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One of the motives for expanding classical
Maxwell electrodynamics is the absence of Coulomb
field transport, this factor leads to the appearance
of long-range action in electrodynamics. Coulomb
field transport should be realized by means of lon-
gitudinal wave, but, as is known, classical Maxwell
equations contain only transverse wave solutions. In
the framework of quantum electrodynamics, an ap-
proach is developed for describing the Coulomb in-
teraction of charged particles by way of a longitudi-
nal photons (more precisely - ”time” photons)[3], al-
though the latter are to be considered non-physical
(virtual), otherwise, the quantum theory faces a
number of unsurmountable difficulties [4, 5]. How-
ever, the methods for excluding non-physical pho-
tons elaborated in the framework of quantum elec-
trodynamics (see review [5]) exclude also the wave
transport of the Coulomb field in this theory.
The number of works devoted to expansion of the
classical Maxwell electrodynamics grows in recent
years [6, 7, 8, 9].

In works [1, 2] a non-relativistic theory of
Coulomb field transport was proposed. Our ap-
proach, from a view point of continued physics, is
based on the existing analogy between electrody-
namics and linear elasticity theory, which allows one
to consider electromagnetic vacuum as a compress-
ible medium. From the viewpoint of the quantum-
field concept, the considered expansion of Maxwell
electrodynamics is based on the assumption that the
Coulomb field is a superposition of scalar photons
or superposition of massless scalar particles with a
zero spin, rather than a superposition of vector pho-
tons with a zero spin projection [1]. At the same
time, it is assumed that the introduced scalar parti-
cles realize physical conditions of the field, in other
words, they appear as observables. Constructively,
this assumption is expressed in that along with the
4-vector potential Aµ, there exists a 4-scalar mass-
less field λ. In the non-relativistic case, the equa-
tions for potentials take the form [1]:
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Here, c is the velocity of light in vacuum, ρ and j are,
respectively, the density of charges and density of
transfer current, and A is the spatial component of
the 4-vector potential Aµ (the time component ϕ of

the 4-potential can be excluded via gauge transfor-
mations [10]), with A satisfying the Coulomb condi-
tion: divA = 0. By introducing the following field
definitions
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one obtains two systems of equations from (1). The
first system is for the fields E⊥ and H:
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while the second one is for the fields E|| and W ,
being henceforth referred to as a system of elec-
troscalar fields: 1
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It is seen from these systems that the electrostat-
ics equation divE|| = −4πρ follows from the sys-
tem (5) and the magnetostatics one rot H = 4πj/c
follows from (4). System (4) describes propaga-
tion of strictly transverse waves (proof for this
can be found, for example, in [10]), and system
(5), in contrast, describes propagation of longitu-
dinal waves. Now, let us consider the vacuum so-
lution of system (5) in the form of plane waves
E|| = E0 exp[i(ωt + kr)],W = W0 exp[i(ωt + kr)],
where E0 and W0 are the amplitudes, k is the
wave vector defining the direction of propagation
of a wave with the frequency ω. Then, we obtain
from (5):
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in other words, the vector E|| oscillates along the
direction of wave propagation. The dispersion rela-
tionship for the given wave takes the normal form
ω = kc.

In order to derive the equations of energy bal-
ance for the fields E|| and W , let us multiply the
first equation (5) scalarwise by E|| and the second
equation by W , and obtain after volume integration:
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where dσ is the surface area element for the vol-
ume V and the following definitions are introduced
for the energy density εEW and for the energy flux
vector sEW of the electroscalar field:
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From the definition of the vector sEW it follows that
the energy flux in the above plane wave is collinear
to the vector of the field E||. Of particular interest is
the integrand ρW which enters into the right-hand
side (6). Using the definition W = −∂λ/∂(ct) and
continuity equation ∂ρ/∂ t + divj = 0, this expres-
sion can be transformed in the following manner:
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By virtue of the definition E|| = ∇λ, (6) can be
presented in the form
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The first integral in this formula represents the total
energy of the system of fields E|| and W interact-
ing with charges. The summand λj, which can be
interpreted as interaction energy transfer at the ex-
pense of charge motion, has been added into the
surface integral, and taking into consideration that
j = ρv, one obtains λj = (ρλ)v. In other words,
the total flux consists of two components. The first
one is responsible for the energy transfer by way of
electroscalar radiation, and the second one is asso-
ciated with the mechanical outflow of charges from
the area limited by the integration surface. The sys-
tem of equations (5) can be presented in the form of
a system of wave equations for the fields E|| and W :
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It is seen from these equations that time-dependent
non-homogeneous charge density serves as a source
for the longitudinal waves, while the radial oscil-
lations of the electrons of a spherically symmetric
metal particle, mentioned in the introduction, can
serve as an example of a source for longitudinal
electroscalar waves. Radial oscillations of the elec-
tron gas of a spherically symmetric metallic parti-
cle, which are sketched out in Fig. 1, can serve as a

Figure 1: Radial electron current in a spherical
metallic particle. The arrows show the direction
of transfer of the electron current flowing strictly
along the radius

possible macroscopic source for such a longitudinal
wave.

Owing to the spherical symmetry, the magnetic
field of the fluctuating radial transfer current equals
zero and, thus, radiation losses of this system can
be realized only at the expense of radiation of a
longitudinal wave in which the electric-field vector
is collinear to the wave energy flux vector.

Thus, the developed formalism allows one to de-
scribe the wave transport of the Coulomb field using
a longitudinal electroscalar wave.
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