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ABSTRACT
Video-on-demand in the Internet has become an immensely
popular service in recent years. But due to its high band-
width requirements and popularity, it is also a costly service
to provide. We consider the design and potential benefits of
peer-assisted video-on-demand, in which participating peers
assist the server in delivering VoD content. The assistance is
done in such a way that it provides the same user quality ex-
perience as pure client-server distribution. We focus on the
single-video approach, whereby a peer only redistributes a
video that it is currently watching.

Using a nine-month trace from a client-server VoD deploy-
ment for MSN Video, we assess what the 95 percentile server
bandwidth costs would have been if a peer-assisted employ-
ment had been instead used. We show that peer-assistance
can dramatically reduce server bandwidth costs, particularly
if peers prefetch content when there is spare upload capac-
ity in the system. We consider the impact of peer-assisted
VoD on the cross-traffic among ISPs. Although this traffic is
significant, if care is taken to localize the P2P traffic within
the ISPs, we can eliminate the ISP cross traffic while still
achieving important reductions in server bandwidth. We
also develop a simple analytical model which captures many
of the critical features of peer-assisted VoD, including its
operational modes.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Distributed
Systems

General Terms
Measurement, Performance
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1. INTRODUCTION
Video-on-demand (VoD, also called on-demand video stream-

ing) has become an extremely popular service in the Inter-
net. For example, YouTube, a video-sharing service which
streams its videos to users on-demand, has about 20 million
views a day with a total viewing time of over 10,000 years to
date [1]. Other major Internet VoD publishers include MSN
Video, Google Video, Yahoo Video, CNN, and a plethora of
copycat YouTube sites.

Most of the VoD being streamed over the Internet today
is encoded in the 200-400 kbps range. At these rates, ISPs
(or CDNs) typically charge video publishers 0.1 to 1.0 cent
per video minute. It has been estimated that YouTube pays
over 1 million dollars a month in bandwidth costs. We show
in this paper that the MSN VoD service has a billing rate
corresponding to 2.20 Gbps (as of December 2006). These
costs are expected to go up, as demand increases and higher-
quality videos (with rates up to 3 Mbps or more) are made
available.

Currently, none of the Internet VoD providers earn signif-
icant revenues from their services. Internet VoD providers
will likely attempt to monetize their services in the near fu-
ture using embedded video advertisements, subscriptions, or
pay-per-views (or some combination thereof). But given the
enormous costs associated with client-server distribution –
due both to the increasing video quality and to the enormous
demand – the revenues very possibly will not cover the cost
of providing the service. In other words, although VoD has
become one of the most popular Internet services today, the
service is, and will likely continue to be, unprofitable with
client-server distribution.

In this paper, we consider the design and potential bene-
fits of peer-assisted VoD. In peer-assisted VoD, there is still
a server (or server farm) which stores all of the publisher’s
videos and guarantees that users playback the video at the
playback rate without any quality degradation. But in peer-
assisted VoD, the peers that are viewing the publisher’s
videos also assist in redistributing the videos. Since peer-
assisted VoD can move a significant fraction of the uploading
from the server to the peers, it can potentially dramatically
reduce the publisher’s bandwidth costs.

There are two broad design approaches to peer-assisted
VoD. In one approach, which we refer to as the single video

approach, a peer only redistributes the video it is currently
watching; it does not redistribute video that it may have
watched and stored in the past. The single-video approach
is similar to a torrent in BitTorrent [11,12], in which all peers
in the torrent share exactly one file. In the second approach,



which we refer to as the multiple video approach, a peer can
redistribute a video that it previously viewed but is currently
not viewing. Compared with the multiple-video approach,
the single-video approach is simpler in the client and tracker
design, and involves a straightforward end-user policy. Our
focus in this paper is on the single-video approach, which
intuitively should provide good performance if a large frac-
tion of the requests are for a relatively small number of the
publisher’s videos. If a publisher has N videos and uses the
single-video approach, then the distribution problem essen-
tially becomes N sub-distribution problems, one for each
video.

In a peer-assisted VoD system, when the peers alone can-
not redistribute the video among each other, the server makes
up the difference, so that each peer receives the video at the
(encoded) playback rate. The server is only active when
the peers alone cannot satisfy the demand. When the peers
alone can satisfy the demand, not only is the server inactive,
but the peers can potentially prefetch video from each other
using the peers’ surplus bandwidth. This prefetching allows
the peers build a reservoir of video, which can be tapped
when the aggregate upload bandwidth of peers becomes less
than the demand across all peers. The contributions of this
paper are as follows:

• We collect a nine-month trace from the MSN Video
service. This data covers over 520 million streaming re-
quests for more than 59,000 videos. During this period,
MSN used a client-server deployment. We process this
data to extract many of the key characteristics of a
large-scale Internet VoD deployment. Particular at-
tention is given to the characteristics that are relevant
to a peer-assisted deployment. To our knowledge, this
paper presents the first measurement study of an on-
demand video streaming system in such a large scale.

• We present a simple theory for peer-assisted VoD. This
theory identifies three basic operating modes of peer-
assisted VoD system: the surplus mode, when the
aggregate upload bandwidth supply of the peers ex-
ceeds the aggregate bandwidth demand; the balanced
mode, when the bandwidth supply is in the vicinity of
the bandwidth demand; and the deficit mode, when
the bandwidth supply is less than the demand. The
model captures many of the essential features of peer-
assisted VoD. In particular, it shows that when a ser-
vice provider is operating in the surplus mode, it can
increase the quality of the videos without incurring sig-
nificant additional server bandwidth costs (using peer-
assisted distribution). However, when operating in the
deficit mode, server bandwidth costs increase linearly
with video bit rates. These economic considerations
dictate that the natural mode of operation for peer-
assisted VoD is in the balanced mode.

• For the single-video approach, we describe three natu-
ral prefetching policies for exploiting surplus peer up-
load capacity. These policies are no-prefetching, water-

leveling, and greedy. We show that they can signifi-
cantly reduce server bandwidth usage, with prefetch-
ing providing dramatic gains. Moreover, the prefetch-
ing policies perform close to a bound, and are therefore
nearly optimal.

• We use the nine-month MSN trace, which was col-

lected for a client-server deployment, to drive simula-
tions for peer-assisted deployments. Using this trace
simulation, we closely examine the impact of early peer
departures and user interactivity (e.g., pause/resume
and skipping content). The results show that if peer-
assisted distribution had been instead employed, sig-
nificant reductions in bandwidth costs would have re-
sulted. Furthermore, early departures and user inter-
activity do not substantially reduce these gains. For
example, the client-server bandwidth requirement (us-
ing the 95 percentile rule) for the month of December
2006 was 2.20 Gbps; if peer-assisted distribution had
been deployed, with the greedy prefetch policy, the
server bandwidth requirement could have potentially
been reduced to 79 Mbps.

• We also explore the impact of peer-assisted VoD on
ISPs. Indeed, peer-assisted VoD shifts the uploading
burden from the servers to the peers (as does BitTor-
rent). The P2P uploading in turn can generate sig-
nificant cross-ISP traffic. We examine an ISP-friendly
peer-assisted scheme, which localizes the P2P traffic
within ISPs (and hence generates no cross-ISP traf-
fic). Using the trace data, we show that their are still
significant server bandwidth cost reductions when the
peer-assisted VoD scheme is ISP friendly.

This paper is organized as follows. In Section 2 we de-
scribe the nine-month MSN trace and report on observa-
tions about the video popularity distribution, user demand
and upload resources, user interactivity and service evolu-
tion. In Section 3 we present a theory for peer-assisted
VoD, which exposes many of the fundamental issues in peer-
assisted VoD. In Section 4, we use the MSN trace data to
drive simulations of peer-assisted distribution schemes. Here
we examine the impact of user interactivity, the possible
gains with peer-assistance and prefetching, total costs using
the 95 percentile rule, and the impact of the most and least
popular videos on the total cost. In Section 5 we examine
the costs that peer-assisted VoD place on local ISPs and ex-
plore how these costs can be minimized. In Section 6 we
describe related work, and finally in Section 7 we conclude.

2. CHARACTERISTICS OF A LARGE SCALE
VOD SERVICE

We collected data from the popular MSN Video site for a
nine-month period, from April through December 2006. The
raw data captures all the activities at the MSN video site,
including live and on-demand streaming sessions for both
audio and video. We filtered out the audio and live ses-
sions, as the main focus of this study is on on-demand video
streaming. The resulting filtered trace contains in total over
520 million streaming requests for more than 59,000 video
files. All video streams were served from MSN servers (via a
CDN) to clients using RTSP, Microsoft’s HTTP streaming
protocol, or Media Server (MMS) protocol. (Peers did not
assist in the streaming during this time.)

In this section, we report observations from this data
set that shed insight on an eventual peer-assisted deploy-
ment for VoD. To our knowledge, this section presents the
first measurement study of a large-scale on-demand video
streaming system. In Sections 4-5, we will use the trace data
to explore the design and potential benefits of peer-assisted
VoD.



2.1 Trace Records
The MSN Video trace contains trace records, with each

record characterizing a portion of a streaming session, as de-
scribed below. Each trace record contains over 50 fields [2].
Using three field categories, we now summarize the fields
that are of interest in this study:

1. Client Information Fields: All streaming clients are
Windows Media Players (WMP). Each trace record
contains the player ID, version, and language; the pub-
lic IP address of the client host; the host web browser
and version (the MSN Video service is accessible through
its website); and the OS/version and CPU of the host
machine.

2. Video Content Fields: Each trace record includes the
video file name, the video file length (in seconds), and
the size of the file. From the video length and the file
size, we compute the average bitrate of each video.1

3. Streaming Fields: Each trace record includes the time
when the client establishes a connection to the server;
where in the video the client starts playback; and how
many seconds of data the client has played. It also
includes an indication of whether the playback is real-
time or fast-forward/backward. Note that although
Windows Media Service allows for a “fast caching”
mode, where data is streamed to clients faster than
playback rate (e.g. twice as fast as playback rate), this
mode is disabled in the MSN Video service. Hence, the
length of the client playback is equivalent to the length
of video streamed.

Each interactive operation (pause/resume, fast-forward,
fast-backward, and repositioning) generates a new trace record.
Hence, often there are multiple trace records from the same
player within the same streaming session.

2.2 Identifying Users and Streaming Sessions
For our analysis, we would like to be able to identify the

trace records that were generated by the same Windows
Media Player (WMP) (that is, generated by the same user).
As indicated above, each trace record includes a player ID,
which in principle can be used to identify the players. How-
ever, in our nine-month trace, only 7% of the trace records
include a useful player ID. This is because in the default
mode, a WMP sends an anonymous pseudo ID. It only sends
a useful player ID if the user voluntarily participates in the
quality feedback program.

In order to preserve the scale of the data set and not
discard 93% of the trace records unnecessarily, we use the
following method to classify the anonymous players. Each
trace record contains additional client information, includ-
ing the player’s host public IP address, WMP version/language,
OS/version/language, and the web browser/version. For
each record with an anonymous player ID, we hash the con-
catenation of this additional client information. We then
consider all records with the same hash as being generated

1This calculation will not work for Multi-Bit Rate (MBR)
videos, where each video file contains several independently
encoded streams at different quality level (thus bitrates).
Nevertheless, there are not many MBR videos on the MSN
Video site (less than 1%), so we simply filter out all the
requests for such videos.

from the same player. We refer to each such player as a hash-

identified player, whereas we refer to each non-anonymized
player as an ID-identified player. To verify that records from
different hashes indeed come from different players, we ex-
amine the distribution of the number of media files streamed
by an ID-identified player and the number streamed by a
hash-identified player. If these distributions are similar, we
can conclude that the hash-identified players indeed corre-
spond to unique players. Figure 1 shows that these two
distributions align very closely, validating this method for
classifying the anonymous players.2
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Figure 1: Video file access pattern (April 20)

Having now grouped the trace records by player, we now
further group the records by session. As mentioned previ-
ously, a single user-video session can generate more than
one trace record if the user interacts with the video dur-
ing playback. We define a streaming session as a series of
streaming requests from the same player to the same video
file, as long as the beginning time of one request is no more
than T seconds after the ending time of the previous request.
In this paper, we set T = 10s. From the original more than
520 million streaming requests, we obtain over 471 million
streaming sessions in total.

2.3 Video Popularity Distribution
The greater the locality of requests to a subset of the

videos, the greater the potential benefit for peer-assisted
streaming. In this subsection we examine the distribution
of video popularity in the trace. To this end, we pick the
three days in April 2006 which have the minimum, median,
and maximum amount of traffic in the month. The popular-
ity distributions are plotted in Figure 2. First observe that,
despite the traffic variation among the three days, the pop-
ularity distributions are quite similar. Second observe there
is indeed a high-degree of locality. Third observe that the
distribution is more skewed than a Zipf distribution. This
is likely due to the fact that on any given day, there are
several highly popular news and business clips, with each of
these clips having roughly the same popularity (explaining
why Figure 2 is almost flat for the ten most popular clips).

2.4 User Demand and Upload Resources
In order to further investigate the potential benefits of

peer-assisted VoD, we would like to determine the aggregate
upload resources of the participating peers, and compare the
aggregate upload resources with the aggregate user demand.

2Same users still could map to different hash identifiers, due
to DHCP, major software updates, etc. This, however, does
not affect our analysis in later sections, as we rely on hash
consistency during a short session, not across sessions at all.
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Figure 2: Video popularity distribution

Because the players do not report their upload bandwidths
to the media servers, the trace records do not explicitly in-
clude any information about client upload capacity. How-
ever, whenever a connection is established, the Windows
Media Server measures the download bandwidth from the
server to the client host. Figure 3 shows the distribution of
the measured download bandwidths. Windows Media Server
does not distinguish user download bandwidths greater than
3.5 Mbps; thus all measurements greater than 3.5 Mbps col-
lapse to a single point, giving the vertical line shown in
Figure 3.
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Figure 3: Cumulative distribution function (CDF)
of user download bandwidths

Table 1 provides a simple mapping between download and
upload bandwidths based on available DSL/Cable offerings.
From this table and from the measured upload bandwidths,
we infer the upload bandwidth for each user (ID-identified
and hash-identified) in the trace. We can also use this tech-
nique to estimate the distribution of user types that access
MSN Video. As shown in Table 1, over 50% of the MSN
Video users have residential broadband connections (DSL
or Cable), and 37% of the users have download rates in ex-
cess of 3.5 Mbps.

modem ISDN DSL1 DSL2 Cable Ethernet
downland 64 256 768 1500 3000 > 3000
upload 64 256 128 384 768/384 768

share (%) 2.8 4.3 14.3 23.3 18.0 37.3

Table 1: User bandwidth breakdown (kbps)

Note that we are making very conservative assumptions
about users’ upload bandwidth. For instance, many users
with download bandwidths greater than 3.5 Mbps are likely
on university and corporate networks and therefore have
much higher upload bandwidths than the 768 kbps assumed
here. On the other hand, a benign peer-assisted VoD sys-
tem may not want to fully exploit the available bandwidth
of the high capacity users, as doing so might deter their
participation.

The healthiness of any peer-assisted delivery system re-
lies critically on users’ willingness to contribute their upload
bandwidths. Incentive can be built into the delivery mech-
anism itself, as in BitTorrent, but not necessarily have to.
It can be provided through other means. For example, con-
tent providers may offer users with options, where they can
choose not to act as peers and get content directly from a
server, but at low quality, or they can opt for peer-assistance
and get much higher quality. Providers can also make avail-
able some premium content for free or reduce the amount of
advertisements users have to watch, to encourage the par-
ticipation in peer-assistance. Moreover, as will become clear
later, the peak server bandwidth consumption matters most
to content providers. Hence, they might also offer dynamic
incentives (e.g. Microsoft Points, which can be used to pur-
chase music, videos, and games, etc.) to encourage more
sharing during peak hours. As long as peer-assistance has
limited interference with users’ other networking activities,
we believe users in general will not object to share, given
the fact that they are obtaining valuable services, as well as
direct values in certain scenarios.
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Figure 4: Aggregate user demand and upload re-
sources (April 18)

Having developed a reasonable heuristic for estimating the
upload bandwidth of a user, we can determine from the trace
records the aggregate upload bandwidth and aggregate de-
mand at the server for any instant of time. Figure 4 presents
the evolution of the aggregate demand and the aggregate up-
load capacity for a 24-hour period on April 18 (the day with
maximum traffic in April). As we would expect, the demand
greatly fluctuates during the day, with relatively little de-
mand placed on the servers in the early morning. However,
the large margin by which the total upload resources exceeds
the user demand is beyond expectation, suggesting that a
peer-assisted VoD solution might perform very well.

2.5 User Interactivity
When a user selects a video for streaming, the user does



not necessarily continuously watch the video from beginning
to end. The user may quit watching it before completion,
may pause and then resume, may skip segments of the video,
may fastforward the video, and so on. It is important to
understand this interactivity while considering peer-assisted
solutions for VoD. To this end, we examine user interactivity
in the entire month of April 2006.
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Figure 5: User behavior (April)

Figure 5(a) shows the percentage of streaming sessions
that view more than 60%, 80%, or 100% of the video for
different video lengths. We first observe that users generally
view large fraction of short videos, but less than 20% of the
users view more than 60% of the video for videos longer
than 30 minutes. We will see in Section 4 that the fraction
of sessions that start at the beginning of a video and have no
interactivity (but may quit before the end of the video) is an
important factor in the potential success of a peer-assisted
VoD system. Figure 5(b) shows this fraction for different
video lengths. We see that, generally, a large fraction of the
users view videos without interactivity. For shorter videos
(under 30 minutes), about 80% of the sessions do not have
interactivity; for the longer videos, about 60% do not have
interactivity.3

2.6 Service Evolution
VoD over the Internet is in its infancy and will certainly

evolve over the upcoming years. In designing a new archi-
tecture for VoD applications, we should bear in mind major
application trends. The year 2006 was a year of intense ac-
tivity in the Internet VoD space, with major players such as
YouTube, Google Video and MSN serving tens of thousands

3There are no videos of length 30∼48 mins. Also note that
a large number of videos are not very longer, typically be-
tween 5 to 15 minutes. When full length episodes grow more
popular, user interactivities are likely to increase [3].

of years of content. Over the upcoming years, we not only
expect aggregate viewing hours to increase, but also video
quality to increase (by increasing the bit rate of the videos).
We now explore the growth in demand and video bit rate
that occurred during the nine-month period of this study.
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Figure 6 plots the distribution of the bitrates for the MSN
requested videos for two months: April 2006 and December
2006. In April 2006, the majority of the requests were for
videos encoded at 200 kbps. Nine months later, the majority
of the requests are for videos encoded at 320 kbps. This
implies that MSN Video increased the bit rate of its videos
by over 50% during the nine-month period. In the upcoming
years, it is likely that video bit rates will continue to increase
at a rate faster than average peer upload bandwidths. This
would have the effect of bringing the two curves in Figure 4
closer together. We will see in Section 3 that when these two
curves are close, particular care must be taken in designing
a peer-assisted VoD system.

April December up (%)

total requests 41.1 M 64.7 M 57.4
unique users 9.03 M 12.02 M 33.1

Table 2: Traffic evolution

Perhaps partially due to the service quality upgrade, to-
gether with the general trend that more users are spending
more time watching Internet videos, the amount of traffic
served by MSN Video servers increased substantially over
the period, as shown in Table 2.

2.7 95 Percentile Rule
Typically today an ISP (or a CDN) bills a customer (such

as a VoD provider) for bandwidth usage using the so called
95 percentile rule. In this paper we will use this rule as the
basic metric for measuring the cost to the service provider.
The 95 percentile rule is in essence a rule that charges the
service provider each month according to the service provider’s
peak bandwidth usage, but neglecting in the calculation
“anomalous periods” during which bandwidth usage is un-
usually high. Specifically, the 95 percentile rule works as
follows. The average server bandwidth is measured every
5 minutes within each month. These bandwidth measure-
ments over a month form a set of values, and the 95 per-
centile value is the smallest number that is greater than 95%
of the values in the set.
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Figure 7 shows the 95 percentile value for two different
months: April 2006 and December 2006. Using this rule,
we see that the bandwidth cost increases from 1.23 Gbps
in April to 2.20 Gbps in December. Hence, because of the
video quality upgrade and the increased popularity of the
service, the operational cost is increased by 78.5%. Looking
forward, when more users spend even more time watching
Internet videos, they are going to demand longer videos and
better quality. Providing such services to meet the demand
with a client-server architecture is going to be very costly
(if not prohibitive).

3. THEORY OF PEER-ASSISTED VOD
In this section we develop simple mathematical models for

peer-assisted VoD. The purpose of these models is to gain
broad insights into the design of peer-assisted VoD. In the
subsequent sections, we will combine the modeling insights
with trace-based simulations, enabling us to assess the full
potential of P2P solutions.

We focus on a single on-demand video of rate r bps. Users
watching the video will assist in the re-distribution of the
video to other users. We classify users according to their
upload link bandwidths. In particular, let M denote the
number of user types, where a type m user has upload link
bandwidth wm. Users arrive at the system in a Poisson
process with parameter λ. Denote by pm the probability
that an arrival is a type m user. Using the property of the
compound Poisson process, the above user arrival model is
the same as if the m user types arrive as independent Poisson
processes with parameters pmλ, 1 ≤ m ≤ M . Naturally,
the average upload bandwidth of an arriving user is µ =
P

pmwm. Because a user may quit the video before it ends,
skip portions of the video, pause the video, or perform other
interactive actions, the time during which a user remains in
the system is random. Denote a user’s expected sojourn
time in the system as σ.4

It follows from Little’s law that in steady state the ex-
pected number of type m users in the system is given by
ρm = pmλσ. Thus, in steady state, the average demand is
D = r

P

ρm = rλσ and the average supply S =
P

wmρm =
µλσ. We say that the system is in the surplus mode if S > D;
in the deficit mode if S < D; and in the balanced mode if

4The model is independent of actual collected traces and
thus allows us obtain broad insights.

S ≈ D. Note that the system is in the surplus mode if µ > r,
and in the deficit mode if µ < r. It is important to note that
even if a system is in surplus mode, at any given instant of
time, the server may need to be active and supply video to
peers. This is because (i) although on average the system is
in the surplus mode, due to peer churn, at a given instant of
time the supply may become less than the demand; and (ii)
it may not be possible to use all of the supply bandwidth
at any given instant of time. The latter point will become
more clear in the next subsection.5

3.1 No-Prefetching Policy
Using this model, we want to explore the potential for

peer-assisted VoD. As we will see, a peer can redistribute
video to other peers in many different ways. We first con-
sider the simplest scheme, which we call the no-prefetching

policy. Under this policy, each user downloads content at the
playback rate (that is, at rate r) and does not prefetch con-
tent for future needs. At any given instant of time, the user
may be downloading from multiple peers as well as from the
server. In order to see the forest through the trees and un-
derstand the essential features of peer-assisted VoD, for the
remainder of this section we assume that each user views
the video without gaps. (As shown in Figure 5, this as-
sumption is consistent with the behavior of most users.) In
particular, in this section we assume that each user watches
the video continuously from the beginning of the video un-
til some stopping point, and then leaves the system. The
stopping point may be the end of the video or earlier.

Suppose at a particularly instant of time there are n users
in the system. Order these n users so that user n is the most
recent to arrive, user n − 1 is the next most recent, and so
on. Thus user 1 has been in the system the longest. Let uj ,
j = 1, . . . , n, be the upload bandwidth of the jth user and
its probability be p(uj). Recall that user j is of type m with
probability pm, so p(uj = wm) = pm. Let the state of the
system be (u1, u2, · · · , un) and the rate required from the
server be s(u1, u2, · · · , un). Since there is no prefetching,
the demand of user 1 can only be satisfied by the server,
which is the video rate r. Then, the demand of user 2 will
be satisfied first by user 1 and then the server if u1 is not
sufficient. The demand of user 3 is satisfied first by user 1,
user 2 and then the server, and so on. Thus

• For n = 1, we have s(u1) = r.

• For n = 2, we have s(u1, u2) = r + max(0, r − u1).

In general, for a given state, the rate required from the server
is

s(u1, u2, · · · , un) = max
1≤j≤n

(r+max(0, (j−1)r−

j−1
X

i=1

ui)). (1)

For this no-prefetch policy, it can be shown that the av-
erage additional server rate needed is given by

s =
X

n

(λσ)n

n!
e−λT

X

uj

p(u1, u2, . . . , un)s(u1, u2, · · · , un),

(2)

5The concept of operating modes here is similar to the def-
inition of resource index in [15]. But different from live
streaming, VoD is unique in prefetching, which we elabo-
rate later in the section.



where

p(u1, u2, · · · , un) =
Y

1≤j≤n

p(uj).

Although this result is not in closed form, the result can
be used to rapidly and accurately determine s using Monte
Carlo summation. In the Monte Carlo summation tech-
nique, we don’t need to simulate the user arrivals and de-
partures and wait for the system to enter steady state, as
typically the case in discrete-event simulation. Instead, we
simply generate random n and uj ’s, and repeatedly evaluate
s using the expression (2).

Detailed analysis is reported in our early work [4]. Here,
we briefly summarize the key observations. First, when the
supply S is greater than the demand D by a substantial
margin (i.e., there is sufficient average surplus in the sys-
tem), the server rate is very close to the video bit rate r and
does not increase as the system scales (i.e., as the number
of users grows). Second, even with little average surplus,
the simple no-prefetching approach can greatly reduce the
server rate. Third, when operating in the surplus mode, the
service provider can increase the quality of the video (that is,
increase r) without incurring significant increases in average
server bandwidth even as the system scales to a large num-

ber of concurrent users. At bit rates below 1.0 Mbps, each
bit rate increment brings noticeable difference in perceived
quality. Laws of competitive economics dictate that the ser-
vice provider should therefore increase service quality when
in the surplus mode, thereby driving the operation of the
system into the balanced mode. Forth, when the supply S is
less than the demand D by a substantial margin, the server
rate almost equals to D−S. This means when the system is
in this high-deficit mode, users do not need to adopt sophis-
ticated prefetching approaches. Fifth, as the system moves
from the balanced mode to the deficit mode, the server re-
sources increases dramatically, particularly when there is a
large number of users. Finally, the no-prefetching policy
does not perform well in the balanced mode, where we ex-
pect most Internet VoD systems to operate in the future
due to basic economic motivations. This unsatisfactory per-
formance will be particularly pronounced when the average
number of users watching the video is small. This motivates
us to consider more sophisticated prefetching policies.

3.2 Bandwidth Allocation Policies
for Prefetching

The non-prefetching policy described in the previous sub-
section never uses more upload capacity than necessary to
meet the instantaneous demand of the peers. But when
the instantaneous aggregate upload capacity exceeds the in-
stantaneous aggregate demand, there is typically surplus
upload capacity beyond what is needed to satisfy the de-
mand. This surplus upload capacity can be used to dis-
tribute to the peers future content, creating a reservoir of
prefetched content that can be exploited when the system
shifts into a deficit state. Such prefetching schemes are par-
ticularly attractive when the system operates in the bal-
anced mode, where the system fluctuates between surplus
and deficit states.

The primary goal of peer-assisted VoD is to save band-
width costs at the server. Thus, in our prefetch schemes,
the sever never sends prefetched content, and is only used
to fulfill the current demand. Also, when a user has a reser-
voir of prefetched content, it can drain its reservoir before it

requests new data. Hence, the demand of each user varies
depending on its buffer level, as opposed to the constant de-
mand with the no-prefetching policy. Also observe, that if a
peer succeeds to prefetch to the end of the video, then this
peer’s demand becomes zero and stops receiving prefetched
content.

When allowing for prefetching, an important question arises
in how to allocate the instantaneous surplus upload capac-
ity among the peers in the system. Should we devote all the
surplus capacity to one peer, rapidly building a reservoir
for that peer while neglecting the other peers? Or should
we try to equally allocate the surplus bandwidth, building
small reservoirs of content at each of the peers? There are
actually infinitely many allocation schemes. In this section,
we consider two schemes which, intuitively, should perform
well. In fact, at the end of this section we show that the two
schemes are nearly optimal.

Our first allocation scheme is the water-leveling policy,
which aims to equalize the reservoir levels of prefetched con-
tent across all the peers. Thus, when there is aggregate sur-
plus capacity, if one peer has less prefetched content than
the others (because, for example, it has just arrived at the
system), then to the extent possible, the aggregate surplus
capacity is channeled to this peer. Once the reservoir level
of this peer reaches that of the other peers, then an attempt
is made to equally distribute the surplus capacity among
all the peers, thereby maintaining uniform reservoir levels
across all peers.

Alternatively, we have also considered a greedy policy,
where each user simply dedicates its remaining upload band-
width to the next user right after itself. The greedy policy
works in the following two steps: First, all users are scanned
through to determine the server rate that is needed to satisfy
the real-time demands. During this process, the remaining
bandwidth at each user is recorded. Second, each user is
scanned through again and allocates as much bandwidth as
possible to the subsequent user. Please refer to our early
work [4] for the details of the two policies.

3.3 Lower Bound
We have just described two allocation policies for prefetch-

ing: water-leveling and greedy. Ideally, we would like to
identify the optimal policy, that is, the dynamic allocation
policy that minimizes the average server bandwidth (or bet-
ter yet, the 95% level at the server). Alas, this is a difficult
scheduling problem. Instead, we determine a lower bound
for the average server bandwidth and investigate how close
water-leveling and greedy are to the lower bound.

We first point out an obvious lower bound. Recall that
S is the average supply and D is the average demand. If
D > S, then on average the server must at least make up
the difference, that is, the average server rate is at least
max(D −S, 0). This trivial bound turns out to be too loose
to be useful in most circumstances.

We now outline how a more insightful lower bound can be
obtained. The basic idea is to remove the ordering restric-
tions from the allocation policies. That is, we suppose that
a peer can feed content to any peer, not just to the peers
that arrived after it. In this modified system, when there are
n peers in the system with upload capacities u1, u2, . . . , un,
then the entire aggregate capacity u1 + u2 + · · · + un can
be used, irrespective of arrival ordering of the peers. It is
clear that water-leveling is optimal for this modified sys-



tem. Thus, this modified system, which always makes full
use of the aggregate upload capacity and which allocates
bandwidth according to the water-leveling policy, will have
lower average server bandwidth than any prefetch policy for
the original system. If a prefetching policy is close to this
lower bound, then it is nearly optimal.
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Figure 8: Comparison of three prefetching policies

3.4 Simulation Results
We developed a discrete-event simulator to study the per-

formance of the water-leveling and greedy policies and to
compare those policies to the no-prefetching policy and the
lower bound. We focus on the balanced mode, as that is
where there is the greatest potential for improvement with
the prefetch policies. It is also where we expect VoD systems
to operate in the future.

We fix the user arrival rate at λ = 1 and vary the supply-
demand ratio between 1/1.4 to 1.4. Figure 8 shows the
simulation results. We make the following key observations:

• When the system operates in the balanced mode, prefetch-
ing can provide significant improvements, reducing server
bandwidth requirements by a factor of three or more.
Note that the domain of the balanced mode becomes
wide for systems with a relatively small number of
users.

• The greedy policy does slightly better than the water-
leveling policy.

• Both the greedy and water-leveling policies are very
close to the lower bound. Thus, both of these policies
are nearly optimal.

In the subsequent section, we will use the results of this
model to guide the trace simulation study.

4. REAL-WORLD CASE STUDY
The previous section presented a theoretical model that

exposed many of the fundamental issues of peer-assisted
VoD. In this section, we use the MSN Video trace data de-
scribed in Section 2 to gain critical complementary insights.
Although the traces were generated from a client-server de-
ployment, we use them here to drive simulations of peer-
assisted VoD.

4.1 Trace Analysis for the Two Most Popular
Videos

We are particularly interested in the impact of early de-
partures and peer interactivity (skipping video segments) on
the performance of peer-assisted VoD and prefetching poli-
cies. We consider three cases in our trace analysis: (i) all

users watch the entire video without departing early and
without interactivity (that is, re-positioning in the content);
(ii) preserving early departures but still ignoring interactiv-
ity; and (iii) preserving the original trace with both early
departures and user interactivity.

We first consider case (i), that is, all users watch the entire
video. To this end, we modify the trace data so that each
arriving user stays in the system for the length of the video,
and disregard all skipping request records that do not start
from the beginning of the video. We consider the two most
popular videos in April 2006. Figure 9 shows the server
resources on a day-by-day basis for the month of April. The
resources used by the pure client-server deployment is shown
as the no P2P curve. Because the server rate is proportional
to the number of users watching the video, the no-P2P curve
also reflects the user demand for the video over time.

The request patterns on these two videos are strikingly
different. The most popular video, which we call the gold

stream, was released on April 5 and quickly attracted a large
number of requests. However, the demand for this video de-
clined very quickly, with only occasional views 5 days after
it was released. The second most popular video, the silver

stream, was popular throughout the entire month. We ob-
serve that the demand for this video went through a daily
peak and valley cycle. Interestingly, the demand also has
a 7-day cycle as well, where the valley matches nicely with
weekend times.

We use these traces to drive the simulation and study the
performance of the proposed policies. Because our model in
Section 3 indicated that the greedy policy performs better
than the water-leveling policy, and is generally close to the
lower bound, we focus here on the greedy policy for the peer-
assisted deployments. In Figure 9, we plot the server rate
with peer assistance for two cases: at the current quality
level and at 3× the current quality level. The 3× video rate
pushes the system from the surplus mode into the deficit
mode.
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Figure 9: Dynamics of required server resources (all
users watch entire video)

We make the following observations: First, if a peer-
assisted distribution system had been used instead of the
client-server system, the server rate would have been dra-
matically reduced. In fact, Figure 9 shows a potential 1000-
fold server rate reduction! Second, for the P2P deployment
at the current quality level, typically no server resources are
needed. The occasional traffic at the server occurs when the
demand for the video enters valleys, which correspond to
small numbers of concurrent users in the system. This con-
forms with our analysis. When the number of concurrent
users is small, there is greater (normalized) variance in the
upload capacity, so that peer-assisted VoD is more likely to



run into a temporary deficit states that require server par-
ticipation. Third, for these two videos, MSN Video is clearly
operating in the surplus mode due to the relatively low bi-
trates of the videos. When a peer-assisted VoD solution is
deployed, we can easily offer much higher streaming quality
(e.g. tripling the bitrate) and still trim the server rate sig-
nificantly. Finally, peer-assistance can be beneficial for both
flash crowd (gold stream) and long-lasting (silver stream)
videos.

gold stream silver stream
serv. (Mbps) N.P. greedy bound N.P. greedy bound

client-server 41.1 66.8

cur. qual. .23 .18 .17 .26 0 0
3x qual. 12.5 11.9 11.9 14.5 14.2 14.1

Table 3: 95 percentile rule for client-server and peer-
assistance (N.P. no-prefetching).

Table 3 presents the performance of peer-assisted VoD
in the context of the 95 percentile rule. Results are given
for the current quality scaling (surplus mode) and the 3×
bit-rate scaling (deficit mode). We observe dramatic im-
provements going from client-server to peer-assistance with
no-prefetching, and then further improvements going from
no-prefetching to the greedy prefetching policy in the deficit
mode. The performance of the greedy policy is also very
close to the bound. Note that the server bandwidths of the
gold stream are actually less than those of the silver stream,
because there was little demand 5 days after the release of
the gold stream.

4.2 Impact of Early Departures
In this subsection, we again use the April traces but now

preserve early departures when they occur. Hence, the du-
ration of each session now varies, as opposed to all sessions
having the same video length as in the previous subsection.
So as not to introduce too many factors at once, we still
disregard user interactivity in this subsection.

We also focus on the balanced mode in this subsection. By
scaling the video bitrate, we can easily drive the system from
the surplus mode, through the balanced mode, to the deficit
mode. Using the silver stream as an example, Table 4 shows
server rates, averaged over the entire month of April, for
both the no-prefetching and the greedy prefetching policies.
From this table we observe that – even with early departures
– peer-assistance can provide a dramatic improvement in
performance. We also observe that prefetching continues to
provide improvements over non-prefetching, particularly in
the balanced mode (scaling 1.8 to 2.6).

Bitrate scaling 1.0 1.4 1.8 2.2 2.6 3.0

Client-server 36.0 50.4 64.8 79.2 93.7 108.1

No-prefetching .26 .40 .60 1.01 2.55 7.60
Greedy 0 .01 .18 .54 2.09 7.19
Lower bound 0 0 0 .22 1.81 7.13

Table 4: Server rates (in Mbps) under different sys-
tem modes with early departures

4.3 Impact of User Interactivity
As described in Section 2, user interactivity is not un-

common in Internet VoD, particularly for long videos. For
example, we saw that for videos over 30 minutes in length,
roughly 40% of sessions contained some interactivity. This
subsection, we assess the impact of interactivity on peer-
assisted VoD.

When there is user interactivity, a user might have holes
in its buffer; thus a user may not be capable of sharing
all content up to its current playback point. It is possible
to keep track of all buffer segments at all users, and simu-
late the system based on the exact buffer status; but such
simulation would be computationally demanding and may
even become prohibitive, given the size of our data set. In-
stead, we choose to examine two extreme approaches, which
intuitively should serve as good bounds for the actual per-
formance. The first approach, which we refer to as the con-

servative approach, sets the user upload bandwidth to zero
after interactivity. As such, since a modified user no longer
serves content after interactivity, the holes in its buffer will
not matter at all. The second approach, which we refer to
as the optimistic approach, simply assumes there is no hole
in the user’s buffer even after interactivity and therefore the
user can upload any content being requested. Clearly, the
actual performance will lie between these two bounds.

Using the traffic on April 18 as an example, we plot the
total available user upload bandwidth corresponding to both
approaches in Figure 10. (Note that two out of the three
curves here are the same as those in Figure 4.) As the
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Figure 10: User demand and upload resources
(April 18)

total available bandwidth gap between the two approaches
is not significant, intuitively, the loss of upload bandwidth
due to interactivity is not significant. Thus, the results of
the previous subsection (accounting for early departures) are
also respresentative for interactivity.

4.4 All Things Considered
Having explored the impact of early departures and user

interactivity, we now investigate the total server bandwidth
cost for the month of April 2006. During this month, MSN
made available more than 12,000 videos. The multiplexing
effect across the 12,000+ videos is of interest, as one video’s
peak might happen to be another video’s valley. Here we
use the 95 percentile criterion to meaure the server band-
width cost. We once again examine three deployment sce-
narios: client server; using P2P without increasing quality:



and using P2P with 3 times quality. For each of the P2P
deployments, we use the greedy prefetching policy.
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Figure 11 shows the cumulative distribution of the five-
minute average bandwidths for the month of April using all
12,000+ videos. The results from both the conservative and
optimistic approaches are presented. We omit the curve for
the optimistic peer-assisted approach at the current quality
level, as it aligns very closely with the curve of the conserva-
tive approach. The savings using the 95 percentile rule are
summarized in Table 5.

consv. approach opt. approach
serv. rate saving (%) serv. rate saving (%)

Client-server (Gbps) 1.23

cur. qual. (Mbps) 37 97.0 33 97.3
3x qual. (Mbps) 770 37.6 636 48.5

Table 5: 95 percentiles for the month of April 2006

By using peer assistance, even under very conservative
assumptions (the conservative approach), the server band-
width can potentially be reduced by 97.0% at current qual-
ity level. Alternatively, peer-assisted solution can triple the
video rate (with a corresponding improvement in quality)
and still trim the server bandwidth by 37.6%.

It is also interesting to examine the contribution of indi-
vidual videos in the final server bandwidth costs. To this
end, we rank the 12, 000+ videos by their popularity and
then classify them into 4 groups: 1) group A contains video
1-10; 2) group B video 11-100; 3) group C video 101-1000;
and 4) group D the rest 11, 000+ videos. We provide the
95 percentile value for each group in Table 6. We make the

serv. rate (Mbps) # of videos no P2P cur. qual. 3x qual.

group A (1-10) 10 295 0.7 148
group B (11-100) 90 523 3.3 296
group C (101-1000) 900 523 16.3 331
group D (1000+) 11396 76 21.3 112

Table 6: Server bandwidth cost breakdown across
videos

following observations:

• The top 10 videos contribute significantly to the frac-
tion of server bandwidth cost under the pure client-
server model, but much less so with peer-assistance.

This essentially echoes the well-known scalability of
peer-to-peer applications: the more popular the con-
tent is, the easier it is to distribute with peer assis-
tance.

• The top 100 videos account for more than half of the
server bandwidth cost for client-server distribution.
There are again significant gains when using peers to
offset the server load. Nevertheless, it is not sufficient
to only deal with these top 100 videos, which leads to
the next point.

• The videos in group C also use a large portion of the
server bandwidth, suggesting that a large number of
videos offered by MSN Video are very popular.

• The gain of peer-assisted VoD diminishes for the un-
popular videos. For example, when we triple the qual-
ity of all videos in group D, the proportional server
bandwidth increment is still quite significant even with
peer-assistance. Thus we can conclude that it is much
simpler (in terms of system design and maintenance)
to rely on the pure client-server model to delivery such
videos.

Note that the sum of any two values in the table does not

have an accurate meaning, due to the 95 percentile rule.
For instance, the 95 percentile value for the top 100 videos
(not using P2P) is 709 Mbps, which is much smaller than the
sum of the corresponding values from group A and group B. .
Nevertheless, this breakdown into 4 groups offers reasonable
relative comparison and important insights.

4.5 Service Cost Evolution
Finally, we examine the impact of service evolution on

peer-assisted VoD. As described in Section 2, from April to
December, the server bandwidth cost increased by 78.5%
for the client-server deployment due to the video quality
upgrade and the increased popularity of the service. Ta-
ble 7 shows that if a peer-assisted VoD solution had been
instead deployed between April and December, then the
server bandwidth bill of December could have potentially
been trimmed by 93.6%, compared to that of April.

client-server VoD peer-assisted VoD savings (%)

April 1.23 Gbps 36.9 Mbps 97.0
December 2.2 Gbps 79.4 Mbps 96.4

Table 7: Server costs for April and December

5. THE IMPACT OF PEER-ASSISTANCE ON
INTERNET SERVICE PROVIDERS

Up until this point, we have described peer-assisted VoD
purely from the perspective of content providers. The main
objective was to maximally utilize participating peers’ up-
load resources so as to reduce the server bandwidth costs.
However, when peers are sending large amounts of data to
each other, much of this data may go from one Internet
Service Provider (ISP) to another and in turn incur non-
negligible costs for the ISPs. In this section, we take the
concern of ISPs into consideration and explore how peer-
assisted VoD can strike a balance between the conflicting
interests of reducing the VoD provider’s server cost and re-
ducing the P2P cross traffic among ISPs.



5.1 Economics of ISP Relationships
The Internet consists of thousands of ISPs, which oper-

ate at very different scales and serve very different roles.
Some ISPs provide Internet access to end-users and busi-
nesses, while others provide access to ISPs themselves. The
relationships between ISPs can be summarized into 3 cat-
egories [5]: 1) transit relationship, which refers to one ISP
purchasing Internet access from another ISP and paying for
the bandwidth usage. This is also called customer-provider
relationship; 2) sibling relationship, which refers to the inter-
connection among several ISPs belonging to the same orga-
nization. Even though each ISP might be managed sepa-
rately from the perspective of network administration, traf-
fic exchange among them does not involve any payment;
and 3) peering relationship, which refers to ISPs pairing with
each other. Peering ISPs can exchange traffic directly, which
would otherwise have to go through their providers. This
is a common relationship adopted to lower ISPs’ payments
to their own providers. To a certain extent, the traffic ex-
changed between two peering ISPs is free. However, when
the traffic becomes highly asymmetric, one party will start
charging the other based on bandwidth usage [6].

Based on the ISP relationships, ISPs can be grouped to-
gether to form economic entities, whereby no payment is in-
volved for traffic within an entity but traffic crossing entity
boundaries does incur payment. Based on the sibling and
peering relationships, such economic entities can be formed
at two levels: 1) sibling entity includes all ISPs that are
siblings to each other; and 2) peering entity includes not
only all siblings, but also all ISPs that are peering with each
other. Note that a peering relationship is in general not
transitive; however, in peer-assisted VoD, it’s reasonable to
assume that data can flow between two ISPs without direct
peering relationship, as long as there exists a third party ISP
which peers with both of these two ISPs. This is because all
peers in the third party ISP can essentially help to tunnel
the traffic.

5.2 Without ISP-Friendly Peer-Assisted VoD
When a peer-assisted VoD solution is deployed without

considering the economics of ISPs, intuitively, there will be a
significant amount of traffic crossing entity boundaries. We
now use the MSN Video trace to evaluate the potential costs
of peer-assisted VoD to ISPs. Each trace record contains
the public IP addresses of peers, which can be mapped to
ISPs using tools like the ASFinder in the CoralReef suite [7].
Then, based on an inferred AS relationships dataset [8], we
can group ISPs into economic entities. Again, there are
two levels of entities: sibling entities and peering entities.
To keep things simple, we adopt the following approach to
estimate the traffic crossing entity boundaries. For each
user, we categorize into the classes the peers from which
the user receives content: 1) from peers within the same
entity; and 2) from peers from other entities. We assume,
at any time, the ratio of traffic from these two classes is
equal to the ratio of upload bandwidths for these two classes.
Although not an exact measurement of the crossing entity
traffic, we believe this yields a good estimate when peers
are randomly paired together, which is a common practice
in many deployed peer-to-peer systems.

Figure 12, shows the percentages of traffic contained within
entities, as well as those crossing entity boundaries. Clearly,
we can see that the majority of the P2P traffic is actually

crossing entity boundaries. This implies that a peer-assisted
VoD solution might greatly increase the ISPs’ costs, if de-
ployed without any regard for the ISPs. Importantly, we
observe that the amount of cross traffic is reduced signif-
icantly when the sizes of entities increase. Note that the
cross traffic and contained traffic do not add up to 100%, as
a tiny portion is coming from the server.
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Figure 12: Cross traffic without ISP-friendly peer-
assisted VoD

5.3 Pure ISP-Friendly Peer-Assisted VoD
We have just examined the impact of peer-assisted VoD

on ISPs, when the solution is solely focused on minimizing
the bandwidth costs of the content providers. Now, we con-
sider the other extreme, where we restrict the P2P traffic to
be contained within entity boundaries. We refer to this ap-
proach as ISP-friendly peer-assisted VoD. In this scenario,
due to the rigid entity partitioning, the distribution of one
video becomes several separate distributions, one for each
entity watching the video. Using the silver stream as an ex-
ample, with either sibling or peering entity partitioning, we
observe more than 5, 000 distinct distributions.

Intuitively, when an entity contains few peers, the sharing
becomes more difficult as well, and the server bandwidth
is increased accordingly. Table 8 shows the server band-
width costs when peers never share across entity bound-
aries. Compared to the scenario where the ISP issue is com-
pletely ignored (Figure 12), the savings to the ISPs are sig-
nificant. Nevertheless, compared to the client-server model,
ISP-friendly peer-assistance still provides more than 50%
savings, which is surprisingly good. This result also suggests
that the inherent ISP clustering among the users justifies ef-
forts for further exploration.

no P2P sibling partition peering partition

silver 39.0 19.6 15.8
top 10 295.2 90.3 75.1

Table 8: Server bandwidth (in Mbps) in an ISP-
optimized scenario

For practical peer-assisted VoD, it is important to strike
a balance between these two extremes. In doing so, deploy-
ments will hopefully provide significant reductions in band-
width costs to content providers without generating unac-
ceptable levels of traffic across ISP boundaries.

Finally, we point out that the inferred AS relationships
from CAIDA [10], which we used in this study, may be very
conservative. For instance, we examined the following two
ISPs with AS numbers: AS3598 and AS8075. The inferred



relationship between them is classified as the customer-provider
relationship. Given that, peers from these ISPs will be sepa-
rated into two different entities during our above evaluation.
However, these two ISPs both belong to Microsoft Corpo-
ration, and it is likely no payment is involved for the traffic
exchanged between them. Historically, the inference of AS
relationships has been conservative [9], which is largely due
to the fact that ISPs are unwilling to share their sibling and
peering relationships. With peer-assisted VoD looming on
the horizon, hopefully ISPs will be motivated to share their
sibling and peering information so that truly ISP-friendly
peer-assisted VoD solutions can eventually prevail.

6. RELATED WORK
Peer-assisted content delivery has attracted many research

efforts, covering several application areas: file distribution,
live streaming and on-demand streaming.

The popular peer-assisted protocol BitTorrent [11] has
been the focus of several recent studies that address the per-
formance of its underlining protocol. Qiu and Srikant [14]
developed a fluid model to obtain analytical insights. Bharambe
et al. [13] evaluated BitTorrent performance through exten-
sive simulations. Legout et al. [12] have shown BitTorrent to
be close to optimal under a variety of conditions. Whereas
peer-assisted file distribution is now fairly understood, peer-
assisted on-demand streaming is still an emerging area.

In contrast with peer-assisted file distribution and peer-
assisted live streaming, both of which have already enjoyed
large-scale deployments, peer-assisted VoD is still in its in-
fancy. To our knowledge, there is no documented deploy-
ment of a large-scale VoD system to date. There has, how-
ever, been a number of proposals for peer-assisted VoD. Cui
et al. [20] proposed oStream, which extends application-layer
multicast to include buffers in the peer nodes to support
VoD. Hamra et al. [19] proposed a tree based approach,
where new incoming peers are connected to the nodes in the
tree based on their bandwidth availability. Annapureddy et
al. [22] studied using network coding in the VoD scenario. Li
proposed PeerStreaming [21] to utilize erasure resilient cod-
ing (ERC) and reduce the overall cache requirement. Guo et
al. [18] proposed to segment videos into small sub-clips and
then use a BitTorrent-like approach to share these sub-clips.
Additionally, Xu et al. [16] and Tu et al. [17] considered
queuing performance models for media streaming systems.
None of these work, however, investigates the performance of
peer-assisted VoD using real-world traces. Moreover, none
of these work considers the important issues of prefetching,
ISP-friendly considerations, and balanced mode operation.

7. CONCLUSION
We consider the design and potential benefits of peer-

assisted video-on-demand. Using the nine-month MSN Video
trace, we report on key observations of the characteristics
from such a large scale VoD service. A theory is presented
to explore many of the fundamental issues of peer-assisted
VoD. With peer-assistance and prefetching, we show the
enormous potential cost savings to content providers. We
also examine the costs that peer-assisted VoD might place
on local ISPs and explore how these costs can be minimized.
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