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1. I~-i-R00uCn0N 

The thesis of this paper is that finite, noncooperative games possessing 
both complete and perfect information ought to be treated like one-player 
decision problems. That is, players ought to assign at every move subjective 
probabilities to every subsequent choice in the game and ought to make 
decisions via backward induction. This view is in contrast with the game- 
theoretic approach of Nash equilibrium. 

After expanding on this view for games in the abstract in Sections 2 and 3, 
attention is turned in Section 4 to an example due to Reinhard Selten, called 
the chain-store paradox, which possesses the flavor of a situation involving a 
predatory-pricing monopolist. It is argued that for the chain-store game the 
decision-analytic approach leads, under certain assumptions, to more 
realistic outcomes than the standard Nash-equilibrium approach. 

2. AN ILLUSTRATIVE EXAMPLE 

Consider the game tree in Fig. 1 to be played only once in which the 
outcomes are assumed to be expressed in U.S. dollars and x and y are dollar 
values known to both players. In words, if Player 1 chooses Left, he receives 
x dollars and 2 receives y dollars; if Player 1 chooses Right, then the 
outcome is either (0,O) or (1 million, 1) depending on Player 2’s choice. 
Assuming that each player’s von Neumann-Morgenstern utilities for the 
outcomes are ordered in the same way as the dollar values and assuming 
that the game is played under conditions of complete information (i.e., each 
player knows the rules, the dollar payoffs for both, von 
Neumann-Morgenstern utility images of both players’ payoffs, the fact that 
the other player knows all of this, the fact that the other knows that he 
knows, etc.) what should Player 1 do? More directly, for what values of x 
and y would you as Player 1 be indifferent between your two choices? For 
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FIG. 1. Example 1. 

most of those to whom I have posed this question, the answer depends on 
(among other things) what is known about Player 2. When I reply that 
Player 2 is known to be a very sensible person whose identity will always 
remain secret and to whom Player l’s identity will always remain secret, the 
answer invariably involves some x-value strictly less than 1 million. 

I interpret this answer to mean that when the stakes are sufficiently high 
people will usually not act as though the hypothesis that other people are 
utility maximizers is absolutely dependable. Moves of other players simply 
can never be anticipated with certainty. If that is the view of real game 
players, what are its implications for the theory of games in which nearly all 
of the models and solution concepts seem to be based on the idea that all 
players can be assumed to be acting in their own best interests? 

One might respond that the hypothesis of complete information is too 
strong to be ever realized in life, that utility payoffs of others (for example) 
can never be known with certainty and that l’s selection of Left over Right 
when x ( 1 million simply indicates a natural equilibrium strategy in the 
imagined incomplete-information game. My feeling is that while probably no 
games are played under conditions of complete information in the real world, 
there are some situations in which the information is complete enough that 
the situations can reasonably be modeled as complete-information games; 
and that for any extensive-form model it should be possible to imagine that 
and reason as though the model corresponded closely enough to some 
hypothetical game situation. In my view, therefore, appealing to the lack of 
realism of the complete-information game would not be sufficient to explain 
preferences of Left over Right in Example 1. 

It might also be pointed out that the Left strategy for Player 1 is in fact 
part of a Nash equilibrium whenever x > 0 and that game theory therefore 
admits considerations of the aforementioned sort. But l’s Left is only in 
equilibrium against 2’s Left strategy; a situation I interpret to mean that 1 
believes 2’s (possibly nonexplicit) threat to play Left, a threat which can 
only be believed if 2 is possibly not a utility maximizer. Note that this 
strategy combination is in equilibrium whenever x > 0 and is otherwise 
insensitive to the magnitude of x. (Nash equilibria containing threats which 
do not get carried out are examples of what are called imperfect equilibria. 
In some recent game-theoretic work it has been suggested that attention 
should focus only on perfect equilibria or special subsets of the set of perfect 
equilibria. See [ 3, 7, 81.) 
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The point of view which I shall adopt is that Player 1 should consider his 
Right strategy to be a risky one and that the risk should be treated in the 
same way that it would be if Player 2 were replaced by chance in this game. 
That is, Player 1 should arrive at some subjective probability distribution 
over 2’s strategy choice and should play his Right strategy if the expected 
utility to him from the lottery exceeds his certain utility for his Left strategy. 
Moreover, I will argue in Section 3 that such an approach is appropriate for 
the analysis of all finite games with perfect information. Note that the uncer- 
tainty should concern Player 2’s choice, not his utilities for the various 
outcomes. Although this distinction is not significant in Example 1, where l’s 
positing appropriate uncertainty over Player 2’s payoffs and assuming he 
does not carry out threats can be seen to be equivalent to l’s positing uncer- 
tainty over 2’s choice, the distinction does become significant in multi-move 
games. 

3. PERFECT-INFORMATION GAMES 

A finite n-person extensive-form game with perfect information consists of: 

1. A tree with a distinguished node (called the origin). Node b follows 
a if there is a path from the origin to b through a. A terminal node is a node 
with no followers. 

2. A partition of the nonterminal nodes into sets labeled 0, 1,2,..., n. A 
node in set i > 0 corresponds to a move by Player i. A node in set 0 is a 
move by chance. 

3. For every node in set 0, a probability distribution over the 
immediate followers of that node. The interpretation should be clear. 

4. For every terminal node, a vector in R”. The ith component of the 
vector is interpreted as Player i’s von Neumann-Morgenstern utility for the 
outcome represented by the terminal node. 

For games with perfect information, no extra informational complications 
arise. When a player is to choose an immediate follower from any of his 
nodes, he knows for which node he is making the choice. Thus, he knows 
perfectly all the choices which have been made at preceding nodes. There are 
no possibilities of secret or simultaneous moves. The assumption of complete 
information is that everything about the extensive form is known to all the 
players of the game. 

A pure strategy for Player i (>0) is a function which assigns to each of 
Player i’s nodes one of its immediate followers. A Nash equilibrium in pure 
strategies is a pure strategy combination (one strategy for each player) with 
the property that no player can improve his expected utility payoff by 
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switching to some other pure strategy if the strategies of all other players are 
held fixed. It is well known (see, e.g., [ 11) that every finite perfect- 
information game possesses at least one Nash equilibrium in pure strategies 
and that such an equilibrium can always be constructed by working 
backward through the tree, selecting a best (defined inductively) immediate 
follower at every personal node and taking expected utilities at every chance 
node. Nash equilibria obtained in this way will be termed principal 
equilibria. Nonprincipal pure-strategy equilibria may exist, as has already 
been observed in Example 1. Nash equilibria in randomized strategies (i.e., 
probability distributions over pure strategies), which have been widely 
studied, are of lesser interest for games with perfect information; since there 
seem to be no intuitive reasons to randomize consciously when the outcome 
of the randomization will be evident to all players who have subsequent 
moves. 

Although a player may not consciously intend to randomize and may in 
fact intend to reason inductively in order to select his strategy in a game 
with perfect information, it may be that for some reason his intention is not 
realized. If players with preceding moves realize that this may be the case, 
they would be wise to consider it when making their choices. 

Why might players believe that players moving subsequently might deviate 
from their principal-equilibrium strategies? (Incidentally, I do not rule out 
the possibility that a player may view his own subsequent choices as 
random.) One possibility is a mistake. Another is that subsequent players 
may decide not to analyze the tree completely because the time and effort 
required are not justified by the potential gains. (In this case it could be 
argued that the game in question is only part of the more complicated 
problem in which decisions about time and effort are also made. Such 
considerations quickly lead to unmanageably large models and even 
questions about infinite regressions. It seems far simpler to study the game of 
perfect information with appropriate allowance made for moves which are 
not part of principal equilibria.) A third possibility (though related to the 
previous one) is that the player in question recognizes that the game is 
actually played under conditions of incomplete information, but that a model 
incorporating the uncertainties would be unmanageable for him. To keep 
matters simple, he assumes a game with complete information but modifies 
his principal-equilibrium calculations in a manner he feels to be intuitively 
appropriate. Still a fourth possibility is the belief that other players may be 
acting according to some other view of what is rational. This view may not 
known with certainty. 

Consider Example 2 (see Fig. 2), where the origin is at the left. If Player 2 
is actually called upon to move in this game, he has clear evidence that 
Player 1 is not playing according to any Nash-equilibrium strategy. Should 
he ignore this evidence, or should he consider the possibility that Player 1 
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FIG. 2. Example 2. 

might not act in his own (and hence Player 2’s) interest at his next move? 
(See [2, pp. 80-811 for a related discussion.) 

Because the various reasons given for imputing estimates of the subse- 
quent move probabilities involve a considerable degree of subjectivity, I shall 
not suggest a universal scheme whereby players may logically deduce these 
estimates. Rather, I appeal to the decision-analysis paradigm in which each 
player arrives at subjective probability estimates by considering what 
objective lotteries he views as indifferent to the move in question by the 
player in question (see, e.g., [5]), where the outcomes of the objective 
lotteries are the same, respectively, as the outcomes of the personal moves. 
This is admittedly a major incomplete aspect of the method of analysis 
which I am proposing. On the other hand, the arguments which I put forth in 
this paper may be viewed as an appeal to include, at least in situations with 
perfect information, whatever aspects of a real situation are left unmodeled 
by the extensive form. Without making very special assumptions about the 
situation in question, it is difficult to imagine that a useful theory is possible. 
Indeed, in Example 2 it would seem to be a hopeless task to say anything 
sensible about Player 2’s decision without extra unmodeled information. (It 
can be argued that all aspects of a situation including, for example, perceived 
psychological atitudes of other players should be expressed in the extensive 
form. Although possible in principle, this would seem prohibitively 
complicated in practice.) 

In some cases, it is possible to gain new qualitative insights from this 
approach without being too specific about subjective probabilities. Consider 
Example 3 (see Fig. 3). In Example 3 the leftmost node is the origin, and 
each player’s choices at each node are called Right and Down, respectively. 
All the Nash equilibria in this example involve Player 1 picking Down on his 
first move. The principal equilibrium has both players selecting Down on 
their first move. Suppose now as an illustration that both players have iden- 
tical views about each others’ propensities to deviate from principal Nash 
behavior and that the views of both are common knowledge (i.e., each knows 
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that the other knows, etc.). These views are that the probability assigned to 
the better of two choices, at any stage, is min( 1,O.S + 0.40), where D is the 
utility difference between the two choices. (Of course, a von 
Neumann-Morgenstem utility construction does not fix a scale for 
measurement. One must imagine that the coefficient (0.4) is the one that 
applies for the utility scale chosen in the representation of the game given 
above.) Thus, at the last node, although Player 2 would (no doubt) like to 
choose Down with probability 1; it is predicted that he will choose Down 
with probability 0.9 and right with probability 0.1. At the penulimate node, 
therefore, Player 1 can expect utility of 8 from Down and 7.3 from Right. He 
would therefore also elect Down but is predicted as choosing Down with 
probability 0.78 and Right with probability 0.22. At the preceding move 2 
expects 9 from Down and (0.78(B) + 0.22(11)) from Right if he believes 
himself incapable of subsequent error or (0.78(B) + (0.22)( 10.9)) from Right 
if he ascribes the common view of error to his own moves. Under either 
hypothesis, assuming common knowledge, the probabilities of Right continue 
to increase as the induction proceeds back through the tree, becoming one 
before the origin is reached. 

Although it might be difficult to believe in the specific construction for the 
subjective probabilities given above and also in the common-knowledge 
assumption; it is clear that if all players consider the subjective probabilities 
to be sufficiently dependent on the utility differences and if the form of these 
considerations is common knowledge (even if the specifics of the other 
players’ functions are not common knowledge) then there is a class of games 
for which this type of compounding effect occurs. As I shall argue in the 
next section, some important economic models fall into such a class. Of 
course, even if subjective probabilities are not related to the size of the utility 
differences but depend on other features, the moves prescribed by a decision- 
analysis approach may differ from those of every Nash equilibrium. 

It is the perfect-information assumption which enables us to use the logic 
of backward induction. Still, it is possible that similar reasoning could be 
used (to some extent at least) in extensive-form games with imperfect infor- 
mation. If we believe that Nash equilibria are not reasonable or realistic in 
perfect-information games, the same could be true for the same reasons in 
games with imperfect information. If a game is “deep” (in the sense that 
some paths from the origin to terminal nodes contain many arcs) but only a 
small part of the tree is affected by information imperfections, then it might 
be possible to look at only those small parts of the tree as subproblems in 
traditional game-theoretic ways and to look at the grand problem more 
according to the decision-analytic mode. 
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4. PREDATORY PRICING AND THE CHAIN-STORE PARADOX 

Consider a single-product industry containing a single firm setting a 
monopoly price and making corresponding profits. If another firm enters the 
industry, there is enough business for both to survive, but profits for the 
monopolist will be severely cut. A possible strategy for the monopolist is to 
cut price whenever a new firm enters to a level low enough that the entrant 
will sustain losses in every period. This strategy presumably reduces the 
monopolist’s profits even further for those periods when the low price is in 
effect (perhaps even causing losses for the monopolist). If the monopolist 
drives the entrant out, and if no new firm enters, however, the monopolist 
can resume his high-price, high-profit position. Price cutting to drive other 
firms out of an industry or to deter entry is called predatory pricing and is a 
subject of considerable interest to economists. The proper role of anti-trust 
procedures in controlling predatory pricing is a matter of some debate 
among both economists and law makers (see, for example, [4,6]). 

The question of whether or not and to what extent the threat of predatory 
pricing is likely to succeed in deterring entry under various conditions is a 
little-understood but important aspect of the debate. It is also a question with 
a strong game-theoretic flavor. 

In [7], Reinhard Selten describes an example of a game, called the chain- 
store paradox (version one), which seems to capture the essential elements of 
the deterrence question. In Selten’s game there is one chain store, Player A, 
with branches in 20 towns. In each town there is one potential entrant i 
(i = l,..., 20). Furthermore, for each i there is only one date at which he can 
enter. These dates are sequential with Player l’s date first, then 2’s, etc. If 
Player i enters on his date, A with full knowledge has the choice of whether 
to respond aggressively or cooperatively. The payoffs to Players i and A 
(although it is only a partial payoff to A who is concerned with the sum of 
his 20 payoffs) are given below: 

A’s decision 
i’s decision in period i i’s payoff A’s payoff 

In Cooperate 2 2 
In Don’t cooperate 0 0 
out - 1 5 

At Player i’s entry date, he is fully aware of all previous moves. 
There are two features of this game which deserve comment with respect 

to the predatory-pricing interpretation. One is the assignment of unique entry 
dates to each firm. This assumption seems to have been made to keep the 
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specification of the game as simple as possible and does not appear to distort 
seriously the deterrence question. The second feature is the finite-time 
horizon assumption. Firms are often assumed to plan for the infinite horizon 
(with discounting where appropriate). Furthermore, it is well known that in 
many repeated games there is a qualitative difference between the structure 
of the set of Nash equilibria in the finitely-repeated case (even with a 
sufficiently large number of repetitions) and that in the infinitely-repeated 
case. Since all of the discussion thus far has been directed at finite-move 
games, it would be improper to argue that any insights gained by reasoning 
inductively on the finite, chain-store game are valid for a situation in which 
players perceive an infinite horizon. But it would also seem that there should 
be very little difference between what a firm would actually do early in a 
large-but-finite horizon predatory-pricing situation and what that same firm 
would do in a similar infinite-horizon situation. 

The thrust of Selten’s analysis of the chain-store game is that while the 
principal Nash equilibrium of the game requires all Players i to enter and A 
to cooperate, one’s intuition suggests perhaps that the threat of the aggressive 
response might suffice to deter entry, at least until late in the game. Selten 
then proceeds to an interesting discussion of the game from many different 
points of view. 

The point which I wish to make is that there is a considerable similarity 
between the chain-store game and Example 3. If the discussion of the previous 
sections has been convincing, then the approach advocated here for games 
with perfect information may be of use in resolving the “paradox” and in 
analyzing predatory pricing and other deterrence situations. 

Let us look at the chain-store game under the assumption that the size of 
utility differences affects subjective probabilities in the same direction as in 
Example 3. At each of Player A’s last nodes he gains two units of utility by 
picking the cooperative response. Suppose, however, that Player 20 views 
that choice as less than certain. At 20’s move, therefore, his expected utility 
gain is less than one from choosing In. Player A therefore has an expected 
gain of less than 2 if he responds aggressively to 19’s choice of In. If 19 
considers the aggressive response to him to have higher probability than 20 
considered the aggressive response, then he has even less to gain than 20 by 
choosing In. As in Example 3, the effects may quickly compound if the 
probabilities are appropriate monotone functions of the expected utility 
differences. The reader will be spared any further details. It should be 
obvious that for a wide class of methods for forming subjective probabilities, 
the outcome of the game will be that entry is deterred for a large portion of 
the potential entrants. 
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