within 
(2) 

Variable FGLS Within Within 
______ 

Married 

Divorced 

Years Married 

Years Married’ 

Years Divorced 

Experience 

Experience’ 

Tenure 

Tenure2 

South 

Urban 

Union 

Dependents 

No High School 

Some High School 

Some College 

College Grad 

Post-College 

Standard error 
2 

x2 7 

0.083 

0.064 
(0.033) 

(0.022) 

0.027 
(0.004) 
-0.001 
(0.0001) 

4.091 

0.137 
(0.017) 
0.109 

(0.015) 
0.052 

(0.017) 
-0.325 
(0.057) 
-0.148 
(0.032) 
0.091 

(0.028) 
0.278 

(0.034) 
0.322 

(0.041) 
0.215 

11 1.9 

(0.019) 

0.027 
(0.004) 
-0.001 
(0.0002) 

-0.121 
(0.034) 
0.057 

(0.024) 
0.106 

(0.018) 
0.052 

(0.019) 

0.024 
(0.004) 
-0.001 
(0.0002) 
0.013 

(0.004) 
-0.0006 
(0.0002) 
-0.117 
(0.034) 
0.059 

(0.024) 
0.102 

(0.018) 
0.048 

(0.019) 

0.056 0.05 1 0.033 
(0.026) (0.026) (0.028) 
0.062 0.057 0.040 

(0.036) (0.036) (0.038) 
-0.005 
(0.006) 
-0.0003 
(0.0003) 
-0.014 
(0.008) 
0.021 

(0.005) 
-0.001 
(0.0002) 
0.011 

(0.004) 
-0.0005 
(0.0002) 
-0.118 
(0.034) 
0.059 

(0.024) 
0.103 

(0.018) 
0.047 

(0.020) 

0.212 0.212 0.2 11 

dents effect is much less robust, becoming 
smaller and insignificant in their fixed effects 
regressions. 

With regard to the other coefficient esti- 
mates, they are generally typical of those 
found in the literature and very similar to 
those obtained by KN in their sample. In gen- 

eral, despite the smaller cross-section dimen- 
sion of our sample, the basic qualitative and 
quantitative results obtained from the larger, 
but shorter KN panel have been preserved. We 
emphasize that the only significant difference 
between our results and those of KN lies in 
the returns to marriage. 

Figure 78: Table 2 from Cornwell and
Rupert [1997]

In 2008 and 2009, I surveyed (with Todd Kendall) approximately
700 US Internet-mediated sex workers. The survey was a basic labor
market survey; I asked them about their illicit and legal labor market
experiences, and demographics. The survey had two parts: a “static”
provider-specific section and a “panel” section. The panel section
asked respondents to share information about each of the last 4

session with clients.131

131 Technically, I asked them to share
about the last five sessions, but for this
exercise, I have dropped the fifth due to
low response rates on the fifth session.

I have created a shortened version of the dataset and uploaded it
to my website. It includes a few time-invariant provider character-
istics, such as race, age, marital status, years of schooling and body
mass index, as well as several time-variant session-specific charac-
teristics including the log of the hourly price, the log of the session
length (in hours), characteristics of the client himself, whether a con-
dom was used in any capacity during the session, whether the client
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. TABLEIII 
Dependents and the Returns to Marriage 

(Standard Errors in Parentheses) 
(1) (2) 

Variable Within Within 

Married 0.071 0.027 
(0.026) (0.038) 

(0.049) (0.058) 
Divorced 0.008 - 0.033 

Years Married 0.011 
(0.0 12) 

Years Married’ -0.001 

(0.01 1) 
Experience 0.024 0.021 

(0.0007) 
Years Divorced -0.013 

(0.004) (0.005) 
Experience’ -0.001 -0.001 

(0.002) (0.0002) 
Tenure 0.013 0.011 

(0.004) (0.004) 
Tenure’ -0.0006 -0.0005 

south -0.113 -0.109 
(0.034) (0.034) 

Urban 0.061 0.061 
(0.023) (0.024) 

Union 0.101 0.110 
(0.018) (0,018) 

Dependents 0.292 0.281 

(0.0002) (0.0002) 

(0.076) (0.076) 
Married x Dependents -0.266 -0.232 

(0.077) (0.087) 
Divorced x Dependents -0.156 -0.124 

(0.095) (0.103) 
Years Married x Dependents -0.013 

(0.012) 
Years Mamed’ x Dependents 0.001 

(0.0008) 
Years Divorced x Dependents -0.001 

(0.0 12) 
Standard error 0.213 0.211 

more promptly. Or, as indicated by Reed and 
Harford [ 19891, young men with children also 
may accept jobs that offer fewer amenities and 
benefits, but greater wage compensation. 

Finally, as indicated in Table 111, the de- 
pendents (marital status) effect varies signifi- 
cantly with the marital status (dependents) ef- 
fect. Column (1) reports results from a regres- 
sion which omits years married and divorced 

(as in Table 11, column (3)), but includes an 
interaction of marital and divorced status and 
dependents. Column (2) adds the years mar- 
ried variables (as in Table 11, column (4)) and 
interactions thereof with dependents to test 
whether the effect of children (marriage) var- 
ies with years married (children in the house- 
hold). 

Figure 79: Table 3 from Cornwell and
Rupert [1997]

was a “regular”, etc.
In this exercise, you will estimate three types of models: a pooled

OLS model, a fixed effects (FE) and a demeaned OLS model. The
model will be of the following form:

Yis = biXi + gisZis + ui + #is

Ÿis = gisZ̈is + ḧis

where ui is both unobserved and correlated with Zis.
The first regression model will be estimated with pooled OLS and

the second model will be estimated using both fixed effects and OLS.
In other words, I’m going to have you estimate the model using the
xtreg function with individual fixed effects, as well as demean the
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data manually and estimate the demeaned regression using reg.
Notice that the second regression has a different notation on the

dependent and independent variable; it represents the fact that the
variables are columns of demeaned variables. Thus Ÿis = Yis � Yi.
Secondly, notice that the time-invariant Xi variables are missing
from the second equation. Do you understand why that is the case?
These variables have also been demeaned, but since the demeaning
is across time, and since these time-invariant variables do not change
over time, the demeaning deletes them from the expression. Notice,
also, that the unobserved individual specific heterogeneity, ui, has
disappeared. It has disappeared for the same reason that the Xi
terms are gone – because the mean of ui over time is itself, and thus
the demeaning deletes it.

To estimate these models, type the following lines into Stata:
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. scuse sasp_panel, clear

. tsset id session

. foreach x of varlist lnw age asq bmi hispanic black other asian schooling cohab married divorced //

separated age_cl unsafe llength reg asq_cl appearance_cl provider_second asian_cl black_cl hispanic_cl //

othrace_cl hot massage_cl {

drop if ‘x’==.

}

. bysort id: gen s=_N

. keep if s==4

. foreach x of varlist lnw age asq bmi hispanic black other asian schooling cohab married divorced //

separated age_cl unsafe llength reg asq_cl appearance_cl provider_second asian_cl black_cl hispanic_cl //

othrace_cl hot massage_cl {

egen mean_‘x’=mean(‘x’), by(id)

gen demean_‘x’=‘x’ - mean_‘x’

drop mean*

}

. xi: reg lnw age asq bmi hispanic black other asian schooling cohab married divorced separated //

age_cl unsafe llength reg asq_cl appearance_cl provider_second asian_cl black_cl hispanic_cl //

othrace_cl hot massage_cl, robust

. xi: xtreg lnw age asq bmi hispanic black other asian schooling cohab married divorced separated //

age_cl unsafe llength reg asq_cl appearance_cl provider_second asian_cl black_cl hispanic_cl //

othrace_cl hot massage_cl, fe i(id) robust

. reg demean_lnw demean_age demean_asq demean_bmi demean_hispanic demean_black demean_other //

demean_asian demean_schooling demean_cohab demean_married demean_divorced demean_separated //

demean_age_cl demean_unsafe demean_llength demean_reg demean_asq_cl demean_appearance_cl //

demean_provider_second demean_asian_cl demean_black_cl demean_hispanic_cl demean_othrace_cl //

demean_hot demean_massage_cl, robust cluster(id)

Notice the first five commands created a balanced panel. Some of the
respondents would leave certain questions blank, probably due to
concerns about anonymity and privacy. So we have dropped anyone
who had missing values for the sake of this exercise. This leaves us
with a balanced panel. You can see this yourself if after running those
five lines you type xtdescribe.
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I have organized the output into Table 31. There’s a lot of interest-
ing information in these three columns, some of which may surprise
you if only for the novelty of the regressions. So let’s talk about the
statistically significant ones. The pooled OLS regressions, recall, do
not control for unobserved heterogeneity, because by definition those
are unobservable. So these are potentially biased by the unobserved
heterogeneity, which is a kind of selection bias, but we will discuss
them anyhow.

Depvar: POLS FE Demeaned OLS

Unprotected sex with client of any kind 0.013 0.051* 0.051*
(0.028) (0.028) (0.026)

Ln(Length) -0.308*** -0.435*** -0.435***
(0.028) (0.024) (0.019)

Client was a Regular -0.047* -0.037** -0.037**
(0.028) (0.019) (0.017)

Age of Client -0.001 0.002 0.002

(0.009) (0.007) (0.006)
Age of Client Squared 0.000 -0.000 -0.000

(0.000) (0.000) (0.000)
Client Attractiveness (Scale of 1 to 10) 0.020*** 0.006 0.006

(0.007) (0.006) (0.005)
Second Provider Involved 0.055 0.113* 0.113*

(0.067) (0.060) (0.048)
Asian Client -0.014 -0.010 -0.010

(0.049) (0.034) (0.030)
Black Client 0.092 0.027 0.027

(0.073) (0.042) (0.037)
Hispanic Client 0.052 -0.062 -0.062

(0.080) (0.052) (0.045)
Other Ethnicity Client 0.156** 0.142*** 0.142***

(0.068) (0.049) (0.045)
Met Client in Hotel 0.133*** 0.052* 0.052*

(0.029) (0.027) (0.024)
Gave Client a Massage -0.134*** -0.001 -0.001

(0.029) (0.028) (0.024)
Age of provider 0.003 0.000 0.000

(0.012) (.) (.)
Age of provider squared -0.000 0.000 0.000

(0.000) (.) (.)
Body Mass Index -0.022*** 0.000 0.000

(0.002) (.) (.)
Hispanic -0.226*** 0.000 0.000

(0.082) (.) (.)
Black 0.028 0.000 0.000

(0.064) (.) (.)
Other -0.112 0.000 0.000

(0.077) (.) (.)
Asian 0.086 0.000 0.000

(0.158) (.) (.)
Imputed Years of Schooling 0.020** 0.000 0.000

(0.010) (.) (.)
Cohabitating (living with a partner) but unmarried -0.054 0.000 0.000

(0.036) (.) (.)
Currently married and living with your spouse 0.005 0.000 0.000

(0.043) (.) (.)
Divorced and not remarried -0.021 0.000 0.000

(0.038) (.) (.)
Married but not currently living with your spouse -0.056 0.000 0.000

(0.059) (.) (.)

N 1,028 1,028 1,028

Mean of dependent variable 5.57 5.57 0.00

Heteroskedastic robust standard errors in parenthesis clustered at the provider level. * p<0.10, ** p<0.05, *** p<0.01

Table 31: POLS, FE and Demeaned OLS
Estimates of the Determinants of Log
Hourly Price for a Panel of Sex Workers

First, a simple scan of the second and third column will show that
the fixed effects regression which included (not shown) dummies for
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the individual herself is equivalent to a regression on the demeaned
data. This should help persuade you that the fixed effects and the
demeaned (within) estimators are yielding the same coefficients.

But second, let’s dig into the results. One of the first things we
observe is that in the pooled POLS model, there is not a compensat-
ing wage differential detectable on having unprotected sex with a
client.132 But, notice that in the fixed effects model, unprotected sex 132 There were three kinds of sexual

encounter - vaginal receptive sex, anal
receptive sex, and fellatio. Unprotected
sex is coded as any sex act without a
condom.

has a premium. This is consistent with Rosen [1986] who posited the
existence of risk premia, as well as Gertler et al. [2005] who found
risk premia for sex workers using panel data. Gertler et al. [2005],
though, find a much larger premia of over 20% for unprotected sex,
whereas I am finding only a mere 5%. This could be because a large
number of the unprotected instances are fellatio, which carry a much
lower risk of infection than unprotected receptive intercourse. Never-
theless, it is interesting that unprotected sex, under the assumption
of strict exogeneity, appears to cause wages to rise by approximately
5%, which is statistically significant at the 10% level. Given an hourly
wage of $262, this amounts to a mere $13 additional dollars per hour.
The lack of a finding in the pooled OLS model seems to suggest that
the unobserved heterogeneity was masking the effect.

Next we look at the session length. Note that I have already ad-
justed the price the client paid for the length of the session so that the
outcome is a log wage, as opposed to a log price. As this is a log-log
regression, we can interpret the coefficient on log length as an elas-
ticity. When we use fixed effects, the elasticity increases from -0.308

to -0.435. The significance of this result, in economic terms, though,
is that there appears to be “volume discounts” in sex work. That is,
longer sessions are more expensive, but at a decreasing rate. Another
interesting result is whether the client was a “regular” which meant
that she had seen him before in another session. In our pooled OLS
model, regulars paid 4.7% less, but this shrinks slightly in our fixed
effects model to 3.7% reductions. Economically, this could be lower
because new clients pose risks that repeat customers do not pose.
Thus, if we expect prices to move closer to marginal cost, the disap-
pearance of some of the risk from the repeated session should lower
price, which it appears to do.

Another factor related to price is the attractiveness of the client.
Interestingly, this does not go in the direction we may have expected.
One might expect that the more attractive the client, the less he pays.
But in fact it is the opposite. Given other research that finds beautiful
people earn more money [Hamermesh and Biddle, 1994], it’s possible
that sex workers are price discriminating. That is, when they see a
handsome client, they deduce he earns more, and therefore charges
him more. This result does not hold up when including fixed effects,



panel data 261

though, suggesting that it is due to unobserved heterogeneity, at least
in part.

Similar to unprotected sex, a second provider present has a posi-
tive effect on price which is only detectable in the fixed effects model.
Controlling for unobserved heterogeneity, the presence of a second
provider increases prices by 11.3%. We also see that she discriminates
against clients of “other” ethnicity who pay 14.2% more than White
clients. There’s a premium associated with meeting in a hotel which
is considerably smaller when controlling for provider fixed effects by
almost a third. This positive effect, even in the fixed effects model,
may simply represent the higher costs associated with meeting in a
hotel room. The other coefficients are not statistically significant.

Many of the time-invariant results are also interesting, though. For
instance, perhaps not surprisingly, women with higher BMI earn less.
Hispanics earn less than White sex workers. And women with more
schooling earn more, something which is explored in greater detail in
Cunningham and Kendall [2016].

Conclusion In conclusion, we have been exploring the usefulness
of panel data for estimating causal effects. We noted that the fixed
effects (within) estimator is a very useful method for addressing
a very specific form of endogeneity, with some caveats. First, it
will eliminate any and all unobserved and observed time-invariant
covariates correlated with the treatment variable. So long as the
treatment and the outcome varies over time, and strict exogeneity,
then the fixed effects (within) estimator will identify the causal effect
of the treatment on some outcome.

But this came with certain qualifications. For one, the method
couldn’t handle time variant unobserved heterogeneity. It’s thus the
burden of the researcher to determine which type of unobserved
heterogeneity problem they face, but if they face the latter, then
the panel methods reviewed here are not unbiased and consistent.
Second, when there exists strong reverse causality pathways, then
panel methods are biased. Thus, we cannot solve the problem of
simultaneity, such as what Wright faced when estimating the price
elasticity of demand, using the fixed effects (within) estimator. Most
likely, we are going to have to move into a different framework when
facing that kind of problem.

Still, many problems in the social sciences may credibly be caused
by a time-invariant unobserved heterogeneity problem, in which case
the fixed effects (within) panel estimator is useful and appropriate.





Differences-in-differences

“What’s the difference between me and you?
About five bank accounts, three ounces, and two vehicles.”
– Dr. Dre

Introduction

In 2002, Craigslist opened a new section on its front page called
“erotic services” in San Francisco, California. The section would end
up being used by sex workers exclusively to advertise to and solicit
clients. Sex workers claimed it made them safer, because instead of
working on street corners and for pimps, they could solicit indoors
from their computers, which as a bonus, also gave them the chance
to learn more about the men contacting them. But activists and
law enforcement worried that it was facilitating sex trafficking and
increasing violence against women. Which was it? Was erotic services
(ERS) making women safer, or was it placing them in harm’s way?

This is ultimately an empirical question. We want to know the
effect of ERS on female safety, but the fundamental problem of causal
inference says that we can’t know what effect it had because we are
missing the data necessary to make the calculation. That is,

E[d] = E[M1 �M0]

where M1 is women murdered in a world where San Francisco has
ERS, and M0 is women murdered in a world where San Francisco
does not have ERS at the exact same moment in time. In 2002, only the
first occurred, as the second was a counterfactual. So how do we
proceed?

The standard way to evaluate interventions such as this is the
standard differences-in-differences strategy, or DD.133 DD is basically 133 You’ll sometimes see the acronyms

DiD, Diff-in-diff, or even DnD.a version of panel fixed effects, but can also be used with repeated
cross-sections. Let’s look at this example using some tables, which
hopefully will help give you an idea of the intuition behind DD, as
well as some of its identifying assumptions.
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Let’s say that the intervention is erotic services, or E, and we want
to know the causal effect of E on female murders M. Couldn’t we
just compare San Francisco murders in, say, 2003 with some other
city, like Waco, Texas, where the author lives? Let’s look at that.
where SF is an unobserved San Francisco fixed effect and W is a

Cities Outcome
San Francisco M = SF + E
Waco, Texas M = W

Table 32: Compared to what? Different
cities

Waco fixed effect. When we make a simple comparison between
Waco and San Francisco, we get a causal effect equalling E + SF�W.
Thus the simple difference is biased because of W and SF. Notice
that the SF�W term is akin to our selection bias term in the decom-
position of the simpler difference in outcomes. It’s the underlying
differences in murder rates between the two cities in a world where
neither gets treated. So if our goal is to get an unbiased estimate of
E, then that simple difference won’t work unless W and SF are the
same.

But what if we compared San Francisco to itself? Say compared it
in 2003 to two years earlier in 2001? Let’s look at that simple before
and after difference. Again, this doesn’t lead to an unbiased

Cities Time Outcome
San Francisco Before M = SF

After M = SF + T + E

Table 33: Compared to what? Before
and After

estimate of E, even if it does eliminate the fixed effect. That’s because
such differences can’t control for or net out natural changes in the
murder rate over time. I can’t compare San Francisco before and after
(T + E) because of T which is a kind of omitted variable bias. If we
could control for T, then it’d be fine, though.

The intuition of the DD strategy is simple: all you do is combine
these two simpler approaches so that you can eliminate both the
selection bias and the effect of time. Let’s look at it in the following
table. The first difference, D1, does the simple before and after
difference. This ultimately eliminates the unit specific fixed effects.
Then, once those differences are made, we difference the differences
(hence the name) to get the unbiased estimate of E. But there’s a
couple of key assumptions with a standard DD model. First, we are
assuming that there is no time-variant city specific unobservables.
Nothing unobserved in San Francisco that is changing over time that
also determines murders. And secondly, we are assuming that T is
the same for all units. This second assumption is called the parallel
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Cities Time Outcome D1 D2

San Francisco Before M = SF
After M = SF + T + E T + E

E
Waco Before M = W

After M = W + T T

Table 34: Compared to what? Subtract
each city’s differences

trends assumption, which I’ll discuss in more detail later.
DD is a powerful, yet amazingly simple, strategy. It is a kind of

panel estimator in the sense that it utilizes repeated observations
on the same unit to eliminate the unobserved heterogeneity con-
founding the estimate of the treatment effect. But here we treat it
separately because of the amount of focus it has gotten separately in
the literature.

Background

You see traces of this kind of strategy in Snow’s cholera study,
though technically Snow only did a simple difference. He just had
every reason to believe that absent the treatment, the two parts of
London would’ve had similar underlying cholera rates since the two
groups were so similar ex ante. The first time I ever saw DD in its
current form was Card and Krueger [1994], a famous minimum wage
study. This was a famous study primarily because of its use of an ex-
plicit counterfactual for estimation. Suppose you are interested in the
effect of minimum wages on employment. Theoretically, you might
expect that in competitive labor markets, an increase in the minimum
wage would move us up a downward sloping demand curve causing
employment to fall. But Card and Krueger [1994] was interested in
quantifying this, and approached it furthermore as though it was
purely an empirical question.

Their strategy was to do a simple DD between two neighboring
states - a strategy we would see again in minimum wage research
with Dube et al. [2010]. New Jersey was set to experience an increase
in the state minimum wage from $4.25 to $5.05, but neighboring
Pennsylvania’s minimum wage was staying at $4.25 (see Figure 80).

They surveyed about 400 fast food stores both in New Jersey and
Pennsylvania before and after the minimum wage increase. This was
used to measure the outcomes they cared about (i.e., employment).

Let Y1
ist be employment at restaurant i, in state s, at time t with

a high minimum wage, and let Y0
ist be employment at restaurant

i, state s, time t with a low minimum wage. As we’ve said repeat-
edly through this book, we only see one or the other because the
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Locations of Restaurants (Card and Krueger 2000)

J. Hainmueller (MIT) 5 / 50

Figure 80: NJ and PA

switching equation selects one or the other based on the treatment
assignment. But, we can assume then that

E[Y0
ist|s, t] = gs + tt

. In the absence of a minimum wage change, in other words, employ-
ment in a state will be determined by the sum of a time-invariant
state fixed effect, gs, that is idiosyncratic to the state, and a time effect
tt that is common across all states.

Let Dst be a dummy for high-minimum wage states and periods.
Under the conditional independence assumption, we can write out
the average treatment effect as

E[Y1
ist �Y0

ist|s, t] = d

and observed employment can be written as

Yist = gs + tt + dDst + #ist

Figure 81 shows the distribution of wages in November 1992 after
the minimum wage hike. As can be seen, the minimum wage hike
was binding evidenced by the mass of wages at the minimum wage
in New Jersey.

Now how do we take all this information and precisely calculate
the treatment effect? One way is to do what we did earlier in our San
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Figure 81: Distribution of wages for NJ
and PA in November 1992

Francisco and Waco example: compute before and after differences
for each state, and then difference those differences.

In New Jersey:

• Employment in February is

E(Yist|s = NJ, t = Feb) = gNJ + lFeb

• Employment in November is:

E(Yist|s = NJ, t = Nov) = gNJ + lNov + d

• Difference between November and February

E(Yist|s = NJ, t = Nov)� E(Yist|s = NJ, t = Feb) = lN � lF + d

And in Pennsylvania:

• Employment in February is

E(Yist|s = PA, t = Feb) = gPA + lFeb

• Employment in November is:

E(Yist|s = PA, t = Nov) = gPA + lNov
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• Difference between November and February

E(Yist|s = PA, t = Nov)� E(Yist|s = PA, t = Feb) = lN � lF

Once we have those two before and after differences, we simply
difference them each to net out the time effects. The DD strategy
amounts to comparing the change in employment in NJ to the change
in employment in PA. The population DD are:

b
d =

✓
E(Yist|s = NJ, t = Nov)� E(Yist|s = NJ, t = Feb)

◆

�
✓

E(Yist|s = PA, t = Nov)� E(Yist|s = PA, t = Feb)
◆

= (lN � lF + d)� (lN � lF)

= d

This is estimated using the sample analog of the population means
(see Figure 82).

Di�erence-in-Di�erences: Estimation

Sample Means: Minimum wage laws and employment
THE AMERICAN ECONOMIC REVlEW SEPTEMBER 1994 

TABLE 3-AVERAGE EMPLOYMENT  THE RISE PER STORE BEFORE AND I ~ E R   
IN NEW JERSEY MINIMUM WAGE  

Stores by state Stores in New Jersey a Differences within N J ~  

Variable 
PA 
(i) 

NJ 
(ii) 

Difference, 
NJ-PA 

(iii) 

Wage = 
$4.25 
(iv) 

Wage = 
$4.26-$4.99 

(v) 

Wage r 
$5.00 
(vi) 

Low-
high 
(vii) 

Midrange-
high 
(viii) 

1. FTE employment before, 
all available observations 

2. FTE employment after, 
all available observations 

3. Change in mean FTE 
employment 

4. Change in mean FTE 
employment, balanced 
sample of storesC 

5. Change in mean FTE 
employment, setting 
FTE at temporarily 
closed stores to O d  

Notes: Standard errors are shown in parentheses. The sample consists of all stores with available data on employment. FTE 
(full-time-equivalent) employment counts each part-time worker as half a full-time worker. Employment at six closed stores 
is set to zero. Employment at four temporarily closed stores is treated as missing. 

astares in New Jersey were classified by whether starting wage in wave 1 equals $4.25 per hour ( N  = 101), is between 
$4.26 and $4.99 per hour ( N  = 140), or is $5.00 per hour or higher ( N  = 73). 

b~ i f fe rencein employment between low-wage ($4.25 per hour) and high-wage ( 2$5.00 per hour) stores; and difference 
in employment between midrange ($4.26-$4.99 per hour) and high-wage stores. 

'Subset of stores with available employment data in wave 1 and wave 2. 
this row only, wave-2 employment at four temporarily closed stores is set to 0. Employment changes are based on the 

subset of stores with available employment data in wave 1 and wave 2. 

TABLE 4-REDUCED-FORM MODELS FOR CHANGE IN EMPLOYMENT 

Model 
Independent variable (i) (ii) (iii) (iv) (v) 

1. New Jersey dummy 2.33 2.30 - - -
(1.19) (1.20) 

2. Initial wage gapa - - 15.65 14.92 11.91 
(6.08) (6.21) (7.39) 

3. Controls for chain and  no  yes no  yes yes 
ownershipb 

4. Controls for regionC 
5. Standard error of regression 
6. Probability value for controlsd 

Notes: Standard errors a re  given in parentheses. T h e  sample consists of 357 stores 
with available data  on  employment and starting wages in waves 1 and 2. The  
dependent variable in all models is change in F T E  employment. T h e  mean and 
standard deviation of the dependent variable are  -0.237 and 8.825, respectively. All 
models include a n  unrestricted constant (not reported). 

aProportional increase in starting wage necessary to raise starting wage to  new 
minimum rate. For stores in Pennsylvania the wage gap is 0. 

b ~ h r e edummy variables for chain type and whether or  not the store is company- 
owned are included. 

'Dummy variables for two regions of New Jersey and two regions of eastern 
Pennsylvania are  included. 

d~robab i l i tyvalue of joint F test for exclusion of all control variables. 
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Figure 82: Simple DD using sample
averages

What made this study so controversial was less its method and
more its failure to find the negative effect on employment predicted
by a neoclassical perfect competition model. In fact, not only did
employment not fall; their DD showed it rose relative to the counter-
factual. This paper started a new wave of studies on the minimum
wage, which continues to this day.134

134 A review of that literature is beyond
the scope of this chapter, but you
can find a relatively recent review by
Neumark et al. [2014].

Simple differencing is one way to do it, but it’s not the only way to
do it. We can also directly estimate this using a regression framework.
The advantages of that is that we can control for other variables
which may reduce the residual variance (leading to smaller standard
errors), it’s easy to include multiple time periods, and we can study
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treatments with different treatment intensity (e.g., varying increases
in the minimum wage for different states. The typical regression
model we estimate is:

Yit = a + b1Di + b2Postt + d(D⇥ Post)it + tt + ss + #st

where D is a dummy whether the unit is in the treatment group or
not, Post is a post-treatment dummy, and the interaction is the DD
coefficient of interest.

One way to build this is to have as a separate variable the date in
which a unit (e.g., state) received the treatment, and then generate a
new variable equalling the difference between the current date and
the date of treatment. So for instance, say that the current date is 2001

and the treatment occurred in 2004. Then 2001-2004 equals -3. This
new variable would be a re-centering of the time period such that
each unit was given a date from the point it received the treatment.
Then one could define the post-treatment period as all periods where
the recentered variable exceeded zero for those treatment units.

In the Card and Krueger case, the equivalent regression would be:

Yits = a + gNJs + ldt + d(NJ ⇥ d)st + #its

NJ is a dummy equal to 1 if the observation is from NJ, and d is a
dummy equal to 1 if the observation is from November (the post
period). This equation takes the following values

• PA Pre: a

• PA Post: a + l

• NJ Pre: a + g

• NJ Post: a + g + l + d

The DD estimate: (NJ Post - NJ Pre) - (PA Post - PA Pre) = d. We can
see this visually in Figure 83.

Notice that the regression identifies a vertical bar in the post-
treatment period marked by the d. What’s important to notice is that
algebraically this is only the actual treatment effect if the declining
line for NJ is exactly equal to the declining line for PA. In other
words, it’s because of these parallel trends that the object identified
by the regression equals in expectation the true parameter.

This gets to our key identifying assumption in DD strategies – the
parallel trends assumption. This is simply an untestable assumption
because as we can see, we don’t know what would’ve happened to
employment in New Jersey had they not passed the minimum wage
because that is a counterfactual state of the world. Maybe it would’ve
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Graph - DD

Yist = a+ gNJs + ldt + d(NJs  dt ) + #ist

Waldinger (Warwick) 23 / 55

Figure 83: DD regression diagram

evolved the same as Pennsylvania, but maybe it wouldn’t have too.
We have no way of knowing.

Empiricists faced with this untestable assumption have chosen,
therefore, to use deduction as a second best for checking the as-
sumption. By which I mean, empiricists will reason that if the
pre-treatment trends were parallel between the two groups, then
wouldn’t it stand to reason that the post-treatment trends would have
too? Notice, this is not a test of the assumption; rather, this is a test
of a possible corollary of the assumption: checking the pre-treatment
trends. I emphasize this because I want you to understand that check-
ing the parallelism of the pre-treatment trends is not equivalent to
proving that the post-treatment trends would’ve evolved the same.
But given we see that the pre-treatment trends evolved similarly,
it does give some confidence that the post-treatment would’ve too
(absent some unobserved group specific time shock). That would
look like this (see Figure 84): Including leads into the DD model
is an easy way to check for the pre-treatment trends. Lags can be
included to analyze whether the treatment effect changes over time
after treatment assignment, too. If you did this, then the estimating
regression equation would be:

Yits = gs + lt +
�1

Â
t=�q

g

t

Dst

+
m

Â
t=0

d

t

Dst

+ xist + #ist

Treatment occurs in year 0. You include q leads or anticipatory effects
and m leads or post treatment effects. Boom goes the dynamite.

Autor [2003] included both leads and lags in his DD model when
he studied the effect of increased employment protection on the
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Key Assumption of Any DD Strategy: Common Trends

The key assumption for any DD strategy is that the outcome in
treatment and control group would follow the same time trend in the
absence of the treatment.
This does not mean that they have to have the same mean of the
outcome!
Common trend assumption is di¢cult to verify but one often uses
pre-treatment data to show that the trends are the same.
Even if pre-trends are the same one still has to worry about other
policies changing at the same time.

Waldinger (Warwick) 24 / 55

Figure 84: Checking the pre-treatment
trends for parallelism

firms’ use of temporary help workers. In the US, employers can usu-
ally hire and fire at will, but some state courts have made exceptions
to this “employment at will” rule and have thus increased employ-
ment protection. The standard thing in this kind of analysis is to do
what I said earlier and re-center the adoption year to 0. Autor [2003]
then analyzed the effects of these exemptions on the use of tempo-
rary health workers. These results are shown in Figure 85. Notice

Results

The leads are very close to 0. ! no evidence for anticipatory e§ects
(good news for the common trends assumption).

The lags show that the e§ect increases during the first years of the
treatment and then remains relatively constant.

Waldinger (Warwick) 27 / 55

Figure 85: Autor [2003] leads and lags
in dynamic DD model

that the leads are very close to 0. Thus, there is no evidence for antic-
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ipatory effects (good news for the parallel trends assumption). The
lags show that the treatment effect is dynamic: it increases during the
first few years, and then plateaus.

Inference Many papers using DD strategies use data from many
years – not just 1 pre and 1 post treatment period like Card and
Krueger [1994]. The variables of interest in many of these setups only
vary at a group level, such as the state, and outcome variables are
often serially correlated. In Card and Krueger [1994], it is very likely
for instance that employment in each state is not only correlated
within the state but also serially correlated. Bertrand et al. [2004]
point out that the conventional standard errors often severely under-
state the standard deviation of the estimators, and so standard errors
are biased downward (i.e., incorrectly small). Bertrand et al. [2004]
propose therefore the following solutions.

1. Block bootstrapping standard errors (if you analyze states the
block should be the states and you would sample whole states
with replacement for bootstrapping)

2. Clustering standard errors at the group level (in Stata one would
simply add , cluster(state) to the regression equation if one
analyzes state level variation)

3. Aggregating the data into one pre and one post period. Liter-
ally works if there is only one treatment data. With staggered
treatment dates one should adopt the following procedure:

• Regress Yst onto state FE, year FE and relevant covariates

• Obtain residuals from the treatment states only and divide them
into 2 groups: pre and post treatment

• Then regress the two groups of residuals onto a post dummy

Correct treatment of standard errors sometimes makes the number of
groups very small: in Card and Krueger [1994], the number of groups
is only 2. More common than not, researchers will use the second
option (clustering the standard errors by group), though sometimes
you’ll see people do all three for robustness.

Threats to validity There are four threats to validity in a DD strategy.
They are: (1) non-parallel trends; (2) compositional differences; (3)
long-term effects vs. reliability; (4) functional form dependence. We
discuss those now in order.

Regarding the violation of parallel trends, one way in which that
happens is through endogenous treatments. Often policymakers
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will select the treatment and controls based on pre-existing differ-
ences in outcomes – practically guaranteeing the parallel trends
assumption will be violated. One example of this is the“Ashenfelter
dip”, named after Orley Ashenfelter, labor economist at Princeton.
Participants in job trainings program often experience a “dip” in
earnings just prior to entering the program. Since wages have a nat-
ural tendency to mean reversion, comparing wages of participants
and non-participants using DD leads to an upward biased estimate of
the program effect. Another example is regional targeting, like when
NGOs target villages that appear most promising, or worse off. This
is a form of selection bias and violates parallel trends.

What can you do if you think the parallel trends assumption is
violated? There’s a variety of robustness checks that have become
very common. They all come down to various forms of placebo
analysis. For instance, you can look at the leads like we said. Or
you can use a falsification test using data for an alternative control
group, which I’ll discuss in a moment. Or you can use a falsification
test using alternative outcomes that shouldn’t be affected by the
treatment. For instance, if Craigslist’s erotic services only helps
female sex workers, then we might check that by estimating the same
model against manslaughters and male murders – neither of which
are predicted to be affected by ERS, but which would be affected by
secular violence trends.

DDD The use of the alternative control group, though, is usually
called the differences-in-differences-in-differences model, or DDD.135

135 Also called triple difference, DnDnD,
or DiDiD.This was first introduced by Gruber [1994] in his study of maternity

benefits. Before we dig into this paper, let’s go back to our original
DD table from the start of the chapter. What if we introduced city-
specific time-variant heterogeneity? Then DD is biased. Let’s see.

Cities Category Period Outcomes D1 D2 D3
After SF + T + SFt + ft + d

Female murders T + SFt + ft + d

Before SF
San Francisco d + ft �mt

After SF + T + SFt + mt
Male murders T + SFt + mt

Before SF

d

After W + T + Wt + ft
Female murders T + Wt + ft

Before W
Waco ft �mt

After W + T + Wt + mt
Male murders T + Wt + mt

Before W

Table 35: Differences-in-differences-in-
differences

The way that you read this table is as follows. Female murders
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in San Francisco are determined by some San Francisco fixed effect
in the before period, and that same San Francisco fixed effect in the
after period plus a time trend T, a San Francisco specific time trend,
a trend in female murders separate from the national trend shaping
all crimes, and the erotic services platform d. When we difference this
we get

T + SFt + ft + d

Now in the normal DD, we would do the same before and after
differencing for Waco female murders, which would be

T + Wt + ft

And if we differenced these two, we’d get

SFt �Wt + d

This is the familiar selection bias term – the DD estimator would iso-
late the treatment effect plus the selection bias, and thus we couldn’t
know the effect itself.

The logic of the DDD strategy is to use a within-city comparison
group that experiences the same city-specific trends, as well as its
own crime-specific trend, and use these within-city controls to net
them out. Go through each difference to confirm that at the third
difference, you have isolated the treatment effect, d. Note that while
this seems to have solved the problem, it came at a cost, which is
more parallel trends assumptions. That is, now we require that
female murders have a common trend, the entire country have a
common trend, and each city have a common trend. We also require
that these crime outcomes be additive, otherwise the differencing
would not eliminate the components from the analysis.

Gruber [1994] does this exact kind of triple differencing in his
original maternity mandate paper. Here are his main results in
Figure 86:

These kinds of simple triple differencing are useful because they
explain the intuition behind triple differencing, but in practice you
will usually run regressions of the following form:

Yijt = a + b1Xijt + b2tt + b3dj + b4Di + b5(d⇥ t)jt

+ b6(t ⇥ D)ti + b7(d⇥ D)ij + b8(d⇥ t ⇥ D)ijt + #ijt

where in this representation, the parameter of interest is b8. There’s
a few things I want to bring to your attention. First, notice the addi-
tional subscript, j. This j indexes whether it’s the main category of
interest (e.g., female murders) or the within-city comparison group
(e.g., male murders).
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Di�erence-in-Di�erences: Threats to Validity

Triple DDD: Mandated Maternity Benefits (Gruber, 1994)

J. Hainmueller (MIT) 37 / 50

Figure 86: Gruber [1994] Table 3
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But sometimes, it is sufficient just to use your DD model and use it
to examine the effect of the treatment on a placebo as a falsification.
For instance, Cheng and Hoekstra [2013] examined the effect of
castle doctrine gun laws on homicides as their main results, but they
performed placebo analysis by also looking at the law’s effect on
grand theft auto. Auld and Grootendorst [2004] estimated standard
“rational addiction” models from Becker and Murphy [1988] on
outcomes that could not possibly be considered addictive, such as
eggs and milk. Since they find evidence for addiction with these
models, they argued that the identification strategy that authors had
been using previously to evaluate the rational addiction model were
flawed. And then there is the networks literature. Several studies
found significant network effects on outcomes like obesity, smoking,
alcohol use and happiness, leading many researchers to conclude
that these kinds of risk behaviors were “contagious” through peer
effects. Cohen-Cole and Fletcher [2008] used similar models and
data to study network effects for things that couldn’t be transmitted
between peers – acne, height, and headaches – in order to show that
the models’ research designs were flawed.

DD can be applied to repeated cross-sections, as well as panel data.
But one of the risks of working with the repeated cross-section is that
unlike panel data (e.g., individual level panel data), repeated cross-
sections run the risk of compositional changes. Hong [2013] used
repeated cross-sectional data from the Consumer Expenditure Survey
(CEX) containing music expenditure and internet use for a random
sample of households. The authors’ study exploited the emergency
of Napster, the first file sharing software widely used by Internet
users, in June 1999 as a natural experiment. The study compared
Internet users and Internet non-users before and after emergence of
Napster. Figure 87 shows the main results. Notice that as the Internet
diffusion increased, music expenditure for the Internet user group
declined – as did for the non-user group – suggesting that Napster
was causing people to substitute away from music purchases towards
file sharing.

But when we look at Figure 88, we see evidence of compositional
changes in the unit itself. While music expenditure fell over the
treatment period, the age of the sample grew while income fell.
If older people are less likely to buy music in the first place, then
this could independently explain some of the decline. This kind of
compositional change is a kind of omitted variable bias caused by
time-variant unobservables. Diffusion of the Internet appears to be
changing the samples as younger music fans are early adopters.
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Di�erence-in-Di�erences: Threats to Validity

Compositional di�erences?

Table 8: 2SIV Estimates for Age and Family Groupsa

HHs w/children
Age 15-34

Aged 6-17
(1) (2)

A. DD Estimates
� -3.432 (1.284) -3.258 (1.203)

B. 2SIV Estimates
�0 -2.427 (0.949) -0.120 (1.092)
�1 -2.719 (2.079) -22.510 (6.889)
the mean of imputed
downloading probability 0.346 0.140

aStandard errors in parentheses. The dependent variable is music expenditure
in 1998 dollar. All regressions are estimated by weighted least squares using the
CEX weights. Panel A reports the coe�cient estimates for � in the DD regression
(16) that includes controls such as age, education, income, appliance, occupation,
family composition, and region. Panel B reports the coe�cient estimates for �0

and �1 in the regression (17) that includes various covariates. Bootstrap is used
to estimated standard errors.

Figure 1: Internet Di�usion and Average Quarterly Music Expenditure in the CEX
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Figure 87: Internet diffusion and music
spending

Di�erence-in-Di�erences: Threats to Validity

Compositional di�erences?

Table 1: Descriptive Statistics for Internet User and Non-user Groupsa

Year 1997 1998 1999 2000
Internet User Non-user Internet User Non-user Internet User Non-user Internet User Non-user

Average Expenditure
Recorded Music $25.73 $10.90 $24.18 $9.97 $20.92 $9.37 $17.42 $8.22
Entertainment $195.03 $96.71 $193.38 $84.92 $182.42 $80.19 $164.88 $71.44

Zero Expenditure
Recorded Music .56 .79 .60 .80 .64 .81 .68 .83
Entertainment .08 .32 .09 .35 .14 .39 .17 .44

Demographics
Age 40.2 49.0 42.3 49.0 44.1 49.4 44.3 49.9
Income $52,887 $30,459 $51,995 $28,169 $49,970 $26,649 $47,510 $26,336
High School Grad. .18 .31 .17 .32 .21 .32 .22 .33
Some College .37 .28 .35 .27 .34 .27 .36 .27
College Grad. .43 .21 .45 .21 .42 .20 .37 .20
Manager .16 .08 .16 .08 .14 .08 .14 .07
Professional .23 .11 .22 .10 .21 .10 .19 .10
Living in a Dorm .12 0 .08 0 .05 0 .05 0
Urban .93 .87 .93 .86 .91 .87 .89 .86
Inside a MSA .84 .78 .83 .78 .83 .78 .81 .78
Pop. Size > 4 million .34 .26 .30 .26 .31 .25 .28 .25

Appliance Ownership
Computer .79 .27 .81 .28 .80 .28 .81 .32
Sound System .81 .57 .79 .58 .78 .56 .76 .56
VCR .83 .72 .86 .74 .86 .72 .85 .72

Total Households
(in million) 15 91 22 86 28 80 34 76

Observations 3,163 19,052 5,624 21,550 8,191 22,810 9,606 20,919

aAll the statistics are weighted using the weights provided by the CEX. Years refer to the period from June of the year to May of the next year. Total
households are computed by summing the CEX weights.

40

Di�usion of the internet changes samples (e.g. younger music fans are
early adopters)

J. Hainmueller (MIT) 42 / 50

Figure 88: Comparison of Internet user
and non-user groups
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Stata exercise: Abortion legalization and longrun gonorrhea inci-
dence

Exposition of Cunningham and Cornwell [2013] As we have shown,
estimating the DD model is straightforward, but running through
an example would probably still be beneficial. But since the DDD
requires reshaping the data, it would definitely be useful to run
through an example that did both. The study we will be replicating
is Cunningham and Cornwell [2013]. But first let’s learn about the
project and the background. Gruber et al. [1999] started a contro-
versial literature. What was the effect that abortion legalization in
the 1970s had on the marginal child who would’ve been born 15-20

years later? The authors showed that the child who would have been
born had abortion remained illegal was 60% more likely to live in a
single-parent household.

The most famous paper to pick up on that basic stylized fact was
Donohue and Levitt [2001]. The authors link abortion legalization in
the early 1970s with the decline in crime in the 1990s. Their argument
was similar to Gruber et al. [1999] - the marginal child was unwanted
and would’ve grown up in poverty, both of which they argued could
predict higher criminal propensity to commit crime as the cohort
aged throughout the age-crime profile. But, abortion legalization (in
Gruber et al. [1999] and Donohue and Levitt [2001]’s argument) re-
moved these individuals and as such the treated cohort had positive
selection. Levitt [2004] attributes as much as 10% of the decline in
crime between 1991 and 2001 to abortion legalization in the 1970s.

This literature was, not surprisingly, incredibly controversial, some
of it unwarranted. When asked whether abortion was correct to be
legalized, Levitt hedged and said those sorts of ethical questions
were beyond the scope of his study. Rather, his was a positive study
interested only in cause and effect. But some of the ensuing criticism
was more legitimate. Joyce [2004], Joyce [2009], and Foote and Goetz
[2008] all disputed the findings – some through replication exercises
using different data and different identification strategies, and some
through the discovery of key coding errors. Furthermore, why look
at only crime? If the effect was as large as the authors claim, then
wouldn’t we find effects everywhere?

Cunningham and Cornwell [2013] sought to build on Joyce
[2009]’s challenge - if the abortion-selection hypothesis has merit,
then shouldn’t we find it elsewhere? Because of my research agenda
in risky sexual behavior, I chose to investigate the effect on gonorrhea
incidence. Why STIs? For one, the characteristics of the marginal
child could explain risky sexual behavior that leads to disease trans-
mission. Being raised a single parent is a strong predictor of earlier
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sexual activity and unprotected sex. Levine et al. [1999] found that
abortion legalization caused teen childbearing to fall by 12%. Charles
and Luoh [2006] reported that children exposed in utero to a legalized
abortion regime were less likely to use illegal substances which is
correlated with risky sexual behavior.

The estimating strategy that I used was conventional at the time.
Five states repealed abortion laws three years before Roe v. Wade.
My data from the CDC comes in five-year age categories (e.g., 15-19,
20-24 year olds). This created some challenges. First, the early repeal
of some states should show declines in gonorrhea for the treated
cohort three years before Roe states (i.e., the rest of the country).
Specifically, we should see lower incidence among 15-19 year olds
in the repeal states during the 1986-1992 period relative to their
Roe counterparts. Second, the treatment effect should be nonlinear
because treated cohorts in the repeal states do not fully come of
age until 1988, just when the 15-year-olds born under Roe enter the
sample. Thus we should find negative effects on gonorrhea incidence
briefly lasting only for the duration of time until Roe cohorts catch up
and erase the effect. I present a diagram of this dynamic in Figure
89. The top horizontal axis shows the year of the panel; the vertical
axis shows the age in calendar years. The cells show the cohort for
those individuals who are of a certain age in that given year. So for
instance, a 15-year-old in 1985 was born in 1970. A 15-year-old in
1986 was born in 1971, and so forth. The highlighted blue means that
person was exposed to repeal, and the highlighted yellow means that
Roe catches up.

This creates a very specific age pattern in the treatment effect,
represented by the colored bottom row. We should see no effect in
1985; a slightly negative effect in 1986 as the first cohort reaches 15,
an even more negative effect through 1987 and an even more negative
effect from 1988-1990. But then following 1990 through 1992, the
treatment effect should gradually disappear. All subsequent DD
coefficients should be zero thereafter since there is no difference at
that point in the Roe and repeal states beyond 1992.

A simple graphic for Black 15-19 year old female incidence can
hep illustrate our findings. Remember, a picture speaks a thousand
words, and whether it’s RDD or DD, it’s helpful to show pictures like
these to prepare the reader for the table after table of regression coef-
ficients. I present two pictures; one showing the raw data, and one
showing the DD coefficients. The first is Figure 91. This picture cap-
tures the dynamics that we will be picking up in our DD plots. The
shaded areas represent the period of time where differences between
the treatment and control units should be different, and beyond they
should be the same, conditional on a state and year fixed effect. And
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Figure 89: Theoretical predictions of
abortion legalization on age profiles of
gonorrhea incidence
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and Roe cohorts.
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as you can see, Roe states experienced a large increase in gonorrhea
during the window where repeal states were falling.

Our estimating equation is as follows:

Yst = b1Repeals + b2DTt + b3tRepeals⇥DTt + Xsty + asDSs + g1t + g2s⇥ t + #st

where Y is the log number of new gonorrhea cases for 15-19 year
olds (per 100,000 of the population); Repeals equals one if the state
legalized abortion prior to Roe; DTt is a year dummy; DSs is a state
dummy; t is a time trend; X is a matrix of covariates; DSs ⇥ t are
state specific linear trends; and #st is an error term assumed to be
conditionally independent of the regressors. We present plotted
coefficients from this regression for simplicity (and because pictures
can be so powerful) in Figure 91. As can be seen, there is a negative
effect during the window where Roe has not fully caught up:
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Whisker plots are estimated coefficients of DD estimator from Column b of Table 2.

Black females 15-19 year-olds
Estimated effect of abortion legalization on gonorrhea

Figure 91: Coefficients and standard
errors from DD regression equation

The regression equation for a DDD is more complicated as you
recall from the Gruber [1994] paper. Specifically, it requires stacking
new comparison within-state units who capture state-specific trends
but who were technically untreated. We chose the 25-29 year olds in
the same states as within-state comparison groups. We also chose the
20-24 year olds as a within-state comparison group but our reasoning
was that that age group, while not treated, was more likely to have
sex with the 15-19 year olds, who were treated, and thus SUTVA was
violated. So we chose a group that was reasonably close to capture
trends, but not so close that they violate SUTVA. The estimating
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equation for this regression is

Yast = b1 Repeals + b2DTt + b3t Repeals · DTt + d1 DA + d2 Repeals · DA

+ d3t DA · DTt + d4t Repeals · DA · DTt + Xstx + a1sDSs + a2sDSs · DA

+ g1 t + g2sDSs · t + g3 DA · t + g4sDSs · DA · t + east,

where the DDD parameter we are estimating is g4 - the full inter-
action. In case this wasn’t obvious, the reason there are 8 separate
dummies is because our DDD parameter has all three interactions.
Thus since there are 9 combinations, we had to drop one as the omit-
ted group, and control separately for the other 7. Here we present
the table of coefficients. Note that the effect should be concentrated
only among the treatment years as before. This is presented here in
Figure 92:136 Column (b) controls for an age-state interaction with 136 Note, because the original table

spans multiple pages, I didn’t want to
clutter up the page with awkwardly
linked tables. But you can see the full
table on pages 401-402 of Cunningham
and Cornwell [2013].

age-state specific linear time trends. As can be seen, we see nearly
the same pattern using DDD as we found with our DD, though the
precision is smaller. I interpreted these patterns as evidence for the
original Gruber et al. [1999] and Donohue and Levitt [2001] abortion-
selection hypothesis.

Stata replication Now what I’d like to do is replicate some of these
results, as I want you to have handy a file that will estimate a DD
model, but also the slightly more cumbersome DDD model. Before
we begin, you will need to download cgmreg.ado from Doug Miller’s
website, as referees asked us to implement the multi-way clustering
correction for the standard errors to allow for correlation both across
states and within states. That can be found at the top of http://
faculty.econ.ucdavis.edu/faculty/dlmiller/Statafiles/, and as
with scuse.ado, must simply be saved into the /c subdirectory of
your Stata folders. Let’s begin:

. scuse abortion, clear

. xi: cgmreg lnr i.repeal*i.year i.fip acc ir pi alcohol crack poverty income ur if bf15==1 //

[aweight=totpop], cluster(fip year)

. test _IrepXyea_1_1986 _IrepXyea_1_1987 _IrepXyea_1_1988 _IrepXyea_1_1989 //

_IrepXyea_1_1990 _IrepXyea_1_1991 _IrepXyea_1_1992

The last line tests for the joint significance of the treatment (repeal
⇥ year interactions). Note, for simplicity, I only estimated this for
the black females (bf15==1) but you could estimate for the black
males (bm15==1), white females (wf15==1) or white males (wm15==1).
We do all four in the paper, but I am just trying to give you a basic
understanding of the syntax.

http://faculty.econ.ucdavis.edu/faculty/dlmiller/Statafiles/
http://faculty.econ.ucdavis.edu/faculty/dlmiller/Statafiles/
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Table 3. Diff-in-Diff-in-Diff: Panel fixed effects regressions of early repeal of abortion on in utero cohort log of 15–19 year-old
gonorrhea incidence rates by race/gender, 25–29 comparison, state and age linear trends, 1985–2000, state clustering

Black female Black male White female White male

Covariates (a) (b) (a) (b) (a) (b) (a) (b)

Repeal × 15-year-old × 1986 −0.337∗∗∗ −0.389∗∗∗ −0.244∗∗ −0.274∗ −0.123 −0.146∗∗ −0.219∗∗∗ −0.210∗

(0.115) (0.126) (0.110) (0.137) (0.084) (0.061) (0.080) (0.125)

Repeal × 15-year-old × 1987 −0.389∗∗ −0.451∗∗ −0.215∗∗ −0.259∗ −0.152 −0.197∗ 0.037 0.057
(0.155) (0.189) (0.092) (0.131) (0.180) (0.116) (0.277) (0.195)

Repeal × 15-year-old × 1988 −0.382∗∗ −0.472∗∗ −0.232∗∗ −0.308∗∗ −0.344∗∗∗ −0.415∗∗ −0.160 −0.140
(0.143) (0.182) (0.098) (0.143) (0.077) (0.182) (0.209) (0.100)

Repeal × 15-year-old × 1989 −0.277∗ −0.380∗ 0.048 −0.043 0.135 0.041 −0.080 −0.049
(0.138) (0.191) (0.212) (0.142) (0.375) (0.238) (0.327) (0.155)

Repeal × 15-year-old × 1990 −0.046 −0.163 0.202 0.090 0.223 0.108 −0.126 −0.083
(0.146) (0.169) (0.247) (0.150) (0.486) (0.320) (0.450) (0.233)

Repeal × 15-year-old × 1991 0.079 −0.039 0.308 0.196 0.341 0.210 0.045 0.097
(0.148) (0.216) (0.214) (0.118) (0.326) (0.157) (0.366) (0.120)

Repeal × 15-year-old × 1992 0.122 0.005 0.183 0.071 0.272 0.129 0.173 0.236∗

(0.140) (0.144) (0.301) (0.163) (0.384) (0.180) (0.417) (0.135)

Repeal × 15-year-old × 1993 −0.168 −0.261 −0.123 −0.213 0.095 −0.054 0.034 0.119
(0.360) (0.328) (0.414) (0.311) (0.474) (0.250) (0.525) (0.256)

Repeal × 15-year-old × 1994 0.239∗ 0.112 0.231 0.112 0.120 −0.055 0.188 0.261
(0.124) (0.104) (0.421) (0.240) (0.505) (0.250) (0.628) (0.232)

Repeal × 15-year-old × 1995 0.151 0.060 0.295 0.207 0.094 −0.082 −0.019 0.084
(0.142) (0.096) (0.459) (0.255) (0.515) (0.225) (0.685) (0.248)

Repeal × 15-year-old × 1996 0.183 0.095 0.311 0.222 0.311 0.125 −0.130 −0.013
(0.114) (0.115) (0.415) (0.195) (0.338) (0.103) (0.695) (0.239)

Repeal × 15-year-old × 1997 0.357∗∗∗ 0.269∗∗∗ 0.435 0.346∗∗ 0.231 0.030 −0.113 0.025
(0.114) (0.098) (0.379) (0.146) (0.411) (0.107) (0.711) (0.172)

(continued)

 at Baylor University on September 13, 2013 http://aler.oxfordjournals.org/ Downloaded from 

Figure 92: Subset of coefficients (year-
repeal interactions) for the DDD model,
Table 3 of Cunningham and Cornwell
[2013].
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Next, we show how to use this sample so that we can estimate a
DDD model. A considerable amount of reshaping had to be done
earlier in the code, but it would take too long to post that here, so in
v. 2.0 of this book, I will provide the do file that was used to make
the tables for this paper. For now, though, I will simply produce the
commands that produce the black female result.

. gen yr=(repeal==1) & (younger==1)

. gen wm=(wht==1) & (male==1)

. gen wf=(wht==1) & (male==0)

. gen bm=(wht==0) & (male==1)

. gen bf=(wht==0) & (male==0)

. char year[omit] 1985

. char repeal[omit] 0

. char younger[omit] 0

. char fip[omit] 1

. char fa[omit] 0

. char yr[omit] 0

. cap n xi: cgmreg lnr i.repeal*i.year i.younger*i.repeal i.younger*i.year i.yr*i.year //

i.fip*t acc pi ir alcohol crack poverty income ur if ‘x’==1 & (age==15 | age==25) //

[aweight=totpop], cluster(fip year)

. test _IyrXyea_1_1986 _IyrXyea_1_1987 _IyrXyea_1_1988 _IyrXyea_1_1989 _IyrXyea_1_1990 //

_IyrXyea_1_1991 _IyrXyea_1_1992

Notice that some of these already are intereactions (e.g., yr) which
was my way to compactly include all of the interactions since at
the time my workflow used the asterisk to create interactions as
opposed to the hashtag (e.g., ##). But I encourage you to study the
data structure itself. Notice how I used if-statements to limit the
regression analysis which forced the data structure to shrink into
either the DD matrix or the DDD matrix depending on how I did it.

Conclusion I have a bumper sticker on my car that says “I love Fed-
eralism (for the natural experiments)” (Figure 93).137 The reason 137 Although this one has a misspelling,

the real one has the plural version of
experiments. I just couldn’t find the
image on my computer. :(

I made this was half tongue-in-cheek, half legitimate gratitude. Be-
cause of state federalism, each American state is allowed considerable
legislative flexibility to decide its own governance and laws. Yet,
because of the federal government, many of our datasets are harmo-
nized across states, making it even more useful for causal inference
than European countries which do not always have harmonized
datasets for many interesting questions outside of macroeconomics.
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Figure 93: I ~ Federalism bumper-
sticker (for the natural experiments)

The reason to be grateful for federalism is that it provides a con-
stantly evolving laboratory for applied researchers seeking to evalu-
ate the causal effects of laws and other interventions. It has therefore
for this reason probably become one of the most popular forms of
identification among American researchers, if not the most common.
A google search of the phrase “differences in differences” brought
up 12 million hits. It is arguably the most common methodology
you will use – moreso than IV or matching or even RDD, despite
RDD’s greater credibility. There is simply a never ending flow of
quasi-experiments being created by our decentralized data generating
process in the United States made even more advantageous by so
many federal agencies being responsible for data collection, thus
ensuring improved data quality and consistency.

Study the ideas in this chapter. Review them. Review the dataset
I provided and the Stata syntax. Walk yourself through the table and
figures I presented. Think carefully about why the regression analy-
sis reproduces the exact same differencing that we presented in our
DD and DDD tables. Study the DAG at the start of the chapter and
the formal technical assumptions necessary for identification. Under-
standing what you’re doing in DD and DDD is key to your career
because of its popularity if nothing else. You need to understand how
it works, and under what conditions it can identify causal effects, if
only to interact with colleagues and peers’ research.





Synthetic control

“I’m representin’ for them gangstas all across the world”
– Dr Dre

“The synthetic control approach developed by Abadie et al. [2010,
2015] and Abadie and Gardeazabal [2003] is arguably the most impor-
tant innovation in the policy evaluation literature in the last 15 years.” -
Athey and Imbens [2017]

In qualitative case studies, such as de Toqueville’s classic Democracy in America,
the goal is to reason inductively about the causal effect of events or
characteristics of a single unit on some outcome using logic and
historical analysis. But it may not give a very satisfactory answer to
these causal questions because oftentimes it lacks a counterfactual.
As such, we are usually left with description and speculation about
the causal pathways connecting various events to outcomes.

Quantitative comparative case studies are more explicitly causal
designs. They usually are natural experiments and they usually
are applied to only a single unit, such as a single school, firm, state
or country. These kinds of quantitative comparative case studies
compare the evolution of an aggregate outcome with either some
single other outcome, or as is more oftentimes the case, a chosen set
of similar units which serve as a control group.

As Athey and Imbens [2017] point out, one of the most important
contributions to quantitative comparative case studies is the synthetic
control model. The synthetic control model was developed in Abadie
and Gardeazabal [2003] in a study of terrorism’s effect on aggregate
income which was then elaborated on in a more exhaustive treatment
[Abadie et al., 2010]. Synthetic controls models optimally choose
a set of weights which when applied to a group of corresponding
units produce an optimally estimated counterfactual to the unit that
received the treatment. This counterfactual, called the “synthetic
unit”, serves to outline what would have happened to the aggregate
treated unit had the treatment never occurred. It is a powerful, yet
surprisingly simple, generalization of the differences-in-differences
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strategy. We will discuss it now with a motivating example - the
famous Mariel boatlift paper by Card [1990].

Cuba, Miami and the Mariel Boatlift

“Born in Miami, right on time
Scarface, El Mariel, Cuban crime”
– Pitbull

Labor economists have debated the effect of immigration on
local labor market conditions for many years [Card and Peri, 2016].
Do inflows of immigrants depress wages and the employment of
natives in local labor markets? For Card [1990], this was an empirical
question, and he used a natural experiment to evaluate it.

In 1980, Fidel Castro announced that anyone wishing to leave
Cuba could do so if they exited from Mariel by a certain date, called
the Mariel Boatlift. The Mariel Boatlift was a mass exodus from
Cuba’s Mariel Harbor to the United States (primarily Miami Florida)
between April and October 1980. Approximately 125,000 Cubans
emigrated to Florida over this six month period of time. The emi-
gration stopped only because Cuba and the US mutually agreed to
end it. The event increased the Miami labor force by 7%, largely by
depositing a record number of low skill workers into a relatively
small area.

Card saw this as an ideal natural experiment. It was arguably an
exogenous shift in the labor supply curve, which would allow him
to determine if wages fell and employment increased, consistent
with a simple competitive labor market model. He used individual-
level data on unemployment from the CPS for Miami and chose four
comparison cities (Atlanta, Los Angeles, Houston and Tampa-St.
Petersburg). The choice of these four cities is delegated to a footnote
in the paper wherein Card argues that they were similar based on
demographics and economic conditions. Card estimated a simple
DD model and found, surprisingly, no effect on wages or native
unemployment. He argued that Miami’s labor market was capable
of absorbing the surge in labor supply because of similar surges two
decades earlier.

The paper was very controversial, probably not so much because
he attempted to answer empirically an important question in labor
economics using a natural experiment, but rather because the result
violated conventional wisdom. It would not be the last word on the
subject, and I don’t take a stand on this question; rather, I introduce it
to highlight a few characteristics of the study.

It was a comparative case study which had certain strengths
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and weaknesses. The policy intervention occurred at an aggregate
level, for which aggregate data was available. But the problems
with the study were that the selection of the control group is ad hoc
and ambiguous, and secondly, the standard errors reflect sampling
variance as opposed to uncertainty about the ability of the control
group to reproduce the counterfactual of interest.138

138 Interestingly, a recent study repli-
cated Card’s paper using synthetic
control and found similar results. [Peri
and Yasenov, 2018].

Abadie and Gardeazabal [2003] and Abadie et al. [2010] intro-
duced the synthetic control estimator as a way of addressing both
simultaneously. This method uses a weighted average of units in the
donor pool to model the counterfactual. The method is based on the
observation that, when the units of analysis are a few aggregate units,
a combination of comparison units (the “synthetic control”) often
does a better job of reproducing characteristics of a treated unit than
using a single comparison unit alone. The comparison unit, therefore,
in this method is selected to be the weighted average of all compari-
son units that best resemble the characteristics of the treated unit(s)
in the pre-treatment period.

Abadie et al. [2010] argue that this method has many distinct
advantages over regression based methods. For one, the method
precludes extrapolation. It uses instead interpolation, because the
estimated causal effect is always based on a comparison between
some outcome in a given year and a counterfactual in the same year.
That is, its uses as its counterfactual a convex hull of control group
units, and thus the counterfactual is based on where data actually is,
as opposed to extrapolating beyond the support of the data which
can occur in extreme situations with regression [King and Zeng,
2006].

A second advantage has to do with processing of the data. The
construction of the counterfactual does not require access to the
post-treatment outcomes during the design phase of the study, unlike
regression. The advantage here is that it helps the researcher avoid
“peaking” at the results while specifying the model. Care and hon-
esty must still be used, as it’s just as easy to also look at the outcomes
during the design phase as it is to not, but the point is that it is hypo-
thetically possible to focus just on design, and not estimation, with
this method.

Another advantage, which is oftentimes a reason that people will
object to the study ironically, is that the weights which are chosen
make explicit what each unit is contributing the counterfactual. Now
this is in many ways a strict advantage, except when it comes to
defending those weights in a seminar. Because someone can see that
Idaho is contributing 0.3 to your modeling of Florida, they are now
able to argue that it’s absurd to think Idaho is anything like Florida.
But contrast this with regression, which also weights the data, but
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does so blindly. The only reason no one objects to what regression
produces as a weight is that they cannot see the weights. They are
implicit, rather than explicit. So I see this explicit production of
weights as a distinct advantage because it makes synthetic control
more transparent than regression based designs.

A fourth advantage, which I think is often unappreciated, is
that it bridges a gap between qualitative and quantitative types.
Qualitative researchers are often the very ones focused on describing
a single unit, such as a country or a prison [Perkinson, 2010], in great
detail. They are usually the experts on the histories surrounding
those institutions. They are usually the ones doing comparative case
studies in the first place. Synthetic control places a valuable tool into
their hands which enables them to choose counterfactuals - a process
that in principle can improve their work insofar as they are interested
in evaluating some particular intervention.

Finally, Abadie et al. [2010] argue that it removes subjective re-
searcher bias, but I actually believe this is the most overstated benefit
of the method. Through repeated iterations and changes to the
matching formula, a person can just as easily introduce subjective
choices into the process. Sure, the weights are optimally chosen
to minimize some distance function, but through the choice of the
covariates themselves, the researcher can in principle select differ-
ent weights. She just doesn’t have a lot of control over it, because
ultimately the weights are optimal for a given set of covariates.

Formalization “I’m the real Slim Shady
all you other Slim Shadys are just imitating”
– Eminem
Let Yjt be the outcome of interest for unit j of J + 1 aggregate

units at time t, and treatment group be j = 1. The synthetic control
estimator models the effect of the intervention at time T0 on the
treatment group using a linear combination of optimally chosen units
as a synthetic control. For the post-intervention period, the synthetic
control estimator measures the causal effect as Y1t �ÂJ+1

j=2 w⇤j Yjt where
w⇤j is a vector of optimally chosen weights.

Matching variables, X1 and X0, are chosen as predictors of post-
intervention outcomes and must be unaffected by the intervention.
The weights are chosen so as to minimize the norm, ||X1 � X0W||
subject to weight constraints. There are two weight constraints. First,
let W = (w2, . . . , wJ+1)0 with wj � 0 for j = 2, . . . , J + 1. Second, let
w2 + · · · + wJ+1 = 1. In words, no unit receives a negative weight, but
can receive a zero weight.139 And the sum of all weights must equal 139 See Doudchenko and Imbens [2016]

for recent work relaxing the non-
negativity constraint.

one.
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As I said, Abadie et al. [2010] consider

||X1 � X0W||=
p

(X1 � X0W)0V(X1 � X0)W

where V is some (k⇥ k) symmetric and positive semidefinite matrix.
Let Xjm be the value of the m-th covariates for unit j. Typically, V is
diagonal with main diagonal v1, . . . , vk. Then the synthetic control
weights minimize:

k

Â
m=1

vm

✓
X1m �

J+1

Â
j=2

wjXjm

◆2

where vm is a weight that reflects the relative importance that we as-
sign to the m-th variable when we measure the discrepancy between
the treated unit and the synthetic control.

The choice of V, as should be seen by now, is important because
W⇤ depends on one’s choice of V. The synthetic control W⇤(V) is
meant to reproduce the behavior of the outcome variable for the
treated unit in the absence of the treatment. Therefore, the weights
v1, . . . , vk should reflect the predictive value of the covariates.

Abadie et al. [2010] suggests different choices of V, but ultimately
it appears from practice that most people choose V that minimizes
the mean squared prediction error:

T0

Â
t=1

✓
Y1t �

J+1

Â
j=2

w⇤j (V)Yjt

◆2

What about unobserved factors? Comparative case studies are
complicated by unmeasured factors affecting the outcome of interest
as well as heterogeneity in the effect of observed and unobserved fac-
tors. Abadie et al. [2010] note that if the number of pre-intervention
periods in the data is “large”, then matching on pre-intervention
outcomes can allow us to control for the heterogenous responses to
multiple unobserved factors. The intuition here is that only units that
are alike on unobservables and unobservables would follow a similar
trajectory pre-treatment.

California’s Proposition 99 Abadie and Gardeazabal [2003] developed
the synthetic control estimator so as to evaluate the impact that terror-
ism had on the Basque region. But Abadie et al. [2010] expounds on
the method by using a cigarette tax in California called Proposition
99. The cigarette tax example uses a placebo-based method for infer-
ence, which I’m wanting to explain, so let’s look more closely at their
paper.

In 1988, California passed comprehensive tobacco control legisla-
tion called Proposition 99. Proposition 99 increased cigarette taxes by
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25 cents a pack, spurred clean-air ordinances throughout the state,
funded anti-smoking media campaigns, earmarked tax revenues to
health and anti-smoking budgets, and produced more than $100 mil-
lion a year in anti-tobacco projects. Other states had similar control
programs, and they were dropped from their analysis.

Cigarette Consumption: CA and the Rest of the U.S.
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Figure 94: California cigarette sales vs
the rest of the country

Figure 94 shows changes in cigarette sales for California and the
rest of the United States annually from 1970 to 2000. As can be seen,
cigarette sales fell after Proposition 99, but as they were already
falling, it’s not clear if there was any effect – particularly since they
were falling in the rest of the country at the same time.

Using their method, though, they select an optimal set of weights
that when applied to the rest of the country produces the figure
shown in Figure 95. Notice that pre-treatment, this set of weights pro-
duces a nearly identical time path for California as the real California
itself, but post-treatment the two series diverge. There appears at first
glance to have been an effect of the program on cigarette sales.

The variables they used for their distance minimization are listed
in Figure 96. Notice that this analysis produces values for the treat-
ment group and control group that facilitate a simple investigation
of balance. This is not a technical test, as there are only one value
per variable per treatment category, but it’s the best we can do with
this method. And it appears that the variables used for matching are
similar across the two groups, particularly for the lagged values.
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Cigarette Consumption: CA and synthetic CA
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Figure 95: California cigarette sales vs
synthetic California

Predictor Means: Actual vs. Synthetic California

California Average of
Variables Real Synthetic 38 control states
Ln(GDP per capita) 10.08 9.86 9.86
Percent aged 15-24 17.40 17.40 17.29
Retail price 89.42 89.41 87.27
Beer consumption per capita 24.28 24.20 23.75
Cigarette sales per capita 1988 90.10 91.62 114.20
Cigarette sales per capita 1980 120.20 120.43 136.58
Cigarette sales per capita 1975 127.10 126.99 132.81

Note: All variables except lagged cigarette sales are averaged for the 1980-
1988 period (beer consumption is averaged 1984-1988).

Figure 96: Balance table
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Like RDD, synthetic control is a picture-intensive estimator. Your
estimator is basically a picture of two series which, if there is a causal
effect, diverge from another post-treatment, but resemble each other
pre-treatment. It is common to therefore see a picture just showing
the difference between the two series (Figure 97. But so far, we

Smoking Gap Between CA and synthetic CA
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Figure 97: California cigarette sales vs
synthetic California

have only covered estimation. How do we determine whether the
observed difference between the two series is a statistically signifi-
cant difference? After all, we only have two observations per year.
Maybe the divergence between the two series is nothing more than
prediction error, and any model chosen would’ve done that, even if
there was no treatment effect. Abadie et al. [2010] suggest that we
use an old fashioned method to construct exact p-values based on
Fisher [1935]. This is done through “randomization” of the treat-
ment to each unit, re-estimating the model, and calculating a set of
root mean squared prediction error (RMSPE) values for the pre- and
post-treatment period.140 We proceed as follows: 140 What we will do is simply reassign

the treatment to each unit, putting
California back into the donor pool
each time, estimate the model for that
“placebo”, and recording information
from each iteration.

1. Iteratively apply the synthetic control method to each coun-
try/state in the donor pool and obtain a distribution of placebo
effects

2. Calculate the RMSPE for each placebo for the pre-treatment
period:

RMSPE =
✓

1
T � T0

T

Â
t=T0+t

✓
Y1t �

J+1

Â
j=2

w⇤j Yjt

◆2◆ 1
2
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3. Calculate the RMSPE for each placebo for the post-treatment
period (similar equation but for the post-treatment period)

4. Compute the ratio of the post-to-pre-treatment RMSPE

5. Sort this ratio in descending order from greatest to highest.

6. Calculate the treatment unit’s ratio in the distribution as p =
RANK
TOTAL

In other words, what we want to know is whether California’s treat-
ment effect is extreme, which is a relative concept compared to the
donor pool’s own placebo ratios.

There’s several different ways to represent this. The first is to
overlay California with all the placebos using Stata twoway command,
which I’ll show later. Figure 98 shows what this looks like. And I
think you’ll agree, it tells a nice story. Clearly, California is in the
tails of some distribution of treatment effects. Abadie et al. [2010]

Smoking Gap for CA and 38 control states
(All States in Donor Pool)
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Figure 98: Placebo distribution

recommend iteratively dropping the states whose pre-treatment
RMSPE is considerably different than California’s because as you
can see, they’re kind of blowing up the scale and making it hard to
see what’s going on. They do this in several steps, but I’ll just skip to
the last step (Figure 99). In this, they’ve dropped any state unit from
the graph whose pre-treatment RMSPE is more than two times that
of California’s. This therefore limits the picture to just units whose



296 causal inference: the mixtape

Smoking Gap for CA and 19 control states
(Pre-Prop. 99 MSPE � 2 Times Pre-Prop. 99 MSPE for CA)
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Figure 99: Placebo distribution

model fit, pre-treatment, was pretty good, like California’s. But,
ultimately, inference is based on those exact p-values. So the way we
do this is we simply create a histogram of the ratios, and more or
less mark the treatment group in the distribution so that the reader
can see the exact p-value associated with the model. I produce that
here in Figure 100. As can be seen, California is ranked 1st out of
38 state units.141 This gives an exact p-value of 0.026, which is less 141 Recall, they dropped several states

who had similar legislation passed over
this time period.

than the conventional 5% most journals want to (arbitrarily) see for
statistical significance.

Falsifications In Abadie et al. [2015], the authors studied the effect
of the reunification of Germany on GDP. One of the contributions
this paper makes, though, is a recommendation for how to test the
validity of the estimator through a falsification exercise. To illustrate
this, let’s walk through their basic findings. In Figure 101, the authors
illustrate their main question by showing the changing trend lines for
West Germany and the rest of their OECD sample.

As we saw with cigarette smoking, it’s difficult to make a state-
ment about the effect of reunification given West Germany is dissimi-
lar from the other countries on average before reunification.

In Figure 101 and Figure 103, we see their main results. The au-
thors then implement the placebo-based inference to calculate exact
p�-values and find that the estimated treatment effect from reunifica-
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Figure 1: Trends in Per-Capita GDP: West Germany vs. Rest of OECD Sample
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Figure 2: Trends in Per-Capita GDP: West Germany vs. Synthetic West Germany

1960 1970 1980 1990 2000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

year

pe
r−

ca
pi

ta
 G

D
P 

(P
PP

, 2
00

2 
U

SD
)

West Germany
synthetic West Germany

reunification

26

Figure 102: Synthetic control graph:
West Germany vs Synthetic West
Germany

Figure 3: Per-Capita GDP Gap Between West Germany and Synthetic West Germany
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Differences between West Germany and
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tion is statistically significant.
The placebo-based inference suggests even further robustness

checks, though. The authors specifically recommend rewinding time
from the date of the treatment itself and estimating their model on an
earlier (placebo) date. There should be no effect when they do this; if
there is, then it calls into question the research design. The authors
do this in Figure 104. Notice that when they run their model on

Figure 4: Placebo Reunification 1975 - Trends in Per-Capita GDP: West Germany vs.
Synthetic West Germany
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Figure 104: Synthetic control graph:
Placebo Date

the placebo date of 1975, they ultimately find no effect. This suggests
that their model has good in and out of sample predictive properties.
Hence since the model does such a good job of predicting GDP per
capita, the fact that it fails to anticipate the change in the year of
reunification suggests that the model was picking up a causal effect.

We include this second paper primarily to illustrate that synthetic
control methods are increasingly expected to pursue numerous
falsification exercises in addition to simply estimating the causal
effect itself. In this sense, researchers have pushed others to hold it
to the same level of scrutiny and skepticism as they have with other
methodologies such as RDD and IV. Authors using synthetic control
must do more than merely run the synth command when doing
comparative case studies. They must find the exact p-values through
placebo-based inference, check for the quality of the pre-treatment fit,
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investigate the balance of the covariates used for matching, and check
for the validity of the model through placebo estimation (e.g., rolling
back the treatment date).

Stata exercise: Prison construction and Black male incarceration

The project that you’ll be replicating here is a project I have been
working on with several coauthors over the last few years.142 Here’s 142 You can find one example

of an unpublished manuscript
here coauthored with Sam Kang:
http://scunning.com/prison_booms_and_drugs_20.pdf

the backdrop.
In 1980, Texas Department of Corrections lost a major civil action

lawsuit. The lawsuit was called Ruiz v. Estelle; Ruiz was the prisoner
who brought the case, and Estelle was the warden. The case argued
that TDC was engaging in unconstitutional practices related to
overcrowding and other prison conditions. Surprisingly, Texas lost
the case, and as a result, Texas was forced to enter into a series of
settlements. To amend the issue of overcrowding, the courts placed
constraints on the number of housing inmates that could be placed
in cells. To ensure compliance, TDC was put under court supervision
until 2003.

Given these constraints, the construction of new prisons was the
only way that Texas could adequately meet demand without letting
prisoners go, and since the building of new prisons was erratic,
the only other option was increasing the state’s parole rate. That is
precisely what happened; following Ruiz v. Estelle, Texas used paroles
more intensively to handle the increased arrest and imprisonment
flows since they did not have the operational capacity to handle that
flow otherwise.

But, then the state began building prisons which started somewhat
in the late 1980s under Governor Bill Clements. However, the prison
construction under Clements was relatively modest. Not so in 1993

when Governor Ann Richards embarked on a major prison construc-
tion drive. Under Richards, state legislators approved a billion dollar
prison construction project which doubled the state’s operational
capacity within 3 years. This can be seen in Figure 105. As can be
seen, Clements build out was relatively modest both as a percentage
change and in levels. But Richards’ investments in operational capac-
ity was gigantic – the number of beds grew over 30% for three years
causing the number of beds to more than double in a short period of
time.

What was the effect of building so many prisons? Just because
prison capacity expands doesn’t mean incarceration rates will grow.
But because the state was intensively using paroles to handle the flow,
that’s precisely what did happen. Because our analysis in a moment
will focus on African-American male imprisonment, I will show the
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Figure 105: Prison capacity (operational
capacity) expansion

effect of the prison boom on African-American male incarceration.
As you can see from Figure 106, the Black male incarceration rate
went from 150 to 350 in only two years. Texas basically went from
being a typical, modal state when it came to incarceration rates to
one of the most severe in only a few short periods of time.

What we will now do is analyze the effect that the prison con-
struction under Richards had on Black male incarceration rates using
synthetic control. The do file to do this can be downloaded directly
from my website at http://scunning.com/texas.do, and I probably
would recommend downloading it now instead of using the code I’m
going to post here. But, let’s start now. You’ll first want to look at the
readme document to learn how to organize a set of subdirectories,
as I use subdirectories extensively in this do file. That readme can
be found at http://scunning.com/readme-2.pdf. The subdirectories
you’ll need are the following:

• Do

• Data

– synth

• Inference

• Figures

And I recommend having a designated main directory for all this,
perhaps /Texas. In other words the Do directory would be located in

http://scunning.com/texas.do
http://scunning.com/readme-2.pdf
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incarceration rates

/Texas/Do. Now let’s begin.
The first step is to create the figure showing the effect of the

1993 prison construction on Black male incarceration rates. I’ve
chosen a set of covariates and pre-treatment outcome variables for
the matching; I encourage you, though, to play around with different
models. We can already see, though, from Figure 106 that prior to
1993, Texas Black male incarceration rates were pretty similar to the
rest of the country. What this is going to mean for our analysis is that
we have every reason to believe that the convex hull likely exists in
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this application.

.cd "/users/scott_cunningham/downloads/texas/do"

. * Estimation 1: Texas model of black male prisoners (per capita)

. scuse texas.dta, replace

. ssc install synth. #delimit;

. synth bmprison

. bmprison(1990) bmprison(1992) bmprison(1991) bmprison(1988)

. alcohol(1990) aidscapita(1990) aidscapita(1991)

. income ur poverty black(1990) black(1991) black(1992)

. perc1519(1990)

. ,

. trunit(48) trperiod(1993) unitnames(state)

. mspeperiod(1985(1)1993) resultsperiod(1985(1)2000)

. keep(../data/synth/synth_bmprate.dta) replace fig;

. mat list e(V_matrix);

. #delimit cr

. graph save Graph ../Figures/synth_tx.gph, replace

Note that on the first line, you will need to change the path directory,
but otherwise, it should run because I’m using standard Unix/DOS
notation that allows you to back up and redirect to a different subdi-
rectory using the “../” command. Now in this example, there’s a lot
of syntax, so let me walk you through it.

First, you need to install the data from my website using scuse.
Second, I personally prefer to make the delimiter a semicolon be-
cause I want to have all syntax for synth on the same screen. I’m
more of a visual person, so that helps me. Next the synth syntax. The
syntax goes like this: call synth, then call the outcome variable (bm-
prison), then the variables you want to match on. Notice that you can
choose either to match on the entire pre-treatment average, or you
can choose particular years. I choose both. Also recall that Abadie
et al. [2010] notes the importance of controlling for pre-treatment
outcomes to soak up the heterogeneity; I do that here as well. Once
you’ve listed your covariates, you use a comma to move to Stata
options. You first have to specify the treatment unit. The FIPS code
for Texas is a 48, hence the 48. You then specify the treatment pe-
riod, which is 1993. You list the period of time which will be used to
minimize the mean squared prediction error, as well as what years
to display. Stata will produce both a figure as well as a dataset with
information used to create the figure. It will also list the V matrix.
Finally, I change the delimiter back to carriage return, and save the
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figure in the /Figures subdirectory. Let’s look at what these lines
made (Figure 107). This is the kind of outcome that you ideally
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Figure 107: African-American male
incarceration

want to say – specifically, a very similar pre-treatment trend in the
synthetic Texas group compared to the actual Texas group, and a
divergence in the post-treatment period. We will now plot the gap
between these two lines using the following commands:

.* Plot the gap in predicted error

.use ../data/synth/synth_bmprate.dta, clear

.keep _Y_treated _Y_synthetic _time

.drop if _time==.

.rename _time year

.rename _Y_treated treat

.rename _Y_synthetic counterfact

.gen gap48=treat-counterfact

.sort year

.#delimit ;

.twoway (line gap48 year,lp(solid)lw(vthin)lcolor(black)), yline(0, lpattern(shortdash) lcolor(black))

. xline(1993, lpattern(shortdash) lcolor(black)) xtitle("",si(medsmall)) xlabel(#10)

. ytitle("Gap in black male prisoner prediction error", size(medsmall)) legend(off);

.#delimit cr

.save ../data/synth/synth_bmprate_48.dta, replace
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The figure that this makes is basically nothing more than the gap
between the actual Texas and the synthetic Texas from Figure 107.
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Figure 108: Gap between actual Texas
and synthetic Texas

And finally, we will show the weights used to construct the syn-
thetic Texas.

State name Weight

California 0.408

Florida 0.109

Illinois 0.36

Louisiana 0.122

Table 36: Synthetic control weights

Now that we have our estimates of the causal effect, we move into
the calculation of the exact p-value which will be based on assigning
the treatment to every state and re-estimating our model. Texas will
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always be thrown back into the donor pool each time.

.* Inference 1 placebo test

.#delimit;

.set more off;

.use ../data/texas.dta, replace;

.local statelist 1 2 4 5 6 8 9 10 11 12 13 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40 41 42 45 46 47 48 49 51 53 55;

.foreach i of local statelist {;

.synth bmprison

. bmprison(1990) bmprison(1992) bmprison(1991) bmprison(1988)

. alcohol(1990) aidscapita(1990) aidscapita(1991)

. income ur poverty black(1990) black(1991) black(1992)

. perc1519(1990)

. ,

. trunit(‘i’) trperiod(1993) unitnames(state)

. mspeperiod(1985(1)1993) resultsperiod(1985(1)2000)

. keep(../data/synth/synth_bmprate_‘i’.dta) replace;

. matrix state‘i’ = e(RMSPE); /* check the V matrix*/

. };

.foreach i of local statelist {;

.matrix rownames state‘i’=‘i’;

.matlist state‘i’, names(rows);

.};

.#delimit cr

This is a loop in which it will cycle through every state and estimate
the model. It will then save data associated with each model into the
../data/synth/synth_bmcrate_‘i’.dta data file where ‘i’ is one of the
state FIPS code listed after local statelist. Now that we have each
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of these files, we can calculate the post-to-pre RMSPE.

.local statelist 1 2 4 5 6 8 9 10 11 12 13 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 45 46 47 48 49 51 53 55

. foreach i of local statelist {

. use ../data/synth/synth_bmprate_‘i’ ,clear

. keep _Y_treated _Y_synthetic _time

. drop if _time==.

. rename _time year

. rename _Y_treated treat‘i’

. rename _Y_synthetic counterfact‘i’

. gen gap‘i’=treat‘i’-counterfact‘i’

. sort year

. save ../data/synth/synth_gap_bmprate‘i’, replace

.use ../data/synth/synth_gap_bmprate48.dta, clear

.sort year

.save ../data/synth/placebo_bmprate48.dta, replace

.foreach i of local statelist {

. merge year using ../data/synth/synth_gap_bmprate‘i’

. drop _merge

. sort year

. save ../data/synth/placebo_bmprate.dta, replace

Notice that this is going to first create the gap between the treatment
state and the counterfactual state before merging each of them into
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single data file.

.** Inference 2: Estimate the pre- and post-RMSPE and calculate the ratio of the

.* post-pre RMSPE

.set more off

.local statelist 1 2 4 5 6 8 9 10 11 12 13 15 16 17 18 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 45 46 47 48 49 51 53 55

.foreach i of local statelist {

. use ../data/synth/synth_gap_bmprate‘i’, clear

. gen gap3=gap‘i’*gap‘i’

. egen postmean=mean(gap3) if year>1993

. egen premean=mean(gap3) if year<=1993

. gen rmspe=sqrt(premean) if year<=1993

. replace rmspe=sqrt(postmean) if year>1993

. gen ratio=rmspe/rmspe[_n-1] if year==1994

. gen rmspe_post=sqrt(postmean) if year>1993

. gen rmspe_pre=rmspe[_n-1] if year==1994

. mkmat rmspe_pre rmspe_post ratio if year==1994, matrix (state‘i’)

. }

In this part, we are calculating the post-RMSPE, the pre-RMSPE and
the ratio of the two. Once we have this information, we can compute
a histogram. The following commands do that.
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.* show post/pre-expansion RMSPE ratio for all states, generate histogram

.foreach i of local statelist {

. matrix rownames state‘i’=‘i’

. matlist state‘i’, names(rows)

. }

.#delimit ;

. mat state=state1\state2\state4\state5\state6\state8\state9\state10\state11\state12\state13\state15

. \state16\state17\state18\state20\state21\state22\state23\state24\state25\state26

. \state27\state28\state29\state30\state31\state32\state33\state34\state35\state36\

. state37\state38\state39\state40\state41\state42\state45\state46\state47\state48;

. \state49\state51\state53\state55;

.#delimit cr

.ssc install mat2txt

. mat2txt, matrix(state) saving(../inference/rmspe_bmprate.txt) replace

. insheet using ../inference/rmspe_bmprate.txt, clear

. ren v1 state

. drop v5

. gsort -ratio

. gen rank=_n

. gen p=rank/46

. export excel using ../inference/rmspe_bmprate, firstrow(variables) replace

. import excel ../inference/rmspe_bmprate.xls, sheet("Sheet1") firstrow clear

. histogram ratio, bin(20) frequency fcolor(gs13) lcolor(black) ylabel(0(2)6) xtitle(Post/pre RMSPE ratio) xlabel(0(1)5)

.* Show the post/pre RMSPE ratio for all states, generate the histogram.

.list rank p if state==48

All the looping will take a few moments to run, but once it is
done, it will produce a histogram of the distribution of ratios of
post-RMSPE to pre-RMSPE. As you can see from the p-value, Texas
has the second highest ratio out of 46 state units, giving it a p-value
of 0.04. We can see that in Figure 110. Notice that in addition to
the figure, this created an excel spreadsheet containing information
on the pre-RMSPE, the post-RMSPE, the ratio, and the rank. We
will want to use that again when we limit our display next to states
whose pre-RMSPE are similar to that of Texas.

All the looping will take a few moments to run, but once it is
done, it will produce a histogram of the distribution of ratios of
post-RMSPE to pre-RMSPE. As you can see from the p-value, Texas
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Figure 109: Histogram of the distri-
bution of ratios of post-RMSPE to
pre-RMSPE. Texas is one of the ones in
the far right tail.

has the second highest ratio out of 46 state units, giving it a p-value
of 0.04. We can see that in Figure 110. Notice that in addition to
the figure, this created an excel spreadsheet containing information
on the pre-RMSPE, the post-RMSPE, the ratio, and the rank. We
will want to use that again when we limit our display next to states
whose pre-RMSPE are similar to that of Texas.

Now we want to create the characteristic placebo graph where
all the state placebos are laid on top of Texas. To do that we use the
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Figure 110: Histogram of the distri-
bution of ratios of post-RMSPE to
pre-RMSPE. Texas is one of the ones in
the far right tail.

following syntax:

.* Inference 3: all the placeboes on the same picture

.use ../data/synth/placebo_bmprate.dta, replace

.* Picture of the full sample, including outlier RSMPE

.#delimit;

.twoway

.(line gap1 year ,lp(solid)lw(vthin))

.(line gap2 year ,lp(solid)lw(vthin))

.(line gap4 year ,lp(solid)lw(vthin))

.(line gap5 year ,lp(solid)lw(vthin))

.(line gap6 year ,lp(solid)lw(vthin))

.(line gap8 year ,lp(solid)lw(vthin))

.(line gap9 year ,lp(solid)lw(vthin))

.(line gap10 year ,lp(solid)lw(vthin))

.(line gap11 year ,lp(solid)lw(vthin))

.(line gap12 year ,lp(solid)lw(vthin))

.(line gap13 year ,lp(solid)lw(vthin))

.(line gap15 year ,lp(solid)lw(vthin))

.(line gap16 year ,lp(solid)lw(vthin))

.(line gap17 year ,lp(solid)lw(vthin))

.(line gap18 year ,lp(solid)lw(vthin))

.(line gap20 year ,lp(solid)lw(vthin))

.(line gap21 year ,lp(solid)lw(vthin))

.(line gap22 year ,lp(solid)lw(vthin))

.(line gap23 year ,lp(solid)lw(vthin))

.(line gap24 year ,lp(solid)lw(vthin))
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.(line gap25 year ,lp(solid)lw(vthin))

.(line gap26 year ,lp(solid)lw(vthin))

.(line gap27 year ,lp(solid)lw(vthin))

.(line gap28 year ,lp(solid)lw(vthin))

.(line gap29 year ,lp(solid)lw(vthin))

.(line gap30 year ,lp(solid)lw(vthin))

.(line gap31 year ,lp(solid)lw(vthin))

.(line gap32 year ,lp(solid)lw(vthin))

.(line gap33 year ,lp(solid)lw(vthin))

.(line gap34 year ,lp(solid)lw(vthin))

.(line gap35 year ,lp(solid)lw(vthin))

.(line gap36 year ,lp(solid)lw(vthin))

.(line gap37 year ,lp(solid)lw(vthin))

.(line gap38 year ,lp(solid)lw(vthin))

.(line gap39 year ,lp(solid)lw(vthin))

.(line gap40 year ,lp(solid)lw(vthin))

.(line gap41 year ,lp(solid)lw(vthin))

.(line gap42 year ,lp(solid)lw(vthin))

.(line gap45 year ,lp(solid)lw(vthin))

.(line gap46 year ,lp(solid)lw(vthin))

.(line gap47 year ,lp(solid)lw(vthin))

.(line gap49 year ,lp(solid)lw(vthin))

.(line gap51 year ,lp(solid)lw(vthin))

.(line gap53 year ,lp(solid)lw(vthin))

.(line gap55 year ,lp(solid)lw(vthin))

.(line gap48 year ,lp(solid)lw(thick)lcolor(black)), /*treatment unit, Texas*/

.yline(0, lpattern(shortdash) lcolor(black)) xline(1993, lpattern(shortdash) lcolor(black))

.xtitle("",si(small)) xlabel(#10) ytitle("Gap in black male prisoners prediction error", size(small))

. legend(off);

.#delimit cr

Here we will only display the main picture with the placebos,
though one could show several cuts of the data in which you drop
states whose pre-treatment fit compared to Texas is rather poor.
Now that you have seen how to use this do file to estimate a syn-
thetic control model, you are ready to play around with the data
yourself. All of this analysis so far has used black male (total counts)
incarceration as the dependent variable, but perhaps the results
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Figure 111: Placebo distribution. Texas
is the black line.

would be different if we used black male incarceration rates. That
information is contained in the dataset. I would like for you to do
your own analysis using the black male incarceration rate variable
as the dependent variable. You will need to find a new model to fit
this pattern, as it’s unlikely that the one we used for levels will do as
good a job describing rates as it did levels. In addition, you should
implement the placebo-date falsification exercise that we mentioned
from Abadie et al. [2015]. Choose an 1989 as your treatment date and
1992 as the end of the sample and check whether the same model
shows the same treatment effect as you found when you used the
correct year, 1993, as the treatment date. I encourage you to use these
data and this file to learn the ins and outs of the procedure itself, as
well as to think more deeply about what synthetic control is doing
and how to best use it in research.

Conclusion In conclusion, we have seen how to estimate synthetic
control models in Stata. This model is currently an active area of
research (e.g., Powell [2017]), but this is a good foundation for under-
standing the model. I hope that you find this useful.





Conclusion

Causal inference is a fun area. It’s fun because the Rubin causal
model is such a philosophically stimulating and intuitive way to
think about causal effects, and Pearl’s directed acylical graphical
models are so helpful for moving between a theoretical model
and/or an understanding of some phenomena, and an identifica-
tion strategy to identify the causal effect you care about. From those
DAGs, you will learn whether it’s even possible to design such an
identification strategy with the dataset you have, and while that
can be disappointing, it is nonetheless a disciplined and truthful
approach to identification. These DAGs are, in my experience, em-
powering and extremely useful for the design phase of a project.

The methods I’ve outlined are merely some of the most common
research designs currently employed in applied microeconomics.
They are not all methods, and each method is not exhaustively
plumbed either. Version 1.0 omits a lot of things, like I said in the
opening chapter, such as machine learning, imperfect controls, matrix
completion, and structural estimation. I do not omit these because
they are unimportant; I omit them because I am still learning them
myself!

Version 2.0 will differ from version 1.0 primarily in that it will add
in some of these additional estimators and strategies. Version 2.0
will also contain more Stata exercises, and most likely I will produce
a set of do files for you that will exactly reproduce the examples I
go through in the book. It may be helpful for you to have handy a
file, as well as see the programming on the page. I also would like to
have more simulation, as I find that simulations are a great way to
communicate the identifying assumptions for some estimator, as well
as explain basic ideas like the variance in some estimator.

I hope you find this book valuable. Please check out the many
papers I’ve cited, as well as the textbooks I listed at the beginning,
as they are all excellent, and you will learn more from them than
you have learned from my introductory book. Good luck in your
research.
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