## AROUND DARMOIS - SKITOVICH AND GHURYE - OLKIN ZINGER THEOREMS.

IBRAGIMOV I

1. Consider independent random variables $X_{1}, \ldots X_{n}$ and two linear statistics

$$
L_{1}=\sum_{1}^{n} a_{j} X_{j}, \quad L_{2}=\sum_{1}^{n} b_{j} X_{j}
$$

where $a_{j}, b_{j} \neq 0$ are real coefficients.
The Darmois (1953), Skitovich (1953) theorem says that if the statistics $L_{1}, L_{2}$ are independent, the random variables $X_{j}$ have normal distributions.

The theorem has been extended by Mamai (1960) and Ramachandran (1967) on the case of an infinite number of variables $X_{j}$. The Ramachandran theorem says that if the forms $L_{1}, L_{2}$ are independent and both sequences $\left\{a_{j} b_{j}^{-1}\right\},\left\{a_{j}^{-1} b_{j}\right\}$ are bounded, the variables $X_{j}$ are normal.

Theorem 0.1. Let $X_{1}, \ldots X_{n}, \ldots$ be independent random variables. If the forms

$$
L_{1}=\sum_{1}^{\infty} a_{j} X_{j}, \quad L_{2}=\sum_{1}^{\infty} b_{j} X_{j}, \quad a_{j}, b_{j} \neq 0
$$

are independent and at least one of the sequences $\left\{a_{j} b_{j}^{-1}\right\},\left\{a_{j}^{-1} b_{j}\right\}$ is bounded, the random variables $X_{j}$ are normal.
2. Ghurye and Olkin (1962) proved a multivariant analogue of the Darmois Skitovich theorem. They considered linear statistics

$$
L_{1}=\sum_{1}^{n} A_{j} X_{j}, \quad L_{2}=\sum_{1}^{n} B_{j} X_{j}
$$

where now $X_{j}$ are $d$-dimensional independent random vectors and $A_{j}, B_{j}$ are nonsingular $d \times d$ real matrices. Ghurye and Olkin proved that the independence of $L_{1}, L_{2}$ implies the normality of the vectors $X_{j}$. Later Zinger (1979) proved the following multidimensional analogue of Ramachandran's theorem:

Let $X_{1}, \ldots X_{n}, \ldots$ be independent $d$-dimensional random vectors. Consider two linear statistics

$$
L_{1}=\sum_{1}^{\infty} A_{j} X_{j}, \quad L_{2}=\sum_{1}^{\infty} B_{j} X_{j}
$$

where $A_{j}, B_{j}$ are non-singular $d \times d$ matrices. If the forms $L_{1}, L_{2}$ are independent and both sequences $\left\{A_{j}^{-1} B_{j} A_{j}^{-1}\right\},\left\{A_{j} B_{j}^{-1}\right\}$ are bounded, the random vectors are normal.

This Zinger's result is a solution of a problem from the famous Kagan, Linnik, Rao book.

Theorem 0.2. Let $X_{1}, \ldots X_{n}, \ldots$ be independent d-dimensional random vectors. Consider two linear statistics

$$
L_{1}=\sum_{1}^{\infty} A_{j} X_{j}, \quad L_{2}=\sum_{1}^{\infty} B_{j} X_{j}
$$

where $A_{J}, B_{j}$ are non-singular $d \times d$ matrices. Let the forms $L_{1}, L_{2}$ are independent and let the sequences $\left\{A_{j}^{-1} B_{j} A_{j}^{-1}\right\},\left\{A_{j} B_{j}^{-1}\right\}$ satisfy the following conditions:

1. at least one of the sequences $\left\{A_{j}^{-1} B_{j} A_{j}^{-1}\right\},\left\{A_{j} B_{j}^{-1}\right\}$ is bounded;
2. If $\left\{C_{j}\right\}$ is the bounded sequence of the condition 1, the numerical sequence $\left\|C_{j}\right\| \cdot\left\|C_{j}^{-1}\right\|$ is bounded.

Then the random vectors $X_{j}$ are normal.

