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Introduction

This thesis is devoted to the regularity of optimal transport maps. We provide new
results on this problem and some applications. This is part of the work done by the
author during his PhD studies. Other papers written during the PhD studies and not
completely related to this topic are summarized in the second part of the introduction.

1 Regularity of optimal transport maps and applications

Monge optimal transportation problem goes back to 1781 and it can be stated as follows:

Given two probability densities ρ1 and ρ2 on Rn (originally representing the height of
a pile of soil and the depth of an excavation), let us look for a map T moving ρ1 onto
ρ2, i.e. such that 1

∫

T−1(A)
ρ1(x) dx =

∫

A
ρ2(y) dy for all Borel sets A, (1)

and minimizing the total cost of such process:

∫
c(x, T (x))ρ1(x) dx = inf

{∫
c(x, S(x))ρ1(x) dx : S satisfies (1)

}
. (2)

Here c(x, y) represent the “cost” of moving a unit of mass from x to y (the original
Monge’s formulation the cost c(x, y) was given by |x− y|).

Conditions for the existence of an optimal map T are by now well understood (and
summarized without pretending to be aexhaustive in Chapter 1, see [V, Chapter 10]
for a more recent account of the theory).

Once the existence of an optimal map has been established a natural question is
about its regularity. Informally the question can be stated as follows:

Given two smooth densities, ρ1 and ρ2 supported on good sets, it is true the T is smooth?

Or, somehow more precisely, one can investigate how much is the “gain” in regularity
from the densities to T . As we will see in a moment, a natural guess is that T should
have “one derivative” more than ρ1 and ρ2.

1From the mathematical point of view we are requiring that T](ρ1L
n) = ρ2L

n, see Chapter 1.

iii



iv Introduction

To start investigating regularity, notice that (1) can be re-written as

| det∇T (x)| = ρ1(x)

ρ2(T (x)))
, (3)

which turns out to be a very degenerate first order PDE. As we already said, the above
equation could lead to the guess that T has one derivative more than the densities.
Notice however that the above equation is satisfied by every map which satisfies (1).
Thus, by simple examples, we cannot expect solutions of (3) to be well-behaved. Indeed,
consider for instance the case in which ρ1 = 1A and ρ2 = 1B with A and B smooth
open sets. If we right (respectively left) compose T with a map S satisfying det∇S = 1
and S(A) = A (resp. S(B) = B) we still obtain a solution of (3) which is no more
regular than S.

It is at this point that condition (2) comes into play. To see how, let us focus on
the quadratic case, c(x, y) = |x− y|2/2. In this case Brenier Theorem 1.8, ensures that
the optimal T is given by the gradient of a convex function, T = ∇u. Plugging this
information into (3) we obtain that u solves the following Monge-Ampère equation

det∇2u(x) =
ρ1(x)

ρ2(∇u(x)))
. (4)

In this way we have obtained a (degenerate) elliptic second order PDE, and there is
hope to obtain regularity of T = ∇u from the regularity of the densities.2 In spite of the
above discussion, also equation (4) it is not enough to ensure regularity of u. A simple
example is given by the case in which the support of the first density is connected while
the support of the second is not. Indeed, since by (1) it follows easily that

T (spt ρ1) = spt ρ2,

we immediately see that, even if the densities are smooth on their supports, T has to
be discontinuous (cp. Example 1.16). It was noticed by Caffarelli, [Ca4], that the right
assumption to be made on the support of ρ2 is convexity. In this case any solution of
(4) arising from the optimal transportation problem turns out to be a strictly convex
Aleksandrov solution to the Monge-Ampère equation3

detD2u =
ρ1(x)

ρ2(∇u(x)))
on Int(spt ρ1). (5)

2One should compare this with the following fact: there is no hope to get regularity of a vector field
v satisfying

∇ · v = 0,

while if we add the additional condition v = ∇u we obtain the Laplace equation

∆v = 0.

3This kind of solutions have been introduced by Aleksandrov in the study of the Minkowski Problem:
given a function κ : Sn−1 → [0,∞) find a convex body K such that the Gauss curvature of its boundary
is given by κ ◦ ν∂K. All the results of Chapters 2, 3, 4, apply to this problem as well.
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As a consequence, under the previous assumptions, we can translate any regularity
results for Aleksandrov solutions to the Monge-Ampère equation to solution to the op-
timal transport problem. In particular, by the theory developed in [Ca1,Ca2,Ca3,U1]
(see also [GT, Chapter 17]) we have the following (see Chapter 2 for a more precise
discussion):

- If ρ1 and ρ2 are bounded away from zero and infinity on their support and spt ρ2

is convex, then u ∈ C1,α
loc (and hence T ∈ Cαloc).

- If, in addition, ρ1 and ρ2 are continuous, then T ∈W 2,p
loc for every p ∈ [1,∞).

- If ρ1 and ρ2 are Ck,β and, again, spt ρ2 is convex, then T ∈ Ck+2,β
loc .

A natural question which was left open by the above theory is the Sobolev regularity
of T under the only assumptions that ρ1 and ρ2 are bounded away from zero and
infinity on their support and spt ρ2 is convex. In [W], Wang shows with a family of
counterexamples that the best one can expect is T ∈W 1,1+ε with ε = ε(n, λ), where λ
is the “pinching” ‖ log(ρ1/ρ2(∇u))‖∞, see Example 2.21.

Apart from being a very natural question from the PDE point of view, Sobolev
regularity of optimal transport maps (or equivalently of Aleksandrov solutions to the
Monge-Ampère equation) has a relevant application to the study of the semigeostrophic
system, as was pointed out by Ambrosio in [A3]. This is a system of equations arising
in study of large oceanic and atmospheric flows. Referring to Chapter 5 for a more
accurate discussion we recall here that the system can be written, after a suitable
change of variable, as





∂t∇Pt + (ut · ∇)∇Pt = J(∇Pt − x) in Ω× (0,+∞)

∇ · ut = 0 in Ω× (0,+∞)

ut · νΩ = 0 in ∂Ω× (0,+∞)

P0 = P 0 in Ω,

(6)

where Ω is an open, bounded and convex subset of R3 and

J :=




0 −1 0
1 0 0
0 0 0


 .

We look for solutions Pt which are convex for every t (this ansatz is based on the
Cullen stability principle [Cu, Section 3.2]). If we consider the measure4 ρt = (∇u)]L

3
Ω,

4With L 3
Ω we denote the normalized Lebesgue measure restricted to Ω:

L 3
Ω :=

1

L 3(Ω)
L 3 Ω

.



vi Introduction

then ρt solves (formally) the following continuity type equation





∂tρt +∇ · (U tρt) = 0

U t(x) = J(x−∇P ∗t (x))

(∇P ∗t )]ρt = L 3
Ω,

(7)

where P ∗t is the convex conjugate of Pt. Even if the velocity field U t is coupled
with the density through a highly non-linear equation, existence of (distributional)
solutions of (7) can be obtained under very mild conditions on the initial densities
ρ0 = (∇P0)]L

3
Ω, [BeBr]. Given a solution of (7) we can formally obtain a solution to

(6) by taking Pt = (P ∗t )∗ and

ut(x) := [∂t∇P ∗t ](∇Pt(x)) + [∇2P ∗t ](∇Pt(x))J(∇Pt(x)− x). (8)

To give a meaning to the above velocity field we have to understand the regularity of
∇2P ∗t where P ∗t satisfies (∇P ∗t )]ρt = L 3

Ω. Notice that the only condition we get for
free is that U t has zero divergence. In particular, if the initial density ρ0 is bounded
away from zero and infinity, the same it is true (with the same bounds) for ρt. It is
then natural to study the W 2,1 regularity of solutions of (5) under the only assumption
that the right hand side is bounded between two positive constants. This is done in
Chapters 3 and 4 (based on [DF1, DF2] in collaboration with Alessio Figalli, and
on [DFS] in collaboration with Alessio Figalli and Ovidiu Savin) while in Chapter 5
(based on [ACDF1, ACDF2] in collaboration with Luigi Ambrosio, Maria Colombo
and Alessio Figalli) we study the applications of this results to the semigeostrophic
system.

Finally we came back to the regularity of solutions of (2) with a general cost function
c, referring to Section 1.3 for a more complete discussion. In this case, apart from
the obstruction given by the geometry of the target domain (as in the quadratic cost
case) it has been shown in [MTW, Loe3] that a structural condition on the cost
function, the so called MTW-condition, is needed in order to ensure the smoothness
of the optimal transport map. In particular if the above condition does not hold it is
possible to construct two smooth densities such that the optimal map between them is
even discontinuous.

In spite of this, one can try to understand how large can be the set of discontinuity
points of optimal maps between two smooth densities for a generic smooth cost c. In
Chapter 6 (based on [DF4] in collaboration with Alessio Figalli), we will show that,
under very mild assumptions on the cost c (essentially the one needed in order to get
existence of optimal maps), there exist two closed and Lebesgue negligible sets Σ1 and
Σ2 such that

T : spt ρ1 \ Σ1 → spt ρ2 \ Σ2

is a smooth diffeomorphism. A similar result holds true also in the case of optimal
transportation on Riemannian manifolds with cost c = d2/2. Up to now similar results
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were known only in the case of quadratic cost when the support of the target density is
not convex, [FK,F3]. We remark here that in this case the obstruction to regularity is
given only by the geometry of the domain, while in the case of a generic cost function
c we have to face the possible failure of the MTW condition at every point. Thus, to
achieve the proof of our result, we have to use a completely different strategy.

We conclude this first part of the introduction with a short summary of each chapter
of the thesis (more details are given at the beginning of each chapter):

• Chapter 1. In this Chapter we briefly recall the general theory of optimal
transportation, with a particular focus on the case of quadratic cost in Rn. We
also show how to pass from solutions of the Monge-Ampère equation given by the
optimal transportation to Aleksandrov solutions to the Monge-Ampère equation
in case the support of the target density is convex. Finally in the last Section we
address the case of a general cost function.

• Chapter 2. We start the study of the regularity of Aleksandrov solutions to
the Monge-Ampère equation, in particular we give a complete proof of Caffarelli’s
C1,α regularity theorem.

• Chapter 3. We start investigating the W 2,1 regularity of Aleksandrov solutions
to the Monge-Ampère equation. We give a complete proof of the results in [DF1],
where we show that D2u ∈ L logL. Then, following the subsequent paper [DFS],
we show how the above estimate can be improved to D2u ∈ L1+ε for some small
ε > 0. We also give a short proof of the above mentioned CaffarelliW 2,p estimates.

• Chapter 4. Here, following [DF2], we show the (somehow surprising) stability
in the strong W 2,1 topology of Aleksandrov solutions with respect to the L1

convergence of the right-hand sides.

• Chapter 5. In this Chapter, based on [ACDF1,ACDF2], we apply the results
of the previous chapters to show the existence of a distributional solution to the
semigeostrophic system (6) in the 2-dimensional periodic case and in the case of
a bounded convex 3-dimensional domain Ω. In the latter case we have to impose
a suitable decay assumption on the initial density ρ0 = (∇P0)]L

3
Ω.

• Chapter 6. Here we report the partial regularity theorems for solutions of the
optimal transport problem for a general cost function c proved in [DF4].
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2 Other papers

In this second part of the introduction we give a short summary of the additional
research made during the PhD studies, only vaguely related to the theme of the thesis.
We briefly report the results obtained and we refer to the original papers for a more
complete treatment of the problem and the relevant literature.

1. Γ-convergence of non-local perimeter

In [CaRS] Caffarelli-Roquejoffre and Savin introduced the following notion of non-local
perimeter of a set E relative of an open set Ω:

Js(E,Ω) =

∫

E∩Ω

∫

Ec∩Ω

dxdy

|x− y|n+s
+

∫

E∩Ω

∫

Ec∩Ωc

dxdy

|x− y|n+s
+

∫

E∩Ωc

∫

Ec∩Ω

dxdy

|x− y|n+s
,

and study the regularity of local minimizers of it. This functional naturally arises in the
study of phase-transitions with a non-local interaction term, see the nice survey [FrVa]
and reference therein for an updated account of the theory.

In [ADM], in collaboration with Luigi Ambrosio and Luca Martinazzi, we show
the Γ-convergence of the functional (1− s)Js(·,Ω) to the classical De Giorgi perimeter
ωn−1P (·,Ω) with respect to the topology of locally L1 convergence of sets (a similar
earlier result has been obtained in [CaV] for the convergence of local minimizers of the
functionals). We also show equicoercivity of the functionals. More precisely we prove:

Theorem. Let si ↑ 1, then the following statements hold:

(i) (Equicoercivity). Assume that Ei are measurable sets satisfying

sup
i∈N

(1− si)J 1
si(Ei,Ω

′) <∞ ∀Ω′ b Ω.

Then {Ei}i∈N is relatively compact in L1
loc(Ω) and any limit point E has locally

finite perimeter in Ω.

(ii) (Γ-convergence). For every measurable set E ⊂ Rn we have

Γ− lim
s↑1

(1− s)Js(E,Ω) = ωn−1P (E,Ω).

with respect to the the L1
loc convergence of the corresponding characteristic func-

tions in Rn.

(iii) (Convergence of local minimizers). Assume that Ei are local minimizers of Jsi(·,Ω),
and Ei → E in L1

loc(Rn). Then

lim sup
i→∞

(1− si)Jsi(Ei,Ω′) < +∞ ∀Ω′ b Ω,

E is a local minimizer of P (·,Ω) and (1−si)Jsi(Ei,Ω′)→ ωn−1P (E,Ω′) whenever
Ω′ b Ω and P (E, ∂Ω′) = 0.
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2. Sobolev regularity of optimal transport map and differential inclu-
sions

In [ADKir], written in collaboration with Luigi Ambrosio and Bernd Kirchheim, we
started the investigation of the Sobolev regularity of (stricly convex) Aleksandrov solu-
tion to the Monge-Ampé re equation. More precisely we show that in the 2-dimensional
case the Sobolev regularity of optimal transport maps is equivalent to the rigidity of
a partial differential inclusion for Lipschitz maps (see [Kir, Mu] for nice surveys on
partial differential inclusions). Referring to the paper for more details, let us define the
set of “admissible” gradients

A :=
{
M ∈ Sym2×2 : ‖M‖ ≤ 1, (λ+ 1)|Trace(M)| ≤ (1− λ)(1 + det(M))

}
, (9)

where ‖ · ‖ is the operator norm, and the subset S of “singular” gradients is defined by

S :=

{
R−1

(
1 0
0 −1

)
R : R ∈ SO(2)

}
. (10)

Our main result says that the following two problems are equivalent

Problem 1.Let Ω ⊂ R2 be a bounded open convex set and let u : Ω→ R be a strictly
convex Aleksandrov solutions to the Monge-Ampère equation

λ ≤ detD2u ≤ 1/λ in Ω.

Show that u ∈W 2,1
loc .

Problem 2. Let B ⊂ R2 be a connected open set, f : B → R2 Lipschitz, and assume
that Df ∈ A L 2-a.e. in B. Show that if the set

{x ∈ B : Df(x) ∈ S}

has positive L 2-measure, then f is locally affine.
At the time we wrote the paper we were not able to solve none of the above problems.

Notice that the result of Chapter 3 gives a positive answer to Problem 1. In particular
this show (in a very unconventional way) that the inclusion in Problem 2 is rigid.

3. A non-autonomous chain rule in W 1,p and BV

In [ACDD], in collaboration with Luigi Ambrosio, Giovanni Crasta and Virginia De
Cicco, we prove a non-autonomous chain-rule in BV when the function with which we
left compose has only a BV -regularity in the x variable. This type of results have some
application in the study of conservation laws and semicontinuity of non-autonomous
functionals (again we refer to the original paper for a more complete discussion and the
main notation). The main result of [ACDD] is the following:

Theorem. Let F : Rn × Rh → R be satisfying:
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(a) x 7→ F (x, z) belongs to BVloc(Rn) for all z ∈ Rh;

(b) z 7→ F (x, z) is continuously differentiable in Rh for almost every x ∈ Rn.

Assume that F satisfies, besides (a) and (b), the following structural assumptions:

(H1) For some constant M , |∇zF (x, z)| ≤M for all x ∈ Rn \ CF and z ∈ Rh.

(H2) For any compact set H ⊂ Rh there exists a modulus of continuity ω̃H independent
of x such that

|∇zF (x, z)−∇zF (x, z′)| ≤ ω̃H(|z − z′|)
for all z, z′ ∈ H and x ∈ Rn \ CF .

(H3) For any compact set H ⊂ Rh there exist a positive Radon measure λH and a
modulus of continuity ωH such that

|D̃xF (·, z)(A)− D̃xF (·, z′)(A)| ≤ ωH(|z − z′|)λH(A)

for all z, z′ ∈ H and A ⊂ Rn Borel.

(H4) The measure

σ :=
∨

z∈Rh
|DxF (·, z)|,

(where
∨

denotes the least upper bound in the space of nonnegative Borel mea-
sures) is finite on compact sets, i.e. it is a Radon measure.

Then there exists a countably Hn−1-rectifiable set NF such that, for any function u ∈
BVloc(Rn;Rh), the function v(x) := F (x, u(x)) belongs to BVloc(Rn) and the following
chain rule holds:

(i) (diffuse part) |Dv| � σ+|Du| and, for any Radon measure µ such that σ+|Du| �
µ, it holds

dD̃v

dµ
=
dD̃xF (·, ũ(x))

dµ
+∇zF̃ (x, ũ(x))

dD̃u

dµ
µ-a.e. in Rn.

(ii) (jump part) Jv ⊂ NF ∪ Ju and, denoting by u±(x) and F±(x, z) the one-sided
traces of u and F (·, z) induced by a suitable orientation of NF ∪ Ju, it holds

Djv =
(
F+(x, u+(x))− F−(x, u−(x)

)
νNF∪JuHn−1 (NF ∪ Ju)

in the sense of measures.

Moreover for a.e. x the map y 7→ F (y, u(x)) is approximately differentiable at x and

∇v(x) = ∇xF (x, u(x)) +∇zF (x, u(x))∇u(x) L n-a.e. in Rn .

A similar result holds true also in the Sobolev case.
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4. Aleksandrov-Bakelman-Pucci estimate for the infinity Laplacian

In [CDDM], with Fernando Charro, Agnese Di Castro and Davi Máximo, we investi-
gate the validity of the classical Aleksandrov-Bakelman-Pucci estimates for the infinity
laplacian

∆∞u :=
〈
D2u

∇u
|∇u| ,

∇u
|∇u|

〉
.

The ABP estimate for a solution of a uniformly elliptic PDE states that

sup
Ω
u ≤ sup

∂Ω
u+ C(n, λ,Λ) diam (Ω)‖f‖Ln(Ω), (11)

for f the right-hand side of the equation and 0 < λ ≤ Λ the ellipticity constants (see for
instance [CaC]). A particular useful feature of the above estimates is the presence of an
integral norm on the right hand side. In particular the above estimate plays a key role
in the proof of the Krylov-Safonov Harnack inequality for solutions to a non-divergence
form elliptic equation (see [CaC]).

In [CDDM] we show that such an estimate cannot hold for solutions of

−∆∞u = f, (12)

at least with the Ln norm of f in the right hand side. However we show that a (much
weaker) form of the estimate is avaible, namely

(
sup

Ω
u− sup

∂Ω
u+
)2 ≤ C diam(Ω)2

∫ supΩ u

sup∂Ω u
+

‖f‖L∞({u=Γu=r}) dr, (13)

where Γu is the convex envelope of u. Even if this estimate is weaker than (11) it is
still stronger that the plain L∞-estimate:

sup
Ω
u ≤ sup

∂Ω
u+ C(n) diam (Ω)2‖f‖L∞(Ω).

Moreover we are able to obtain a full family of estimates of the type of (13) for solutions
of the non-variational p-laplacian equation:

−∆pu = f,

where

∆pu :=
1

p
|∇u|2−p div

(
|∇u|p−2∇u

)
. (14)

Using that our estimates are stable as p goes to +∞ and some simple comparison
argument we also show that viscosity solutions to (14) converges as p→ +∞ to solutions
of (12).
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5. Stability for the Plateau problem

In [DM], together with Francesco Maggi, we study the global stability of smooth
solution to the Plateau problem in the framework of Federer and Fleming codimension
one integral currents, [Fed]. More precisely we prove that a global stability inequality
is equivalent to its local counterpart, namely the strict positivity of the shape-operator.
Our main result reads as follows

Theorem. Let M be a smooth (n − 1) dimensional manifold with boundary which is
uniquely mass minimizing as an integral n − 1-current. The two following statements
are equivalent:

(a) The first eigenvalue λ(M) of the second variation of the area at M ,

λ(M) = inf

{∫

M
|∇Mϕ|2 − |IIM |2ϕ2 dHn : ϕ ∈ C1

0 (M) ,

∫

M
ϕ2 dHn = 1

}
,

is strictly positive.

(b) There exists κ > 0, depending on M , such that, if M ′ is a smooth manifold with
the same boundary of M , then, for some Borel set E ⊂ Rn with ∂E equivalent up to a
Hn−1-null set to M∆M ′,

Hn−1(M ′)−Hn−1(M) ≥ κ min
{

L n(E)2,L n(E)(n−1)/n
}
.

We also obtain similar statements in the case of a particular family of singular
minimizing cones.

6. Stability for the second eigenvalue of the Stekloff-Laplacian

In [BDR], together with Lorenzo Brasco and Berardo Ruffini, we address the study of
the stability of the following spectral optimization problem

max
{
σ2(Ω) : Ω ⊂ Rn |Ω| = |B1|

}
. (15)

Here σ2(Ω) denotes the first non trivial Stekloff eigenvalue of the laplacian, i.e.

{
−∆u = 0 in Ω

∇u · νΩ = σ2(Ω)u on ∂Ω,

with u not identically constant. In [Bro, We] it has been showed that the maximum
is achieved by balls. The proof is based on the following isoperimetric property of the
ball:

P2(Ω) ≥ P2(B1) ∀Ω : |Ω| = |B1|, (16)
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where

P2(Ω) :=

∫

∂Ω
|x|2.

The above isoperimetric type inequality has been proved by Betta, Brock, Mercaldo,
Posteraro in [BBMP] through a symmetrization technique.

We enforce (15) in a quantitative way, namely we prove that there exists a positive
(and computable) constant cn such that

σ2(Ω) ≤ σ2(B)
(
1− cnA2(Ω)

)
∀Ω : |Ω| = |B1| (17)

where we have introduced the asymmetry of Ω

A(Ω) := min

{ |B∆Ω|
|B| B ball, |B| = |Ω|

}
.

To prove (17) we had to show a quantitative version of (16), that reads as

P2(B1)
(

1 + c̃n |Ω∆B1|2
)
≤ P2(Ω) ∀Ω : |Ω| = |B1|. (18)

In order to do this, we give a simpler proof of (16) through calibrations which allows
to take care of all the reminders in order to obtain (18).

Showing that (17) is optimal, i.e. that there exists a sequence of sets Ωε converging
to B1 such that

σ2(Ωε)− σ2(B1) ≈ A2(Ωε),

requires some fine constructions due to the fact the σ2(B1) is a multiple eigenvalue.

7. Regularity of the convex envelope

In [DF3] with Alessio Figalli we investigate the regularity of the convex envelope of a
continuous function v inside a convex domain Ω:

Γv(x) := sup{`(x) : ` ≤ v in Ω, ` affine}.
We prove the following two theorems:

Theorem. Let α, β ∈ (0, 1], Ω be a bounded convex domain of class C1,β, and v :
Ω → R be a globally Lipschitz function which is (1 + α)-semiconcave5 in Ω. Then

Γv ∈ C1,min {α,β}
loc (Ω).

Theorem. Let Ω be a bounded uniformly convex domain of class C3,1, and let v ∈
C3,1(Ω). Then Γv ∈ C1,1(Ω).

As we show in the paper, the above results are optimal for what concerns the
dependence of the regularity of Γv both on v and on Ω.

5Given α ∈ (0, 1], a continuous function v is said to be (1 +α)-semiconcave in Ω if for every x0 ∈ Ω
there exists a slope px0 ∈ Rn such that

v(x) ≤ v(x0) + px0 · (x− x0) + C|x− x0|1+α for every x ∈ Ω ∩B(x0, %0).

for some constants C and %0 independent of x0.





Chapter 1

An overview on Optimal
Transportation

Monge Optimal Transportation problem can be stated as follows: given two (topolog-
ical) spaces X and Y , two (Borel) probability measures µ ∈ P(X), ν ∈ P(Y ) and a
cost function c : X × Y → R we look for a map T : X → Y such that T]µ = ν 1 and
that minimize ∫

c(x, T (x))dµ(x) = inf
S]µ=ν

∫
c(x, S(x)). (1.1)

In general, there could be no solution to the above problem both because the class of
admissible maps is empty (for instance in the case in which µ is a Dirac mass and ν is
not) or because the infimum is not attained (see [V, Example 4.9]).

Nevertheless it has been proved by many authors (see [V, Chapter 10] or [AG]
for an updated account of the theory and some historical remarks) that: if X and
Y are, for instance, open subsets of Rn or of some Riemannian manifold M and N ,
µ is absolutely continuous with respect to the volume measure, and c satisfies some
structural condition (see Section 1.3), then there exists a (unique) optimal transport
map T . Moreover, T is related to the gradient of a potential u (see Theorem 1.28 for
a precise statement).

The aim of this Chapter is to briefly recall some aspects of this theory. In Section
1.1, we start reviewing with some details the case of the quadratic cost on Rn, c(x, y) =
|x− y|2/2. In this case Brenier Theorem (Theorem 1.8) states that the map T is given
by the gradient of a convex function, that is T = ∇u for a convex potential u. This
leads to the celebrated Brenier Polar Factorization Theorem (Theorem 1.11) which can

1In general given a measure µ we define its push forward through a Borel map T as the measure
T]µ = µ ◦ T−1, that is the only measure such that∫

h(y)dT]µ(y) =

∫
h
(
T (x)

)
dµ(x) ∀h Borel and bounded.

1
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be thought as a Lagrangian version of the Helmoltz Decomposition Theorem for vector
filed (see Remark 1.12 ).

In Section 1.2 we show how the convex potential u satisfies a Monge-Ampère type
equation almost everywhere and we investigate if this is sufficient to establish some reg-
ularity for the transport map. Simple examples (see Example 1.22) show that in order
to obtain regularity one needs to impose some condition on the geometry of spt ν, the
support of the target measure, namely convexity. Indeed, under this assumption, Caf-
farelli proved that u is an Aleksandrov solution of the Monge-Ampère equation, [Ca4].

Finally in Section 1.3 we briefly sketch how to adapt the results of Section 1.1 to
more general cost functions and we discuss (without proofs) the issue of global regularity
of transport maps in this case.

Nice and complete references to the theory of optimal transportation are [AG]
and [V].

1.1 The case of the quadratic cost and Brenier Polar Fac-
torization Theorem

Here we study with some details the case of the quadratic cost, with the exception of
Chapter 6, this is the case in which we will be mainly interested, for this reason we give
some details of the proofs.

Monge Problem for the quadratic cost can be stated as follows: given µ and ν in
P(Rn), look for a map T : Rn → Rn such that

∫
|x− T (x)|2dµ(x) = inf

S]µ=ν

∫
|x− S(x)|2, (1.2)

To start studying problem (1.2), following the ideas of Kantorovich, we introduce its
relaxed version

min
γ∈Γ(µ,ν)

∫
|x− y|2dγ(x, y), (1.3)

where

Γ(µ, ν) :=
{
γ ∈P(Rn × Rn) : (π1)]γ = µ (π2)]γ = ν

}
(1.4)

is the set of transport plans between µ and ν (here π1 and π2 are, respectively, the
projection on the first and second factor).

Remark 1.1. Given any transport map T , i.e. a map such that T]µ = ν, it clearly
induces a transport plan γT := (Id×T )]µ. Moreover it can be easily shown (see
[AG, Lemma 1.20]) that if a plan γ is concentrated2 on the graph of a function T ,
then γ = (Id×T )]µ.

2We will say that a measure µ is concentrated on µ-measurable set A if µ(Ac) = 0. The support of
a measure, sptµ, is the smallest closed set on which µ is concentrated.
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Thanks to the above Remark it is clear that (1.3) is a relaxed version of (1.2).
The main intuition leading to the replacement of maps with plans is that the mass
initially presented at a point x can be split among different y’s. Since (1.3) is a convex
minimization problem with a convex constraint the following theorem should not be
surprising.

Theorem 1.2. Problem (1.3) admits at least one solution.

Proof. The proof is a simple application of the Direct Methods in the Calculus of
Variations. In fact it can be easily checked that the set (1.4) is compact with respect to
the weak convergence on P(Rn) (see [V, Lemma 4.4]) 3. Moreover, since the function
|x − y|2 can be approximated by an increasing sequence of continuous and bounded
functions it is immediate to check that the map

γ 7→
∫
|x− y|2dγ(x, y)

is lower semicontinuous with respect to the weak convergence.

Remark 1.3. Notice that the above theorem always provides a solution to problem
(1.3), however it can easily happen that infimum is infinite, in this case obviously any
plan is a solution. We will show in Theorem 1.13, that, however, there exists always a
“locally optimal” plan between µ and ν. Clearly if the second moments of µ and ν are
finite: ∫

|x|2dµ(x) +

∫
|y|2dν(y) < +∞,

the infimum is finite.

Once we have proved the existence of at least a solution of (1.3), thanks to Remark
1.1, in order to prove the existence of a solution to (1.2) we have just to understand
under which assumptions an optimal plan is supported on the graph of a map T .

Example 1.4. Let us start with a discrete example. More precisely let us assume that

µ =
1

h

h∑

i=1

δxi , ν =
1

h

h∑

j=1

δyj .

In this case a transport plan γ ∈ Γ(µ, ν) can be written as

γ =
h∑

i,j=1

γijδ(xi,yj)

3A sequence of probability measures {µk}k∈N is said to be weakly convergent to a probability measure
µ if ∫

ϕdµk →
∫
ϕdµ ∀ϕ ∈ Cb(Rn),

where Cb(Rn) is the set of continuous and bounded functions.
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where (γij)i,j=1...h is a matrix whose entries γij ≥ 0 describe which is the amount of
mass moved from xi to yj . The condition that all a the mass is properly transferred
reads as

h∑

j=1

γij = 1 =
h∑

i=1

γij , (1.5)

and problem (1.3) becomes

min




∑

i,j

|xi − yj |2γij : γij ≥ 0 satisfy (1.5)



 .

Since the above is a finite dimensional linear optimization problem with a convex con-
straint, it is easy to see that the minimum is achieved in one of the extreme point
of the convex set composed by the matrices with positive entries which satisfy the
constraint (1.5). Birkhoff’s Theorem says that a point is extremal if and only if it is
represented by a permutation matrix, i.e. a matrix whose entries are just 0 or 1. These
clearly correspond to transport maps.

Let us now investigate under which assumptions such maps are optimal. Let us
assume that yi = T (xi), T is optimal. Since any other map can be obtained by T
simply rearranging the yi the optimality condition read as

h∑

i=1

|xi − yi|2 ≤
h∑

i=1

|xi − yσ(i)|2 σ ∈ Sh, (1.6)

where Sh is the set of permutations of h objects. Moreover, by elementary computa-
tions, the above condition is equivalent to the following: for every k ≤ h and for all
choices of distinct i1, . . . , ik in {1, . . . , h},

k∑

m=1

|xim − yim |2 ≤
k∑

m=1

|xim − yim+1 |2, (1.7)

where ik+1 = i1. We have hence found a necessary and sufficient condition for the
optimality in the discrete setting.

The above example suggests the following definition

Definition 1.5. A set Γ ⊂ Rn×Rn is said cyclically monotone if for every m ≥ 1 and
for all (x1, y1), . . . , (xm, ym)) in Γ it holds

m∑

i=1

|xi − yi|2 ≤
m∑

i=1

|xi − yi+1|2 (1.8)

where im+1 := i1.
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Expanding the squares, (1.8) is equivalent to

m∑

i=1

yi · (xi+1 − xi) ≤ 0 (1.9)

with the usual convention im+1 = i1. We will see later that even in the continuous case,
under some mild assumption, a plan γ is optimal if and only if it is concentrated on a
cyclically monotone set. Thus in order to solve (1.2) we need to understand cyclically
monotone sets. The following Theorem, due to Rockafellar, characterizes such sets. We
recall that the subdifferential of a proper lower semicontinuous convex function is given
by

∂u(x) =
{
y ∈ Rn : u(z) ≥ u(x) + y · (z − x) for all z ∈ Rn

}
,

see Appendix A. With a slight abuse of notation we will write ∂u to denote its graph:

∂u =
{

(x, y) : y ∈ ∂u(x)
}
⊂ Rn × Rn.

Theorem 1.6 (Rockafellar). A set Γ ⊂ Rn × Rn is cyclically monotone if and only
if it is included in the graph of the subdifferential of some proper convex and lower
semicontinuous function u, in symbols Γ ⊂ ∂u.

Proof. Let u be a convex and lower semicontinuous function and let (xi, yi) ∈ ∂u, by
definition of subdifferential for all m ∈ N and for all i = 1, . . . ,m

u(xi+1) ≥ u(xi) + yi · (xi+1 − xi)

with im+1 = i1. Summing the above relations we obtain (1.9), thus ∂u is a cyclically
monotone set and so is any of its subsets.

To prove the converse let us pick (x0, y0) ∈ Γ and define

u(x) := sup
{
ym · (x− xm) + · · ·+ y0 · (x1 − x0) : (x1, y1), . . . , (xm, ym) ∈ Γ

}
.

Being the supremum of affine functions u is clearly convex and lower semicontinuous.
To see that u is proper notice that, choosing m = 1 and (x1, y1) = (x0, y0) in the
definition of u, u(x0) ≥ 0. By cyclical monotoniticy u(x0) ≤ 0 and thus u is proper.
To see that Γ is included in ∂u we have to show that, if (x, y) ∈ Γ,

u(z) ≥ u(x) + y · (z − x) ∀z ∈ Rn.

To see this notice that for all ε > 0 there exist m ∈ N and (x1, y1), . . . , (xm, ym) ∈ Γ
such that

u(x) + y · (z − x) ≤ ym · (x− xm) + · · ·+ y0 · (x1 − x0) + y · (z − x) + ε ≤ u(z) + ε,

where, in the last inequality, we have exploited the fact that (x, y) ∈ Γ and the definition
of u. Being ε arbitrary this concludes the proof.
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We now sketch the proof of the following theorem

Theorem 1.7. Let µ, ν be two probability measures with finite second moments, i.e.

∫
|x|2dµ(x) +

∫
|y|2dν(y) <∞. (1.10)

Then a plan γ ∈ Γ(µ, ν) is optimal in (1.3) if and only if spt γ is cyclically monotone.

Proof. Step 1: Necessity. Let us assume that γ is optimal and that there exist points
(x1, y1), . . . , (xm, ym) in spt γ such that

m∑

i=1

|xi − yi|2 >
m∑

i=1

|xi − yi+1|2.

The idea is that moving mass from xi to yi+1 instead of to yi is more convenient. To
formalize this, let Ui, Vi be neighborhoods of xi and yi such that

mi := γ(Ui × Vi) > 0

and
m∑

i=1

|ui − vi|2 >
m∑

i=1

|ui − vi+1|2 ∀ui ∈ Ui, vi ∈ Vi.

Let us consider the probability space (Ω,P) where

Ω :=
∏

i

Ui × Vi and P :=
∏

i

γ Ui × Vi
mi

and let, with a slightly abuse of notation, ui and vi be the coordinate maps from Ω to,
respectively, Ui and Vi. If we define the new plan

γ̃ := γ +
minmi

m

m∑

i=1

(
(ui, vi+1)]P− (ui, vi)]P

)
,

a direct computation (see [AG, Theorem 1.13]) shows that γ̃ is admissible and that

∫
|x− y|2d γ̃ <

∫
|x− y|2d γ,

in contradiction with the optimality of γ.

Step 2: Sufficiency Let us assume that spt γ is cyclically monotone. By Theorem 1.6,
there exists a proper convex and lower semicontinuous function u such that

spt γ ⊂ ∂u.
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Let u∗ be the convex conjugate of u, thus

u(x) + u∗(y) ≥ x · y (1.11)

with equality on ∂u ⊃ spt γ. Moreover since u and u∗ are proper, condition (1.10)
implies that, for any γ̃ ∈ Γ(µ, ν),

min{u, 0}, min{u∗, 0} ∈ L1(γ̃).

Thus, integrating (1.11) and using the above relations to split the integral, we obtain
∫
x · y dγ̃ ≤

∫
(u(x) + u∗(y)) dγ̃

=

∫
u(x) dγ̃ +

∫
u∗(y) dγ̃

=

∫
u(x) dµ+

∫
u∗(y) dν

=

∫
u(x) dγ +

∫
u∗(y) dγ

=

∫
(u(x) + u∗(y)) dγ

=

∫
x · y dγ.

Using the finiteness of the second moments of µ and ν it is immediate to see that,
adding the squares, the above inequality implies the optimality of γ.

We are now ready to give a proof of the following Theorem, due to Brenier [Br].

Theorem 1.8 (Brenier). Assume that µ and ν satisfy (1.10). Suppose that µ is ab-
solutely continuous with respect to the Lebesgue measure, then there exists a unique
plan γ solution to (1.3). Moreover the plan γ is induced by the gradient of a convex
function u, that is γ = (Id×∇u)]µ and thus ∇u is also a solution to (1.2). Assume
moreover that also ν is absolutely continuous with respect to the Lebesgue measure, then
γ = (∇u∗×Id)]ν. In particular for µ-almost every x and ν-almost every y, respectively,

∇u∗
(
∇u(x)

)
= x, ∇u

(
∇u∗(y)

)
= y.

Proof. Thanks to Theorem 1.2 we know that there exists an optimal plan γ, by Theorem
1.7 we know that spt γ is cyclically monotone and by Rockafellar Theorem we deduce
that spt γ ⊂ ∂u for some convex proper and lower semicontinuous function. Since, see
Appendix A,

∂u ⊂ {u < +∞}× Rn,

and ∂{u < +∞} is Lebesgue negligible,

µ
(
{u < +∞}

)
= 1.
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Let

E = {Points of non differentiability of u},

since E is Lebesgue negligible, by our assumptions on µ

0 = µ(E) = γ(E × Rn).

In conclusion γ is concentrated on

∂u \ (E × Rn) = Graph of ∇u.

By Remark 1.1 we deduce that γ = (Id×∇u)]µ. This proves the existence part of the
claim. To obtain the uniqueness just notice that the above reasoning gives that every
optimal plan is concentrated on the graph of a map. Assuming the existence of two
optimal plans

γ1 = (Id×T1)]µ , γ2 = (Id×T2)]µ ,

we see that

γ̄ :=
1

2
γ1 +

1

2
γ2

is still optimal but not concentrated on a graph, unless T1 = T2 µ-a.e.

To prove the second part of the claim just notice that, as sets, ∂u = ∂u∗ and that,
if a plan γ is optimal between µ and ν, its “inversion”,

R]γ, where R(x, y) = (y, x),

is optimal between ν and µ.

Remark 1.9. Notice that the above proof shows that ∇u is uniquely determined µ
almost everywhere. This is obviously the best uniqueness one can hope for, as simple
examples show.

Remark 1.10. It is clear from the proof of the above theorem that the right condition
on µ is that µ does not charge the set of non differentiability points of convex functions.
Since it can be shown that such set is (n − 1)-rectifiable4, it would have been enough
to ask that µ does not charge rectifiable sets (see [AG,V]).

We can now prove Brenier Polar Factorization Theorem, a Lagrangian version of
the Helmoltz Decomposition Theorem, see the remark at the end of the proof.

4Recall that a set M is said (n− 1)-rectifiable if there exists a countable family of C1 manifolds Mi

such that

Hn−1(M \⋃
i

Mi

)
= 0.
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Theorem 1.11. Let Ω be a bounded open set of Rn and L n
Ω be the normalized Lebesgue

measure on Ω. Let S ∈ L2(Ω;Rn) be such that S]L
n
Ω is absolutely continuous with

respect to the Lebesgue measure. Then there exist a unique gradient of convex function
∇u and a unique measure preserving map s of Ω into itself 5 such that S = (∇u) ◦ s.
Moreover s is the L2 projection of S on the set of measure preserving maps S(Ω),

∫
|S − s|2 dL n

Ω = min
s̃∈S(Ω)

∫
|S − s̃|2 dL n

Ω . (1.12)

Proof. Let ν = S]L
n
Ω and let ∇u∗ be the optimal map from ν to L n

Ω whose existence
is given by Theorem 1.8. If we define s := (∇u∗) ◦S we immediately see that s ∈ S(Ω)
and that S = (∇u) ◦ s. To show (1.12) we claim that

inf
s̃∈S(Ω)

∫
|S − s̃|2 dL n

Ω = inf
γ∈Γ(L n

Ω ,ν)

∫
|x− y|2 dγ.

Since, for every s̃ ∈ S(Ω), (s̃, S)]L
n
Ω ∈ Γ(L n

Ω , ν) we clearly have that the first infimum
is bigger or equal than the second one. The reverse inequality follows from the above
factorization since, by Theorem 1.8,

inf
γ∈Γ(L n

Ω ,ν)

∫
|x− y|2 dγ =

∫
|∇u∗(y)− y|2 dS]L n

Ω =

∫
|s− S|2 dL n

Ω .

To prove the uniqueness part notice that if S = (∇ū) ◦ s̄, then ∇ū is optimal between
L n

Ω and ν and thus, by the uniqueness part of Theorem 1.8, it has to coincide with ∇u
L n

Ω almost everywhere.

Remark 1.12. Let us assume that S is a perturbation of the identity, i.e.

S = Id +εw + o(ε).

Then both s and ∇u are perturbations of the identity

∇u = Id +ε∇ψ + o(ε),

s = Id +εv + o(ε).

Condition s ∈ S(Ω) implies that v is divergence-free and the polar factorization becomes

w = ∇ψ + v ∇ · v = 0,

which is the classical Helmoltz decomposition of a vector field.

5A map is said to be (Lebesgue) measure preserving if

s]L
n
Ω = L n

Ω .

The set of measure preserving transformation of Ω will be denoted with S(Ω).
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Up to now we have only considered probability measures defined on Rn with finite
second moments. In the applications to the semigeostrophic equations that we will
consider in Chapter 5 we will also need the following theorem, due to McCann, dealing
with the case of measures without moments. It says that, in any case, if the source
measure is absolutely continuous with respect to the Lebesgue measure there exists an
(essentially unique) “optimal” maps, i.e. the gradient of a convex function such that
(∇u)]µ = ν.

Theorem 1.13 (McCann [MC1]). Let µ, ν ∈ P(Rn), assume that µ is absolutely
continuous with respect to L n. Then there exists a unique (in the sense of Remark
1.9) gradient of a convex function ∇u such that (∇u)]µ = ν. If in addition ν is
absolutely continuous with respect to L n it also holds (∇u∗)]ν = µ.

Proof. We only sketch the proof. Following the reasoning of the proof of Theorem 1.8
to show the existence part we only have to prove the existence of an admissible plan
γ ∈ Γ(µ, ν) whose support is cyclically monotone. This is done by approximating µ
and ν by a sequence of discrete measures

µk =
1

k

k∑

i=1

δxi νk =
1

k

k∑

i=1

δyi .

By example 1.4 there exists a cyclically monotone admissible plan γk ∈ Γ(µk, νk).
An easy computation shows that any weak cluster point of the sequence {γk}k∈N is a
cyclically monotone transference plan between µ and ν. The proof of the uniqueness is
more subtle and we refer to [MC1].

We close this section with the following stability theorem about optimal plans and
optimal maps. Its easy proof is based on the cyclical monotoniticy of the support of
the optimal plan (already used in the proof of Theorem 1.13). A more refined stability
theorem will be proved in Chapter 4.

Theorem 1.14. Let {µk}k∈N and {νk}k∈N be sequences of probability measures con-
verging, respectively, to µ and ν and let γk be cyclically monotone transference plans
from µk to nuk. Then any weak cluster point of the sequence {γk}k∈N is a cyclically
monotone transference plan between µ and ν. Moreover, if µk = µ and is absolutely
continuous with respect to L n, the sequence of optimal maps Tk between µ and νk
converges in µ-measure to the optimal map T between µ and ν, i.e. for all ε > 0

lim
k→∞

µ
({
x : |Tk(x)− T (x)| ≥ ε

})
= 0.

Proof. The first part of the statement is immediate and it is based on the simple
observation that if z ∈ spt γ there exists a sequence of points zk ∈ spt γk converging to
z. The proof of the second part follows from the general statement that if

(Id×Tk)]µ ⇀ (Id×T )]µ,
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then Tk converges in µ-measure to T . To see this recall that by Lusin Theorem, for
very δ > 0 there exists a compact set K such that µ(Rn \K) ≤ δ and T restricted to
K is continuous. Let us consider the upper semicontinuous and bounded function 6

ϕ(x, y) = 1K(x) min
{

1, |y − T (x)|/ε
}
.

By approximating ϕ with a decreasing sequence of continuous and bounded function
we see that

0 =

∫
ϕ(x, y)d (Id×T )]µ ≥ lim sup

k→∞

∫
ϕ(x, y)d (Id×Tk)]µ.

Hence

lim sup
k→∞

µ
({
x : |Tk(x)− T (x)| ≥ ε

})

≤ lim sup
k→∞

µ
({
x ∈ K : |Tk(x)− T (x)| ≥ ε

})
+ δ

≤ lim sup
k→∞

∫
ϕ(x, y)d (Id×Tk)]µ+ δ = δ.

The conclusion follows letting δ → 0.

1.2 Brenier vs Aleksandrov solutions to the Monge-Ampère
equation

1.2.1 Brenier solutions

In this section we start investigating the regularity of optimal transport maps. We
assume that both µ and ν are absolutely continuous with respect to the Lebesgue
measure,

µ = ρ1L
n, ν = ρ2L

n (1.13)

and that
spt ρ1 = Ω1, spt ρ2 = Ω2

with Ω1 and Ω2 open and bounded subsets of Rn with L n(∂Ω1) = L n(∂Ω2) = 0. We
will also assume that, on their support,

λ ≤ ρ1, ρ2 ≤ 1/λ (1.14)

for some positive constant λ.
Under this assumptions Theorem 1.8 ensures the existence of an optimal map be-

tween µ and ν, moreover the map is given by the gradient of a convex function u. It is

6With 1A we denote the characteristic function of a set A.
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clear that any regularity of u immediately translates in regularity of T . We will hence
start the study of the regularity of u. The first point we would like to show is how the
condition

(∇u)]µ = ν

implies that u satisfies a suitable Monge-Ampère type equation. To see this we first
recall the following version of the Area Formula (see [Fed, Corollary 3.2.20]).

Theorem 1.15 (Area Formula). Let T be differentiable almost everywhere. Let Σ =
Dom(∇T ), then for every Borel and bounded function ϕ

∫

Σ
ϕ(x)| det∇T |(x) dx =

∫

Rn

( ∑

x∈Σ∩T−1(y)

ϕ(x)

)
dy. (1.15)

Since u is convex, Aleksandrov Theorem (see Theorem A.5 ) implies that∇u is twice
differentiable almost everywhere on Dom(∇u), thus we an apply the above Theorem to
T = ∇u restricted to Dom(∇u). Taking into account (1.13) and the relation (∇u)]µ =
ν, we infer that for all bounded and Borel functions ϕ

∫
ϕ(∇u(x))ρ1(x) dx =

∫
ϕ(y)ρ2(y) dy.

Since ∇u ◦ ∇u∗ = Id almost everywhere on Ω2,
∣∣∣
{
y ∈ Ω2 : #{(∇u)−1(y)} ≥ 2

}∣∣∣ = 0. (7)

We can thus apply Theorem 1.15 to deduce
∫
ϕ(∇u(x))ρ1(x) dx =

∫
ϕ(∇u(x))ρ2(∇u(x)) det∇2u(x) dx.

Applying the above relation to ϕ = ϕ̃ ◦ ∇u∗ and recalling that, ∇u∗ ◦ ∇u = Id almost
everywhere in Ω1, we obtain

∫
ϕ̃(x)ρ1(x) dx =

∫
ϕ̃(x)ρ2(∇u(x)) det∇2u(x) dx ∀ ϕ̃ Borel and bounded.

In conclusion it holds
det∇2u =

ρ1

ρ2 ◦ ∇u
a.e. in Ω1. (1.16)

The above equation shall be considered together with the following “boundary condi-
tion”

∇u(Ω1) ⊂ Ω2. (1.17)

We are going to call a convex function satisfying (1.16) and (1.17) a Brenier solution
to the Monge-Ampère equation.

We will now show that a Brenier solution to the Monge-Ampère equation, in general,
can be disccontinuos even if the densities f and g are smooth on their support.

7In the sequel we are going to use the notation |A| for the outer Lebesgue measure of A.
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T = r
⇣ |x|2

2
+ |x1|

⌘

Figure 1.1: A discontinuous optimal map.

Example 1.16. Let us consider

ρ1 = 1B/|B| ρ2 = (1B+ + 1B−)/|B|,

where B is the unitary ball B = {|x| < 1} and B± are two shifted half balls

B+ = e1 +B ∩ {x1 > 0}, B− = −e1 +B ∩ {x1 < 0}.

Clearly ρ1 and ρ2 are smooth on their supports, but from obviously topological reason
there cannot be a continuous map pushing forward ρ1L n to ρ2L n. The optimal map
T can be also explicitly computed thanks to the necessary and sufficient optimality
conditions, T = ∇u where u(x) = |x|2/2 + |x1|, which is clearly discontinuous (see
Figure 1.1).

One might think that the obstruction to the regularity of the optimal map in the
above example is given by the lack of connectness of the support of the target measure.
Actually one can modify the above example considering as target measure the normal-
ized Lebesgue measure restricted to the set Dε, where Dε is the set obtained joining
B+ and B− with a strip of width ε. By Theorem 1.14 we deduce that the optimal maps
Tε converge in measure to the optimal map of the above example. Using this, one can
easily show that the continuity of Tε would contradict the cyclical monotoniticy of its
graph (see [V, Theorem 12.3] for more details). As we will show in the sequel the right
assumption on the support of the target measure is convexity.

1.2.2 Aleksandrov solutions

We will now introduce the concept of Aleksandrov solution of the Monge-Ampère equa-
tion. The study of their properties will be the topic of the next chapters, here we simply
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recall the definition and show under which assumption a Brenier solution is an Alek-
sandrov solution. A good reference for Aleksandorv solutions of the Monge-Ampère
equation is the book of Gutierrez, [Gu].

First we recall that the subdifferential of a (finite) convex function u defined on a
convex open domain Ω is defined as:

∂u(x) = {p ∈ Rn : u(y) ≥ u(x) + p · (y − x) ∀ y ∈ Ω}.

We define the Monge-Ampère measure of u in the following way: for every set E ⊂ Ω,

µu(E) = |∂u(E)| =
∣∣∣
⋃

x∈E
∂u(x)

∣∣∣, (1.18)

here | · | is the Lebesgue outer measure. Notice that in case u ∈ C2(Ω), the Area
Formula implies

µu = det∇2u(x)L n.

We now show that the restriction of µu to the Borel σ-algebra is actually a measure
and that its absolutely continuous part with respect to the Lebesgue measure is given
by det∇2u(x) dx. We start with the following simple lemma.

Lemma 1.17. Let u : Ω → R be a continuous convex function defined on an open
convex set Ω. Let us consider the set

S =
{
p ∈ Rn : there exist x and y in Ω, x 6= y, such that p ∈ ∂u(x) ∩ ∂u(y)

}
.

Then |S| = 0.

Proof. Let us first assume that Ω is bounded and consider the convex conjugate

u∗(p) = sup
x∈Ω

(
x · p− u(x)

)
.

Then u∗ is finite everywhere and p ∈ ∂u(x) if and only if x ∈ ∂u∗(p) (see Appendix A).
Thus

S ⊂ {p : s.t. #(∂u∗(p)) > 1} = {Points of non differentiability of u∗}.

Being u∗ a (finite) convex function it is locally Lipschitz and thus differentiable almost
everywhere, hence |S| = 0. In case Ω is unbounded, we can write it as an increasing
union of convex and bounded set Ωk and define

Sk =
{
p ∈ Rn : there exist x and y in Ωk, x 6= y such that p ∈ ∂(u Ωk)(x) ∩ ∂(u Ωk)(y)

}
.

Since S ⊂ ∪kSk and, by the first part of the proof, |Sk| = 0, we conclude the proof.
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Lemma 1.18. Let Let u : Ω→ R be a continuous convex function defined on an open
convex set Ω. Let us consider

M =
{
E ⊂ Ω such that ∂u(E) is Lebesgue measurable.

}
,

then M is a σ-algebra containing all the Borel subsets of Ω. Moreover µu : M →
[0,+∞] is a measure and the density of its absolutely continuous part with respect to
L n is given by

dµu
dL n

= det∇2u. (1.19)

Proof. First notice that if K ⊂ Ω is compact, then ∂u(K) is compact. Indeed the
closureof ∂u(K) follows from the closure of the subdifferential 8 while the boundedness
follows from the following standard estimates for convex functions (see Appendix A):

sup
p∈∂u(K)

|p| ≤ osc
Kδ

u/δ,

where Kδ = {x : dist(x,K) ≤ δ} ⊂ Ω for small δ. Thus in order to prove the first part
of the claim we only have to show thatM is a σ-algebra. Clearly ∂u(∪Ek) = ∪∂u(Ek)
and thus M is closed with respect to countable union, writing Ω as countable union
of compact sets we also see that Ω ∈ M. We need only to show that if E ∈ M, then
Ω \ E ∈M. Let us write

∂u(Ω \ E) =
(
∂u(Ω) \ ∂u(E)

)
∪
(
∂u(Ω \ E) ∩ ∂u(E)

)
.

By Lemma 1.17 we see that the last set is Lebesgue negligible (and hence Lebesgue
measurable), thus Ω \ E ∈M.

Since µu is an outer measure to show it is a measure it is enough to prove that it is
finitely additive on M. Let E and F be disjoint sets in M, then

∂u(E∪F ) =
(
∂u(E)\(∂u(F )∩∂u(E))

)
∪
(
∂u(F )\(∂u(F )∩∂u(E))

)
∪
(
∂u(F )∩∂u(E)

)
,

where the union is disjoint. Since E ∩F = ∅, Lemma 1.17 implies |∂u(F )∩ ∂u(E)| = 0
from which finite additivity follows.

We now want to show (1.19). Let us consider the set

S = {x ∈ Ω such that ∇u(x) and ∇2u(x) exist}.

Clearly S is of full (Lebesgue) measure in Ω and

µau = µau S. (1.20)

If E ⊂ S is Borel measurable, the Area Formula (1.15) implies
∫

E
det∇2u(x)dx =

∫

Rn
#{x ∈ E : ∇u(x) = y} dy.

8Which means that if pk ∈ ∂u(xk), xk → x and pk → p then p ∈ ∂u(x)
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By Lemma 1.17, the set of y such that #{x ∈ E : ∇u(x) = y} > 1 has zero measure
and thus ∫

E
det∇2u(x)dx =

∫

Rn
1∇u(E)dy = |∇u(E)| = |∂u(E)| = µu(E).

Thus µu S = det∇2u dx which, together with (1.20), proves (1.19).

We are now ready to give the following definition.

Definition 1.19. Given an open convex set Ω and a Borel measure µ on Ω, a convex
and continuous function u : Ω → R is said an Aleksandrov solution to the Monge-
Ampère equation

detD2u = µ,

if µ = µu as Borel measures.

Remark 1.20. In view of the above definition, in the sequel we will use both the
notations µu and detD2u to denote the Monge-Ampère measure associated to u. We
will instead use the notation det∇2u only to denote the determinant of∇2u, the density
of the absolutely continuous part of the distributional Hessian of u, D2u (see Appendix
A).

Example 1.21. Let u(x) = |x|, then

∂u(x) =

{
{x/|x|} if x 6= 0

{p : |p| ≤ 1} if x = 0.

Thus µu = |B1|δ0.

Example 1.22. Let u(x) = |x|2/2 + |x1|, then (writing x = (x1, x
′))

∂u(x) =





{x+ e1} if x1 > 0

{x− e1} if x1 < 0

{(t, x′) : |t| ≤ 1} if x1 = 0.

Thus µu = L n +Hn−1 {x1 = 0}.
The above example, in combination with example (1.16), shows that the map u(x) =

|x|2/2 + |x1| is a Brenier solution to the Monge-Ampère equation

det∇2u = 1B/(1B+ ◦ ∇u+ 1B− ◦ ∇u)

but not an Aleksandrov solution. The reason for this gap is the following. The singular
part of the Monge-Ampère measure associated to u is due to the image through the
subdifferential map of the line {x1 = 0}. Since this image is not contained in the support
of ρ2, the relation (∇u)](ρ1L n) = ρ2L n cannot give any control on this singular part.
Since, as it immediately follows from the definition, ∂u(x) is a convex set it is clear that
convexity of the support of the target measure is the right notion to ensure a control
on the singular part of µu.
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Proposition 1.23. Let us assume that µ = ρ1L n and ν = ρ2L n satisfy the assump-
tion at the beginning of the section and that Ω2 is convex. If T = ∇u is the optimal
map between µ and ν, then u coincides on Ω1 with an Aleksandrov solution of

detD2u =
ρ1

ρ2 ◦ ∇u
L n,

where we understand that ρ1 is zero outside Ω1.

Proof. First we define a “canonical” map ū such that (∇ū)]µ = ν (recall Remark 1.9).
To do this we define

ū(x) = sup
y∈Ω2

(
x · y − u∗(y)

)
. (1.21)

Recalling that

u(x) = sup
y∈Rn

(
x · y − u∗(y)

)
,

we see that ū ≤ u. Being Ω2 compact and u∗ lower semicontinuous on this set we see
that supremum in (1.21) is attained and that ū is locally bounded and hence continuous.
If x ∈ Dom(∇u(x)), then (see Appendix A)

u(x) = x · ∇u(x)− u∗(∇u(x)),

hence, for every x such that ∇u(x) ∈ Ω2, u(x) ≤ ū(x). Being this set dense in Ω1 it
follows that u coincide with ū on Ω1. In particular at any point of differentiability of
u, ∇ū exists and equals ∇u, thus (∇ū)]µ = ν. We now show that ū is, in some sense,
the minimal potential satisfying the previous relation, meaning that

∇ū(Rn) ⊂ Ω2.

To see this let x̄ a point of differentiability of ū and let ȳ ∈ Ω2 be a point where the
supremum in (1.21) is attained, then

x · ȳ − u∗(ȳ) ≤ ū(x) = ū(x̄) +∇ū(x̄) · (x− x̄) + o(|x− x̄|)
= x̄ · ȳ − u∗(ȳ) +∇ū(x̄) · (x− x̄) + o(|x− x̄|).

Simplifying

ȳ · (x− x̄) ≤ ∇ū(x̄) · (x− x̄) + o(|x− x̄|) ∀x,
which implies ∇ū(x̄) = ȳ ∈ Ω2. Notice that for this computations we have neither used
the hypothesis that Ω2 is convex nor the boundedness of Ω1.

We now show that ū is an Aleksandrov solution to the Monge-Ampère equation.
Since det∇2ū is the density of the absolutely continuous part of µū, inequality

detD2ū ≥ ρ1

ρ2 ◦ ∇ū
L n
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holds without any assumption on Ω2. To prove the equality we only need to show that

|∂ū(Rn)| ≤
∫

Ω1

ρ1(x)

ρ2(∇ū(x))
dx.

Since ∂ū(x) is convex and any of its extremal points p can be approached by a sequence
of points pk = ∇ū(xk), xk → x (see Appendix A), we see that

∂ū(Rn) ⊂ co
[
∇ū(Rn)

]
⊂ Ω2,

thanks to the convexity of Ω2. From this it follows that

|∂ū(Rn)| ≤ |Ω2| =
∫

Ω2

ρ2(y)

ρ2(y)
dy =

∫

Ω1

ρ1(x)

ρ2(∇ū(x))
dx,

where in the last equality we have used the definition of push-forward.

Remark 1.24. Notice that the proof of the above proposition actually gives the fol-
lowing stronger statement: If A ⊂ Ω1 is such that ∂u(A) ⊂ Ω2 then

detD2u A =
ρ1(x)

ρ2(∇u(x))
L n A.

Arguing as in the above proof we only have to show that

|∂u(A)| =
∫

A

ρ1(x)

ρ2(∇u(x))
dx.

To see this notice that for all A ⊂ Ω1,

A ∩Dom(∇u) ⊂ (∇u)−1(∂u(A))

and

(∇u)−1
(
∂u(A) ∩ Ω2

)
\A

⊂ (∇u)−1
({
y ∈ Ω2 : there exist x1, x2, x1 6= x2 such that y ∈ ∂u(x1) ∩ ∂u(x2)

})
.

Since, by Lemma 1.17 and our assumptions on the densities, this latter set has measure
zero and ∂u(A) ⊂ Ω2 we have

|∂u(A)| =
∫

∂u(A)∩Ω2

ρ2(y)

ρ2(y)
dy =

∫

(∇u)−1(∂u(A))

ρ1(x)

ρ2(∇u(x))
dx

=

∫

A

ρ1(x)

ρ2(∇u(x))
dx+

∫

(∇u)−1(∂u(A))\A

ρ1(x)

ρ2(∇u(x))
dx

=

∫

A

ρ1(x)

ρ2(∇u(x))
dx,

proving our claim. In particular, Proposition 1.23 can be extended to the case in which
Ω2 is convex but unbounded.
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We conclude the sections studying the behavior of sequences of Monge-Ampère
measures µuk under the uniform convergence of the functions uk.

Proposition 1.25. If uk : Ω→ R are convex functions locally uniformly converging to
u, then

µuk
∗
⇀ µu (1.22)

as Radon measures (i.e. in the duality with Cc(Ω)).

Proof. It is well known (see for instance [EG, Section 1.9]) that the weak-∗ convergence
as Radon measures is equivalent to the following two inequalities

µu(A) ≤ lim inf
k→∞

µuk(A) for all open sets A ⊂ Ω (1.23)

µu(K) ≥ lim sup
k→∞

µuk(K) for all compact sets K ⊂ Ω. (1.24)

The proof of (1.24) follows from the following relation

∂u(K) ⊃ lim sup
k→∞

∂uk(K) for all compact set K.

To prove it let p belong to lim supk→∞ ∂uk(K), this means that there exists a (not
relabeled) subsequence uk converging to u and points xk ∈ K such that p ∈ ∂uk(xk).
Since, again up to subsequences, xk → x ∈ K it is immediate to see that p ∈ ∂u(x).

To prove (1.23) it is enough to show that if K ⊂ A b Ω, K compact and A open,
then

|∂u(K)| ≤ lim inf
k→∞

|∂uk(A)|. (1.25)

Let S be defined as in Lemma 1.17, and p ∈ ∂u(K) \ S, we want to show

p ∈ ∂uk(A)

for k large enough. Taking into account that |S| = 0, this implies (1.25). Since
p ∈ ∂u(K) \ S there exists a point x ∈ K such that p ∈ ∂u(x) and p /∈ ∂u(z) for all
z 6= x, thus

u(y) > u(x) + p · (y − x) ∀y ∈ Ω, y 6= x.

Being A compact
min
y∈∂A

u(y)− u(x)− p · (y − x) := 4δ > 0.

Choosing k0 such that ‖u− uk‖L∞(A) ≤ δ for k ≥ k0, we see that

yk := argmin
y∈A

(
uk(y)− u(x)− p · (y − x)

)
∈ A ∀k ≥ k0.

This implies that, for k ≥ k0, p ∈ ∂uk(yk) with yk ∈ A, but this exactly means that p
belongs to lim infk ∂uk(A).



20 An overview on Optimal Transportation

1.3 The case of a general cost c(x, y)

1.3.1 Existence of optimal maps

In this section we show how to solve problem (1.1), the strategy will be the same one of
the case c(x, y) = |x− y|2. Through the whole section we make the following assump-
tions on the cost and on X and Y , they are far from being necessary (see [V, Chapter 10]
for more refined results) nevertheless they will be sufficient for our goals (see Chapter 6).

Either X and Y are bounded open sets of Rn and

(C0) The cost function c : X × Y → R is of class C2 with ‖c‖C2(X×Y ) <∞.

(C1) For any x ∈ X, the map Y 3 y 7→ −Dxc(x, y) ∈ Rn is injective.

(C2) For any y ∈ Y , the map X 3 x 7→ −Dyc(x, y) ∈ Rn is injective.

Or X = Y = M , a compact Riemannian manifold, and c(x, y) = d2(x, y)/2, the square
of the Riemannian distance. In this case it is known (see [AG, V]) that c satisfies a
local version of (C0)-(C2) outside the cut locus

cutM =
⋃

x∈M
{x} × cutxM =

⋃

y∈M
cutyM × {y} ⊂M ×M.

As in the previous section we introduce the relaxed problem

inf
γ∈Γ(µ,ν)

∫
c(x, y)dγ(x, y). (1.26)

The proof of the existence of a solution of (1.26) is identical to Theorem 1.2. More-
over, exactly as in (1.7), one can prove that spt γ is c-cyclically monotone set. In this
case c-cyclical monotonicity of a set Γ ⊂ X × Ymeans

m∑

i=1

c(xi, yi) ≤
m∑

i=1

c(xi, yσ(i)) ∀m ∈ N, (xi, yi) ∈ Γ, σ ∈ Sh.

To characterize c-cyclically monotone sets we need to introduce c-convex function:
a function u : X → R ∪+∞ is said c-convex if it can be written as

u(x) = sup
y∈Y
{−c(x, y) + λy} , (1.27)

for some constants λy ∈ R∪{−∞}. If u : X → R∪+∞ is a c-convex function as above,
the c-subdifferential of u at x is the (nonempty) set

∂cu(x) := {y ∈ Y : u(z) ≥ −c(z, y) + c(x, y) + u(x) ∀ z ∈ X}. (1.28)
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If x0 ∈ X and y0 ∈ ∂cu(x0), we will say that the function

Cx0,y0(·) := −c(·, y0) + c(x0, y0) + u(x0) (1.29)

is a c-support for u at x0. The version of Rockafellar Theorem for c-cyclycally monotone
sets is the following:

Theorem 1.26. A set Γ ⊂ X is c-cyclically monotone if and only if it is included in
the c-subdifferential of a c-convex function.

Finally, let us observe that if c satisfies (C0) and both X and Y are bounded, then
it follows immediately from (1.27) that u is Lipschitz and semiconvex (i.e., there exists
a constant C > 0 such that u + C|x|2/2 is convex). In particular, c-convex functions
are twice differentiable a.e. and the Frechet subdifferential of u at x:

∂−u(x) :=
{
p ∈ Rn : u(z) ≥ u(x) + p · (z − x) + o(|z − x|)

}
.

is not empty and single valued almost everywhere (see Appendix A).
Let us assume that y ∈ ∂cu(x) and that u is differentiable at x. Clearly (1.28)

implies that the function:

z 7→ u(z) + c(z, y)

has a minimum at x. Differentiating we get

∇u(x) = −Dxc(x, y). (1.30)

If c satisfies (C1) this univocally determines y. Notice that in any case the following
relation holds:

y ∈ ∂cu(x) =⇒ −Dxc(x, y) ∈ ∂−u(x). (1.31)

The above relations becomes more suggestive once we introduce the following defi-
nition:

Definition 1.27. If c satisfies (C0)-(C2), then we can define the c-exponential map:

for any x ∈ X, y ∈ Y , p ∈ Rn,
{

c-expx(p) = y ⇔ p = −Dxc(x, y)
c*-expy(p) = x ⇔ p = −Dyc(x, y)

(1.32)

Using (1.32), we can rewrite (1.31) as

∂cu(x) ⊂ c-expx
(
∂−u(x)

)
. (1.33)

We notice here that in general, if ∂−u(x) contains more than one vector, the above
inclusion can be strict. Equality in the above inclusion is related to the connectness of
the c-subdifferential, a condition which turns out to be necessary (and almost sufficient)
for regularity of optimal transport maps, see the discussion at the end of the Section.
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Finally we notice that if c(x, y) = d2(x, y)/2, then c-exp coincides with the classical
exponential in Riemannian geometry.

As we said if c satisfies (C0) then u is semi-convex and thus differentiable almost
everywhere, see Appendix A. If µ is absolutely continuous with respect to the Lebesgue
measure (or if µ does not charge rectifiable sets see Remark 1.10) then exactly as in
the proof of Theorem (1.8) any optimal plan γ is concentrated on the set

∂cu \
{

Points of non differentiability of u} × Rn.

Thus the calculation which led to (1.30) can be actually performed and shows that γ
is concentrated on the graph of the map Tu(x) defined through

−Dxc(x, Tu(x)) = ∇u(x).

Using the c exponential we can re-write the above relation as

Tu(x) := c-expx(∇u(x)). (1.34)

We summarize the previous consideration in the following Theorem.

Theorem 1.28. Let c : X × Y → R satisfy (C0)-(C1). Given two absolutely contin-
uous probability measures µ = fL n and ν = gL n supported on X and Y respectively,
there exists a c-convex function u : X → R such that Tu : X → Y is the unique optimal
transport map sending µ onto ν. If in addition c satisfies (C2), there exists a unique
optimal transport map T ∗ sending ν onto µ such that

∫
c(T ∗(y), y) dν = min

(S∗)]ν=µ

∫
c(S∗(y), y) dν.

Moreover T ∗ is given by

T ∗(y) = Tuc(y) = c*-exp(∇uc(y)),

where
uc(y) = sup

x∈X
{−c(x, y)− u(x)},

is c∗-convex with c∗(y, x) := c(x, y). In addition

T ∗ ◦ T = Id µ-a.e., T ◦ T ∗ = Id ν-a.e. (1.35)

In the particular case c(x, y) = −x · y (which is equivalent to the quadratic cost
|x − y|2/2), c-convex functions are convex and the above result gives back Brenier
Theorem 1.8.

Although on compact Riemannian manifolds the cost function c = d2/2 is not
smooth everywhere, one can still prove existence of optimal maps [MC2,FG]
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Theorem 1.29 (McCann). Let M be a Riemannian manifold, and c = d2/2. Given
two absolutely continuous probability measures µ = fvolM and ν = gvolM supported on
M 9, there exists a c-convex function u : X → R such that Tu(x) = expx(∇u(x)) is the
unique optimal transport map sending µ onto ν.

We conclude showing c-convex functions arising in optimal transport problems
solve a Monge-Ampère type equation. Indeed by the Area Formula (1.15) and (1.35),
(Tu)](fL n) = gL n gives

| det(DTu(x))| = f(x)

g(Tu(x))
a.e. (1.36)

In addition, the c-convexity of u implies that, at every point x where u is twice differ-
entiable,

D2u(x) +Dxxc
(
x, c-expx(∇u(x)) ≥ 0. (1.37)

Hence, by writing (1.34) as

−Dxc(x, Tu(x)) = ∇u(x)

and differentiating the above relation with respect to x, we obtain

det
(
D2u(x) +Dxxc

(
x, c-expx(∇u(x))

))

=
∣∣det

(
Dxyc

(
x, c-expx(∇u(x))

))∣∣ f(x)

g(c-expx(∇u(x)))
(1.38)

at every point x where u it is twice differentiable.

1.3.2 Regularity of optimal maps and the MTW condition.

As we have seen in Example 1.16, even in the case of the quadratic cost we cannot
expect the optimal map T to be regular. However, as we have shown on Section 1.2,
in case the target domain is convex any optimal map coincides with the gradient of
an Aleksandrov solution to the Monge-Ampère equation and hence, by the results in
Chapter 2, this is smooth if so are the densities.

A natural question is whether one may prove some partial regularity on T when the
convexity assumption on the support of the target domain is removed. In [FK,F3] the
authors proved the following result:

Theorem 1.30. Let f and g be smooth probability densities bounded away from zero
and infinity on two bounded open sets X and Y respectively, and let T denote the unique
optimal transport map from fL n to gL n for the quadratic cost |x− y|2/2. Then there
exist X ′ ⊂ X and Y ′ ⊂ Y open, such that |X \X ′| = |Y \ Y ′| = 0 and T : X ′ → Y ′ is
a smooth diffeomorphism.

9With volM we denote the canonical volume measure on M .
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In the case of general cost functions on Rn, or when c(x, y) = d(x, y)2/2 on a
Riemannian manifold M , the situation is much more complicated. Indeed, as shown
by Ma, Trudinger, and Wang [MTW], and Loeper [Loe3], in addition to suitable
convexity assumptions on the support of the target density (or on the cut locus of the
manifold when supp(g) = M , [FRV2]), a very strong structural condition on the cost
function, the so-called MTW condition, is needed to ensure even the continuity of the
map. For the sake of completeness we recall it and we refer to [V, Chapter 12] for a
nice presentation of its analytical and geometric consequence (in particular its relation
to the connectness of the c subdifferential, see also [Loe3]). A C4 cost c is said to
satisfy the MTW condition if for every (x, y) ∈ X × Y and every two vectors ξ and η
with ξ · η = 0, it holds

(
cij,rs − cp,qcij,pcq,rs

)
cr,kcs,lξiξjηiηj ≤ 0. (1.39)

Here the subscripts of c before the comma means derivatives in x, after the comma in
y, ci,j is the inverse of ci,j and the summation is over repeated indexes.

If the MTW condition holds (together with suitable convexity assumptions on the
target domain), then the optimal map is smooth [TW1, TW2, FL, LTW, FKMC1].
On the other hand, if the MTW condition fails just at one point, then one can con-
struct smooth densities (both supported on domains which satisfy the needed convex-
ity assumptions) for which the optimal transport map is not continuous [Loe3] (see
also [F2]).

In the case of Riemannian manifolds, the MTW condition for c = d2/2 is very
restrictive: indeed, as shown by Loeper [Loe3] it implies that M has non-negative sec-
tional curvature, and actually it is much stronger than the latter [K,FRV1]. In particu-
lar, if M has negative sectional curvature, then the MTW condition fails at every point.
Let us also mention that, up to now, the MTW condition is known to be satisfied only
for very special classes of Riemannian manifolds, such as spheres, their products, their
quotients, and their perturbations [Loe4,FR,DelG,KMC,FRV3,FKMC2,DelR],
and for instance it is known to fail on sufficiently flat ellipsoids [FRV1].

A natural question which arises from the above discussion is whether for a general
cost function c it is possible to prove a partial regularity theorem in the spirit of
Theorem 1.30. In Chapter 6 we will show that this is actually the case, see Theorems
6.1 and 6.2.



Chapter 2

The Monge-Ampère Equation

The aim of this Chapter is to introduce the main ideas behind the regularity theory of
Aleksandrov solutions to the Monge-Ampère equation and to give a proof of Caffarelli
C1,α regularity theorem [Ca1,Ca3]. Many of the tools developed in this Chapter will
play a crucial role in the proof of the Sobolev regularity in Chapter 3. In the last
Section we show, without proofs, how to build smooth solutions to the Monge-Ampère
equation throughout the method of continuity.

We will investigate mainly properties of (Aleksandrov) solutions of the equation 1

{
detD2u = f in Ω

u = 0 on ∂Ω
(2.1)

where Ω ⊂ Rn is a bounded a convex set and

0 < λ ≤ f ≤ 1/λ (2.2)

for some positive constant λ. More in general, since we have in mind applications to
optimal transportation, we are interested in Aleksandrov solution of

λ ≤ detD2u ≤ 1/λ in Ω. (2.3)

As we said the aim is to prove the following theorem2

Theorem 2.1 (Caffarelli [Ca1,Ca3]). Let u : Ω→ R be a strictly convex solution of
(2.3). Then u ∈ C1,α

loc (Ω) for some universal α. More precisely for every Ω′ b Ω there
exists a constant C depending on λ, Ω′ and on the modulus of convexity of u such that

sup
x,y∈Ω′

x 6=y

|∇u(x)−∇u(y)|
|x− y|α ≤ C.

1We are identifying the function f with the measure fL n

2In the sequel we are going to call universal any constant which depends only on n and λ. Moreover
we will write a . b if a/b is bounded from above by a universal constant, a & b if b . a and a ≈ b if
a . b and b . a.

25
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In the above Theorem we have used the notion of modulus of convexity of a function
on a domain Ω. Among the many (essentially equivalent) way to define it, the one
which is more convenient for our scopes is the following (see (2.7) for the definition of
S(x, p, t)): if x0 ∈ Ω then the modulus of convexity of u at x0 is defined as

ω(x0, u, t) = sup
p∈∂u(x0)

diamS(x0, p, t). (2.4)

A function u is strictly convex at x0 if ω(u, x0, 0
+) = 0 which means that every sup-

porting plane to u at x0 touches the graph of u only at x0. The modulus of convexity
of u on a subdomain Ω′ is then defined as

ωΩ′(u, t) = sup
x∈Ω′

ω(x, u, t). (2.5)

It is easy to see that if Ω′ b Ω and u is strictly convex at every point x ∈ Ω′ then
ωΩ′(u, 0

+) = 0.
In order to apply the above result (and the ones of Chapter 3) to optimal transport

we need to prove the strict convexity of solutions.

Theorem 2.2 (Caffarelli [Ca4]). Let us assume that µ = ρ1L n and ν = ρ2L n satisfy
the assumption at the beginning of Section 1.2 and that Ω2 is convex. If T = ∇u is
the optimal transport between µ and ν, then u is strictly convex inside Ω1. Moreover
the modulus of strict convexity depends only on λ, Ω1 and Ω2 and is bounded as soon
as Ω2 varies in a compact class with respect to the Hausdorff distance.

2.1 Aleksandrov maximum principle

We start recalling the Aleksandrov maximum principle which is a key tool in the study
of the Monge-Ampère equation and, more in general, of fully nonlinear elliptic PDE
(see [CaC,GT]).

Lemma 2.3. Let u and v be convex functions in Rn. If A is an open and bounded set
such that u = v on ∂A and u ≤ v in A, then

∂u(A) ⊃ ∂v(A). (2.6)

In particular µu(A) ≥ µv(A).

Proof. Let p ∈ ∂v(x) for some x ∈ U , this means that the plane

y 7→ v(x) + p · (y − x)

is a supporting plane to v at x. Moving this plane down and lifting it up until it touches
the graph of u for the first time we see that, for some constant a ≤ v(x),

y 7→ a+ p · (y − x)
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v

u

Figure 2.1: Moving down a supporting plane to v and lifting it up until it touches u
we obtain a supporting place to u at some point x̄ ∈ A.

is a supporting plane to u at some point x̄ ∈ A, see Figure 2.1.

Since u = v on ∂A we see that, if x̄ ∈ ∂A, a = v(x) and thus u(x) = v(x) and
the plane is also supporting u at x. In conclusion p ∈ ∂u(A), proving the inclusion
(2.6).

Theorem 2.4 (Aleksandrov maximum principle). Let u : Ω→ R be a convex function
defined on an open, bounded and convex domain Ω. If u = 0 on ∂Ω, then

|u(x)|n ≤ Cn(diam Ω)n−1 dist(x, ∂Ω)|∂u(Ω)| ∀x ∈ Ω,

here Cn is a geometric constant depending only on the dimension.

Proof. Let (x, u(x)) be a point on the graph of u and let us consider the cone Cx(y)
with vertex on (x, u(x)) and base Ω, that is the graph of one-homogeneous function
(with respect to dilatation with center x) which is 0 on ∂Ω and equal to u(x) at x.
Since by convexity u(y) ≥ Cx(y), Lemma 2.3 implies

|∂Cx(x)| ≤ |∂Cx(Ω)| ≤ |∂u(Ω)|.

To conclude the proof we have only to show that

|∂Cx(x)| ≥ |u(x)|n
Cn(diam Ω)n−1 dist(x, ∂Ω)

.

Let p such that |p| < |u(x)|/ diam Ω and let us consider a plane with slope p, moving
it down and lifting it up until it touches the graph of Cx we see that it has to be
supporting to some point ȳ ∈ Ω. Since Cx is a cone it also has to be supporting at x.
This means

∂Cx(x) ⊃ B(0, |u(x)|/diam Ω).
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(x, u(x))

Cx(y)

d(x, @⌦)

diam(⌦)

Cx(y)

|u(x)|

Figure 2.2: Every plane with slope |p| ≤ |u(x)|/ diam(Ω) supports the graph of Cx at x.
Moreover there exists a supporting plane with slope |q| ≤ |u(x)|/ dist(x, ∂Ω).

Let now x̄ ∈ ∂Ω be such that dist(x, ∂Ω) = |x − x̄| and let q be a vector with the
same direction of (x̄−x) and with modulus less then |u(x)|/ dist(x, ∂Ω), then the plane
u(x) + q · (y − x) will be supporting Cx at x (see Figure 2.2), that is

q :=
x̄− x
|x̄− x|

|u(x)|
|dist(x, ∂Ω)

∈ ∂Cx(x).

By the convexity of ∂Cx(x) we have that it contains the cone C generated by q and
B(0, |u(x)|/ diam Ω). Since, for some geometric constant Cn,

|C| = |u(x)|n
Cn(diam Ω)n−1 dist(x, ∂Ω)

,

we conclude the proof.

Another consequence of Lemma 2.3 is the following comparison principle

Lemma 2.5. Let u, v be convex functions defined on a open and bounded convex set
Ω. If u ≥ v on ∂Ω and (in the sense of Monge-Ampère measures)

detD2u ≤ detD2v in Ω,

then u ≥ v in Ω.

Proof. Up to substituting u with u+ ε and send ε→ 0 at the end of the proof we can
assume that

inf
∂Ω

(u− v) ≥ ε.

Let us assume that u(x̄) < v(x̄) for some x̄ ∈ Ω and define vδ = v+ δ|x− x̄|2. Choosing
δ � ε we see that

A := {u < vδ} b Ω,

but Lemma 2.3 yields

|∂u(A)| ≥ |∂vδ(A)| ≥ |∂v(A)|+ 2δ|A| > |∂u(A)|,
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a contradiction. Here we have used that for two convex functions w and v

det(D2w +D2v) ≥ detD2w + detD2v

as measures. To prove it, notice that thanks to Proposition 1.25 and an approximation
argument we can reduce to the case in which w and v are smooth, but then it follows
from the inequality det(M + N) ≥ detM + detN , which holds for any two positive
matrices M and N .

The above Lemma implies, in particular, that solutions to (2.1) are unique.

2.2 Sections of solutions of the Monge-Ampère equation
and Caffarelli regularity theorems

One of the main features of the Monge-Ampère equation is its affine invariance: if we
right compose a solution of (2.3) with an affine transformation of determinant 1 it is
immediate to see that the new function is still a solution of (2.3). Due to this invariance
it is impossible to have estimates which do not depend on the geometry of the domain
(see section 2.3). In spite of this difficulty, we will see how the affine invariance of the
equation can be used in order to deduce properties of the solution.

A key role in the study of solutions of (2.3) is played by the sections of u, which
play for the Monge-Ampère equation the same role that balls play for an uniformly
elliptic equation.

Given u : Ω→ R a convex function, for any point x in Ω, p ∈ ∂u(x), and t ≥ 0, we
define the section centered at x with height t (with respect to p) as

S(x, p, t) :=
{
y ∈ Ω : u(y) ≤ u(x) + p · (y − x) + t

}
, (2.7)

see Figure 2.3.

We say that an open bounded convex set Z ⊂ Rn is normalized if

B(0, 1) ⊂ Z ⊂ B(0, n).

By John’s Lemma (see Appendix B), for every open bounded convex set S there exists
an ellipsoid E such that

E ⊂ S ⊂ nE,

where the dilation is respect to the center of E. Hence there exists an (invertible)
orientation preserving affine transformation T : Rn → Rn such that T (S) is normalized.
In particular

|B1|
|S| ≤ detT ≤ nn|B1|

|S| . (2.8)
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S(x, p, t)

u(x) + p · (y � x) + t

Figure 2.3: Section of a convex function u.

Notice that in the sequel we are not going to notationally distinguish between an
affine transformation and its linear part, since it will always be clear to what we are
referring to. In particular, we will use the notation

‖T‖ := sup
|v|=1
|Av|, Tx = Ax+ b. (2.9)

One useful property which we will use is the following identity: if we denote by T ∗ the
adjoint of T , then

‖T ∗T‖ = ‖T ∗‖‖T‖. (2.10)

(This can be easily proved using the polar decomposition of matrices.)

Whenever u is a strictly convex solution of (2.3) for any x ∈ Ω′ b Ω one can choose
t0 > 0 sufficiently small (depending only on Ω′ and the modulus of convexity of u)
so that S(x, p, t) b Ω for all t < t0. Then, if T is the affine transformation which
normalizes S(x, p, t), the function

v(z) := (detT )2/n
[
u(T−1z)− u(x)− p · (T−1z − x)− t

]
, p ∈ ∂u(x), (2.11)

solves {
λ ≤ detD2v ≤ 1/λ in Z,

v = 0 on ∂Z,
(2.12)

with Z := T (S(x, p, t)) renormalized. We are going to call v a normalized solution.
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Lemma 2.6. Let v be a normalized solution, then there exist universal positive con-
stants c1 and c2 such that

0 < c1 ≤
∣∣∣inf
Z
v
∣∣∣ ≤ c2. (2.13)

Proof. Consider the functions w1 = λ(|x|2 − 1)/2 and w2 = (|x|2 − n2)/2λ and apply
Lemma 2.5 to see that w2 ≤ v ≤ w1.

Remark 2.7. Since | infZ v| ≈ 1 we see that

t = inf
y∈S(x,p,t)

|u(y)− u(x)− p · (y − x)| = | infZ v|
|detT |2/n ≈

1

| detT |2/n

which, together with (2.8) implies |S(x, p, t)| ≈ tn/2.

We now show that in case a solution of (2.3) is not strictly convex, then the set
where it coincides with one of its supporting plane has to cross the domain of definition.

Recall that if C is a closed convex set a point x̄ ∈ C is said extremal if it cannot
be expressed as non trivial convex combination of two points in C or, equivalently, if
C \ {x̄} is convex. We recall the following Lemma about extreme points.

Lemma 2.8. A point x̄ is extremal for C if and only if for every δ > 0 there exists a
closed half space H such that x̄ ∈ intH and C ∩H ⊂ B(x̄, δ).

Proof. We are going to prove only the implication that we need. Let B = co[C\B(x̄, δ)].
Since x̄ is extremal for δ small B is a non empty convex set such that x̄ /∈ B. Then
there exists a closed hyperplane K strongly separating B and x̄. If H is the closed half
space bounded by K which contains x̄ in its interior, then H ∩ C ⊂ B(x̄, δ).

We are now ready to prove the following theorem, due to Caffarelli. The strategy of
the proof is the following: in case the set where u coincides with one of its supporting
planes ` has an extreme point in Ω, we cut the graph of u with suitable linear functions
˜̀
ε converging to `. If we look at the sets Kε = {u−`ε ≤ 0} and to their renormalization
K∗ε , we see that, from one side, by Aleksandrov maximum principle, the minimum of
vε (the renormalization of uε) should stay far from the boundary, and from the other
side it converges to ∂K∗ε .

Theorem 2.9 (Caffarelli [Ca1]). Let u be a solution of (2.3) inside a convex set Ω
and let `(x) a supporting slope to u at some point x ∈ Ω. If the convex set

W = {x ∈ Ω : u(x) = `(x)}

contains more than one point, then it cannot have extremal points in Ω.
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Proof. Up to subtracting a linear function we can assume that ` = 0, u ≥ 0 and, by
contradiction, that the set W = {u = 0} has a extremal point in Ω. Using Lemma
2.8 we can thus assume that (up to a rotation of coordinates) K0 := W ∩ {x1 ≥ 0}
is non empty and compactly supported in Ω. Moreover, always thanks to the above
mentioned lemma,

x0 := argmax
K0

x1

satisfies x0
1 > 0. Let us define the convex domains

Kε = {u ≤ εx1} ∩ {x1 ≥ 0}.

Notice that ∩εKε = K0 and that

xε := argmax
Kε

x1 → x0

as ε→ 0. Let wε(x) = u(x)− εx1, then
{
λ ≤ detD2wε ≤ 1/λ in Kε

wε = 0 on ∂Kε.

Let us construct the normalized solutions vε on the normalized sets K∗ε = Tε(Kε) as in
(2.12). Let us look to the points Tε(x

0). First notice that (recall (2.11) and that u is
positive)

vε(Tε(x
0))

infK∗ε vε
=

wε(x
0)

infKε wε
≥ εx0

1

εmaxKε x
1

=
x0

1

xε1
→ 1,

since xε → x0. Hence, for ε small, vε(Tε(x
0)) ≈ infK∗ε vε ≈ 1, by Lemma 2.6. Thanks

to Theorem 2.4 and to the fact that K∗ε is normalized we deduce

dist(Tε(x0), ∂K∗ε ) & 1. (2.14)

If we now consider the three parallel hyperplanes Π1 = {x1 = 0}, Π2 = {x1 = x0
1} and

Π3 = {x1 = xε1}, we see that

dist(Π2,Π3)

dist(Π1,Π3)
=
xε1 − x0

1

xε1
→ 0.

Since the above ratio is affine invariant we get

dist(Tε(Π2), Tε(Π3))

dist(Tε(Π1), Tε(Π3))
→ 0.

Now, Tε(Π1) and Tε(Π3) are supporting planes to K∗ε and thus their distance is bounded
from above by the diameter of K∗ε which, since K∗ε is normalized, is bounded by 2n. In
conclusion

dist(Tε(x0), ∂K∗ε ) ≤ dist(Tε(Π2), Tε(Π3))→ 0,

contradicting (2.14).
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The above theorem says that one of the following two alternatives holds: either u is
strictly convex or the set where u coincides with one of its tangent planes has to cross
its domain of definition. This latter fact can actually happen if n ≥ 3 (while if n = 2
any solution of detD2u ≥ λ is strictly convex, see [Ca6]) as it is shown by the function

w(x) = (1 + (x1)2)|x′|2−2/n x = (x1, x
′),

which is a convex generalized solution of (2.3) in a sufficiently small ball around the
origin (see [Gu, Section 5.5]).

We are now in the position to prove Theorem 2.1; by localization (which is possible
due to the strict convexity of u) it is enough to show that a normalized solution is C1,α

loc .
A first step is the following Lemma.

Lemma 2.10 (The class of normalized solution is compact). Let Zk be a sequence
of normalized domains and vk be a sequence of normalized solutions of (2.12) defined
on Zk. Then, up to subsequence, there exists a limiting function v∞ and a limiting
normalized domain Z∞ such that Zk → Z∞ in the Hausdorff metric and vk to v∞
locally uniformly in Z∞. In particular v∞ is a normalized solution.

Proof. By classical theorems, up to subsequences, the sets Zk converge to a limiting
normalized convex set, Z∞. Since osc vk ≈ 1 (by Lemma 2.6), convexity implies that if
K ⊂ Zk then

Lip(vk,K) .
1

dist(Zk,K)
.

Since every compact set contained in Z∞ is contained in Zk for k large enough, we
see that a subsequence of {vk}k∈N locally uniformly converges to a convex function v∞
which is a solution of (2.3) thanks to Proposition 1.25. To fix the boundary data notice
that, by Theorem 2.4,

−dist1/n(·, ∂Zk) . vk ≤ 0 in Zk

and pass to limit as k goes to infinity.

Lemma 2.11. For any normalized solution v on a normalized domain Z, the modulus
of strict convexity of v on Z ′ b Z depends only on dist(Z ′, ∂Z), λ and n. More
precisely, there exists a function ω depending only on the previous mentioned quantities
such that ω(0+) = 0 and

sup
x∈Z′

sup
p∈∂u(x)

diam(S(x, p, t)) ≤ ω(t).

Proof. Assume that this is not the case, then for ε0 > 0 there exists a sequence of
normalized domains Zk, of normalized solutions {vk}k∈N, of points xk ∈ Z ′k, yk ∈ Zk
such that |xk − yk| ≥ ε0 , dist(xk, ∂Zk) ≥ δ,

uk(yk) ≤ uk(xk) + pk · (yk − xk) +
1

k
pk ∈ ∂uk(xk).
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Since dist(xk, ∂Zk) ≥ δ and osc vk ≈ 1, by convexity,

|pk| .
1

δ
.

With the aid of Lemma 2.10 we find a limiting normalized solution v∞ defined on a
normalized domain Z∞ and limiting points x∞, y∞ in Z∞, p∞ ∈ ∂v∞(x∞) such that
|x∞ − y∞| ≥ ε0, dist(x∞, ∂Z∞) ≥ δ and

u∞(y∞) ≤ u∞(x∞) + p∞ · (y∞ − x∞).

But then the set where v∞ coincides with its supporting plane

`(y) = u∞(x∞) + p∞ · (y − x∞)

has more than one point and thus, by Theorem (2.9), it has to cross Z∞. This contra-
dicts the fact that v∞ = 0 on ∂Z∞ and inf v∞ ≈ −1.

We are now ready to prove Theorem 2.1, as we said it will be enough to show that
normalized solution are C1,α. The strategy of the proof goes as follows. By Theorem 2.9
we know that v is strictly convex, in particular, if we consider the cone Cβ ⊂ Rn+1 with
vertex the minimum point of v, (x0, v(x0)), and base {v = (1−β) min v}×{(1−β) min v}
then C1/2 is strictly below C1, see Figure 2.4. By a contradiction compactness argument
we see that there exists a universal δ0 < 1 such that, if Cβ is the graph of hβ,

h1/2 ≤ (1− δ0)h1.

Rescaling and iterating we show that v is C1,α at the minimum. Since, up to subtracting
a linear function, every point behaves like a minimum point, v is C1,α at every point.

Proof of Theorem 2.1. We divide the proof in several steps.

Step 1. Section corresponding to different heights are “far away” Let us consider

S1/2 =

{
v ≤ min

Z
v/2

}
,

then dist(S1/2, ∂Z) ≥ 1/C for some universal constant C. This follows by Aleksandrov
maximum principle, Theorem 2.4. Indeed if x ∈ S1/2

dist1/n(x, ∂Z) & −v(x) ≥ −min
Z
v/2 & 1

by Lemma 2.6.

Step 2. Let x0 be the minimum point of v in Z and let us consider the function hβ
whose graph is the cone generated by {v = (1 − β) min v} × {(1 − β) min v} and the
point (x0, v(x0)). Then there exists a universal constant δ0 such that

h1/2 ≤ (1− δ0)h1.
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h1

h1/2

| min v|

| min v|/2

| min v|/4

x0

Figure 2.4: The function v looks flatter and flatter near its minimum x0.

Notice that since the functions hβ are 1-homogeneous with respect to dilation with
center x0 it is enough to prove the above inequality for all points x ∈ ∂S1/2.

As we said proof is by contraddiction-compactness. Suppose that the claim is false,
then we find normalized solutions vk defined on normalized domains Zk and points
xk ∈ ∂Sk1/2 such that

hk1(xk) ≥
(

1− 1

k

)
hk1/2(xk).

Taking into account that

dist(Sk1/2, ∂Zk) ≥ 1/C

we deduce that the Lipschitz constants of hk1/2, hk1 are universally bounded (recall the

hkβ are 1-homogeneous functions). Thus with the aid of Lemma 2.10 we find a limiting
normalized solution v∞ defined on a normalized domain Z∞ and a point x∞ ∈ ∂S∞1/2,
such that

h∞1 (x∞) = h∞1/2(x∞).

But then (by homogeneity) the above equality is true on the segment through x0 (the
minimum point of v∞) and x∞. This means that the graph of v∞ contains a segment
and thus coincides with one of its supporting planes in more than one point, but then
this set has to cross Z∞ and we get a contradiction as in the proof of Lemma 2.11.

Step 3. v is C1,α at the minimum point. By Step 2 we know that

h1/2 ≤ (1− δ0)h1.

We now consider the set S1/2, its normalization Z̃ = T (S1/2) and the function ṽ =

(detT )2/nv ◦ T−1. Then ṽ is a normalized solution and thus

h̃1/2 ≤ (1− δ0)h̃1,
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where h̃β are defined as in Step 2 starting from ṽ. Coming back to v

h1/4 ≤ (1− δ0)2h1,

and thus, iterating,
h2−k ≤ (1− δ0)kh1,

see Figure 2.4. Since the domain Z = {h1 ≤ 0} is normalized and h1 is 1-homogeneous
it easily follows that

h1(x) ≤ C0|x− x0|+ v(x0).

where x0 is the minimum point of v and C0 is universal. Since v ≤ h2−k as long as
h2−k ≤ (1− 2−k) v(x0), we see that if we define α′ through the relation (1− δ0) = 2−α

′

and for every x we define k such that

(−C0/v(x0))2−(k+1)(1−α′) ≤ |x− x0| ≤ (−C0/v(x0))2−k(1−α′),

then
h2−k(x) ≤ (1− 2−k) v(x0).

Hence, for α = α′/(1− α′),

v(x)− v(x0) ≤ (−v(x0))2−k = 2(−v(x0))

(−v(x0)

C0

)1/(1−α′)
(
C02−(k+1)(1−α′)

−v(x0)

)1/(1−α′)

≤ C1|x− x0|1+α,

where

C1 = 2(−v(x0))

(
C0

−v(x0)

)1/(1−α′)

is universal since −v(x0) = −min v ≈ 1.

Step 4, u is C1,α
loc . It is enough to show that if x0 ∈ Z is such that dist(x0, ∂Z) ≥ δ

then there exists a constant Cδ such that for all supporting planes `x0 at x0

sup
B(x0,r)

|v − `x0 | ≤ Cδr1+α ∀ r ≤ δ/Cδ.

Indeed it is well known that this will imply that v is C1,α on Zδ := {x ∈ Z :
dist(x0, ∂Z) ≥ δ}, see for instance [DF3, Lemma 3.1].

Let x0 as above, by Lemma 2.11 we know that there exists an ε0 = ε0(δ) such that
diam(S(x0, p, ε0)) ≤ δ/2. We normalize S(x0, p, ε0) ⊂ Zδ and construct the normalized
solution

w(x) = (detT )2/n
(
v(T−1x)− p · (T−1x− x0)− ε0

)

By the previous Step

|w(Tx)− w(Tx0)| ≤ C1|Tx− Tx0|1+α.
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Coming back to v we deduce

|v(x)− `x0(x)| ≤ C1

(detT )2/n
|Tx− Tx0|1+α, `x0(x) = v(x0) + p · (x− x0).

Thanks to Remark 2.7 we know that detT ≈ 1/ε0(δ)n/2, and thus to prove the claim
we only have to show that

‖T‖ ≤ Cδ.

Since diam(S(x0, p, ε0)) ≤ δ/2 and T ((S(x0, p, ε0)) is normalized we see that image of
a ball of radius δ through T contains a ball of radius 1. Since we can assume without
loss of generality that T is symmetric3 this means that the smallest eigenvalue of (the
linear part of) T is bounded from below by 1/δ. Since detT is bounded by a constant
depending on δ we see that also the largest eigenvalue of T is bounded by a constant
depending on δ.

In order to apply the above theorem to optimal transportation, we have to show
that solutions arising from such problem are strictly convex. The strategy of the proof
is the same of the one of Theorem 2.9.

Proof of Theorem 2.2. By Proposition 1.23 we know that u solves

λ21Ω1 ≤ detD2u ≤ 1

λ2
1Ω1 in Rn (2.15)

in the Aleksandrov sense and we want to show that u is strictly convex in Ω1. Let us
assume it is not, then up to subtracting a linear function we can assume that u ≥ 0
and that W = {u = 0} has more than one point in Ω1. Let us consider the following
cases:

(i) W has no exposed4 point, therefore it contains a line.

(ii) There exists an exposed points x̄ of W .

In case (i) we can assume without loss of generality that u(x1, 0) = 0 for all x1 ∈ R.
Then if x ∈ Rn and p ∈ ∂u(x)

0 = u(tx1, 0) ≥ u(x1, x
′) + (t− 1)p1x1 + p′ · x′ ≥ (t− 1)p1x1 + p′ · x′.

Sending t→ ±∞ we see that p1 = 0 and thus ∂u(Rn) ⊂ {p1 = 0}, contradicting (2.15).

3Recall the polar factorization theorem for matrices which asserts that any matrix can be decom-
posed as T = SO where S is symmetric and O is orthogonal. Incidentally we notice that this can be
proved with the aid of Brenier Polar Factorization, Theorem 1.11.

4A point x̄ ∈ W is said exposed if there exists a closed half space H such that W ⊂ H and
W ∩ ∂H = {x̄}.
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Let us consider case (ii). By Theorem 2.9 we see that x̄ cannot belong to Ω1. Up
to a change of coordinates we can assume that x̄ = 0 and

W ⊂ {x1 ≤ 0}, {x1 = 0} ∩W = {0}.

Let us now consider two further cases:

(a) 0 ∈ Rn \ Ω1,

(b) 0 ∈ ∂Ω1.

The first case cannot happen, indeed if we consider, for ε small, the functions

wε = u− ε(x1 + ε)

and the sets Kε = {wε ≤ 0} b Rn \Ω1, we see that (2.15) implies |∂wε(Kε)| = 0, while

inf
Kε
wε < 0,

contradicting Aleksandrov maximum principle, Theorem 2.4. Let us assume now that
we are in case (b), that is

0 ∈ ∂Ω1, Ω1 ∩W 3 x̃ 6= 0, W ⊂ {x1 ≤ 0}.

Let us consider the functions

vε = u− ε(x1 − (x̃1 − ε))

and the sets Jε = {vε ≤ 0}. Notice that for ε small, Jε are open and bounded convex
sets and x̃ ∈ Jε, in particular |Jε ∩ Ω1| > 0. Let Tε be the transformation which
normalizes Jε and let ṽε = (detTε)

2/nvε ◦ T−1
ε , then

λ21Tε(Ω1) ≤ detD2ṽε ≤
1

λ2
1Tε(Ω1) in Rn.

Since Tε(Jε) is normalized Aleksandrov maximum principle, Theorem 2.4, implies

|ṽε(Tε(0))|n ≤ C(n)
∣∣Tε(Jε) ∩ Tε(Ω1)

∣∣ dist(Tε(0), Tε(∂Jε))/λ
2.

Since detTε ≈ 1/|Jε|, the above estimates translate in

|vε(0)|n ≤ C(n, λ)|Jε||Jε ∩ Ω1|dist(Tε(0), Tε(∂Jε)). (2.16)

On the other side, if we consider the dilation with respect to 0 of Tε(Jε), we see that
for all x ∈ Tε(Jε)/2, p ∈ ∂u(x),

|p| ≤
| infTε(Jε) ṽε|

dist
(
Tε(Jε)/2, Tε(∂Jε)

) ≤ C(n)

∣∣∣∣ inf
Tε(Jε)

ṽε

∣∣∣∣ .
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where we have used that dist
(
Tε(Jε)/2, Tε(∂Jε)

)
≥ 1/C(n) since Tε(Jε) is normalized.

Thus

∂ṽε(Tε(Jε)/2) ⊂ B
(

0,
∣∣C(n) inf

Tε(Jε)
ṽε
∣∣
)
. (2.17)

Hence

λ2

2n
|Tε(Jε) ∩ Tε(Ω1)| = λ2|Tε(Jε)/2 ∩ Tε(Ω1)/2|

≤ λ2|Tε(Jε)/2 ∩ Tε(Ω1)|
≤ |∂ṽε(Tε(Jε)/2)| ≤ C(n)

∣∣∣ inf
Tε(Jε)

ṽε

∣∣∣
n
,

where in the last step we have used (2.17). Back to vε:

|Jε||Jε ∩ Ω1| ≤ C(n, λ)
∣∣∣ inf
Jε
vε

∣∣∣
n
. (2.18)

Since |Jε||Jε ∩ Ω1| > 0, we see that

|vε(0)|n
| infJε vε|n

≤ C(n, λ) dist(Tε(0), Tε(∂Jε)).

Now arguing as in the proof of Theorem 2.9 we get a contradiction since

|vε(0)|
| infJε vε|

→ 1 and dist(Tε(0), Tε(∂Jε))→ 0

as ε→ 0.

The fact that the modulus of strict convexity is uniformly bounded as Ω2 varies in
a compact class of convex sets follows by a simple contradiction compactness argument
(cp. the proof of Lemma 2.11).

We conclude this section proving some properties of sections of solutions of the
Monge-Ampère equation on a domain Ω. These properties show that Ω endowed with
the Lebesgue measure and the family of “balls” {S(x, p, t)}x∈Ω, t∈R is a space homoge-
nous type in the sense of Coifman and Weiss, see [CuG, GuH]. This will play a key
role in the proof of Sobolev regularity in Chapter 3.

Since, by Theorem 2.1, u is continuously differentiable ∂u(x) reduces to {∇u(x)},
and in the sequel we will simply write S(x, t) for S(x,∇u(x), t). Moreover, given τ > 0,
we will use the notation τS(x, t) to denote the dilation of S(x, t) by a factor τ with
respect to x, that is

τS(x, t) :=

{
y ∈ Rn : x+

y − x
τ
∈ S(x, t)

}
. (2.19)
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Proposition 2.12. Let u be a convex Aleksandrov solution of (2.1) with 0 < λ ≤ f ≤
1/λ. Then, for any Ω′ b Ω′′ ⊂ Ω, there exists a positive constant ρ = ρ(n, λ,Ω′,Ω′′)
such that the following properties hold:

(i) S(x, t) ⊂ Ω′′ for any x ∈ Ω′, 0 ≤ t ≤ 2ρ.

(ii) For all τ ∈ (0, 1) there exists β = β(n, λ) such that τS(x, t) ⊂ S(x, τt) ⊂ τβS(x, t)
for any x ∈ Ω′, 0 ≤ t ≤ 2ρ.

(iii) (Engulfing property) There exists a universal constant θ > 1 such that, if
S(y, t) ∩ S(x, t) 6= ∅, then S(y, t) ⊂ S(x, θt) for any x, y ∈ Ω′, 0 ≤ t ≤ 2ρ/θ.

(iv) ∩0<t≤ρS(x, t) = {x}.
Proof. Property (i) and (iv) are immediate by the strict convexity of u. The first
inclusion in (ii) is just convexity, recall (2.19). To prove the second one it is enough to
show the existence a universal constant σ < 1 such that

S(x, t/2) ⊂ σS(x, t). (2.20)

Indeed, writing σ = 2−β we obtain the second inclusion in (ii) for τ = 1/2. Iterating
(recall (2.19))

S(x, t/2k) ⊂ (2−k)βS(x, t),

which implies the claim. But, after renormalization, the proof of (2.20) can be obtained
exactly as in Step 1 of Theorem 2.1.

We are left to prove the engulfing property (iii). First notice that if we can prove
that

ȳ ∈ S(x, t)⇒ x ∈ S(ȳ,Kt)

for some universal K, then (iii) will follow with θ = K2. To show the above implication
we can assume without loss of generality that ∇u(x) = 0, thus

u(x) ≤ u(y)

= u(y) +∇u(y) · (x− y) +∇u(y) · (y − x).

So our claim will follow if we can prove that

|∇u(y) · (y − x)| ≤ Kt ∀y ∈ S(x, t).

To see notice that, up to reduce the size of ρ, we can assume that S(x, 2t) b Ω. Let T
the transformation which normalize S(x, t) and let us consider the normalized solution:

v(z) = (detT )2/n[u(T−1z)− 2t].

Then

∇u(y) · (y − x) =
1

(detT )2/n
T ∗∇v(Ty) · (y − x) =

1

(detT )2/n
∇v(Ty) · (Ty − Tx).
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Since Ty, Tx belong to B(0, n) and (detT )2/n ≈ 1/2t our claim is equivalent to

|∇v(z)| ≤ K̃ ∀z ∈ T (S(x, t))

for some universal constant. By point (ii), S(x, t) ⊂ 2−βS(x, 2t) and hence

dist
(
T (S(x, t)), ∂T (S(x, 2t))

)
≥ dist

(
2−βT (S(x, 2t)), ∂T (S(x, 2t))

)
≥ 1/C(n, λ),

since T (S(x, 2t)) is normalized. Now by convexity and Lemma 2.6 for all z ∈ T (S(x, t)),

|∇v(z)| ≤
| infT (S(x,2t)) v|

dist
(
T (S(x, t)), ∂T (S(x, 2t))

) ≤ K̃.

Remark 2.13. As shown by Forzani and Maldonado [ForMa2], the engulfing property
of sections is actually equivalent to C1,α regularity. Since the proof does not rely
on compactness arguments one can also get the explicit dependence expression of the
Hölder exponent by the structural constants. Here we briefly sketch the proof assuming
that u is differentiable. Let y and x be given, the smallest t such that u(x) ∈ S(y, t) is

t̄ = u(x)− u(y)−∇u(y) · (x− y).

Thanks to the the engulfing property, y ∈ S(x, θt̄) which implies

u(y) ≤ u(x) +∇u(x) · (y − x) + θ
(
u(x)− u(y)−∇u(y) · (x− y)

)
.

Rearranging we get

(∇u(y)−∇u(x)) · (y − x) ≥ 1 + θ

θ

(
u(y)− u(x)−∇u(x) · (y − x)

)
.

Writing y = x+ sv with |v| = 1, we see that, for s ≤ dist(x, ∂Ω), the function

f(s) := u(x+ sv)− u(x)− s∇u(x) · v,

satisfies the differential inequality:

sf ′(s) ≥ 1 + θ

θ
f(s).

Then g(s) := f(s)s−(1+1/θ) is increasing, hence

0 ≤ u(y)− u(x) +∇u(x) · (y − x)

= |x− y|1+1/θg(|y − x|)
≤ |x− y|1+1/θg(dist(x, ∂Ω)),

which implies that u ∈ C1,1/θ.
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Remark 2.14. We remark here that sections with comparable height have comparable
size. This means that there exists a constant C depending on n, λ, Ω′,Ω such that,

B(x,Ct) ⊂ S(x, t) ⊂ B(x,Ctβ) ∀x ∈ Ω′, t ≤ ρ (2.21)

where β is as in Proposition 2.12. To see this, let ρ be as in Proposition 2.12 with
Ω′′ = Ω. Since, by property (ii) of Proposition 2.12,

t

ρ
S(x, ρ) ⊂ S(x, t) ⊂

(
t

ρ

)β
S(x, ρ) for all t ≤ ρ,

it is enough to show that

B(x, r1) ⊂ S(x, t) ⊂ B(x, r2) (2.22)

for some r1, r2 which depends only on ρ and on Ω. To see this, let E the John ellipsoid
associated to S(x, ρ) and let λ1 ≤ · · · ≤ λn be the lengths of its semi-axis. From the
inclusion E ⊂ S(x, t) ⊂ nE, we infer

2λn = diamE ≤ diamS(x, t) ≤ diam Ω.

Since |E| & |S(x, ρ)| & ρn/2, this implies that λ1 is bounded from below by a constant
depending only on ρ and Ω. If T is the transformation such that T (Eρ) = B1, then

‖T‖ =
1

λ1
≤ C(ρ,Ω), ‖T−1‖ = λn ≤ C(ρ,Ω).

So our claim will follow from

B(T (x), 1/C) ⊂ T (S(x, ρ)) ⊂ B(T (x), C)

for some universal C. The first inclusion follows by Aleksandrov maximum principle
which implies that dist(T (x), ∂T (S(x, ρ)) ≥ 1/C, while the second follows from the fact
that, being T (S(x, ρ)) normalized,

T (S(x, ρ)) ⊂ B(0, n) ⊂ B(T (x), 3n),

since T (x) ∈ B(0, n).

As we said, a particular nice feature of the above properties is that it is possible to
prove classical theorems in Real Analysis using sections as they were balls, see [St]. In
particular we quote the following which will play a crucial role.

Lemma 2.15 (Vitali covering). Let D be a compact set in Ω′′ and assume that to each
x ∈ D we associate a corresponding section S(x, tx) b Ω. We can find a finite number
of these sections S(xj , txj ), j = 1, . . . ,m such that

D ⊂
m⋃

j=1

S(xj , txj ), with S(xj , txj/θ) disjoint.
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Proof. The proof follows as in the standard case. First, by compactness, we select a
finite number of sections {S(xi, txi/θ)}Ni=1 which cover D. Among all these sections we
choose one of maximal height, i.e. such that

txi(1)
= max

i=1,...,N
txi ,

and we discard all the ones which intersect S(xi(1), txi(1)
/θ). Among the remaining

sections we choose again one of maximal height, S(xi(2), txi(2)
/θ), and we discard all

the sections which intersect it. Continuing this process we obtain a finite number of
disjoint sections {S(xi(j), txi(j)/θ)}mj=1 for which, thanks to the engulfing property,

D ⊂
N⋃

i=1

S(xi, txi/θ) ⊂
m⋃

j=1

S(xi(j), txi(j)).

Let Ω′ b Ω′′ b Ω′′′ ⊂ Ω and f ∈ L1(Ω′′), we define the (localized) maximal function

MΩ′′,Ω′′′ [f ](x) := sup
0<t<ρ

−
∫

S(x,t)
|f(y)|dy x ∈ Ω′′, (2.23)

where ρ is such that for all t ≤ ρ and x ∈ Ω′′, S(x, t) ⊂ Ω′′′, see Proposition 2.12 (i).
It is a classical theorem in Real Analysis that if the maximal function (done with

respect to balls) MΩ′′,Ω′′′ [f ] is in L1 then the function is in L logL(Ω′), meaning that

|f | log+ |f | ∈ L1(Ω′),

here log+(t) = max{log t, 0}.
The key estimates to prove the above result is valid in any space of homogeneous

type, in particular it is also true for the maximal function constructed with sections.
More precisely by [St, Chapter 1, Section 4, Theorem 2] and [St, Chapter 1, Section
8.14], the following key property holds: there exist universal constants C ′, C ′′ > 0 such
that, for any α ≥ α0,

∫

{f≥α}∩Ω′

|f | ≤ C ′α
∣∣{MΩ′,Ω′′ [f ](x) ≥ C ′′α}

∣∣. (2.24)

Here α0 is a sufficiently large constant which depends only on
∫

Ω′′′ |f |.
Here we give a sketch of the proof of the above inequality. First of all notice that

exactly with the same proof as in the classical Euclidean setting the following weak
1− 1 estimate holds

α
∣∣{MΩ′′,Ω′′′ [f ](x) > α}

∣∣ ≤ C ′′′
∫

Ω′′′
|f |, (2.25)
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where C ′′′ depends on the engulfing constant θ in Proposition 2.12. Moreover, since
MΩ′′,Ω′′′ [f ] is easy seen to be lower semicontinuous, the set

Mα := {MΩ′′,Ω′′′ [f ](x) > α} ∩ Ω′ b Ω′′

is open. By Proposition 2.12 (i) there exists a σ = σ(Ω′,Ω′′) > 0 such that for all
x ∈ Ω′, t ≤ σ,

S(y, 2θt) ⊂ Ω′′ ∀y ∈ S(x, 2t). (2.26)

By Remark 2.7,

|S(x, t)| ≥ tn/2

C̄
(2.27)

for some universal constant C̄. Using (2.25) we choose α0 so big that

|Mα0 | ≤
∣∣{MΩ′,Ω′′ [f ](x) > α0}

∣∣ ≤ σn/2

C̄
. (2.28)

Notice that this condition fixes α0 in dependence only on
∫

Ω′ |f | and on the modulus of
strict convexity of u (and it is done just to be sure that all the sections we will consider
are contained in Ω′′).

For α ≥ α0 and every x ∈Mα define

t(x) = sup{t : S(x, t) ⊂Mα}.

Thanks to (2.27) and (2.28), t(x) ≤ σ, in particular (2.26) holds true for t = t(x).
Let us fix ε to be choosen and let us consider a covering of Mα by sections

{S(x, εt(x))}x∈Mα and select a maximal disjoint subcollection {S(xk, εt(xk))}.
We claim that (with the appropriate choice of ε)

Mα ⊂
⋃

k

S(xk, t(xk)) (2.29)

and
|Mα| &

∑

k

|S(xk, t(xk))|. (2.30)

By maximality, for all x ∈Mα,

S(x, εt(x)) ∩ S(xk, εt(xk)) 6= ∅ (2.31)

for some k. Notice that 4θt(xk) ≥ t(x) if ε < 1/2θ since otherwise

S(xk, 2t(xk)) ∩ S(x, t(x)/2θ) ⊃ S(xk, t(xk)) ∩ S(x, t(x)/2θ) 6= ∅, (2.32)

and 2t(xk) ≤ t(x)/2θ implies, by the engulfing property and (2.32),

S(xk, 2t(xk)) ⊂ S(x, t(x)/2) ⊂Mα,
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a contradiction with the definition of t(x). Since 4θεt(xk) ≥ εt(x), (2.31) implies

x ∈ S(x, 4θεt(xk)) ⊂ S(xk, 4θ
2εt(xk)).

Choosing ε = 1/4θ2 we obtain that S(xk, t(xk)) coversMα, moreover, since |S(x, t)| ≈
tn/2, we have

|Mα| ≥
∑

k

|S(xk, εt(xk))| &
∑

k

|S(xk, t(xk))|,

and also (2.30) holds true.

We now prove (2.24). Since S(xk, 2t(xk))∩(Mα)c 6= ∅, we can find a y ∈ S(xk, 2t(xk))
such that (recall that, by (2.26), S(y, 2tθ(xk)) ⊂ Ω′′)

−
∫

S(xk,2t(xk))
|f | ≤ θn/2 −

∫

S(y,2θt(xk))
|f | ≤MΩ′′,Ω′′′ [f ](y) ≤ θn/2α.

Thus

|S(xk, t(xk)| & |S(xk, 2t(xk)| ≥
1

θn/2α

∫

S(xk,t(xk))
|f |.

Combining the above equation with (2.30) and (2.29), we obtain, for some universal
constants C ′, C ′′,

∫

{MΩ′′,Ω′′′ [f ]≥α}∩Ω′

|f | ≤ C ′α
∣∣{MΩ′′,Ω′′′ [f ](x) ≥ C ′′α}

∣∣.

Since, by Lebegue differentiation Theorem (which holds in spaces of homogeneous
type, [St, Chapter 1]), for almost every x ∈ Ω′′

MΩ′′,Ω′′′ [f ](x) ≥ α =⇒ f(x) ≥ α,

we obtain (2.24).

2.3 Existence of smooth solutions to the Monge-Ampère
equation

In this section we briefly recall the classical higher regularity theory for solutions to the
Monge-Ampère equation. We will not give proofs of the results stated here but just
sketch the main ideas behind them.

Existence of smooth solutions to the Monge Ampere equation (2.1) dates back to
the work of Pogorelov. The way they are obtained (together with nice and useful
estimates) is through the well-celebrated method of continuity which now we briefly
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describe (see [GT, Chapter 17] for a more detailed exposition). Let us assume that we
know how find a smooth (convex) solution ū to

{
detD2ū = f̄ in Ω

ū = 0 on ∂Ω

and that we would like to find a solution to
{

detD2u = f in Ω

u = 0 on ∂Ω.
(2.33)

Let us define ft = (1 − t)f̄ + tf , t ∈ [0, 1], and let us consider the 1-parameter family
of problems {

detD2ut = ft in Ω

ut = 0 on ∂Ω.
(2.34)

We would like to prove that the set of t such that (2.34) is solvable is both open and
closed, in this way we will clearly obtain a solution also to our original problem. More
precisely let us assume that f, f̄ are C2,α(Ω) and let us consider the set

C = {u : Ω→ R convex functions of class C4,α(Ω), u = 0 on ∂Ω}.

Notice that C is non-trivial if and only if Ω is a C4,α convex set. Consider the non-linear
map

F : C × [0, 1] −→ C2,α(Ω)

(u, t) 7→ detD2u− ft.
We would like to show that

T = {t ∈ [0, 1] : there exists a ut ∈ C such that F(ut, t) = 0},

is both open and closed. Openess follows from the Implicit Function Theorem in Banach
spaces (see [GT, Theorem 17.6]). Indeed, the Frechèt differential of F with respect to
u is given by the linearized Monge-Ampère operator (see also Chapter 5):

L[h] := DuF(u, t)[h] = Mij(D
2u)Dijh , h = 0 on ∂Ω. (2.35)

Here Mij(D
2u) is the cofactor matrix of D2u. 5 Notice that if u is bounded in C2 and f

is bounded from below by λ, then the smallest eigenvalue of D2u is also bounded from

5Given an invertible matrix A the cofactor matrix M(A) is the one which satisfies

M(A)∗A = (detA) Id .

For non-invertible matrices the definition is extended by continuity. Notice that the above equation
implies

∂ detA

∂Aij
= Mji(A).
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below, in this way the (2.35) operator becomes uniformly elliptic with C2,α coefficients.
Classical Schauder theory gives then the invertibility of DuF(u, t).

The task is now to prove closedness of T . This is done through a-priori estimates
both at the interior and at the boundary. As already said the Monge-Ampère equation
becomes uniformly elliptic (meaning that the linearized equation is uniformly elliptic)
on uniformly convex functions, thus the main task is to establish an a-priori bound on
the C2 norm of u in Ω, since then the lower bound on the determinant will imply that
the smallest eigenvalue of D2u is bounded away from 0. Once this is done, classical
Schauder theory gives higher regularity.

For what concerns interior estimates we have the following classical theorem due to
Pogorelov. The rate of degeneracy of the estimates can be found in [CaL].

Theorem 2.16 (Pogorelov). Let u be a C4(Ω) solution to (2.33). Assume that B1 ⊂
Ω ⊂ Bn, and that λ ≤ f ≤ 1/λ. Then there exist a constant C depending only on n, λ
and ‖f‖C2 and an universal exponent τ such that

(
dist(x, ∂Ω)

)τ |D2u(x)| ≤ C ∀x ∈ Ω. (2.36)

The necessity of working with normalized domains and solutions is given by the
family of functions

uε(x, y) =
εx2

2
+
y2

2ε
− 1

which solves detD2uε = 1 on {uε ≤ 0}.
To obtain estimates up to the boundary we also need to impose some assumption

on the domain, [GT, Theorem 17.20]:

Theorem 2.17. Let Ω be a uniformly convex C3 domain 6 and let u be a solution
(2.33) with f ∈ C2(Ω) and λ ≤ f ≤ 1/λ. Then there exists a constant C depending on
Ω, λ, ‖f‖C2(Ω) such that

‖D2u‖C0(Ω) ≤ C.

Combining the above Theorems one gets the following existence result:

Theorem 2.18. Let Ω be a uniformly convex C4,α domain. Then for all f ∈ C2,α(Ω),
λ ≤ f ≤ 1/λ there exists a (unique) C4,α(Ω) solution to (2.33).

Notice that the above Theorem actually gives also existence of Aleksandrov solu-
tions to (2.33) with f merely bounded away from zero and infinity and Ω not strictly
convex. Indeed one can approximate f and Ω with a sequence fk and Ωk satisfying the
hypothesis of the above Theorem, find a sequence of solutions uk and apply the results
of the previous section (see Lemma 2.10 for instance) to show that the uk converges

6We say that a domain is uniformly convex if its second fundamental form is (as a symmetric
tensor) uniformly bounded from below. This is equivalent to require the existence of a uniformly
convex function φ such that Ω = {φ < 0}.
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to a function u solving (2.33). For a direct approach to the existence of Aleksandrov
solutions, see [Gu].

Theorem 2.16 needs to assume f ∈ C2 to obtain uniform bounds on the C2 norm
of u, actually as shown by Caffarelli [Ca2] much less is needed.

Theorem 2.19. Let u be a solution of (2.33) and assume that f ∈ Cαloc(Ω), then

u ∈ C2,α
loc (Ω).

Later, in [JW], this result has been improved by showing that if f is Dini-continuous
then u is C2. The examples in [W] imply that this result is essentially optimal.

The proof of the above theorem is based on showing that under the assumption
that f is almost a constant, say 1, then u is very close to the solution of (2.33) with
right hand side 1. Since this latter function has interior a priori estimates we can prove
by interpolation that the C2 norm of u remains bounded (see the proof of Theorem
6.11). With this line of reasoning one can also prove the following Theorem, also due
to Caffarelli [Ca2]

Theorem 2.20. Let u be a solution of (2.33), then for every p > 1 there exists a δ
such that if ‖f − 1‖∞ ≤ δ, then u ∈W 2,p

loc .

We will give a simple proof of this Theorem in Chapter 3.

Example 2.21. Let us stress here that to obtain u ∈W 2,p the “pinching” ‖f−1‖∞ ≤ δ
is necessary. Indeed in [W] Wang shows that the family of convex functions

uα(x, y) =





xα + α2−1
α(α−2)y

2x2−α for |y| ≤ |x|α−1

1
2αx

2y(α−2)/(α−1) + 4α−5
2(α−2)y

α/(α−1) for |y| ≥ |x|α−1

are strictly convex solution to (2.33) with λ(α) ≤ f ≤ 1/λ(α) but uα /∈ W 2,p for
p > α/(α− 2).

In spite of the above example in Chapter 3 we will prove that solution of (2.33) are
always of class W 2,1. Notice that, due to the lack of regularity of f , a “perturbative”
approach cannot work in this general case.



Chapter 3

Sobolev regularity of solutions to
the Monge Ampère equation

In this Chapter we prove the W 2,1 regularity of solutions of (2.1). This has been
first shown in [DF1] in collaboration with Alessio Figalli, where actually the following
higher integrability result was proved

Theorem 3.1. Let Ω ⊂ Rn be a bounded convex domain, and let u : Ω → R be an
Aleksandrov solution of (2.1) with 0 < λ ≤ f ≤ 1/λ. Then u ∈ W 2,1

loc (Ω) and for any
Ω′ b Ω and k ∈ N ∪ {0}, there exists a constant C = C(k, n, λ,Ω,Ω′) > 0 such that

∫

Ω′
‖D2u‖ logk+

(
‖D2u‖

)
≤ C. (3.1)

Later, in collaboration with Alessio Figalli and Ovidiu Savin [DFS] and indepen-
dently by Thomas Schmidt [S], the L logk L integrability has been improved to L1+ε

where ε = ε(n, λ). Notice that in view of Wang counterexample, Example 2.21, the
result is optimal.

Theorem 3.2. Let Ω ⊂ Rn be a bounded convex domain, and let u : Ω → R be
an Aleksandrov solution of (2.1) with 0 < λ ≤ f ≤ 1/λ. Then there exists a γ0 =
γ0(n, λ) > 1 such that, for any Ω′ b Ω there exists C = C(n, λ,Ω,Ω′) > 0 for which
the following estimate holds ∫

Ω′
‖D2u‖γ0 ≤ C. (3.2)

As a corollary we obtain the following Sobolev regularity result for optimal transport
maps

Corollary 3.3. Let Ω1,Ω2 ⊂ Rn be two bounded domains, and ρ1, ρ2 two probability
densities such that 0 < λ ≤ ρ1, ρ2 ≤ 1/λ inside Ω1 and Ω2 respectively. Let T =
∇u : Ω1 → Ω2 be the (unique) optimal transport map for the quadratic cost sending
ρ1 onto ρ2, and assume that Ω2 is convex. Then T is locally in W 1,1, more precisely
T ∈W 1,γ0

loc (Ω1) with γ0 = γ0(n, λ) > 1.

49
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As we saw at the end of Section 2.2, many theorems in Real Analysis hold replacing
balls with sections. A key tool in the proof of Theorem 3.1 will be the maximal operator
of D2u, the hessian of a C2 solution of (2.1), namely if Ω′′ b Ω′′′ ⊂ Ω we define

MΩ′′,Ω′′′(x) := sup
0<t<ρ

−
∫

S(x,t)
‖D2u(y)‖ dy x ∈ Ω′′ (3.3)

where ‖D2u(y)‖ denotes the operator norm of the matrix D2u(y), and ρ is such that
S(x, t) ⊂ Ω′′′ for all x ∈ Ω′′, t ≤ ρ, see Proposition 2.12.

Estimate (2.24) then becomes, for Ω′ b Ω′′ b Ω′′′

∫

{|D2u‖≥α}∩Ω′

‖D2u‖ ≤ C ′α
∣∣{|MΩ′,Ω′′(x) ≥ C ′′α} ∩ Ω′′

∣∣ ∀α ≥ α0. (3.4)

Here C ′ and C ′′ are universal constants and α0 depends only on
∫

Ω′′′ ‖D2u‖.
The strategy of the proof of Theorem 3.1 will be then to prove the following estimate

for C2 solutions of (2.1)
∣∣{|MΩ′,Ω′′(x) & α} ∩ Ω′′

∣∣ .
∣∣{‖D2u‖(x) ≥ α} ∩ Ω′

∣∣,

where all the involved constants are universal. This will lead to an a-priori estimate for
the L logk L norms of D2u. Since any solution of (2.1) can be approximated by smooth
solutions (regularizing the data and applying Theorem 2.18) and all bounds depend
only on n and λ, this will prove Theorem 3.1. A more careful analysis will then lead
to Theorem 3.2.

3.1 Proof of Theorem 3.1

As we said it suffices to prove (3.1) when u ∈ C2(Ω).
Let us remark that the proof of (3.1) for k = 0 is elementary: indeed, this follows

from ‖D2u‖ ≤ ∆u (since u is convex) and a universal interior bound for the gradient
of u (see for instance the proof of point (iii) of Proposition 2.12 or (3.11)-(3.12) below).

Hence, performing an induction on k and using a standard covering argument,
briefly sketched below, it suffices to prove the following result (recall the notation
(2.19) for the dilation of a section):

Theorem 3.4. Let U ⊂ Rn be a normalized convex set, and let u : U → R a C2 convex
solution of {

0 < λ ≤ detD2u ≤ 1/λ in U ,
u = 0 on ∂U .

(3.5)

Then for any k ∈ N ∪ {0} there exists a constant C = C(k, n, λ) such that
∫

U/2
‖D2u‖ logk+1

+

(
‖D2u‖

)
≤ C

∫

3U/4
‖D2u‖ logk+

(
‖D2u‖

)
.
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Proof of (3.1) using Theorem 3.4. We want to show that, if (3.1) holds for some k ∈
N∪ {0}, then it also holds for k+ 1. Since the following argument is standard, we just
give a sketch of the proof.

Given Ω′ ⊂⊂ Ω, fix ρ as in Proposition 2.12 with Ω′′ = Ω, and consider the covering
of Ω′ given by {S(x, ρ)}x∈Ω′ . By Remark 2.14 (see (2.22)) all sections {S(x, ρ)}x∈Ω′ have
comparable shapes, there exist positive constants r1, r2, depending only on n, λ, , ρ,Ω,
such that

B(x, r1) ⊂ S(x, ρ) ⊂ B(x, r2) ∀x ∈ Ω′. (3.6)

This implies that one can cover Ω′ with finitely many such sections {Si}i=1,...,N (the
number N depending only on r1, r2,Ω

′), and moreover the affine transformations Ti
normalizing them (which we assume to be symmetric) satisfy the following bounds
(which follow easily from (3.6) and the inclusion B(0, 1) ⊂ Ti(Si) ⊂ B(0, n)):

‖Ti‖ ≤
n

r1
, detTi ≥

1

rn2
.

Hence, we can define vi as in (2.11) with T = Ti and t = ρ, and apply Theorem 3.4 to
each of them: by using the inductive hypothesis we have

∫

Ti(Si)/2
‖D2vi‖ logk+1

+

(
‖D2vi‖

)
≤ C(k, n, λ).

Changing variables back and summing over i, we get

∫

Ω′
‖D2u‖ logk+

(
‖D2u‖

)
≤ C(k, n, λ)

N∑

i=1

‖Ti‖2
(detTi)1+2/n

logk+

( ‖Ti‖2
(detTi)2/n

)
.

Recalling that we have uniform bounds on N and on Ti, this concludes the proof.

We now focus on the proof of Theorem 3.4. We begin by showing that the average of
‖D2u‖ over a section is controlled by the size of the “normalizing affine transformation”.

Lemma 3.5. Let u solve (3.5), fix x ∈ U/2, and let t > 0 be such that S(x, 2t) ⊂ 3U/4.
Let T be the (symmetric) affine map which normalizes S(x, t). Then there exists a
positive universal constant C1 such that

‖T‖2
(detT )2/n

≥ C1 −
∫

S(x,t)
‖D2u‖. (3.7)

Proof. Let us consider v : T (S(x, 2t)) → R, with v is defined as in (2.11). We notice
that

D2v(z) = (detT )2/n
[
(T−1)∗D2u(T−1z)T−1

]
, (3.8)

and {
λ ≤ detD2v ≤ 1/λ in T (S(x, 2t)),

v = t(detT )2/n on ∂
(
T (S(x, 2t))

)
.

(3.9)
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Although the convex set T (S(x, 2t)) is not renormalized in the sense defined before, it is
almost so: indeed, since T normalizes S(x, t) we have Tz ∈ B(0, n) for any z ∈ S(x, t).
Recalling that 2S(x, t) denotes the dilation of S(x, t) with respect to x (see (2.19)), we
get

T

(
x+

y − x
2

)
∈ B(0, n) ∀ y ∈ 2S(x, t),

which is equivalent to

Ty + Tx ∈ B(0, 2n) ∀ y ∈ 2S(x, t).

Since Tx ∈ B(0, n) this implies that T (2S(x, t)) ⊂ B(0, 3n), which together with the
fact that S(x, t) ⊂ S(x, 2t) ⊂ 2S(x, t) (by convexity of u) gives

B(0, 1) ⊂ T (S(x, 2t)) ⊂ B(0, 3n). (3.10)

Hence, it follows from (3.9), detT 2/nt ≈ 1 and Lemma 2.6 that

osc
T (S(x,2t))

v =

∣∣∣∣ inf
T (S(x,2t))

(v − t(detT )2/n)

∣∣∣∣ ≤ c′, (3.11)

with c′ universal.

Since v is convex, by (3.11), and Proposition 2.12(ii), we also get (cp. the proof of
Propositon 2.12 (iii) )

sup
T (S(x,t))

|∇v| ≤ sup
βT (S(x,2t))

|∇v| ≤
oscT (S(x,2t)) v

dist
(
2−βT (S(x, 2t)), ∂

(
T (S(x, 2t))

)) ≤ c′′ (3.12)

for some universal constant c′′. Moreover, since T (S(x, t)) is a normalized convex set,
it holds

|B1| ≤ |T (S(x, t))| = detT |S(x, t)|, Hn−1
(
∂T (S(x, t))

)
≤ c(n), (3.13)

where c(n) is a dimensional constant. Finally, using again the convexity of v, the
estimate

‖D2v(y)‖ ≤ ∆v(y) (3.14)

holds (recall that ‖D2u(y)‖ denotes the operator norm of D2u(y)).
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Hence, by (3.8), (3.13), (3.14) and (3.12) and since T is symmetric, we get

−
∫

S(x,t)
‖D2u(y)‖ dy =

1

(detT )2/n
−
∫

S(x,t)
‖T ∗D2v(Ty)T‖ dy

≤ ‖T‖2
(detT )2/n

1

detT |S(x, t)|

∫

T (S(x,t))
‖D2v(z)‖ dz

≤ ‖T‖2
(detT )2/nωn

∫

T (S(x,t))
∆v(z) dz

=
‖T‖2

(detT )2/nωn

∫

T (∂S(x,t))
∇v(z) · ν dHn−1(z)

≤ c(n)‖T‖2
(detT )2/nωn

sup
T (S(x,t))

|∇v|

≤ c′′ c(n)‖T‖2
(detT )2/nωn

,

which concludes the proof of (3.7).

We now show that, in every section, we can find a uniform fraction of points where
the norm of the Hessian controls the size of the “normalizing affine transformation”.

Lemma 3.6. Let u solve (3.5), fix x ∈ U/2, and let t > 0 be such that S(x, 2t) ⊂ 3U/4.
Let T be the (symmetric) affine map which normalizes S(x, t) and let θ be the engulfing
constant of Proposition 2.12 (iii). Then there exist universal positive constants C2, C3,
and a Borel set A(x, t) ⊂ S(x, t/θ), such that

|A(x, t) ∩ S(x, t/θ)|
|S(x, t)| ≥ C2, (3.15)

and

‖D2u(y)‖ ≥ C3
‖T‖2

(detT )2/n
∀ y ∈ A(x, t). (3.16)

Proof. We divide the proof in two steps.

Step one: Let v be a normalized solution in Z (see (2.12)). Then there exist universal
constants c′, c′′ > 0, and a Borel set E ⊂ Z, such that |E| ≥ c′|Z|, and D2v(x) ≥ c′′Id
for every x ∈ E.

To see this, let us consider the paraboloid p(x) := c1(|x|2/n2 − 1)/2, with c1 as in
(2.13) (observe that, since Z ⊂ B(0, n), p ≤ 0 inside Z). Then

| inf
Ω

(v − p)| ≥ c1

2
.
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Set w := v − p, and let Γw : Z → R be a convex envelope of w in Z, that is

Γw(y) := sup{`(y) : ` ≤ w in Z, ` ≤ 0 on ∂Z, ` affine}.

It is well-known that Γw is C1,1(Z) (see [DF3] for instance), and that detD2Γw = 0
outside the set {Γw = w} ⊂ Z (see (4.6)). Hence, by Aleksandrov maximum principle,
Theorem 2.4, and from the fact that

0 ≤ D2Γw ≤ D2w ≤ D2v a.e. on {Γw = w}

(in the sense of non-negative symmetric matrices), we get
(
c1

2

)n
≤
∣∣inf
Z
w
∣∣n =

∣∣inf
Z

Γw
∣∣n ≤ C(n)

∫

{Γw=w}
detD2Γw

≤ C(n)

∫

{Γw=w}
detD2v ≤ C(n)

∣∣{Γw = w}
∣∣/λ.

This provides a universal lower bound on the measure of E := {Γw = w}.
Moreover, since D2w ≥ 0 on E, we obtain

D2v ≥ c1

n2
Id on E,

proving the claim.

Step two: Proof of the Lemma. Let S(x, t/θ) ⊂ S(x, t) and Tθ be the (symmetric) affine
transformation which normalizes S(x, t/θ). Define v as in (2.11) (using Tθ). Since v is a
normalized solution, we can apply the previous step to find a set E ⊂ Z := Tθ(S(x, t/θ))
such that |E| ≥ c′|Z|, and D2v ≥ c′′Id on E. We define A(x, t) := T−1

θ (E) ⊂ S(x, t/θ).
To prove (3.15) we observe that, since S(x, t/θ) ≈ (t/θ)n ≈ |S(x, t)| (recall that θ

is universal), we have

|A(x, t) ∩ S(x, t/θ)|
|S(x, t)| ≥ c′′′ |A(x, t) ∩ S(x, t/θ)|

|S(x, t)| = c′′′
|E ∩ Z|
|Z| ≥ c′′′c′.

Moreover, since on A(x, t)

D2u(y) =
1

(detTθ)2/n
T ∗θD

2v(Ty)Tθ ≥
c′′

(detT )2/n
T ∗θ Tθ,

using (2.10) we get

‖D2u(y)‖ ≥ c′′‖T ∗θ Tθ‖
(detTθ)2/n

=
c′′‖T ∗θ ‖2

(detTθ)2/n
∀ y ∈ A(x, t).

To conclude the proof of (3.16) we need to show that, if T is the affine transformation
which normalizes T , then

detTθ ≤ C detT and ‖Tθ‖ ≥ ‖T‖/C
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for some universal constant C. The first inequality trivially follows from 1/ detTθ ≈
|S(x, t/θ)| ≈ (t/θ)n/2 and 1/ detT ≈ |S(x, t)| ≈ tn/2. To prove the second, recall that
by Proposition 2.12 (ii)

S(x, t)/θ ⊂ S(x, t/θ) ⊂ (1/θ)−βS(x, t).

Hence arguing as in the proof of Lemma 3.5, for some universal constant C ′(n, θ)

TθT
−1(B1) ⊂ TθT−1(T (S(x, t))) ⊂ Tθ(θS(x, t/θ)) ⊂ C ′Bn,

from which we deduce

‖TθT−1‖ ≤ C.
Thus

‖Tθ‖ = ‖TθT−1T‖ ≤ C‖T‖.

Combining the two previous lemmas, we obtain that in every section we can find a
uniform fraction of points where the norm of the Hessian controls its average over the
section:

‖D2u(y)‖ ≥ C1C3 −
∫

S(x,t)
‖D2u‖ ∀ y ∈ A(x, t) ⊂ S(x, t/θ). (3.17)

As we will show below, Theorem 3.4 is a direct consequence of this fact and a covering
argument.

To simplify the notation, we use M(x) to denote MU/2,3U/4(x) (see (3.3)).

Lemma 3.7. Let u solve (3.5). Then there exist two universal positive constants C4

and C5 such that

|{x ∈ U/2 : M(x) > γ}| ≤ C4|{x ∈ 3U/4 : ‖D2u(x)‖ ≥ C5γ}| (3.18)

for every γ > 0.

Proof. By the definition of M , we clearly have

{x ∈ U/2 : M(x) ≥ γ} ⊂ E :=
{
x ∈ U/2 : −

∫

S(x,tx)
|D2u| ≥ γ

2
for some tx ∈ (0, ρ)

}
.

By Lemma 2.15, we can find a finite numbers of points xk ∈ E such that {S(xk, txk)}
covers E and {S(xk, txk/θ)} are disjoints. Since xk ∈ E, by (3.17) we deduce that

‖D2u(y)‖ ≥ C1C3 −
∫

S(xk,txk )
‖D2u‖ ≥ C1C3γ

2
∀ y ∈ A(xk, txk) ⊂ S(xk, txk/θ).

(3.19)
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Hence, applying (3.15), (3.19), we get

|{x ∈ U/2 : M(x) ≥ γ}| ≤
∑

k∈N
|S(xk, txk)|

≤ 1

C2

∑

k∈N
|A(xk, txk) ∩ S(xk, txk/θ)|

≤ 1

C2

∑

k∈N

∣∣S(xk, txk/θ) ∩ {x ∈ 3U/4 : ‖D2u(x)‖ ≥ C1C3γ/2}|

=
1

C2

∣∣∣∣∣
⋃

k

S(xk, tk/θ) ∩ {x ∈ 3U/4 : ‖D2u(x)‖ ≥ C1C3γ/2}
∣∣∣∣∣

≤ 1

C2

∣∣{x ∈ 3U/4 : ‖D2u(x)‖ ≥ C1C3γ/2}
∣∣,

proving the result.

Proof of Theorem 3.4. Combining (3.4) and (3.18), we obtain the existence of two pos-
itive universal constants c′, c′′ such that

∫

U/2∩{‖D2u‖≥γ}

‖D2u‖ ≤ c′γ|{x ∈ 3U/4 : ‖D2u(x)‖ ≥ c′′γ}| ∀ γ ≥ c̄, (3.20)

with c̄ depending only on −
∫

3U/4 ‖D2u‖ and ρ. Observe that, since u is normalized, both

−
∫

3U/4 ‖D2u‖ and ρ are universal (see the discussion at the beginning of this section), so
c̄ is universal as well. In addition, we can assume without loss of generality that c̄ ≥ 1.
So

∫

U/2
‖D2u‖ logk+1

+ (‖D2u‖)

≤ logk+(c̄)

∫

U/2∩{‖D2u‖≤c̄}

‖D2u‖+

∫

U/2∩{‖D2u‖≥c̄}

‖D2u‖ logk+1
+ (‖D2u‖)

≤ C(n)c̄ logk+ c̄+

∫

U/2∩{‖D2u‖≥c̄}

‖D2u‖ logk+1 ‖D2u‖.

Hence, to prove the result, it suffices to control the last term in the right hand side.
We observe that such a term can be rewritten as

2(k + 1)

∫

U/2∩{‖D2u‖≥c̄}

‖D2u‖
∫ ‖D2u‖

1

logk(γ)

γ
dγ,
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which is bounded by

C ′ + 2(k + 1)

∫

U/2∩{‖D2u‖≥c̄}

‖D2u‖
∫ ‖D2u‖

c̄

logk(γ)

γ
dγ,

with C ′ = C ′(k, c̄). Now, by Fubini, the second term is equal to

2(k + 1)

∫ ∞

c̄

logk(γ)

γ

( ∫

U/2∩{‖D2u‖≥γ}

‖D2u‖
)
dγ,

which by (3.20) is controlled by

2(k + 1)c′
∫ ∞

c̄
logk(γ) |{x ∈ 3U/4 : ‖D2u(x)‖ ≥ c′′γ}}| dγ.

By the layer-cake representation formula and, since c̄ ≥ 1, this last term is bounded by

C ′′
∫

3U/4
‖D2u‖ logk+(‖D2u‖)

for some C ′′ = C ′′(k, c′, c′′), concluding the proof.

3.2 Proof of Theorem 3.2

In this Section, we show how to improve the L logk L integrability of the previous sec-
tion, to a Lγ0 integrability for some γ0 = γ0(λ, n) > 1. We will follow the presentation
in [DFS]. As we already mentioned a different proof was achieved independently by
Thomas Schmidt in [S]. He uses some abstract harmonic analysis on sections (see
the comments after Proposition 2.12) to show how from the maximal inequality (3.18)
(which can be thought as a “reverse” L1-weak L1 Hölder inequality) the higher inte-
grability follows from a Gehring type lemma.

As in the proof of Theorem 3.1, to prove Theorem 3.2 it will be enough to prove
the following “normalized” statement.

Theorem 3.8. Let u : U → R, be a C2 solution of (2.1) with λ ≤ f ≤ 1/λ and let us
assume that B1 ⊂ U ⊂ Bn, then there exist universal constants C and ε0 > 0 such that

∫

B1/2

‖D2u‖1+ε0 ≤ C. (3.21)

Theorem 3.8 follows by slightly modifying the strategy in the previous section: we
use a covering lemma that is better localized (see lemma 3.10) to obtain a geometric
decay of the “truncated” L1 energy for ‖D2u‖ (see lemma 3.12).
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We also give a second proof of Theorem 3.8 based on the following observation: in
view of Theorem 3.1 the L1 norm of ‖D2u‖ decays on sets of small measure:

|{‖D2u‖ ≥M}| ≤ C

M logM
,

for an appropriate universal constant C > 0 and for any M large. In particular,
choosing first M sufficiently large and then taking ε > 0 small enough, we deduce (a
localized version of) the bound

|{‖D2u‖ ≥M}| ≤ 1

M1+ε
|{‖D2u‖ ≥ 1}|.

Applying this estimate at all scales (together with Lemma 2.15) leads to the local
W 2,1+ε integrability for ‖D2u‖.

In the proof of Theorem 3.1 the following quantity played a distinguished role: if
S(x, t) is a section of u and T is the (symmetric) affine transformation that normalize
it, that is such that

B1 ⊂ T (S(x, t)) ⊂ Bn,
we define the normalized size of S(x, t) to be

α(S(x, t)) =
‖T‖2

(detT )2/n
. (3.22)

Notice that even if T is not unique, the normalized size is defined up to universal
multiplicative constants. In case u ∈ C2 since

u(y) = u(x) +∇u(x) · (y − x) +
1

2
D2u(x0)(y − x) · (y − x) + o(|y − x|2),

we see that
1√
t
S(x, t)→

{
y :

1

2
D2u(x0)(y − x) · (y − x) ≤ 1

}
.

Thus for t small
α(S(x, t)) ≈ ‖D2u(x)‖. (3.23)

Lemma 3.9. In the hypothesis of Theorem 3.8 we see that there exist positive universal
constants C̄ and β̄ such that for all x ∈ B3/4

diam(S(x, t)) ≤ C̄

(α(S(x, t)))β̄
∀ t ≤ 1/C̄. (3.24)

Proof. Let E be the John ellipsoid associate to S(x, t) and let λ1 ≤ · · · ≤ λn the length
of its semi-axes. Since for t universally small and C universal by (2.21),

B(x, t/C) ⊂ S(x, t) ⊂ nE,
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nλ1 ≥ t/C. Moreover for C and β universal, always by (2.21),

E ⊂ S(x, t) ⊂ B(x,Ctβ)

which implies λn ≤ Ctβ ≤ C̃λβ1 . If T is such that T (E) = B1,

α(S(x, t)) =
‖T‖2

(detT )2/n
=

(λ1 . . . λn)2/n

λ2
1

≤ λ2
n

λ2
1

≤ Cλ2(β−1)
1 .

Thus, since β < 1,

diam(S(x, t)) ≤ 2nλn ≤ Cλβ1 ≤
C̄

(α(S(x, t)))β̄

with β̄ = β/(2− 2β).

3.2.1 A direct proof of Theorem 3.8

Lemma 3.10. Let v be a normalized solution (see (2.12)), then there exists a universal
constant C0 such that

∫

S̃1/2

‖D2v‖ ≤ C0

∣∣∣
{
C−1

0 Id ≤ D2v ≤ C0 Id
}
∩ S̃1/2θ

∣∣∣ ,

where θ is the engulfing constant in Proposition 2.12 and, for all τ ∈ (0, 1),

S̃τ = {x : v(x) ≤ (1− τ) min v}

Proof. Exactly as in the proof of Lemma (3.5), we have

∫

S̃1/2

‖D2v‖ ≤
∫

S̃1/2

∆v =

∫

∂S̃1/2

vν ≤ C1, (3.25)

where the last inequality follows from the interior Lipschitz estimate of v in S̃1/2. Recall
that by Remark 2.7

S̃1/2 ≥ c1

for some c1 > 0 universal. The last two inequalities show that the set

{
‖D2v‖ ≤ 2C1c

−1
1

}
∩ S̃1/2

has at least measure c1/2 in S1/2θ. Finally, the lower bound on detD2u implies that

C−1
0 Id ≤ D2v ≤ C0 Id inside {‖D2v‖ ≤ 2C1c

−1
1 },

and the conclusion follows provided that we choose C0 sufficiently large.
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By rescaling we obtain:

Lemma 3.11. Assume S(x, 2t) ⊂⊂ U . If

S(x, t) has normalized size α,

then ∫

S(x0,t)
‖D2u‖ ≤ C0α

∣∣{C−1
0 α ≤ ‖D2u‖ ≤ C0α

}
∩ S(x, t/θ)

∣∣ .

Proof. We first notice that (see for instance the end the proof of Lemma 3.6)

α(S(x, 2t)) ≈ α(S(x, t)) = α. (3.26)

The lemma follows by applying lemma 3.10 to the normalized solution v build up from
u. More precisely if T normalizes S(x, 2t), defining, as usual,

v(z) = (detT )2/n
(
u(T−1z)−∇u(x) · (T−1z − x)− 2t

)
z ∈ T (S(x, 2t)),

we see that T (S(x, t)) = S̃1/2, T (S(x, t/θ)) = S̃1/2θ, and

D2u(x) =
T ∗D2v(Tx)T

(detT )2/n
.

Thus, by definition of normalized size (3.22) and (3.26),

|detT |
∫

S(x0,h/2)
‖D2u‖ ≤ α

∫

S(x0,1/2)
‖D2v‖

and {
C−1

0 Id ≤ D2v ≤ C0 Id
}
⊂ T

({
C−1

0 α ≤ ‖D2u‖ ≤ C0α
})

which implies that ∣∣∣
{
C−1

0 I ≤ D2v ≤ C0α
}
∩ S̃1/2θ

∣∣∣
is bounded above by

|detT |
∣∣{C−1

0 α ≤ ‖D2u‖ ≤ C0α
}
∩ S(x, t/2θ)

∣∣ .

The conclusion follows now by applying Lemma 3.10 to v.

Next, for some large M , we denote by Dk the closed sets

Dk :=
{
‖D2u(x)‖ ≥Mk

}
∩BRk , (3.27)

where R0 = 3/4 and

Rk = Rk−1 − C̄C−β̄0 M−kβ̄,

where C̄ and β̄ are as in Lemma 3.9 and C0 is as in Lemma 3.11. As we show now,
Lemma 3.11 combined with a covering argument gives a geometric decay for

∫
Dk
‖D2u‖.
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Lemma 3.12. If M = C2, with C2 a large universal constant, then
∫

Dk+1

‖D2u‖ dx ≤ (1− τ)

∫

Dk

‖D2u‖ dx,

for some small universal constant τ > 0 and

B1/2 ⊂ BRk ∀k ≥ 0

Proof. Let ρ, universal, be such that S(x, t) b U for all x ∈ B3/4, for t ≤ ρ (cp.
Proposition 2.12). Let M � C0 (to be fixed later), and for each x ∈ Dk+1 consider a
section

S(x, t) of normalized size α = C0M
k,

which is compactly included in U . This is possible if M is universally large, since for
t→ 0 the normalized size of S(x, t) is comparable to ‖D2u(x)‖ (recall (3.23)) which is
greater than Mk+1 > α, whereas if t = ρ the normalized size is bounded above by a
universal constant and therefore by α.

Now we choose a Vitali cover for Dk+1 with sections S(xi, ti), i = 1, . . . ,m. Notice
that by Lemma 3.9

diam(S(xi, ti)) ≤ C̄C−β̄0 M−(k+1)β̄,

thus ⋃

i

S(xi, ti) ⊂ BRk . (3.28)

By Lemma 3.11, for each i,
∫

S(xi,ti)
‖D2u‖ ≤ C2

0M
k
∣∣∣
{
Mk ≤ ‖D2u‖ ≤ C2

0M
k
}
∩ S(xi, ti/θ)

∣∣∣ .

Adding these inequalities and using

Dk+1 ⊂
⋃
S(xi, ti) ∩BRk , S(xi, ti/θ) disjoint,

and (3.28), we obtain
∫

Dk+1

‖D2u‖ ≤ C2
0M

k
∣∣∣
{
Mk ≤ ‖D2u‖ ≤ C2

0M
k
}
∩BRk

∣∣∣

≤ C
∫

Dk\Dk+1

‖D2u‖dx

provided M ≥ C2
0 . Adding C

∫
Dk+1

‖D2u‖ to both sides of the above inequality, the first

claim follows with τ = 1/(1 +C). To obtain the second one just choose M universally
large such that

C̄C̄ β̄0
∑

k≥1

M−β̄k ≤ 1/4. (3.29)
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By the above result, the proof of (3.8) is immediate: indeed, by Lemma 3.12 we
easily deduce that there exist C, ε > 0 universal such that

Mk|{x ∈ B1/2 : ‖D2u(x)‖ ≥Mk}| ≤
∫

{x∈B1/2: ‖D2u(x)‖≥Mk}
‖D2u‖ ≤

∫

Dk

‖D2u‖ ≤ CM−2kε.

Since, by Fubini Theorem,
∫

B1/2

‖D2u‖1+ε ≈
∑

k

M (1+ε)k|{x ∈ B1/2 : ‖D2u(x)‖ ≥Mk}|,

we obtain the proof of Theorem 3.8.

3.2.2 A proof by iteration of the L logL estimate

We now briefly sketch how Theorem 3.8 could also be easily deduced by applying
the L logL estimate of Theorem 3.1 inside every section, and then doing a covering
argument.

First for a normalized solution v, and K > 0 we introduce the notation

FK := {‖D2v‖ ≥ K} ∩ S̃1/2,

see Lemma 3.10.

Lemma 3.13. Suppose v satisfies the assumptions of lemma 3.10. Then there exist
universal constants C0 and C1 such that, for all K ≥ 2,

|FK | ≤
C1

K log(K)

∣∣∣
{
C−1

0 Id ≤ D2u ≤ C0 Id
}
∩ S̃1/2θ

∣∣∣ .

Indeed, from the proof of Lemma 3.10 the measure of the set appearing on the right
hand side is bounded below by a small universal constant c1/2, while by Theorem 3.4
|FK | ≤ C/K log(K) for all K ≥ 2, hence

|FK | ≤
2C

c1K log(K)

∣∣∣
{
C−1

0 Id ≤ D2v ≤ C0 Id
}
∩ S̃1/2θ

∣∣∣ .

Exactly as in the proof of lemma 3.11, by rescaling we obtain:

Lemma 3.14. Suppose u satisfies the assumptions of Lemma 3.11. Then,

|{‖D2u‖ ≥ αK} ∩ S(x, t)| ≤ C1

K log(K)

∣∣{C−1
0 α ≤ ‖D2u‖

}
∩ S(x, t/θ)

∣∣ ,

for all K ≥ 2.

Finally, as proved in the next Lemma, a covering argument shows that the mea-
sure of the sets Dk defined in (3.27) decays as M−(1+2ε)k, which shows the desired
integrability.
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Lemma 3.15. There exist universal constants M large and ε > 0 small such that

|Dk+1| ≤M−1−2ε|Dk|.

Proof. As in the proof of lemma 3.12, we use a Vitali covering of the set Dk+1 with
sections S(x, t) of normalized size α = C0M

k, i.e.

Dk+1 ⊂
⋃
S(xi, ti), S(xi, ti/θ) disjoint sets.

Apply lemma 3.14 above for
K := C−1

0 M,

hence αK = Mk+1, and find that for each i

|Dk+1 ∩ S(xi, ti)| ≤
2C0

M log(M)
|Dk ∩ S(xi, ti/θ)|,

provided that M � C0. Summing over i and choosing M ≥ e4C0 we get

|Dk+1| ≤
2C0

M log(M)
|Dk| ≤

1

2M
|Dk|,

and the lemma is proved by choosing ε = log(2)/ log(M).

Finally if we choose M so large such that also (3.29) is satisfied, the above Lemma
implies

|{x ∈ B1/2 : ‖D2u(x)‖ ≥Mk}| ≤M−k(1+2ε),

and we conclude as in the previous section.

3.3 A simple proof of Caffarelli W 2,p estimates

Using the technique of the previous Section we give a simple proof of celebrated Caf-
farelli W 2,p estimates (see Theorem 2.20). More precisely we will prove the following

Theorem 3.16. For all p > 1 there exist a δp and a constant Cp such that: if u : U → R
is a C2 solution of (2.1) with ‖f − 1‖ ≤ δp and B1 ⊂ U ⊂ Bn, then

∫

B1/2

‖D2u‖p ≤ Cp. (3.30)

The proof, which is briefly sketched in [F4], is, as the original one, again based on
a decay estimate of the type

|{x ∈ B1/2 : ‖D2u(x)‖ ≥Mk}| .M−k(1+p). (3.31)

Again we start with a “normalized” lemma:
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Lemma 3.17. Let v be a normalized solution (see (2.12)), then there exists a universal
constant C0 such that for every η there exists a δ = δ(η) such that if ‖f − 1‖ ≤ δ

∣∣∣
{
D2v ≥ C0 Id

}
∩ S̃1/2

∣∣∣ ≤ C0η
∣∣∣
{
C−1

0 Id ≤ D2v ≤ C0 Id
}
∩ S̃1/2θ

∣∣∣ ,

where θ is the engulfing constant in Proposition 2.12 and S̃τ is as in Lemma 3.10.

The above Lemma is well known and it was a key step in the proof of [Ca2], see
also [Gu], and the dependence of δ from η can be also quantified in a power like one
(δ . ηγ). Here we give a proof based on the results of Chapter 4 (which are independent
on the above lemma).

Proof. Again by the proof Lemma 3.10, the measure of the set appearing on the right
hand side is bounded below by a small universal constant c1/2. It will be hence enough
to show that for some universal constant C0

∣∣∣
{
D2v ≥ C0 Id

}
∩ S̃1/2

∣∣∣→ 0

as δ → 0 (uniformly in v). Choose a sequence δk → 0 and let vk be a sequence of
normalized solutions defined on normalized sets Zk. By Lemma 2.10, Zk converge in
the Hausdorff distance to a normalized set Z∞ and vk uniformly converge in Z∞ to v∞,
a normalized solution of

{
detD2v∞ = 1 in Z∞

v∞ = 0 on ∂Z∞.

Thanks to Theorem 4.1 vk → v∞ in W 2,1
loc (Z∞). Since (with obvious notations) S̃k1/2 →

S̃∞1/2 they are definitely well contained in S̃∞3/4, hence

∫

S̃k
1/2

‖D2vk −D2v∞‖ ≤
∫

S̃∞
3/4

‖D2vk −D2v∞‖ → 0.

By Theorem 2.16, we know that the C2 norm of v∞ on S∞3/4 is bounded from above by
a universal constant C1, thus

∣∣∣
{
D2vk ≥ 4C1 Id

}
∩ S̃k1/2

∣∣∣

≤
∣∣∣
{
‖D2v∞‖ ≥ 2C1

}
∩ S̃∞3/4

∣∣∣+
∣∣∣
{
‖D2vk −D2v∞‖ ≥ 2C1

}
∩ S̃k1/2

∣∣∣

=
∣∣∣
{
‖D2vk −D2v∞‖ ≥ 2C1

}
∩ S̃k1/2

∣∣∣ ≤ 1

2C1

∫

S̃k
1/2

‖D2vk −D2v∞‖ → 0,

proving the claim with C0 ≥ 4C1.
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Exactly as in the proof of Lemma 3.11 we obtain

Lemma 3.18. Assume S(x, 2t) b U . If

S(x, t) has normalized size α,

then for all η there exists a δ = δ(η) such that if ‖f − 1‖∞ ≤ δ then

|{‖D2u‖ ≥ αC0} ∩ S(x, t)| ≤ C0η
∣∣{C−1

0 α ≤ ‖D2u‖
}
∩ S(x, t/θ)

∣∣ ,

where C0 is as in Lemma 3.17.

Defining Dk as in (3.27) (with M so big to satisfy (3.29)) and arguing as in the
proof of Lemma 3.15 we see that

|Dk+1| ≤ C0η|Dk|,

from which it follows

|{x ∈ B1/2 : ‖D2u(x)‖ ≥Mk}| ≤ (C0η)−k.

Since M is universally fixed, we can choose η (and hence δ) such that C0η = M−(p+1),
obtaining the inequality (3.31).





Chapter 4

Second order stability for the
Monge-Ampère equation and
applications

A question which naturally arises in view of the previous results (and which has been
suggested to us by Luigi Ambrosio) is the following: choose a sequence of functions
fk with λ ≤ fk ≤ 1/λ which converges to f strongly in L1

loc(Ω), and denote by uk
and u the solutions of (2.1) corresponding to fk and f respectively. By the convexity
of uk and u, and the uniqueness of solutions to (2.1), it is immediate to deduce that
uk → u uniformly, and ∇uk → ∇u in Lploc(Ω) for any p < ∞. What can be said
about the strong convergence of D2uk? Due to the highly nonlinear character of the
Monge-Ampère equation, this question is nontrivial.

In this chapter we report the results of [DF2] where, in collaboration with Alessio
Figalli, we addressed this problem. Our main results are the following

Theorem 4.1. Let Ωk ⊂ Rn be convex domains, and let uk : Ωk → R be convex
Aleksandrov solutions of

{
detD2uk = fk in Ωk

uk = 0 on ∂Ωk

(4.1)

with 0 < λ ≤ fk ≤ 1/λ. Assume that Ωk converge to some convex domain Ω in the
Hausdorff distance, and fkχΩk converge to f in L1

loc(Ω). Then, if u denotes the unique
Aleksandrov solution of {

detD2u = f in Ω

u = 0 on ∂Ω,

for any Ω′ b Ω we have

‖uk − u‖W 2,1(Ω′) → 0 as k →∞. (4.2)

67
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Obviously, since the functions uk are uniformly bounded in W 2,γ0(Ω′), this gives
strong convergence in W 2,γ′(Ω′) for any γ′ < γ0.

The consequences for what concerns optimal transportation are summarized in the
following theorem:

Theorem 4.2. Let Ω1,Ω2 ⊂ Rn be two bounded domains with Ω2 convex, and let
fk, gk be a family of probability densities such that 0 < λ ≤ fk, gk ≤ 1/λ inside Ω1

and Ω2 respectively. Assume that fk → f in L1(Ω1) and gk → g in L1(Ω2), and let
Tk : Ω1 → Ω2 (resp. T : Ω1 → Ω2) be the (unique) optimal transport map for the

quadratic cost sending fk onto gk (resp. f onto g). Then Tk → T in W 1,γ′

loc (Ω1) for
some γ′ > 1.

If v : Ω→ R is a continuous function, we define its convex envelope inside Ω as

Γv(x) := sup{`(x) : ` ≤ v in Ω, ` affine}. (4.3)

In case Ω is a convex domain and v ∈ C2(Ω), it is easily seen that

D2v(x) ≥ 0 for every x ∈ {v = Γv} ∩ Ω (4.4)

in the sense of symmetric matrices. Moreover the following inequality between measures
holds in Ω (µΓv is the Monge-Ampère measure associated to Γv, see Section 1.2):

µΓv ≤ detD2v1{v=Γv} dx. (4.5)

To see this, let us first recall that it is well known that if x0 ∈ Ω \ {Γv = v} and
p ∈ ∂Γv(x0) then the convex set

{x ∈ Ω : Γv(x) = p · (x− x0) + Γv(x0)}

is nonempty and contains more than one point (see for instance [DF3]). In particular

∂Γv
(
Ω \ {Γv = v}

)
⊂ {p ∈ Rn : there exist x, y ∈ Ω, x 6= y and p ∈ ∂Γv(x) ∩ ∂Γv(y)}.

and by Lemma 1.17 this last set has measure zero. Hence

∣∣∂Γv
(
Ω \ {Γv = v}

)∣∣ = 0. (4.6)

Moreover, since v ∈ C1(Ω), for any x ∈ {Γv = v}∩Ω it holds ∂Γv(x) = {∇v(x)}. Thus,
using (4.6) and (4.4), for any open set A b Ω we have

µΓv(A) =
∣∣∂Γv

(
A ∩ {Γv = v}

)∣∣ =
∣∣∇v

(
A ∩ {Γv = v}

)∣∣

≤
∫

A∩{Γv=v}
| detD2v| =

∫

A∩{Γv=v}
detD2v.
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(The inequality above follows from the Area Formula (1.15) applied to the C1 map
∇v.) This proves (4.5).

We also recall (see Appendix A) that a continuous function v is said to be twice
differentiable at x if there exists a (unique) vector ∇v(x) and a (unique) symmetric
matrix ∇2v(x) such that

v(y) = v(x) +∇v(x) · (y − x) +
1

2
∇2v(x)(y − x) · (y − x) + o(|y − x|2).

In case v is twice differentiable at some point x0 ∈ {v = Γv}, then it is immediate to
check that

∇2v(x0) ≥ 0. (4.7)

By Aleksandrov Theorem, any convex function is twice differentiable almost every-
where. In particular (4.7) holds almost everywhere on {v = Γv}, whenever v is the
difference of two convex functions.

Finally we recall that, in case v ∈ W 2,1
loc , then the pointwise Hessian of v coincides

almost everywhere with its distributional Hessian (cp. Appendix A). Since in the sequel
we are going to deal with W 2,1

loc convex functions, we will use D2u to denote both the
pointwise and the distributional Hessian.

4.1 Proof of Theorem 4.1

We are going to use the following result:

Lemma 4.3. Let Ω ⊂ Rn be a strictly convex bounded domain, and let u, v : Ω → R
be continuous strictly convex functions such that µu = fL n and µv = gL n, with
f, g ∈ L1

loc(Ω). Then

µΓu−v ≤
(
f1/n − g1/n

)n
1{u−v=Γu−v} dx. (4.8)

Proof. In case u, v are of class C2(Ω), by (4.4) we have

0 ≤ D2u(x)−D2v(x) for every x ∈ {u− v = Γu−v},

so using the monotonicity and the concavity of the function det1/n on the cone of
non-negative symmetric matrices we get

0 ≤ det(D2u−D2v) ≤
((

detD2u
)1/n −

(
detD2v

)1/n)n
on {u− v = Γu−v},

which combined with (4.5) gives the desired result.
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Now, for the general case, we consider two sequences of smooth functions fk and gk
converging respectively to f and g in L1(Ω), and we solve (see [Gu, Theorem 1.6.2])

{
detD2uk = fk in Ω

uk = ūk on ∂Ω,

{
detD2vk = gk in Ω

vk = v̄k on ∂Ω,

Where ūk (reps. v̄k) are smooth approximations of of u (reps. v) on ∂Ω. In this way
uk (reps. vk) are smooth on Ω (see Section 2.3) and, by [Gu, Lemma1.6.1], continuous
on Ω with a modulus of continuity which depends only on u (resp. v). Hence they
converge uniformly on Ω to u (reps v). Thus, also Γuk−vk converges uniformly in Ω
to Γu−v (this easily follows by the definition of convex envelope). Moreover, it follows
easily from the definition of contact set that

lim sup
k→∞

1{uk−vk=Γuk−vk} ≤ 1{u−v=Γu−v}. (4.9)

We now observe that the previous step applied to uk and vk gives

µΓuk−vk
≤
(
(

detD2uk
)1/n −

(
detD2vk

)1/n
)n

1{uk−vk=Γuk−vk} dx,

Thus, letting k → ∞ and taking in account Proposition 1.25 and (4.9), we obtain
(4.8).

Proof of Theorem 4.1. The L1
loc convergence of uk (resp. ∇uk) to u (resp. ∇u) is easy

and standard, see Lemma 2.10, so we focus on the convergence of the second derivatives.

Without loss of generality we can assume that Ω′ is strictly convex, and that Ω′ b Ωk

(since Ωk → Ω in the Hausdorff distance, this is always true for k sufficiently large).
Fix ε ∈ (0, 1), let Γu−(1−ε)uk be the convex envelope of u − (1 − ε)uk inside Ω′ (see
(4.3)), and define

Aεk := {x ∈ Ω′ : u(x)− (1− ε)uk(x) = Γu−(1−ε)uk(x)}.

Since uk → u uniformly in Ω
′
, Γu−(1−ε)uk converges uniformly to Γεu = εu (as u is

convex) inside Ω′. Hence, by applying Proposition 1.25 and (4.8) to u and (1 − ε)uk
inside Ω′, we get that

εn
∫

Ω′
f = µΓεu(Ω′)

≤ lim inf
k→∞

µΓu−(1−ε)uk
(Ω′)

≤ lim inf
k→∞

∫

Ω′∩Aεk

(
f1/n − (1− ε)f1/n

k

)n
.
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We now observe that, since fk converges to f in L1
loc(Ω), we have

∣∣∣∣∣

∫

Ω′∩Aεk

(
f1/n − (1− ε)f1/n

k

)n
−
∫

Ω′∩Aεk
εnf

∣∣∣∣∣ ≤
∫

Ω′

∣∣∣
(
f1/n − (1− ε)f1/n

k

)n
− εnf

∣∣∣→ 0

as k →∞. Hence, combining the two estimates above, we immediately get
∫

Ω′
f ≤ lim inf

k→∞

∫

Ω′∩Aεk
f,

or equivalently

lim sup
k→∞

∫

Ω′\Aεk
f = 0.

Since f ≥ λ inside Ω (as a consequence of the fact that fk ≥ λ inside Ωk), this gives

lim
k→∞

|Ω′ \Aεk| = 0 ∀ ε ∈ (0, 1). (4.10)

We now recall that, thanks to Theorems 2.11 and 3.1, uk are strictly convex and belongs
to W 2,1(Ω′). Hence we can apply (4.7) to deduce that

D2u− (1− ε)D2uk ≥ 0 a.e. on Aεk.

In particular, by (4.10),

|Ω′ \ {D2u ≥ (1− ε)D2uk}| → 0 as k →∞.

By a similar argument (exchanging the roles of u and uk)

|Ω′ \ {(1− ε)D2u ≤ D2uk}| → 0 as k →∞.

Hence, if we call Bε
k :=

{
x ∈ Ω′ : (1− ε)D2uk ≤ D2u ≤ 1

1−εD
2uk

}
, it holds

lim
k→∞

|Ω′ \Bε
k| = 0 ∀ ε ∈ (0, 1).

Moveover, by (3.2) applied to both uk and u, we have

∫

Ω′
‖D2u−D2uk‖ =

∫

Ω′∩Bεk
‖D2u−D2uk‖+

∫

Ω′\Bεk
‖D2u−D2uk‖

≤ ε

1− ε

∫

Ω′
‖D2u‖+ ‖D2u−D2uk‖Lγ0 (Ω′)|Ω′ \Bε

k|1−1/γ0

≤ C
(

ε

1− ε + |Ω′ \Bε
k|1−1/γ0

)
.

Hence, letting first k →∞ and then sending ε→ 0, we obtain the desired result.
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4.2 Proof of Theorem 4.2

In order to prove Theorem 4.2, we will need the following lemma (note that for the
next result we do not need to assume convexity of the target domain):

Lemma 4.4. Let Ω1,Ω2 ⊂ Rn be two bounded domains, and let fk, gk be probability
densities such that 0 < λ ≤ fk, gk ≤ 1/λ inside Ω1 and Ω2 respectively. Assume that
fk → f in L1(Ω1) and gk → g in L1(Ω2), and let Tk : Ω1 → Ω2 (resp. T : Ω1 → Ω2) be
the (unique) optimal transport map for the quadratic cost sending fk onto gk (resp. f
onto g). Then

fk
gk ◦ Tk

→ f

g ◦ T in L1(Ω1).

Proof. By stability of optimal transport maps (see for instance Theorem 1.14) and the
fact that fk ≥ λ (and so f ≥ λ), we know that Tk → T in measure (with respect to
Lebesgue) inside Ω.

We claim that ϕ ◦ Tk → ϕ ◦ T in L1(Ω1) for all ϕ ∈ L∞(Ω2). Indeed this is obvious
if ϕ is uniformly continous (by the convergence in measure of Tk to T ). In the general
case we choose ϕη ∈ C(Ω2) such that ‖ϕ − ϕη‖L1(Ω2) ≤ η and we observe that (recall
that fk, f ≥ λ, gk, g ≤ 1/λ, and T#fk = gk, T#f = g)

∫

Ω1

|ϕ ◦ Tk − ϕ ◦ T | ≤
∫

Ω1

|ϕη ◦ Tk − ϕη ◦ T |+
∫

Ω1

|ϕη ◦ Tk − ϕ ◦ Tk|
fk
λ

+

∫

Ω1

|ϕη ◦ T − ϕ ◦ T |
f

λ

=

∫

Ω1

|ϕη ◦ Tk − ϕη ◦ T |+
∫

Ω2

|ϕη − ϕ|
gk
λ

+

∫

Ω2

|ϕη − ϕ|
g

λ

≤
∫

Ω1

|ϕη ◦ Tk − ϕη ◦ T |+
2η

λ2
.

Thus

lim sup
k→∞

∫

Ω1

|ϕ ◦ Tk − ϕ ◦ T | ≤
2η

λ2
,

and the claim follows by the arbitrariness of η.

Since
∫

Ω1

|gk ◦ Tk − g ◦ T | ≤
∫

Ω1

|gk ◦ Tk − g ◦ Tk|
fk
λ

+

∫

Ω1

|g ◦ Tk − g ◦ T |

=

∫

Ω2

|gk − g|
gk
λ

+

∫

Ω1

|g ◦ Tk − g ◦ T |

≤ 1

λ2
‖gk − g‖L1(Ω2) +

∫

Ω1

|g ◦ Tk − g ◦ T |,
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from the claim above with ϕ = g we immediately deduce that also gk ◦ Tk → g ◦ T in
L1(Ω1).

Thanks to λ ≤ gk ◦ Tk ≤ 1/λ and gk ◦ Tk → g ◦ T in L1(Ω), it is immediate to see
that

1

gk ◦ Tk
→ 1

g ◦ T in Lp(Ω1) for every p ∈ (1,+∞).

Since also fk → f in Lp(Ω1) for every p, it follows that

fk
gk ◦ Tk

→ f

g ◦ T in L1(Ω1),

which is the desired result.

Proof of Theorem 4.2. Since Tk are uniformly bounded in W 1,γ0(Ω′1) for some γ0 > 1
and any Ω′1 b Ω, it suffices to prove that Tk → T in W 1,1

loc (Ω1).
Fix x0 ∈ Ω1 and r > 0 such that Br(x0) b Ω1. By compactness, it suffices to show

that there is an open neighborhood Ux0 of x0 such that Ux0 ⊂ Br(x0) and
∫

Ux0

|Tk − T |+ |∇Tk −∇T | → 0.

By Theorems 1.8 and 2.2 the maps Tk (resp. T ) can be written as ∇uk (resp. ∇u)
for some strictly convex function uk : Br(x0) → R (resp. u : Br(x0) → R). Moreover,
possibly subtracting an additive constant (which will change neither Tk nor T ), one
may assume that uk(x0) = u(x0).

Since the maps Tk = ∇uk are bounded (as they take values in the bounded set
Ω2), by Theorem 1.14 we get that ∇uk → ∇u in L1

loc(Br(x0)). (Actually, if one uses
Theorem 2.1, ∇uk are locally uniformly Hölder maps, so they converge locally uniformly
to ∇u.) Hence, to conclude the proof we only need to prove the convergence of D2uk
to D2u in a neighborhood of x0.

To this aim, we observe that, by strict convexity of u (see Theorem 2.2), we can
find a linear function `(z) = a · z + b such that the open convex set Z := {z : u(z) <
u(x0) + `(z)} is non-empty and compactly supported inside Br/2(x0). Hence, by the
uniform convergence of uk to u (which follows from the L1

loc convergence of the gradients,
the convexity of uk and u, and the fact that uk(x0) = u(x0)), and the fact that ∇u is
transversal to ` on ∂Z, we get that Zk := {z : uk(z) < uk(x0) + `(z)} are non-empty
convex sets which converge in the Hausdorff distance to Z.

Moreover, by Proposition 1.23 the maps vk := uk− ` solve in the Aleksandrov sense
{

detD2vk = fk
gk◦Tk in Zk

vk = 0 on ∂Zk.

Therefore, thanks to Lemma 4.4 we can apply Theorem 4.1 to deduce that D2uk → D2u
in any relatively compact subset of Z, which concludes the proof.





Chapter 5

The semigeostrophic equations

In this Chapter we use the Sobolev regularity of optimal transport maps proved in
Chapter 3 to show the existence of distributional solutions of the semigeostrophic equa-
tions, a simple model used in meteorology to describe large scale atmospheric flows.

The Chapter1 is structured as follows: in Section 5.1 we introduce the model and
show how, thanks to a change of variable due to Hoskins, there is a natural “dual
equation” associated to it. This will also reveal the link between the semigeostrophic
equations and optimal transoprtation. In Section 5.2 we discuss the case of periodic
2-dimensional solutions, finally in Section 5.3 we discuss the case of 3-dimensional flows.

5.1 The semigeostrophic equations in physical and dual
variables

As explained for instance in [BeBr, Section 2.2] and [Loe2, Section 1.1] (see also [Cu]
and [MPl] for a more complete exposition), the semigeostrophic equations can be
derived from the 3-d Euler equations, with Boussinesq and hydrostatic approximations,
subject to a strong Coriolis force.

More precisely, with the appropriate choice of units, the semigeostrophic equations
can be written, on a domain Ω, as





∂tu
g
t +

(
ut · ∇

)
ugt +∇pt = −Jut +mte3 in Ω× (0,∞)

ugt = J∇pt
∂tmt +

(
ut · ∇

)
mt = 0 in Ω× (0,∞)

∇ · ut = 0 in Ω× [0,∞)

ut · νΩ = 0 in ∂Ω× [0,∞)

p0 = p0 in Ω.

(5.1)

1based on [ACDF1,ACDF2] in collaboration with Luigi Ambrosio, Maria Colombo and Alessio
Figalli.
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Here p0 is the initial condition for p, νΩ is the unit outward normal to ∂Ω, e3 = (0, 0, 1)T

is the third vector of the canonical basis in R3, J is the matrix given by

J :=




0 −1 0
1 0 0
0 0 0


 ,

and the functions ut, pt, and mt represent respectively the velocity, the pressure and the
buoyancy of the atmosphere, while ugt is the so-called semi-geostrophic wind.2 Clearly
the pressure is defined up to a (time-dependent) additive constant.

For large scale atmospheric flows the Coriolis force dominates the advection term,
hence the flow is mostly bi-dimensional, notice in fact that the third component in the
first equation of (5.1) is just the “hydrostatic balance” ∂3pt = mt, see [Cu,MPl].

For this reason, in the next section, we start considering the technically simpler
case of the 2-dimentional periodic setting:





∂tu
g
t +

(
ut · ∇

)
ugt +∇pt = −Jut in T2 × (0,∞)

ugt (x) = J∇pt(x) in T2 × (0,∞)

∇ · ut(x) = 0 in T2 × (0,∞)

p0 = p0 in T2.

(5.2)

This time J is the π/2-rotation matrix given by

J :=

(
0 −1
1 0

)
.

Let us now focus for a moment on the 3-dimensional case and on some formal
computation. If we introduce the “geopotential” (see [MPl])

Pt := pt +
1

2
(x2

1 + x2
2), (5.3)

equation (5.1), can be rewritten as





∂t∇Pt + (ut · ∇)∇Pt = J(∇Pt − x)

∇ · ut = 0

ut · νΩ = 0

P0 = p0 + 1
2(x2

1 + x2
2).

(5.4)

Cullen stability principle (see [Cu, Section 3.2]) asserts that for a physically admissible
solution Pt should be a convex function for every time.

2We are using the notation ft to denote the function f(t, ·).
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rP ⇤
t

rPt

L 3
⌦

⇢tL
3

Figure 5.1: The dual change of coordinates.

Now consider the measure3 ρt = (∇Pt)]L 3
Ω, then for any test function ϕ ∈ C1

c we
compute

d

dt

∫
ϕ(x) dρt(x) =

d

dt

∫

Ω
ϕ(∇Pt(y)) dy =

∫

Ω
∇ϕ(∇Pt(y)) · d

dt
∇Pt(y) dy

= −
∫

Ω
∇ϕ(∇Pt(y)) ·

{
ut(y)D2Pt(y)− J(∇Pt(y)− y)

}
dy

= −
∫

Ω
∇
[
ϕ(∇Pt(y))

]
· ut(y) dy +

∫

Ω
∇ϕ(∇Pt(y)) · J(∇Pt(y)− y) dy

=

∫
∇ϕ(x) · J(x−∇P ∗t (x)) dρt(x).

In other words, ρt solves the following “dual” equation:




∂tρt +∇ · (U tρt) = 0

U t(x) = J(x−∇P ∗t (x))

ρt = (∇Pt)]L 3
Ω

(5.5)

Here P ∗t is the convex conjugate of Pt, namely

P ∗t (y) := sup
x∈Ω

(y · x− Pt(x)) ∀y ∈ R3.

Let us rewrite ρt = (∇Pt)]L 3
Ω as (∇Pt)∗]ρt = L 3

Ω. If we now assume that Ω is convex,
we know from the discussion in Section 1.2 that P ∗t is an Aleksandrov solution to the

3L 3
Ω denotes the normalized Lebesgue measure on Ω:

1

|Ω|L
3 Ω,

in particular we can (and do) assume without loss of generality that |Ω| = 1.
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Monge-Ampère equation:

detD2P ∗t = ρt.

Thus, we can rewrite (5.5) as





∂tρt +∇ · (U tρt) = 0

U t(x) = J(x−∇P ∗t (x))

detD2P ∗t = ρt.

(5.6)

Notice that the above equation takes the form of a continuity equation where the
velocity field is coupled with the density through a time independent elliptic PDE. The
most famous equation of this form is, probably, the 2-dimensional incompressible Euler
equation in the vorticity formulation:





∂tωt +∇ · (vtωt) = 0

vt = J∇ψt
ωt = ∆ψt.

(5.7)

Incidentally we notice here that, in 2 dimension, if we “linearize” (5.6) writing ρt =
1 + εωt + o(ε) and P ∗t = |x|2/2 + εψt + o(ε) and we perform a time scaling t → t/ε,
then, formally, ωt and ψt solve (5.7), (see [Loe2] for a rigorous discussion).

As we saw the coupling between the velocity field and the density in (5.5) is non-
linear, nevertheless thanks to the continuous dependence of optimal transport maps
with respect to data it is continuous (see Theorem 1.14). This allows for existence of
solutions through, for instance, an explicit Euler scheme. More precisely in [BeBr]
Benamou and Brenier (see also [CuG,CuFe]) proved the following theorem (actually
their theorem is under slightly different assumptions, however, the proof can be adapted
verbatim to the case of general probability densities, see the sketch of the proof below)

Theorem 5.1 (Existence of solutions of (5.5)). Let Ω be a bounded set P0 : R3 → R be a
convex function such that (∇P0)]L

3
Ω � L 3. Then there exist convex functions Pt, P

∗
t :

R3 → R such that (∇Pt)]L 3
Ω = ρtL 3, (∇P ∗t )]ρt = L 3

Ω, U t(x) = J(x −∇P ∗t (x)), and
ρt is a distributional solution to (5.5), namely

∫ ∫

R3

{
∂tϕt(x) +∇ϕt(x) · U t(x)

}
ρt(x) dx dt+

∫

R3

ϕ0(x)ρ0(x) dx = 0 (5.8)

for every ϕ ∈ C∞c (R3 × [0,∞)).
Moreover, the following regularity properties hold:

(i) ρtL 3 ∈ C([0,∞),Pw(R3)), where Pw(R3) is the space of probability measures
endowed with the weak topology induced by the duality with Cb(R3);

(ii) P ∗t − P ∗t (0) ∈ L∞loc([0,∞),W 1,∞
loc (R3)) ∩ C([0,∞),W 1,r

loc (R3)) for every r ∈ [1,∞);



5.1 The semigeostrophic equations in physical and dual variables 79

(iii) |U t(x)| ≤ |x|+ diam(Ω) for almost every x ∈ R3, for all t ≥ 0.

Sketch of the proof of Theorem 5.1. Say we want to prove the existence of a solution
of (5.5) up to time T = 1. To do this we fix h small such that 1/h ∈ N, and divide
[0, 1] in intervals of length h:

[0, 1] =

1/h⋃

k=1

[(k − 1)h, kh].

We define approximate solutions (∇P ∗t )h and ρht inductively as follows: Suppose they
are defined up to time t ≤ (k − 1)h, then for t ∈ ((k − 1)h, kh]

(∇P ∗t )h := (∇P ∗kh)h where
[
(∇P ∗kh)h

]
]
ρh(k−1)h = L 3

Ω,

ρht such that





∂tρ
h
t +∇ · (ρhtUh

t ) = 0

Uh
t = J

(
x− (∇P ∗t )h

)

ρh(h(k − 1), ·) = ρh(k−1)h.

In other words, for t ∈ [(k − 1)h, kh], we define the function (∇P ∗t )h to be identically
equal to the optimal transport map between ρh(k−1)h and L 3

Ω and, once constructed the

(constant in time) velocity field in the natural way, we let evolve the density ρh(k−1)h
according for time h according to the continuity equation. Notice that we are not
assuming that ρ has finite second moment, nevertheless Theorem 1.13 ensures the ex-
istence of an “optimal map” (∇P ∗kh)h. We remark that to be sure about existence of
well behaved solutions of the continuity equation, one has to rely on the Ambrosio-Di
Perna-Lions theory of Regular Lagrangian Flow (see [DiPL,A1,A2]). Another possi-
bility, which is the one used in [BeBr], is to regularize all the data in an appropriate
way. Finally, passing to the limit as h goes to 0 we obtain a solution to (5.5), see the
above mentioned papers for details.

Observe that, by Theorem 5.1(ii), t 7→ ρtL 3 is weakly continuous, so ρt is a well-
defined function for every t ≥ 0.

Up to now we have rigorously proven the existence of a (distributional solution)
associated to the dual equation (5.5). It is possible from this to recover a solution to
(5.1)? Given a solution (ρt, P

∗
t ) of (5.5), we can construct the convex conjugate Pt of

P ∗t . Then an easy (formal) computation shows that the couple (pt,ut) defined by

{
pt(x) := Pt(x)− |x|2/2
ut(x) := [∂t∇P ∗t ](∇Pt(x)) + [D2P ∗t ](∇Pt(x))J(∇Pt(x)− x)

(5.9)
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solves (5.1). To make this computation rigorous we have to give a meaning to the veloc-
ity field. Indeed, without any assumption on the domain Ω, P ∗t is just a convex function
and its (distributional) Hessian is merely a matrix valued measure (see Appendix A).
Moreover we need also to understand the regularity of the term [∂t∇P ∗t ](∇Pt(x)). This
will be done in the subsequent sections thanks to the Sobolev regularity of optimal
transport maps established in Chapter 3.

5.2 The 2-dimensional periodic case

In this section we establish the first rigorous result about existence of distributional
solution of (5.2) in the 2-dimensional periodic case.4 Namely we prove that the velocity
field ut defined in (5.9) is a well defined L1 function and that the couple (pt,ut) is a dis-
tributional solution of (5.2). Finally, in the last part of the Section, we also show that,
although ut is merely a summable vector field, associated to it there is a natural notion
of measure preserving flow, thus recovering the result of Cullen and Feldman [CuFe]
on the existence of Lagrangian solutions to the Semigeostrophic Equations in physical
space.

We now want to define the notion of distributional solution to the semigeostoprophic
equations. Notice that in the 2-periodic setting we cannot give a distributional meaning
to (5.4), indeed the function ∇Pt should be thought as map from the torus into itself,
namely ∇Pt = expx(∇pt) (see Theorem 5.4 below). Since there is no natural notion
of duality with test functions for maps with value in a manifold, we prefer to write an
equation for vector fields for which is easier to give a weak meaning. Notice, instead,
that the notion of distributional solution to (5.5) introduced in Theorem 5.1 makes
perfectly sense on the torus since the term x −∇P ∗t is actually a vector field, namely
the gradient of the map p∗t , the d2

T2-conjugate of pt, see Section 1.3 and Theorem 5.4
below. Moreover, thanks to Theorem 5.4, the proof of the existence of a (periodic)
solution to (5.5) is exactly the same of Theorem 5.1.

Substituting the relation ugt = J∇pt into the equation, the system (5.2) can be
rewritten as 




∂tJ∇pt + JD2ptut +∇pt + Jut = 0

∇ · ut = 0

p0 = p0

(5.10)

with ut and pt periodic.

Thus the natural notion of distributional solution is the following:

Definition 5.2. Let p : T2× (0,∞)→ R and u : T2× (0,∞)→ R2. We say that (p,u)
is a weak Eulerian solution of (5.10) if:

4See however [Loe2] , where a small time existence result for periodic smooth solutions of (5.5) is
proven: it is clear from the proof below the smooth solutions of the dual equation can be transformed
in solutions to the original Equation (5.2)
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- |u| ∈ L∞((0,∞), L1(T2)), p ∈ L∞((0,∞),W 1,∞(T2)), and pt(x)+|x|2/2 is convex
for any t ≥ 0.

- For every φ ∈ C∞c (T2 × [0,∞)), it holds

∫ ∞

0

∫

T2

J∇pt(x)
{
∂tφt(x) + ut(x) · ∇φt(x)

}
−
{
∇pt(x) + Jut(x)

}
φt(x) dx dt

+

∫

T2

J∇p0(x)φ0(x) dx = 0. (5.11)

- For a.e. t ∈ (0,∞) it holds

∫

T2

∇ψ(x) · ut(x) dx = 0 for all ψ ∈ C∞(T2). (5.12)

We can now state our main result.

Theorem 5.3. Let p0 : R2 → R be a Z2-periodic function such that p0(x) + |x|2/2
is convex, and assume that the measure (Id +∇p0)]L

2 is absolutely continuous with
respect to L 2 with density ρ0, namely

(Id +∇p0)]L
2 = ρ0L

2.

Moreover, let us assume that both ρ0 and 1/ρ0 belong to L∞(R2).

Let ρt be the solution of (5.5) given by Theorem 5.1 and let Pt : R2 → R be the
(unique up to an additive constant) convex function such that (∇Pt)]L 2 = ρtL 2 and
Pt(x)−|x|2/2 is Z2-periodic (see Theorem 5.4 below), P ∗t : R2 → R its convex conjugate.

Then the couple (pt,ut) defined in (5.9) is a weak Eulerian solution of (5.10), in
the sense of Definition 5.2.

Before starting the proof of the above Theorem, we recall the following key theorem,
due to Cordero-Erausquin [Co] about existence (and regularity) of optimal transport
maps for periodic measures. It is actually a corollary of the more general Theorem
1.29, but it can be also proven directly.

Theorem 5.4 (Existence of optimal maps on T2). Let µ and ν be Z2-periodic Radon
measures on R2 such that µ([0, 1)2) = ν([0, 1)2) = 1 and let µ = ρL 2 with ρ > 0 almost
everywhere. Then there exists a unique (up to an additive constant) convex function
P : R2 → R such that (∇P )]µ = ν and P − |x|2/2 is Z2-periodic. Moreover

∇P (x+ h) = ∇P (x) + h for a.e. x ∈ R2, ∀h ∈ Z2, (5.13)

|∇P (x)− x| ≤ diam(T2) =

√
2

2
for a.e. x ∈ R2. (5.14)
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In addition, if µ = ρL 2, ν = σL 2, and there exists a constant 0 < λ ≤ 1 such that
λ ≤ ρ, σ ≤ 1/λ, then P is a strictly convex Aleksandrov solution of

detD2P (x) = f(x), with f(x) =
ρ(x)

σ(∇P (x))
.

Proof. By Theorem 1.29 we know the existence of a unique transport map T = exp(∇p̃)
for some d2

T 2-convex function p̃. Since the exponential map on the torus is given by

expx(v) = x+ v mod Z2,

to prove the first part we only have to show that (identifying periodic functions with
functions defined on the torus)

P convex
p := P − |x|2/2 periodic

}
⇐⇒ p d2

T 2-convex.

To see this, observe that, under our assumption, also p∗(y) := P ∗(y) − |y|2/2 is Z2-
periodic. Hence, since

P (x) = sup
y∈R2

x · y − P ∗(y),

we get that the function p(x) = P (x)− |x|2/2 satisfies

p(x) = sup
y∈R2

(
− |y − x|

2

2
− P ∗(y) +

|y|2
2

)

= sup
y∈[0,1|2

sup
h∈Z2

(
− |y + h− x|2

2
− p∗(y + h)

)

= sup
y∈T2

(
− d2

T2(x, y)

2
− p∗(y)

)
,

where we used that p∗(y) is Z2-periodic and that the geodesic distance on the flat torus
is given by

dT2(x, y) = inf
h∈Z2
|y − x+ h|.

This proves the claim and that p∗ is its d2
T2-conjugate. The fact the Pt is a Aleksandrov

solution to the Monge-Ampère equation follows by the arguments of Section 1.2.

Since P is an Aleksandrov solution to the Monge Ampere equation, the results in
Chapters 2 and 3 apply, yielding the following:

Theorem 5.5 (Space regularity of optimal maps on T2). Let µ = ρL 2, ν = σL 2, and
let P be as in Theorem 5.4 with

∫
T2 P dx = 0. Then:
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(i) P ∈ C1,β(T2) for some β = β(λ) ∈ (0, 1), and there exists a constant C = C(λ)
such that

‖P‖C1,β ≤ C.

(ii) P ∈ W 2,1(T2), more precisely there exist a constant C = C(λ) and an exponent
γ0 = γ0(λ) > 1 such that ∫

T2

|D2P |γ0 dx ≤ C.

(iii) If ρ, σ ∈ Ck,α(T2) for some k ∈ N and α ∈ (0, 1), then P ∈ Ck+2,α(T2) and there
exists a constant C = C(λ, ‖ρ‖Ck,α , ‖σ‖Ck,α) such that

‖P‖Ck+2,α ≤ C.

Moreover, there exist two positive constants c1 and c2, depending only on λ,
‖ρ‖C0,α, and ‖σ‖C0,α, such that

c1 Id ≤ D2P (x) ≤ c2 Id ∀x ∈ T2.

5.2.1 The regularity of the velocity field

The following proposition, which provides the Sobolev regularity of t 7→ ∇P ∗t , is our
main technical tool. Notice that, in order to prove Theorem 5.3, only finiteness of
the left hand side in (5.15) would be needed, and the proof of this fact involves only
a smoothing argument, the Sobolev regularity estimates of Chapter 3, collected in
Theorem 5.5(ii), and the argument of [Loe1, Theorem 5.1]. However, the continuity of
transport map in the strong Sobolev topology proved in Chapter 4 allows to show the
validity of the natural a priori estimate on the left hand side in (5.15).

Proposition 5.6 (Time regularity of optimal maps). Let ρt and Pt be as in The-
orem 5.1. Then ∇P ∗t ∈ W 1,1

loc (T2 × [0,∞);R2), namely there exist constants C(λ)
γ0 = γ0(λ) such that, for almost every t ≥ 0,

∫

T2

ρt|∂t∇P ∗t |
2γ0

1+γ0 dx

≤ C(λ)

(∫

T2

ρt|D2P ∗t |γ0 dx+ ess sup
T2

(
ρt|U t|2

) ∫

T2

|D2P ∗t | dx
)
. (5.15)

To prove the above Proposition we need to understand, in the smooth setting, what
is the regularity of the map t 7→ ∇Pt.

Lemma 5.7 (Space-time regularity of transport). Let k ∈ N∪{0}, and let ρ ∈ C∞(T2×
[0,∞)) and U ∈ C∞(T2 × [0,∞);R2) satisfy

0 < λ ≤ ρt(x) ≤ 1/λ <∞ ∀ (x, t) ∈ T2 × [0,∞),
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∂tρt +∇ · (U tρt) = 0 in T2 × [0,∞),

and
∫
T2 ρt dx = 1 for all t ≥ 0. Let us consider convex conjugate maps Pt and P ∗t such

that Pt(x)− |x|2/2 and P ∗t (y)− |y|2/2 are Z2-periodic, (∇P ∗t )]ρt = L 2
T2, (∇Pt)]L 2

T2 =
ρt. Then:

(i) P ∗t −
∫
−T2P

∗
t ∈ Liploc([0,∞);Ck(T2)) for any k ∈ N.

(ii) The following linearized Monge-Ampère equation holds:

∇ ·
(
ρt(D

2P ∗t )−1∂t∇P ∗t
)

= −∇ · (ρtU t). (5.16)

Proof. Let us fix T > 0. From the regularity theory for the Monge-Ampère equation
(see Theorem 5.5) we obtain that Pt ∈ C∞(R2), uniformly for t ∈ [0, T ], and there exist
universal constants c1, c2 > 0 such that

c1Id ≤ D2P ∗t (x) ≤ c2Id ∀ (x, t) ∈ T2 × [0, T ]. (5.17)

Since ∇P ∗t is the inverse of ∇Pt, by the smoothness of Pt and (5.17) we deduce that
P ∗t ∈ C∞(R2), uniformly on [0, T ].

Now, to prove (i), we need to investigate the time regularity of P ∗t −
∫
−T2P

∗
t . More-

over, up to adding a time dependent constant to Pt, we can assume without loss of
generality that

∫
T2 P

∗
t = 0 for all t. By the condition (∇P ∗t )]ρt = L 2

T2 we get that for
any 0 ≤ s, t ≤ T and x ∈ R2 it holds

ρs(x)− ρt(x)

s− t =
det(D2P ∗s (x))− det(D2P ∗t (x))

s− t

=
2∑

i,j=1

(∫ 1

0

∂ det

∂ξij
(τD2P ∗s (x) + (1− τ)D2P ∗t (x)) dτ

)
∂ijP

∗
s (x)− ∂ijP ∗t (x)

s− t .

(5.18)

Recall that, given a symmetric invertible matrix A ∈ R2×2,

∂ det(A)

∂ξij
= Mij(A), (5.19)

where M(A) is the cofactor matrix of A, i.e. the one which satisfies the identity

M(A) = det(A)A−1. (5.20)

Moreover, if A satisfies c1 Id ≤ A ≤ c2 Id for some positive constants c1, c2, then

c1 Id ≤M(A) ≤ c2 Id . (5.21)
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Hence, from (5.18), (5.19), (5.17), and (5.21), it follows that

ρs − ρt
s− t =

2∑

i,j=1

(∫ 1

0
Mij(τD

2P ∗s + (1− τ)D2P ∗t ) dτ

)
∂ij

(
P ∗s − P ∗t
s− t

)
, (5.22)

with

c1 Id ≤
∫ 1

0
Mij(τD

2P ∗s + (1− τ)D2P ∗t ) dτ ≤ c2 Id

Since D2P ∗t is smooth in space, uniformly on [0, T ], by classical elliptic regularity
theory5 it follows that for any k ∈ N and α ∈ (0, 1) there exists a constant C :=
C(‖(ρs − ρt)/(s− t)‖Ck,α(T2×[0,T ])) such that

∥∥∥∥
P ∗s (x)− P ∗t (x)

s− t

∥∥∥∥
Ck+2,α(T2)

≤ C.

This proves point (i) in the statement. To prove the second part, we let s→ t in (5.22)
to obtain

∂tρt =
2∑

i,j=1

Mij(D
2P ∗t (x)) ∂t∂ijP

∗
t (x). (5.23)

Taking into account the continuity equation and the well-known divergence-free prop-
erty of the cofactor matrix

∑

i

∂iMij(D
2Pt
∗(x)) = 0, j = 1, 2,

we can rewrite (5.23) as

−∇ · (U tρt) =
2∑

i,j=1

∂i
(
Mij(D

2P ∗t (x)) ∂t∂jP
∗
t (x)

)
.

Hence, using (5.20) and the Monge-Ampère equation det(D2P ∗t ) = ρt, we finally get
(5.16).

Proof of Proposition 5.6. We closely follow the proof of [Loe1, Theorem 5.1], and we
split the proof in two parts. In the first step we assume that

ρt ∈ C∞(T2 × R), U t ∈ C∞(T2 × R;R2) , (5.24)

0 < λ ≤ ρt ≤ 1/λ <∞ , (5.25)

∂tρt +∇ · (U tρt) = 0 , (5.26)

(∇Pt)]L 2
T2 = ρtL

2
T2 , (5.27)

5Note that equation (5.18) is well defined on T2 since P ∗t −P ∗s is Z2-periodic. We also observe that
P ∗t − P ∗s has average zero on T2.
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and we prove that (5.15) holds for every t ≥ 0. In the second step we prove the general
case through an approximation argument.

Step 1: The regular case. Let us assume that the regularity assumptions (5.24),
(5.25), (5.26), (5.27) hold. Moreover, up to adding a time dependent constant to Pt,
we can assume without loss of generality that

∫
T2 P

∗
t = 0 for all t ≥ 0, so that by

Lemma 5.7 we have ∂tP
∗
t ∈ C∞(T2). Fix t ≥ 0. Multiplying (5.16) by ∂tP

∗
t and

integrating by parts, we get

∫

T2

ρt|(D2P ∗t )−1/2∂t∇P ∗t |2 dx =

∫

T2

ρt∂t∇P ∗t · (D2P ∗t )−1∂t∇P ∗t dx

= −
∫

T2

ρt∂t∇P ∗t · U t dx.

(5.28)

(Since the matrix D2Pt
∗(x) is nonnegative, both its square root and the square root

of its inverse are well-defined.) From Cauchy-Schwartz inequality it follows that the
right-hand side of (5.28) can be rewritten and estimated with

−
∫

T2

ρt∂t∇P ∗t · (D2P ∗t )−1/2(D2P ∗t )1/2U t dx

≤
(∫

T2

ρt|(D2P ∗t )−1/2∂t∇P ∗t |2 dx
)1/2(∫

T2

ρt|(D2P ∗t )1/2U t|2 dx
)1/2

.

(5.29)

Moreover, the second factor in the right-hand side of (5.29) can be estimated with

∫

T2

ρtU t ·D2P ∗t U t dx ≤ max
T2

(
ρt|U t|2

) ∫

T2

|D2P ∗t | dx. (5.30)

Hence, from (5.28), (5.29), and (5.30) it follows that

∫

T2

ρt|(D2P ∗t )−1/2∂t∇P ∗t |2 dx ≤ max
T2

(
ρt|U t|2

) ∫

T2

|D2P ∗t | dx. (5.31)

We now apply Young’s inequality

(ab)
2γ0

1+γ0 ≤ C
(
a2γ0 + b2

)
,

with a = |(D2P ∗t )1/2| and b = |(D2P ∗t )−1/2∂t∇Pt∗(x)| to deduce the existence of a
constant C such that

|∂t∇P ∗t |
2γ0

1+γ0 ≤ C
(
|(D2P ∗t )1/2|2γ0 + |(D2P ∗t )−1/2∂t∇P ∗t |2

)

= C
(
|D2P ∗t |γ0 + |(D2P ∗t )−1/2∂t∇P ∗t |2

)
.
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Integrating the above inequality over T2 and using (5.31), we finally obtain

∫

T2

ρt|∂t∇P ∗t |
2γ0

1+γ0 dx

≤ C
(∫

T2

ρt|D2P ∗t |γ0 dx+

∫

T2

ρt|(D2P ∗t )−1/2∂t∇P ∗t |2 dx
)

≤ C
(∫

T2

ρt|D2P ∗t |γ0 dx+ max
T2

(
ρt|U t|2

) ∫

T2

|D2P ∗t | dx
)
,

(5.32)

which proves (5.15).

Step 2: The approximation argument. First of all, we extend the functions ρt and
U t for t ≤ 0 by setting ρt = ρ0 and U t = 0 for every t < 0. We notice that, with this
definition, ρt solves the continuity equation with velocity U t on R2 × R.

Fix now σ1 ∈ C∞c (R2), σ2 ∈ C∞c (R), define the family of mollifiers (σn)n∈N as
σn(x, t) := n3σ1(nx)σ2(nt), and set

ρn := ρ ∗ σn, Un(x) :=
(ρU) ∗ σn
ρ ∗ σn .

Since λ ≤ ρ ≤ 1/λ then
λ ≤ ρn ≤ 1/λ.

Therefore both ρn and Un are well defined and satisfy (5.24), (5.25), (5.26). Moreover
for every t > 0 the function ρnt is Z2-periodic and it is a probability density when
restricted to (0, 1)2 (once again we are identifying periodic functions with functions
defined on the torus). Let Pnt be the only convex function such that (∇Pnt )]L

2
T2 = ρnt

and its its convex conjugate Pn∗t satisfies
∫
T2 P

n∗
t = 0 for all t ≥ 0. Since ρnt → ρt in

L1(T2) for any t > 0 (recall that, by Theorem 5.1(ii), ρt is weakly continuous in time),
from Theorem 1.14 it follows that

∇Pn∗t → ∇P ∗t in L1(T2) (5.33)

for any t > 0. Moreover, by Theorems 5.4 and 5.5(ii), there exist constants C, γ0

depending only on λ such that

∫

T2

ρnt |D2Pn∗t |γ0 dx ≤ C,

and by Theorem 4.1, it follows that (taking γ0 slightly smaller than the optimal one):

∫

T2

ρnt |D2Pn∗t |γ0 dx→
∫

T2

ρt|D2P ∗t |γ0 dx, (5.34)

∫

T2

|D2Pn∗t | dx→
∫

T2

|D2P ∗t | dx. (5.35)
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Finally, since the function (w, t) 7→ F (w, t) = |w|2/t is convex on R2×(0,∞), by Jensen
inequality we get

‖ρn|Un|2‖∞ = ‖F (ρnUn, ρn)‖∞ ≤ ‖ρ|U |2‖∞. (5.36)

It is clear that ρnt ∂t∇Pn∗t weakly converge in L1(T2×[0, T ]) to ρt∂t∇P ∗t for every T > 0.
Taking (5.34), (5.35), (5.36) and (5.37) into account, and applying Step1 to ρnt ,Un

t we

deduce that, for every test functions φ(t), ϕ(x) with φ positive,
∫
T2 |ϕ|

2γ0
γ0−1dx ≤ 1, 6

∫ T

0

∫

T2

φ(t)ϕ(x)ρt∂t∇P ∗t dxdt = lim
n→∞

∫ T

0

∫

T2

φ(t)ϕ(x)ρnt ∂t∇Pn∗t dxdt

≤ C(λ) lim inf
n→∞

∫ T

0
φ(t)

∫

T2

ρnt |∂t∇Pn∗t |
2γ0

1+2γ0 dxdt

≤ C(λ) lim inf
n→∞

∫ T

0
φ(t)

(∫

T2

ρnt |D2Pn∗t |γ0 dx+ max
T2

(
ρnt |Un

t |2
) ∫

T2

|D2Pn∗t | dx
)
dt

= C(λ)

∫ T

0
φ(t)

(∫

T2

ρt|D2P ∗t |γ0 dx+ max
T2

(
ρt|U t|2

) ∫

T2

|D2P ∗t | dx
)
dt.

(5.37)

An easy density argument based on the separability of L
2γ0
γ0−1 thus implies that, for

almost every t ∈ [0, T ],

∫

T2

ϕρt∂t∇P ∗t dx ≤ C(λ)

(∫

T2

ρt|D2P ∗t |γ0 dx+ max
T2

(
ρt|U t|2

) ∫

T2

|D2P ∗t | dx
)

for all ϕ such that
∫
T2 |ϕ|

2γ0
γ0−1dx ≤ 1, from which the desired result follows (see the

footnote at the end of the page).

It is clear from the proof of Proposition 5.6 that the particular coupling between the
velocity field U t and the transport map Pt is not used. Actually, using Theorem 5.5(ii),
and arguing again as in the proof of [Loe1, Theorem 5.1], the following more general
statement holds (compare with [Loe1, Theorem 5.1, Equations (27) and (29)]):

Proposition 5.8. Let ρt and vt be such that 0 < λ ≤ ρt ≤ 1/λ < ∞, vt ∈ L∞loc(T2 ×
[0,∞),R2), and

∂tρt +∇ · (vtρt) = 0.

Assume that
∫
T2 ρt dx = 1 for all t ≥ 0, let Pt be a convex function such that

(∇Pt)]L 2
T2 = ρtL

2
T2 ,

6Notice that, since λ ≤ ρnt ≤ 1/λ, all the Lebesgue spaces Lp(ρnt dx), Lp(ρtdx) are isomorophic to
Lp(dx) with constants depending only on λ.
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and denote by P ∗t its convex conjugate.
Then ∇Pt and ∇P ∗t belong to W 1,1

loc (T2 × [0,∞);R2). Moreover there exists a con-
stants C(λ) and γ0(λ) > 1 such that, for almost every t ≥ 0,

∫

T2

ρt|∂t∇P ∗t |
2γ0

1+γ0 dx

≤ C(λ)

(∫

T2

ρt|D2P ∗t |γ0 dx+ ess sup
T2

(
ρt|vt|2

) ∫

T2

|D2P ∗t | dx
)
. (5.38)

∫

T2

|∂t∇Pt|
2γ0

1+γ0 dx

≤ C(λ)

(∫

T2

ρt|D2Pt|γ0 dx+ ess sup
T2

(
ρt|vt|2

) ∫

T2

|D2Pt| dx
)
. (5.39)

Proof. We just give a short sketch of the proof. Equation (5.38) can be proved following
the same line of the proof of Proposition 5.6. To prove (5.39) notice that by the ap-
proximation argument in the second step of the proof of Proposition 5.6 we can assume
that the velocity and the density are smooth and hence, arguing as in Lemma 5.7, we
have that Pt, P

∗
t ∈ Liploc([0,∞), C∞(T2)). Now, changing variables in the left hand

side of (5.31) we get
∫

T2

∣∣∣
(
[D2P ∗t ](∇Pt)

)−1/2
[∂t∇P ∗t ](∇Pt)

∣∣∣
2
dx ≤ max

T2

(
ρt|vt|2

) ∫

T2

|D2P ∗t | dx. (5.40)

Taking into account the identities

[D2P ∗t ](∇Pt) =
(
D2Pt

)−1
and [∂t∇P ∗t ](∇Pt) + [D2P ∗t ](∇Pt)∂t∇Pt = 0

which follow differentiating with respect to time and space ∇P ∗t ◦ ∇Pt = Id, Equation
(5.40) becomes

∫

T2

|(D2Pt)
−1/2∂t∇Pt|2 dx ≤ max

T2

(
ρt|vt|2

) ∫

T2

|D2P ∗t | dx.

At this point the proof of (5.39) is obtained arguing as in Proposition 5.6.

5.2.2 Existence of an Eulerian solution

In this section we prove Theorem 5.3. In the proof we will need to test (5.5) with
functions which are merely W 1,1. This is made possible by the following lemma.

Lemma 5.9. Let ρt and Pt be as in Theorem 5.1. Then (5.8) holds for every ϕ ∈
W 1,1(T2 × [0,∞)) which is compactly supported in time. (Now ϕ0(x) has to be under-
stood in the sense of traces.)
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Proof. Let ϕn ∈ C∞(T2 × [0,∞)) be strongly converging to ϕ in W 1,1, so that ϕn0
converges to ϕ0 in L1(T2). Taking into account that both ρt and U t are uniformly
bounded from above in T2× [0,∞), we can apply (5.8) to the test functions ϕn and let
n→∞ to obtain the same formula with ϕ.

Proof of Theorem 5.3. First of all notice that, thanks to Theorem 5.5(i) and Proposi-
tion 5.6, it holds |D2P ∗t |, |∂t∇P ∗t | ∈ L∞loc([0,∞), L1(T2)). Moreover, since (∇Pt)]L 2

T2 =
ρtL 2

T2 , it is immediate to check the function u in (5.9) is well-defined7 and |u| belongs
to L∞loc([0,∞), L1(T2)).

Let φ ∈ C∞c (R2× [0,∞)) be a Z2-periodic function in space and let us consider the
function ϕ : R2 × [0,∞)→ R2 given by

ϕt(y) := J(y −∇P ∗t (y))φt(∇P ∗t (y)). (5.41)

By Theorem 5.4 and the periodicity of φ, ϕt(y) is Z2-periodic in the space variable.
Moreover ϕt is compactly supported in time, and Proposition 5.6 implies that ϕ ∈
W 1,1(R2 × [0,∞)). So, by Lemma 5.9, each component of the function ϕt(y) is an
admissible test function for (5.8). For later use, we write down explicitly the derivatives
of ϕ:





∂tϕt(y) = −J [∂t∇P ∗t ](y)φt(∇P ∗t (y)) + J(y −∇P ∗t (y))[∂tφt](∇P ∗t (y))+

+J(y −∇P ∗t (y))
(
[∇φt](P ∗t (y)) · ∂t∇P ∗t (y)

)
,

∇ϕt(y) = J(Id−D2P ∗t (y))φt(∇P ∗t (y)) + J(y −∇P ∗t (y))⊗
(
[∇Tφt](P ∗t (y))D2P ∗t (y)

)
.

(5.42)
Taking into account that (∇Pt)]L 2

T2 = ρtL 2
T2 and that [∇P ∗t ](∇Pt(x)) = x almost

everywhere, we can rewrite the boundary term in (5.8) as
∫

T2

ϕ0(y)ρ0(y) dy =

∫

T2

J(∇P0(x)− x)φ0(x) dx =

∫

T2

J∇p0(x)φ0(x) dx. (5.43)

In the same way, since U t(y) = J(y −∇P ∗t (y)), we can use (5.42) to rewrite the other
term as
∫ ∞

0

∫

T2

{
∂tϕt(y) +∇ϕt(y) · U t(y)

}
ρt(y) dy dt

=

∫ ∞

0

∫

T2

{
− J [∂t∇P ∗t ](∇Pt(x))φt(x) + J(∇Pt(x)− x)∂tφt(x)

+ J(∇Pt(x)− x)
(
∇φt(x) · [∂t∇P ∗t ](∇Pt(x))

)

+
[
J(Id−D2P ∗t (∇Pt(x)))φt(x) + J(∇Pt(x)− x)⊗

(
∇Tφt(x)D2P ∗t (∇Pt(x))

)]
J(∇Pt(x)− x)

}

(5.44)

7Note that the composition of D2P ∗t with ∇Pt makes sense. Indeed, by the conditions (∇Pt)]L 2
T2 =

ρtL
2
T2 � L 2

T2 , if we change the value of D2P ∗t in a set of measure zero, also [D2P ∗t ](∇Pt) will change
only on a set of measure zero.
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which, taking into account the formula (5.9) for u, after rearranging the terms turns
out to be equal to
∫ ∞

0

∫

T2

{
J∇pt(x)

(
∂tφt(x) + ut(x) · ∇φt(x)

)
+
(
−∇pt(x)− Jut(x)

)
φt(x)

}
(5.45)

Hence, combining (5.43), (5.44), (5.45), and (5.8), we obtain the validity of (5.11).
Now we prove (5.12). Given φ ∈ C∞c (0,∞) and a Z2-periodic function ψ ∈ C∞(R2),

let us consider the function ϕ : R2 × [0,∞)→ R defined by

ϕt(y) := φ(t)ψ(∇Pt∗(y)). (5.46)

As in the previous case, we have that ϕ is Z2-periodic in the space variable and ϕ ∈
W 1,1(T2 × [0,∞)), so we can use ϕ as a test function in (5.12). Then, identities
analogous to (5.42) yield

0 =

∫ ∞

0

∫

T2

{∂tϕt(y) +∇ϕt(y) · U t(y)} ρt(y) dy dt

=

∫ ∞

0
φ′(t)

∫

T2

ψ(x) dx dt

+

∫ ∞

0
φ(t)

∫

T2

{
∇ψ(x) · ∂t∇Pt∗(∇Pt(x)) +∇Tψ(x)D2P ∗t (∇Pt(x))J(∇Pt(x)− x)

}
dx dt

=

∫ ∞

0
φ(t)

∫

T2

∇ψ(x) · ut(x) dx dt.

Since φ is arbitrary we obtain
∫

T2

∇ψ(x) · ut(x) dx = 0 for a.e. t > 0.

By a standard density argument it follows that the above equation holds outside a
negligible set of times independent of the test function ψ, thus proving (5.12).

5.2.3 Existence of a Regular Lagrangian Flow for the semigeostrophic
velocity field

We start with the definition of Regular Lagrangian Flow for a given vector field b,
inspired by [A1,A2]:

Definition 5.10. Given a Borel, locally integrable vector field b : T2 × (0,∞) → R2,
we say that a Borel function F : T2 × [0,∞) → T2 is a Regular Lagrangian Flow (in
short RLF) associated to b if the following two conditions are satisfied.

(a) For almost every x ∈ T2 the map t 7→ Ft(x) is locally absolutely continuous in
[0,∞) and

Ft(x) = x+

∫ t

0
bs(Fs(x))dx ∀t ∈ [0,∞). (5.47)



92 The semigeostrophic equations

(b) For every t ∈ [0,∞) it holds (Ft)#L 2
T2 ≤ CL 2

T2 , with C ∈ [0,∞) independent of
t.

A particular class of RLFs is the collection of the measure-preserving ones, where
(b) is strengthened to

(Ft)#L 2
T2 = L 2

T2 ∀t ≥ 0.

Notice that a priori the above definition depends on the choice of the representative of
b in the Lebesgue equivalence class, since modifications of b in Lebesgue negligible sets
could destroy condition (a). However, a simple argument based on Fubini’s theorem
shows that the combination of (a) and (b) is indeed invariant (see [A1, Section 6]): in
other words, if b = b̃ a.e. in T2× (0,∞), then every RLF associated to b is also a RLF
associated to b̃.

We show existence of a measure-preserving RLF associated to the vector field u
defined by

ut(x) = [∂t∇P ∗t ](∇Pt(x)) + [D2P ∗t ](∇Pt(x))J(∇Pt(x)− x), (5.48)

where Pt and P ∗t are as in Theorem 5.3. Recall also that, under these assumptions,
|u| ∈ L∞loc([0,∞), L1(T2)).

Existence for weaker notion of Lagrangian flow of the semigeostrophic equations
was proved by Cullen and Feldman, see [CuFe, Definition 2.4], but since at that time
the results of [DF1] were not available the velocity could not be defined, not even as a
function. Hence, they had to adopt a more indirect definition. We shall prove indeed
that their flow is a flow according to Definition 5.10.

Theorem 5.11. Let us assume that the hypotheses of Theorem 5.3 are satisfied, and
let Pt and P ∗t be the convex functions such that

(∇Pt)]L 2
T2 = ρtL

2
T2 , (∇P ∗t )]ρtL

2
T2 = L 2

T2 .

Then, for ut given by (5.48) there exists a measure-preserving Regular Lagrangian Flow
F associated to ut. Moreover F is invertible in the sense that for all t ≥ 0 there exist
Borel maps F ∗t such that F ∗t (Ft) = Id and Ft(F

∗
t ) = Id a.e. in T2.

Proof. Let us consider the velocity field in the dual variables U t(x) = J(x−∇P ∗t (x)).
Since P ∗t is convex, U t ∈ BV (T2;R2) uniformly in time (actually, by Theorem 5.5(ii)
U t ∈ W 1,1(T2;R2)). Moreover U t is divergence-free. Hence, by the theory of Regu-
lar Lagrangian Flows associated to BV vector fields [A1, A2], there exists a unique
measure-preserving RLF G : T2 × [0,∞) → T2 associated to U . We remark that the
uniqueness of Regular Lagrangian Flows has to be understood in the following way:
if G1, G2 : T2 × [0,∞) → T2 are two RLFs associated to U , then the integral curves
G1(·, x) and G2(·, x) are equal for L 2-a.e. x.
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We now define8

Ft(y) := ∇P ∗t (Gt(∇P0(y))). (5.49)

The validity of property (b) in Definition 5.10 and the invertibility of F follow from the
same arguments of [CuFe, Propositions 2.14 and 2.17]. Hence we only have to show
that property (a) in Definition 5.10 holds.

Let us define Qn := B∗σn, where B is a Sobolev and uniformly continuous extension
of ∇P ∗ to T2×R, and σn is a standard family of mollifiers in T2×R. It is well known
that Qn → ∇P ∗ locally uniformly and in the strong topology of W 1,1

loc (T2 × [0,∞)).
Thus, using the measure-preserving property of Gt, for all T > 0 we get

0 = lim
n→∞

∫

T2

∫ T

0

{
|Qnt −∇P ∗t |+ |∂tQnt − ∂t∇P ∗t |+ |∇Qnt −D2P ∗t |

}
dy dt

= lim
n→∞

∫

T2

∫ T

0

{
|Qnt (Gt)−∇P ∗t (Gt)|+ |[∂tQnt ](Gt)− [∂t∇P ∗t ](Gt)|

+ |[∇Qnt ](Gt)− [D2P ∗t ](Gt)|
}
dx dt.

Up to a (not re-labeled) subsequence the previous convergence is pointwise in space,
namely, for almost every x ∈ T2,

∫ T

0

{
|Qnt (Gt(x))−∇P ∗t (Gt(x))|+ |[∂tQnt ](Gt(x))− [∂t∇P ∗t ](Gt(x))|

+ |[∇Qnt ](Gt(x))− [D2P ∗t ](Gt(x))|
}
dt→ 0.

(5.50)

Hence, since G is a RLF and by assumption

(∇P0)L 2
T2 � L 2

T2 ,

for almost every y we have that (5.50) holds at x = ∇P0(y), and the function t 7→ Gt(x)
is absolutely continuous on [0, T ], with derivative given by

d

dt
Gt(x) = U t(Gt(x)) = J(Gt(x)−∇P ∗t (Gt(x))) for a.e. t ∈ [0, T ].

Let us fix such an y. Since Qn is smooth, the function Qnt (Gt(x)) is absolutely contin-
uous in [0, T ] and its time derivative is given by

d

dt

(
Qnt (Gt(x))

)
= [∂tQ

n
t ](Gt(x)) + [∇Qnt ](Gt(x))J(Gt(x)−∇P ∗t (Gt(x))).

8Observe that the definition of F makes sense. Indeed, by Theorem 5.5(i), both maps ∇P0 and ∇P ∗t
are Hölder continuous in space. Morever, by the weak continuity in time of t 7→ ρt (Theorem 5.1(ii))
and the stability results for Aleksandrov solutions of Monge-Ampère, ∇P ∗ is continuous both in space
and time. Finally, since (∇P0)]L

2
T2 � L 2

T2 , if we change the value of G in a set of measure zero, also
F will change only on a set of measure zero.
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Hence, since J(Gt(x)−∇P ∗t (Gt(x))) = U(Gt(x)) is uniformly bounded, from (5.50) we
get

lim
n→∞

d

dt

(
Qnt (Gt(x))

)
= [∂t∇P ∗t ](Gt(x))

+ [D2P ∗t ](Gt(x))J(Gt(x)−∇P ∗t (Gt(x))) := vt(y) in L1(0, T ).

(5.51)

Recalling that

lim
n→∞

Qnt (Gt(x)) = ∇P ∗t (Gt(x)) = Ft(y) ∀ t ∈ [0, T ],

we infer that Ft(y) is absolutely continuous in [0, T ] (being the limit in W 1,1(0, T ) of
absolutely continuous maps). Moreover, by taking the limit as n→∞ in the identity

Qnt (Gt(x)) = Qn0 (G0(x)) +

∫ t

0

d

dτ

(
Qnτ (Gτ (x))

)
dτ,

thanks to (5.51) we get

Ft(y) = F0(y) +

∫ t

0
vτ (y) dτ. (5.52)

To obtain (5.47) we only need to show that vt(y) = ut(Ft(y)), which follows at once
from (5.48), (5.49), and (5.51).

5.3 The 3-dimensional case

In this Section we study (5.1) (and its equivalent counterpart (5.10)) in the physical
space R3. The scheme of the proof is the same of the previous section and we will just
highlight the main differences through the proofs.

We start noticing the following difficulty in carrying over the strategy of the previous
section: if in (5.5) we start with a compactly supported density ρ0, there is no reason
for the set {ρt > 0} to be open. Indeed, a priori, U t is only known to be in BV and
this is not enough to ensure that {ρt > 0} is open.

In order to overcome this difficulty we will consider probability measures ρ0 =
(∇P0)]L

3
Ω supported on the whole R3 and decaying fast enough at infinity. It turns

out that these conditions are stable in time along the evolution of (5.5) and allow us
to perform a suitable regularization scheme.

We conclude noticing that it would be extremely interesting to consider compactly
supported initial data ρ0 = (∇P0)]L

3
Ω. However, overcoming the above mentioned

difficulties, seems to require completely new ideas and ingredients.

Let us start giving the definition of distributional solution in this case:
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Definition 5.12. Let P : Ω× [0,∞)→ R and u : Ω× [0,∞)→ R3. We say that (P,u)
is a weak Eulerian solution of (5.10) if:

- |u| ∈ L∞loc((0,∞), L1
loc(Ω)), P ∈ L∞loc((0,∞),W 1,∞

loc (Ω)), and Pt(x) is convex for
any t ≥ 0.

- For every φ ∈ C∞c (Ω× [0,∞)), it holds

∫ ∞

0

∫

Ω
∇Pt(x)

{
∂tφt(x) + ut(x) · ∇φt(x)

}

+ J
{
∇Pt(x)− x

}
φt(x) dx dt+

∫

Ω
∇P0(x)φ0(x) dx = 0. (5.53)

- For a.e. t ∈ (0,∞) it holds
∫

Ω
∇ψ(x) · ut(x) dx = 0 for all ψ ∈ C∞c (Ω). (5.54)

This definition is the classical notion of distributional solution for (5.4) except for
the fact that the boundary condition ut · νΩ = 0 is not taken into account. In this
sense it may look natural to consider ψ ∈ C∞(Ω) in (5.54), but since we are only able
to prove that the velocity ut is locally in L1, Equation (5.54) makes sense only with
compactly supported ψ. On the other hand, exactly as in Section 5.2.3 we can build a
measure preserving Lagrangian flow Ft : Ω → Ω associated to ut, and such existence
result can be interpreted as a very weak formulation of the constraint ut · νΩ = 0.

As pointed out to us by Cullen, this weak boundary condition is actually very nat-
ural: indeed, the classical boundary condition would prevent the formation of “frontal
singularities” (which are physically expected to occur), i.e. the fluid initially at the
boundary would not be able to move into the interior of the fluid, while this is allowed
by our weak version of the boundary condition.

The following Theorem is the main result of this Section:

Theorem 5.13. Let Ω ⊆ R3 be a convex bounded open set, and let L 3
Ω be the normalized

Lebesgue measure restricted to Ω. Let ρ0 be a probability density on R3 such that
ρ0 ∈ L∞(R3), 1/ρ0 ∈ L∞loc(R3) and

lim sup
|x|→∞

(
ρ0(x)|x|K

)
<∞

for some K > 4. Let ρt be a solution of (5.5) given by Theorem 5.1, P ∗t : R3 → R the
unique convex function such that

P ∗t (0) = 0 and (∇P ∗t )](ρtL
3) = L 3

Ω,

and let Pt : R3 → R be its convex conjugate.
Then the vector field ut in (5.9) is well defined, and the couple (Pt,ut) is a weak

Eulerian solution of (5.4) in the sense of Definition 5.12.
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The proof of the above Theorem follows the same lines of the proof of Theorem
5.3. Indeed, once we have shown that the velocity field ut is in L1

loc(Ω) and the map

(x, t) 7→ ∇P ∗t (x) is in W 1,1
loc , we can test (5.5) with the functions

ϕt(y) := yφt(∇P ∗t (y)) φt ∈ C∞c (Ω× [0,∞)

and

ϕt(y) := φ(t)ψ(∇P ∗t (y)) ψ ∈ C∞c (Ω).

The same computations of the proof of Theorem 5.3 show that the couple (Pt,ut) is a
distributional solution of (5.10). The rest of the Section is hence devoted to show the
above mentioned regularity, summarized in Proposition 5.17.

We start recalling the following classical Theorem for optimal maps between convex
sets. All the statements with the exception of the last one (which we comment below)
can be deduced by the results in Chapter 2 and 3.

Theorem 5.14 (Space regularity of optimal maps between convex sets). Let Ω0, Ω1 be
open sets of R3, with Ω1 bounded and convex. Let µ = ρL 3 and ν = σL 3 be probability
densities such that µ(Ω0) = 1, ν(Ω1) = 1. Assume that the density ρ is locally bounded
both from above and from below in Ω0, namely that for every compact set K ⊂ Ω there
exist λ0 = λ0(K) and Λ0 = Λ0(K) satisfying

0 < λ0 ≤ ρ(x) ≤ Λ0 ∀ x ∈ K.

Futhermore, suppose that λ1 ≤ σ(x) ≤ Λ1 in Ω1. Then the following properties hold
true.

(i) There exists a unique optimal transport map between µ and ν, namely a unique
(up to an additive constant) convex function P ∗ : Ω0 → R such that (∇P ∗)]µ = ν.
Moreover P ∗ is a strictly convex Aleksandrov solution of

detD2P ∗(x) = f(x), with f(x) =
ρ(x)

σ(∇P ∗(x))
.

(ii) P ∗ ∈ W 2,1
loc (Ω0) ∩ C1,β

loc (Ω0). More precisely, if Ω b Ω0 is an open set and 0 <
λ ≤ ρ(x) ≤ Λ < ∞ in Ω, then for any k ∈ N there exist constants C1 =
C1(k,Ω,Ω1, λ,Λ, λ1,Λ1), β = β(λ,Λ, λ1,Λ1), and C2 = C2(Ω,Ω1, λ,Λ, λ1,Λ1)
such that ∫

Ω
|D2P ∗| logk+ |D2P ∗| dx ≤ C1,

and

‖P ∗‖C1,β(Ω) ≤ C2.
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(iii) Let us also assume that Ω0, Ω1 are bounded and uniformly convex, ∂Ω0, ∂Ω1 ∈
C2,1, ρ ∈ C1,1(Ω0), σ ∈ C1,1(Ω1), and λ0 ≤ ρ(x) ≤ Λ0 in Ω0. Then

P ∗ ∈ C3,α(Ω0) ∩ C2,α(Ω0) ∀ α ∈ (0, 1),

and there exists a constant C which depends only on α,Ω0,Ω1, λ0, λ1, ‖ρ‖C1,1 , ‖σ‖C1,1

such that
‖P ∗‖C3,α(Ω0) ≤ C and ‖P ∗‖C2,α(Ω0) ≤ C.

Moreover, there exist positive constants c1 and c2 and κ, depending only on
λ0, λ1, ‖ρ‖C0,α, and ‖σ‖C0,α, such that

c1 Id ≤ D2P ∗(x) ≤ c2 Id ∀x ∈ Ω0

and
νΩ1(∇P ∗(x)) · νΩ0(x) ≥ κ ∀x ∈ ∂Ω0. (5.55)

Some comments are in order. The regularity up to the boundary and the oblique
derivative condition of the third statement have been proven by Caffarelli [Ca7] and
Urbas [U2], in particular the oblique derivative condition (5.55) shall be thought as a
“ellipticity“ condition up to the boundary. More precisely, under this assumption the
linearized operator associated to the second boundary value problem for the Monge-
Ampère equation: {

detD2u = f in Ω1

∇u(Ω1) = Ω2,

is strongly elliptic (see the proof of Lemma 5.15 below). This allows to use the conti-
nuity method outlined in Section 2.3 to find existence of smooth solutions of the above
equation, see [U2].

Finally we notice that in point (ii) we have only mentioned the L logL integrability
of D2P ∗ obtained in Theorem 3.1, clearly the optimal statement in view of Theorem
3.2 would have been:

(ii’) For every Ω b Ω0 and 0 < λ ≤ ρ(x) ≤ Λ <∞ in Ω, there exist γ(λ,Λ, λ1,Λ1) > 1
and C(Ω,Ω1, λ,Λ, λ1,Λ1), such that

∫

Ω
|D2u|γ ≤ C.

However, due to the local bound log ρ ∈ L∞loc, this leads to an exponent γ which
depends on Ω. and this makes the above estimates more complicated to use than (ii).

Here is the analogous of Lemma 5.7:

Lemma 5.15 (Space-time regularity of transport). Let Ω ⊆ R3 be a uniformly convex
bounded domain with ∂Ω ∈ C2,1, let R > 0, and consider ρ ∈ C∞(B(0, R) × [0,∞))
and U ∈ C∞c (B(0, R)× [0,∞);R3) satisfying

∂tρt +∇ · (U tρt) = 0 in B(0, R)× [0,∞).
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Assume that
∫
B(0,R) ρ0 dx = 1, and that for every T > 0 there exist λT and ΛT such

that
0 < λT ≤ ρt(x) ≤ ΛT <∞ ∀ (x, t) ∈ B(0, R)× [0, T ].

Consider the convex conjugate maps Pt and P ∗t such that (∇Pt)]L 3
Ω = ρt and (∇P ∗t )]ρt =

L 3
Ω (unique up to additive constants in Ω and B(0, R) respectively). Then:

(i) P ∗t −
∫
−B(0,R)P

∗
t ∈ Liploc([0,∞);C2,α(B(0, R))).

(ii) The following linearized Monge-Ampère equation holds for every t ∈ [0,∞):
{
∇ ·
(
ρt(D

2P ∗t )−1∂t∇P ∗t
)

= −∇ · (ρtU t) in B(0, R)

ρt(D
2P ∗t )−1∂t∇P ∗t · ν = 0 on ∂B(0, R).

(5.56)

Proof. Observe that because ρt solves a continuity equation with a smooth compactly
supported vector field,

∫
B(0,R) ρt dx = 1 for all t.

Let us fix T > 0. From the regularity theory for the Monge-Ampére equation
(Theorem 5.14 applied to Pt and P ∗t ) we obtain that Pt ∈ C3,α(Ω) ∩ C2,α(Ω) and
P ∗t ∈ C3,α(B(0, R)) ∩ C2,α(B(0, R)) for every α ∈ (0, 1), uniformly for t ∈ [0, T ], and
there exist constants c1, c2 > 0 such that

c1 Id ≤ D2P ∗t (x) ≤ c2 Id ∀ (x, t) ∈ B(0, R)× [0, T ]. (5.57)

Let h ∈ C2,1(R3) be a convex function such that Ω = {y : h(y) < 0} and |∇h(y)| = 1
on ∂Ω, so that ∇h(y) = νΩ(y). Since ∇P ∗t ∈ C1,α(B(0, R)), it is a diffeomorphism onto
its image, we have

h(∇P ∗t (x)) = 0 ∀ (x, t) ∈ ∂B(0, R)× [0, T ]. (5.58)

As in Lemma 5.7, we investigate the time regularity of P ∗t −
∫
−B(0,R)P

∗
t . Possibly

adding a time dependent constant to Pt, we can assume without loss of generality that∫
B(0,R) P

∗
t = 0 for all t. By the condition (∇P ∗t )]ρt = L 3

Ω, arguing as in Lemma 5.7,

we get that for any 0 ≤ s, t ≤ T and x ∈ B(0, R) it holds

ρs − ρt
s− t =

3∑

i,j=1

(∫ 1

0
Mij(τD

2P ∗s + (1− τ)D2P ∗t ) dτ

)
∂ij

(
P ∗s − P ∗t
s− t

)
, (5.59)

where M(D2P 2) is the cofactor matrix of D2P ∗ which satisfies:

c2
1 Id ≤

∫ 1

0
Mij(τD

2P ∗s + (1− τ)D2P ∗t ) dτ ≤ c2
2 Id .

Moreover, from (5.58) we obtain that on ∂B(0, R)

0 =
h(∇P ∗s (x))− h(∇P ∗t (x))

s− t

=

∫ 1

0
∇h(τ∇P ∗s (x) + (1− τ)∇P ∗t (x)) dτ · ∇P

∗
s (x)−∇P ∗t (x)

s− t .

(5.60)
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Also, from Theorem 5.14(iii) the oblique derivative condition holds, namely there exists
κ > 0 such that

∇h(∇P ∗t (x)) · νB(0,R)(x) ≥ κ ∀x ∈ ∂B(0, R).

Thus, since

lim
s→t

∫ 1

0
∇h(τ∇P ∗s (x) + (1− τ)∇P ∗t (x)) dτ = ∇h(∇P ∗t (x))

uniformly in t and x, we have that

∫ 1

0
∇h(τ∇P ∗s (x) + (1− τ)∇P ∗t (x)) dτ · νB(0,R)(x) ≥ κ

2

for s− t small enough.
Hence, from the regularity theory for the oblique derivative problem [GT, Theorem

6.30] we obtain that for any α ∈ (0, 1) there exists a constant C depending only on Ω,
T , α, ‖(ρs − ρt)/(s− t)‖C0,α(B(0,R)), such that

∥∥∥∥
P ∗s (x)− P ∗t (x)

s− t

∥∥∥∥
C2,α(B(0,R))

≤ C.

Since ∂tρt ∈ L∞([0, T ], C0,α(B(0, R))), this proves point (i) in the statement. To prove
the second part, we let s→ t in (5.59) to obtain, as in Lemma 5.7, Equation (5.56):

−∇ · (U tρt) = ∇ ·
(
ρt(D

2P ∗t )−1∂t∇P ∗t
)
.

In order to obtain the boundary condition in (5.56), we take to the limit as s → t in
(5.60) to get

∇h(∇P ∗t (x)) · ∂t∇P ∗t (x) = 0. (5.61)

Since h satisfies Ω = {y : h(y) < 0} and ∇P ∗t maps B(0, R) in Ω, we have that
B(0, R) = {y : h(∇P ∗t (y)) < 0}. Hence νB(0,R)(x) is proportional to ∇[h ◦ ∇P ∗t ](x) =
D2P ∗t (x)∇h(∇P ∗t (x)), which implies that the exterior normal to Ω at point ∇P ∗t (x),
which is ∇h(∇P ∗t (x)), is collinear with ρt(D

2P ∗t )−1νB(0,R). Hence from (5.61) it follows
that

ρt(D
2P ∗t )−1νB(0,R) · ∂t∇P ∗t = 0,

as desired.

Lemma 5.16 (Decay estimates on ρt). Let vt : R3 × [0,∞) → R3 be a C∞ velocity
field and suppose that

sup
x,t
|∇ · vt(x)| ≤ N, |vt(x)| ≤ A|x|+D ∀ (x, t) ∈ R3 × [0,∞)
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for suitable constants N, A, D. Let ρ0 be a probability density, and let ρt be the solution
of the continuity equation

∂tρt +∇ · (vtρt) = 0 in R3 × (0,∞) (5.62)

starting from ρ0. Then:

(i) For every r > 0 and t ∈ [0,∞) it holds

‖ρt‖∞ ≤ eNt‖ρ0‖∞, (5.63)

ρt(x) ≥ e−Nt inf
{
ρ0(y) : y ∈ B

(
0, reAt +D

eAt − 1

A

)}
∀x ∈ B(0, r). (5.64)

(ii) Let us assume that there exist d0 ∈ [0,∞) and M ∈ [0,∞) such that

ρ0(x) ≤ d0

|x|K whenever |x| ≥M. (5.65)

Then for every t ∈ [0,∞) we have that

ρt(x) ≤ d02Ke(N+AK)t

|x|K whenever |x| ≥ 2MeAt + 2D
eAt − 1

A
. (5.66)

(iii) Let us assume that there exists R > 0 such that ρ0 is smooth in B(0, R), vanishes
outside B(0, R), and that vt is compactly supported inside B(0, R) for all t ≥ 0.
Then ρt is smooth inside B(0, R) and vanishes outside B(0, R) for all t ≥ 0.
Moreover if 0 < λ ≤ ρ0 ≤ Λ <∞ inside B(0, R), then

λe−tN ≤ ρt ≤ ΛetN inside B(0, R) for all t ≥ 0. (5.67)

Proof. Let Xt(x) ∈ C∞(R3 × [0,∞)) be the flow associated to the velocity field vt,
namely the solution to {

d
dtXt(x) = vt(Xt(x))

X0(x) = x.
(5.68)

For every t ≥ 0 the map t 7→ Xt(x) is invertible in R3, with inverse denoted by X−1
t .

The solution to the continuity equation (5.62) is given by ρt = Xt]ρ0, and from the
well-known theory of characteristics it can be written explicitly using the flow:

ρt(x) = ρ0(X−1
t (x))e

∫ t
0 ∇·vs(Xs(X

−1
t (x))) ds ∀ (x, t) ∈ R3 × [0,∞). (5.69)

Since the divergence is bounded, we therefore obtain

ρ0(X−1
t (x))e−Nt ≤ ρt(x) ≤ ρ0(X−1

t (x))eNt (5.70)
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Now we deduce the statements of the lemma from the properties of the flow Xt.
(i) From (5.70) we have that

ρt(x) ≤ eNtρ0(X−1
t (x)) ≤ eNt sup

x∈R3

ρ0(x),

which proves (5.63). From the equation (5.68) we obtain

∣∣∣ d
dt
|Xt(x)|

∣∣∣ ≤ |∂tXt(x)| ≤ A|Xt(x)|+D

which can be rewritten as

−A|Xt(x)| −D ≤ d

dt
|Xt(x)| ≤ A|Xt(x)|+D. (5.71)

From the first inequality we get

|Xt(x)| ≥ |x|e−At −D1− e−At
A

,

which implies

|x|eAt +D
eAt − 1

A
≥ |X−1

t (x)|,

or equivalently

X−1
t

(
{|x| ≤ r}

)
⊆
{
|x| ≤ reAt +D

eAt − 1

A

}
. (5.72)

Hence from (5.70) and (5.72) we obtain that, for every x ∈ B(0, r),

ρt(x) ≥ e−Ntρ0(X−1
t (x))

≥ e−Nt inf{ρ0(y) : y ∈ X−1
t (Br(0))}

≥ e−Nt inf
{
ρ0(y) : |y| ≤ reAt +D

eAt − 1

A

}
,

which proves (5.64).
(ii) From the second inequality in (5.71), we infer

|Xt(x)| ≤ |x|eAt +D
eAt − 1

A
,

which implies

|x| ≤ |X−1
t (x)|eAt +D

eAt − 1

A
. (5.73)

Thus, if |x| ≥ 2MeAt + 2D eAt−1
A , we easily deduce from (5.73) that |X−1

t (x)| ≥ M +
|x|e−At/2, so by (5.65)

ρt(x) ≤ eNtρ0(X−1
t (x)) ≤ d0e

Nt

|X−1
t (x)|K

≤ d02Ke(N+AK)t

|x|K ,
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which proves (5.66).
(iii) If vt = 0 in a neighborhood of ∂B(0, R) it can be easily verified that the flow

maps Xt : R3 → R3 leave both B(0, R) and its complement invariant. Moreover the
smoothness of vt implies that also Xt is smooth. Therefore all the properties of ρt
follow directly from (5.69).

We are now ready to prove the regularity of ∇P ∗t , as we explained the proof of
Theorem 5.13 easily follows from this.

Proposition 5.17 (Time regularity of optimal maps). Let Ω ⊆ R3 be a bounded,
convex, open set and let diam(Ω) be such that Ω ⊂ B(0, diam(Ω)). Let ρt and Pt be as
in Theorem 5.1, in addition let us assume that there exist K > 4, M ≥ 0 and c0 > 0
such that

ρ0(x) ≤ c0

|x|K whenever |x| ≥M . (5.74)

Then ∇P ∗t ∈W 1,1
loc (R3× [0,∞);R3). Moreover for every k ∈ N and T > 0 there exists a

constant C = C(k, T,M, c0, ‖ρ0‖∞,diam(Ω)) such that, for almost every t ∈ [0, T ] and
for all r ≥ 0,t it holds
∫

B(0,r)
ρt|∂t∇P ∗t | logk+(|∂t∇P ∗t |) dx ≤ 23(k−1)

∫

B(0,r)
ρt|D2P ∗t | log2k

+ (|D2P ∗t |) dx+ C

(5.75)

Proof. Step 1: The smooth case. In the first part of the proof we assume that Ω
is a convex smooth domain, and, besides (5.74), that for some R > 0 the following
additional properties hold:

ρt ∈ C∞(B(0, R)× R), U t ∈ C∞c (B(0, R)× R;R3), |∇ · U t| ≤ N (5.76)

λ1B(0,R)(x) ≤ ρ0(x) ≤ Λ1B(0,R)(x) ∀x ∈ R3, (5.77)

∂tρt +∇ · (U tρt) = 0 in R3 × [0,∞) , (5.78)

(∇P ∗t )]ρt = L 3
Ω, (5.79)

|U t(x)| ≤ |x|+ diam(Ω) (5.80)

for some constants N, λ, Λ, and we prove that (5.15) holds for every t ∈ [0, T ]. Notice
that in this step we do not assume any coupling between the velocity U t and the trans-
port map ∇P ∗t . In the second step we prove the general case through an approximation
argument.

Let us assume that the regularity assumptions (5.76) through (5.80) hold. By
Lemma 5.16 we infer that, for any T > 0, there exist positive constants λT ,ΛT , cT ,MT ,
with MT ≥ 1, such that

λT 1B(0,R)(x) ≤ ρt(x) ≤ ΛT 1B(0,R)(x), (5.81)

ρt(x) ≤ cT
|x|K for |x| ≥MT , for all t ∈ [0, T ]. (5.82)
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By Lemma 5.15 we have that ∂tP
∗
t ∈ C2(B(0, R)), and it solves

{
∇ ·
(
ρt(D

2P ∗t )−1∂t∇P ∗t
)

= −∇ · (ρtU t) in B(0, R)

ρt(D
2P ∗t )−1∂t∇P ∗t · ν = 0 in ∂B(0, R).

(5.83)

Multiplying (5.83) by ∂tP
∗
t and integrating by parts, we get

∫

B(0,R)
ρt|(D2P ∗t )−1/2∂t∇P ∗t |2 dx =

∫

B(0,R)
ρt∂t∇P ∗t · (D2P ∗t )−1∂t∇P ∗t dx

= −
∫

B(0,R)
ρt∂t∇P ∗t · U t dx.

(5.84)

(Notice that, thanks to the boundary condition in (5.83), we do not have any boundary
term in (5.84).) From Cauchy-Schwartz inequality

−
∫

B(0,R)
ρt∂t∇P ∗t · (D2P ∗t )−1/2(D2P ∗t )1/2U t dx

≤
(∫

B(0,R)
ρt|(D2P ∗t )−1/2∂t∇P ∗t |2 dx

)1/2(∫

B(0,R)
ρt|(D2P ∗t )1/2U t|2 dx

)1/2

.

(5.85)

Moreover, the second term in the right-hand side of (5.85) is controlled by
∫

B(0,R)
ρtU t ·D2P ∗t U t dx ≤ max

B(0,R)

(
ρ

1/2
t |U t|2

)∫

B(0,R)
ρ

1/2
t |D2P ∗t | dx. (5.86)

Hence we obtain, as in Proposition 5.6,
∫

B(0,R)
ρt|(D2P ∗t )−1/2∂t∇P ∗t |2 dx ≤ max

B(0,R)

(
ρ

1/2
t |U t|2

)∫

B(0,R)
ρ

1/2
t |D2P ∗t | dx. (5.87)

Notice however that we will need to send R to infinity at the end of the proof, for this
reason we need a bound on the above quantity independent on R.

From (5.80), (5.81), and (5.82) we estimate the first factor as follows:

max
|x|≤MT

(
ρ

1/2
t (x)|U t(x)|2

)
≤ Λ

1/2
T (MT + diam(Ω))2, (5.88)

max
MT≤|x|

(
ρ

1/2
t (x)|U t(x)|2

)
≤ max

MT≤|x|

{ √
cT

|x|K/2 (|x|+ diam(Ω))2

}
, (5.89)

and the latter term is finite because MT ≥ 1 and K > 4.
In order to estimate the second factor, we observe that since D2P ∗t is a nonnegative

matrix the estimate |D2P ∗t | ≤ 3∆P ∗t holds. Hence, by (5.81) and (5.82) we obtain
∫

B(0,R)
ρ

1/2
t |D2P ∗t | dx ≤

∫

{|x|≤MT }
ρ

1/2
t |D2P ∗t | dx+

∫

{|x|>MT }
ρ

1/2
t |D2P ∗t | dx

≤ 3

∫

{|x|≤MT }
Λ

1/2
T ∆P ∗t dx+ 3

∫

{|x|>MT }

√
cT

|x|K/2 ∆P ∗t dx.
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The second integral can be rewritten as

∫ ∞

0

∫

{|x|>MT }∩{|x|−K/2>s}
∆P ∗t dx ds,

which is bounded by
∫ [MT ]−K/2

0
ds

∫

{|x|≤s−2/K}
∆P ∗t dx.

From the divergence formula, since |∇P ∗t (x)| ≤ diam(Ω) (because ∇P ∗t (x) ∈ Ω for
every x ∈ R3) and MT ≥ 1 (so [MT ]−K/2 ≤ 1) we obtain

∫

B(0,R)
ρ

1/2
t |D2P ∗t | dx ≤ 3Λ

1/2
T

∫

{|x|=MT }
|∇P ∗t | dH2

+ 3
√
cT

∫ [MT ]−K/2

0
ds

∫

{|x|=s−2/K}
|∇P ∗t | dH2

≤ 12πΛ
1/2
T M2

T diam(Ω) + 12π
√
cT diam(Ω)

∫ 1

0
s−4/K ds

(5.90)

for all t ∈ [0, T ]. Since K > 4 the last integral is finite, so the right-hand side is
bounded and we obtain a global-in-space estimate on the left-hand side.

Thus, from (5.87), (5.88), (5.89), and (5.90), it follows that there exists a constant
C1 = C1(T,M, c0,Λ,diam(Ω)) (notice that the constant does not depend on the lower
bound on the density) such that

∫

B(0,R)
ρt|(D2P ∗t )−1/2∂t∇P ∗t |2 dx ≤ C1. (5.91)

Applying now the inequality (see Lemma 5.18 below)

ab logk+(ab) ≤ 2k−1

[(
k

e

)k
+ 1

]
b2 + 23(k−1)a2 log2k

+ (a) ∀ a, b ≥ 0,

with a = |(D2P ∗t )1/2| and b = |(D2P ∗t )−1/2∂t∇Pt∗(x)| we deduce the existence of a
constant C2 = C2(k) such that

|∂t∇P ∗t | logk+(|∂t∇P ∗t |) ≤ 23(k−1)|(D2P ∗t )1/2|2 log2k
+ (|(D2P ∗t )1/2|2) + C2|(D2P ∗t )−1/2∂t∇P ∗t |2

= 23(k−1)|D2P ∗t | log2k
+ (|D2P ∗t |) + C2|(D2P ∗t )−1/2∂t∇P ∗t |2.
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Integrating the above inequality over B(0, r) and using (5.91), we finally obtain

∫

B(0,r)
ρt|∂t∇P ∗t | logk+(|∂t∇P ∗t |) dx

≤ 23(k−1)

∫

B(0,r)
ρt|D2P ∗t | log2k

+ (|D2P ∗t |) dx+ C2

∫

B(0,R)
ρt|(D2P ∗t )−1/2∂t∇P ∗t |2 dx

≤ 23(k−1)

∫

B(0,r)
ρt|D2P ∗t | log2k

+ (|D2P ∗t |) dx+ C1 · C2,

(5.92)

for all 0 < r ≤ R.

Step 2: The approximation argument. We now consider the velocity field U given
by Theorem 5.1, we take a sequence of smooth convex domains Ωn which converges to
Ω in the Hausdorff distance, and a sequence (ψn) ⊂ C∞c (B(0, n)) of cut off functions
such that 0 ≤ ψn ≤ 1, ψn(x) = 1 inside B(0, n/2), |∇ψn| ≤ 2/n in R3. Let us also
consider a sequence of space-time mollifiers σn with support contained in B(0, 1/n)
and a sequence of space mollifiers ϕn. We extend the function U t for t ≤ 0 by setting
U t = 0 for every t < 0.

Let us consider a compactly supported space regularization of ρ0 and a space-time
regularization of U , namely

ρn0 :=
(ρ0 ∗ ϕn)

cn
1B(0,n), Un

t (x) := (U ∗ σn)ψn,

where cn↑ 1 is chosen so that ρn0 is a probability measure on R3. Let ρnt be the solution
of the continuity equation

∂tρ
n
t +∇ · (Un

t ρ
n
t ) = 0 in R3 × [0,∞)

with initial datum ρn0 . From the regularity of the velocity field Un
t and of the initial

datum ρn0 we have that ρn ∈ C∞(B(0, n)× [0,∞)).

Since U t is divergence-free and satisfies the inequality |U t(x)| ≤ |x|+ diam(Ω), we
get

|Un
t |(x) ≤ |U ∗ σn|(x) ≤ ‖U t‖L∞(B(x,1/n)) ≤ |x|+ diam(Ω) +

1

n
≤ |x|+ diam(Ω) + 1,

|∇ · Un
t |(x) = |(U t ∗ σn) · ∇ψn|(x) ≤ 2(n+ 1+ diam(Ω))

n
≤ 3

for n large enough. Moreover, from the properties of ρ0 we obtain that, for n large
enough,

ρn0 (x) ≤ 2c0

(|x| − 1/n)K
≤ 4c0

|x|K ∀ |x| ≥M + 2,
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‖ρn0‖∞ ≤ 2‖ρ0‖∞ and
∥∥∥ 1

ρn0

∥∥∥
L∞(B(0,n))

≤
∥∥∥ 1

ρ0

∥∥∥
L∞(B(0,n+1))

.

Hence the hypotheses of Lemma 5.16 are satisfied with N = 3, A = 1, D = diam(Ω)+1,
d0 = 4c0. Moreover ρnt vanishes outside B(0, n), and by (5.67) there exist con-
stants λn := e−3T ‖1/ρ0‖−1

L∞(B(0,n+1)) > 0, Λ := 2e3T ‖ρ0‖∞, and M1, c1 depending

on T,M, c0,diam(Ω) only, such that

λn ≤ ρnt (x) ≤ Λ ∀ (x, t) ∈ B(0, n)× [0, T ],

ρnt (x) ≤ c1

|x|K whenever |x| ≥M1.

(Observe that λn depends on n, but the other constants are all independent of n.)
Thus, from Statement (ii) of Lemma 5.16 we get that, for all r > 0,

ρnt (x) ≥ e−3T inf
{
ρn0 (y) : y ∈ B

(
0, ret + (diam(Ω) + 1)[et − 1]

)}

∀ (x, t) ∈ B(0, r)× [0, T ]. (5.93)

If n is large enough, the right-hand side of (5.93) is different from 0, and it can be
estimated from below in terms of ρ0 by

λ = λ(r, T, ρ0,Ω) := e−3T inf
{
ρ0(y) : y ∈ B

(
0, ret + (diam(Ω) + 1)[et − 1] + 1

)}
> 0.

Therefore, for any r > 0 we can bound the density ρn from below inside B(0, r) with a
constant independent of n:

λ ≤ ρnt (x) ≤ Λ ∀ (x, t) ∈ B(0, r)× [0, T ]. (5.94)

Let now Pn∗t be the unique convex function such that Pn∗t (0) = 0 and (∇Pnt )]ρ
n
t =

L 3
Ωn
. From the stability of solutions to the continuity equation with BV velocity

field, [A1, Theorem 6.6], we infer that

ρnt → ρt in L1
loc(R3), for any t > 0, (5.95)

where ρt is the unique solution of (5.5) corresponding to the velocity field U . Moreover
by the stability of optimal maps

∇Pn∗t → ∇P ∗t in L1
loc(R3) (5.96)

for any t > 0. By Theorem 5.14 (ii) 9 and (5.94), for every k ∈ N

lim sup
n→∞

∫

B(0,r)
ρnt |D2Pn∗t | log2k

+ (|D2Pn∗t |) dx<∞ ∀ r > 0,

9Recall that by Theorem 2.2 the modulus of strict convexity of the (P ∗)n depends only on the
limiting domain Ω, in particular all the constants in the L logL estimates remain bounded
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and by Theorem 4.1

lim
n→∞

∫

B(0,r)
ρnt |D2Pn∗t | log2k

+ (|D2Pn∗t |) dx =

∫

B(0,r)
ρt|D2P ∗t | log2k

+ (|D2P ∗t |) dx ∀ r > 0.

(5.97)
Since (ρnt ,Un

t ) satisfy the assumptions (5.76) through (5.80), by Step 1 we can apply
(5.92) to (ρnt ,Un

t ) to obtain

∫

B(0,r)
ρnt |∂t∇Pn∗t | logk+(|∂t∇Pn∗t |) dx ≤ 23(k−1)

∫

B(0,r)
ρt|D2Pn∗t | log2k

+ (|D2Pn∗t |) dx+C

(5.98)
for all r < n, where the constant C does not depend on n. At this point we obtain
(5.75) from (5.98) and (5.97) arguing as in the last part of Proposition 5.6.

Lemma 5.18. For every k ∈ N we have

ab logk+(ab) ≤ 2k−1

[(
k

e

)k
+ 1

]
b2 + 23(k−1)a2 log2k

+ (a) ∀ a, b > 0. (5.99)

Proof. From the elementary inequalities

log+(ts) ≤ log+(t) + log+(s), (t+ s)k ≤ 2k−1(tk + sk), logk+(t) ≤
(
k

e

)k
t

which hold for every t, s > 0, we infer

ab logk+(ab) ≤ ab
[
log+

(
b

a

)
+ 2 log+(a)

]k

≤ 2k−1ab

[
logk+

(
b

a

)
+ 2k logk+(a)

]

≤ 2k−1

[(
k

e

)k
b2 + 2kab logk+(a)

]

≤ 2k−1

[(
k

e

)k
b2 + b2 + 22(k−1)a2 log2k

+ (a)

]
,

which proves (5.99).





Chapter 6

Partial regularity of optimal
transport maps

The goal of this chapter (based on a joint work with Alessio Figalli [DF4]) is to prove
partial regularity of optimal transport maps under mild assumptions on the cost func-
tion c and on the densities f and g, Theorems 6.1 and 6.2 below.

We recall here our assumptions on c (see Section 1.3 for a discussion about existence
and the main notation):

(C0) The cost function c : X × Y → R is of class C2 with ‖c‖C2(X×Y ) <∞.

(C1) For any x ∈ X, the map Y 3 y 7→ −Dxc(x, y) ∈ Rn is injective.

(C2) For any y ∈ Y , the map X 3 x 7→ −Dyc(x, y) ∈ Rn is injective.

(C3) det(Dxyc)(x, y) 6= 0 for all (x, y) ∈ X × Y .

Our results can be stated as follows (cp. Theorem 1.30)

Theorem 6.1. Let X,Y ⊂ Rn be two bounded open sets, f : X → R+ and g : Y → R+

be continuous probability densities bounded away from zero and infinity on X and Y
respectively. Assume that the cost c : X × Y → R satisfies (C0)-(C3), and denote by
T the unique optimal transport map sending f onto g. Then there exist two relatively
closed sets ΣX ⊂ X,ΣY ⊂ Y of measure zero such that T : X \ ΣX → Y \ ΣY is

a homeomorphism of class C0,β
loc for any β < 1. In addition, if c ∈ Ck+2,α

loc (X × Y ),

f ∈ Ck,αloc (X), and g ∈ Ck,αloc (Y ) for some k ≥ 0 and α ∈ (0, 1), then T : X\ΣX → Y \ΣY

is a diffeomorphism of class Ck+1,α
loc .

Theorem 6.2. Let M be a smooth Riemannian manifold, and let f, g : M → R+ be
two continuous probability densities, locally bounded away from zero and infinity on
M . Let T : M → M denote the optimal transport map for the cost c = d2/2 sending
f onto g. Then there exist two closed sets ΣX ,ΣY ⊂ M of measure zero such that
T : M \ ΣX → M \ ΣY is a homeomorphism of class C0,β

loc for any β < 1. In addition,
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if both f and g are of class Ck,α, then T : M \ ΣX → M \ ΣY is a diffeomorphism of

class Ck+1,α
loc .

The Chapter is structured as follows, in Section 6.1, we show how both Theorem
6.1 and Theorem 6.2 are a direct consequence of a local regularity results around dif-
ferentiability points of T , see Theorems 6.5 and 6.11. Finally, Sections 6.2 and 6.3 are
devoted to the proof of this local result.

6.1 The localization argument and proof of the results

The goal of this section is to prove Theorems 6.1 and 6.2 by showing that the assump-
tions of Theorems 6.5 and 6.11 below are satisfied near almost every point.

The rough idea is the following: if x̄ is a point where the semiconvex function u is
twice differentiable, then around that point u looks like a parabola. In addition, by
looking close enough to x̄, the cost function c will be very close to the linear one and
the densities will be almost constant there. Hence we can apply Theorem 6.5 to deduce
that u is of class C1,β in neighborhood of x̄ (resp. u is of class Ck+2,α by Theorem

6.11, if c ∈ Ck+2,α
loc and f, g ∈ Ck,αloc ), which implies in particular that Tu is of class C0,β

in neighborhood of x̄ (resp. Tu is of class Ck+1,α by Theorem 6.11, if c ∈ Ck+2,α
loc and

f, g ∈ Ck,αloc ). Being our assumptions completely symmetric in x and y, we can apply
the same argument to the optimal map T ∗ sending g onto f . Since T ∗ = (Tu)−1 (see

the discussion below), it follows that Tu is a global homeomorphism of class C0,β
loc (resp.

Tu is a global diffeomorphism of class Ck+1,α
loc ) outside a closed set of measure zero.

We now give a detailed proof.

Proof of Theorem 6.1. As discussed in Section 1.3, if we introduce the “c-conjugate”
of u, that is the function uc : Y → R defined as

uc(y) := sup
x∈X

{
− c(x, y)− u(x)}.

Then uc is c∗-convex, where

c∗(y, x) := c(x, y) and x ∈ ∂c∗uc(y) ⇔ y ∈ ∂cu(x). (6.1)

Being the assumptions on c completely symmetric in x and y, clearly also c∗ satisfies
the same assumption as c. By Theorem 1.28, the optimal map T ∗ (with respect to c∗)
sending g onto f 1, is equal to

Tuc(y) = c*-expy
(
∇uc(y)

)
.

1In the sequel we will identify an absolutely continuous measure with its density.
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or equivalently

Dyc
(
Tuc(y), y

)
= −∇uc(y). (6.2)

In addition (recall that f and g are bounded and strictly positive on their support),
Theorem 1.28 asserts that

Tuc
(
Tu(x)

)
= x, Tu

(
Tuc(y)

)
= y for a.e. x ∈ X, y ∈ Y . (6.3)

Since semiconvex functions are twice differentiable a.e., there exist sets X1 ⊂
X,Y1 ⊂ Y of full measure such that (6.3) holds for every x ∈ X1 and y ∈ Y1, and
in addition u is twice differentiable for every x ∈ X1 and uc is twice differentiable for
every y ∈ Y1. Let us define

X ′ := X1 ∩ (Tu)−1(Y1).

Using that Tu transports f on g and that the two densities are bounded away from zero
and infinity, we see that X ′ is of full measure in X.

We fix a point x̄ ∈ X ′. Since u is differentiable at x̄ (being twice differentiable), it
follows by (1.33) that the set ∂cu(x̄) is a singleton, namely ∂cu(x̄) = {c-expx̄(∇u(x̄))}.
Set ȳ := c-expx̄(∇u(x̄)). Since ȳ ∈ Y1 (by definition of X ′), uc is twice differentiable at
ȳ and x̄ = Tuc(ȳ). Up to a translation in the system of coordinates (both in x and y)
we can assume that both x̄ and ȳ coincide with the origin 0.

Let us define

ū(z) := u(z)− u(0) + c(z,0)− c(0,0),

c̄(z, w) := c(z, w)− c(z,0)− c(0, w) + c(0,0),

ūc̄(w) := uc(w)− u(0) + c(0, w)− c(0,0).

Then ū is a c̄-convex function, ūc̄ is its c̄-conjugate, Tū = Tu, and Tūc̄ = Tuc , so in
particular (Tū)] f = g and (Tūc̄)] g = f . In addition, because by assumption 0 ∈ X ′,
ū is twice differentiable at 0 and ūc̄ is twice differentiable at 0 = Tū(0). Let us define
P := D2ū(0), and M := Dxy c̄(0,0). Then, since c̄(·,0) = c̄(0, ·) ≡ 0 and c̄ ∈ C2, a
Taylor expansion gives

ū(z) =
1

2
Pz · z + o(|z|2), c̄(z, w) = Mz · w + o(|z|2 + |w|2).

Let us observe that, since by assumption f and g are bounded away from zero and
infinity, by (C3) and (1.38) applied to ū and c̄ we get that det(P ),det(M) 6= 0. In
addition (1.37) implies that P is a positive definite symmetric matrix. Hence, we can
perform a second change of coordinates: z 7→ z̃ := P 1/2z, w 7→ w̃ := −P−1/2M∗w (M∗

being the transpose of M), so that, in the new variables,

ũ(z̃) := ū(z) =
1

2
|z̃|2 + o(|z̃|2), c̃(z̃, w̃) := c̄(z, w) = −z̃ · w̃ + o(|z̃|2 + |w̃|2). (6.4)
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By an easy computation it follows that (Tũ)]f̃ = g̃, where2

f̃(z̃) := det(P−1/2) f(P−1/2z̃), g̃(w̃) := det
(
(M∗)−1P 1/2

)
g((M∗)−1P 1/2w̃). (6.5)

Notice that

Dz̃z̃ c̃(0,0) = Dw̃w̃ c̃(0,0) = 0n×n, −Dz̃w̃ c̃(0,0) = Id, D2ũ(0) = Id, (6.6)

so, using (1.38), we deduce that

f̃(0)

g̃(0)
=

det
(
D2ũ(0) +Dz̃z̃ c̃(0,0)

)
∣∣det

(
Dz̃w̃ c̃(0,0)

)∣∣ = 1. (6.7)

To ensure that we can apply Theorems 6.5 and 6.11, we now perform the following
dilation: for ρ > 0 we define

uρ(z̃) :=
1

ρ2
ū(ρz̃), cρ(z̃, w̃) :=

1

ρ2
c̄(ρz̃, ρw̃).

We claim that, provided ρ is sufficiently small, uρ and cρ satisfy the assumptions of
Theorems 6.5 and 6.11.

Indeed, it is immediate to check that uρ is a cρ-convex function. Also, by the same
argument as above, from the relation (Tũ)]f̃ = g̃ we deduce that Tuρ sends f̃(ρz̃) onto
g̃(ρw̃). In addition, since we can freely multiply both densities by a same constant, it
actually follows from (6.7) that (Tuρ)]fρ = gρ, where

fρ(z̃) :=
f̃(ρz̃)

f̃(0)
, gρ(w̃) :=

g̃(ρw̃)

g̃(0)
.

In particular, since f and g are continuous, we get

|fρ − 1|+ |gρ − 1| → 0 inside B3 (6.8)

as ρ→ 0. Also, by (6.4) we get that, for any z̃, w̃ ∈ B3,

uρ(z̃) =
1

2
|z̃|2 + o(1), cρ(z̃, w̃) = −z̃ · w̃ + o(1), (6.9)

where o(1) → 0 as ρ → 0. In particular, (6.20) and (6.21) hold with any positive
constants δ0, η0 provided ρ is small enough.

2 An easy way to check this is to observe that the measures µ := f(x)dx and ν := g(y)dy are
independent of the choice of coordinates, hence (6.5) follows from the identities

f(x)dx = f̃(x̃)dx̃, g(y)dy = g̃(ỹ)dỹ.
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Furthermore, by the second order differentiability of ũ at 0 it follows that the
multivalued map z̃ 7→ ∂−ū(z̃) is differentiable at 0 (see Theorem A.5) with gradient
equal to the identity matrix (see (6.4)), hence

∂−uρ(z̃) ⊂ Bγρ(z̃) ∀ z̃ ∈ B2,

where γρ → 0 as ρ→ 0. Since ∂cρuρ ⊂ cρ-exp (∂−uρ) (by (1.33)) and ‖ cρ-exp− Id ‖∞ =
o(1) (by (6.9)), we get

ilde∂cρuρ(z̃) ⊂ Bδρ(z̃) ∀ z̃ ∈ B3, (6.10)

with δρ = o(1) as ρ→ 0. Moreover, the cρ-conjugate of uρ is easily seen to be

u
cρ
ρ (w̃) = ūc̄

(
ρ(M∗)−1P 1/2w̃

)
.

Since uc is twice differentiable at 0, so is u
cρ
ρ . In addition, an easy computation 3 shows

that D2u
cρ
ρ (0) = Id. Hence, arguing as above we obtain that

∂c∗ρu
cρ
ρ (w̃) ⊂ Bδ′ρ(w̃) ∀ w̃ ∈ B3, (6.11)

with δ′ρ = o(1) as ρ→ 0.
We now define 4

C1 := B1, C2 := ∂cρuρ(C1).

Observe that both C1 and C2 are closed (since the c-subdifferential of a compact set
is closed). Also, thanks to (6.10), by choosing ρ small enough we can ensure that
B1/3 ⊂ C2 ⊂ B3. Finally, it follows from (1.33) that

(Tuρ)
−1(C2) \ C1 ⊂ (Tuρ)

−1
(
{points of non-differentiability of u

cρ
ρ }
)
,

and since this latter set has measure zero, a simple computation shows that

(
Tuρ
)
]
(fρ1C1) = gρ1C2 .

Thus, thanks to (6.19), we get that for any β < 1 the assumptions of Theorem
6.5 are satisfied, provided we choose ρ sufficiently small. Moreover, if in addition

3For instance, this follows by differentiating both relations

Dz̃cρ
(
z̃, Tuρ(z̃)

)
= −∇uρ(z̃) and Dw̃cρ

(
T
u
cρ
ρ

(w̃), w̃
)

= −∇ucρρ (w̃)

at 0, and using then (6.6) and the fact that ∇T
u
cρ
ρ

(0) = [∇Tuρ(0)]−1 and D2uρ(0) = Id.
4We will use the following notation (see Subsection 1.2.2): if E ⊂ X then

∂cu(E) :=
⋃
x∈E

∂cu(x), ∂−u(E) :=
⋃
x∈E

∂−u(x).
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c ∈ Ck+2,α
loc (X × Y ), f ∈ Ck,αloc (X), and g ∈ Ck,αloc (Y ), then also the assumptions of

Theorem 6.11 are satisfied.
Hence, by applying Theorem 6.5 (resp. Theorem 6.11) we deduce that uρ ∈

C1,β(B1/7) (resp. uρ ∈ Ck+2,α(B1/9)), so going back to the original variables we get

the existence of a neighborhood Ux̄ of x̄ such that u ∈ C1,β(Ux̄) (resp. u ∈ Ck+2,α(Ux̄)).
This implies in particular that Tu ∈ C0,β(Ux̄) (resp. Tu ∈ Ck+1,α(Ux̄)). Moreover, it
follows by Corollary 6.8 that Tu(Ux̄) contains a neighborhood of ȳ.

We now observe that, by symmetry, we can also apply Theorem 6.5 (resp. Theorem
6.11) to u

cρ
ρ . Hence, there exists a neighborhood Vȳ of ȳ such that Tuc ∈ C0,β(Vȳ).

Since Tu and Tuc are inverse to each other (see (6.3)) we deduce that, possibly reducing
the size of Ux̄, Tu is a homeomorphism (resp. diffeomorphism) between Ux̄ and Tu(Ux̄).
Let us consider the open sets

X ′′ :=
⋃

x̄∈X′
Ux̄, Y ′′ :=

⋃

x̄∈X′
Tu(Ux̄),

and define the (relatively) closed ΣX := X \X ′′, ΣY := Y \ Y ′′. Since X ′′ ⊃ X ′, X ′′ is
a set of full measure, so |ΣX | = 0. In addition, since ΣY = Y \ Y ′′ ⊂ Y \ Tu(X ′) and
Tu(X ′) has full measure in Y , we also get that |ΣY | = 0.

Finally, since Tu : X \ ΣX → Y \ ΣY is a local homeomorphism (resp. diffeomor-
phism), by (6.3) it follows that Tu : X \ ΣX → Y \ ΣY is a global homeomorphism
(resp. diffeomorphism), which concludes the proof.

Proof of Theorem 6.2. The only difference with respect to the situation in Theorem 6.1
is that now the cost function c = d2/2 is not smooth on the whole M ×M . However,
even if d2/2 is not everywhere smooth and M is not necessarily compact, it is still
true that the c-convex function u provided by Theorem 1.29 is locally semiconvex (i.e.,
it is locally semiconvex when seen in any chart) [FF, FG]. In addition, as shown
in [CoMCS, Proposition 4.1] (see also [F1, Section 3]), if u is twice differentiable at x,
then the point Tu(x) is not in the cut-locus of x. Since the cut-locus is closed and d2/2
is smooth outside the cut-locus, we deduce the existence of a set X of full measure such
that, if x0 ∈ X, then: (1) u is twice differentiable at x0; (2) there exists a neighborhood
Ux0 × VTu(x0) ⊂ M ×M of (x0, Tu(x0)) such that c ∈ C∞(Ux0 × VTu(x0)). Hence, by
taking a local chart around (x0, Tu(x0)), the same proof as the one of Theorem 6.1
shows that Tu is a local homeomorphism (resp. diffeomorphism) around almost every
point. Using as before that Tu : M → M is invertible a.e., it follows that Tu is a
global homeomorphism (resp. diffeomorphism) outside a closed singular set of measure
zero.

6.2 C1,β regularity and strict c-convexity

In this and the next section we prove that, if in some open set a c-convex function u is
sufficiently close to a parabola and the cost function is close to the linear one, then u
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is smooth in some smaller set.
The idea of the proof (which is reminiscent of the argument introduced by Caffarelli

in [Ca2] to show W 2,p and C2,α estimates for the classical Monge-Ampère equation,
though several additional complications arise in our case) is the following: since the cost
function is close to the linear one and both densities are almost constant, u is close to a
convex function v solving an optimal transport problem with linear cost and constant
densities (Lemma 6.3). In addition, since u is close to a parabola, so is v. Hence,
by [FK] and Caffarelli’s regularity theory, v is smooth, and we can use this information
to deduce that u is even closer to a second parabola (given by the second order Taylor
expansion of v at the origin) inside a small neighborhood around of origin. By rescaling
back this neighborhood at scale 1 and iterating this construction, we obtain that u is
C1,β at the origin for some β ∈ (0, 1). Since this argument can be applied at every
point in a neighborhood of the origin, we deduce that u is C1,β there, see Theorem 6.5.
(A similar strategy has also been used in [CaGN] to show regularity optimal transport
maps for the cost |x− y|p, either when p is close to 2 or when X and Y are sufficiently
far from each other.)

Once this result is proved, we know that ∂−u is a singleton at every point, so it
follows from (1.33) that

∂cu(x) = c-expx(∂−u(x)),

see Remark 6.6 below. (The above identity is exactly what in general may fail for gen-
eral c-convex functions, unless the MTW condition holds [Loe3].) Thanks to this fact,
we obtain that u enjoys a comparison principle (Proposition 6.10), and this allows us
to use a second approximation argument with solutions of the classical Monge-Ampère
equation (in the spirit of [Ca2,JW]) to conclude that u is C2,σ′ in a smaller neighbor-
hood, for some σ′ > 0. Then, higher regularity follows from standard elliptic estimates,
see Theorem 6.11.

Lemma 6.3. Let C1 and C2 be two closed sets such that

B1/K ⊂ C1, C2 ⊂ BK (6.12)

for some K ≥ 1, f and g two densities supported respectively in C1 and C2, and u :
C1 → R a c-convex function such that ∂cu(C1) ⊂ BK and (Tu)]f = g. Let ρ > 0 be such
that |C1| = |ρ C2| (where ρ C2 denotes the dilation of C2 with respect to the origin), and
let v be a convex function such that ∇v]1C1 = 1ρC2 and v(0) = u(0). Then there exists
an increasing function ω : R+ → R+, depending only K, and satisfying ω(δ) ≥ δ and
ω(0+) = 0, such that, if

‖f − 1C1‖∞ + ‖g − 1C2‖∞ ≤ δ (6.13)

and
‖c(x, y) + x · y‖C2(BK×BK) ≤ δ, (6.14)
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then

‖u− v‖C0(B1/K) ≤ ω(δ).

Proof. Assume the lemma is false. Then there exist ε0 > 0, a sequence of closed sets
Ch1 , Ch2 satisfying (6.12), functions fh, gh satisfying (6.13), and costs ch converging in
C2 to −x · y, such that

uh(0) = vh(0) = 0 and ‖uh − vh‖C0(B1/K) ≥ ε0,

where uh and vh are as in the statement. First, we extend uh an vh to BK as

uh(x) := sup
z∈Ch1 , y∈∂chuh(z)

{
uh(z)− ch(x, y) + ch(z, y)

}
,

vh(x) := sup
z∈Ch1 , p∈∂−vh(z)

{
uh(z) + p · (x− z)

}
.

Notice that, since by assumption ∂chuh(Ch1 ) ⊂ BK , we have ∂chuh(BK) ⊂ BK . Also,
(Tuh)]fh = gh gives that

∫
fh =

∫
gh, so it follows from (6.13) that

ρh =
(
|Ch1 |/|Ch2 |

)1/n
→ 1 as h→∞,

which implies that ∂−vh(BK) ⊂ BρhK ⊂ B2K for h large. Thus, since the C1-norm
of ch is uniformly bounded, we deduce that both uh and vh are uniformly Lipschitz.
Recalling that uh(0) = vh(0) = 0, we get that, up to a subsequence, uh and vh uniformly
converge inside BK to u∞ and v∞ respectively, where

u∞(0) = v∞(0) = 0 and ‖u∞ − v∞‖C0(B1/K) ≥ ε0. (6.15)

In addition fh (resp. gh) weak-∗ converge in L∞ to some density f∞ (resp. g∞)
supported in BK . Also, since ρh → 1, using (6.13) we get that 1Ch1

(resp. 1ρhCh2
)

weak-∗ converges in L∞ to f∞ (resp. g∞). Finally we remark that, because of (6.13)
and the fact that Ch1 ⊃ B1/K , we also have

f∞ ≥ 1B1/K
.

In order to get a contradiction we have to show that u∞ = v∞ in B1/K . To see
this, we apply [V, Theorem 5.20] (see also the proof of Theorem 1.14) to deduce that
both ∇u∞ and ∇v∞ are optimal transport maps for the linear cost −x · y sending
f∞ onto g∞. By uniqueness of the optimal map we deduce that ∇v∞ = ∇u∞ almost
everywhere inside B1/K ⊂ spt f∞, hence u∞ = v∞ in B1/K (since u∞(0) = v∞(0) = 0),
contradicting (6.15).

Here and in the sequel, we use Nr(E) to denote the r-neighborhood of a set E.
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Lemma 6.4. Let u and v be, respectively, c-convex and convex, let D ∈ Rn×n be a
symmetric matrix satisfying

Id /K ≤ D ≤ K Id (6.16)

for some K ≥ 1, and define the ellipsoid

E(x0, h) :=
{
x : D(x− x0) · (x− x0) ≤ h

}
, h > 0.

Assume that there exist small positive constants ε, δ such that

‖v − u‖C0(E(x0,h)) ≤ ε, ‖c+ x · y‖C2(E(x0,h)×∂cu(E(x0,h)) ≤ δ. (6.17)

Then

∂cu
(
E(x0, h−

√
ε)
)
⊂ NK′(δ+√hε)

(
∂v(E(x0, h))

)
∀ 0 < ε < h2 ≤ 1, (6.18)

where K ′ depends only on K.

Proof. Up to a change of coordinates we can assume that x0 = 0, and to simplify
notation we set Eh := E(x0, h). Let us define

v̄(x) := v(x) + ε+ 2
√
ε(Dx · x− h),

so that v̄ ≥ u outside Eh, and v̄ ≤ u inside Eh−
√
ε. Then, taking a c-support to u in

Eh−
√
ε (i.e., a function Cx,y as in (1.29), with x ∈ Eh−√ε and y ∈ ∂cu(x)), moving it

down and then lifting it up until it touches v̄ from below, we see that it has to touch
the graph of v̄ at some point x̄ ∈ Eh: in other words 5

∂cu(Eh−
√
ε) ⊂ ∂cv̄(Eh).

By (6.16) we see that diamEh ≤
√
Kh, so by a simple computation (using again (6.16))

we get

∂−v̄(Eh) ⊂ N4K
√
Khε

(
∂−v(Eh)

)
.

Thus, since ∂cv̄(Eh) ⊂ c-exp
(
∂−v̄(Eh)

)
(by (1.33)) and ‖ c-exp− Id ‖C0 ≤ δ (by (6.17)),

we easily deduce that

∂cu(Eh−
√
ε) ⊂ NK′(δ+√hε)

(
∂−v(Eh)

)
,

proving (6.18).

5 Even if v̄ is not c-convex, it still makes sense to consider its c-subdifferential (notice that the c-
subdifferential of v̄ may be empty at some points). In particular, the inclusion ∂cv̄(x) ⊂ c-expx(∂−v̄(x))
still holds.
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Theorem 6.5. Let C1 and C2 be two closed sets satisfying

B1/3 ⊂ C1, C2 ⊂ B3,

let f, g be two densities supported in C1 and C2 respectively, and let u : C1 → R be a
c-convex function such that ∂cu(C1) ⊂ B3 and (Tu)]f = g. Then, for every β ∈ (0, 1)
there exist constants δ0, η0 > 0 such that the following holds: if

‖f − 1C1‖∞ + ‖g − 1C2‖∞ ≤ δ0, (6.19)

‖c(x, y) + x · y‖C2(B3×B3) ≤ δ0, (6.20)

and ∥∥∥∥u−
1

2
|x|2
∥∥∥∥
C0(B3)

≤ η0, (6.21)

then u ∈ C1,β(B1/7).

Proof. We divide the proof into several steps.

• Step 1: u is close to a strictly convex solution of the Monge Ampère equation. Let
v : Rn → R be a convex function such that ∇v]1C1 = 1ρC2 with ρ = (|C1|/|C2|)1/n. Up
to a adding a constant to v, without loss of generality we can assume that v(0) = u(0).
Hence, we can apply Lemma 6.3 to obtain

‖v − u‖C0(B1/3) ≤ ω(δ0) (6.22)

for some (universal) modulus of continuity ω : R+ → R+, which combined with (6.21)
gives ∥∥∥∥v −

1

2
|x|2
∥∥∥∥
C0(B1/3)

≤ η0 + ω(δ0). (6.23)

Also, since
∫
C1 f =

∫
C2 g, it follows easily from (6.19) that |ρ − 1| ≤ 3δ0. By these

two facts we get that ∂−v(B7/24) ⊂ B15/48 ⊂ ρC2 provided δ0 and η0 are small enough
(recall that v is convex and that B1/3 ⊂ C2), so, thanks to Remark 1.24, v is a convex
Aleksandrov solution to the Monge-Ampère equation

detD2v = 1 in B7/24. (6.24)

In addition, by (6.23) and Theorem 2.9 we see that, for δ0, η0 small enough, v is
strictly convex in B1/4. A simple compactness argument shows that we the modulus of
strict convexity of v inside B1/4 is universal 6. So, by classical Pogorelov and Schauder

6To see this, suppose there exists a sequence of strictly convex functions vk satisfying (6.24) and
(6.23), but whose modulus of strict convexity inside B1/4 is going to 0. By compactness, we can
find a limiting function v∞ satisfying both (6.24) and (6.23) which is not strictly convex in B1/4 (see
Lemma 2.10).Hence, there exists a supporting hyperplane `∞ to v∞ such that the set W := {v∞ = `∞}
intersects B1/4 and it is not reduced to a point. Then, by Theorem 2.9 we know that W has to cross
∂B7/24, but this is impossible if η0 and δ0 are sufficiently small.
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estimates (see Section 2.3), we obtain the existence of a universal constant K0 ≥ 1 such
that

‖v‖C3(B1/5) ≤ K0, Id /K0 ≤ D2v ≤ K0 Id in B1/5. (6.25)

In particular, there exists a universal value h̄ > 0 such that, for all x ∈ B1/7,

Q(x, v, h) :=
{
z : v(z) ≤ v(x) +∇v(x) · (z − x) + h

}
⊂⊂ B1/6 ∀h ≤ h̄.

• Step 2: Sections of u are close to sections of v. Given x ∈ B1/7 and y ∈ ∂cu(x), we

define
S(x, y, u, h) :=

{
z : u(z) ≤ u(x)− c(z, y) + c(x, y) + h

}
.

We claim that, if δ0 is small enough, then for all x ∈ B1/7, y ∈ ∂cu(x), and h ≤ h̄/2, it
holds

Q(x, v, h−K1

√
ω(δ0)) ⊂ S(x, y, u, h) ⊂ Q(x, v, h+K1

√
ω(δ0)), (6.26)

where K1 > 0 is a universal constant.
Let us show the first inclusion. For this, take x ∈ B1/7, y ∈ ∂cu(x), and define

px := −Dxc(x, y) ∈ ∂−u(x).

Since v has universal C2 bounds (see (6.25)) and u is semi-convex (with a universal
bound), a simple interpolation argument gives

|px −∇v(x)| ≤ K ′
√
‖u− v‖C0(B1/5) ≤ K ′

√
ω(δ0) ∀x ∈ B1/7. (6.27)

In addition, by (6.20),

|y − px| ≤ ‖Dxc+ Id‖C0(B3×B3) ≤ δ0, (6.28)

hence

|z · px + c(z, y)| ≤ |z · px − z · y|+ |z · y + c(z, y)| ≤ 2δ0 ∀x, z ∈ B1/7. (6.29)

Thus, if z ∈ Q(x, v, h−K1

√
ω(δ0)), by (6.22), (6.27), and (6.29) we get

u(z) ≤ v(z) + ω(δ0) ≤ v(x) +∇v(x) · (z − x) + h−K1

√
ω(δ0) + ω(δ0)

≤ u(x) + px · z − px · x+ h−K1

√
ω(δ0) + 2ω(δ0) + 2K ′

√
ω(δ0)

≤ u(x)− c(z, y) + c(x, y) + h−K1

√
ω(δ0) + 2ω(δ0) + 2K ′

√
ω(δ0) + 4δ0

≤ u(x)− c(z, y) + c(x, y) + h,

provided K1 > 0 is sufficiently large. This proves the first inclusion, and the second
one is analogous.
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• Step 3: Both the sections of u and their images are close to ellipsoids with controlled
eccentricity, and u is close to a smooth function near x0. We claim that there exists
a universal constant K2 ≥ 1 such that the following holds: For every η0 > 0 small,
there exist small positive constants h0 = h0(η0) and δ0 = δ0(h0, η0) such that, for all
x0 ∈ B1/7, there is a symmetric matrix A satisfying

Id /K2 ≤ A ≤ K2 Id, det(A) = 1, (6.30)

and such that, for all y0 ∈ ∂cu(x0),

A
(
B√

h0/8
(x0)

)
⊂ S(x0, y0, u, h0) ⊂ A

(
B√8h0

(x0)
)
,

A−1
(
B√

h0/8
(y0)

)
⊂ ∂cu(S(x0, y0, u, h0)) ⊂ A−1

(
B√8h0

(y0)
)
.

(6.31)

Moreover ∥∥∥∥u− Cx0,y0 −
1

2

∣∣A−1(x− x0)
∣∣2
∥∥∥∥
C0
(
A
(
B√

8h0
(x0)

)) ≤ η0h0, (6.32)

where Cx0y0 is a c-support function for u at x0, see (1.29).
In order to prove the claim, take h0 � h̄ small (to be fixed) and δ0 � h0 such that

K1

√
ω(δ0) ≤ h0/2, where K1 is as in Step 2, so that

Q(x0, v, h0/2) ⊂ S(x0, y0, u, h0) ⊂ Q(x0, v, 3h0/2) ⊂⊂ B1/6. (6.33)

By (6.25) and Taylor formula we get

v(x) = v(x0) +∇v(x0) · (x− x0) +
1

2
D2v(x0)(x− x0) · (x− x0) +O(|x− x0|3), (6.34)

so that defining

E(x0, h0) :=

{
x :

1

2
D2v(x0)(x− x0) · (x− x0) ≤ h0

}
(6.35)

and using (6.25), we deduce that, for every h0 universally small,

E(x0, h0/2) ⊂ Q(x0, v, h0) ⊂ E(x0, 2h0). (6.36)

Moreover, always for h0 small, thanks to (6.34) and the uniform convexity of v

∇v
(
E(x0, h0)

)
⊂ E∗(∇v(x0), 2h0) ⊂ ∇v

(
E(x0, 3h0)) (6.37)

where we have set

E∗(ȳ, h0) :=

{
y :

1

2

[
D2v(ȳ)

]−1
(y − ȳ) · (y − ȳ) ≤ h0

}
.
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By Lemma 6.4, (6.36), and (6.37) applied with 3h0 in place of h0, we deduce that for
δ0 � h0 � h̄

∂cu
(
S(x0, y0, u, h0)

)
⊂ N

K′′
√
ω(δ0)

(
∇v(E(x0, 3h0))

)
⊂ E∗(∇v(x0), 7h0). (6.38)

Moreover, by (6.27), if y0 ∈ ∂cu(x0) and we set px0 := −Dxc(x0, y0), then

|y0 −∇v(x0)| ≤ |px0 −∇v(x0)|+ ‖Dxc+ Id‖C0(B3×B3) ≤
√
ω(δ0) + δ0.

Thus, choosing δ0 sufficiently small, it holds

E∗(∇v(x0), 7h0) ⊂ E∗(y0, 8h0) ∀ y0 ∈ ∂cu(x0). (6.39)

We now want to show that

E∗(y0, h0/8) ⊂ ∂cu
(
S(x0, y0, u, h0)

)
∀ y0 ∈ ∂cu(x0).

Observe that, arguing as above, we get

E∗(y0, h0/8) ⊂ E∗(∇v(x0), h0/7) ∀ y0 ∈ ∂cu(x0) (6.40)

provided δ0 is small enough, so it is enough to prove that

E∗(∇v(x0), h0/7) ⊂ ∂cu
(
S(x0, y0, u, h0)

)
.

For this, let us define the c∗-convex function uc : B3 → R and the convex function
v∗ : B3 → R as

uc(y) := sup
x∈B1/5

{
− c(x, y)− u(x)

}
, v∗(y) := sup

x∈B1/5

{
x · y − v(x)

}

(see (6.1)). Then it is immediate to check that

|uc − v∗| ≤ ω(δ0) + δ0 ≤ 2ω(δ0) on B3. (6.41)

Also, in view of (6.25), v∗ is a uniformly convex function of class C3 on the open set
∇v(B1/5). In addition, since

F ⊂ ∂cu(∂c∗u
c(F )) for any set F , (6.42)

thanks to (6.33) and (6.36) it is enough to show

∂c∗u
c(E∗(∇v(x0), h0/7)) ⊂ E(x0, h0/4). (6.43)

For this, we apply Lemma 6.4 to uc and v∗ to infer

∂c∗u
c(E∗(∇v(x0), h0/7)) ⊂ N

K′′′
√
ω(δ)

(
∇v∗(E∗(∇v(x0), h0/7))

)
⊂ E(x0, h0/4),
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where we used that

∇v∗ = [∇v]−1 and D2v∗(∇v(x0)) = [D2v(x0)]−1.

Thus, recalling (6.38), we have proved that there exist h0 universally small, and δ0

small depending on h0, such that

E∗(∇v(x0), h0/7) ⊂ ∂cu(S(x0, y0, u, h0)) ⊂ E∗(∇v(x0), 7h0) ∀x0 ∈ B1/7. (6.44)

Using (6.33), (6.36), (6.39), and (6.40), this proves (6.31) with A := [D2v(x0)]−1/2.
Also, thanks to (6.24) and (6.25), (6.30) holds.

In order to prove the second part of the claim, we exploit (6.22), (6.20), (6.28),
(6.27), (6.34), and (6.30) (recall that Cx0,y0 is defined in (1.29) and thatA = [D2v(x0)]−1/2):

∥∥∥∥u− Cx0,y0 −
1

2

∣∣A−1(x− x0)
∣∣2
∥∥∥∥
C0(E(x0,8h0))

=

∥∥∥∥u− Cx0,y0 −
1

2
D2v(x0)(x− x0) · (x− x0)

∥∥∥∥
C0(E(x0,8h0))

≤ 2‖u− v‖C0(E(x0,8h0)) + ‖c(x, y0) + x · y0‖C0(E(x0,8h0)) + ‖c(x0, y0) + x0 · y0‖C0(E(x0,8h0))

+
∥∥(y0 − px0

)
· (x− x0)

∥∥
C0(E(x0,8h0))

+
∥∥(px0 −∇v(x0)

)
· (x− x0)

∥∥
C0(E(x0,8h0))

+

∥∥∥∥v − v(x0)−∇v(x0) · (x− x0)− 1

2
D2v(x0)(x− x0) · (x− x0)

∥∥∥∥
C0(E(x0,8h0))

≤ 2ω(δ0) + 3δ0 +K ′
√
ω(δ0) +K

(
K2

√
8h0

)3
≤ η0h0,

where the last inequality follows by choosing first h0 sufficiently small, and then δ0

much smaller than h0.

• Step 4: A first change of variables. Fix x0 ∈ B1/7, y0 ∈ ∂cu(x0), define M :=
−Dxyc(x0, y0), and consider the change of variables

{
x̄ := x− x0

ȳ := M−1(y − y0).

Notice that, by (6.20), it follows that

|M − Id |+ |M−1 − Id | ≤ 3δ0 (6.45)

for δ0 sufficiently small. We also define

c̄(x̄, ȳ) := c(x, y)− c(x, y0)− c(x0, y) + c(x0, y0),

ū(x̄) := u(x)− u(x0) + c(x, y0)− c(x0, y0),

ūc̄(ȳ) := uc(y)− uc(y0) + c(x0, y)− c(x0, y0).



6.2 C1,β regularity and strict c-convexity 123

Then ū is c̄-convex, ūc̄ is c̄∗-convex (where c̄∗(ȳ, x̄) = c̄(x̄, ȳ)), and

c̄(·,0) = c̄(0, ·) ≡ 0, Dx̄ȳ c̄(0,0) = − Id . (6.46)

We also notice that

∂c̄ū(x̄) = M−1
(
∂cu(x̄+ x0)− y0

)
. (6.47)

Thus, recalling (6.31), and using (6.45) and (6.47), for δ0 sufficiently small we obtain

A
(
B√

h0/9

)
⊂ S(0,0, ū, h0) (6.48)

⊂ ∂c̄∗ ūc̄
(

co
[
∂c̄ū(S(0,0, ū, h0))

])
⊂ A

(
B√9h0

)
,

A−1
(
B√

h0/9

)
⊂M−1A−1

(
B√

h0/8

)

⊂ co
[
∂c̄ū(S(0,0, ū, h0))

]

⊂M−1A−1
(
B√8h0

)
⊂ A−1

(
B√9h0

)
.

Since (Tu)]f = g, it follows that Tū = c̄-exp(∇ū) satisfies

(Tū)]f̄ = ḡ, with f̄(x̄) := f(x̄+ x0), ḡ(ȳ) := det(M) g(Mȳ + y0)

(see for instance the footnote in the proof of Theorem 6.1). Notice that, since |M−Id | ≤
δ0 (by (6.20)), we have |det(M)− 1| ≤ (1 + 2n)δ0 (for δ0 small), so by (6.19) we get

‖f̄ − 1C1−x0‖∞ + ‖ḡ − 1M−1(C2−y0)‖∞ ≤ 2(1 + n)δ0. (6.49)

• Step 5: A second change of variables and the iteration argument. We now perform a
second change of variable: we set

{
x̃ := 1√

h0
A−1x̄

ỹ := 1√
h0
Aȳ,

(6.50)

and define

c1(x̃, ỹ) :=
1

h0
c̄
(√

h0Ax̃,
√
h0A

−1ỹ
)
,

u1(x̃) :=
1

h0
ū(
√
h0Ax̃),

uc11 (ỹ) :=
1

h0
ūc̄(
√
h0A

−1ỹ).

We also define

f1(x̃) := f̄(
√
h0Ax̃), g1(ỹ) := ḡ(

√
h0A

−1ỹ).
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Since det(A) = 1 (see (6.30)), it is easy to check that (Tu1)]f1 = g1 (see the footnote in
the proof of Theorem 6.1). Also, since

(
‖A‖+ ‖A−1‖

)√
h0 � 1, it follows from (6.49)

that

|f1 − 1|+ |g1 − 1| ≤ 2(1 + n)δ0 inside B3. (6.51)

Moreover, defining

C(1)
1 := S(0,0, u1, 1), C(1)

2 := ∂c1u1(S(0,0, u1, 1)),

both C(1)
1 and C(1)

2 are closed, and thanks to (6.48)

B1/3 ⊂ C(1)
1 , C(1)

2 ⊂ B3. (6.52)

Also, since (Tu1)]f1 = g1, arguing as in the proof of Theorem 6.1 we get

(Tu1)]
(
f11C(1)

1

)
=
(
g11C(1)

2

)
,

and by (6.51)

‖f11C(1)
1

− 1C(1)
1

‖∞ + ‖g11C(1)
2

− 1C(1)
2

‖∞ ≤ 2(1 + n)δ0.

Finally, by (6.46) and (6.32), it is easy to check that

‖c1(x̃, ỹ) + x̃ · ỹ‖C2(B3×B3) ≤ δ0,

∥∥∥∥u1 −
1

2
|x̃|2
∥∥∥∥
C0(B3)

≤ η0.

This shows that u1 satisfies the same assumptions as u with δ0 replaced by 2(1 + n)δ0.
Hence, taking δ0 slightly smaller, we can apply Step 3 to u1, and to find a symmetric
matrix A1 satisfying

Id /K2 ≤ A1 ≤ K2 Id, det(A1) = 1,

A1

(
B√

h0/8

)
⊂ S(0,0, u1, h0) ⊂ A1

(
B√8h0

)
,

A−1
1

(
B√

h0/8

)
⊂ ∂c1u1(S(0,0, u1, h0)) ⊂ A−1

1

(
B√8h0

)
,

∥∥∥∥u1 −
1

2

∣∣A−1
1 x̃

∣∣2
∥∥∥∥
C0(A1(B(0,

√
8h0))

≤ η0h0.

(Here K2 and h0 are as in Step 3.)

This allows us to apply to u1 the very same construction as the one used above to
define u1 from ū: we set

c2(x̃, ỹ) :=
1

h0
c1

(√
h0A1x̃,

√
h0A

−1
1 ỹ
)
, u2(x̃) :=

1

h0
u1(
√
h0A1x̃),
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so that (Tu2)]f2 = g2 with

f2(x̃) := f1(
√
h0A1x̃), g2(ỹ) := ḡ(

√
h0A

−1
1 ỹ).

Arguing as before, it is easy to check that u2, c2, f2, g2 satisfy the same assumptions as
u1, c1, f1, g1 with exactly the same constants.

So we can keep iterating this construction, defining for any k ∈ N

ck+1(x̃, ỹ) :=
1

h0
ck
(√

h0Akx̃,
√
h0A

−1
k ỹ
)
, uk+1(x̃) :=

1

h0
uk(
√
h0Akx̃),

where Ak is the matrix constructed in the k-th iteration. In this way, if we set

Mk := Ak · . . . ·A1, ∀ k ≥ 1,

we obtain a sequence of symmetric matrices satisfying

Id /Kk
2 ≤Mk ≤ Kk

2 Id, det(Mk) = 1, (6.53)

and such that

Mk

(
B(h0/8)k/2

)
⊂ S(0,0, uk, h

k
0) ⊂Mk

(
B(8h0)k/2

)
. (6.54)

• Step 6: C1,β regularity. We now show that, for any β ∈ (0, 1), we can choose h0

and δ0 = δ0(h0) small enough so that u1 is C1,β at the origin (here u1 is the function
constructed in the previous step). This will imply that u is C1,β at x0 with universal
bounds, which by the arbitrariness of x0 ∈ B1/7 gives u ∈ C1,β(B1/7).

Fix β ∈ (0, 1). Then by (6.53) and (6.54) we get

B(√
h0/(
√

8K2)
)k ⊂ S(0,0, u1, h

k
0) ⊂ B(

K2
√

8h0

)k , (6.55)

so defining r0 :=
√
h0/(
√

8K2) we obtain

‖u1‖C0(B
rk0

) ≤ hk0 =
(√

8K2r0

)2k
≤ r(1+β)k

0 ,

provided h0 (and so r0) is sufficiently small. This implies the C1,β regularity of u1 at
0, concluding the proof.

Remark 6.6 (Local to global principle). If u is differentiable at x and c satisfies (C0)-
(C1), then every “local c-support” at x it is also a “global support” at x, that is,
∂cu(x) = c-expx(∂−u(x)). To see this, just notice that

∅ 6= ∂cu(x) ⊂ c-expx(∂−u(x)) = {c-expx(∇u(x))}

(recall (1.33)), so necessarily the two sets have to coincide.
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Corollary 6.7. Let u be as in Theorem 6.5. Then u is strictly c-convex in B1/7. More
precisely, for every γ > 2 there exist η0, δ0 > 0 depending only on γ such that, if the
hypothesis of Theorem 6.5 are satisfied, then, for all x0 ∈ B1/7, y0 ∈ ∂cu(x0), and
Cx0,y0 as in (1.29), we have

inf
∂Br(x0)

{
u− Cx0,y0

}
≥ c0r

γ ∀ r ≤ dist(x0, ∂B1/7), (6.56)

with c0 > 0 universal.

Proof. With the same notation as in the proof of Theorem 6.5, it is enough to show
that

inf
∂Br

u1 ≥ r1/β,

where u1 is the function constructed in Step 5 of the proof of Theorem 6.5. Defining
%0 := K2

√
8h0, it follows from (6.55) that

inf
∂B

%k0

u1 ≥ hk0 =
(
%0/(
√

8K2)
)2k
≥ %γk0 ,

provided h0 is small enough.

A simple consequence of the above results is the following:

Corollary 6.8. Let u be as in Theorem 6.5, then Tu(B1/7) is open.

Proof. Since u ∈ C1,β(B1/7) we have that Tu(B1/7) = ∂cu(B1/7) (see Remark 6.6). We
claim that it is enough to show that if y0 ∈ ∂cu(B1/7), then there exists ε = ε(y0) > 0
small such that, for all |y − y0| < ε, the function u(·) + c(·, y) has a local minimum at
some point x̄ ∈ B1/7. Indeed, if this is the case, then

∇u(x̄) = −Dxc(x̄, y),

and so y ∈ ∂cu(x̄) (by Remark 6.6), hence Bε(y0) ⊂ Tu(B1/7).
To prove the above fact, fix r > 0 such that Br(x0) ⊂ B1/7, and pick x̄ a point in

Br(x0) where the function u(·) + c(·, y) attains its minimum, i.e.,

x̄ ∈ argmin
Br(x0)

{
u(x) + c(x, y)

}
.

Since, by (6.56),

min
x∈∂Br(x0)

{
u(x) + c(x, y)

}
≥ min

x∈∂Br(x0)

{
u(x) + c(x, y0)

}
− ε‖c‖C1

≥ u(x0) + c(x0, y0) + c0r
γ − ε‖c‖C1 ,

while
u(x0) + c(x0, y) ≤ c(x0, y0) + u(x0) + ε‖c‖C1 ,

choosing ε < c0
2‖c‖C1

rγ we obtain that x̄ ∈ Br(x0) ⊂ B1/7. This implies that x̄ is a local

minimum for u(·) + c(·, y), concluding the proof.
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6.3 Comparison principle and C2,α regularity

Lemma 6.9. Let Ω be an open set, v ∈ C2(Ω), and assume that ∇v(Ω) ⊂ Dom c-exp
and that

D2v(x) +Dxxc
(
x, c-expx(∇v(x))

)
≥ 0 ∀x ∈ Ω.

Then, for every Borel set A ⊂ Ω,

| c-exp(∇v(A))| ≤
∫

A

det
(
D2v(x) +Dxxc

(
x, c-expx(∇v(x))

))
∣∣det

(
Dxyc

(
x, c-expx(∇v(x))

))∣∣ dx.

In addition, if the map x 7→ c-expx(∇v(x)) is injective, then equality holds.

Proof. The proof follows from a direct application of the Area Formula (1.15) once one
notices that, differentiating the identity (see (1.32))

∇v(x) = −Dxc
(
x, c-expx(∇v(x))

)
,

the Jacobian determinant of the C1 map x 7→ c-expx(∇v(x)) is given precisely by

det
(
D2v(x) +Dxxc

(
x, c-expx(∇v(x))

))
∣∣det

(
Dxyc

(
x, c-expx(∇v(x))

))∣∣ .

In the next proposition we show a comparison principle between C1 c-convex func-
tions and smooth solutions to the Monge-Ampère equation. As already mentioned at
the beginning of Section 6.2 (see also Remark 6.6), the C1 regularity of u is crucial to
ensure that the c-subdifferential coincides with its local counterpart c-exp(∂−u).

Given a set E, we denote by co[E] its convex hull.

Proposition 6.10 (Comparison principle). Let u be a c-convex function of class C1

inside the set S := {u < 1}, and assume that u(0) = 0, B1/K ⊂ S ⊂ BK , and that
∇u(S) b Dom c-exp. Let f, g be two densities such that

‖f/λ1 − 1‖C0(S) + ‖g/λ2 − 1‖C0(Tu(S)) ≤ ε (6.57)

for some constants λ1, λ2 ∈ (1/2, 2) and ε ∈ (0, 1/4), and assume that (Tu)]f = g.
Furthermore, suppose that

‖c+ x · y‖C2(BK×BK) ≤ δ. (6.58)

Then there exist a universal constant γ ∈ (0, 1), and δ1 = δ1(K) > 0 small, such that
the following holds: Let v be the solution of

{
det(D2v) = λ1/λ2 in Nδγ (co[S]),

v = 1 on ∂
(
Nδγ (co[S])

)
.
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Then
‖u− v‖C0(S) ≤ CK

(
ε+ δγ/n

)
provided δ ≤ δ1, (6.59)

where CK is a constant independent of λ1, λ2, ε, and δ (but which depends on K).

Proof. First of all we observe that, since u(0) = 0, u = 1 on ∂S, S ⊂ BK , and
‖c + x · y‖C2(BK) ≤ δ � 1, it is easy to check that there exists a universal constant
a1 > 0 such that

|Dxc(x, y)| ≥ a1 ∀x ∈ ∂S, y = c-expx(∇u(x)). (6.60)

Thanks to (6.60) and (6.58), it follows from the Implicit Function Theorem that, for
each x ∈ ∂S, the boundary of the set

Ex :=
{
z ∈ BK : c(z, y)− c(x, y) + u(x) ≤ 1

}

is of class C2 inside BK , and its second fundamental form is bounded by CKδ, where
CK > 0 depends only on K. Hence, since S can be written as

S :=
⋂

x∈∂S
Ex,

it follows that
S is a (CKδ)-semiconvex set,

that is, for any couple of points x0, x1 ∈ S the ball centered at x1/2 := (x0 + x1)/2 of
radius CKδ|x1 − x0|2 intersects S. Since S ⊂ BK , this implies that co[S] ⊂ NC′Kδ(S)
for some positive constant C ′K depending only on K. Thus, for any γ ∈ (0, 1) we obtain

Nδγ (co[S]) ⊂ N(1+C′K)δγ (S).

Since v = 1 on ∂
(
Nδγ (co[S])

)
and λ1/λ2 ∈ (1/4, 4), by standard interior estimates

for solution of the Monge-Ampère equation with constant right hand side (see for
instance [CaL, Lemma 1.1]), we obtain

oscS v ≤ C ′′K (6.61)

1− C ′′Kδγ/n ≤ v ≤ 1 on ∂S, (6.62)

D2v ≥ δγ/τ Id /C ′′K in co[S], (6.63)

for some τ > 0 universal, and some constant C ′′K depending only on K.
Let us define

v+ := (1 + 4ε+ 2
√
δ)v− 4ε− 2

√
δ, v− := (1− 4ε−

√
δ/2)v+ 4ε+

√
δ/2 + 2C ′′Kδ

γ/n.

Our goal is to show that we can choose γ universally small so that v− ≥ u ≥ v+ on S.
Indeed, if we can do so, then by (6.61) this will imply (6.59), concluding the proof.
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First of all notice that, thanks to (6.62), v− > u > v+ on ∂S. Let us show first that
v+ ≤ v.

Assume by contradiction this is not the case. Then, since u > v+ on ∂S,

∅ 6= Z :=
{
u < v+

}
⊂⊂ S.

Since v+ is convex, taking any supporting plane to v+ at x ∈ Z, moving it down and
then lifting it up until it touches u from below, we deduce that

∇v+(Z) ⊂ ∇u(Z) (6.64)

(recall that both u and v+ are of class C1), thus by Remark 6.6

| c-exp(∇v+(Z))| ≤ |Tu(Z)|. (6.65)

We show that this is impossible. For this, using (6.63) and choosing γ := τ/4, for any
x ∈ Z we compute

D2v+(x) +Dxxc
(
x, c-expx(∇v+(x))

)
≥ (1 +

√
δ + 4ε)D2v +

√
δD2v − δ Id

≥ (1 +
√
δ + 4ε)D2v + (δ1/4/C ′′K − δ) Id

≥ (1 +
√
δ + 4ε)D2v,

provided δ is sufficiently small, the smallness depending only on K. Thus, thanks to
(6.58) we have

det
(
D2v+(x) +Dxxc(x, c-expx(∇v+(x)))

)
∣∣det

(
Dxyc

(
x, c-expx(∇v+(x))

))∣∣ ≥ det
(
(1 +

√
δ + 4ε)D2v

)

1 + δ

≥ (1 +
√
δ + 4ε)n(1− 2δ)λ1/λ2

≥ (1 + 4nε)λ1/λ2.

In addition, thanks (6.63) and (6.58), since δγ/τ = δ1/4 � δ we see that

D2v+ > ‖Dxxc‖C0(BK×BK) Id inside co[S].

Hence, for any x, z ∈ Z, x 6= z and y = c-expx(∇v+(x)) (notice that c-expx(∇v+(x))
is well-defined because of (6.64) and the assumption ∇u(S) ⊂⊂ Dom c-exp), it follows

v+(z) + c(z, y) ≥ v+(x) + c(x, y)

+
1

2

∫ 1

0

(
D2v+

(
tz + (1− t)x

)
+Dxxc

(
tz + (1− t)x, y

))
(z − x) · (z − x) dt

> v+(x) + c(x, y),
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where we used that ∇v+(x) +Dxc(x, y) = 0. This means that the supporting function
z 7→ −c(z, y) + c(x, y) + v+(x) can only touch v+ from below at x, which implies that
the map Z 3 x 7→ c-expx(∇v+(x)) is injective. Thus, by Lemma 6.9 we get

| c-exp(∇v+(Z))| ≥ (1 + 4nε)λ1/λ2|Z|. (6.66)

On the other hand, since u is C1, it follows from (Tu)]f = g and (6.57) that

|Tu(Z)| =
∫

Z

f(x)

g(Tu(x))
dx ≤ λ1(1 + ε)

λ2(1− ε) ≤ (1 + 3ε)λ1/λ2|Z|.

This estimate combined with (6.66) shows that (6.65) is impossible unless Z is empty.
This proves that v+ ≤ u.

The proof of the inequality v− ≤ u follows by the same argument expect for a minor
modification. More precisely, let us assume by contradiction that W := {u > v−} is
nonempty. In order to apply the previous argument we would need to know that
∇v−(W ) ⊂ Dom c-exp. However, since the gradient of v can be very large near ∂S,
this may be a problem.

To circumvent this issue we argue as follows: since W is nonempty, there exists a
positive constant µ̄ such that u touches v− + µ̄ from below inside S. Let E be the
contact set, i.e., E := {u = v− + µ̄}. Since both u and v− are C1, ∇u = ∇v− on E.
Thus, if η > 0 is small enough, then the set Wη := {u > v− + µ̄ − η} is nonempty
and ∇v−(Wη) is contained in a small neighborhood of ∇u(Wη), which is compactly
contained in Dom c-exp. At this point, one argues exactly as in the first part of the
proof, with Wη in place of Z, to find a contradiction.

Theorem 6.11. Let u, f, g, η0, δ0 be as in Theorem 6.5, and assume in addition that
c ∈ Ck,α(B3 × B3) and f, g ∈ Ck,α(B1/3) for some k ≥ 0 and α ∈ (0, 1). There exist
η1 ≤ η0 and δ1 ≤ δ0 small, such that, if

‖f − 1C1‖∞ + ‖g − 1C2‖∞ ≤ δ1, (6.67)

‖c(x, y) + x · y‖C2(B3×B3) ≤ δ1, (6.68)

and ∥∥∥∥u−
1

2
|x|2
∥∥∥∥
C0(B3)

≤ η1, (6.69)

then u ∈ Ck+2,α(B1/9).

Proof. We divide the proof in two steps.

• Step 1: C1,1 regularity. Fix a point x0 ∈ B1/8, y0 = c-expx0
(∇u(x0)). Up to replace

u (resp. c) with the function u1 (resp. c1) constructed in Steps 4 and 5 in the proof of
Theorem 6.5, we can assume that u ≥ 0, u(0) = 0, that

Sh := S(0,0, u, h) = {u ≤ h},
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and that

Dxyc(0,0) = − Id . (6.70)

Under these assumptions we will show that the sections of u are of “good shape”, i.e.,

B√h/K ⊂ Sh ⊂ BK√h ∀h ≤ h1, (6.71)

for some universal h1 and K. Arguing as in Step 6 of Theorem 6.5, this will give that
u is C1,1 at the origin, and thus at every point in B1/8.

First of all notice that, thanks to (6.69), for any h1 > 0 we can choose η1 = η1(h1) >
0 small enough such that (6.71) holds for Sh1 with K = 2. Hence, assuming without
loss of generality that δ1 ≤ 1, we see that

B√h1/3
⊂ Nδγ1

√
h1

(co[Sh1 ]) ⊂ B3
√
h1
,

where γ is the exponent from Lemma 6.10. Let v1 solve the Monge-Ampère equation

{
det(D2v1) = f(0)/g(0) in Nδγ1

√
h1

(co[Sh1 ]),

v1 = h1 on ∂Nδγ1
√
h1

(co[Sh1 ]).

Since B1/3 ⊂ Nδγ1
√
h1

(co[Sh1 ])/
√
h1 ⊂ B3, by standard Pogorelov estimates applied to

the function v1(
√
h1x)/h1 (see Section 2.3), it follows that |D2v1(0)| ≤M , with M > 0

some large universal constant.
Let hk := h12−k and define K̄ ≥ 3 to be the largest number such that any solution

w of {
det(D2w) = f(0)/g(0) in Z,
w = 1 on ∂Z,

(6.72)

with B1/K̄ ⊂ Z ⊂ BK̄ satisfies |D2w(0)| ≤M + 1 7. We prove by induction that (6.71)

holds with K = K̄.
If h = h1 then we already know that (6.71) holds with K = 2 (and so with K = K̄).
Assume now that (6.71) holds with h = hk and K = K̄, and we want to show that

it holds with h = hk+1. For this, for any k ∈ N we consider uk the solution of

{
det(D2vk) = f(0)/g(0) in Nδγk

√
hk

(co[Shk ]),

vk = h12−k on ∂Nδγk
√
hk

(co[Shk ]),

7The fact that K̄ is well defined (i.e., 3 ≤ K̄ < ∞) follows by the following facts: first of all, by
definition, M is an a-priori bound for |D2w(0)| whenever w is a solution of (6.72) with B1/3 ⊂ Z ⊂ B3,
so K̄ ≥ 3. On the other hand K̄ ≤

√
M + 1, since the function

w̄ := (M + 1)x2
1 +

x2
2

M + 1
+ x2

3 + . . .+ x2
n

is a solution of (6.72) with B1/
√
M+1 ⊂ Z ⊂ B√M+1 and |D2w̄(0)| = 2(M + 1), see also Theorem 2.16

and the discussion below it.
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where

δk := ‖c(x, y) + x · y‖C2(Shk×Tu(Shk )) ≤ δ1.

Let us consider the rescaled functions

ūk(x) := u
(√

hkx
)
/hk v̄k(x) := vk

(√
hkx

)
/hk.

Since by the inductive hypothesis B1/K̄ ⊂ S̄k := {ūk ≤ 1} ⊂ BK̄ , we can apply Lemma
6.10 to deduce that

‖ūk − v̄k‖C0(S̄k) ≤ CK̄
(

osc
Shk

f + osc
Tu(Shk )

g + δ
γ/n
k

)
≤ CK̄(δ1 + δ

γ/n
1 ). (6.73)

This implies in particular that, if δ1 is sufficiently small, B1/(2K̄) ⊂ {v̄k ≤ 1} ⊂ B2K̄ .
By Proposition 2.12 (ii) and Remark 2.14, the shapes of {v̄k ≤ 1} and {v̄k ≤ 1/2} are
comparable, moreover they are well included into each other: there exists a universal
constant L > 1 such that

B1/(LK̄) ⊂ {v̄k ≤ 1/2} ⊂ BLK̄ , dist
(
{v̄k ≤ 1/4}, ∂{v̄k ≤ 1/2}

)
≥ 1/(LK).

Using again (6.73) we deduce that, if δ1 is sufficiently small,

B1/(2LK̄) ⊂ {ūk ≤ 1/2} ⊂ B2LK̄ , dist
(
{ūk ≤ 1/4}, ∂{ūk ≤ 1/2}

)
≥ 1/(2LK)

that is, scaling back,

B√
hk+1/(2LK̄)

⊂ Shk+1
⊂ B

2LK̄
√
hk+1

, dist
(
Shk+2

, ∂Shk+1

)
≥
√
hk/(2LK) (6.74)

This allows us to apply Lemma 6.10 also to ūk+1 to get

‖ūk+1 − v̄k+1‖C0(S̄k+1) ≤ C2LK̄

(
osc
Shk+1

f + osc
Tu(Shk+1

)
g + δ

γ/n
k+1

)
. (6.75)

We now observe that, by (6.71) and the C1,β regularity of u (Theorem 6.5) it follows
that

diam(Shk) + diam(Tu(Shk)) ≤ Chβ/2k ,

so by the C0,α regularity of f and g, and the C2,α regularity of c, we have (recall that
γ < 1)

osc
Shk

f + osc
Tu(Shk )

g + δ
γ/n
k ≤ C ′hσk , σ :=

αβγ

2n
(6.76)

Hence, by (6.73) and (6.75),

‖ūk − v̄k‖C0(S̄k) + ‖ūk+1 − v̄k+1‖C0(S̄k+1) ≤ C (CK̄ + C2LK̄)hσk ,
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from which we deduce (recall that hk = 2hk+1)

‖vk − vk+1‖C0(Shk+1
) ≤ ‖vk − u‖C0(Shk ) + ‖u− vk+1‖C0(Shk+1

)

= hk‖ūk − v̄k‖C0(Sk) + hk+1‖ūk+1 − v̄k+1‖C0(Sk+1)

≤ C (CK̄ + C2LK̄)h1+σ
k .

Since vk and vk+1 are two strictly convex solutions of the Monge Ampère equation with
constant right hand side inside Shk+1

, and since Shk+2
is “well contained” inside Shk+1

,
by classical Pogorelov and Schauder estimates we get

‖D2vk −D2vk+1‖C0(Shk+2
) ≤ C ′K̄hσk (6.77)

‖D3vk −D3vk+1‖C0(Shk+2
) ≤ C ′K̄h

σ−1/2
k , (6.78)

where C ′
K̄

is some constant depending only on K̄. By (6.77) applied to vj for all
j = 1, . . . , k (this can be done since, by the inductive assumption, (6.71) holds for
h = hj with j = 1, . . . , k) we obtain

|D2vk+1(0)| ≤ |D2v1(0)|+
k∑

j=1

|D2vj(0)−D2vj+1(0)|

≤M + C ′K̄h
σ
1

k∑

j=0

2−jσ

≤M +
C ′
K̄

1− 2−σ
hσ1 ≤M + 1,

provided we choose h1 small enough (recall that hk = h12−k). By the definition of K̄
it follows that also Shk+1

satisfies (6.71), concluding the proof of the inductive step.

• Step 2: higher regularity. Now that we know that u ∈ C1,1(B1/8), Equation (1.38)
becomes uniformly elliptic. So one may use Evans-Krylov Theorem (see [CaC]) to

obtain that u ∈ C2,σ′

loc (B1/9) for some σ′ > 0, and then standard Schauder estimates to
conclude the proof. However, for convenience of the reader, we show here how to give
a simple direct proof of the C2,σ′ regularity of u with σ′ = 2σ.

As in the previous step, it suffices to show that u is C2,σ′ at the origin, and for this
we have to prove that there exists a sequence of paraboloids Pk such that

sup
B
rk0/C

|u− Pk| ≤ Crk(2+σ′)
0 (6.79)

for some r0, C > 0.
Let vk be as in the previous step, and let Pk be their second order Taylor expansion

at 0:

Pk(x) = vk(0) +∇vk(0) · x+
1

2
D2vk(0)x · x.
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We observe that, thanks to (6.71),

‖vk − Pk‖C0(B(0,
√
hk+2/C))

≤ ‖vk − Pk‖C0(Shk+2
) ≤ C‖D3vk‖C0(Shk+2

)h
3/2
k . (6.80)

In addition, by (6.78) applied with j = 1, . . . , k and recalling that hk = h12−k and
2σ < 1 (see (6.76)), we get

‖D3vk‖C0(Shk+2
) ≤ ‖D3v1‖C0(Sh3

) +
k∑

j=1

‖D3vj −D3vj+1‖C0(Shj+2
)

≤ C
(

1 +
k∑

j=1

h
(σ−1/2)
j

)
≤ Chσ−1/2

k .

(6.81)

Combining (6.71), (6.80), (6.81), and recalling (6.73) and (6.76), we obtain

‖u− Pk‖C0(B√hk+2/K
) ≤ ‖vk − Pk‖C0(Shk+2

) + ‖vk − u‖C0(Shk+2
) ≤ Ch1+σ

k ,

so (6.79) follows with r0 = 1/
√

2 and σ′ = 2σ.



Appendix A

Properties of convex functions

In this appendix we report the main properties of convex (and semiconvex) functions
which we have used in the previous Chapters.

A function u : Rn → [−∞,+∞] is said convex if its epigraph:

Epi(u) :=
{

(x, t) ∈ Rn × R : u(x) ≤ t
}

is a convex subset of Rn+1. In case u > −∞ the above definition is equivalent to ask
that

u(tx+ (1− t)y) ≤ tu(x) + (1− t)u(y), ∀x, y ∈ Rn t ∈ [0, 1].

A convex function is said lower semicontinuous if Epi(u) is closed and proper if u(x0) >
−∞ for some x0. It is easy to see that for a proper and lower semicontinuous function
{u = −∞} is empty. We define the domain of u as the convex set

Dom(u) = {u < +∞}

and in the sequel we will always assume that Dom(u) has non-empty interior and that
u is proper and lower semicontinuous.

An important role in convex analysis is played by the subdifferential of a convex
function. A point x is in the domain of the subdifferential, x ∈ Dom(∂u), if there exists
a non-vertical supporting plane to Epi(u) at the point (x, u(x)). By classical theorems,
see [Ro, Chapter 12], it is easy to see that

Int(Dom(u)) ⊂ Dom(∂u) ⊂ Dom(u).

If x ∈ Dom(∂u) the subdifferential of x at u is defined as the set of the slopes of the
supporting planes:

∂u(x) = {p ∈ Rn : u(y) ≥ u(x) + p · (y − x)}.

In particular p ∈ ∂u(x) if and only if the function

y 7→ u(y)− p · y
135
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has a minimum at x. Since the function u(y) − p · y is clearly convex, any local
minimum is a global minimum, thus the above observation leads to the following useful
characterization:

∂u(x) = {p ∈ Rn : u(y) ≥ u(x) + p · (y − x) for all y in a neighborhood of x}.

It is immediate to see that ∂u(x) is a convex subset of Rn. Moreover, as subset of
Rn × Rn, the graph of the subdifferential is closed:

xk → x, ∂u(xk) 3 pk → p ⇒ x ∈ Dom(∂u), p ∈ ∂u(x).

We also recall the following elementary estimate: if Ω′ b Ω′′ ⊂ Dom(u) then

sup
x∈Ω′

sup
p∈∂u(x)

|p| ≤ oscΩ′′ u

dist(Ω′, ∂Ω)
. (A.1)

Since convex functions are locally bounded on their domains (see [Ro, Theorem 10.1]),
thanks to the “non smooth” mean value theorem (Lemma A.1 below) we see that
convex functions are also locally Lipschitz.

Given a proper and l.s.c. function u its convex conjugate (or Legendre transform)
is the convex and lower semicontinuous function:

u∗(p) = sup
x∈Rn
{p · x− u(x)}.

Since u is proper and lower semicontinuous one can verify that

u∗∗(x) = sup
p∈Rn
{p · x− u∗(p)} = u(x).

In addition
p ∈ ∂u(x) ⇐⇒ x ∈ ∂u∗(p),

and in this case

u(x) = p · x− u∗(p) and u∗(p) = p · x− u(x).

Indeed

p ∈ ∂u(x) ⇐⇒ u(y)− p · y ≥ u(x)− p · x ∀ y
⇐⇒ u∗(p) = p · x− u(x)

⇐⇒ u∗(p)− p · x ≤ u∗(q)− q · x ∀ q
⇐⇒ x ∈ ∂u∗(p).

In particular ∂u and ∂u∗ are (as multivalued maps) one the inverse of the other.
It is immediate to verify that if u is differentiable at x then ∂u(x) = {∇u(x)}. To

show the converse implication we need the following.
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Lemma A.1 (Non smooth mean value theorem). Let u be a convex and finite function,
if x, y ∈ Int(Dom(u)) then there exist z ∈ (x, y) 1 and p ∈ ∂u(z) such that

u(y)− u(x) = p · (y − x)

Proof. Let Ω b Dom(u) be a convex set such that [x, y] ⊂ Ω and let us consider the
regularized functions

uε(w) =

∫
u(y)ϕε(w − y)dy

with ϕε a family of compactly supported mollifiers. Then uε are defined and convex on
a ε neighborhood of Ω and uε uniformly converge to u in Ω (recall that any pointwise
bounded sequence of convex functions is locally bounded, see [Ro, Theorem 10.6]),
hence, since the uε are smooth, (A.1) implies that uε are locally Lipschitz). By the
classical mean value theorem for smooth functions there exists a point zε ∈ (x, y) such
that

uε(x)− uε(y) = ∇uε(zε) · (y − x).

Passing to the limit as ε goes to 0 we see that, up to subsequence, zε → z ∈ [x, y] and
∇u(zε)→ p ∈ ∂u(z). Hence

u(y)− u(x) = p · (y − x), p ∈ ∂u(z), z ∈ [x, y]. (A.2)

If z ∈ (x, y) we are done. In case z = x, for instance, by the above equality it is
immediate to see that p ∈ ∂u(w) for all w ∈ [x, y] and thus (A.2) holds also for some
z̄ ∈ (x, y), proving the lemma.

Lemma A.2. Assume that x ∈ Int(Dom(u)) and that ∂u(x) = {p}, then u is differen-
tiable at x and p = ∇u(x).

Proof. We want to show that

u(y) = u(x) + p · (y − x) + o(|y − x|).

By Lemma A.1, there exists a point z ∈ (x, y) such that

u(y) = u(x) + qz · (y − x) qz ∈ ∂u(z).

If y → x then also z → x and, by (A.1) and the closure of the subdifferential, qz → q̄ ∈
∂u(x). Since, by assumption, ∂u(x) is a singleton, qz → p. Then

u(y) = u(x) + p · (y − x) + (qz − p) · (y − x) = u(x) + p · (y − x) + o(|y − x|).

1(x, y) denotes the open segment with extremes x and y while [x, y] is the closed segment with the
same extremes.
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We have already shown that convex functions are locally Lipschitz, hence, by
Rademacher Theorem [EG], they are differentiable almost everywhere on their do-
main. Actually, thanks to the above lemma, one can give a more elementary proof of
this fact using the following ingredients:

• The restriction of a convex function to a line is a one-dimensional convex function.

• One-dimensional convex functions are differentiable outside a countable set (this
follows by the monotonicty of the incremental ratio).

• By Fubini Theorem a convex function admits partial derivative almost every-
where.

• If in a point a convex function is derivable along n independent directions, then
∂u(x) is a singleton.

By the above considerations, for every x ∈ Int(Dom(u)) the set of reachable gradi-
ents

∇∗u(x) =
{
p ∈ ∂u(x) : exists a sequence of differentiability points xk, xk → x, ∇u(xk)→ p

}

is non empty. Actually they are enough to generate the full subdifferential:

Proposition A.3. If u is convex and x ∈ Int(Dom(u)) then

∂u(x) = co
[
∇∗u(x)

]
.

Proof. Let

C = co
[
∇∗u(x)

]
.

Being ∂u(x) closed and convex C ⊂ ∂u(x). Let us assume that there exists p̄ ∈
∂u(x) \C. Since C is a compact and convex (recall that, by (A.1), ∂u(x) is bounded),
there exists a vector e ∈ Sn−1 such that

e · p̄ := 4δ > 0 ≥ e · p ∀p ∈ C.
Since C is compact there exists a small σ such that for all v ∈ Bσ(e)

v · p̄ ≥ 3δ > δ ≥ v · p ∀p ∈ C. (A.3)

Since the cone generated by Bσ(e) and the origin has positive measure we can find a
sequence vk ∈ Bσ(e) and tk → 0 such that x + tkvk → x and u is differentiable at
x+ tkvk. Bu the monotonicity of the subdifferential (recall Theorem 1.6)

t(∇u(xk + tvk)− p̄) · vk ≥ 0.

Up to a subsequence, vk → v̄ ∈ Bσ(e) and ∇u(xk + tvk)→ q ∈ ∇∗u(x) ⊂ C. Then

q · v̄ ≥ p̄ · v̄,
contarddicting (A.3).
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We conclude this appendix investigating second order properties of convex func-
tions. The first observation is that distributional second order derivatives of convex
functions are measures (i.e. distributions of order zero). In particular the almost ev-
erywhere defined function ∇u(x) belongs to BVloc, see [AFP] for main properties of
BV functions.
The heuristic idea behind the proof is that for a (smooth) convex function D2u ≥ 0
and that any positive distribution is a measure.

Proposition A.4. Let Ω b Dom(u) then D2u is a symmetric matrix valued Radon
measure in Ω.

Proof. Let Ω b Ω′ b Dom(u) and uε be a sequence of smooth convex functions defined
on Ω′′ uniformly converging to u in Ω′ (for instance we can take as uε the convolution
of u with a family of mollifiers as introduced in the proof of Lemma A.1). Clearly

D2uε → D2u

as distributions. By Riesz representation theorem, it is enough to show that

lim sup
ε→0

∫

Ω
|D2uε| ≤ C.

for some constant C independent on ε. To see this recall that, by convexity, |D2uε| ≤
n∆uε, hence (assuming without loss of generality that Ω is smooth)

∫

Ω
|D2uε| ≤ n

∫

Ω
∆uε = n

∫

∂Ω
∇uε · ν∂Ω

≤ nHn−1(∂Ω) sup
Ω
|∇uε| ≤ nHn−1(∂Ω)

supΩ′ |uε|
dist(Ω, ∂Ω′)

.

Since uε converge uniformly to u on Ω′

lim sup
ε→0

∫

Ω
|D2uε| ≤ nHn−1(∂Ω)

supΩ′ |u|
dist(Ω, ∂Ω′)

,

concluding the proof.

By the Lebesgue- Radon-Nykodim Theorem D2u can be decomposed as

D2u = ∇2u dL + (D2u)s.

where ∇2u is defined as

∇2u(x) = lim
r→0

D2u(Br(x))

|Br(x)| (2).

2 It is part of the theorem that the above limit exists almost everywhere. Notice that in particular
this implies that ∇2u is symmetric.
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A well know property of BV functions is that they are approximately differentiable
almost everywhere3 (see [AFP, Theorem 3.83]). In particular ∇u(x) is approximately
differentiable with approximate differential equal to ∇2u. The following theorem, due
to Aleksandrov, implies that actually ∇u is differentiable almost everywhere.

Theorem A.5 (Aleksandrov). Let u be a convex function, then for almost every point
of differentiability x in the interior of its domain the following equivalent properties
hold true:

(i) u(y) = u(x) +∇u(x) · (y − x) + 1
2∇2u(x)(y − x) · (y − x) + o(|y − x|2)

(ii) ∂u(y) = ∇u(x) +∇2u(x) · (y − x) + o(|y − x|).

Here in (ii) we mean that

p = ∇u(x) +∇2u(x) · (y − x) + o(|y − x|) for all p ∈ ∂u(y)

Proof. We first show the equivalence of (i) and (ii). To see that (ii) implies (i) one
simply applies Lemma A.1. Let us show that (i) implies (ii). For this assume, by sake
of contradiction, that there exists a sequence of points yk converging to x such that for
some pk ∈ ∂u(yk)

lim inf
k→0

|pk −∇u(x)−∇2u(x)(yk − x)|
|yk − x|

> 0. (A.4)

We can clearly assume that x = 0 = |∇u(x)|, let us write yk = tkvk with vk ∈ Sn−1

and consider the convex functions

uk(w) =
u(tkw)

t2k
w ∈ B2.

By our assumptions uk → ū := ∇2u(0)w · w/2 locally uniformly in B2. Up to subse-
quence vk → v. Moreover pk/tk ∈ ∂uk(vk). Since uk are locally bounded by (A.1),
pk/tk is bounded, hence, always up to subsequence,

∂uk(vk) 3 pk/tk → p ∈ ∂ū(v) = {∇2u(0)v},

contradicting (A.4).
We now show that (i) holds almost everywhere. For this let x be a point such that

|(D2u)s|(Br(x))

|Br(x)| → 0 and lim
r→0
−
∫

Br(x)
|∇2u(y)−∇2u(x)|dy → 0 (A.5)

3A function v is approximate differentiable at x if there exists a linear function Lx such that

v(x+ rh)− v(x)

r
→ Lxh

locally in measure. In this case Lx is unique and it is called the approximate differential of v at x
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as r → 0. Notice that the above properties hold true for almost every x. Let us assume
that x = 0 = |∇u(x)|, our claim is equivalent to show that

lim
t→0

u(tv)

t2
=

1

2
∇2u(0)v · v uniformly in B1.

Since the functions u(tv)/t2 are convex, L1 convergence implies local uniform conver-
gence, so it is enough to show

lim
t→0

∫

B2

∣∣∣∣
u(tv)

t2
− 1

2
∇2u(0)v · v

∣∣∣∣ dv = 0.

By a change of variable the above is implied by

lim
r→0
−
∫

Br

∣∣∣∣∣
u(x)− 1

2∇2u(0)x · x
r2

∣∣∣∣∣ dx = 0.

To see that the above limit is zero let us introduce the regularization of u

uε(x) =

∫
u(y)ϕε(x− y)dy,

where

ϕε(z) =
1

εn
ϕ
(z
ε

)

for some smooth and positive probability density ϕ supported in B1. Since uε(x) →
u(x) and ∇uε(0)→ ∇u(0) = 0 by Fatou Lemma:

lim sup
r→0

−
∫

Br

∣∣∣∣∣
u(x)− 1

2∇2u(0)x · x
r2

∣∣∣∣∣ dx

≤ lim sup
r→0

lim inf
ε→0

−
∫

Br

∣∣∣∣∣
uε(x)−∇uε(0) · x− 1

2∇2u(0)x · x
r2

∣∣∣∣∣ dx. (A.6)

By Taylor formula, Fubini Theorem, and a change of variable

lim sup
r→0

lim inf
ε→0

−
∫

Br

∣∣∣∣∣
uε(x)−∇uε(0) · x− 1

2∇2u(0)x · x
r2

∣∣∣∣∣ dx

≤ lim sup
r→0

lim inf
ε→0

−
∫

Br

∫ 1

0

∣∣∣∣
D2uε(sx)x · x−∇2u(0)x · x

r2

∣∣∣∣ (1− s)dsdx

= lim sup
r→0

lim inf
ε→0

∫ 1

0
(1− s) −

∫

Br

∣∣∣∣
D2uε(sx)x · x−∇2u(0)x · x

r2

∣∣∣∣ dxds

= lim sup
r→0

lim inf
ε→0

∫ 1

0
(1− s) −

∫

Bsr

∣∣∣∣
D2uε(y)y · y −∇2u(0)y · y

(sr)2

∣∣∣∣ dyds

≤ lim sup
r→0

lim inf
ε→0

∫ 1

0
−
∫

Brs

|D2uε(y)−∇2u(0)|dyds.

(A.7)
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Now, for every radius ρ, by Fubini Theorem and the definition of ϕε,∫

Bρ

|D2uε(y)−∇2u(0)|dy

=

∫

Bρ

∣∣∣∣
∫
ϕε(x− y)d(D2u)s(x) +

∫
ϕε(x− y)

(
∇2u(x)−∇2u(0)

)
dx

∣∣∣∣ dy

≤
∫

Bρ+ε

(∫

Bρ

ϕε(x− y)dy

)
d|(D2u)s|(x)

+

∫

Bρ+ε

|∇2u(x)−∇2u(0)|
(∫

Bρ

ϕε(x− y)dy

)
dx

≤ sup
w∈Bρ+ε

|Bρ ∩Bε(w)|
εn

(
|(D2u)s|(Bρ+ε) +

∫

Bρ+ε

|∇2u(x)−∇2u(0)|dx
)

≤ C(n)
min{εn, ρn}

εn

(
|(D2u)s|(Bρ+ε) +

∫

Bρ+ε

|∇2u(x)−∇2u(0)|dx
)
,

hence,

−
∫

Bρ

|D2uε(y)−∇2u(0)|dy

≤ C(n)
min{εn, ρn}(ρ+ ε)n

(ρε)n

(
|(D2u)s|(Bρ+ε)

|Bρ+ε|
+ −
∫

Bρ+ε

|∇2u(x)−∇2u(0)|dx
)

≤ C(n)

(
|(D2u)s|(Bρ+ε)

|Bρ+ε|
+ −
∫

Bρ+ε

|∇2u(x)−∇2u(0)|dx
)
.

which, by (A.5), is uniformly bounded for ε and ρ small. Hence (as a function of s)
the integrand in the right hand side of (A.7) is uniformly bounded. Moreover, by (A.5)
and the above equation

lim sup
r→0

lim sup
ε→0

−
∫

Bsr

|D2uε(y)−∇2u(0)|dy = 0.

Recalling (A.6) and applying Dominated Convergence Theorem to the right hand side
of (A.7), we finally conclude the proof.

A function u is said C-semiconvex if u−C|x|2/2 is convex or, equivalently, if D2u ≥
C Id in the sense of distributions, notice that the sum of a C-semiconvex function u and
of a C2 function v is C+‖v‖C2-semiconvex. It is clear that, since a semiconvex function
is a smooth perturbation of a convex one, all the above properties of convex functions
still hold true for semiconvex functions, in this case the role of the subdifferential is
played by the Frechet subdifferential

∂−u(x) =
{
p ∈ Rn : u(y) ≥ u(x) + p · (y − x) + o(|y − x|)

}
. (A.8)
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We conclude the appendix with the following useful interpolation inequality which is
the equivalent of (A.1) for semiconvex functions.

Lemma A.6. Let u : Ω→ R be a C-semiconvex function and let K ⊂ Ω be a compact
set, then

sup
x∈K

sup
p∈∂−u(x)

|p| ≤ oscΩ u

dist(K, ∂Ω)
+
√
C− osc

Ω
u, (A.9)

where C− = max{−C, 0}.

Proof. Let x be in K and p ∈ ∂−u(x), then by semiconvexity

u(y) ≥ u(x) + p · (y − x) + C|y − x|2 ∀y ∈ Ω.

Choosing y = x+ tp/|p|, we obtain

|p| ≤ oscΩ u

t
+ C−t, 0 < t < dist(K, ∂Ω).

Minimizing in t we obtain

|p| ≤





oscΩ u

dist(K, ∂Ω)
+ C− dist(K, ∂Ω) if

√
oscΩ u
C−

≥ dist(K, ∂Ω)

√
C− oscΩ u if

√
oscΩ u
C−

≤ dist(K, ∂Ω),

from which the claim follows.





Appendix B

A proof of John Lemma

In this appendix we give a proof of John Lemma, [Jo]. The proof we give is taken
from [How].

1/a0 p = (a, 0)

Figure 2.1: The situation in the proof of John Lemma.

Theorem B.1 (John). Let C ⊂ Rn be a bounded convex set with non-empty interior.
Then there exists a unique ellipsoid E of maximal volume contained in C. Moreover
this ellipsoid satisfies

E ⊂ C ⊂ nE, (B.1)

where the dilation is done with respect to the center of E.

Proof. Existence of E is immediate. For the uniqueness just notice that the Minkowski
sum of two ellipsoids is still an ellipsoid and use the strict concavity of the map A 7→
det1/n(A) on the cone of non-negative symmetric matrices. Let us prove (B.1). Up
to an affine transformation we can assume that E = B, the unit ball centered at the
origin. Let p be the farthest point of C, up to a rotation we can assume that p = (a, 0),
a > 0, see Figure 2.1, and our goal is to show that a ≤ n.

By convexity, the cone C generated by B and p is contained in C. We will show that,
if a > n then there exists an ellipsoid with volume strictly larger than |B| contained in
C, see Figure 2.2.
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CE = ��
t (B)

Figure 2.2: If a� 1 then there exists an ellipsoid with volume strictly larger than |B|
contained in C.

Let us consider, for λ > 0, the flow of affine maps Φλ
t generated by the vectorfield

vλ(x1, x
′) :=

(
(x1 + 1),−λx′

)
.

An easy computation shows that

Φλ
t (x1, x

′) =
(
et(x1 + t), e−λtx′

)
,

so that, if λ < 1/(n− 1),
∣∣Φλ

t (B)
∣∣ = |B|e(1−λ(n−1))t > |B| ∀ t > 0.

We want now to understand when Φλ
t (B) ⊂ C for small t. For this notice that, by

similarity, the “straight” part of the cone touches ∂B on the (n− 2) sphere

S =
{
x1 = 1/a, |x′|2 = (a2 − 1)/a2

}
,

see Figure 2.1. To prove that Φλ
t (B) is contained in C for t small, it is enough to

show that the vectorfield points inside ∂B in the region where x1 ≤ 1/a. This means,
recalling that ν∂B(x1, x

′) = (x1, x
′),

0 > vλ(x1, x
′) · ν∂B(x1, x

′) = x2
1 + x1 − λ|x′|2 (x1, x

′) ∈ ∂B ∩ {x1 ≤ 1/a}.
Since, on ∂B, |x′|2 = 1− x2

1 the above equation is equivalent to ask that

x1 + x2
1 < λ(1− x2

1) for all −1 ≤ x1 ≤ 1/a,

which is true if and only if λ > 1/(a− 1). In conclusion, if a > n, we can find a λ such
that

1

a− 1
< λ <

1

n− 1
,

but then the ellipsoids Φλ
t (B) are contained in C ⊂ C for small t and have volume

strictly greater than the one of B, a contradiction.
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[CaC] L. Caffarelli, X. Cabré: Fully Nonlinear Elliptic Equations. Amer.
Math. Soc., Colloquium publications, Vol. 43 (1995).
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2008/2009. Exposés 997-1011. Astérisque No. 332 (2010), Exp. No. 1009,
ix, 341-368.

[F3] A. Figalli: Regularity properties of optimal maps between nonconvex do-
mains in the plane. Comm. Partial Differential Equations 35 (2010), 465-479.

[F4] A. Figalli: Sobolev regularity for the Monge-Ampre equation, with ap-
plication to the semigeostrophic equations. Proceedings of the Conference
dedicated to the centenary of L. V. Kantorovich. To appear.

[FG] A. Figalli, N. Gigli: Local semiconvexity of Kantorovich potentials on
non-compact manifolds. ESAIM Control Optim. Calc. Var. 17 (2011), 648-
653.

[FK] A. Figalli, Y. H. Kim: Partial regularity of Brenier solutions of the
Monge-Ampère equation. Discrete Contin. Dyn. Syst. 28 (2010), 559-565.

[FKMC1] A. Figalli, Y. H. Kim, R. J. McCann: Hölder continuity and injectivity
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