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Preface

Historically, much of theoretical neuroscience research concerned neuronal circuits and
synaptic organization. The neurons were divided into excitatory and inhibitory types,
but their electrophysiological properties were largely neglected or taken to be identical
to those of Hodgkin-Huxley’s squid axon. The present awareness of the importance of
the electrophysiology of individual neurons is best summarized by David McCormick
in the fifth edition of Gordon Shepherd’s book The Synaptic Organization of the Brain:

Information-processing depends not only on the anatomical substrates of synap-
tic circuits but also on the electrophysiological properties of neurons... Even if
two neurons in different regions of the nervous system possess identical morpho-
logical features, they may respond to the same synaptic input in very different
manners because of each cell’s intrinsic properties.

McCormick (2004)

Much of present neuroscience research concerns voltage- and second-messenger-
gated currents in individual cells, with the goal of understanding the cell’s intrinsic
neurocomputational properties. It is widely accepted that knowing the currents suffices
to determine what the cell is doing and why it is doing it. This, however, contradicts a
half-century–old observation that cells having similar currents can nevertheless exhibit
quite different dynamics. Indeed, studying isolated axons having presumably similar
electrophysiology (all are from the crustacean Carcinus maenas), Hodgkin (1948) in-
jected a DC-current of varying amplitude, and discovered that some preparations could
exhibit repetitive spiking with arbitrarily low frequencies, while the others discharged
in a narrow frequency band. This observation was largely ignored by the neuroscience
community until the seminal paper by Rinzel and Ermentrout (1989), who showed that
the difference in behavior is due to different bifurcation mechanisms of excitability.

Let us treat the amplitude of the injected current in Hodgkin’s experiments as a
bifurcation parameter: When the amplitude is small, the cell is quiescent; when the
amplitude is large, the cell fires repetitive spikes. When we change the amplitude of the
injected current, the cell undergoes a transition from quiescence to repetitive spiking.
From the dynamical systems point of view, the transition corresponds to a bifurcation
from equilibrium to a limit cycle attractor. The type of bifurcation determines the most
fundamental computational properties of neurons, such as the class of excitability, the
existence or nonexistence of threshold, all-or-none spikes, subthreshold oscillations,
the ability to generate postinhibitory rebound spikes, bistability of resting and spiking
states, whether the neuron is an integrator or a resonator, and so on.

This book is devoted to a systematic study of the relationship between electrophysi-
ology, bifurcations, and computational properties of neurons. The reader will learn why
cells having nearly identical currents may undergo distinct bifurcations, and hence they
will have fundamentally different neurocomputational properties. (Conversely, cells

xv
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having quite different currents may undergo identical bifurcations, and hence they will
have similar neurocomputational properties.) The major message of the book can be
summarized as follows (compare with the McCormick statement above):

Information-processing depends not only on the electrophysiological properties
of neurons but also on their dynamical properties. Even if two neurons in the
same region of the nervous system possess similar electrophysiological features,
they may respond to the same synaptic input in very different manners because
of each cell’s bifurcation dynamics.

Nonlinear dynamical system theory is a core of computational neuroscience research,
but it is not a standard part of the graduate neuroscience curriculum. Neither is it
taught in most math/physics departments in a form suitable for a general biological
audience. As a result, many neuroscientists fail to grasp such fundamental concepts as
equilibrium, stability, limit cycle attractor, and bifurcations, even though neuroscien-
tists constantly encounter these nonlinear phenomena.

This book introduces dynamical systems starting with simple one- and two-dimen-
sional spiking models and continuing all the way to bursting systems. Each chapter
is organized from simple to complex, so everybody can start reading the book; only
the reader’s background will determine where he or she stops. The book emphasizes
the geometrical approach, so there are few equations but a lot of figures. Half of them
are simulations of various neural models, so there are hundreds of possible exercises
such as “Use MATLAB (GENESIS, NEURON, XPPAUT, etc.) and parameters in the
caption of figure X to simulate the figure.” Additional problems are provided at the
end of each chapter; the reader is encouraged to solve at least some of them and to
look at the solutions of the others at the end of the book. Problems marked [M.S.] or
[Ph.D.] are suggested thesis topics.

Acknowledgments. I thank the scientists who reviewed the first draft of the
book: Pablo Achard, Jose M. Amigo, Vlatko Becanovic, Brent Doiron, George Bard
Ermentrout, Richard FitzHugh, David Golomb, Andrei Iacob, Paul Kulchenko, Maciej
Lazarewicz, Georgi Medvedev, John Rinzel, Anil K. Seth, Gautam C Sethia, Arthur
Sherman, Klaus M. Stiefel, and Takashi Tateno. I also thank the anonymous refer-
ees who peer-reviewed the book and made quite a few valuable suggestions instead
of just rejecting it. Special thanks go to Niraj S. Desai, who made most of the in
vitro recordings used in the book (the data are available on the author’s Web page
www.izhikevich.com), and to Bruno van Swinderen, who drew the cartoons. I en-
joyed the hospitality of The Neurosciences Institute – a monastery of interdisciplinary
science – and I benefited greatly from the expertise and support of its fellows.

Finally, I thank my wife, Tatyana, and my wonderful daughters, Elizabeth and
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San Diego, California December 19, 2005



Chapter 1

Introduction

This chapter highlights some of the most important concepts developed in the book.
First, we discuss several common misconceptions regarding the spike generation mech-
anism of neurons. Our goal is to motivate the reader to think of a neuron not only
in terms of ions and channels, as many biologists do, and not only in terms of an in-
put/output relationship, as many theoreticians do, but also as a nonlinear dynamical
system that looks at the input through the prism of its own intrinsic dynamics. We
ask such questions as “What makes a neuron fire?” or “Where is the threshold?”, and
then outline the answers, using the geometrical theory of dynamical systems.

From a dynamical systems point of view, neurons are excitable because they are
near a transition, called bifurcation, from resting to sustained spiking activity. While
there is a huge number of possible ionic mechanisms of excitability and spike genera-
tion, there are only four bifurcation mechanisms that can result in such a transition.
Considering the geometry of phase portraits at these bifurcations, we can understand
many computational properties of neurons, such as the nature of threshold and all-or-
none spiking, the coexistence of resting and spiking states, the origin of spike latencies,
postinhibitory spikes, and the mechanism of integration and resonance. Moreover, we
can understand how these properties are interrelated, why some are equivalent, and
why some are mutually exclusive.

1.1 Neurons

If somebody were to put a gun to the head of the author of this book and ask him to
name the single most important concept in brain science, he would say it is the concept
of a neuron. There are only 1011 or so neurons in the human brain, much fewer than
the number of non-neural cells such as glia. Yet neurons are unique in the sense that
only they can transmit electrical signals over long distances. From the neuronal level
we can go down to cell biophysics and to the molecular biology of gene regulation.
From the neuronal level we can go up to neuronal circuits, to cortical structures, to
the whole brain, and finally to the behavior of the organism. So let us see how much
we understand of what is going on at the level of individual neurons.

1
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Figure 1.1: Two interconnected cortical pyramidal neurons (hand drawing) and in vitro
recorded spike.

1.1.1 What Is a Spike?

A typical neuron receives inputs from more than 10, 000 other neurons through the con-
tacts on its dendritic tree called synapses; see Fig.1.1. The inputs produce electrical
transmembrane currents that change the membrane potential of the neuron. Synaptic
currents produce changes, called postsynaptic potentials (PSPs). Small currents pro-
duce small PSPs; larger currents produce significant PSPs that can be amplified by the
voltage-sensitive channels embedded in the neuronal membrane and lead to the gen-
eration of an action potential or spike – an abrupt and transient change of membrane
voltage that propagates to other neurons via a long protrusion called an axon.

Such spikes are the main means of communication between neurons. In general,
neurons do not fire on their own; they fire as a result of incoming spikes from other
neurons. One of the most fundamental questions of neuroscience is What, exactly,
makes neurons fire? What is it in the incoming pulses that elicits a response in one
neuron but not in another? Why can two neurons have different responses to exactly
the same input and identical responses to completely different inputs? To answer these
questions, we need to understand the dynamics of spike generation mechanisms of
neurons.

Most introductory neuroscience books describe neurons as integrators with a thresh-
old: neurons sum incoming PSPs and “compare” the integrated PSP with a certain
voltage value, called the firing threshold. If it is below the threshold, the neuron re-
mains quiescent; when it is above the threshold, the neuron fires an all-or-none spike,
as in Fig.1.3, and resets its membrane potential. To add theoretical plausibility to this
argument, the books refer to the Hodgkin-Huxley model of spike generation in squid
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Figure 1.2: What makes a neuron fire?

giant axons, which we study in chapter 2. The irony is that the Hodgkin-Huxley model
does not have a well-defined threshold; it does not fire all-or-none spikes; and it is not
an integrator, but a resonator (i.e., it prefers inputs having certain frequencies that
resonate with the frequency of subthreshold oscillations of the neuron). We consider
these and other properties in detail in this book.

1.1.2 Where Is the Threshold?

Much effort has been spent trying to experimentally determine the firing thresholds
of neurons. Here, we challenge the classical view of a threshold. Let us consider two
typical experiments, depicted in Fig.1.4, that are designed to measure the threshold.
in Fig.1.4a, we shock a cortical neuron (i.e., we inject brief but strong pulses of current
of various amplitudes to depolarize the membrane potential to various values). Is there
a clear-cut voltage value, as in Fig.1.3, above which the neuron fires but below which
no spikes occur? If you find one, let the author know! In Fig.1.4b we inject long but
weak pulses of current of various amplitudes, which results in slow depolarization and
a spike. The firing threshold, if it exists, must be somewhere in the shaded region, but
where? Where does the slow depolarization end and the spike start? Is it meaningful
to talk about firing thresholds at all?

resting

threshold

all-or-none

spikes

no spike
Figure 1.3: The concept of a firing threshold.
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Figure 1.4: Where is the firing threshold? Shown are in vitro recordings of two layer 5
rat pyramidal neurons. Notice the differences of voltage and time scales.
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Figure 1.5: Where is the rheobase (i.e., the minimal current that fires the cell)? (a)
in vitro recordings of the pyramidal neuron of layer 2/3 of a rat’s visual cortex show
increasing latencies as the amplitude of the injected current decreases. (b) Simulation
of the INa,p+IK –model (pronounced: persistent sodium plus potassium model) shows
spikes of graded amplitude.

Perhaps, we should measure current thresholds instead of voltage thresholds. The
current threshold (i.e., the minimal amplitude of injected current of infinite duration
needed to fire a neuron) is called the rheobase. In Fig.1.5 we decrease the amplitudes
of injected pulses of current to find the minimal one that still elicits a spike or the
maximal one that does not. In Fig.1.5a, progressively weaker pulses result in longer
latencies to the first spike. Eventually the neuron does not fire because the latency is
longer than the duration of the pulse, which is 1 second in the figure. Did we really
measure the neuronal rheobase? What if we waited a bit longer? How long is long
enough? In Fig.1.5b the latencies do not grow, but the spike amplitudes decrease until
the spikes do not look like spikes at all. To determine the current threshold, we need
to draw the line and separate spike responses from “subthreshold” ones. How can we
do that if the spikes are not all-or-none? Is the response denoted by the dashed line a
spike?

Risking adding more confusion to the notion of a threshold, consider the follow-
ing. If excitatory inputs depolarize the membrane potential (i.e., bring it closer to
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Figure 1.6: In vitro recording of rebound spikes
of a rat’s brainstem mesV neuron in response to a
brief hyperpolarizing pulse of current.
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resonant burstnon-resonant burst inhibitory burst

10ms

15ms
non-resonant burst

Figure 1.7: Resonant response of the mesencephalic V neuron of a rat’s brainstem to
pulses of injected current having a 10 ms period (in vitro).

the “firing threshold”), and inhibitory inputs hyperpolarize the potential and move it
away from the threshold, then how can the neuron in Fig.1.6 fire in response to the
inhibitory input? This phenomenon, also observed in the Hodgkin-Huxley model, is
called anodal break excitation, rebound spike, or postinhibitory spike. Many biolo-
gists say that rebound responses are due to the activation and inactivation of certain
slow currents, which bring the membrane potential over the threshold or, equivalently,
lower the threshold upon release from the hyperpolarization – a phenomenon called a
low-threshold spike in thalamocortical neurons. The problem with this explanation is
that neither the Hodgkin-Huxley model nor the neuron in Fig.1.6 has these currents,
and even if they did, the hyperpolarization is too short and too weak to affect the
currents.

Another interesting phenomenon is depicted in Fig.1.7. The neuron is stimulated
with brief pulses of current mimicking an incoming burst of three spikes. When the
stimulation frequency is high (5 ms period), presumably reflecting a strong input,
the neuron does not fire at all. However, stimulation with a lower frequency (10
ms period) that resonates with the frequency of subthreshold oscillation of the neuron
evokes a spike response, regardless of whether the stimulation is excitatory or inhibitory.
Stimulation with even lower frequency (15 ms period) cannot elicit spike response again.
Thus, the neuron is sensitive only to the inputs having resonant frequency. The same
pulses applied to a cortical pyramidal neuron evoke a response only in the first case
(small period), but not in the other cases.
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1.1.3 Why Are Neurons Different, and Why Do We Care?

Why would two neurons respond completely differently to the same input? A biologist
would say that the response of a neuron depends on many factors, such as the type
of voltage- and Ca2+-gated channels expressed by the neuron, the morphology of its
dendritic tree, the location of the input, and other factors. These factors are indeed
important, but they do not determine the neuronal response per se. Rather they
determine the rules that govern dynamics of the neuron. Different conductances and
currents can result in the same rules, and hence in the same responses; conversely,
similar currents can result in different rules and in different responses. The currents
define what kind of dynamical system the neuron is.

We study ionic transmembrane currents in chapter 2. In subsequent chapters we
investigate how the types of currents determine neuronal dynamics. We divide all cur-
rents into two major classes: amplifying and resonant, with the persistent Na+ current
INa,p and the persistent K+ current IK being the typical examples of the former and
the latter, respectively. Since there are tens of known currents, purely combinatorial
argument implies that there are millions of different electrophysiological mechanisms
of spike generation. We will show later that any such mechanism must have at least
one amplifying and one resonant current. Some mechanisms, called minimal in this
book, have one resonant and one amplifying current. They provide an invaluable tool
in classifying and understanding the electrophysiology of spike generation.

Many illustrations in this book are based on simulations of the reduced INa,p + IK-
model (pronounced persistent sodium plus potassium model), which consists of a fast
persistent Na+ (amplifying) current and a slower persistent K+ (resonant) current. It
is equivalent to the famous and widely used Morris-Lecar ICa+IK-model (Morris and
Lecar 1981). We show that the model exhibits quite different dynamics, depending on
the values of the parameters, e.g., the half-activation voltage of the K+ current: in one
case, it can fire in a narrow frequency range, it can exhibit coexistence of resting and
spiking states, and it has damped subthreshold oscillations of membrane potential. In
another case, it can fire in a wide frequency range and show no coexistence of resting
and spiking and no subthreshold oscillations. Thus, seemingly inessential differences
in parameter values could result in drastically distinct behaviors.

1.1.4 Building Models

To build a good model of a neuron, electrophysiologists apply different pharmacologi-
cal blockers to tease out the currents that the neuron has. Then they apply different
stimulation protocols to measure the kinetic parameters of the currents, such as the
Boltzmann activation function, time constants, and maximal conductances. We con-
sider all these functions in chapter 2. Next, they create a Hodgkin-Huxley-type model
and simulate it using the NEURON, GENESIS, or XPP environment or MATLAB (the
first two are invaluable tools for simulating realistic dendritic structures).

The problem is that the parameters are measured in different neurons and then put
together into a single model. As an illustration, consider two neurons having the same
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Figure 1.8: Neurons are dynamical systems.

currents, say INa,p and IK, and exhibiting excitable behavior; that is, both neurons are
quiescent but can fire a spike in response to a stimulation. Suppose the second neuron
has stronger INa,p, which is balanced by stronger IK. If we measure Na+ conductance
using the first neuron and K+ conductance using the second neuron, the resulting
INa,p + IK-model will have an excess of K+ current and probably will not be able to fire
spikes at all. Conversely, if we measure Na+ and K+ conductances using the second
neuron and then the first neuron, respectively, the model would have too much Na+

current and probably would exhibit sustained pacemaking activity. In any case, the
model fails to reproduce the excitable behavior of the neurons whose parameters we
measured.

Some of the parameters cannot be measured at all, so many arbitrary choices are
made via a process called “fine-tuning”. Navigating in the dark, possibly with the help
of some biological intuition, the researcher modifies parameters, compares simulations
with experiment, and repeats this trial-and-error procedure until he or she is satisfied
with the results. Since seemingly similar values of parameters can result in drastically
different behaviors, and quite different parameters can result in seemingly similar be-
haviors, how do we know that the resulting model is correct? How do we know that its
behavior is equivalent to that of the neuron we want to study? And what is equivalent
in this case? Now, you are primed to consider dynamical systems. If not, see Fig.1.8.
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1.2 Dynamical Systems

In chapter 2 we introduce the Hodgkin-Huxley formalism to describe neuronal dynamics
in terms of activation and inactivation of voltage-gated conductances. An important
result of the Hodgkin-Huxley studies is that neurons are dynamical systems, so they
should be studied as such. Below we mention some of the important concepts of
dynamical systems theory. The reader does not have to follow all the details of this
section because the concepts are explained in greater detail in subsequent chapters.

A dynamical system consists of a set of variables that describe its state and a
law that describes the evolution of the state variables with time (i.e., how the state
of the system in the next moment of time depends on the input and its state in the
previous moment of time). The Hodgkin-Huxley model is a four-dimensional dynamical
system because its state is uniquely determined by the membrane potential, V , and so-
called gating variables n,m, and h for persistent K+ and transient Na+ currents. The
evolution law is given by a four-dimensional system of ordinary differential equations.

Typically, all variables describing neuronal dynamics can be classified into four
classes, according to their function and the time scale.

1. Membrane potential.

2. Excitation variables, such as activation of a Na+ current. These variables are
responsible for the upstroke of the spike.

3. Recovery variables, such as inactivation of a Na+ current and activation of a fast
K+ current. These variables are responsible for the repolarization (downstroke)
of the spike.

4. Adaptation variables, such as activation of slow voltage- or Ca2+-dependent cur-
rents. These variables build up during prolonged spiking and can affect excitabil-
ity in the long run.

The Hodgkin-Huxley model does not have variables of the fourth type, but many
neuronal models do, especially those exhibiting bursting dynamics.

1.2.1 Phase Portraits

The power of the dynamical systems approach to neuroscience, as well as to many
other sciences, is that we can tell something, or many things, about a system without
knowing all the details that govern the system evolution. We do not even use equations
to do that! Some may even wonder why we call it a mathematical theory.

As a start, let us consider a quiescent neuron whose membrane potential is rest-
ing. From the dynamical systems point of view, there are no changes of the state
variables of such a neuron; hence it is at an equilibrium point. All the inward currents
that depolarize the neuron are balanced, or equilibrated, by the outward currents that
hyperpolarize it. If the neuron remains quiescent despite small disturbances and mem-
brane noise, as in Fig.1.9a (top), then we conclude that the equilibrium is stable. Isn’t
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Figure 1.9: Resting, excitable, and periodic spiking activity correspond to a stable
equilibrium (a and b) or limit cycle (c), respectively.

it amazing that we can reach such a conclusion without knowing the equations that
describe the neuron’s dynamics? We do not even know the number of variables needed
to describe the neuron; it could be infinite, for all we care.

In this book we introduce the notions of equilibria, stability, threshold, and attrac-
tion domains using one- and two-dimensional dynamical systems, e.g., the INa,p+IK-
model with instantaneous Na+ kinetics. The state of this model is described by the
membrane potential, V , and the activation variable, n, of the persistent K+ current, so
it is a two-dimensional vector (V, n). Instantaneous activation of the Na+ current is a
function of V , so it does not result in a separate variable of the model. The evolution
of the model is a trajectory (V (t), n(t)) on the V ×n – plane. Depending on the initial
point, the system can have many trajectories, such as those depicted in Fig.1.9a (bot-
tom). Time is not explicitly present in the figure, but units of time may be thought
of as plotted along each trajectory. All of the trajectories in the figure are attracted
to the stable equilibrium denoted by the black dot, called an attractor. The overall
qualitative description of dynamics can be obtained through the study of the phase
portrait of the system, which depicts certain special trajectories (equilibria, separatri-
ces, limit cycles) that determine the topological behavior of all the other trajectories in
the phase space. Probably 50 percent of illustrations in this book are phase portraits.

A fundamental property of neurons is excitability, illustrated in Fig.1.9b. The neu-
ron is resting, i.e., its phase portrait has a stable equilibrium. Small perturbations,
such as A, result in small excursions from the equilibrium, denoted as PSP (postsynap-
tic potential). Larger perturbations, such as B, are amplified by the neuron’s intrinsic
dynamics and result in the spike response. To understand the dynamic mechanism of
such amplification, we need to consider the geometry of the phase portrait near the
resting equilibrium, i.e., in the region where the decision to fire or not to fire is made.
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Figure 1.10: Rhythmic transitions between resting and spiking modes result in bursting
behavior.
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Figure 1.11: As the magnitude of the injected current slowly increases, the neurons
bifurcate from resting (equilibrium) mode to tonic spiking (limit cycle) mode.

If we inject a sufficiently strong current into the neuron, we bring it to a pacemaking
mode, so that it exhibits periodic spiking activity, as in Fig.1.9c. From the dynamical
systems point of view, the state of such a neuron has a stable limit cycle, also known as
a stable periodic orbit. The electrophysiological details of the neuron (i.e., the number
and the type of currents it has, their kinetics, etc.) determine only the location, the
shape, and the period of the limit cycle. As long as the limit cycle exists, the neuron
can have periodic spiking activity. Of course, equilibria and limit cycles can coexist,
so a neuron can be switched from one mode to another by a transient input. The
famous example is the permanent extinguishing of ongoing spiking activity in the squid
giant axon by a brief transient depolarizing pulse of current applied at a proper phase
(Guttman et al. 1980) – a phenomenon predicted by John Rinzel (1978) purely on
the basis of theoretical analysis of the Hodgkin-Huxley model. The transition between
resting and spiking modes could be triggered by intrinsic slow conductances, resulting
in the bursting behavior in Fig.1.10.
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1.2.2 Bifurcations

Now suppose that the magnitude of the injected current is a parameter that we can
control, e.g., we can ramp it up, as in Fig.1.11. Each cell in the figure is quiescent
at the beginning of the ramps, so its phase portrait has a stable equilibrium and it
may look like the one in Fig.1.9a or Fig.1.9b. Then it starts to fire tonic spikes, so
its phase portrait has a limit cycle attractor and it may look like the one in Fig.1.9c,
with a white circle denoting an unstable resting equilibrium. Apparently there is some
intermediate level of injected current that corresponds to the transition from resting
to sustained spiking, i.e., from the phase portrait in Fig.1.9b to Fig.1.9c. What does
the transition look like?

From the dynamical systems point of view, the transition corresponds to a bifurca-
tion of neuron dynamics, i.e., a qualitative change of phase portrait of the system. For
example, there is no bifurcation going from the phase portrait in Fig.1.9a to that in
Fig.1.9b, since both have one globally stable equilibrium; the difference in behavior is
quantitative but not qualitative. In contrast, there is a bifurcation going from Fig.1.9b
to Fig.1.9c, since the equilibrium is no longer stable and another attractor, limit cycle,
has appeared. The neuron is not excitable in Fig.1.9a but it is in Fig.1.9b, simply
because the former phase portrait is far from the bifurcation and the latter is near.

In general, neurons are excitable because they are near bifurcations from resting
to spiking activity, so the type of the bifurcation determines the excitable properties
of the neuron. Of course, the type depends on the neuron’s electrophysiology. An
amazing observation is that there could be millions of different electrophysiological
mechanisms of excitability and spiking, but there are only four – yes, four – different
types of bifurcations of equilibrium that a system can undergo without any additional
constraints, such as symmetry. Thus, considering these four bifurcations in a general
setup, we can understand excitable properties of many models, even those that have not
been invented yet. What is even more amazing, we can understand excitable properties
of neurons whose currents are not measured and whose models are not known, provided
we can experimentally identify which of the four bifurcations the resting state of the
neuron undergoes.

The four bifurcations are summarized in Fig.1.12, which plots the phase portrait
before (left), at (center), and after (right) a particular bifurcation occurs. Mathemati-
cians refer to these bifurcations as being of codimension-1 because we need to vary only
one parameter, e.g., the magnitude of the injected DC current I, to observe the bifur-
cations reliably in simulations or experiments. There are many more codimension-2, 3,
(etc.), bifurcations, but they need special conditions to be observed. We discuss these
in chapter 6.

Let us consider the four bifurcations and their phase portraits in Fig.1.12. The
horizontal and vertical axes are the membrane potential with instantaneous activation
variable and a recovery variable, respectively. At this stage, the reader is not required
to fully understand the intricacies of the phase portraits in the figure, since they will
be explained systematically in later chapters.
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Figure 1.12: Four generic (codimension-1) bifurcations of an equilibrium state leading
to the transition from resting to periodic spiking behavior in neurons.
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• Saddle-node bifurcation. As the magnitude of the injected current or any other
bifurcation parameter changes, a stable equilibrium corresponding to the resting
state (black circle marked “node” in Fig.1.12a) is approached by an unstable
equilibrium (white circle marked “saddle”); they coalesce and annihilate each
other, as in Fig.1.12a (middle). Since the resting state no longer exists, the tra-
jectory describing the evolution of the system jumps to the limit cycle attractor,
indicating that the neuron starts to fire tonic spikes. Notice that the limit cy-
cle, or some other attractor, must coexist with the resting state in order for the
transition resting → spiking to occur.

• Saddle-node on invariant circle bifurcation is similar to the saddle-node bifurca-
tion except that there is an invariant circle at the moment of bifurcation, which
then becomes a limit cycle attractor, as in Fig.1.12b.

• Subcritical Andronov-Hopf bifurcation. A small unstable limit cycle shrinks to
a stable equilibrium and makes it lose stability, as in Fig.1.12c. Because of
instabilities, the trajectory diverges from the equilibrium and approaches a large-
amplitude spiking limit cycle or some other attractor.

• Supercritical Andronov-Hopf bifurcation. The stable equilibrium loses stability
and gives birth to a small-amplitude limit cycle attractor, as in Fig.1.12d. As
the magnitude of the injected current increases, the amplitude of the limit cycle
increases and it becomes a full-size spiking limit cycle.

Notice that there is a coexistence of resting and spiking states in the case of saddle-
node and subcritical Andronov-Hopf bifurcations, but not in the other two cases. Such
a coexistence reveals itself via a hysteresis behavior when the injected current slowly
increases and then decreases past the bifurcation value, because the transitions “resting
→ spiking” and “spiking→ resting” occur at different values of the current. In addition,
brief stimuli applied at the appropriate times can switch the activity from spiking to
resting and back. There are also spontaneous noise-induced transitions between the
two modes that result in the stuttering spiking that, for instance, is exhibited by
the so-called fast spiking (FS) cortical interneurons when they are kept close to the
bifurcation (Tateno et al. 2004). Some bistable neurons have a slow adaptation current
that activates during the spiking mode and impedes spiking, often resulting in bursting
activity.

Systems undergoing Andronov-Hopf bifurcations, whether subcritical or supercrit-
ical, exhibit damped oscillations of membrane potential, whereas systems near saddle-
node bifurcations, whether on or off an invariant circle, do not. The existence of
small amplitude oscillations creates the possibility of resonance to the frequency of the
incoming pulses, as in Fig.1.7, and other interesting features.

We refer to neurons with damped subthreshold oscillations as resonators and to
those that do not have this property as integrators. We refer to the neurons that ex-
hibit the coexistence of resting and spiking states, at least near the transition from
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Figure 1.14: Frequency-current (F-I) curves of cortical pyramidal neuron and brainstem
mesV neuron from Fig.7.3. These are the same neurons used in the ramp experiment
in Fig.1.11.

resting to spiking, as bistable, and to those that do not, monostable. The four bifur-
cations in Fig.1.12 are uniquely defined by these two features. For example, a bistable
resonator is a neuron undergoing subcritical Andronov-Hopf bifurcation, and a monos-
table integrator is a neuron undergoing saddle-node on invariant circle bifurcation (see
Fig.1.13). Cortical fast spiking (FS) and regular spiking (RS) neurons, studied in
chapter 8, are typical examples of the former and the latter, respectively.

1.2.3 Hodgkin Classification

Hodgkin (1948) was the first to study bifurcations in neuronal dynamics, years before
the mathematical theory of bifurcations was developed. He stimulated squid axons
with pulses of various amplitudes and identified three classes of responses:

• Class 1 neural excitability. Action potentials can be generated with arbitrarily
low frequency, depending on the strength of the applied current.

• Class 2 neural excitability. Action potentials are generated in a certain frequency
band that is relatively insensitive to changes in the strength of the applied current.



Introduction 15

• Class 3 neural excitability. A single action potential is generated in response to a
pulse of current. Repetitive (tonic) spiking can be generated only for extremely
strong injected currents or not at all.

The qualitative distinction between the classes is that the frequency-current relation
(the F-I curve in Fig.1.14) starts from zero and continuously increases for Class 1
neurons, is discontinuous for Class 2 neurons, and is not defined at all for Class 3
neurons.

Obviously, neurons belonging to different classes have different neurocomputational
properties. Class 1 neurons, which include cortical excitatory pyramidal neurons,
can smoothly encode the strength of the input into the output firing frequency, as
in Fig.1.11 (left). In contrast, Class 2 neurons, such as fast-spiking (FS) cortical in-
hibitory interneurons, cannot do that; instead, they fire in a relatively narrow frequency
band, as in Fig.1.11 (right). Class 3 neurons cannot exhibit sustained spiking activ-
ity, so Hodgkin regarded them as “sick” or “unhealthy”. There are other distinctions
between the classes, which we discuss later.

Different classes of excitability occur because neurons have different bifurcations
of resting and spiking states – a phenomenon first explained by Rinzel and Ermen-
trout (1989). If ramps of current are injected to measure the F-I curves, then Class
1 excitability occurs when the neuron undergoes the saddle-node bifurcation on an
invariant circle depicted in Fig.1.12b. Indeed, the period of the limit cycle attractor
is infinite at the bifurcation point, and then it decreases as the bifurcation parameter
– say, the magnitude of the injected current – increases. The other three bifurcations
result in Class 2 excitability. Indeed, the limit cycle attractor exists and has a finite
period when the resting state in Fig.1.12 undergoes a subcritical Andronov-Hopf bi-
furcation, so emerging spiking has a nonzero frequency. The period of the small limit
cycle attractor appearing via supercritical Andronov-Hopf bifurcation is also finite, so
the frequency of oscillations is nonzero, but their amplitudes are small. In contrast
to the common and erroneous folklore, the saddle-node bifurcation (off-limit cycle)
also results in Class 2 excitability because the limit cycle has a finite period at the
bifurcation. There is a considerable latency (delay) to the first spike in this case,
but the subsequent spiking has nonzero frequency. Thus, the simple scheme “Class 1
= saddle-node, Class 2 = Hopf” that permeates many publications is unfortunately
incorrect.

When pulses of current are used to measure the F-I curve, as in Hodgkin’s exper-
iments, the firing frequency depends on factors besides the type of the bifurcation of
the resting state. In particular, low-frequency firing can be observed in systems near
Andronov-Hopf bifurcations, as we show in chapter 7. To avoid possible confusion, we
define the class of excitability only on the basis of slow ramp experiments.

Hodgkin’s classification has an important historical value, but it is of little use for
the dynamic description of a neuron, since naming a class of excitability of a neuron
does not tell much about the bifurcations of the resting state. Indeed, it says only
that saddle-node on invariant circle bifurcation (Class 1) is different from the other
three bifurcations (Class 2), and only when ramps are injected. Dividing neurons into
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integrators and resonators with bistable or monostable activity is more informative,
so we adopt the classification in Fig.1.13 in this book. In this classification, a Class 1
neuron is a monostable integrator, whereas a Class 2 neuron can be a bistable integrator
or a resonator.

1.2.4 Neurocomputational properties

Using the same arrangement as in Fig.1.13, we depict typical geometry of phase
portraits near the four bifurcations in Fig.1.15. Let us use the portraits to explain
what happens “near the threshold”, i.e., near the place where the decision to fire or
not to fire is made. To simplify our geometrical analysis, we assume here that neurons
receive shock inputs, i.e., brief but strong pulses of current that do not change the
phase portraits, but only push or reset the state of the neuron into various regions of
the phase space. We consider these and other cases in detail in chapter 7.

The horizontal axis in each plot in Fig.1.15 corresponds to the membrane potential
V with instantaneous Na+ current, and the vertical axis corresponds to a recovery vari-
able, say activation of K+ current. Black circles denote stable equilibria corresponding
to the neuronal resting state. Spiking limit cycle attractors correspond to sustained
spiking states, which exist in the two cases depicted in the left half of the figure corre-
sponding to the bistable dynamics. The limit cycles are surrounded by shaded regions
– their attraction domains. The white region is the attraction domain of the equilib-
rium. To initiate spiking, the external input should push the state of the system into
the shaded region, and to extinguish spiking, the input should push the state back into
the white region.

There are no limit cycles in the two cases depicted in the right half of the figure,
so the entire phase space is the attraction domain of the stable equilibrium, and the
dynamics are monostable. However, if the trajectory starts in the shaded region, it
makes a large-amplitude rotation before returning to the equilibrium – a transient
spike. Apparently, to elicit such a spike, the input should push the state of the system
into the shaded region.

Now let us contrast the upper and lower halves of the figure, corresponding to
integrators and resonators, respectively. We distinguish these two modes of operation
on the basis of the existence of subthreshold oscillations near the equilibrium.

First, let us show that inhibition impedes spiking in integrators, but can promote it
in resonators. In the integrator, the shaded region is in the depolarized voltage range,
i.e., to the right of the equilibrium. Excitatory inputs push the state of the system
toward the shaded region, while inhibitory inputs push it away. In resonators, both
excitation and inhibition push the state toward the shaded region, because the region
wraps around the equilibrium and can be reached along any direction. This explains
the rebound spiking phenomenon depicted in Fig.1.6.

Integrators have all-or-none spikes; resonators may not. Indeed, any trajectory
starting in the shaded region in the upper half of Fig.1.15 has to rotate around the
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Figure 1.15: The geometry of phase portraits of excitable systems near four bifurcations
can explain many neurocomputational properties (see section 1.2.4 for details).

white circle at the top that corresponds to an unstable equilibrium. Moreover, the
state of the system is quickly attracted to the spiking trajectory and moves along that
trajectory, thereby generating a stereotypical spike. A resonator neuron also can fire
large amplitude spikes when its state is pushed to or beyond the trajectory denoted
“spike”. Such neurons generate subthreshold responses when the state slides along
the smaller trajectory denoted PSP; they also can generate spikes of an intermediate
amplitude when the state is pushed between the PSP and “spike” trajectories, which
explains the partial-amplitude spiking in Fig.1.5b or in the squid axon in Fig.7.26. The
set of initial conditions corresponding to such spiking is quite small, so typical spikes
have large amplitudes and partial spikes are rare.

Integrators have well-defined thresholds; resonators may not. The white circles near
the resting states of integrators in Fig.1.15 are called saddles. They are stable along the
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vertical direction and unstable along the horizontal direction. The two trajectories
that lead to the saddle along the vertical direction are called separatrices because
they separate the phase space into two regions – in this case, white and shaded. The
separatrices play the role of thresholds since only those perturbations that push the
state of the system beyond them result in a spike. The closer the state of the system
is to the separatrices, the longer it takes to converge and then diverge from the saddle,
resulting in a long latency to the spike. Notice that the threshold is not a point, but
a tilted curve that spans a range of voltage values.

Resonators have a well-defined threshold in the case of subcritical Andronov-Hopf
bifurcation: it is the small unstable limit cycle that separates the attraction domains
of stable equilibrium and spiking limit cycle. Trajectories inside the small cycle spi-
ral toward the stable equilibrium, whereas trajectories outside the cycle spiral away
from it and eventually lead to sustained spiking activity. When a neuronal model is
far from the subcritical Andronov-Hopf bifurcation, its phase portrait may look sim-
ilar to the one corresponding to the supercritical Andronov-Hopf bifurcation. The
narrow shaded band in the figure is not a threshold manifold but a fuzzy thresh-
old set called “quasi-threshold” by FitzHugh (1955). Many resonators, including the
Hodgkin-Huxley model, have quasi-thresholds instead of thresholds. The width of the
quasi-threshold in the Hodgkin-Huxley model is so narrow that for all practical reasons
it may be assumed to be just a curve.

Integrators integrate, resonators resonate. Now consider inputs consisting of multi-
ple pulses, e.g., a burst of spikes. Integrators prefer high-frequency inputs; the higher
the frequency, the sooner they fire. Indeed, the first spike of such an input, marked
“1” in the top-right phase portrait in Fig.1.15, increases the membrane potential and
shifts the state to the right, toward the threshold. Since the state of the system is
still in the white area, it slowly converges back to the stable equilibrium. To cross
the threshold manifold, the second pulse must arrive shortly after the first one. The
reaction of a resonator to a pair of pulses is quite different. The first pulse initiates a
damped subthreshold oscillation of the membrane potential, which looks like a spiral
in the bottom-right phase portrait in Fig.1.15. The effect of the second pulse depends
on its timing. If it arrives after the trajectory makes half a rotation, marked “2” in the
figure, it cancels the effect of the first pulse. If it arrives after the trajectory makes a
full rotation, marked “3” in the figure, it adds to the first pulse and either increases the
amplitude of subthreshold oscillation or evokes a spike response. Thus, the response
of the resonator neuron depends on the frequency content of the input, as in Fig.1.7.

Integrators and resonators constitute two major modes of activity of neurons. Most
cortical pyramidal neurons, including the regular spiking (RS), intrinsically bursting
(IB), and chattering (CH) types considered in Chap. 8, are integrators. So are thalam-
ocortical neurons in the relay mode of firing, and neostriatal spiny projection neurons.
Most cortical inhibitory interneurons, including the FS type, are resonators. So are
brainstem mesencephalic V neurons and stellate neurons of the entorhinal cortex. Some
cortical pyramidal neurons and low-threshold spiking (LTS) interneurons can be at the
border of transition between integrator and resonator modes. Such a transition corre-
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spike

Figure 1.16: Phase portrait of a system near a
Bogdanov-Takens bifurcation that corresponds to
the transition from integrator to resonator mode.

sponds to another bifurcation, which has codimension-2, and hence it is less likely to
be encountered experimentally. We consider this and other uncommon bifurcations in
detail later. The phase portrait near the bifurcation is depicted in Fig.1.16, and it is a
good exercise for the reader to explain why such a system has damped oscillations and
postinhibitory responses, yet a well-defined threshold, all-or-none spikes, and possibly
long latencies.

Of course, figures 1.15 and 1.16 cannot encompass all the richness of neuronal behav-
ior, otherwise this book would be only 19pages long (this book is actually quite short;
most of the space is taken by figures, exercises, and solutions). Many aspects of neu-
ronal dynamics depend on other bifurcations, e.g., those corresponding to appearance
and disappearance of spiking limit cycles. These bifurcations describe the transitions
from spiking to resting, and they are especially important when we consider bursting
activity. In addition, we need to take into account the relative geometry of equilibria,
limit cycles, and other relevant trajectories, and how they depend on the parameters of
the system, such as maximal conductances, and activation time constants. We explore
all these issues systematically in subsequent chapters.

In chapter 2 we review some of the most fundamental concepts of neuron elec-
trophysiology, culminating with the Hodgkin-Huxley model. This chapter is aimed
at mathematicians learning neuroscience. In chapters 3 and 4 we use one- and two-
dimensional neuronal models, respectively, to review some of the most fundamental
concepts of dynamical systems, such as equilibria, limit cycles, stability, attraction
domain, nullclines, phase portrait, and bifurcation. The material in these chapters,
aimed at biologists learning the language of dynamical systems, is presented with the
emphasis on geometrical rather than mathematical intuition. In fact, the spirit of
the entire book is to explain concepts by using pictures, not equations. Chapter 5
explores phase portraits of various conductance-based models and the relations be-
tween ionic currents and dynamic behavior. In Chapter 6 we use the INa,p+IK-model
to systematically introduce the geometric bifurcation theory. Chapter 7, probably the
most important chapter of the book, applies the theory to explain many computational
properties of neurons. In fact, all the material in the previous chapters is given so that
the reader can understand this chapter. In chapter 8 we use a simple phenomenological
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model to simulate many cortical, hippocampal, and thalamic neurons. This chapter
contains probably the most comprehensive up-to-date review of various firing patterns
exhibited by mammalian neurons. In chapter 9 we introduce the electrophysiological
and topological classification of bursting dynamics, as well as some useful methods to
study the bursters. Finally, the last and the most mathematically advanced chapter
of the book, Chap. 10, deals with coupled neurons. There we show how the details of
the spike generation mechanism of neurons affect neurons’ collective properties, such
as synchronization.

1.2.5 Building Models (Revisited)

To have a good model of a neuron, it is not enough to put the right kind of currents
together and tune the parameters so that the model can fire spikes. It is not even
enough to reproduce the right input resistance, rheobase, and firing frequencies. The
model has to reproduce all the neurocomputational features of the neuron, starting with
the coexistence of resting and spiking states, spike latencies, subthreshold oscillations,
and rebound spikes, among others.

A good way to start is to determine what kind of bifurcations the neuron under
consideration undergoes and how the bifurcations depend on neuromodulators and
pharmacological blockers. Instead of or in addition to measuring neuronal responses
to get the kinetic parameters, we need to measure them to get the right bifurcation
behavior. Only in this case we can be sure that the behavior of the model is equivalent
to that of the neuron, even if we omitted a current or guessed some of the parameters
incorrectly.

Implementation of this research program is still a pipe dream. The people who
understand the mathematical aspects of neuron dynamics – those who see beyond
conductances and currents – usually do not have the opportunity to do experiments.
Conversely, those who study neurons in vitro or in vivo on a daily basis – those who see
spiking, bursting, and oscillations; those who can manipulate the experimental setup
to test practically any aspect of neuronal activity – do not usually see the value of
studying phase portraits, bifurcations, and nonlinear dynamics in general. One of the
goals of this book is to change this state and bring these two groups of people closer
together.
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Review of Important Concepts

• Neurons are dynamical systems.

• The resting state of neurons corresponds to a stable equilibrium; the
tonic spiking state corresponds to a limit cycle attractor.

• Neurons are excitable because the equilibrium is near a bifurcation.

• There are many ionic mechanisms of spike generation, but only four
generic bifurcations of equilibria.

• These bifurcations divide neurons into four categories: integrators
or resonators, monostable or bistable.

• Analyses of phase portraits at bifurcations explain why some neu-
rons have well-defined thresholds, all-or-none spikes, postinhibitory
spikes, frequency preference, hysteresis, and so on, while others do
not.

• These features, and not ionic currents per se, determine the neuronal
responses, i.e., the kind of computations neurons do.

• A good neuronal model must reproduce not only electrophysiology
but also the bifurcation dynamics of neurons.

Bibliographical Notes

Richard FitzHugh at the National Institutes of Health (NIH) pioneered the phase plane
analysis of neuronal models with the view to understanding their neurocomputational
properties. He was the first to analyze the Hodgkin-Huxley model (FitzHugh 1955;
years before they received the Nobel Prize) and to prove that it has neither threshold
nor all-or-none spikes. FitzHugh (1961) introduced the simplified model of excitability
(see Fig.1.18) and showed that one can get the right kind of neuronal dynamics in mod-
els lacking conductances and currents. Nagumo et al. (1962) designed a corresponding
tunnel diode circuit, so the model is called the FitzHugh-Nagumo oscillator. Chapter 8
deals with such simplified models. The history of the development of FitzHugh-Nagumo
model is reviewed by Izhikevich and FitzHugh (2006).

FitzHugh’s research program was further developed by John Rinzel and G. Bard
Ermentrout (see Fig.1.19 and Fig.1.20). In their 1989 seminal paper, Rinzel and Er-
mentrout revived Hodgkin’s classification of excitability and pointed out the connection
between the behavior of neuronal models and the bifurcations they exhibit. (They also
referred to the excitability as “type I” or “type II”). Unfortunately, many people treat
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Figure 1.17: Richard FitzHugh in 1984.
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Figure 1.18: Phase portrait and physiological state diagram of FitzHugh-Nagumo
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and trajectories is explained in chapter 4. (Reproduced from Izhikevich and FitzHugh
(2006) with permission.)
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Figure 1.19: John Rinzel in 2004. Depicted on his T-shirt is the cover of the first issue
of Journal of Computational Neuroscience, in which the Pinsky-Rinzel (1994) model
appeared.

Figure 1.20: G. Bard Ermentrout (G. stands for George) with his parrot, Junior, in
1983.
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the connection in a simpleminded fashion and incorrectly identify “type I = saddle-
node, type II = Hopf”. If only life were so simple!

The geometrical analysis of neuronal models was further developed by, among oth-
ers, Izhikevich (2000a), who stressed the integrator and resonator modes of operation
and made connections to other neurocomputational properties.

The neuroscience and mathematics parts of this book are standard, though many
connections are new. The literature sources are listed at the end of each chapter.
Among many outstanding books on computational neuroscience, the author especially
recommends Spikes, Decisions, and Actions by Wilson (1999), Biophysics of Com-
putation by Koch (1999), Theoretical Neuroscience by Dayan and Abbott (2001), and
Foundations of Cellular Neurophysiology by Johnston and Wu (1995). The present vol-
ume complements these excellent books in the sense that it is more ambitious, focused,
and thorough in dealing with neurons as dynamical systems. Though its views may
be biased by the author’s philosophy and taste, the payoffs in understanding neuronal
dynamics are immense, provided the reader has enough patience and perseverance to
follow the author’s line of thought.

The NEURON simulation environment is described by Hines (1989) and Carnevale
and Hines (2006) (http://www.neuron.yale.edu); the GENESIS environment, by
Bower and Beeman (1995) (http://www.genesis-sim.org); the XPP environment,
by Ermentrout (2002). The author of this book uses MATLAB, which has become a
standard computational tool in science and engineering. MATLAB is the registered
trademark of The MathWorks, Inc. (http://www.mathworks.com).



Chapter 8

Simple Models

The advantage of using conductance-based models, such as the INa+IK-model, is that
each variable and parameter has a well-defined biophysical meaning. In particular,
they can be measured experimentally. The drawback is that the measurement proce-
dures may not be accurate: the parameters are usually measured in different neurons,
averaged, and then fine-tuned (a fancy term meaning “to make arbitrary choices”). As
a result, the model does not have the behavior that one sees in experiments. And even
if it “looks” right, there is no guarantee that the model is accurate from the dynamical
systems point of view, that is, it exhibits the same kind of bifurcations as the type of
neuron under consideration.

Sometimes we do not need or cannot afford to have a biophysically detailed conduc-
tance-based model. Instead, we want a simple model that faithfully reproduces all the
neurocomputational features of the neuron. In this chapter we review salient features
of cortical, thalamic, hippocampal, and other neurons, and we present simple models
that capture the essence of their behavior from the dynamical systems point of view.

8.1 Simplest Models

Let us start with reviewing the simplest possible models of neurons. As one can
guess from their names, the integrate-and-fire and resonate-and-fire neurons capture
the essence of integrators and resonators, respectively. The models are similar in many
respects: both are described by linear differential equations, both have a hard firing
threshold and a reset, and both have a unique stable equilibrium at rest. The only
difference is that the equilibrium is a node in the integrate-and-fire case, but a focus
in the resonate-and-fire case. One can model the former using only one equation, and
the latter using only two equations, though multi-dimensional extensions are straight-
forward. Both models are useful from the analytical point of view, that is, to prove
theorems.

Many scientists, including myself, refer to these neural models as “spiking models”.
The models have a threshold, but they lack any spike generation mechanism, that is,
they cannot produce a brief regenerative depolarization of membrane potential corre-
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Figure 8.1: Leaky integrate-
and-fire neuron with noisy
input. The spike is added
manually for aesthetic pur-
poses and to fool the reader
into believing that this is a
spiking neuron.

sponding to the spike upstroke. Therefore, they are not spiking models; the spikes in
figures 8.1 and 8.2, as well as in hundreds of scientific papers devoted to these mod-
els, are drawn by hand. The quadratic integrate-and-fire model is the simplest truly
spiking model.

8.1.1 Integrate-and-Fire

The leaky integrate-and-fire model (Lapicque 1907; Stein 1967; Tuckwell 1988) is an
idealization of a neuron having Ohmic leakage current and a number of voltage-gated
currents that are completely deactivated at rest. Subthreshold behavior of such a
neuron can be described by the linear differential equation

CV̇ = I −
Ohmic leakage︷ ︸︸ ︷
gleak(V − Eleak),

where all parameters have the same biophysical meanings as in the previous chap-
ters. When the membrane potential V reaches the threshold value Ethresh, the voltage-
sensitive currents instantaneously activate, the neuron is said to fire an action potential,
and V is reset to EK, as in Fig.8.1. After appropriate rescaling, the leaky integrate-
and-fire model can be written in the form

v̇ = b− v , if v = 1, then v ← 0, (8.1)

where the resting state is v = b, the threshold value is v = 1, and the reset value is
v = 0. Apparently the neuron is excitable when b < 1 and fires a periodic spike train
when b > 1 with period T = − ln(1− 1/b). (The reader should verify this.)

The integrate-and-fire neuron illustrates a number of important neurocomputa-
tional properties:

• All-or-none spikes. Since the shape of the spike is not simulated, all spikes are
implicitly assumed to be identical in size and duration.

• Well-defined threshold. A stereotypical spike is fired as soon as V = Ethresh,
leaving no room for any ambiguity (see, however, exercise 1).
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• Relative refractory period. When EK < Eleak, the neuron is less excitable imme-
diately after the spike.

• Distinction between excitation and inhibition. Excitatory inputs (I > 0) bring
the membrane potential closer to the threshold, and hence facilitate firing, while
inhibitory inputs (I < 0) do the opposite.

• Class 1 excitability. The neuron can continuously encode the strength of an input
into the frequency of spiking.

In summary, the neuron seems to be a good model for an integrator.
However, a closer look reveals that the integrate-and-fire neuron has flaws. The

transition from resting to repetitive spiking occurs neither via saddle-node nor via
Andronov-Hopf bifurcation, but via some other weird type of bifurcation that can be
observed only in piecewise continuous systems. As a result, the F-I curve has loga-
rithmic scaling and not the expected square-root scaling of a typical Class 1 excitable
system (see, however, exercise 19 in chapter 6). The integrate-and-fire model cannot
have spike latency to a transient input because superthreshold stimuli evoke immedi-
ate spikes without any delays (compare with Fig.8.8(I)). In addition, the model has
some weird mathematical properties, such as non-uniqueness of solutions, as we show
in exercise 1. Finally, the integrate-and-fire model is not a spiking model. Technically,
it did not fire a spike in Fig.8.1, it was only “said to fire a spike”, which was manually
added afterward to fool the reader.

Despite all these drawbacks, the integrate-and-fire model is an acceptable sacrifice
for a mathematician who wants to prove theorems and derive analytical expressions.
However, using this model might be a waste of time for a computational neuroscientist
who wants to simulate large-scale networks. At the end of this section we present
alternative models that are as computationally efficient as the integrate-and-fire neuron,
yet as biophysically plausible as Hodgkin-Huxley-type models.

8.1.2 Resonate-and-Fire

The resonate-and-fire model is a two-dimensional extension of the integrate-and-fire
model that incorporates an additional low-threshold persistent K+ current or h-current,
or any other resonant current that is partially activated at rest. Let W denote the
magnitude of such a current. In the linear approximation, the conductance-based
equations describing neuronal dynamics can be written in the form

CV̇ = I − gleak(V − Eleak)−W ,

Ẇ = (V − V1/2)/k −W .

known as the Young (1937) model (see also equation 2-1 in FitzHugh 1969). Whenever
the membrane potential reaches the threshold value, Vthresh, the neuron is said to fire
a spike. Young did not specify what happens after the spike. The resonate-and-fire
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Figure 8.2: Resonate-and-fire model with b = −0.05, ω = 0.25, and zreset = i. The
spike was added manually.

model is the Young model with the following resetting: if V ≥ Vthresh, then V ← Vreset

and W ← Wreset, where Vrest and Wreset are some parameters.
When the resting state is a stable focus, the model can be recast in complex coor-

dinates as
ż = (b + iω)z + I ,

where b + iω ∈ C is the complex eigenvalue of the resting state, and z = x + iy ∈ C is
the complex-valued variable describing damped oscillations with frequency ω around
the resting state. The real part, x, is a current-like variable. It describes the dynamics
of the resonant current and synaptic currents. The imaginary part, y, is a voltage-like
variable. The neuron is said to fire a spike when y reaches the threshold y = 1. Thus,
the threshold is a horizontal line on the complex plane that passes through i ∈ C, as
in Fig.8.2, though other choices are also possible. After firing the spike, the variable z
is reset to zreset.

The resonate-and-fire model illustrates the most important features of resonators:
damped oscillations, frequency preference, postinhibitory (rebound) spikes, and Class 2
excitability. It cannot have sustained subthreshold oscillations of membrane potential.

Integrate-and-fire and resonate-and-fire neurons do not contradict, but complement,
each other. Both are linear, and hence are useful when we prove theorems and derive
analytical expressions. They have the same flaws limiting their applicability, which
were discussed earlier. In contrast, two simple models described below are difficult to
treat analytically, but because of their universality they should be the models of choice
when large-scale simulations are concerned.

8.1.3 Quadratic Integrate-and-Fire

Replacing −v with +v2 in (8.1) results in the quadratic integrate-and-fire model

v̇ = b + v2 , if v = vpeak, then v ← vreset, (8.2)

which we considered in section 3.3.8. Here vpeak is not a threshold, but the peak (cut
off) of a spike, as we explain below. It is useful to use vpeak = +∞ in analytical studies.
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diagram of the quadratic
integrate-and-fire neu-
ron (8.2).

In simulations, the peak value is assumed to be large but finite, so it can be normalized
to vpeak = 1.

Note that v̇ = b + v2 is a topological normal form for the saddle-node bifurcation.
That is, it describes dynamics of any Hodgkin-Huxley-type system near that bifurca-
tion, as we discuss in chapter 3 and 6. There we derived the normal form (6.3) for the
INa,p+IK-model and showed that the two systems agree quantitatively in a reasonably
broad voltage range. By resetting v to vreset, the quadratic integrate-and-fire model
captures the essence of recurrence when the saddle-node bifurcation is on an invariant
circle.

When b > 0, the right-hand side of the model is strictly positive, and the neuron
fires a periodic train of action potentials. Indeed, v increases, reaches the peak, resets
to vreset, and then increases again, as we show in Fig.3.35 (top). In exercise 3 we prove
that the period of such spiking activity is

T =
1√
b

(
atan

vpeak√
b
− atan

vreset√
b

)
<

π√
b

,

so that the frequency scales as
√

b, as in Class 1 excitable systems.
When b < 0, the parabola b + v2 has two zeroes, ±

√
|b|. One corresponds to

the stable node equilibrium (resting state), and the other corresponds to the unstable
node (threshold state); see exercise 2. Subthreshold perturbations are those that keep
v below the unstable node. Superthreshold perturbations are those that push v beyond
the unstable node, resulting in the initiation of an action potential, reaching the peak
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Figure 8.4: Phase portrait (a) and its magnification (b) of a typical neuronal model
having voltage variable V and a recovery variable u.

value vpeak, and then resetting to vreset. If, in addition, vreset >
√
|b|, then there is a

coexistence of resting and periodic spiking states, as in Fig.3.35 (middle). The period
of the spiking state is provided in exercise 4. A two-parameter bifurcation diagram of
(8.2) is depicted in Fig.8.3.

Unlike its linear predecessor, the quadratic integrate-and-fire neuron is a genuine
integrator. It exhibits saddle-node bifurcation; it has a soft (dynamic) threshold; and
it generates spikes with latencies, as many mammalian cells do. Besides, the model
is canonical in the sense that the entire class of neuronal models near saddle-node on
invariant circle bifurcation can be transformed into this model by a piecewise con-
tinuous change of variables (see section 8.1.5 and the Ermentrout-Kopell theorem in
Hoppensteadt and Izhikevich 1997). In conclusion, the quadratic, and not the leaky,
integrate-and-fire neuron should be used in simulations of large-scale networks of inte-
grators. A generalization of this model is discussed next.

8.1.4 Simple Model of Choice

A striking similarity among many spiking models, discussed in chapter 5, is that they
can be reduced to two-dimensional systems having a fast voltage variable and a slower
“recovery” variable, which may describe activation of the K+ current or inactivation
of the Na+ current or their combination. Typically, the fast variable has an N-shaped
nullcline and the slower variable has a sigmoid-shaped nullcline. The resting state in
such models is the intersection of the nullclines near the left knee, as we illustrate
in Fig.8.4a. There, V and u denote the fast and the slow variable, respectively. In
chapter 7 we showed that many computational properties of biological neurons can be
explained by considering dynamics at the left knee.

In section 5.2.4 we derive a simple model that captures the subthreshold behavior
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with Fig.7.27.

in a small neighborhood of the left knee confined to the shaded square in Fig.8.4 and
the initial segment of the upstroke of an action potential. In many cases, especially
involving large-scale simulations of spiking models, the shape of the action potential is
less important than the subthreshold dynamics leading to this action potential. Thus,
retaining detailed information about the left knee and its neighborhood and simplifying
the vector field outside the neighborhood is justified.

The simple model

v̇ = I + v2 − u if v ≥ 1, then (8.3)

u̇ = a(bv − u) v ← c, u ← u + d (8.4)

has only four dimensionless parameters. Depending on the values of a and b, it can
be an integrator or a resonator, as we illustrate in Fig.8.5. The parameters c and d
do not affect steady-state subthreshold behavior. Instead, they take into account the
action of high-threshold voltage-gated currents activated during the spike, and affect
only the after-spike transient behavior. If there are many currents with diverse time
scales, then u, a, b, and d are vectors, and (8.3) contains

∑
u instead of u.

The simple model may be treated as a quadratic integrate-and-fire neuron with
adaptation in the simplest case b = 0. When b < 0, the model can be treated as a
quadratic integrate-and-fire neuron with a passive dendritic compartment (see exer-
cise 10). When b > 0, the connection to the quadratic integrate-and-fire neuron is lost,
and the simple model represents a novel class of spiking models.

In the rest of this chapter we tune the simple model to reproduce spiking and
bursting behavior of many known types of neurons. It is convenient to use it in the
form

Cv̇ = k(v − vr)(v − vt)− u + I if v ≥ vpeak, then (8.5)

u̇ = a{b(v − vr)− u} v ← c, u ← u + d (8.6)
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where v is the membrane potential, u is the recovery current, C is the membrane
capacitance, vr is the resting membrane potential, and vt is the instantaneous threshold
potential. Though the model seems to have ten parameters, but it is equivalent to (8.3,
8.4) and hence has only four independent parameters. As we described in section 5.2.4,
the parameters k and b can be found when one knows the neuron’s rheobase and input
resistance. The sum of all slow currents that modulate the spike generation mechanism
is combined in the phenomenological variable u with outward currents taken with the
plus sign.

The sign of b determines whether u is an amplifying (b < 0) or a resonant (b > 0)
variable. In the latter case, the neuron sags in response to hyperpolarized pulses of
current, peaks in response to depolarized subthreshold pulses, and produces rebound
(postinhibitory) responses. The recovery time constant is a. The spike cutoff value is
vpeak, and the voltage reset value is c. The parameter d describes the total amount of
outward minus inward currents activated during the spike and affecting the after-spike
behavior. All these parameters can easily be fitted to any particular neuron type, as
we show in subsequent sections.

Implementation and Phase Portrait

The following MATLAB code simulates the model and produces Fig.8.6a.

C=100; vr=-60; vt=-40; k=0.7; % parameters used for RS
a=0.03; b=-2; c=-50; d=100; % neocortical pyramidal neurons
vpeak=35; % spike cutoff

T=1000; tau=1; % time span and step (ms)
n=round(T/tau); % number of simulation steps
v=vr*ones(1,n); u=0*v; % initial values
I=[zeros(1,0.1*n),70*ones(1,0.9*n)];% pulse of input DC current

for i=1:n-1 % forward Euler method
v(i+1)=v(i)+tau*(k*(v(i)-vr)*(v(i)-vt)-u(i)+I(i))/C;
u(i+1)=u(i)+tau*a*(b*(v(i)-vr)-u(i));
if v(i+1)>=vpeak % a spike is fired!

v(i)=vpeak; % padding the spike amplitude
v(i+1)=c; % membrane voltage reset
u(i+1)=u(i+1)+d; % recovery variable update

end;
end;
plot(tau*(1:n), v); % plot the result

Note that the spikes were padded to vpeak to avoid amplitude jitter associated with
the finite simulation time step tau=1 ms. In Fig.8.6b we magnify the simulated voltage
trace and compare it with a recording of a neocortical pyramidal neuron (dashed curve).
There are two discrepancies, marked by arrows: In the first, the pyramidal neuron has
(1) a sharper spike upstroke and (2) a smoother spike downstroke. The first discrepancy
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Figure 8.6: (a) Output of the MATLAB code simulating the simple model (8.5, 8.6).
(b) Comparison of the simulated (solid curve) and experimental (dashed curve) voltage
traces shows two major discrepancies, marked by arrows. (c) Phase portrait of the
model.

can be removed by assuming that the coefficient k of the square polynomial in (8.5)
is voltage-dependent (e.g., k = 0.7 for v ≤ vt and k = 7 for v > vt), or by using the
modification of the simple model presented in exercise 13 and exercise 17. The second
discrepancy results from the instantaneous after-spike resetting, and it less important
because it does not affect the decision whether or when to fire. However, the slope
of the downstroke may become important in studies of gap-junction-coupled spiking
neurons.

The phase portrait of the simple model is depicted in Fig.8.6c. Injection of the step
of DC current I = 70 pA shifts the v-nullcline (square parabola) upward and makes
the resting state, denoted by a black square, disappear. The trajectory approaches the
spiking limit cycle attractor, and when it crosses the cutoff vertical line vpeak = 35 mV,
it is reset to the white square, resulting in periodic spiking behavior. Note the slow
afterhyperpolarization (AHP) following the reset that is due to the dynamics of the
recovery variable u. Depending on the parameters, the model can have other types of
phase portraits, spiking, and bursting behavior, as we demonstrate later.

In Fig.8.7 we illustrate the difference between the integrate-and-fire neuron and the
simple model. The integrate-and-fire model is said to fire spikes when the membrane
potential reaches a preset threshold value. The potential is reset to a new value, and
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Figure 8.7: Voltage reset in the integrate-and-fire model and in the simple model.

the spikes are drawn by hand. In contrast, the simple model generates the upstroke
of the spike due to the intrinsic (regenerative) properties of the voltage equation. The
voltage reset occurs not at the threshold, but at the peak, of the spike. In fact, the
firing threshold in the simple model is not a parameter, but a property of the bifurcation
mechanism of excitability. Depending on the bifurcation of equilibrium, the model may
not even have a well-defined threshold, a situation similar to many conductance-based
models.

When numerically implementing the voltage reset, whether at the threshold or at
the peak of the spike, one needs to be aware of the numerical errors, which translate
into the errors of spike timing. These errors are inversely proportional to the slope of
the voltage trace (i.e. v̇) at the reset value. The slope is small in the integrate-and-fire
model, so clever numerical methods are needed to catch the exact moment of threshold
crossing (Hansel et al. 1998). In contrast, the slope is nearly infinite in the simple
model, hence the error is infinitesimal, and no special methods are needed to identify
the peak of the spike.

In Fig.8.8 we used the model to reproduce the 20 of the most fundamental neu-
rocomputational properties of biological neurons. Let us check that the model is the
simplest possible system that can exhibit the kind of behavior in the figure. Indeed, it
has only one nonlinear term, v2. Removing the term makes the model linear (between
the spikes) and equivalent to the resonate-and-fire neuron. Removing the recovery
variable u makes the model equivalent to the quadratic integrate-and-fire neuron with
all its limitations, such as the inability to burst or to be a resonator. In summary, we
found the simplest possible model capable of spiking, bursting, being an integrator or
a resonator, and it should be the model of choice in simulations of large-scale networks
of spiking neurons.
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Figure 8.8: Summary of neurocomputational properties exhibited by the simple model;
see exercise 11. The figure is reproduced, with permission, from www.izhikevich.com.
(An electronic version of the figure, the MATLAB code that generates the voltage
responses, and reproduction permissions are available at www.izhikevich.com.)
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Figure 8.9: A real conversation between the author of this book and his boss.

8.1.5 Canonical Models

It is quite rare, if ever possible, to know precisely the parameters describing dynamics
of a neuron (many erroneously think that the Hodgkin-Huxley model of the squid
axon is an exception). Indeed, even if all ionic channels expressed by the neuron are
known, the parameters describing their kinetics are usually obtained via averaging over
many neurons; there are measurement errors; the parameters change slowly, and so
on. Thus, we are forced to consider families of neuronal models with free parameters
(e.g. the family of INa+IK-models). It is more productive, from the computational
neuroscience point of view, to consider families of neuronal models having a common
property, e.g., the family of all integrators, the family of all resonators, or the family
of “fold/homoclinic” bursters considered in the next chapter. How can we study the
behavior of the entire family of neuronal models if we have no information about most
of its members?

The canonical model approach addresses this issue. Briefly, a model is canonical for
a family if there is a piecewise continuous change of variables that transforms any model
from the family into this one, as we illustrate in Fig.8.10. The change of variables does
not have to be invertible, so the canonical model is usually lower-dimensional, simple,
and tractable. Nevertheless, it retains many important features of the family. For
example, if the canonical model has multiple attractors, then each member of the
family has multiple attractors. If the canonical model has a periodic solution, then
each member of the family has a periodic (quasi-periodic or chaotic) solution. If the
canonical model can burst, then each member of the family can burst. The advantage
of this approach is that we can study universal neurocomputational properties that
are shared by all members of the family because all such members can be put into the
canonical form by a change of variables. Moreover, we need not actually present such
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Figure 8.10: Dynamical system ẏ = g(y) is a canonical model for the family
{f1, f2, f3, f4} of neural models ẋ = f(x) because each such model can be transformed
into the form ẏ = g(y) by the piecewise continuous change of variables hi.

a change of variables explicitly, so derivation of canonical models is possible even when
the family is so broad that most of its members are given implicitly (e.g., the family
of “all resonators”).

The process of deriving canonical models is more an art than a science, since a
general algorithm for doing this is not known. However, much success has been achieved
in some important cases. The canonical model for a system near an equilibrium is
the topological normal form at the equilibrium (Kuznetsov 1995). Such a canonical
model is local, but it can be extended to describe global dynamics. For example, the
quadratic integrate-and-fire model with a fixed vreset < 0 is a global canonical model
for all Class 1 excitable systems, that is, systems near saddle-node on invariant circle
bifurcation. The same model with variable vreset is a global canonical model for all
systems near saddle-node homoclinic orbit bifurcation (considered in section 6.3.6).

The phase model ϑ̇ = 1 derived in chapter 10 is a global canonical model for the
family of nonlinear oscillators having exponentially stable limit cycle attractors. Other
examples of canonical models for spiking and bursting can be found in subsequent
chapters of this book.

The vector-field of excitable conductance-based models in the subthreshold region
and in the region corresponding to the upstroke of the spike can be converted into the
simple form (8.3, 8.4), possibly with u being a vector. Therefore, the simple model
(8.3, 8.4) is a local canonical model for the spike generation mechanism and the spike
upstroke of Hodgkin-Huxley-type neuronal models. It is not a global canonical model
because it ignores the spike downstroke. Nevertheless, it describes remarkably well the
spiking and bursting dynamics of many biological neurons, as we demonstrate next.
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Figure 8.11: The six most fundamental classes of firing patterns of neocortical neurons
in response to pulses of depolarizing DC current. RS and IB are in vitro recordings
of pyramidal neurons of layer 5 of primary visual cortex of a rat; CH was recorded in
vivo in cat visual cortex (area 17; data provided by D. McCormick). FS was recorded
in vitro in rat primary visual cortex, LTS was recorded in vitro in layer 4 or 6 of rat
barrel cortex (data provided by B. Connors). LS was recorded in layer 1 of rat’s visual
cortex (data provided by S. Hestrin). All recordings are plotted on the same voltage
and time scale, and the data are available at www.izhikevich.com.
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8.2 Cortex

In this section we consider the six most fundamental classes of firing patterns observed
in the mammalian neocortex and depicted in Fig.8.11 (Connors and Gutnick 1990;
Gray and McCormick 1996; Gibson et al. 1999). Though most biologists agree with
the classification in the figure, many would point out that it is greatly oversimplified
(Markram et al. 2004), that the distinction between the classes is not sharp, that there
are subclasses within each class (Nowak et al. 2003; Toledo-Rodriguez et al. 2004), and
that neurons can change their firing class depending on the state of the brain (Steriade
2004).

• (RS) Regular spiking neurons fire tonic spikes with adapting (decreasing) fre-
quency in response to injected pulses of DC current. Most of them have Class 1
excitability in the sense that the interspike frequency vanishes when the ampli-
tude of the injected current decreases. Morphologically, these neurons are spiny
stellate cells in layer 4 and pyramidal cells in layers 2, 3, 5, and 6.

• (IB) Intrinsically bursting neurons generate a burst of spikes at the beginning
of a strong depolarizing pulse of current, then switch to tonic spiking mode.
They are excitatory pyramidal neurons found in all cortical layers, but are most
abundant in layer 5.

• (CH) Chattering neurons fire high-frequency bursts of spikes with relatively short
interburst periods; hence another name, FRB (fast rhythmic bursting). Output
of such a cell fed to the loudspeaker “sounds a lot like a helicopter – cha, cha,
cha – real fast”, according to Gray and McCormick (1996). CH neurons were
found in visual cortex of adult cats, and morphologically they are spiny stellate
or pyramidal neurons of layers 2 - 4, mainly layer 3.

• (FS) Fast spiking interneurons fire high-frequency tonic spikes with relatively
constant period. They exhibit Class 2 excitability (Tateno et al. 2004). When the
magnitude of the injected current decreases below a certain critical value, they
fire irregular spikes, switching randomly between resting and spiking states. Mor-
phologically, FS neurons are sparsely spiny or aspiny nonpyramidal cells (basket
or chandelier; see Kawaguchi and Kubota 1997) providing local inhibition along
the horizontal (intra-laminar) direction of the neocortex (Bacci et al. 2003).

• (LTS) Low-threshold spiking neurons fire tonic spikes with pronounced spike
frequency adaptation and rebound (postinhibitory) spikes, often called “low-
threshold spikes” by biologists (hence the name). They seem to be able to fire
low-frequency spike trains, though their excitability class has not yet been deter-
mined. Morphologically, LTS neurons are nonpyramidal interneurons providing
local inhibition along the vertical (inter-laminar) direction of the neocortex (Bacci
et al. 2003).
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• (LS) Late spiking neurons exhibit voltage ramp in response to injected DC
current near the rheobase, resulting in delayed spiking with latencies as long
as 1 sec. There is a pronounced subthreshold oscillation during the ramp, but
the discharge frequency is far less than that of FS neurons. Morphologically,
LS neurons are nonpyramidal interneurons (neurogliaform; see Kawaguchi and
Kubota 1997) found in all layers of neocortex (Kawaguchi 1995), especially in
layer 1 (Chu et al. 2003).

Our goal is to use the simple model (8.5, 8.6) presented in section 8.1.4 to reproduce
each of the firing types. We want to capture the dynamic mechanism of spike generation
of each neuron, so that the model reproduces the correct responses to many types of
the inputs, and not only to the pulses of DC current. We strive to have not only
qualitative but also quantitative agreement with the published data on neurons’ resting
potential, input resistance, rheobase, F-I behavior, the shape of the upstroke of the
action potential, and so on, though this is impossible in many cases, mostly because
the data are contradictory. To fine-tune the model, we use recordings of real neurons.
We consider the tuning successful when the quantitative difference between simulated
and recorded responses is smaller than the difference between the responses of two
“sister” neurons recorded in the same slice. We do not want to claim that the simple
model explains the mechanism of generation of any of the firing patterns recorded in
real neurons (simply because the mechanism is usually not known). Although in many
instances we must resist the temptation to use the Wolfram (2002) new-kind-of-science
criterion: “If it looks the same, it must be the same”.

8.2.1 Regular Spiking (RS) Neurons

Regular spiking neurons are the major class of excitatory neurons in the neocortex.
Many are Class 1 excitable, as we show in Fig.7.3, using in vitro recordings of a layer
5 pyramidal cell of rat primary visual cortex (see also Tateno et al. 2004). RS neurons
have a transient K+ current IA, whose slow inactivation delays the onset of the first
spike and increases the interspike period, and a persistent K+ current IM, which is
believed to be responsible for the spike frequency adaptation seen in Fig.7.43. Let us
use the simple model (8.5, 8.6) to capture qualitative and some quantitative features
of typical RS neurons.

We assume that the resting membrane potential is vr = −60 mV and the instanta-
neous threshold potential is vt = −40 mV; that is, instantaneous depolarizations above
−40 mV cause the neuron to fire, as in Fig.3.15. Assuming that the rheobase is 50 pA
and the input resistance is 80 MΩ, we find k = 0.7 and b = −2. We take the membrane
capacitance C = 100 pF, which yields a membrane time constant of 8 ms.

Since b < 0, depolarizations of v decrease u as if the major slow current is the
inactivating K+ current IA. The inactivation time constant of IA is around 30 ms in
the subthreshold voltage range; hence one takes a = 0.03 ≈ 1/30. The membrane
potential of a typical RS neuron reaches the peak value vpeak = +35 mV during a
spike (the precise value has little effect on dynamics) and then repolarizes to c = −50
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Figure 8.12: Comparison of in vitro recordings of a regular spiking (RS) pyramidal
neuron with simulations of the simple model 100v̇ = 0.7(v + 60)(v + 40) − u + I,
u̇ = 0.03{−2(v + 60)− u}, if v ≥ +35, then v ← −50, u ← u + 100.

mV or below, depending on the firing frequency. The parameter d describes the total
amount of outward minus inward currents activated during the spike and affecting the
after-spike behavior. Trying different values, we find that d = 100 gives a reasonable
F-I relationship, at least in the low-frequency range.

As follows from exercise 10, one can also interpret u as the membrane potential of
a passive dendritic compartment, taken with the minus sign. Thus, when b < 0, the
variable u represents the combined action of slow inactivation of IA and slow charging
of the dendritic tree. Both processes slow the frequency of somatic spiking.

Note that we round up all the parameters, that is, we use d = 100 and not 93.27.
Nevertheless, the simulated voltage responses in Fig.8.12 agree quantitatively with the
in vitro recordings of the layer 5 pyramidal neuron used in Fig.7.3. Tweaking the pa-
rameters, considering multidimensional u, or adding multiple dendritic compartments,
one can definitely improve the quantitative correspondence between the model and the
in vitro data of that particular neuron, but this is not our goal here. Instead, we want
to understand the qualitative dynamics of RS neurons, using the geometry of their
phase portraits.
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injected currents (case
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Phase Plane Analysis

Figure 8.13 shows recordings of two pyramidal RS neurons from the same slice while
an automated procedure injects pulses of DC current to determine their rheobase. The
neuron on the left exhibits monotonically increasing (ramping) or decreasing responses
of membrane potential to weak input pulses, long latencies of the first spike, and no
rebound spikes, whereas the neuron on the right exhibits non-monotone overshooting
responses to positive pulses, sags and rebound spikes to negative pulses (as in Fig.7.48),
relatively short latencies of the first spike, and other resonance phenomena. The even
more extreme example in Fig.7.42 shows a pyramidal neuron executing a subthreshold
oscillation before switching to a tonic spiking mode.

The difference between the types in Fig.8.13 can be explained by the sign of the
parameter b in the simple model (8.5, 8.6), which depends on the relative contributions
of amplifying and resonant slow currents and gating variables. When b < 0 (or b ≈ 0;
e.g., b = 0.5 in Fig.8.14), the neuron is a pure integrator near saddle-node on invariant
circle bifurcation. Greater values of b > 0 put the model near the transition from an
integrator to a resonator the via codimension-2 Bogdanov-Takens bifurcation studied
in section 6.3.3 and 7.2.11.
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Figure 8.16: Stuttering behavior of an RS neuron. (Data provided by Dr. Klaus M.
Stiefel: P28-36 adult mouse, coronal slices, 300µm, layer II/III pyramid, visual cortex.)

The sequence of bifurcations when b > 0 is depicted in Fig.8.15. Injection of
depolarizing current below the neuron’s rheobase transforms the resting state into
a stable focus and results in damped oscillations of the membrane potential. The
attraction domain of the focus (shaded region in the figure) is bounded by the stable
manifold of the saddle. As I increases, the stable manifold makes a loop and becomes
a big homoclinic orbit giving birth to a spiking limit cycle attractor. When I = 125,
stable resting and spiking states coexist, which plays an important role in explaining
the paradoxical stuttering behavior of some neocortical neurons discussed later. As
I increases, the saddle quantity (i.e., the sum of eigenvalues of the saddle) becomes
positive. When the stable manifold makes another, smaller loop, it gives birth to an
unstable limit cycle, which then shrinks to the resting equilibrium and results in a
subcritical Andronov-Hopf bifurcation.

What is the excitability class of the RS model neuron in Fig.8.15? If a slow ramp of
current is injected, the resting state of the neuron becomes a stable focus and then loses
stability via a subcritical Andronov-Hopf bifurcation. Hence the neuron is a resonator
exhibiting Class 2 excitability. Now suppose steps of DC current of amplitude I = 125
pA or less are injected. The trajectory starts at the initial point (v, u) = (−60, 0),
which is the resting state when I = 0, and then approaches the spiking limit cycle.
Because the limit cycle was born via a homoclinic bifurcation to the saddle, it has
a large period, and hence the neuron is Class 1 excitable. Thus, depending on the
nature of stimulation, that is, ramps vs. pulses, we can observe small or large spiking
frequencies, at least in principle.

In practice, it is quite difficult to catch homoclinic orbits to saddles because they
are sensitive to noise. Injection of a constant current just below the neuron’s rheobase
in Fig.8.15 would result in random transitions between the resting state and a periodic
spiking state. Indeed, the two attractors coexist and are near each other, so weak
membrane noise can push the trajectory in and out of the shaded region, resulting
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Figure 8.17: (a) Comparison of responses of a rat motor cortex layer 5 pyramidal neuron
of RS type and the simple model (8.5, 8.6) to in vivo-like stochastic input (8.7) with
the random conductances in (b). Part (a) is a magnification of a small region in (c).
Shown are simulations of 30v̇ = 3(v+55)(v+42)−u+I(t), u̇ = 0.01{−0.25(v+55)−u},
if v ≥ +10, then v ← −40, u ← u + 90. (Data provided by Niraj S. Desai and Betsy
C. Walcott.)

in a stuttering spiking (illustrated in Fig.8.16) mingled with subthreshold oscillations.
Such behavior is also exhibited by FS interneurons, studied later in this section.

In Vivo-like Conditions

In Fig.8.17a (dashed curve) we show the response of in vitro recorded layer 5 pyramidal
neuron of rat motor cortex to fluctuating in vivo-like input. First, random excitatory
and inhibitory conductances, gAMPA(t) and gGABA(t) (Fig.8.17b), were generated using
the Ornstein-Uhlenbeck stochastic process (Uhlenbeck and Ornstein 1930), which was
originally developed to describe Brownian motion, but can equally well describe in
vivo-like fluctuating synaptic conductances produced by random firings (Destexhe et
al. 2001). Let EAMPA = 0 mV and EGABA = −65 mV denote the reverse potentials of
excitatory and inhibitory synapses, respectively. The corresponding current

I(t) =

excitatory input︷ ︸︸ ︷
gAMPA(t)(EAMPA − V (t)) +

inhibitory input︷ ︸︸ ︷
gGABA(t)(EGABA − V (t)) , (8.7)
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was injected into the neuron, using the dynamic clamp protocol (Sharp et al. 1993),
where V (t) denotes the instantaneous membrane potential of the neuron. The same
conductances were injected into the simple model (8.5, 8.6), whose parameters were
adjusted to fit this particular neuron. The superimposed voltage traces, depicted in
Fig.8.17a, show a reasonable fit. The simple model predicts more than 90 percent of
spikes of the in vitro neuron, often with a submillisecond precision (see Fig.8.17c). Of
course, we should not expect to get a total fit, since we do not explicitly model the
sources of intrinsic and synaptic noise present in the cortical slice. In fact, presentation
of the same input to the same neuron a few minutes later produces a response with
spike jitter, missing spikes, and extra spikes (as in Fig.7.24) comparable with those in
the simulated response.

8.2.2 Intrinsically Bursting (IB) Neurons

The class of intrinsically bursting (IB) neurons forms a continuum of cells that differ
in their degree of “burstiness”, and it probably should consist of subclasses. At one
extreme, responses of IB neurons to injected pulses of DC current have initial stereotyp-
ical bursts (Fig.8.18a) of high-frequency spikes followed by low-frequency tonic spiking.
Many IB neurons burst even when the current is barely superthreshold and not strong
enough to elicit a sustained response (as in Fig.8.21, bottom traces). At the other ex-
treme, bursts can be seen only in response to sufficiently strong current, as in Fig.8.11
or Fig.9.1b. Weaker stimulation elicits regular spiking responses. In comparison with
typical RS neurons, the regular spiking response of IB neurons has lower firing fre-
quency and higher rheobase (threshold) current, and exhibits shorter latency to the
first spike and noticeable afterdepolarizations (ADPs) (Compare RS and IB cells in
Fig.8.11.)

Magnifications of the responses of two IB neurons in Fig.8.18b and 8.18c show
that the interspike intervals within the burst may be increasing or decreasing, possibly
reflecting different ionic mechanisms of burst generation and termination. In any case,
the initial high-frequency spiking is caused by the excess of the inward current or the
deficit of the outward current needed to repolarize the membrane potential below the
threshold. As a result, many spikes are needed to build up outward current to terminate
the high-frequency burst. After the neuron recovers, it fires low-frequency tonic spikes
because there is a residual outward current (or residual inactivation of inward current)
that prevents the occurrence of another burst. Many IB neurons can fire two or more
bursts before they switch into tonic spiking mode, as in Fig.8.18a. Below, we present
two models of IB neurons, one relying on the interplay of voltage-gated currents, and
the other relying on the interplay of fast somatic and slow dendritic spikes.

Let us use the available data on the IB neuron in Fig.8.11 to build a simple one-
compartment model (8.5, 8.6) exhibiting IB firing patterns. The neuron has a resting
state at vr = −75 mV and an instantaneous threshold at vt = −45 mV. Its rheobase
is 350 pA, and the input resistance is around 30 MΩ, resulting in k = 1.2 and b = 5.
The peak of the spike is at +50 mV, and the after-spike resetting point is around
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Figure 8.18: (a) bursting and spiking in an IB neuron (layer 5 of somatosensory cortex
of a four week old rat at 35◦C; (data provided by Greg Stuart and Maarten Kole).
Note the afterdepolarization (ADP). (b) IB neuron of a cat (modified from figure 2 of
Timofeev et al. 2000). (c) pyramidal neuron of rat visual cortex. Note that IB neurons
may exhibit bursts with increasing or decreasing inter-spike intervals (ISIs).

c = −56 mV. The parameters a = 0.01 and d = 130 give a reasonable fit of the
neuron’s current-frequency relationship.

The phase portraits in Fig.8.19 explain the mechanism of firing of IB patterns in
the simple model. When I = 0, the model has an equilibrium at −75 mV, which
is the intersection of the v-nullcline (dashed parabola) and the u-nullcline (straight
line). Injection of a depolarizing current moves the v-nullcline upward. The pulse of
current of magnitude I = 300 pA is below the neuron’s rheobase, so the trajectory
moves from the old resting state (black square) to the new one (black circle). Since
b > 0, the trajectory overshoots the new equilibrium. The pulse of magnitude I = 370
pA is barely above the rheobase, so the model exhibits low-frequency tonic firing with
some spike frequency adaptation. Elevating the fast nullcline by injecting I = 500
pA transforms the first spike into a doublet. Indeed, the after-the-first-spike resetting
point (white square marked “1”) is below the parabola, so the second spike is fired
immediately. Similarly, injection of an even stronger current of magnitude I = 550 pA
transforms the doublet into a burst of three spikes, each raising the after-spike resetting
point. Once the resetting point is inside the parabola, the neuron is in tonic spiking
mode.

Figure 8.20a shows simultaneous recording of somatic and dendritic membrane po-
tentials of a layer 5 pyramidal neuron. The somatic spike backpropagates into the
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Figure 8.19: Comparison of in vitro recordings of an intrinsically bursting (IB) neuron
with the simple model 150v̇ = 1.2(v + 75)(v + 45) − u + I, u̇ = 0.01{5(v + 75) − u},
if v ≥ +50, then v ← −56, u ← u + 130. White squares denote the reset points,
numbered according to the spike number.

dendrite, activates voltage-gated dendritic Na+ and Ca2+ currents (Stuart et al. 1999;
Hausser et al. 2000), and results in a slower dendritic spike (clearly seen in the figure).
The slow dendritic spike depolarizes the soma, resulting in an ADP, which is typical
in many IB cells. Depending on the strength of the injected dc current and the state
of the neuron, the ADP can be large enough to cause another somatic spike, as illus-
trated in Fig.7.52. The somatic spike may initiate another dendritic spike, and so on,
resulting in a burst in Fig.8.20b. This mechanism is known as the dendritic-somatic
Ping-Pong (Wang 1999), and it occurs in the Pinsky-Rinzel (1994) model of the hip-
pocampal CA3 neuron, the sensory neuron of weakly electric fish (Doiron et al. 2002),
and in chattering neurons considered below.

Let us build a two-compartment simple model that simulates the somatic and den-
dritic spike generation of IB neurons. Since we do not know the rheobase, input
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Figure 8.20: Somatic and dendritic spike (a) and burst (b) in an IB neuron. The den-
dritic spike in (a) is simulated in (c), using the simple model described in Fig.8.20. The
phase portrait (d) describes the geometry of the dendritic spike generation mechanism.
Recordings are from layer 5 of the somatosensory cortex of a four-week-old rat at 35◦C;
the dendritic electrode is 0.43mm from the soma. (Data provided by Greg Stuart and
Maarten Kole.)

resistance, and resting and instantaneous threshold potentials of the dendritic tree of
IB neurons, we cannot determine parameters of the dendritic compartment. Instead,
we feed the somatic recording V (t) in Fig.8.20a into the model dendritic compartment
and fine-tune the parameters so that the simulated dendritic spike in Fig.8.20c “looks
like” the recorded one in Fig.8.20a.

The phase portrait in Fig.8.20d explains the peculiarities of the shape of the sim-
ulated dendritic spike. The recorded somatic spike quickly depolarizes the dendritic
membrane potential from point 1 to point 2, and starts the regenerative process – the
upstroke of a spike. Upon reaching the peak of the spike (3), the dendritic membrane
potential and the recovery variable are reset by the action of fast voltage-gated K+

currents, which are not modeled here explicitly. The reset point (4) is near the stable
manifold of the saddle, so the membrane potential slowly repolarizes (5) and returns
to the resting state (6).

In Fig.8.21 we put the somatic and dendritic compartments together, adjust some
of the parameters, and simulate the response of the IB neuron to pulses of current of
various amplitudes. Note that the model correctly reproduces the transient burst of
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Figure 8.21: Comparison of in vitro recordings of an intrinsically bursting (IB) neuron
(layer 5 of somatosensory cortex of a four-week-old rat at 35◦C; data provided by Greg
Stuart and Maarten Kole) with the two-compartment simple model. Soma: 150v̇ =
3(v + 70)(v + 45) + 50(vd − v) − u + I, u̇ = 0.01{5(v + 70) − u}, if v ≥ +50, then
v ← −52, u ← u + 240. Active dendrite: 30v̇d = (vd + 50)2 + 20(v − vd) − ud,
u̇d = 3{15(vd + 50)− ud}, if vd ≥ +20, then vd ← −20, ud ← ud + 500.

two closely spaced spikes when stimulation is weak, and the rhythmic bursting with
decreasing number of spikes per burst when stimulation is strong. Using this approach,
one can build models of pyramidal neurons having multiple dendritic compartments,
as we do next.

8.2.3 Multi-Compartment Dendritic Tree

In Fig.8.22 we simulate an IB pyramidal neuron having 47 compartments (Fig.8.22a,
b), each described by a simple model with parameters provided in the caption of
the figure. Our goal is to illustrate a number of interesting phenomena that occur in
neuronal models having active dendrites, that is, dendrites capable of generating action
potentials.

In Fig.8.22c we inject a current into compartment 4 on the apical dendrite to
evoke an excitatory postsynaptic potential (EPSP) of 4 mV, which is subthreshold
for the spike generation mechanism. This depolarization produces a current that pas-
sively spreads to neighboring compartments, and eventually into the somatic com-
partment. However, the somatic EPSP is much weaker, only 1 mV, reflecting the
distance-dependent attenuation of dendritic synaptic inputs. Note also that somatic
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Figure 8.22: (a) Hand drawing and (b) a 47-compartment representation of a layer
5 pyramidal neuron. (c) Injection of current (simulating excitatory synaptic input)
into compartment 2 evokes a large excitatory postsynaptic potential (EPSP) in that
compartment, but a much smaller EPSP in the somatic compartment. (d) Synaptic
inputs to compartments 6 and 7 result in large EPSPs there, but no dendritic spike.
(e) The same synaptic inputs into compartment 6 result in a dendritic spike, which
fails to propagate forward to the soma. (f) The same input combined with background
excitation Iall = 60 pA to all compartments results in forward-propagating dendritic
spikes. (g) Strong synaptic input to the soma results in a spike that fails to propagate
into the dendritic tree. (h) The same input combined with injection of Iall = 70
pA to all compartments (to simulate in vivo tonic background input) promotes back-
propagation of spike into the dendritic tree. Each compartment is simulated by the
simple model 100v̇ = 3(v + 60)(v + 50) − u + I, u̇ = 0.01{5(v + 60) − u}. Soma: if
v ≥ +50, then v ← −55, u ← u + 500. Dendrites: if v ≥ +10, then v ← −35,
u ← u + 1000. The conductance between any two adjacent compartments is 70 nS.
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EPSP is delayed and has a wider time course, which is the result of dendritic low-pass
filtering, or smoothing, of subthreshold neuronal signals. The farther the stimulation
site is from the soma, the weaker, more delayed, and longer lasting the somatic EPSP
is. For many years, dendrites were thought to be passive conductors whose sole purpose
is to collect and low-pass filter the synaptic input.

Now, we explore the active properties of dendrites and their dependence on the
location, timing, and strength of synaptic input. First, we stimulate two synapses that
innervate two sister dendritic compartments, e.g., compartments 6 and 7 in Fig.8.22d
that could interact via their mother compartment 5. Each synaptic input evokes a
strong EPSP of 12 mV, but due to their separation, the EPSPs do not add up and no
dendritic spike is fired. The resulting somatic EPSP is only 0.15 mV due to the passive
attenuation. In Fig.8.22e we provide exactly the same synaptic input, but into the same
compartment, i.e., compartment 6. The EPSPs add up, and result in a dendritic spike,
which propagates into the mother compartment 5 and then into the sister compartment
7 (which was not stimulated), but it fails to propagate along the apical dendrite into
the soma. Nevertheless, the somatic compartment exhibits an EPSP of 1.5 mV, hardly
seen in the figure. Thus, the location of synaptic stimulation, all other conditions
being equal, made a difference. In Fig.8.22f we combine the synaptic stimulation to
compartment 6 with injection of a weak current, Iall, to all compartments of the neuron.
This current represents a tonic background excitation to the neuron that is always
present in vivo. It depolarizes the membrane potential by 2.5 mV and facilitates the
propagation of the dendritic spike along the apical dendrite all the way into the soma.
The same effect could be achieved by an appropriately timed excitatory synaptic input
arriving at an intermediate compartment, e.g., compartment 3 or 2. Not surprisingly,
an appropriately timed inhibitory input to an intermediate compartment on the apical
dendrite could stop the forward-propagating dendritic spike in Fig.8.22f.

In Fig.8.22g and 8.22h we illustrate the opposite phenomenon – back-propagating
spikes from soma to dendrites. A superthreshold stimulation of the somatic compart-
ment evokes a burst of three spikes, which fails to propagate along the apical dendrites
by itself, but can propagate if combined with a tonic depolarization of the dendritic
tree.

We see that dendritic trees can do more than just averaging and low-pass filtering of
distributed synaptic inputs. Separate parts of the tree can perform independent local
signal processing and even fire dendritic spikes. Depending on the synaptic inputs
to other parts of the tree, the spikes can be localized or they can forward-propagate
into the soma, causing the cell to fire. Spikes at the soma can backpropagate into the
dendrites, triggering spike-time-dependent processes such as synaptic plasticity.

8.2.4 Chattering (CH) Neurons

Chattering neurons, also known as fast rhythmic bursting (FRB) neurons, generate
high-frequency repetitive bursts in response to injected depolarizing currents. The
magnitude of the DC current determines the interburst period, which could be as long
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Figure 8.23: Comparison of
in vivo recordings from cat
primary visual cortex with sim-
ulations of the simple model
50v̇ = 1.5(v +60)(v +40)−u+ I,
u̇ = 0.03{(v + 60) − u}, if
v ≥ +25, then v ← −40,
u ← u + 150. (Data provided by
D. McCormick.)

as 100 ms or as short as 15 ms, and the number of spikes within each burst, typically
two to five, as we illustrate in Fig.8.23, using in vivo recordings of a pyramidal neuron
of cat visual cortex.

An RS model neuron, as shown in Fig.8.12, can easily be transformed into a CH
neuron by increasing the after-spike reset voltage to c = −40 mV, mimicking decreased
K+ and increased Na+ currents activated during each spike. The phase portrait in
Fig.8.24 explains the mechanism of chattering of the simple model (8.5, 8.6). A step
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of depolarizing current shifts the fast quadratic nullcline upward and the trajectory
quickly moves rightward to fire a spike. The after-spike reset point (white square
marked “1” in the figure) is outside the parabola nullcline, so another spike is fired
immediately, and so on, until the total amount of outward current is large enough to
stop the burst; that is, until the variable u moves the reset point (the white square
marked “5”) inside the quadratic parabola. The trajectory makes a brief excursion
to the left knee (afterhyperpolarization) and then moves rightward again, initiating
another burst. Since the second burst starts with an elevated value of u, it has fewer
spikes – a phenomenon exhibited by many CH neurons.

8.2.5 Low-Threshold Spiking (LTS) Interneurons

Low-threshold spiking interneurons behave like RS excitatory neurons (b > 0) in the
sense that they exhibit regular spiking patterns in response to injected pulses of current
(some call them regular spiking non-pyramidal (RSNP) neurons). There are some
subtle differences, however. The response of an LTS cell to a weak depolarizing current
consists of a phasic spike or a doublet with a relatively short latency followed by low-
frequency (less than 10 Hz) subthreshold oscillation of membrane potential. Stronger
pulses elicit tonic spikes with slow frequency adaptation, decreasing amplitudes, and
decreasing after-hyperpolarizations, as one can see in Fig.8.11.

LTS neurons have more depolarized resting potentials, lower threshold potentials,
and lower input resistances than RS neurons. To match the in vitro firing patterns
of the LTS interneuron of rat barrel cortex in Fig.8.25, we take the simple model of
the RS neuron and adjust the resting and instantaneous threshold potentials vr = −56
mV and vt = −42 mV, and the values p = 1 and b = 8, resulting in the rheobase
current of 120 pA and the input resistance of 50 MΩ. To model the decreasing nature
of the spike and AHP amplitudes, we assume that the peak of the spike and the after-
spike resetting point depend on the value of the recovery variable u. This completely
unnecessary cosmetic adjustment has a mild effect on the quantitative behavior of the
model but gives a more “realistic” look to the simulated voltage traces in Fig.8.25.

The class of excitability of LTS neurons has not been studied systematically, though
the neurons seem to be able to fire periodic spike trains with a frequency as low as that
of RS neurons (Beierlein et al. 2003; Tateno and Robinson, personal communication).
The conjecture that they are near saddle-node on invariant circle bifurcation, and
hence are Class 1 excitable integrators, seems to be at odds with the observation
that their membrane potential exhibits slow damped oscillation and that they can fire
postinhibitory rebound spikes (Bacci et al. 2003a), called low-threshold spikes (hence
the name – LTS neurons). They are better characterized as being at the transition
from integrators to resonators, with phase portraits as in Fig.8.15.

A possible explanation for the subthreshold oscillations in LTS (and some RS)
neurons is given in Fig.8.13, case b > 0. The resting state is a stable node when I = 0,
but it becomes a stable focus when the magnitude of the injected current is near the
neuron’s rheobase. After firing a phasic spike, the trajectory spirals into the focus
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Figure 8.25: Comparison of in vitro recordings of a low threshold spiking (LTS) in-
terneuron (rat barrel cortex; data provided by B. Connors) with simulations of the
simple model 100v̇ = (v +56)(v +42)−u+ I, u̇ = 0.03{8(v +56)−u}, if v ≥ 40−0.1u,
then v ← −53 + 0.04u, u ← min{u + 20, 670}.

exhibiting damped oscillation. Its frequency is the imaginary part of the complex-
conjugate eigenvalues of the equilibrium, and it is small because the system is near
Bogdanov-Takens bifurcation.

A possible explanation for the rebound spike in LTS (or some RS) neurons is given
in Fig.8.26. The shaded region is the attraction domain of the resting state (black
circle), which is bounded by the stable manifold of the saddle (white circle). A suffi-
ciently strong hyperpolarizing pulse moves the trajectory to the new, hyperpolarized
equilibrium (black square), which is outside the attraction domain. Upon release from
the hyperpolarization, the trajectory fires a phasic spike and then returns to the rest-
ing state. Some LTS interneurons fire bursts of spikes, and for that reason are called
burst-spiking non-pyramidal (BSNP) neurons.



298 Simple Models

0 100 200 300

-80

-60

-40

-20

0

20

40

-80 -60 -40 -20

-200

-100

0

100

200

time (ms) membrane potential, v (mV)

m
em

br
an

e 
po

te
nt

ia
l, 

v 
(m

V
)

re
co

ve
ry

 v
ar

ia
bl

e,
 u

v-nullcline, I=
-1 nA

v-nullcline, I=
0

A

B

C

D

reset

resting

hyperpolarized state

rebound

spike

resting

A
B

C

D resting

hyperpolarized state

saddle

I=0
I=-1 nA

I=0

injected current

sag

sag
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8.2.6 Fast Spiking (FS) Interneurons

Fast spiking neurons fire “fast” tonic spike trains of relatively constant amplitude
and frequency in response to depolarized pulses of current. In a systematic study,
Tateno et al. (2004) have shown that FS neurons have Class 2 excitability in the sense
that their frequency-current (F-I) relation has a discontinuity around 20 Hz. When
stimulated with barely superthreshold current, such neurons exhibit irregular firing,
randomly switching between spiking and fast subthreshold oscillatory mode (Kubota
and Kawaguchi 1999; Tateno et al. 2004).

The absence of spike frequency adaptation in FS neurons is mostly due to the
fast K+ current that activates during the spike, produces deep AHP, completely dein-
activates the Na+ current, and thereby facilitates the generation of the next spike.
Blocking the K+ current by TEA (Erisir et al. 1999) removes AHP, leaves residual
inactivation of the Na+ current, and slows the spiking, essentially transforming the FS
firing pattern into LTS.

The existence of fast subthreshold oscillations of membrane potential suggests that
the resting state of the FS neurons is near the Andronov-Hopf bifurcation. Stuttering
behavior at the threshold currents points to the coexistence of resting and spiking
states, as in Fig.8.16, and suggests that the bifurcation is of the subcritical type.
However, FS neurons do not fire postinhibitory (rebound) spikes – the feature used
to distinguish them experimentally from LTS types. Thus, we cannot use the simple
model (8.5, 8.6) in its present form to simulate FS neurons because the model with
linear slow nullcline would fire rebound spikes according to the mechanism depicted in
Fig.8.26. In addition, the simple model has a non-monotone I-V relation, whereas FS
neurons have a monotone relation.

The absence of rebound responses in FS neurons means that the phenomenological
recovery variable (activation of the fast K+ current) does not decrease significantly
below the resting value when the membrane potential is hyperpolarized. That is, the
slow u-nullcline becomes horizontal in the hyperpolarized voltage range. Accordingly,
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Figure 8.27: Comparison of in vitro recordings of a fast spiking (FS) interneuron of layer
5 rat visual cortex with simulations of the simple model 20v̇ = (v +55)(v +40)−u+ I,
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3 when v ≥ vb with vb = −55 mV. Shaded area
denotes the attraction domain of the resting state.

we simulate the FS neuron in Fig.8.27, using the simple model (8.5) with nonlinear
u-nullcline.

The phase portraits and bifurcation diagram of the FS neuron model are qualita-
tively similar to the fast subsystem of a “subHopf/fold cycle” burster: injection of DC
current I creates a stable and an unstable limit cycle via fold limit cycle bifurcation.
The frequency of the newborn stable cycle is around 20 Hz; hence the discontinuity
of the F-I curve and Class 2 excitability. There is a bistability of resting and spiking
states, as in Fig.8.27 (bottom right), so that noise can switch the state of the neuron
back and forth, and result in irregular stuttering spiking with subthreshold oscillations
in the 10 − 40 Hz range between the spike trains. Further increase of I shrinks the
amplitude of the unstable limit cycle, results in the subcritical Andronov-Hopf bifur-
cation of the resting state, removes the coexistence of attractors, and leaves only the
tonic spiking mode.
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Figure 8.28: Comparison of in vitro recordings of a late spiking (LS) interneuron of
layer 1 rat neocortex with simulations of the simple two-compartment model. Soma:
20v̇ = 0.3(v +66)(v +40)+1.2(vd− v)−u+ I, u̇ = 0.17{5(v +66)−u}, if v ≥ 30, then
v ← −45, u ← u + 100. Passive dendrite (dotted curve): v̇d = 0.01(v − vd). Weak
noise was added to simulations to unmask the subthreshold oscillations. (Recordings
were provided by Zhiguo Chu, Mario Galarreta, and Shaul Hestrin; traces I = 125 and
I = 150 are from one cell; trace I = 200 is from another cell.)

8.2.7 Late Spiking (LS) Interneurons

When stimulated with long pulses of DC current, late spiking neurons exhibit a long
voltage ramp, barely seen in Fig.8.28 (bottom), and then switch into a tonic firing mode.
A stronger stimulation may evoke an immediate (transient) spike followed by a long
ramp and a long latency to the second spike. There are pronounced fast subthreshold
oscillations during the voltage ramp, indicating the existence of at least two time scales:
(1) fast oscillations resulting from the interplay of amplifying and resonant currents,
and (2) slow ramp resulting from the slow kinetic of an amplifying variable, such as
slow inactivation of an outward current (e.g., the K+ A-current) or slow activation of
an inward current, or both. In addition, the ramp could result from the slow charging
of the dendritic compartment of the neuron.

The exact mechanism responsible for the slow ramp in LS neurons is not known
at present. Fortunately, we do not need to know the mechanism in order to simulate
LS neurons using the simple model approach. Indeed, simple models with passive
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dendrites are equivalent to simple models with linear amplifying currents. For example,
the model in Fig.8.28 consists of a two-dimensional system (v, u) responsible for the
spike generation mechanism at the soma and a linear equation for the passive dendritic
compartment vd.

When stimulated with the threshold current (i.e., just above the neuronal rheobase),
LS neurons often exhibit the stuttering behavior seen in Fig.8.28 (middle). Subthresh-
old oscillations, voltage ramps, and stuttering are consistent with the following ge-
ometrical picture. Abrupt onset of stimulation evokes a transient spike followed by
brief hyperpolarization and then sustained depolarization. While depolarized, the fast
subsystem affects the slow subsystem, e.g., slowly charges the dendritic tree or slowly
inactivates the K+ current. In any case, there is a slow decrease of the outward current
or, equivalently, a slow increase of the inward current that drives the fast subsystem
through the subcritical Andronov-Hopf bifurcation. Because of the coexistence of rest-
ing and spiking states near the bifurcation, the neuron can be switched from one state
to the other by the membrane noise. Once the bifurcation is passed, the neuron is in
the tonic spiking mode. Overall, LS neurons can be thought of as being FS neurons
with a slow subsystem that damps any abrupt changes, delays the onset of spiking,
and slows the frequency of spiking.

8.2.8 Diversity of Inhibitory Interneurons

In contrast to excitatory neocortical pyramidal neurons, which have stereotypical mor-
phological and electrophysiological classes (RS, IB, CH), inhibitory neocortical in-
terneurons have wildly diverse classes with various firing patterns that cannot be
classified as FS, LTS, or LS. Markram et al. (2004) reviewed recent results on the re-
lationship between electrophysiology, pharmacology, immunohistochemistry, and gene
expression patterns of inhibitory interneurons. An extreme interpretation of their find-
ings is that there is a continuum of different classes of interneurons rather than a set
of three classes.

Figure 8.29 summarizes five of the most ubiquitous groups in the continuum:

• (NAC) Non-accommodating interneurons fire repetitively without frequency adap-
tation in response to a wide range of sustained somatic current injections. Many
FS and LS neurons are of this type.

• (AC) Accommodating interneurons fire repetitively with frequency adaptation
and therefore do not reach the high firing rates of NAC neurons. Some FS and
LS cells, but mostly LTS cells, are of this type.

• (STUT) Stuttering interneurons fire high-frequency clusters of regular spikes
intermingled with unpredictable periods of quiescence. Some FS and LS cells
exhibit this firing type.

• (BST) Bursting interneurons fire a cluster of three to five spikes riding on a slow
depolarizing wave, followed by a strong slow AHP.
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Figure 8.29: An alternative classification of neocortical inhibitory interneurons (mod-
ified from Markram et al. 2004). Five major classes: non-accommodating (NAC),
accommodating (AC), stuttering (STUT), bursting (BST), and irregular spiking (IS).
Most classes contain subclasses: delay (d), classic (c), and burst (b). For bursting
interneurons, the three types are repetitive (r), initial (i), and transient (t). Subclass
d-IS is not provided in the original picture by Markram et al.
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Figure 8.30: Simulations of the simple model with various parameters can reproduce
all firing patterns of neocortical inhibitory interneurons in Fig.8.29.
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• (IS) Irregular spiking interneurons fire single spikes randomly with pronounced
frequency accommodation.

NAC and AC are the most common response types found in the neocortex. Each group
can be divided into three subgroups depending on the type of the onset of the response
to a step depolarization:

• (c) Classical response is when the first spike has the same shape as any other
spike in the response.

• (b) Burst response is when the first three or more spikes are clustered into a
burst.

• (d) Delayed response is when there is noticeable delay before the onset of spiking.

The BST type has different subdivisions: repetitive (r), initial (i), and transient (t)
bursting.

In Fig.8.30 we use the simple model (8.5, 8.6) to reproduce all firing patterns of the
interneurons, including the delayed irregular spiking (d-IS) pattern that was omitted
from Fig.8.29. We use one-size-fits-all set of parameters: C = 100, k = 1, vr = −60
mV, and vt = −40 mV. We vary the parameters a, b, c, and d. We do not strive to
reproduce the patterns quantitatively, but only qualitatively.

The parameters for the NAC and AC cells were similar to those for RS neurons, with
an additional passive dendritic compartment for the delayed response. The parameters
for the STUT and IS cells were similar to those of the LS interneuron, with some
minor modifications that affect the initial burstiness and delays. Irregular stuttering
in these types results from the coexistence of a stable resting equilibrium and a spiking
limit cycle attractor, as in the cases of FS and LS neurons considered above. The
level of intrinsic noise controls the probabilities of transitions between the attractors.
The parameters for the BST cells were similar to those of IB and CH pyramidal cells.
Varying the parameters a, b, c, and d, we indeed can get all the firing patterns in
Fig.8.29, plus many intermediate patterns, thereby creating a continuum of types of
inhibitory interneurons.

8.3 Thalamus

The thalamus is the major gateway to the neocortex in the sense that no sensory
signal, such as vision, hearing, touch, or taste, etc., can reach the neocortex without
passing through an appropriate thalamic nucleus. Anatomically, the thalamic system
consists of three major types of neurons: thalamocortical (TC) neurons, which relay
signals into the neocortex; reticular thalamic nucleus (RTN) neurons; and thalamic
interneurons, which provide local reciprocal inhibition (Shepherd 2004). The three
types have distinct electrophysiological properties and firing patterns.

There are undoubtedly subtypes within each type of thalamic neurons, but the
classification is not as elaborate as the one in the neocortex. This, and the differences
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Figure 8.31: Compari-
son of in vitro record-
ings of a thalamocor-
tical (TC) cell of cat
dorsal lateral genicu-
late nucleus with sim-
ulations of the simple
model 200v̇ = 1.6(v +
60)(v + 50) − u + I,
u̇ = 0.01{b(v+65)−u},
b = 15 if v ≤ −65 and
b = 0 otherwise. When
v ≥ 35+0.1u, then v ←
−60−0.1u, u ← u+10.
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are in 50 pA incre-
ments. In burst mode,
the cell was hyperpolar-
ized to−80 mV prior to
injection of a depolar-
izing pulse of current.
(Data provided by C.
L. Cox and S. M. Sher-
man.)

between species, ages, and various thalamic nuclei, explain the contradictory reports
of different firing patterns in presumably the same types of thalamic neurons. Below
we use the simple model (8.5, 8.6) to simulate a “typical” TC, TRN, and interneuron.
The reader should realize, though, that our attempt is as incomplete as the attempt
to simulate a “typical” neocortical neuron ignoring the fact that there are RS, IB, CH,
FS, and other cells.

8.3.1 Thalamocortical (TC) Relay Neurons

Thalamocortical (TC) relay neurons, the type of thalamic neurons that project sensory
input to the cortex, have two prominent models of firing, illustrated in Fig.8.31: tonic
mode and burst mode. Both modes are ubiquitous in vitro and in vivo, including
awake and behaving animals, and both represent different patterns of relay of sensory
information into the cortex (Sherman 2001). The transition between the firing modes
depends on the degree of inactivation of a low-threshold Ca2+ T-current (Jahnsen and
Llinas 1984; McCormick and Huguenard 1992), which in turn depends on the holding
membrane potential of the TC neuron.
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In tonic mode, the resting membrane potential of a TC neuron is around −60 mV,
which is above the inactivation threshold of the T-current. The slow Ca2+ current is
inactivated and is not available to contribute to spiking behavior. The neuron fires Na+-
K+ tonic spikes with a relatively constant frequency that depends on the amplitude of
the injected current and could be as low as a few Hertz (Zhan et al. 1999). Such a
cell, illustrated in Fig.8.31, is a typical Class 1 excitable system near a saddle-node on
invariant circle bifurcation. It exhibits regular spiking behavior similar to that of RS
neocortical neurons. It relays transient inputs into outputs, and for this reason, many
refer to the tonic mode as the relay mode of firing.

To switch a TC neuron into the burst mode, an injected DC current or inhibitory
synaptic input must hyperpolarize the membrane potential to around −80 mV for at
least 50 − 100 ms. While it is hyperpolarized, the Ca2+ T-current deinactivates and
becomes available. As soon as the membrane potential is returned to the resting or
depolarized state, there is an excess of the inward current that drives the neuron over
the threshold and results in a rebound burst of high-frequency spikes (as in Fig.8.31),
called a low-threshold (LT) spike or a Ca2+ spike.

In Fig.8.31 (right) we simulate the TC neuron, using the simple model (8.5, 8.6),
and treating u as the low-threshold Ca2+ current. Since the current is inactivated in
the tonic mode, that is, u ≈ 0, we take b = 0. The resting and threshold voltages
of the neuron in the figure are vr = −60 mV and vt = −50 mV. The value p = 1.6
results in a 40 pA rheobase current and a 60 MΩ input resistance, and the membrane
capacitance C = 200 pF gives the correct current-frequency (F-I) relationship. Thus,
in the tonic mode, our model is essentially the quadratic integrate-and-fire neuron
200v̇ = 1.6(v + 60)(v + 50) + I with the after-spike reset from +35 mV to −60 mV.

To model slow Ca2+ dynamics in the burst mode, assume that hyperpolarizations
below the Ca2+ inactivation threshold of −65 mV decrease u, thereby creating inward
current. In the linear case, take u̇ = 0.01{b(v+65)−u} with b = 0 when v ≥ −65, and
b = 15 when v < −65, resulting in the piecewise linear u-nullcline depicted in Fig.8.31
(bottom). Prolonged hyperpolarization below −65 mV decreases u and moves the tra-
jectory outside the attraction domain of the resting state (shaded region in the figure).
Upon release from the hyperpolarization, the model fires a rebound burst of spikes;
the variable u → 0 (inactivation of Ca2+), and the trajectory reenters the attraction
domain of the resting state. Steps of depolarized current produce rebound bursts fol-
lowed by tonic spiking with adapting frequency. A better quantitative agreement with
TC recordings can be achieved when two slow variables, u1 and u2, are used.

8.3.2 Reticular Thalamic Nucleus (RTN) Neurons

Reticular thalamic nucleus (RTN) neurons provide reciprocal inhibition to TC relay
neurons. RTN and TC cells are similar in the sense that they have two firing modes,
illustrated in Fig.8.32: They fire trains of single spikes following stimulation from
resting or depolarized potentials in the tonic mode, as well as rebound bursts upon
release from hyperpolarized potentials in the burst mode.



Simple Models 307

rat RTN neuron simple model
tonic mode burst mode tonic mode burst mode

200 ms

-85 mV

-65 mV

Figure 8.32: Comparison of in vitro recordings of a reticular thalamic nucleus (RTN)
neuron of a rat with simulations of the simple model 40v̇ = 0.25(v+65)(v+45)−u+I,
u̇ = 0.015{b(v + 65)− u}, b = 10 if v ≤ −65 and b = 2 otherwise. When v ≥ 0 (spike
cutoff), then v ← −55, u ← u + 50. Injected current pulses are 50, 70, and 110 pA. In
burst mode, the cell was hyperpolarized to −80 mV prior to injection of a depolarizing
pulse of current. (Data provided S. H. Lee and C. L. Cox.)

The parameters of the simple model in Fig.8.32 are adjusted to match the in vitro
recording of the RTN cell in the figure, and they differ from the parameters of the
TC model cell. Nevertheless, the mechanism of rebound bursting of the RTN neuron
is the same as that of the TC neuron in Fig.8.31 (bottom). In contrast, the tonic
mode of firing is different. Since b > 0, the model neuron is near the transition from
an integrator to a resonator; it can fire transient spikes followed by slow subthreshold
oscillations of membrane potential; it has coexistence of stable resting and spiking
states, with the bifurcation diagram similar to the one in Fig.8.15, and it can stutter and
produce clustered spikes when stimulated with barely threshold current. Interestingly,
similar behavior of TC neurons was reported by Pirchio et al. (1997), Pedroarena
and Llinas (1997), and Li et al. (2003). We will return to the issue of subthreshold
oscillations and stuttering spiking when we consider stellate cells of entorhinal cortex
in section 8.4.4.
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cat thalamic interneuron simple model

-60 mV

Figure 8.33: Comparison of
in vitro recordings of dorsal
lateral geniculate nucleus in-
terneuron of a cat with sim-
ulations of the simple model
20v̇ = 0.5(v + 60)(v + 50) −
u + I, u̇ = 0.05{7(v +
60) − u}. When v ≥ 20 −
0.08u (spike cutoff), v ←
−65 + 0.08u, u ← min{u +
50, 530}. Injected current
pulses are 50, 100, 200, and
250 pA. (Data provided by C.
L. Cox and S. M. Sherman.)

8.3.3 Thalamic Interneurons

In contrast to TC and RTN neurons, thalamic interneurons do not have a prominent
burst mode, though they can fire rebound spikes upon release from hyperpolarization
(Pape and McCormick 1995). They have action potentials with short duration, and
they are able to generate high-frequency trains of spikes reaching 800 Hz, as do cortical
FS interneurons. The simple model in Fig.8.33 reproduces all these features. Its phase
portrait and bifurcation diagram are similar to those in Fig.8.15, but its dynamics has
a much faster time scale.

8.4 Other Interesting Cases

The neocortical and thalamic neurons span an impressive range of dynamic behavior.
Many neuronal types found in other brain regions have dynamics quite similar to some
of the types discussed above, while many do not.

8.4.1 Hippocampal CA1 Pyramidal Neurons

Hippocampal pyramidal neurons and interneurons are similar to those of the neocortex,
and hence could be simulated using the simple model presented in section 8.2. Let us
elaborate, using the pyramidal neurons of the CA1 region of the hippocampus as an
example.

Jensen et al. (1994) suggested classifying all CA1 pyramidal neurons according
to their propensity to fire bursts of spikes, often called complex spikes. The majority
(more than 80 percent) of CA1 pyramidal neurons are non-bursting cells, whereas the
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Figure 8.34: Classification of hippocampal CA1 pyramidal neurons. A–E, in vitro
recordings from five different pyramidal neurons arranged according to a gradient of
increasing propensity to burst. The neurons were stimulated with current pulses of 200
ms duration and amplitude 50 pA and 100 pA (a), or brief (3–5 ms) superthreshold
pulses (b). The non-burster (NB) neuron fires tonic spikes in response to long pulses
and a single spike in response to brief pulses. The high-threshold burster (HTB) fires
bursts only in response to strong long pulses, and single spikes in response to weak or
brief pulses. The grade I low-threshold burster (LTB I) generates bursts in response to
long pulses of current, but single spikes in response to brief pulses. The grade II LTB
(LTB II) fires bursts in response to both long (a) and brief (b) current pulses. The
grade III LTB (LTB III), in addition to firing bursts in response to long and brief pulses
of current (not shown), also fires spontaneous rhythmic bursts, shown in contracted
and expanded time scales. (Reproduced from Su et al. 2001 with permission.)

remaining ones exhibit some form of bursts, which are defined in this context as sets
of three or more closely spaced spikes. There are five different classes:

• (NB) Non-bursting cells generate accommodating trains of tonic spikes in re-
sponse to depolarizing pulses of DC current, and a single spike in response to a
brief superthreshold pulse of current, as in Fig.8.34A.

• (HTB) High-threshold bursters fire bursts only in response to strong long pulses
of current, but fire single spikes in response to weak or brief pulses of current, as
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Figure 8.35: Simulations of hippocampal CA1 pyramidal neurons (compare with
Fig.8.34) using simple model 50v̇ = 0.5(v+60)(v+45)−u+I, u̇ = 0.02{0.5(v+60)−u}.
When v ≥ 40 (spike cutoff), v ← c and u ← u + d. Here c = −50,−45,−40,−35 mV
and d = 50, 50, 55, 60 for A–D, respectively. Parameters in E are the same as in D, but
I = 33 pA.

in Fig.8.34B.

• (LTB I) Grade I low-threshold bursters fire bursts in response to long pulses, but
single spikes in response to brief pulses of current, as in Fig.8.34C.

• (LTB II) Grade II low-threshold bursters fire stereotypical bursts in response to
brief pulses, as in Fig.8.34D.

• (LTB III) Grade III low-threshold bursters fire rhythmic bursts spontaneously,
which are depicted in Fig.8.34E, using two time scales.

NB neurons are equivalent to neocortical pyramidal neurons of the RS type, whereas
HTB and LTB I neurons are equivalent to neocortical pyramidal neurons of the IB



Simple Models 311

type. The author is not aware of any systematic studies of the ability of IB neurons
to fire stereotypical bursts in response to brief pulses, as in Fig.8.34Db, or to have
intrinsic rhythmic activity, as in Fig.8.34E. Therefore, it is not clear whether there are
any analogues of LTB grades II and III neurons in the neocortex.

The classification of hippocampal CA1 pyramidal neurons into five different classes
does not imply a fundamental difference in the ionic mechanism of spike generation, but
only a quantitative difference. This follows from the observation that pharmacological
manipulations can gradually and reversibly transform an NB neuron into an LTB III
neuron, and vice versa, by elevating the extracellular concentration of K+ (Jensen et al.
1994), reducing extracellular Ca2+ (Su et al. 2001), blocking the K+ M-current (Yue
and Yaari 2004), or manipulating Ca2+ current dynamics in apical dendrites (Magee
and Carruth 1999).

In Fig.8.35 we modify the simple model for the neocortical RS neuron to reproduce
firing patterns of hippocampal pyramidal cells. To get the continuum of responses from
NB to LTB II, fix all the parameters and vary only the after-spike reset parameter c
by an increment of 5 mV, and the parameter d. These phenomenological parameters
describe the effect of high-threshold inward and outward currents activated during each
spike and affecting the after-spike behavior. Increasing c corresponds to up-regulating
slow INa,p or down-regulating slow K+ currents, which leads to transition from NB
to LTB III in the CA1 slice (Su et al. 2001) and in the simple model in Fig.8.35.
Interestingly, the same procedure results in transitions from RS to IB and possibly to
CH classes in neocortical pyramidal neurons (Izhikevich 2003). This is consistent with
the observation by Steriade (2004) that many neocortical neurons can change their
firing classes in vivo, depending on the state of the brain.

8.4.2 Spiny Projection Neurons of Neostriatum and Basal
Ganglia

Spiny projection neurons, the major class of neurons in neostriatum and basal ganglia,
display a prominent bistable behavior in vivo, shown in Fig.8.36 (Wilson and Groves

10 mV

500 ms

-49 mV

-63 mV

up-state 

down-state

Figure 8.36: Neostriatal spiny neurons have two-state behavior in vivo. (Data provided
by Charles Wilson.)
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Figure 8.37: Comparison of in vitro recordings of a rat neostriatal spiny projection
neuron with simulations of the simple model 50v̇ = (v + 80)(v + 25) − u + I, u̇ =
0.01{−20(v +80)−u}, if v ≥ 40, then v ← −55, u ← u+150. (In vitro data provided
by C. Wilson.)

1981; Wilson 1993): they shift the membrane potential from hyperpolarized to depo-
larized states in response to synchronous excitatory synaptic input from cortex and/or
thalamus. In vitro studies of such neurons reveal a slowly inactivating K+ A-current,
which is believed to be responsible for the maintenance of the up-state and down-state,
in addition to the synaptic input. Indeed, the K+ current is completely deinactivated
at the hyperpolarized potentials (down-state), and reduces the response of the neuron
to any synaptic input. In contrast, prolonged depolarization (up-state) inactivates the
current and makes the neuron more excitable and ready to fire spikes.

The most remarkable feature of neostriatal spiny neurons is depicted in Fig.8.37.
In response to depolarizing current pulses, the neurons display a prominent slowly
depolarizing (ramp) potential, and hence long latency to spike discharge (Nisenbaum
et al. 1994). The ramp is mostly due to the slow inactivation of the K+ A-current and
slow charging of the dendritic tree. The delay to spike can be as long as 1 sec, but the



Simple Models 313

subsequent spike train has a shorter, relatively constant period that depends on the
magnitude of the injected current – a feature consistent with the saddle-node off limit
cycle bifurcation.

Let us use the simple model (8.5, 8.6) to simulate the responses of spiny neurons to
current pulses. The resting membrane potential of the neuron in Fig.8.37 is around vr =
−80 mV, and we set vt = −25 mV, p = 1, and b = −20 to get 30 MΩ input resistance
and 300 pA rheobase current. We take a = 0.01 to reflect the slow inactivation of the
K+ A-current in the subthreshold voltage range. The membrane potential in the figure
reaches the peak of +40 mV during the spike and then resets to −55 mV or lower,
depending on the firing frequency. The value d = 150 provides a reasonable match
of the interspike frequencies for all magnitudes of injected current. Note that b < 0,
so u represents either slow inactivation of IA or slow charging of the passive dendritic
compartment, or both. In any case, it is a slow amplifying variable, which is consistent
with the observation that spiny neurons do not “sag” in response to hyperpolarizing
current pulses, do not “peak” in response to depolarizing pulses (Nisenbaum et al.
1994), and do not generate rebound (postinhibitory) spikes.

Injection of a depolarizing current shifts the v-nullcline of the simple model upward,
and the resting state disappears via saddle-node bifurcation. The trajectory slowly
moves through the ghost of the bifurcation point (shaded rectangle in the figure),
resulting in the long latency to the first spike. The spike resets the trajectory to a point
(white square) below the ghost, resulting in significantly smaller delays to subsequent
spikes. Because the resetting point is so close to the saddle-node bifurcation point,
the simple model, and probably the spiny projection neuron in the figure, are near the
codimension-2 saddle-node homoclinic orbit bifurcation discussed in section 6.3.6.

8.4.3 Mesencephalic V Neurons of Brainstem

The best examples of resonators with fast subthreshold oscillations, Class 2 excitability,
rebound spikes, and so on, are mesencephalic V (mesV) neurons of the brainstem (Wu
et al. 2001) and primary sensory neurons of the dorsal root ganglion (Amir et al. 2002;
Jian et al. 2004). MesV neurons of the brainstem have monotone I-V curves, whereas
the simple model with linear equation for u does not. In Fig.8.38 we use a modification
of the simple model to simulate the responses of a mesV neuron (data from Fig.7.3) to
pulses of depolarizing current.

The model’s phase portrait is qualitatively similar to that of the FS interneurons in
Fig.8.27. The resting state is a stable focus, resulting in damped or noise-induced sus-
tained oscillations of the membrane potential. Their amplitude and frequency depend
on I and can be larger than 5 mV and 100 Hz, respectively. The focus loses stability
via subcritical Andronov-Hopf bifurcation. Because of the coexistence of the resting
and spiking states, the mesV neuron can burst, and so can the simple model if noise
or a slow resonant variable is added.
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Figure 8.38: Comparison of in vitro recordings of rat brainstem mesV neuron (from
Fig.7.3) with simulations of the simple model 25v̇ = (v + 50)(v + 30) − u + I, u̇ =
0.5{U(v + 50) − u}, with cubic slow nullcline U(x) = 25x + 0.009x3. If v ≥ 10, then
v ← −40.

8.4.4 Stellate Cells of Entorhinal Cortex

The entorhinal cortex occupies a privileged anatomical position that allows it to gate
the main flow of information into and out of the hippocampus. in vitro studies show
that stellate cells, a major class of neurons in the entorhinal cortex, exhibit intrinsic
subthreshold oscillations with a slow dynamics of the kind shown in Fig.8.39b (Alonso
and Llinas 1989; Alonso and Klink 1993; Klink and Alonso 1993; Dickson et al. 2000).
The oscillations are generated by the interplay between a persistent Na+ current and
an h-current, and they are believed to set the theta rhythmicity in the entorhinal-
hippocampal network.

The caption of Fig.8.39 provides parameters of the simple model (8.5, 8.6) that
captures the slow oscillatory dynamics of an adult rat entorhinal stellate cell recorded
in vitro. The cell sags to injected hyperpolarizing current in Fig.8.39a and then fires a
rebound spike upon release from hyperpolarization. From a neurophysiological point of
view, the sag and the rebound response are due to the opening of the h-current; from
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Figure 8.39: Comparison of in vitro recordings of stellate neurons of rat entorhinal
cortex with simulations of the simple model 200v̇ = 0.75(v + 60)(v + 45) − u + I,
u̇ = 0.01{15(v + 60) − u}, if v ≥ 30, then v ← −50. (a) Responses to steps of
DC current. (b) Subthreshold oscillations and occasional spikes at various levels of
injected DC current. (c) Phase portraits corresponding to two levels of injected DC
current. Weak noise was added to simulations to unmask subthreshold oscillations.
(Data provided by Brian Burton and John A. White. All recordings are from the same
neuron, except steps of −500 pA and 200 pA were recorded from a different neuron.
Spikes are cut at 0 mV.)
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a theoretical point of view, they are caused by the resonant slow variable u, which
could also describe deinactivation of a transient Na+ current and deactivation of a
low-threshold K+ current. The geometrical explanation of these responses is similar to
the one provided for LTS interneurons in Fig.8.26. Positive steps of current evoke a
transient or a sustained spiking activity. Note that the first spike is actually a doublet
in the recording and in the simulation in Fig.8.39a (I = 200 pA).

Stellate cells in the entorhinal cortex of adult animals can exhibit damped or sus-
tained subthreshold oscillations in a frequency range from 5 to 15 Hz. The oscillations
can be seen clearly when the cell is depolarized by injected DC current, as in Fig.8.39b.
The stronger the current, the higher the amplitude and frequency of oscillations, which
occasionally result in spikes or even bursts of spikes (Alonso and Klink 1993). The sim-
ple model also exhibits slow damped oscillations because its resting state is a stable
focus. The focus loses stability via subcritical Andronov-Hopf bifurcation, and hence it
coexists with a spiking limit cycle. To enable sustained oscillations and random spikes,
we add channel noise to the v-equation (White et al. 2000).

In Fig.8.39c we explain the mechanism of random transitions between subthreshold
oscillations and spikes, which is similar to the mechanism of stuttering in RS and
FS neurons. When weak DC current is injected (left), the attraction domain of the
resting state (shaded region) is separated from the rest of the phase space by the stable
manifold to the saddle equilibrium (denoted separatrix). Noisy perturbations evoke
small, sustained noisy oscillations around the resting state with an occasional spike
when the separatrix is crossed. Increasing the level of injected DC current results in the
series of bifurcations similar to those in Fig.8.15. As a result, there is a coexistence of a
large amplitude (spiking) limit cycle attractor and a small unstable limit cycle, which
encompasses the attraction domain of the resting state (right). Noisy perturbations
can randomly switch the activity between these attractors, resulting in the random
bursting activity in Fig.8.39b.

8.4.5 Mitral Neurons of the Olfactory Bulb

Mitral cells recorded in slices of rat main olfactory bulb exhibit intrinsic bistability of
membrane potentials (Heyward et al. 2001). They spontaneously alternate between
two membrane potentials separated by 10 mV: a relatively depolarized (up-state) and
hyperpolarized (down-state). The membrane potential can be switched between the
states by a brief depolarizing or hyperpolarizing pulse of current, as we show in Fig.7.36.
In response to stimulation, the cells are more likely to fire in the up-state than in the
down-state.

Current-voltage (I-V) relations of such mitral cells have three zeros in the sub-
threshold voltage range confirming that there are three equilibria: two stable ones
corresponding to the up-state and the down-state, and one unstable, the saddle. There
are no subthreshold oscillations in the down-state, hence it is a node, and the cell is
an integrator. There are small-amplitude 40 Hz oscillations in the up-state; hence it is
a focus, and the cell is a resonator.
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Figure 8.40: Comparison of in vitro recordings of mitral neurons of rat olfactory bulb
with simulations of the simple two-compartment model. Soma: 40v̇ = (v+55)(v+50)+
0.5(vd−v)−u+I, u̇ = 0.4{(U(v)−u} with U(v) = 0 when v < vb and U(v) = 20(v−vb)
when v ≥ vb = −48 mV. If v ≥ 35, then v ← −50. Passive dendrite (dotted curve):
v̇d = 0.0125(v − vd). Weak noise was added to simulations to unmask subthreshold
oscillations in the up-state. The membrane potential of the neuron is held at −75
mV by injecting a strong negative current, and then stimulated with steps of positive
current. (Data provided by Philip Heyward.)

To model the bistability, we use the simple model with a piecewise linear slow
nullcline that approximates nonlinear activation functions n∞(v) near the “threshold”
of the current and a passive dendritic compartment. In many respects, the model is
similar to the one for late spiking (LS) cortical interneurons. In Fig.8.40 we fine-tune
the model to simulate responses of a rat mitral cell to pulses of current of various
amplitudes. To prevent noise-induced spontaneous transitions between the up-state
and the down-state, the cell in the figure was held at −75 mV by injection of a large
negative current. Its responses to weak positive pulses of current show a fast-rising
phase followed by an abrupt step (arrow in the figure) to a constant value corresponding
to the up-state. Increasing the magnitude of stimulation elicits trains of spikes with
a considerable latency whose cause has yet to be determined experimentally. The
latency could be the result of slow activation of an inward current, slow inactivation
of an outward current (e.g., the K+ A-current), or just slow charging of the dendritic
compartment. All three cases correspond to an additional slow variable in the simple
model, which we interpret as a membrane potential of a passive dendritic compartment.
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Figure 8.41: Voltage responses of a rat mitral cell and a simple model from Fig.8.40
at two different values of the holding current. Right: Phase portraits of somatic com-
partments show coexistence of stable node (down-state) and stable focus (up-state)
equilibria. Spikes are emitted only from the up-state.

To understand the dynamics of the simple model, and hopefully of the mitral cell,
we simulate its responses in Fig.8.41 to the activation of the olfactory nerve (ON). At
the top of Fig.8.41, the cell is held at I = 0 pA. Its phase portrait clearly shows the
coexistence of a stable node and focus equilibria separated by a saddle. The shaded
region corresponds to the attraction domain of the focus equilibrium. To fire a spike
from the up-state, noise or external stimulation must push the state of the system from
the shaded region over the threshold to the right. The cell returns to the down-state
immediately after the spike. Much stronger stimulation is needed to fire the cell from
the down-state. Typically, the cell is switched to the up-state first, spends some time
oscillating at 40 Hz, and then fires a spike (Heyward et al. 2001).

At the bottom of Fig.8.41, the cell is held at a slightly depolarizing current I =
7 pA. The node equilibrium disappears via saddle-node bifurcation, so there is no
down-state, but only its ghost. Stimulation at the up-state results in a spike, after-
hyperpolarization, and slow transition through the ghost of the down-state back to
the up-state. Further increasing the holding current results in the stable manifold to
the upper saddle (marked “threshold” in the figure) making a loop, then becoming a
homoclinic trajectory to the saddle, giving birth to an unstable limit cycle which shrinks
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to the focus and makes it lose stability via subcritical Andronov-Hopf bifurcation.
Note that this phase portrait and the bifurcation scenario are different from the one
in Fig.7.36. However, in both cases, the neuron is an integrator in the down-state and
a resonator in the up-state! The same property is exhibited by cerebellar Purkinje
cells (see Fig.7.37), and possibly by other neurons kept in the up-state (intrinsically or
extrinsically).

Review of Important Concepts

• An integrate-and-fire neuron is a linear model having a stable node
equilibrium, an artificial threshold, and a reset.

• A resonate-and-fire neuron is a linear model having a stable focus
equilibrium, an artificial threshold, and a rest.

• Though technically not spiking neurons, these models are useful for
analytical studies, that is, to prove theorems.

• The quadratic integrate-and-fire model captures the nonlinearity of
the spike generation mechanism of real neurons having Class 1 ex-
citability (saddle-node on invariant circle bifurcation).

• Its simple extension, model (8.5, 8.6), quantitatively reproduces sub-
threshold, spiking, and bursting activity of all known types of corti-
cal and thalamic neurons in response to pulses of DC current.

• The simple model makes testable hypotheses on the dynamic mech-
anisms of excitability in these neurons.

• The model is especially suitable for simulations of large-scale models
of the brain.

Bibliographical Notes

Many people have used the integrate-and-fire neuron, treating it as a folklore model. It
was Tuckwell’s Introduction to Theoretical Neurobiology (1988) that gave appropriate
credit to its inventor, Lapicque (1907). Although better models, such as the quadratic
integrate-and-fire model, are available now, many scientists continue to favor the leaky
integrate-and-fire neuron mostly because of its simplicity. Such an attitude is under-
standable when one wants to derive analytical results. However, purely computational
papers can suffer from using the model because of its weird properties, such as the
logarithmic F-I curve and fixed threshold.
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Figure 8.42: Louis Lapicque, the discoverer of the
integrate-and-fire neuron.

The resonate-and-fire model was introduced by Izhikevich (2001a), and then by
Richardson, Brunel, and Hakim (2003) and Brunel, Hakim, and Richardson (2003).
These authors initially called the model “resonate-and-fire”, but then changed its name
to “generalized integrate-and-fire” (GIF), possibly to avoid confusion.

A better choice is the quadratic integrate-and-fire neuron in the normal form (8.2)
or in the ϑ-form (8.8); see exercise 7. The ϑ-form was first suggested in the context of
circle/circle (parabolic) bursting by Ermentrout and Kopell (1986a,b). Later, Ermen-
trout (1996) used this model to generalize numerical results of Hansel et al. (1995) on
synchronization of Class 1 excitable systems, discussed in chapter 10. Hoppensteadt
and Izhikevich (1997) introduced the canonical model approach, provided many ex-
amples of canonical models, and proved that the quadratic integrate-and-fire model
is canonical in the sense that all Class 1 excitable systems can be transformed into
this model by a piecewise continuous change of variables. They also suggested calling
the model the “Ermentrout-Kopell canonical model” to honor its inventors, but most
scientists follow Ermentrout and call it the “theta-neuron”.

The model presented in section 8.1.4 was first suggested by Izhikevich (2000a; equa-
tions (4) and (5), with voltage reset discussed in Sect. 2.3.1) in the ϑ-form. The form
presented here first appeared in Izhikevich (2003). The representation of the function
I + v2 in the form (v − vr)(v − vt) was suggested by Latham et al. (2000).

We stress that the simple model is useful only when one wants to simulate large-
scale networks of spiking neurons. He or she still needs to use the Hodgkin-Huxley-type
conductance-based models to study the behavior of one neuron or a small network of
neurons. The parameter values that match firing patterns of biological neurons pre-
sented in this chapter are only educated guesses (the same is true for conductance-based
models). More experiments are needed to reveal the true spike generation mechanism
of any particular neuron. An additional insight into the question, “which model is
more realistic?” is in Fig.1.8.

Looking at the simple model, one gets an impression that the spike generation
mechanism of RS neurons is the simplest in the neocortex. This is probably true;
however, the complexity of the RS neurons, most of which are pyramidal cells, is hidden
in their extensive dendritic trees having voltage- and Ca2+-gated currents. Dendritic
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dynamics is a subject for a 500-page book by itself, and we purposely omitted it. An
interested reader is recommended to study Dendrites by Stuart et al. (1999), recent
reviews by Hausser and Mel (2003) and Williams and Stuart (2003), and the seminal
paper by Arshavsky et al. (1971; Russian language edition, 1969).

Exercises

1. (Integrate-and-fire network) The simplest implementation of a pulse-coupled integ-
rate-and-fire neural network has the form

v̇i = bi − vi +
∑

j 6=i

cijδ(t− tj) ,

where tj is the moment of firing of the jth neuron, that is, the moment vj(tj) =
1. Thus, whenever the jth neuron fires, the membrane potentials of the other
neurons are instantaneously adjusted by cij, i 6= j. Show that the same initial
conditions may result in different solutions, depending on the implementation
details.

2. (Latham et al. 2000) Determine the relationship between the normal form for
saddle-node bifurcation (6.2) and the equation

V̇ = a(V − Vrest)(V − Vthresh) .

3. Show that the period of oscillations in the quadratic integrate-and-fire model
(8.2) is

T =
1√
b

(
atan

vpeak√
b
− atan

vreset√
b

)

when b > 0.

4. Show that the period of oscillations in the quadratic integrate-and-fire model
(8.2) with vpeak = 1 is

T =
1

2
√
|b|

(
ln

1−
√
|b|

1 +
√
|b| − ln

vreset −
√
|b|

vreset +
√
|b|

)

when b < 0 and vreset >
√
|b|.

5. Justify the bifurcation diagram in Fig.8.3.

6. Brizzi et al. (2004) have shown that shunting inhibition of cat motoneurons
raises the firing threshold, and the rheobase current, and shifts the F-I curve to
the right without changing the shape of the curve. Use the quadratic integrate-
and-fire model to explain the effect. (Hint: Consider v̇ = b− gv + v2 with g ≥ 0,
vreset = −∞, and vpeak = +∞.)
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7. (Theta neuron) Determine when the quadratic integrate-and-fire neuron (8.2) is
equivalent to the theta neuron

ϑ̇ = (1− cos ϑ) + (1 + cos ϑ)r , (8.8)

where r is the bifurcation parameter and ϑ ∈ [−π, π] is a phase variable on the
unit circle.

8. (Another theta neuron) Show that the quadratic integrate-and-fire neuron (8.2)
is equivalent to

ϑ̇ = ϑ2 + (1− |ϑ|)2r .

where ϑ ∈ [−1, 1] and r have the same meaning as in exercise 7. Are there any
other “theta-neurons”?

9. When is the linear version of (8.3, 8.4),

v̇ = I − v − u if v = 1, then

u̇ = a(bv − u) v ← 0, u ← u + d,

equivalent to the integrate-and-fire or resonate-and-fire model?

10. Show that the simple model (8.3, 8.4) with b < 0 is equivalent to the quadratic
integrate-and-fire neuron with a passive dendritic compartment.

11. All membrane potential responses in Fig.8.8 were obtained using model (8.3, 8.4)
with appropriate values of the parameters. Use MATLAB to experiment with
the model and reproduce the figure.

12. Simulate the FS spiking neuron in Fig.8.27, using the simple model (8.5, 8.6) with
linear equation for u. What can you say about its possible bifurcation structure?

13. Fit the recordings of the RS neuron in Fig.8.12, using the model

Cv̇ = I − g(v − vr) + p(v − vt)
2
+ − u if v = vpeak, then

u̇ = a(b(v − vr)− u) v ← c, u ← u + d,

where x+ = x when x > 0 and x+ = 0 when otherwise. This model better fits
the upstroke of the action potential.

14. Explore numerically the model (8.3, 8.4) with a nonlinear after-spike reset v ←
f(u), u ← g(u), where f and g are some functions.

15. [M.S.] Analyze the generalization of the system (8.3, 8.4)

v̇ = I + v2 + evu− u if v = 1, then

u̇ = a(bv − u) v ← c, u ← u + d

where e is another parameter.



Simple Models 323

16. [M.S.] Analyze the generalization of the following system, related to the expo-
nential integrate-and-fire model

v̇ = I − v + kev − u if v = 1, then

u̇ = a(bv − u) v ← c, u ← u + d

where k is another parameter.

17. [M.S.] Analyze the system

v̇ = I − v + kv2
+ − u if v = 1, then

u̇ = a(bv − u) v ← c, u ← u + d

where v+ = v when v > 0 and v+ = 0 otherwise.

18. [M.S.] Find an analytical solution to the system (8.3, 8.4) with time-dependent
input I = I(t).

19. [M.S.] Determine the complete bifurcation diagram of the system (8.3, 8.4).



Chapter 10

Synchronization
This chapter, found on the author’s Web page (www.izhikevich.com), considers net-
works of tonically spiking neurons. Like any other kind of physical, chemical, or biolog-
ical oscillators, such neurons could synchronize and exhibit collective behavior that is
not intrinsic to any individual neuron. For example, partial synchrony in cortical net-
works is believed to generate various brain oscillations, such as the alpha and gamma
EEG rhythms. Increased synchrony may result in pathological types of activity, such as
epilepsy. Coordinated synchrony is needed for locomotion and swim pattern generation
in fish. There is an ongoing debate on the role of synchrony in neural computation (see,
e.g., the special issue of Neuron [September 1999] devoted to the binding problem).

Depending on the circumstances, synchrony can be good or bad, and it is important
to know what factors contribute to synchrony and how to control it. This is the subject
of the present chapter, the most advanced chapter of the book. It provides a nice
application of the theory developed earlier and hopefully gives some insight into why
the previous chapters may be worth mastering. Unfortunately, it is too long to be
included into the book, so reviewers recommended putting it on the Web.

The goal of this chapter is to understand how the behavior of coupled neurons
depends on their intrinsic dynamics. First, we introduce the method of description of
an oscillation by its phase. Then, we describe various methods of reduction of coupled
oscillators to phase models. The reduction method and the exact form of the phase
model depend on the type of coupling (i.e., whether it is pulsed, weak, or slow) and on
the type of bifurcations of the limit cycle attractor generating tonic spiking. Finally, we
show how to use phase models to understand the collective dynamics of many coupled
oscillators.

in-phase anti-phase out-of-phase

Figure 10.1: Different types of synchronization.
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386 Synchronization (see www.izhikevich.com)

Review of Important Concepts

• Oscillations are described by their phase variables ϑ rotating on a circle
S1. We define ϑ as the time since the last spike.

• The phase response curve, PRC (ϑ), describes the magnitude of the phase
shift of an oscillator caused by a strong pulsed input arriving at phase ϑ.

• PRC depends on the bifurcations of the spiking limit cycle, and it defines
synchronization properties of an oscillator.

• Two oscillators are synchronized in-phase, anti-phase, or out-of-phase
when their phase difference, ϑ2−ϑ1, equals 0, half-period, or some other
value, respectively; see Fig.10.1.

• Synchronized states of pulse-coupled oscillators are fixed points of the
corresponding Poincare phase map.

• Weakly coupled oscillators

ẋi = f(xi) + ε
∑

gij(xj)

can be reduced to phase models

ϑ̇i = 1 + εQ(ϑi)
∑

gij(xj(ϑj)) ,

where Q(ϑ) is the infinitesimal PRC defined by Malkin’s equation.

• Weak coupling induces a slow phase deviation of the natural oscillation,
ϑi(t) = t + ϕi, described by the averaged model

ϕ̇i = ε
(
ωi +

∑
Hij(ϕj − ϕi)

)
,

where the ωi denote the frequency deviations, and

Hij(ϕj − ϕi) =
1

T

∫ T

0

Q(t) gij(xj(t + ϕj − ϕi)) dt

describe the interactions between the phases.

• Synchronization of two coupled oscillators correspond to equilibria of the
one-dimensional system

χ̇ = ε(ω + G(χ)) , χ = ϕ2 − ϕ1 ,

where G(χ) = H21(−χ) − H12(χ) describes how the phase difference χ
compensates for the frequency mismatch ω = ω2 − ω1.



Solutions to Exercises

Solutions for chapter 2

1. T = 20◦C ≈ 293◦F.

EIon =
RT

zF
ln

[Ion]out

[Ion]in
=

8315 · 293 · ln 10
z · 96480

log10

[Ion]out

[Ion]in
= ± 58 log10

[Ion]out

[Ion]in
when z = ±1. Therefore,

EK = 58 log(20/430) = −77 mV
ENa = 58 log(440/50) = 55 mV
ECl = −58 log(560/65) = −54 mV

2.

I = ḡNa p (V − ENa) + ḡK p (V − EK) = p{(ḡNa + ḡK) V − ḡNa ENa − ḡK EK}
= (ḡNa + ḡK) p

(
V − ḡNa ENa + ḡK EK

ḡNa + ḡK

)

︸ ︷︷ ︸ ︸ ︷︷ ︸
ḡ E

3. The answer follows from the equation

I − gL(V − EL) = −gL(V − ÊL) , where ÊL = EL + I/gL .

4. See Fig.S.1.

Function V1/2 k Function Vmax σ Camp Cbase

n∞(V ) 12 15 τn(V ) −14 50 4.7 1.1
m∞(V ) 25 9 τm(V ) 27 30 0.46 0.04
h∞(V ) 3 −7 τn(V ) −2 20 7.4 1.2

Hodgkin and Huxley shifted V1/2 and Vmax by 65 mV so that the resting potential is at V = 0
mV.

5. (Willms et al. 1999)

Ṽ1/2 = V1/2 − k ln(21/p − 1) ,

k̃ =
k

2p(1− 2−1/p)
.

The first equation is obtained from the condition mp
∞(Ṽ1/2) = 1/2. The second equation is

obtained from the condition that the two functions have the same slope at V = Ṽ1/2.

6. See author’s Web page, www.izhikevich.com.

7. See author’s Web page, www.izhikevich.com.
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Figure S.1: Open dots: The steady-state (in)activation functions and voltage-sensitive time con-
stants in the Hodgkin-Huxley model. Filled dots: steady-state Na+ activation function m∞(V ) in the
squid giant axon (experimental results by Hodgkin and Huxley 1952, figure 8). Continuous curves:
Approximations by Boltzmann and Gaussian functions. See exercise 4.

Solutions for chapter 3

1. Consider the limit case: (1) activation of the Na+ current is instantaneous, and (2) conductance
kinetics of the other currents are frozen. Then, the Na+ current will result in the nonlinear
term gNa m∞(V ) (V − ENa) with the parameter h∞(Vrest) incorporated into gNa, and all the
other currents will result in the linear leak term.

In Fig.3.15, the activation of the Na+ current is not instantaneous; hence the sag right after the
pulses. In addition, its inactivation, and the kinetics of the other currents are not slow enough;
hence the membrane potential quickly reaches the excited state and then slowly repolarizes to
the resting state.

2. See Fig.S.2. The eigenvalues are negative at each equilibrium marked as a filled circle (stable),
and positive at each equilibrium marked as an open circle (unstable). The eigenvalue at the
bifurcation point (left equilibrium in Fig.S.2b) is zero.

F(V) F(V) F(V)

V V V

a b c

Figure S.2: Phase portraits of the system V̇ = F (V ) with given F (V ).

3. Phase portraits are shown in Fig.S.3.

(a) The equation 0 = −1 + x2 has two solutions: x = −1 and x = +1; hence there are
two equilibria in the system (a). The eigenvalues are the derivatives at each equilibrium,
λ = (−1 + x2)′ = 2x, where x = ±1. Equilibrium x = −1 is stable because λ = −2 < 0.
Equilibrium x = +1 is unstable because λ = +2 > 0. The same fact follows from the
geometrical analysis in Fig.S.3.
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(b) The equation 0 = x − x3 has three solutions: x = ±1 and x = 0; hence there are three
equilibria in system (b). The eigenvalues are the derivatives at each equilibrium, λ =
(x− x3)′ = 1− 3x2. The equilibria x = ±1 are stable because λ = 1− 3(±1)2 = −2 < 0.
The equilibrium x = 0 is unstable because λ = 1 > 0. The same conclusions follow from
the geometrical analysis in Fig.S.3.
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Figure S.3: Phase portraits of the systems (a) ẋ = −1 + x2, and (b) ẋ = x− x3.

4. The equilibrium x = 0 is stable in all three cases.

5. See Fig.S.4. Topologically equivalent systems are in (a), (b), and (c). In (d) there are different
numbers of equilibria; no stretching or shrinking of the rubber phase line can produce new
equilibria. In (e) the right equilibrium is unstable in V̇ = F1(V ) but stable in V̇ = F2(V ); no
stretching or shrinking can change the stability of an equilibrium. In (f) the flow between the
two equilibria is directed rightward in V̇ = F1(V ) and leftward in V̇ = F2(V ); no stretching or
shrinking can change the direction of the flow.

6. (Saddle-node [fold] bifurcation in ẋ = a + x2) The equation 0 = a + x2 has no real solutions
when a > 0, and two solutions x = ±

√
|a| when a ≤ 0. Hence there are two branches of

equilibria, depicted in Fig.S.5. The eigenvalues are

λ = (a + x2)′ = 2x = ±2
√
|a| .

The lower branch −
√
|a| is stable (λ < 0), and the upper branch +

√
|a| is unstable (λ > 0).

They meet at the saddle-node (fold) bifurcation point a = 0.
7.

(a) x = −1 at a = 1 (b) x = −1/2 at a = 1/4 (c) x = 1/2 at a = 1/4
(d) x = ±1/

√
3 at a = ±2/(3

√
3) (e) x = ±1 at a = ∓2 (f) x = −1 at a = 1

8. (Pitchfork bifurcation in ẋ = bx− x3) The equation 0 = bx− x3 has one solution x = 0 when
b ≤ 0, and three solutions x = 0, x = ±

√
b when b > 0. Hence there is only one branch of

equilibria for b < 0 and three branches for b > 0 of the pitchfork curve depicted in Fig.S.6. The
eigenvalues are

λ = (bx− x3)′ = b− 3x2.

The branch x = 0 exists for any b, and its eigenvalue is λ = b. Thus, it is stable for b < 0 and
unstable for b > 0. The two branches x = ±

√
b exist only for b > 0, but they are always stable

because λ = b−3(±
√

b)2 = −2b < 0. We see that the branch x = 0 loses stability when b passes
the pitchfork bifurcation value b = 0, at which point a pair of new stable branches bifurcates
(hence the name bifurcation). In other words, the stable branch x = 0 divides (bifurcates) into
two stable branches when b passes 0.
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Figure S.4: Answer to chapter 3, exercise 5.

9. Recall that the current IKir is turned off by depolarization and turned on by hyperpolarization.
The dynamics of the IKir-model is similar to that of the INa,p-model in many respects. In par-
ticular, this system can also have coexistence of two stable equilibria separated by an unstable
equilibrium, which follows from the N-shaped I-V relation. Indeed, when V is hyperpolarized,
the current IKir is turned on (deinactivated), and it pulls V toward EK. In contrast, when V is
depolarized, the current is turned off (inactivated), and does not obstruct further depolarization
of V .
Use (3.11) to find the curve

I = gL(V − EL) + gKirh∞(V )(V − EK) ,

in Fig.S.8. (The curve may not be S-shaped if a different bifurcation parameter is used, as in
exercise 12a below).
The bifurcation diagram of the IKir-model (3.11) in Fig.S.8 has three branches corresponding
to the three equilibria. When the parameter I is relatively small, the outward IKir current
dominates and the system has only one equilibrium in the low voltage range – the down-
state. When the parameter I is relatively large, the injected inward current I dominates, and
the system has one equilibrium in the intermediate voltage range – the up-state. When the
parameter I is in neighborhood of I = 6, the system exhibits bistability of the up-state and
the down-state. The states appear and disappear via saddle-node bifurcations. The behavior
of the IKir-model is conceptually (and qualitatively) similar to the behavior of the INa,p-model
(3.5) even though the models have completely different ionic mechanisms for bistability.

10. The equilibrium satisfies the one-dimensional equation

0 = I − gKn4
∞(V )(V − EK)− gNam

3
∞(V )h∞(V )(V − ENa)− gL(V − EL) ,
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Figure S.5: Saddle-node (fold) bifurcation diagram and representative phase portraits of the system
ẋ = a + x2 (see chapter 3, exercise 6).

where all gating variables assume their asymptotic values. The solution

I = gKn4
∞(V )(V − EK) + gNam

3
∞(V )h∞(V )(V − ENa) + gL(V − EL)

is depicted in Fig.S.9. Since the curve in this figure does not have folds, there are no saddle-node
bifurcations in the Hodgkin-Huxley model (with the original values of parameters).

11. The curves
(a) gL(V ) = −gNam∞(V )(V − ENa)/(V − EL)

and
(b) EL(V ) = V + gNam∞(V )(V − ENa)(V − EL)/gL

are depicted in Fig.S.7.

12. The curves
(a) gL(V ) = {I − gKirh∞(V )(V − EK)}/(V − EL)

and
(b) gKir(V ) = {I − gL(V − EL)}/{h∞(V )(V − EK)}

are depicted in Fig.S.10. Note that the curve in Fig.S.10a does not have the S shape.
13.

F ′(V ) = −gL − gKm4
∞(V )− gK4m3

∞(V )m′
∞(V )(V − EK) < 0

because gL > 0, m∞(V ) > 0, m′
∞(V ) > 0, and V − EK > 0 for all V > EK.

14.

F ′(V ) = −gL − ghh∞(V )− ghh′∞(V )(V − Eh) < 0

because gL > 0, h∞(V ) > 0, but h′∞(V ) < 0 and V − Eh < 0 for all V < Eh.
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Figure S.6: Pitchfork bifurcation diagram and representative phase portraits of the system ẋ =
bx− x3 (see chapter 3, exercise 8).
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Figure S.9: Dependence of the position of equilibrium in the Hodgkin-Huxley model on the injected
DC current; see exercise 10.

15. When V is sufficiently large, V̇ ≈ V 2. The solution of V̇ = V 2 is V (t) = 1/(c − t) (check by
differentiating), where c = 1/V (0). Another way to show this is to solve (3.9) for V and find
the asymptote of the solution.

16. Each equilibrium of the system ẋ = a + bx− x3 is a solution to the equation 0 = a + bx− x3.
Treating x and b as free parameters, the set of all equilibria is given by a = −bx + x3, and it
looks like the cusp surface in Fig.6.34. Each point where the cusp surface folds, corresponds to
a saddle-node (fold) bifurcation. The derivative with respect to x at each such point is zero;
alternatively, the vector tangent to the cusp surface at each such point is parallel to the x-axis.
The set of all bifurcation points is projected to the (a, b)-plane at the bottom of the figure, and
it looks like a curve having two branches. To find the equation for the bifurcation curves, one
needs to remember that each bifurcation point satisfies two conditions:

• It is an equilibrium; that is, a + bx− x3 = 0.

• The derivative of a + bx− x3 with respect to x is zero; that is, b− 3x2 = 0.

Solving the second equation for x and using the solution x = ±
√

b/3 in the first equation yields
a = ∓2(b/3)3/2. The point a = b = 0 is called a cusp bifurcation point.
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17. (Gradient systems) For V̇ = F (V ) take

E(V ) = −
∫ V

c

F (v) dv ,

where c is any constant.

a. E(V ) = 1 b. E(V ) = −V c. E(V ) = V 2/2
d. E(V ) = V − V 3/3 e. E(V ) = −V 2/2 + V 4/4 f. E(V ) = − cosV

18. (c) implies (b) because |x(t)− y| < exp(−at) implies that x(t) → y as t →∞. (b) implies (a)
according to the definition.

(a) does not imply (b) because x(t) may not approach y. For example, y = 0 is an equilibrium in
the system ẋ = 0 (any other point is also an equilibrium). It is stable, since |x(t)−0| < ε for all
|x0−0| < ε and all t ≥ 0. However, it is not asymptotically stable because limt→∞ x(t) = x0 6= 0
regardless of how close x0 is to 0 (unless x0 = 0).

(b) does not imply (c). For example, the equilibrium y = 0 in the system ẋ = −x3 is asymp-
totically stable (check by differentiating that x(t) = (2t + x−2

0 )−1/2 → 0 is a solution with
x(0) = x0); however, x(t) approaches 0 with a slower than exponential rate, exp(−at), for any
constant a > 0.

Solutions for chapter 4

1. See figures S.11–S.15.

2. See Fig.S.16.

3. See figures S.17–S.21.

4. The diagram follows from the form of the eigenvalues

λ =
τ ±√τ2 − 4∆

2
.
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Figure S.11: Nullclines of the vector field; see also Fig.S.17.

Figure S.12: Nullclines of the vector field; see also Fig.S.18.

Figure S.13: Nullclines of the vector field; see also Fig.S.19.
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Figure S.14: Nullclines of the vector field; see also Fig.S.20.

Figure S.15: Nullclines of the vector field; see also Fig.S.21.

If ∆ < 0 (left half-plane in Fig.4.15), then the eigenvalues have opposite signs. Indeed,
√

τ2 − 4∆ >
√

τ2 = |τ | ,

whence
τ +

√
τ2 − 4∆ > 0 and τ −

√
τ2 − 4∆ < 0 .

The equilibrium is a saddle in this case. Now consider the case ∆ > 0. When τ2 < 4∆ (inside
the parabola in Fig.4.15), the eigenvalues are complex-conjugate; hence the equilibrium is a
focus. It is stable (unstable) when τ < 0 (τ > 0). When τ2 > 4∆ (outside the parabola in
Fig.4.15), the eigenvalues are real. Both are negative (positive) when τ < 0 (τ > 0).

5. (van der Pol oscillator) The nullclines of the van der Pol oscillator,

y = x− x3/3 (x-nullcline) ,

x = 0 (y-nullcline) ,

are depicted in Fig.S.22. There is a unique equilibrium (0, 0). The Jacobian matrix at the
equilibrium has the form

L =
(

1 −1
b 0

)
.

Since tr L = 1 > 0 and det L = b > 0, the equilibrium is always an unstable focus.
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a b

c d

Figure S.16: Approximate directions of the vector in each region between the nullclines.

6. (Bonhoeffer–van der Pol oscillator) The nullclines of the Bonhoeffer–van der Pol oscillator with
c = 0 have the form

y = x− x3/3 (x-nullcline) ,

x = a (y-nullcline) ,

shown in Fig.S.23. They intersect at the point x = a, y = a − a3/3. The Jacobian matrix at
the equilibrium (a, a− a3/3) has the form

L =
(

1− a2 −1
b 0

)
.

Since tr L = 1− a2 and det L = b > 0, the equilibrium is a stable (unstable) focus when |a| > 1
(|a| < 1), as we illustrate in Fig.S.23.

7. (Hindmarsh-Rose spiking neuron) The Jacobian matrix at the equilibrium (x̄, ȳ) is

L =
(

f ′ −1
g′ −1

)
,

therefore
tr L = f ′ − 1 and det L = −f ′ + g′ .

The equilibrium is a saddle (det L < 0) when g′ < f ′, that is, in the region below the diagonal
in Fig.S.24. When g′ > f ′, the equilibrium is stable (tr L < 0) when f ′ < 1, which is the left
half-plane in Fig.S.24. Using the classification in Fig.4.15, we conclude that it is a focus when
(f ′ − 1)2 − 4(g′ − f ′) < 0, that is, when

g′ >
1
4
(f ′ + 1)2,
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Figure S.17: Left: No equilibria. Right: Saddle equilibrium.

Figure S.18: Left: Stable node. Right: Stable focus.

Figure S.19: Left: Excitable system having one stable equilibrium. Right: Two stable nodes
separated by a saddle equilibrium.
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Figure S.20: Left: Unstable focus inside a stable limit cycle. Right: Stable focus inside an unstable
limit cycle.

Figure S.21: Left: Saddle-node equilibrium. Right: Stable node and saddle equilibria connected by
two heteroclinic trajectories, which form an invariant circle with an unstable focus inside.

-2 -1 0 1 2

-1

0

1

x

y

Figure S.22: Nullclines and phase portrait of the van der Pol oscillator (b = 0.1).
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Figure S.23: Nullclines and phase portrait of the Bonhoeffer–van der Pol oscillator (b = 0.05 and
c = 0).
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Figure S.24: Stability diagram of
the Hindmarsh-Rose spiking neuron
model; see exercise 7.

which is the upper part of the parabola in Fig.S.24.

8. (IK-model) The steady-state I-V relation of the IK-model is monotone; hence it has a unique
equilibrium, which we denoted here as (V̄ , m̄) ∈ R2, where V̄ > EK and m̄ = m∞(V̄ ). The
Jacobian at the equilibrium has the form

L =
( −(gL + ḡKm̄4)/C −4ḡKm̄3(V̄ − EK)/C

m′
∞(V̄ )/τ(V̄ ) −1/τ(V̄ )

)
,

with the signs

L =
( − −

+ −
)

.

Obviously, detL > 0 and tr L < 0; hence the equilibrium (focus or node) is always stable.

9. (Ih-model) The steady-state I-V relation of the Ih-model is monotone; hence it has a unique
equilibrium denote here as (V̄ , h̄) ∈ R2, where V̄ < Eh and h̄ = h∞(V̄ ). The Jacobian at the
equilibrium has the form

L =
( −(gL + ḡhh̄)/C −ḡh(V̄ − Eh)/C

h′∞(V̄ )/τ(V̄ ) −1/τ(V̄ )

)
,

with the signs

L =
( − +
− −

)
.
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y=a+x 2 y=
bx

/c

unstable (saddle)

stable if x<c/2

c/2

x

y

Figure S.25: The left equilibrium is stable when x < c/2; see exercise 11.

Obviously, detL > 0 and tr L < 0; hence the equilibrium is always stable.

10. (Bendixson’s criterion) The divergence of the vector field of the IK-model

∂f(x,y)/∂x︷ ︸︸ ︷
(−gL − ḡKm4)/C +

∂g(x,y)/∂y︷ ︸︸ ︷
−1/τ(V )

is always negative; hence the model cannot have a periodic orbit. Therefore, it cannot have
sustained oscillations.

11. The x-nullcline is y = a + x2 and the y-nullcline is y = bx/c, as in Fig.S.25. The equilibria
(intersections of the nullclines) are

x̄ =
b/c±

√
(b/c)2 − 4a

2
, ȳ = bx̄/c ,

provided that a < 1
4 (b/c)2. The Jacobian matrix at (x̄, ȳ) has the form

L =
(

2x̄ −1
b −c

)

with tr L = 2x̄− c and
detL = −2x̄c + b = ∓

√
b2 − 4ac2 .

Thus, the right equilibrium (i.e., (b/c +
√

(b/c)2 − 4a)/2) is always a saddle and the left equi-
librium (i.e., (b/c −

√
(b/c)2 − 4a)/2) is always a focus or a node. It is always stable when it

lies on the left branch of the parabola y = a + x2 (i.e., when x̄ < 0), and also can be stable on
the right branch if it is not too far from the parabola knee (i.e., if x̄ < c/2); see Fig.S.25.

Solutions for chapter 5

1. The IA-model with instantaneous activation has the form

C V̇ = I −
leak IL︷ ︸︸ ︷

gL(V − EL) −
IA︷ ︸︸ ︷

ḡAm∞(V )h(V − EK)
ḣ = (h∞(V )− h)/τ(V ) .
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Figure S.26: Answer to exercise 2.
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Figure S.27: The saddle-node bifurcation diagrams of the INa,t- and IA-minimal models.

To apply the Bendixson criterion (chapter 4, exercise 10), we first determine the divergence of
this vector field

∂V̇

∂V
+

∂ḣ

∂h
= −{gL + ḡAm′

∞(V )h(V −EK) + ḡAm∞(V )h}/C − 1/τ(V ) < 0 .

Since it is always negative, the IA-model cannot have limit cycle attractors (or any other closed
loop orbit).

2. See Fig.S.26.

3. The curves
I = gL(V − EL) + ḡNam

3
∞(V )h∞(V )(V − ENa)

and
I = gL(V − EL) + ḡAm∞(V )h∞(V )(V − EK)

are depicted in Fig.S.27.

4. g is not an absolute conductance, but is taken relative to the conductance at the resting state.
Negative values occur because the initial holding voltage value in the voltage-clamp experiment
described in Fig.5.22a corresponds to the resting potential, at which the K+ conductance is
partially activated. Indeed, in the INa,p+IK-model the K+ gating variable n ≈ 0.04; hence
the K+ conductance is approximately 0.4 (because ḡK = 10). According to the procedure,
this value corresponds to g = 0. Any small decrease in conductance would result in negative
values of g. If the initial holding voltage were very negative, say below −100 mV, then the slow
conductance g would have nonnegative values in the relevant voltage range (above −100 mV).
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5. The curve Islow(V ) defines slow changes of the membrane voltage. The curve I−Ifast(V ) defines
fast changes. Its middle part, which has a positive slope, is unstable. If the I-V curves intersect
in the middle part, the equilibrium is unstable, and the system exhibits periodic spiking: The
voltage slowly slides down the left branch of the fast I-V curve toward the slow I-V curve
until it reaches the left knee, and then jumps quickly to the right branch. After the jump, the
voltage slowly slides up the right branch until it reaches the right knee, and then quickly jumps
to the left branch along the straight line that connects the knee and the point (EK, 0) (see
also previous exercise). Note that the direction of the jump is not horizontal, as in relaxation
oscillators, but along a sloped line. On that line the slow conductance g is constant, but the
slow current Islow(V ) = g(V −EK) changes quickly because the driving force V −EK changes
quickly. When the I-V curves intersect at the stable point (negative slope of I − Ifast(V )), the
voltage variable may produce a single action potential, then slide slowly toward the intersection,
which is a stable equilibrium.

Solutions for chapter 6

1. There are two equilibria: x = 0 and x = b. The stability is determined by the sign of the
derivative

λ = (x(b− x))′x = b− 2x

at the equilibrium. Since λ = b when x = 0, this equilibrium is stable (unstable) when b < 0
(b > 0). Since λ = −b when x = b, this equilibrium is unstable (stable) when b < 0 (b > 0).

2. (a) The system
ẋ = bx2 , b 6= 0

cannot exhibit saddle-node bifurcation: It has one equilibrium for any nonzero b, or an
infinite number of equilibria when b = 0. The equilibrium x = 0 is non-hyperbolic,
and the non-degeneracy condition is satisfied (a = b 6= 0). However, the transversality
condition is not satisfied at the equilibrium x = 0. Another example is ẋ = b2 + x2.

(b) The system
ẋ = b− x3

has a single stable equilibrium for any b. However, the point x = 0 is non-hyperbolic when
b = 0 and the transversality condition is also satisfied. The non-degeneracy condition is
violated, however.

3. It is easy to check (by differentiating) that

V (t) =

√
c(b− bsn)√

a
tan(

√
ac(b− bsn)t)

is a solution to the system. Since tan(−π/2) = −∞ and tan(+π/2) = +∞, it takes

T =
π√

ac(b− bsn)

for the solution to go from −∞ to +∞.

4. The first system can be transformed into the second if we use complex coordinates z = u + iv.
To obtain the third system, we use polar coordinates

reiϕ = z = u + iv ∈ C ,
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so that
ż︷ ︸︸ ︷

ṙeiϕ + reiϕiϕ̇ =

(c(b)+iω(b))z+(a+id)z|z|2︷ ︸︸ ︷
(c(b) + iω(b))reiϕ + (a + id)r3eiϕ .

Next, we divide both sides of this equation by eiϕ and separate the real and imaginary parts
to obtain

{ṙ − c(b)r − ar3}+ ir{ϕ̇− ω(b)− dr2} = 0 ,

which we can write in the polar coordinates form.

5. (a) The equilibrium r = 0 of the system

ṙ = br3 ,

ϕ̇ = 1 ,

has a pair of complex-conjugate eigenvalues ±i for any b, and the non-degeneracy con-
dition is satisfied for any b 6= 0. However, the transversality condition is violated, and
the system does not exhibit Andronov-Hopf bifurcation (no limit cycle exists near the
equilibrium).

(b) The equilibrium r = 0 for b = 0

ṙ = br ,

ϕ̇ = 1 ,

has a pair of complex-conjugate eigenvalues ±i and the transversality condition is satis-
fied. However, the bifurcation is not of the Andronov-Hopf type because no limit cycle
exists near the equilibrium for any b.

6. The Jacobian matrix at the equilibrium (u, v) = (0, 0) has the form

L =
(

b −1
1 b

)
.

It has eigenvalues b±i. Therefore, the loss of stability occurs at b = 0, and the non-hyperbolicity
and transversality conditions are satisfied. Since the model can be reduced to the polar-
coordinate system (see exercise 4) and a 6= 0, the non-degeneracy condition is also satisfied,
and the system undergoes an Andronov-Hopf bifurcation.

7. Since

(cr + ar3)′r = c + 3ar2 = c + 3a|c/a| =
{

c + 3|c| when a > 0,
c− 3|c| when a < 0,

the limit cycle is stable when a < 0.

8. The sequence of bifurcations is similar to that of the RS neuron in Fig.8.15. The resting
state is a globally asymptotically stable equilibrium for I < 5.64. At this value a stable
(spiking) limit cycle appears via a big saddle homoclinic orbit bifurcation. At I = 5.8 a
small-amplitude unstable limit cycle is born via another saddle homoclinic orbit bifurcation.
This cycle shrinks to the equilibrium and makes it lose stability via subcritical Andronov-Hopf
bifurcation at I = 6.5. This unstable focus becomes an unstable node when I increases, and
then it coalesces with the saddle (at I = 7.3) and disappears. Note that there is a saddle-node
bifurcation according to the I-V relation, but it corresponds to the disappearance of an unstable
equilibrium.
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9. The Jacobian matrix of partial derivatives has the form

L =
( −I ′V (V, x) −I ′x(V, x)

x′∞(V )/τ(V ) −1/τ(V )

)
,

so that
tr L = −{I ′V (V, x) + 1/τ(V )}

and
det L = {I ′V (V, x) + I ′x(V, x)x′∞(V )}/τ(V ) = I ′∞(V )/τ(V ) .

The characteristic equation
λ2 − λ tr L + det L = 0

has two solutions
c︷ ︸︸ ︷

(tr L)/2±
ω︷ ︸︸ ︷√

{(tr L)/2}2 − det L

which might be complex-conjugate.

10. Let z = reϕi; then

r′ = ar + r3 − r5 ,

ϕ′ = ω .

Any limit cycle is an equilibrium of the amplitude equation, that is,

a + r2 − r4 = 0 .

The system undergoes fold limit cycle bifurcation when the amplitude equation undergoes a
saddle-node bifurcation, that is, when

a + 3r2 − 5r4 = 0

(check the non-degeneracy and transversality conditions). The two equations have the non-
trivial solution (a, r) = (−1/4, 1/

√
2).

11. The projection onto the v1-axis is described by the equation

ẋ = λ1x , x(0) = a .

The trajectory leaves the square when x(t) = aeλ1t = 1; that is, when

t = − 1
λ1

ln a = − 1
λ1

ln τ(I − Ib) .

12. Equation (6.13) has two bifurcation parameters, b and v, and the saddle-node homoclinic
bifurcation occurs when b = bsn and v = Vsn. The saddle-node bifurcation curve is the straight
line b = bsn (any v). This bifurcation is on an invariant circle when v < Vsn and off otherwise.
When b > bsn, there are no equilibria and the normal form exhibits periodic spiking. When
b < bsn, the normal form has two equilibria,

node︷ ︸︸ ︷
Vsn −

√
c|b− bsn|/a and

saddle︷ ︸︸ ︷
Vsn +

√
c|b− bsn|/a .

The saddle homoclinic orbit bifurcation occurs when the voltage is reset to the saddle, that is,
when

v = Vsn +
√

c|b− bsn|/a .
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13. The Jacobian matrix at an equilibrium is

L =
(

2v −1
ab −a

)
.

Saddle-node condition det L = −2va + ab = 0 results in v = b/2. Since v is an equilibrium,
it satisfies v2 − bv + I = 0; hence b2 = 4I. The Andronov-Hopf condition tr L = 2v − a = 0
results in v = a/2; hence a2/4 − ab/2 + I = 0. The bifurcation occurs when det L > 0,
resulting in a < b. Combining the saddle-node and Andronov-Hopf conditions results in the
Bogdanov-Takens conditions.

14. Change of variables (6.5), v = x and u =
√

µy, transforms the relaxation oscillator into the
form

ẋ = f(x)−√µy
ẏ =

√
µ(x− b) with the Jacobian L =

(
f ′(b) −√µ√

µ 0

)

at the equilibrium v = x = b, u =
√

µy = f(b). The Andronov-Hopf bifurcation occurs when
tr L = f ′(b) = 0 and detL = µ > 0. Using (6.7), we find that it is supercritical when f ′′′(b) < 0
and subcritical when f ′′′(b) > 0.

15. The Jacobian matrix at the equilibrium, which satisfies F (v)− bv = 0, is

L =
(

F ′ −1
µb −µ

)
.

The Andronov-Hopf bifurcation occurs when trL = F ′ − µ = 0 (hence F ′ = µ) and det L =
ω2 = µb − µ2 > 0 (hence b > µ). The change of variables (6.5), v = x and u = µx + ωy,
transforms the system into the form

ẋ = −ωy + f(x)
ẏ = ωx + g(x),

where f(x) = F (x)− µx and g(x) = µ[bx− F (x)]/ω. The result follows from (6.7).

16. The change of variables (6.5) converts the system into the form

ẋ = F (x) + linear terms
ẏ = µ(G(x)− F (x))/ω + linear terms.

The result follows from (6.7).

17. The change of variables (6.5), v = x and u = µx + ωy, converts the system into

ẋ = F (x)− x(µx + ωy) + linear terms
ẏ = µ[G(x)− F (x) + x(µx + ωy)]/ω.

The result follows from (6.7).

18. The system undergoes Andronov-Hopf bifurcation when Fv = −µGu and FuGv < −µG2
u. We

perform all the steps from (6.4) to (6.7), disregarding linear terms (they do not influence a)
and the terms of the order o(µ). Let ω =

√−µFuGv + O(µ), then u = (µGux − ωy)/Fu =
−ωy/Fu +O(µ), and

f(x, y) = F (x,−ωy/Fu +O(µ)) = F (x, 0)− Fu(x, 0)ωy/Fu +O(µ)

and
g(x, y) = (µ/ω)[GuF (x, 0)− FuG(x, 0)] +O(µ) .

The result follows from (6.7).
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Figure S.28: Codimension-2 Shilnikov-Hopf bifurcation.

Solutions for chapter 7

1. Take c < 0 so that the slow w-nullcline has a negative slope.

2. The quasi-threshold contains the union of canard solutions.

3. The change of variables z = eiωtu transforms the system into the form

u̇ = ε{−u + e−iωtI(t)} ,

which can be averaged, yielding
u̇ = ε{−u + I∗(ω)} .

Apparently, the stable equilibrium u = I∗(ω) corresponds to the sustained oscillation z =
eiωtI∗(ω).

4. The existence of damped oscillations with frequency ω implies that the system has a focus
equilibrium with eigenvalues −ε± iω, where ε > 0. The local dynamics near the focus can be
represented in the form (7.3). The rest of the proof is the same as the one for exercise 3.

5. Even though the slow and the fast nullclines in Fig.5.21 intersect in only one point, they
continue to be close and parallel to each other in the voltage range 10 mV to 30 mV. Such a
proximity creates a tunneling effect (Rush and Rinzel 1996) that prolongs the time spent near
those nullclines.

6. (Shilnikov-Hopf bifurcation) The model is near a codimension-2 bifurcation having a homoclinic
orbit to an equilibrium undergoing subcritical Andronov-Hopf bifurcation, as we illustrate in
Fig.S.28. Many weird phenomena can happen near bifurcations of codimension-2 or higher.

Solutions for chapter 8

1. Consider two coupled neurons firing together.

2. The equation
V̇ = c(b− bsn) + a(V − Vsn)2

can be written in the form
V̇ = a(V − Vrest)(V − Vthresh)

with
Vrest = Vsn −

√
c(bsn − b)/a and Vthresh = Vsn +

√
c(bsn − b)/a,

provided that b < bsn.
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3. The system v̇ = b+ v2 with b > 0 and the initial condition v(0) = vreset has the solution (check
by differentiating)

v(t) =
√

b tan(
√

b(t + t0)),

where

t0 =
1√
b

atan
vreset√

b
.

From the condition v(T ) = vpeak = 1, we find

T =
1√
b

atan
1√
b
− t0 =

1√
b

(
atan

1√
b
− atan

vreset√
b

)
,

which alternatively can be written as

T =
1√
b

atan
(√

b
vreset − 1
vreset + b

)
.

4. The system v̇ = −|b|+v2 with the initial condition v(0) = vreset >
√
|b| has the solution (check

by differentiating)

v(t) =
√
|b| 1 + e2

√
b(t+t0)

1− e2
√

b(t+t0)
,

where

t0 =
1

2
√
|b| ln

vreset −
√
|b|

vreset +
√
|b| .

From the condition v(T ) = 1, we find

T =
1

2
√
|b|

(
ln

1−
√
|b|

1 +
√
|b| − ln

vreset −
√
|b|

vreset +
√
|b|

)
.

5. The saddle-node bifurcation occurs when b = 0, regardless of the value of vreset, which is a
straight vertical line in Fig.8.3. If vreset < 0, then the saddle-node bifurcation is on an invariant
circle. When b < 0, the unstable node (saddle) equilibrium is at v =

√
|b|. Hence, the saddle

homoclinic orbit bifurcation occurs when vreset =
√
|b|.

6. The change of variables v = g/2 + V , b = g2/4 + B transforms v̇ = b− gv + v2 to V̇ = B + V 2

with Vreset = −∞ and Vpeak = +∞. It has the threshold V =
√

B, the rheobase B = 0, and
the same F-I curve as in the original model with g = 0. In v-coordinates, the threshold is
v = g/2 +

√
b− g2/4, which is greater than

√
b, the new rheobase is b = g2/4, which is greater

than b = 0, and the new F-I curve is the same as the old one, just shifted to the right by g2/4.

7. Let b = εr with ε ¿ 1 be a small parameter. The change of variables

v =
√

ε tan
ϑ

2

uniformly transforms (8.2) into the theta-neuron form

ϑ̇ =
√

ε{(1− cos ϑ) + (1 + cos ϑ)r} .

on the unit circle except for the small interval |ϑ − π| < 2 4
√

ε corresponding to the action
potential (v > 1); see Hoppensteadt and Izhikevich (1997) for more details.
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8. Use the change of variables

v =
√

εϑ

1− |ϑ| .

To obtain other theta neuron models, use the change of variables

v =
√

εh(ϑ) ,

where the monotone function h maps (−π, π) to (−∞,∞) and scales like 1/(ϑ ± π) when
ϑ → ±π. The corresponding model has the form

ϑ′ = h2(ϑ)/h′(ϑ) + r/h′(ϑ) .

In particular, h2(ϑ)/h′(ϑ) exists, and is bounded and 1/h′(ϑ) = 0 when ϑ → ±π. These imply
a uniform velocity independent from the input r when ϑ passes the value ±π corresponding to
firing a spike.

9. The equilibrium v = I/(b + 1), u = bI/(b + 1) has the Jacobian matrix

L =
( −1 −1

ab −a

)

with trL = −(a + 1) and detL = a(b + 1). It is a stable node (integrator) when b < (a +
1)2/(4a)− 1 and a stable focus (resonator) otherwise.

10. The quadratic integrate-and-fire neuron with a dendritic compartment

V̇ = B + V 2 + g1(Vd − V )
V̇d = gleak(Eleak − Vd) + g2(V − Vd)

can be written in the form (8.3, 8.4), with v = V − g1/2, u = −g1Vd, I = B − g2
1/4− (g2

1g2 +
gleakEleak)/(gleak + g2), a = gleak + g2, and b = −g1g2/a.

11. A MATLAB program generating the figure is provided on the author’s Web page (www.izhikevich.com).

12. An example is in Fig.S.29.

13. An example is in Fig.S.30.

Solutions for chapter 9

1. (Planar burster) Izhikevich (2000a) suggested the system

ẋ = x− x3/3− u + 4S(x) cos 40u,

u̇ = µx ,

with S(x) = 1/(1 + e5(1−x)) and µ = 0.01. It has a hedgehog limit cycle depicted in Fig.S.31.

2. (Noise-induced bursting) Noise can induce bursting in a two-dimensional system with coexis-
tence of resting and spiking states. Indeed, noisy perturbations can randomly push the state
of the system into the attraction domain of the resting state or into the attraction domain of
the limit cycle attractor, as in Fig.S.32. The solution meanders between the states, exhibiting
a random bursting pattern as in Fig.9.55 (right). Neocortical neurons of the RS and FS types,
as well as stellate neurons of the entorhinal cortex, exhibit such bursting; see chapter 8.
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Figure S.29: Comparison of in vitro recordings of a fast spiking (FS) interneuron of
layer 5 rat visual cortex with simulations of the simple model with linear slow nullcline
20v̇ = (v + 55)(v + 40) − u + I, u̇ = 0.15{8(v + 55) − u}, if v ≥ 25, then v ← −55,
u ← u + 200.

3. (Noise-induced bursting) Bursting occurs because noisy perturbations push the trajectory into
and out of the attraction domain of the limit cycle attractor, which coexists with the resting
equilibrium; see the phase portrait in Fig.S.33.

4. (Rebound bursting in the FitzHugh-Nagumo oscillator) The oscillator is near the fold limit cycle
bifurcation. The solution makes a few rotations along the ghost of the cycle before returning
to rest; see Fig.S.34.

5. Yes, they can, at the end of a burst. Think of a “fold/Hopf” or “circle/Hopf” burster. The
resting equilibrium is a stable focus immediately after the termination of a burst, and then it is
transformed into a stable node to be ready for the circle or fold bifurcation. Even “circle/circle”
bursters can exhibit such oscillations, if the resting equilibrium turns into a focus for a short
period of time somewhere in the middle of a quiescent phase. In any case, the oscillations
should disappear just before the transition to the spiking state.

6. (Hopf/Hopf bursting) Even though there is no coexistence of attractors, there is a hysteresis
loop due to the slow passage effect through the supercritical Andronov-Hopf bifurcation; see
Fig.S.35. The delayed transition to spiking creates the hysteresis loop and enables bursting.

7. (Hopf/Hopf canonical model) First, we restrict the fast subsystem to its center manifold and
transform it into the normal form for supercritical Andronov-Hopf bifurcation, which after
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Figure S.33: Noise-induced bursting in a two-dimensional system with coexistence of an equilibrium
and a limit cycle attractor; see exercise 3.
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appropriate re-scaling, has the form

ż = (u + iω)z − z|z|2 .

Here, u is the deviation from the slow equilibrium u0. The slow subsystem

u̇ = µg(zeiωt + complex-conjugate, u)

can be averaged and transformed into the canonical form.

8. (Bursting in the INa,t+INa,slow-model) First, determine the parameters of the INa,t-model corre-
sponding to the subcritical Andronov-Hopf bifurcation, and hence the coexistence of the resting
and spiking states. Then, add a slow high-threshold persistent Na+ current that activates dur-
ing spiking, depolarizes the membrane potential, and stops the spiking. During resting, the
current deactivates, the membrane potential hyperpolarizes, and the neuron starts to fire again.

9. Replace the slow Na+ current in the exercise above with a slow dendritic compartment with den-
dritic resting potential far below the somatic resting potential. As the dendritic compartment
hyperpolarizes the somatic compartment, the soma starts to fire (due to the inhibition-induced
firing described in section 7.2.8). As the somatic compartment fires, the dendritic compartment
slowly depolarizes, removes the hyperpolarization and stops firing.

10. (Bursting in the INa,p+IK+INa,slow-model) The time constant τslow(V ) is relatively small in the
voltage range corresponding to the spike after-hyperpolarization (AHP). Deactivation of the
Na+ current during each AHP is much stronger than its activation during the spike peak. As
a result, the Na+ current deactivates (turns off) during the burst, and then slowly reactivates
to its baseline level during the resting period, as one can see in Fig.S.36.
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Figure S.36: Bursting in the INa,p+IK+INa,slow-model. See exercise 10.
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Figure S.37: The system has a unique attractor, equilibrium, yet it can exhibit repetitive spiking
activity when the N-shaped nullcline is moved upward not very slowly.

11. The mechanism of spiking, illustrated in Fig.S.37, is closely related to the phenomenon of
accommodation and anodal break excitation. The key feature is that this bursting is not
fast-slow.
The system has a unique attractor – a stable equilibrium – and the solution always converges
to it. The slow variable I controls the vertical position of the N-shaped nullcline. If I increases,
the nullcline slowly moves upward, and so does the solution, because it tracks the equilibrium.
However, if the rate of change of I is not small enough, the solution cannot catch up with the
equilibrium and starts to oscillate with a large amplitude. Thus, the system exhibits spiking
behavior even though it does not have a limit cycle attractor for any fixed I.

12. From the first equation, we find the equivalent voltage

|z|2 = |1 + u|+ =
{

1 + u if 1 + u > 0 ,
0 if 1 + u ≤ 0 ,

so that the reduced slow subsystem has the form

u̇ = µ[u− u3 − w] ,

ẇ = µ[|1 + u|+ − 1] ,

and it has essentially the same dynamics as the van der Pol oscillator.
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Figure S.38: Answer to exercise 13.

13. The fast equation
ϑ̇ = 1− cosϑ + (1 + cos ϑ)r

is the Ermentrout-Kopell canonical model for Class 1 excitability, also known as the theta
neuron (Ermentrout 1996). It is quiescent when r < 0 and fires spikes when r > 0. As ψ
oscillates with frequency ω, the function r = r(ψ) changes sign. The fast equation undergoes a
saddle-node on invariant circle bifurcation; hence the system is a “circle/circle” burster of the
slow-wave type; see Fig.S.38.

14. To understand the bursting dynamics of the canonical model, rewrite it in polar coordinates
z = reiϕ:

ṙ = ur + 2r3 − r5 ,
u̇ = µ(a− r2) ,
ϕ̇ = ω .

Apparently, it is enough to consider the first two equations, which determine the oscillation
profile. Nontrivial (r 6= 0) equilibria of this system correspond to limit cycles of the canonical
model, which may look like periodic (tonic) spiking with frequency ω. Limit cycles of this
system correspond to quasi-periodic solutions of the canonical model, which look like bursting;
see Fig.9.37.

The first two equation above have a unique equilibrium,
(

r
u

)
=

( √
a

a2 − 2a

)

for all µ and a > 0, which is stable when a > 1. When a decreases and passes an µ neighborhood
of a = 1, the equilibrium loses stability via Andronov-Hopf bifurcation. When 0 < a < 1, the
system has a limit cycle attractor. Therefore, the canonical model exhibits bursting behavior.
The smaller the value of a, the longer the interburst period. When a → 0, the interburst period
becomes infinite.

15. Take w = I − u. Then (9.7) becomes

v̇ = v2 + w ,
ẇ = µ(I − w) ≈ µI .

16. Let us sketch the derivation. Since the fast subsystem is near saddle-node homoclinic orbit
bifurcation for some u = u0, a small neighborhood of the saddle-node point v0 is invariantly
foliated by stable submanifolds, as in Fig.S.39. Because the contraction along the stable sub-
manifolds is much stronger than the dynamics along the center manifold, the fast subsystem
can be mapped into the normal form v̇ = q(u)+p(v− v0)2 by a continuous change of variables.
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Figure S.39: A small neighborhood of the saddle-node point can be invariantly foliated by stable
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Figure S.40: exercise 18.

When v escapes the small neighborhood of v0, the neuron is said to fire a spike, and v is reset
to v ← v0 + c(u). Such a stereotypical spike also resets u by a constant d. If g(v0, u0) ≈ 0, then
all functions are small, and linearization and appropriate re-scaling yield the canonical model.
If g(v0, u0) 6= 0, then the canonical model has the same form as in the previous exercise.

17. The derivation proceeds as in the previous exercise, yielding

v̇ = I + v2 + (a, u) ,
u̇ = µAu .

where (a, u) is the scalar (dot) product of vectors a, u ∈ R2, and A is the Jacobian matrix
at the equilibrium of the slow subsystem. If the equilibrium is a node, it generically has two
distinct eigenvalues and two real eigenvectors. In this case, the slow subsystem uncouples into
two equations, each along the corresponding eigenvector. Appropriate re-scaling gives the first
canonical model. If the equilibrium is a focus, the linear part can be made triangular in order
to get the second canonical model.

18. The solution of the fast subsystem

v̇ = u + v2 , v(0) = −1 ,

with fixed u > 0 is

v(t) =
√

u tan
(√

ut− atan
1√
u

)
.

The interspike period, T , is defined by v(T ) = +∞, given by the formula

T (u) =
1√
u

(
π

2
+ atan

1√
u

)
.
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Figure S.41: Classification of point-point codimension-1 hysteresis loops.

The result follows from the integral

1
T (u)

∫ T (u)

0

di δ(t− T (u)) dt =
d1

T (u)

and the relationships

f(u) =
1

T (u)
and atan

1√
u

= arcot
√

u .

Periodic solutions of the averaged system (focus case) and the full system are depicted in
Fig.S.40. The deviation is due to the finite size of the parameters µ1 and µ2 in Fig.9.35.

19. There are only two codimension-1 bifurcations of an equilibrium that result in transitions to
another equilibrium: saddle-node off limit cycle and subcritical Andronov-Hopf bifurcation.
Hence, there are four point-point hysteresis loops, depicted in Fig.S.41. More details are pro-
vided in Izhikevich (2000a).

20. These figures are modified from Izhikevich (2000a), where one can find two models exhibiting
this phenomenon. The key feature is that the slow subsystem is not too slow, and the rate
of attraction to the upper equilibrium is relatively weak. The spikes are actually damped
oscillations that are generated by the fast subsystem while it converges to the equilibrium.
Periodic bursting is generated via the point-point hysteresis loop.

21. There are only two codimension-1 bifurcations of a small limit cycle attractor (subthreshold
oscillation) on a plane that result in sharp transitions to a large-amplitude limit cycle attractor
(spiking): fold limit cycle bifurcation and saddle-homoclinic orbit bifurcation; see Fig.S.42.
These two bifurcations paired with any of the four bifurcations of the large-amplitude limit
cycle attractor result in eight planar codimension-1 cycle-cycle bursters; see Fig.S.43. More
details are provided by Izhikevich (2000a).
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Figure S.42: Codimension-1 bifurcations of a stable limit cycle in planar systems that result in
sharp loss of stability and transition to a large-amplitude (spiking) limit cycle attractor, not shown
in the figure. Fold limit cycle: A stable limit cycle is approached by an unstable one, they coalesce,
and then they disappear. Saddle homoclinic orbit: A limit cycle grows into a saddle. The unstable
manifold of the saddle makes a loop and returns via the stable manifold (separatrix).
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Figure S.43: Classification of codimension-1 cycle-cycle planar bursters.
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Chapter 10

Synchronization
(www.izhikevich.com)

This chapter is available at www.izhikevich.com. It supplements the book
by Izhikevich E. M. (2007) Dynamical Systems in Neuroscience: The Ge-
ometry of Excitability and Bursting, Cambridge, Mass: MIT Press. The
author’s Web site also contains MATLAB programs and in vitro data used
in the book. To cite this chapter, write (Izhikevich 2007, Chapter 10) in
your papers (i.e., as if it were a printed part of the book).

In this chapter we consider networks of tonically spiking neurons. Like any other
kind of physical, chemical, or biological oscillators, such neurons can synchronize and
exhibit collective behavior that is not intrinsic to any individual neuron. For example,
partial synchrony in cortical networks is believed to generate various brain oscilla-
tions, such as the alpha and gamma EEG rhythms. Increased synchrony may result in
pathological types of activity, such as epilepsy. Coordinated synchrony is needed for
locomotion and swim pattern generation in fish. There is an ongoing debate on the role
of synchrony in neural computation, see e.g., the special issue of Neuron (September
1999) devoted to the binding problem.

Depending on the circumstances, synchrony can be good or bad, and it is important
to know what factors contribute to synchrony and how to control it. This is the subject
of the present chapter – the most advanced chapter of the book. It provides a nice
application of the theory developed earlier and hopefully gives some insight into why
the previous chapters may be worth mastering.

Our goal is to understand how the behavior of two coupled neurons depends on their
intrinsic dynamics. First, we introduce the method of description of an oscillation by
its phase. Then, we describe various methods of reduction of coupled oscillators to
simple phase models. The reduction method and the exact form of the phase model
depend on the type of coupling (i.e., whether it is pulsed, weak, or slow) and on the
type of bifurcation of the limit cycle attractor generating tonic spiking. Finally, we
show how to use phase models to understand the collective dynamics of many coupled
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Figure 10.1: Definition of a phase of oscillation, ϑ, in the INa + IK-model with param-
eters as in Fig.4.1a and I = 10.

oscillators.

10.1 Pulsed Coupling

In this section we consider oscillators of the form

ẋ = f(x) + Aδ(t− ts) , x ∈ Rm, (10.1)

having exponentially stable limit cycles and experiencing pulsed stimulation at times
ts that instantaneously increases the state variable by the constant A. The Dirac
delta function δ(t) is a mathematical shorthand notation for resetting x by A. The
strength of pulsed stimulation, A, is not assumed to be small. Most of the results of
this section can also be applied to the case in which the action of the input pulse is not
instantaneous, but smeared over an interval of time, typically shorter than the period
of oscillation.

10.1.1 Phase of Oscillation

Many types of physical, chemical, and biological oscillators share an astonishing feature:
they can be described by a single phase variable ϑ. In the context of tonic spiking, the
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phase is usually taken to be the time since the last spike, as in Fig.10.1a.

We say that a function x(t) is periodic if there is a constant T > 0 such that
x(t + T ) = x(t) for any t. The minimal value of the constant is the period of x(t).
Periodic functions appear in dynamical systems having limit cycle attractors.

The notion of the phase of oscillation is related to the notion of parametrization
of a limit cycle attractor, as in Fig.10.1b. Take a point x0 on the attractor and plot
the trajectory x(t) with x(0) = x0. Then the phase of x(t) is ϑ = t. As t increases
past the period T , then 2T , an so on, the phase variable ϑ wraps around the interval
[0, T ], jumping from T to 0; see Fig.10.1c. Gluing together the points 0 and T , as in
Fig.10.1d, we can treat the interval [0, T ] as a circle, denoted as S1, with circumference
T . The parametrization is the mapping of S1 in Fig.10.1d into the phase space R2 in
Fig.10.1b, given by ϑ 7→ x(ϑ).

We could put the initial point x0 corresponding to the zero phase anywhere else on
the limit cycle, and not necessarily at the peak of the spike. The choice of the initial
point introduces an ambiguity in parameterizing the phase of oscillation. Different
parametrizations, however, are equivalent up to a constant phase shift (i.e., translation
in time). In the rest of the chapter, ϑ always denotes the phase of oscillation, the
parameter T denotes the period of oscillation, and ϑ = 0 corresponds to the peak of
the spike unless stated otherwise. If the system has two or more coexisting limit cycle
attractors, then a separate phase variable needs to be defined for each attractor.

10.1.2 Isochrons

The phase of oscillation can also be introduced outside the limit cycle. Consider, for
example, point y0 in Fig.10.2 (top). Since the trajectory y(t) is not on a limit cycle,
it is not periodic. However, it approaches the cycle as t → +∞. Hence, there is some
point x0 on the limit cycle, not necessarily the closest to y0, such that

y(t) → x(t) as t → +∞ . (10.2)

Now take the phase of the nonperiodic solution y(t) to be the phase of its periodic
proxy x(t).

Alternatively, we can consider a point on the limit cycle x0 and find all the other
points y0 that satisfy (10.2). The set of all such points is called the stable manifold
of x0. Since any solution starting on the stable manifold has an asymptotic behavior
indistinguishable from that of x(t), its phase is the same as that of x(t). For this
reason, the manifold represents solutions having equal phases, and it is often referred
to as being the isochron of x0 (iso, equal; chronos, time, in Greek), a notion going back
to Bernoulli and Leibniz.

Every point on the plane in Fig.10.2, except the unstable equilibrium, gives rise to
a trajectory that approaches the limit cycle. Therefore, every point has some phase.
Let ϑ(x) denote the phase of the point x. Then, isochrons are level contours of the
function ϑ(x), since the function is constant on each isochron.
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corresponding to 40 evenly
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The entire plane is foliated by isochrons. We depict only 40 representative ones
in Fig.10.2. In this chapter we consider neighborhoods of exponentially stable limit
cycles, where the foliation is continuous and invariant (Guckenheimer 1975):

• Continuity. The function ϑ(x) is continuous so that nearby points have nearby
phases.

• Invariance. If ϑ(x(0)) = ϑ(y(0)), then ϑ(x(t)) = ϑ(y(t)) for all t. Isochrons are
mapped to isochrons by the flow of the vector field.

Fig.10.3 shows the geometry of isochrons of various oscillators. The Andronov-Hopf
oscillator in the figure is often called a radial isochron clock for the obvious reason. It
is simple enough to be solved explicitly (see exercise 1). In general, finding isochrons
is a daunting mathematical task. In exercise 3 we present a MATLAB program that
finds isochrons numerically.

10.1.3 PRC

Consider a periodically spiking neuron (10.1) receiving a single brief pulse of current
that increases the membrane potential by A = 1 mV, as in Fig.10.4 (left). Such a
perturbation may not elicit an immediate spike, but it can change the timing, that is,
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the phase, of the following spikes. For example, the perturbed trajectory (solid line in
Fig.10.4, left) fires earlier than the free-running unperturbed trajectory (dashed line).
That is, right after the perturbation, the phase, ϑnew, is greater than the old phase,
ϑ. The magnitude of the phase shift of the spike train depends on the exact timing of
the stimulus relative to the phase of oscillation ϑ. Stimulating the neuron at different
phases, we can measure the phase response curve (also called phase-resetting curve
PRC, or spike time response curve STRC)

PRC (ϑ) = {ϑnew − ϑ} (shift = new phase – old phase) ,

depicted in Fig.10.4, right. Positive (negative) values of the function correspond to
phase advances (delays) in the sense that they advance (delay) the timing of the next
spike.
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In contrast to the common folklore, the function PRC (ϑ) can be measured for an
arbitrary stimulus, not necessarily weak or brief. The only caveat is that to measure
the new phase of oscillation perturbed by a stimulus, we must wait long enough for
transients to subside. This becomes a limiting factor when PRCs are used to study
synchronization of oscillators to periodic pulses, as we do in section 10.1.5.

There is a simple geometrical relationship between the structure of isochrons of an
oscillator and its PRC, illustrated in Fig.10.5 (see also exercise 6). Let us stimulate
the oscillator at phase ϑ with a pulse, which moves the trajectory from point x lying
on the intersection of isochron ϑ and the limit cycle attractor to a point y lying on
some isochron ϑnew. From the definition of PRC, it follows that ϑnew = ϑ+PRC(ϑ).

In general, one uses simulations to determine PRCs, as we do in Fig.10.4. Using
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PRC1(ϑ): Horizontal pulses (along the first variable) with amplitudes 0.2, 0.2, 2, 0.2 for
Andnronov-Hopf, van der Pol, Class 1 and Class 2 oscillators, respectively. PRC2(ϑ):
Vertical pulses (along the second variable) with amplitudes 0.2, 0.2, 0.02, 0.002, respec-
tively. An example of oscillation is plotted as a dotted curve in each subplot (not to
scale).

the MATLAB program presented in exercise 5, we can determine PRCs of all four
oscillators in Fig.10.3 and plot them in Fig.10.6. It is a good exercise to explain the
shape of each PRC in the figure, or at least its sign, using the geometry of isochrons
of corresponding oscillators. In section 10.2.4 we discuss pitfalls of using the straight-
forward method in Fig.10.4 to measure PRCs in biological neurons, and we present a
better technique.

Note that the PRC of the INa + IK-model in Fig.10.6 is mainly positive in the
Class 1 regime, that is, when the oscillations appear via saddle-node on invariant circle
bifurcation, but changes sign in the Class 2 regime, corresponding in this case to the
supercritical Andronov-Hopf bifurcation. In section 10.4 we find PRCs analytically
in the case of weak coupling, and show that the PRC of a Class 1 oscillator has the
shape sin2 ϑ (period T = π) or 1 − cos ϑ (period T = 2π), whereas that of a Class
2 oscillator has the shape sin ϑ (period T = 2π). We show in section 10.1.7 how the
synchronization properties of an oscillator depend on the shape of its PRC.
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10.1.4 Type 0 and Type 1 Phase Response

Instead of phase-resetting curves, many researchers in the field of circadian rhythms
consider phase transition curves (Winfree 1980)

ϑnew = PTC(ϑold).

Since

PTC (ϑ) = {ϑ + PRC(ϑ)} mod T,

the two approaches are equivalent. PRCs are convenient when the phase shifts are
small, so that they can be magnified and seen clearly. PTCs are convenient when the
phase shifts are large and comparable with the period of oscillation. We present PTCs
in this section solely for the sake of review, and we use PRCs throughout the rest of
the chapter.
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Figure 10.8: Time crystal (left) and its contour plot (right). Shown is the PTC (ϑ,A)
of the Andronov-Hopf oscillator (see exercise 4).

In Fig.10.7 (top) we depict phase portraits of the Andronov-Hopf oscillator having
radial isochrons and receiving pulses of magnitude A = 0.5 (left) and A = 1.5 (right).
Note the drastic difference between the corresponding PRCs or PTCs. Winfree (1980)
distinguishes two cases:

• Type 1 (weak) resetting results in continuous PRCs and PTCs with mean slope
1.

• Type 0 (strong) resetting results in discontinuous PRCs and PTCs with mean
slope 0.

(Do not confuse these classes with Class 1, 2, or 3 excitability.) The discontinuity
of the Type 0 PRC in Fig.10.7 is a topological property that cannot be removed by
reallocating the initial point x0 that corresponds to zero phase. As an exercise, prove
that the discontinuity stems from the fact that the shifted image of the limit cycle
(dashed circle) goes beyond the central equilibrium at which the phase is not defined.

If we vary not only the phase ϑ of the applied stimulus, but also its amplitude
A, then we obtain parameterized PRC and PTC. In Fig.10.8 we plot PTC (ϑ,A) of
the Andronov-Hopf oscillator (the corresponding PRC is derived in exercise 4). The
surface is called time crystal and it can take quite amazing shapes (Winfree 1980). The
contour plot of PTC (ϑ,A) in the figure contains the singularity point (black hole) that
corresponds to the phaseless equilibrium of the Andronov-Hopf oscillator. Stimulation
at phase ϑ = π with magnitude A = 1 pushes the trajectory into the equilibrium and
stalls the oscillation.
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10.1.5 Poincare Phase Map

The phase-resetting curve (PRC) describes the response of an oscillator to a single
pulse, but it can also be used to study its response to a periodic pulse train using the
following “stroboscopic” approach. Let ϑn denote the phase of oscillation at the time
the nth input pulse arrives. Such a pulse resets the phase by PRC (ϑn), so that the new
phase right after the pulse is ϑn+PRC(ϑn) (see Fig.10.9). Let Ts denote the period of
pulsed stimulation. Then the phase of oscillation before the next, (n + 1)th, pulse is
ϑn+PRC(ϑn) + Ts. Thus, we have a stroboscopic mapping of a circle to itself,

ϑn+1 = (ϑn + PRC(ϑn) + Ts) mod T, (10.3)

called the Poincare phase map (two pulse-coupled oscillators are considered in exer-
cise 11). Knowing the initial phase of oscillation ϑ1 at the first pulse, we can determine
ϑ2, then ϑ3, and so on. The sequence {ϑn} with n = 1, 2, . . . , is called the orbit of the
map, and it is quite easy to find numerically.

Let us illustrate this concept using the INa + IK-oscillator with PRC shown in
Fig.10.4. Its free-running period is T ≈ 21.37 ms, and the period of stimulation
in Fig.10.10a is Ts = 18.37, which results in the Poincare phase map depicted in
Fig.10.10d. The cobweb in the figure is the orbit going from ϑ1 to ϑ2 to ϑ3, and so
on. Note that the phase ϑ3 cannot be measured directly from the voltage trace in
Fig.10.10a because pulse 2 changes the phase, so it is not the time since the last spike
when pulse 3 arrives. The Poincare phase map (10.3) takes into account such multiple
pulses. The orbit approaches a point (called a fixed point; see below) that corresponds
to a synchronized or phase-locked state.

A word of caution is in order. Recall that PRCs are measured on the limit cycle
attractor. However, each pulse displaces the trajectory away from the attractor, as
in Fig.10.5. To use the PRC formalism to describe the effect of the next pulse, the
oscillator must be given enough time to relax back to the limit cycle attractor. Thus,
if the period of stimulation Ts is too small, or the attraction to the limit cycle is too
slow, or the stimulus amplitude is too large, the Poincare phase map may be not an
appropriate tool to describe the phase dynamics.
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Figure 10.10: Description of synchronization of INa + IK-oscillator in Fig.10.4, using
Poincare phase map.

10.1.6 Fixed points

To understand the structure of orbits of the Poincare phase map (10.3), or any other
map

ϑn+1 = f(ϑn) , (10.4)

we need to find its fixed points

ϑ = f(ϑ) (ϑ is a fixed point),

which are analogues of equilibria of continuous dynamical systems. Geometrically, a
fixed point is the intersection of the graph of f(ϑ) with the diagonal line ϑn+1 = ϑn

(see Fig.10.10d or Fig.10.11). At such a point, the orbit ϑn+1 = f(ϑn) = ϑn is fixed.
A fixed point ϑ is asymptotically stable if it attracts all nearby orbits, i.e., if ϑ1 is in
a sufficiently small neighborhood of ϑ, then ϑn → ϑ as n → ∞, as in Fig.10.11, left.
The fixed point is unstable if any small neighborhood of the point contains an orbit
diverging from it, as in Fig.10.11 (right).

The stability of the fixed point is determined by the slope

m = f ′(ϑ)
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Figure 10.11: The stability of fixed points of the mapping (10.4) depends on the slope
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of the graph of f at the point, which is called the Floquet multiplier of the mapping.
It plays the same role as the eigenvalue λ of an equilibrium of a continuous dynamical
system. Mnemonically, the relationship between them is µ = eλ, to which the fixed
point is stable when |m| < 1 (λ < 0) and unstable when |m| > 1 (λ > 0). Fixed
points bifurcate when |m| = 1 (λ is zero or purely imaginary). They lose stability
via flip bifurcation (a discrete analogue of Andronov-Hopf bifurcation) when m = −1
and disappear via fold bifurcation (a discrete analogue of saddle-node bifurcation)
when m = 1. The former plays an important role in the period-doubling phenomenon
illustrated in Fig.10.14 (bottom trace). The latter plays an important role in the
cycle-slipping phenomenon illustrated in Fig.10.16.

10.1.7 Synchronization

We say that two periodic pulse trains are synchronous when the pulses occur at the
same time or with a constant phase shift, as in Fig.10.12a. Each subplot in the figure
contains an input pulse train (bottom) and an output spike train (top), assuming
that spikes are fired at zero crossings of the phase variable, as in Fig.10.1. Such
a synchronized state corresponds to a stable fixed point of the Poincare phase map
(10.3). The in-phase, anti-phase, or out-of-phase synchronization corresponds to the
phase shift ϑ = 0, ϑ = T/2, or some other value, respectively. Many scientists refer
to the in-phase synchronization simply as “synchronization”, and use the adjectives
anti-phase and out-of-phase to denote the other types of synchronization.
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When the period of stimulation, Ts, is near the free-running period of tonic spiking,
T , the fixed point of (10.3) satisfies

PRC (ϑ) = T − Ts ,

that is, it is the intersection of the PRC and the horizontal line, as in Fig.10.13. Thus,
synchronization occurs with a phase shift ϑ that compensates for the input period
mismatch T − Ts. The maxima and the minima of the PRC determine the oscillator’s
tolerance of the mismatch. As an exercise, check that stable fixed points lie on the side
of the graph with the slope

−2 < PRC ′(ϑ) < 0 (stability region)

marked by the bold curves in Fig.10.13.
Now consider the Class 1 and Class 2 INa + IK-oscillators shown in Fig.10.6. The

PRC in the Class 1 regime is mostly positive, implying that such an oscillator can
easily synchronize with faster inputs (T − Ts > 0) but cannot synchronize with slower
inputs. Indeed, the oscillator can advance its phase to catch up with faster pulse trains,
but it cannot delay the phase to wait for the slower input. Synchronization with the
input having Ts ≈ T is only marginal. In contrast, the Class 2 INa + IK-oscillator does
not have this problem because its PRC has well-defined positive and negative regions.
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10.1.8 Phase-Locking

The phenomenon of p:q-phase-locking occurs when the oscillator fires p spikes for every
q input pulses, such as the 3:2-phase-locking in Fig.10.12b or the 2:2 phase-locking in
Fig.10.14, which typically occurs when pT ≈ qTs. The integers p and q need not be
relatively prime in the case of pulsed-coupled oscillators. Synchronization, that is, 1:1
phase-locking, as well as p:1 phase-locking corresponds to a fixed point of the Poincare
phase map (10.3) with p fired spikes per single input pulse. Indeed, the map tells the
phase of the oscillator at each pulse, but not the number of oscillations between the
pulses.

Each p:q-locked solution corresponds to a stable periodic orbit of the Poincare
phase map with the period q (so that ϑn = ϑn+q for any n). Such orbits in maps (10.4)
correspond to stable equilibria in the iterates ϑk+1 = f q(ϑk), where f q = f ◦ f ◦ · · · ◦ f
is the composition of f with itself q times. Geometrically, studying such maps is like
considering every qth input pulse in Fig.10.12b and ignoring all the intermediate pulses.

Since maps can have coexistence of stable fixed points and periodic orbits, various
synchronized and phase-locking states can coexist in response to the same input pulse
train, as in Fig.10.14. The oscillator converges to one of the states, depending on the
initial phase of oscillation, but can be switched between states by a transient input.

10.1.9 Arnold Tongues

To synchronize an oscillator, the input pulse train must have a period Ts sufficiently
near the oscillator’s free-running period T so that the graph of the PRC and the hori-
zontal line in Fig.10.13 intersect. The amplitude of the function |PRC(ϑ,A)| decreases
as the strength of the pulse A decreases, because weaker pulses produce weaker phase
shifts. Hence the region of existence of a synchronized state shrinks as A → 0, and it
looks like a horn or a tongue on the (Ts, A)-plane depicted in Fig.10.15, called Arnold
tongue. Each p:q-phase-locked state has its own region of existence (p:q-tongue in the



Synchronization 449

period of stimulation, Ts

am
pl

itu
de

 o
f s

tim
ul

at
io

n,
 A

T 2TT/2 3T/2 5T/2T/4 3T/4 5T/4 7T/4 9T/40

1:4

1:3 2:3

T/3

5:2
2:11:2 3:2

1:1

synchronization
1:6

Figure 10.15: Arnold tongues are regions of existence of various phase-locked states on
the “period-strength” plane.

cycle slipping 

-T/2 T/20
-T/2

T/2

0

ghost of

attractor

q n
+

1
=

f(
q n

)

qn

?

Poincare phase map

Figure 10.16: Cycle slipping phenomenon at the edge of the Arnold tongue correspond-
ing to a synchronized state.

figure), which also shrinks to a point pT/q on the Ts-axis. The larger the order of
locking, p + q, the narrower the tongue and the more difficult it is to observe such a
phase-locked state numerically, let alone experimentally.

The tongues can overlap, leading to the coexistence of phase-locked states, as in
Fig.10.14. If A is sufficiently large, the Poincare phase map (10.3) becomes nonin-
vertible, that is, it has a region of negative slope, and there is a possibility of chaotic
dynamics (Glass and Mackey 1988).

In Fig.10.16 we illustrate the cycle slipping phenomenon that occurs when the input
period Ts drifts away from the 1:1 Arnold tongue. The fixed point of the Poincare
phase map corresponding to the synchronized state undergoes a fold bifurcation and
disappears. In a way similar to the case of saddle-node on invariant circle bifurcation,
the fold fixed point becomes a ghost attractor that traps orbits and keeps them near
the synchronized state for a long period of time. Eventually the orbit escapes, the
synchronized state is briefly lost, and then the orbit returns to the ghost attractor to
be trapped again. Such an intermittently synchronized orbit typically corresponds to
a p:q-phase-locked state with a high order of locking p + q.
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Figure 10.17: Arthur Winfree in 2001.
(Photo provided by Martin Homer,
University of Bristol.)

10.2 Weak Coupling

In this section we consider dynamical systems of the form

ẋ = f(x) + εp(t) , (10.5)

describing periodic oscillators, ẋ = f(x), forced by a time-depended input εp(t), for
instance, from other oscillators in a network. The positive parameter ε measures the
overall strength of the input, and it is assumed to be sufficiently small, denoted as
ε ¿ 1. We do not assume ε → 0 here. In fact, most of the results in this section can
be cast in the form “there is an ε0 such that for all ε < ε0, the following holds. . .”
(Hoppensteadt and Izhikevich 1997), with ε0 depending on the function f(x) in (10.5)
and sometimes taking not so small values, such as, ε0 = 1.

Note that if ε = 0 in (10.5), we can transform ẋ = f(x), to ϑ̇ = 1 using the theory
presented in section 10.1. What happens when we apply the same transformation to
(10.5) with ε 6= 0? In this section we present three different but equivalent approaches
that transform (10.5) into the phase model

ϑ̇ = 1 + εPRC (ϑ)p(t) + o(ε) .

Here, Landau’s “little oh” function o(ε) denotes the error terms smaller than ε so that
o(ε)/ε → 0 if ε → 0. For the sake of clarity of notation, we omit o(ε) throughout the
book, and implicitly assume that all equalities are valid up to the terms of order o(ε).

Since we do not impose restrictions on the form of p(t), the three methods are
readily applicable to the case

p(t) =
∑

s

gs(x(t), xs(t)) ,

where the set {xs(t)} denotes oscillators in the network connected to x, and p(t) is the
postsynaptic current.
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10.2.1 Winfree’s Approach

A sufficiently small neighborhood of the limit cycle attractor of the unperturbed
(ε = 0) oscillator (10.5), magnified in Fig.10.18, has nearly collinear uniformly spaced
isochrons. Collinearity implies that a point x on the limit cycle in Fig.10.18 has the
same phase-resetting as any other point y on the isochron of x near the cycle. Uniform
density of isochrons implies that the phase-resetting scales linearly with the strength
of the pulse, that is, a half-pulse at point z in Fig.10.18 produces a half-resetting of
the phase.

Linear scaling of PRC with respect to the strength of the pulse motivates the
substitution

PRC (ϑ,A) ≈ Z(ϑ)A ,

where Z(ϑ) = ∂ PRC(ϑ,A)/∂A at A = 0 is the linear response or sensitivity function
(Winfree 1967) describing the slight alteration of rate, or of instantaneous frequency of
oscillation, accompanying application of a small stimulus. Some call it the infinitesimal
PRC.

Now suppose ε 6= 0 but is sufficiently small that the trajectory of the weakly per-
turbed oscillator (10.5) remains near the limit cycle attractor all the time. Let us re-
place the continuous input function εp(t) with the equivalent train of pulses of strength
A = εp(tn)h, where h is a small interpulse interval (denoted as Ts in section 10.1), and
tn = nh is the timing of the nth pulse, see Fig.10.19. We rewrite the corresponding
Poincare phase map (10.3)

ϑ(tn+1) = {ϑ(tn) +

PRC︷ ︸︸ ︷
Z(ϑ(tn)) εp(tn)h︸ ︷︷ ︸

A

+h} mod T
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Figure 10.20: Yoshiki Kuramoto in
1988, while he was visiting Jim Mur-
ray’s institute at Oxford University.
(Picture provided by Dr. Y. Ku-
ramoto.)

in the form
ϑ(tn + h)− ϑ(tn)

h
= Z(ϑ(tn))εp(tn) + 1 ,

which is a discrete version of

ϑ̇ = 1 + εZ(ϑ) · p(t), (10.6)

in the limit h → 0.
To be consistent with all the examples in section 10.1, we implicitly assume here

that p(t) perturbs only the first, voltage-like variable x1 of the state vector x =
(x1, . . . , xm) ∈ Rm and that Z(ϑ) is the corresponding sensitivity function. However,
the phase model (10.6) is also valid for an arbitrary input p(t) = (p1(t), . . . , pm(t)).
Indeed, let Zi describe the linear response to perturbations of the ith state variable
xi, and Z(ϑ) = (Z1(ϑ), . . . , Zm(ϑ)) denote the corresponding linear response vector-
function. Then the combined phase shift Z1p1 + · · ·+ Zmpm is the dot product Z · p in
(10.6).

10.2.2 Kuramoto’s Approach

Consider the unperturbed (ε = 0) oscillator (10.5), and let the function ϑ(x) denote
the phases of points near its limit cycle attractor. Obviously, isochrons are the level
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contours of ϑ(x) since the function is constant on each isochron. Differentiating the
function using the chain rule yields

dϑ(x)

dt
= gradϑ · dx

dt
= gradϑ · f(x) ,

where gradϑ = (ϑx1(x), . . . , ϑxm(x)) is the gradient of ϑ(x) with respect to the state
vector x = (x1, . . . , xm) ∈ Rm. However,

dϑ(x)

dt
= 1

near the limit cycle because isochrons are mapped to isochrons by the flow of the vector
field f(x). Therefore, we obtain a useful equality,

gradϑ · f(x) = 1 . (10.7)

Figure 10.21 shows a geometrical interpretation of grad ϑ(x): it is the vector based at
point x, normal to the isochron of x and with a length equal to the number density of
isochrons at x. Its length can also be found from (10.7).

Kuramoto (1984) applied the chain rule to the perturbed system (10.5),

dϑ(x)

dt
= gradϑ · dx

dt
= gradϑ · {f(x) + εp(t)} = gradϑ · f(x) + ε gradϑ · p(t) ,

and, using (10.7), obtained the phase model

ϑ̇ = 1 + ε grad ϑ · p(t) , (10.8)

which has the same form as (10.6). Subtracting (10.8) from (10.6) yields (Z(ϑ) −
gradϑ) · p(t) = 0. Since this is valid for any p(t), we conclude that Z(ϑ) = gradϑ
(see also exercise 6). Thus, Kuramoto’s phase model (10.8) is indeed equivalent to
Winfree’s model (10.8).

10.2.3 Malkin’s Approach

Yet another equivalent method of reduction of weakly perturbed oscillators to their
phase models follows from Malkin’s theorem (1949, 1956), which we state in the sim-
plest form below. The most abstract form and its proof are provided by Hoppensteadt
and Izhikevich (1997).
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Figure 10.22: Ioel Gil’evich Malkin (Io�l~
Gil~eviq Malkin, 1907–1958).

Malkin’s theorem. Suppose the unperturbed (ε = 0) oscillator in (10.5) has an
exponentially stable limit cycle of period T . Then its phase is described by the equation

ϑ̇ = 1 + εQ(ϑ) · p(t) , (10.9)

where the T -periodic function Q is the solution to the linear “adjoint” equation

Q̇ = −{Df(x(t))}>Q , with Q(0) · f(x(0)) = 1 , (10.10)

where Df(x(t))> is the transposed Jacobian of f (matrix of partial derivatives) at
the point x(t) on the limit cycle, and the normalization condition can be replaced by
Q(t) ·f(x(t)) = 1 for any, and hence all, t. Here Q ·f is the dot product of two vectors,
which is the same as Q>f .

Though this theorem looks less intuitive than the methods of Winfree and Ku-
ramoto, it is actually more useful because (10.10) can be solved numerically quite eas-
ily. Applying the MATLAB procedure in exercise 12 to the four oscillators in Fig.10.3,
we plot their functions Q in Fig.10.23. It is not a coincidence that each component of Q
looks like PRC along the first or second state variable, shown in Fig.10.6. Subtracting
(10.9) from (10.8) or from (10.6), we conclude that

Z(ϑ) = gradϑ(x) = Q(ϑ) ,

(see also exercise 7), so that we can determine the linear response function of the phase
model using any of the three alternative methods: via PRCs, via isochrons, or solving
the adjoint equation (10.10). This justifies the reason why many refer to the function
simply as PRC, implicitly assuming that it is measured to the infinitesimal stimuli and
then normalized by the stimulus amplitude.

10.2.4 Measuring PRCs Experimentally

In Fig.10.24 we exploit the relationship (10.9) and measure the infinitesimal PRCs of a
layer 5 pyramidal neuron of mouse visual cortex. First, we stimulate the neuron with
40 pA DC current to elicit periodic spiking. Initially, the firing period starts at 50 ms,
and then relaxes to the averaged value of 110 ms (Fig.10.24a). The standard method of
finding PRCs consists in stimulating the neuron with brief pulses of current at different
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Figure 10.23: Solutions Q = (Q1, Q2) to adjoint problem (10.10) for oscillators in
Fig.10.3.

phases of the cycle and measuring the induced phase shift, which can be approximated
by the difference between two successive periods of oscillation. The method works well
in models (see exercise 5), but should be used with caution in real neurons because
their firing is too noisy, as we demonstrate in Fig.10.24b. Thus, one needs to apply
hundreds, if not thousands, of pulses and then average the resulting phase deviations
(Reyes and Fetz 1993).

Starting with time 10 sec, we inject a relatively weak noisy current εp(t) that
continuously perturbs the membrane potential (Fig.10.24c) and, hence, the phase of
oscillation (the choice of p(t) is important; its Fourier spectrum must span a range of
frequencies that depends on the frequency of firing of the neuron). Knowing εp(t), the
moments of firing of the neuron, which are zero crossings ϑ(t) = 0, and the relationship

ϑ̇ = 1 + PRC(ϑ)εp(t) ,

we solve the inverse problem for the infinitesimal PRC (ϑ) and plot the solution in
Fig.10.24d. As one expects, the PRC is mostly positive, maximal just before the spike
and almost zero during the spike. It would resemble the PRC in Fig.10.23 (Q1(ϑ) in
Class 1) if not for the dip in the middle, for which we have no explanation (probably it
is due to overfitting). The advantage of this method is that it is more immune to noise,
because intrinsic fluctuations are spread over the entire p(t) and not concentrated at
the moments of pulses – unless, of course p(t), consists of random pulses, in which case
this method is equivalent to the standard one. The drawback is that we need to solve
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Figure 10.25: The relationship between membrane potential oscillation of two neurons,
V1 (solid) and V2 (dashed), their phases, phase deviations, and phase difference. Shown
are simulation of two INa + IK-models with parameters as in Fig.10.3 and coupled
symmetrically via gap junctions 0.1(Vj − Vi) (see section 2.3.4).

the equation above, which we do in exercise 13, using an optimization technique.

10.2.5 Phase Model for Coupled Oscillators

Now consider n weakly coupled oscillators of the form

ẋi = fi(xi) + ε

pi(t)︷ ︸︸ ︷
n∑

j=1

gij(xi, xj) , xi ∈ Rm , (10.11)

and assume that the oscillators, when uncoupled (ε = 0), have equal free-running
periods T1 = · · · = Tn = T . Applying any of the three methods above to such a weakly
perturbed system, we obtain the corresponding phase model

ϑ̇i = 1 + εQi(ϑi) ·

pi(t)︷ ︸︸ ︷
n∑

j=1

gij(xi(ϑi), xj(ϑj)) , (10.12)

where each xi(ϑi) is the point on the limit cycle having phase ϑi. Note that (10.11) is
defined in Rnm, whereas the phase model (10.12) is defined on the n-torus, denoted as
Tn.
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To study collective properties of the network, such as synchronization, it is conve-
nient to represent each ϑi(t) as

ϑi(t) = t + ϕi , (10.13)

with the first term capturing the fast free-running natural oscillation ϑ̇i = 1, and the
second term capturing the slow network-induced build-up of phase deviation from the
natural oscillation. The relationship between xi(t), ϑi(t) and ϕi(t) is illustrated in
Fig.10.25.

Substituting (10.13) into (10.12) results in

ϕ̇i = εQi(t + ϕi) ·
n∑

j=1

gij(xi(t + ϕi), xj(t + ϕj)) . (10.14)

Note that the right-hand side is of order ε, reflecting the slow dynamics of phase devia-
tions ϕi seen in Fig.10.25. Thus, it contains two time scales: fast oscillations (variable
t) and slow phase modulation (variables ϕ). The classical method of averaging, re-
viewed by Hoppensteadt and Izhikevich (1997, Chap. 9), consists in a near-identity
change of variables that transforms the system into the form

ϕ̇i = εωi + ε

n∑

j 6=i

Hij(ϕj − ϕi) , (10.15)

where

Hij(ϕj − ϕi) =
1

T

∫ T

0

Qi(t) · gij(xi(t), xj(t + ϕj − ϕi)) dt , (10.16)

and each ωi = Hii(ϕi − ϕi) = Hii(0) describes a constant frequency deviation from
the free-running oscillation. Figure 10.26 depicts the functions Hij corresponding to
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Parameters are as in
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gap-junction (i.e., electrical; see section 2.3.4) coupling of oscillators in Fig.10.3. Prove
that H(χ) = Q(χ) · A/T in the case of pulse-coupling (10.1), so that H(χ) is just
re-scaled PRC.

A special case of (10.15) occurs when H is replaced by its first Fourier term, sin.
The resulting system, written in the slow time τ = εt,

ϕ′i = ωi +
n∑

j=1

cij sin(ϕj − ϕi + ψij),

is called the Kuramoto phase model (Kuramoto 1975). Here, the frequency deviations
ωi are interpreted as intrinsic frequencies of oscillators. The strengths of connections
cij are often assumed to be equal to K/n for some constant K, so that the model can
be studied in the limit n → ∞. The phase deviations ψij are often neglected for the
sake of simplicity.

To summarize, we transformed the weakly coupled system (10.11) into the phase
model (10.15) with H given by (10.16) and each Q being the solution to the adjoint
problem (10.10). This constitutes the Malkin theorem for weakly coupled oscillators
(Hoppensteadt and Izhikevich 1997, theorem 9.2).

10.3 Synchronization

Consider two coupled phase variables (10.12) in a general form

ϑ̇1 = h1(ϑ1, ϑ2) ,

ϑ̇2 = h2(ϑ1, ϑ2) ,

with some positive functions h1 and h2. Since each phase variable is defined on the
circle S1, the state space of this system is the 2-torus T2 = S1×S1 depicted in Fig.10.27,
with ϑ1 and ϑ2 being the longitude and the latitude, respectively. The torus can be
represented as a square with vertical and horizontal sides identified, so that a solution
disappearing at the right side of the square appears at the left side.

The coupled oscillators above are said to be frequency-locked when there is a periodic
trajectory on the 2-torus, which is called a torus knot. It is said to be of type (p, q)
if ϑ1 makes p rotations while ϑ2 makes q rotations, and p and q are relatively prime
integers, that is, they do not have a common divisor greater than 1. Torus knots of
type (p, q) produce p:q frequency-locking, e.g., the 2:3 frequency-locking in Fig.10.27.
A 1:1 frequency-locking is called entrainment. There can be many periodic orbits
on the torus, with stable orbits between unstable ones. Since the orbits on the 2-
torus cannot intersect, they are all knots of the same type, resulting in the same p:q
frequency-locking.

Let us follow a trajectory on the torus and count the number of rotations of the
phase variables. The limit of the ratio of rotations as t → ∞ is independent of the
trajectory we follow, and it is called the rotation number of the torus flow. It is rational
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produce phase-locking.
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Figure 10.28: Various degrees of locking of oscillators.

if and only if there is a (p, q) periodic orbit, in which case the rotation number is p/q.
An irrational rotation number implies there are no periodic orbits, and it corresponds to
a quasi-periodic or multifrequency torus flow. Oscillators exhibit phase drifting in this
case. Denjoy (1932) proved that such coupled oscillators are topologically equivalent
to the uncoupled system ϑ̇1 = r, ϑ̇2 = 1 with irrational r.

Suppose the oscillators are frequency-locked; that is, there is a p:q limit cycle at-
tractor on the torus. We say that the oscillators are p:q phase-locked if

qϑ1(t)− pϑ2(t) = const

on the cycle. The value of the constant determines whether the locking is in-phase
(const= 0), anti-phase (const= T/2; half-period), or out-of-phase. Frequency-locking
does not necessarily imply phase-locking: the (2, 3) torus knot in Fig.10.27b corre-
sponds to phase-locking, whereas that in Fig.10.27c does not. Frequency-locking with-
out phase-locking is called phase trapping. Finally, synchronization is a 1:1 phase-
locking. The phase difference ϑ2 − ϑ1 is also called phase lag or phase lead. The
relationships between all these definitions are shown in Fig.10.28.

Frequency-locking, phase-locking, entrainment, and synchronization of a network
of n > 2 oscillators are the same as pairwise locking, entrainment, and synchronization
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Figure 10.29: A major part of computational neuroscience concerns coupled oscillators.

of the oscillators comprising the network. In addition, a network can exhibit partial
synchronization when only a subset of oscillators is synchronized.

Synchronization of oscillators with nearly identical frequencies is described by the
phase model (10.15). Existence of one equilibrium of (10.15) implies the existence of
the entire circular family of equilibria, since translation of all ϕi by a constant phase
shift does not change the phase differences ϕj − ϕi, and hence the form of (10.15).
This family corresponds to a limit cycle of (10.11), on which all oscillators, xi(t + ϕi),
have equal frequencies and constant phase shifts (i.e., they are synchronized, possibly
out-of-phase).

10.3.1 Two Oscillators

Consider (10.11) with n = 2, describing two coupled oscillators, as in Fig.10.29. Let us
introduce the “slow” time τ = εt and rewrite the corresponding phase model (10.15)
in the form

ϕ′1 = ω1 + H1(ϕ2 − ϕ1) ,

ϕ′2 = ω2 + H2(ϕ1 − ϕ2) ,

where ′ = d/dτ is the derivative with respect to slow time. Let χ = ϕ2 − ϕ1 denote
the phase difference between the oscillators. Then the two-dimensional system above
becomes the one-dimensional

χ′ = ω + G(χ) , (10.17)
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Figure 10.30: Geometrical interpretation of equilibria of the phase model (10.17) for
gap-junction-coupled Class 2 INa + IK-oscillators (see Fig.10.26).

where
ω = ω2 − ω1 and G(χ) = H2(−χ)−H1(χ)

are the frequency mismatch and the anti-symmetric part of the coupling, respectively
(illustrated in Fig.10.26, dashed curves). A stable equilibrium of (10.17) corresponds
to a stable limit cycle of the phase model.

All equilibria of (10.17) are solutions to G(χ) = −ω, and they are intersections
of the horizontal line −ω with the graph of G, as illustrated in Fig.10.30a. They are
stable if the slope of the graph is negative at the intersection. If the oscillators are
identical, then G(χ) = H(−χ)−H(χ) is an odd function (i.e., G(−χ) = −G(χ)), and
χ = 0 and χ = T/2 are always equilibria (possibly unstable) corresponding to the
in-phase and anti-phase synchronized solutions. The stability condition of the in-phase
synchronized state is

G′(0) = −2H ′(0) < 0 (stability of in-phase synchronization)

The in-phase synchronization of electrically (gap-junction) coupled oscillators in Fig.10.26
is stable because the slope of G (dashed curves) is negative at χ = 0. Simulation of two
coupled INa +IK-oscillators in Fig.10.25 confirms that. Coupled oscillators in the Class
2 regime also have a stable anti-phase solution, since G′ < 0 at χ = T/2 in Fig.10.30a.

The max and min values of the function G determine the tolerance of the network
for the frequency mismatch ω, since there are no equilibria outside this range. Ge-
ometrically, as ω increases (the second oscillator speeds up), the horizontal line −ω
in Fig.10.30a slides downward, and the phase difference χ = ϕ2 − ϕ1 increases, com-
pensating for the frequency mismatch ω. When ω > − min G, the second oscillator
becomes too fast, and the synchronized state is lost via saddle-node on invariant circle
bifurcation (see Fig.10.30b). This bifurcation corresponds to the annihilation of stable
and unstable limit cycles of the weakly coupled network, and the resulting activity is
called drifting, cycle slipping, or phase walk-through. The variable χ slowly passes
the ghost of the saddle-node point, where G(χ) ≈ 0, then increases past T , appears
at 0, and approaches the ghost again, thereby slipping a cycle and walking through
all the phase values [0, T ]. The frequency of such slipping scales as

√
ω + minG; see

section 6.1.2.
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Figure 10.31: Functions G(χ) for weakly coupled oscillators of non-relaxation (smooth)
and relaxation types. The frequency mismatch ω creates a phase difference in the
smooth case, but not in the relaxation case.

In Fig.10.31 we contrast synchronization properties of weakly coupled oscillators of
relaxation and non-relaxation type. The function G(χ) of the former has a negative
discontinuity at χ = 0 (section 10.4.4). An immediate consequence is that the in-phase
synchronization is rapid and persistent in the presence of the frequency mismatch
ω. Indeed, if G is smooth, then χ slows down while it approaches the equilibrium
χ = 0. As a result, complete synchronization is an asymptotic process that requires
an infinite period of time to attain. In contrast, when G is discontinuous at 0, the
variable χ does not slow down, and it takes a finite period of time to lock. Changing
the frequency mismatch ω shifts the root of −ω = G(χ) in the continuous case, but
not in the discontinuous case. Hence, the in-phase synchronized state χ = 0 of coupled
relaxation oscillators exists and is stable in a wide range of ω.

10.3.2 Chains

Understanding the synchronization properties of two coupled oscillators helps one in
studying the dynamics of chains of n > 2 oscillators

ϕ′i = ωi + H+(ϕi+1 − ϕi) + H−(ϕi−1 − ϕi) , (10.18)

where the functions H+ and H− describe the coupling in the ascending and descending
directions of the chain, as in Fig.10.32. Any phase-locked solution of (10.18) has the
form ϕi(τ) = ω0τ + φi, where ω0 is the common frequency of oscillation and φi are
constants. These satisfy n conditions

ω0 = ω1 + H+(φ2 − φ1) ,

ω0 = ωi + H+(φi+1 − φi) + H−(φi−1 − φi) , i = 2, . . . , n− 1 ,

ω0 = ωn + H−(φn−1 − φn) .

A solution with φ1 < φ2 < · · · < φn or with φ1 > φ2 > · · · > φn (as in Fig.10.32)
is called a traveling wave. Indeed, the oscillators oscillate with a common frequency
ω0 but with different phases that increase or decrease monotonically along the chain.
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Figure 10.32: Traveling wave solutions in chains of oscillators (10.18) describe undula-
tory locomotion and central pattern generation.

Such a behavior is believed to correspond to central pattern generation (CPG) in
crayfish, undulatory locomotion in lampreys and dogfish, and peristalsis in vascular and
intestinal smooth muscles. Below we consider two fundamentally different mechanisms
of generation of traveling waves.

Frequency Differences

Suppose the connections in (10.18) look qualitatively similar to those in Fig.10.26, in
particular, H+(0) = H−(0) = 0. If the frequencies are all equal, then the in-phase
synchronized solution ϕ1 = · · · = ϕn exists and is stable. A traveling wave exists when
the frequencies are not all equal.

Let us seek the conditions for the existence of a traveling wave with a constant
phase shift, say χ = φi+1 − φi, along the chain. Subtracting each equation from the
second one, we find that

0 = ω2 − ω1 + H−(−χ) , 0 = ω2 − ωi , 0 = ω2 − ωn + H+(χ) ,

and ω0 = ω1+ωn−2ω2. In particular, if ω1 ≤ ω2 = · · · = ωn−1 ≤ ωn, which corresponds
to the first oscillator being tuned up and the last oscillator being tuned down, then
χ < 0 and the traveling wave moves upward, as in Fig.10.32, that is, from the fastest to
the slowest oscillator. Interestingly, such an ascending wave exists even when H− = 0,
that is, even when the coupling is only in the opposite, descending direction.

When there is a linear gradient of frequencies (ω1 > ω2 > · · · > ωn or vice versa),
as in the cases of the smooth muscle of intestines or leech CPG for swimming, one may
still observe a traveling wave, but with a non-constant phase difference along the chain.
When the gradient is large enough, the synchronized solution corresponding to a single
traveling wave disappears, and frequency plateaus may appear (Ermentrout and Kopell
1984). That is, solutions occur in which the first k < n oscillators are phase-locked
and the last n− k oscillators are phase-locked as well, but the two pools, forming two
clusters, oscillate with different frequencies. There may be many frequency plateaus.
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Coupling Functions

A traveling wave solution may exist even when all the frequencies are equal, if either
H+(0) 6= 0 or H−(0) 6= 0. As an example, consider the case of descending coupling
(H− = 0)

ϕ′i = ω + H+(ϕi+1 − ϕi) , i = 1, . . . , n− 1 .

From ϕ′n = ω we find that ω0 = ω, that is, the common frequency is the frequency
of the free oscillation of the last, uncoupled oscillator. The phase lag along the chain,
χ = ϕi+1−ϕi, satisfies n− 1 identical conditions 0 = H+(χ). Thus, the traveling wave
with a constant phase shift exists when H+ has a zero crossing with positive slope, in
contrast to Fig.10.26. The sign of χ, and not the direction of coupling, determines the
direction of wave propagation.

10.3.3 Networks

Now let us consider weakly connected networks (10.11) with arbitrary, possibly all-
to-all coupling. To study synchronized states of the network, we need to determine
whether the corresponding phase model (10.15) has equilibria and to examine their
stability properties. A vector φ = (φ1, . . . , φn) is an equilibrium of (10.15) when

0 = ωi +
n∑

j 6=1

Hij(φj − φi) for all i . (10.19)

It is stable when all eigenvalues of the linearization matrix (Jacobian) at φ have nega-
tive real parts, except one zero eigenvalue corresponding to the eigenvector along the
circular family of equilibria (φ plus a phase shift is a solution of (10.19), too, since the
phase differences φj − φi are not affected).

In general, determining the stability of equilibria is a difficult problem. Ermentrout
(1992) found a simple sufficient condition. Namely, if

• aij = H ′
ij(φj − φi) ≥ 0, and

• the directed graph defined by the matrix a = (aij) is connected (i.e., each oscil-
lator is influenced, possibly indirectly, by every other oscillator),

then the equilibrium φ is neutrally stable, and the corresponding limit cycle x(t + φ)
of (10.11) is asymptotically stable.

Another sufficient condition was found by Hoppensteadt and Izhikevich (1997). It
states that if system (10.15) satisfies

• ω1 = · · · = ωn = ω (identical frequencies) and

• Hij(−χ) = −Hji(χ) (pairwise odd coupling)
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for all i and j, then the network dynamics converge to a limit cycle. On the cycle, all
oscillators have equal frequencies 1 + εω and constant phase deviations.

The proof follows from the observation that (10.15) is a gradient system in the
rotating coordinates ϕ = ωτ + φ, with the energy function

E(φ) =
1

2

n∑
i=1

n∑
j=1

Rij(φj − φi) , where Rij(χ) =

∫ χ

0

Hij(s) ds .

One can check that dE(φ)/dτ = −∑
(φ′i)

2 ≤ 0 along the trajectories of (10.15), with
equality only at equilibria.

10.3.4 Mean-Field Approximations

Synchronization of the phase model (10.15) with randomly distributed frequency de-
viations ωi can be analyzed in the limit n →∞, often called the thermodynamic limit
by physicists. We illustrate the theory using the special case H(χ) = sin χ (Kuramoto
1975)

ϕ′i = ωi +
K

n

n∑
j=1

sin(ϕj − ϕi) , ϕi ∈ [0, 2π] , (10.20)

where K > 0 is the coupling strength and the factor 1/n ensures that the model
behaves well as n →∞. The complex-valued sum of all phases,

reiψ =
1

n

n∑
j=1

eiϕj (Kuramoto synchronization index), (10.21)

describes the degree of synchronization in the network. The parameter r is often
called the order parameter by physicists. Apparently, the in-phase synchronized state
ϕ1 = · · · = ϕn corresponds to r = 1, with ψ being the population phase. In contrast,
the incoherent state, with all ϕi having different values randomly distributed on the
unit circle, corresponds to r ≈ 0. (The case r ≈ 0 can also correspond to two or more
clusters of synchronized neurons, oscillating anti-phase or out-of-phase and canceling
each other.) Intermediate values of r correspond to a partially synchronized or coherent
state, depicted in Fig.10.33. Some phases are synchronized in a cluster, while others
roam around the circle.

Multiplying both sides of (10.21) by e−iϕi and considering only the imaginary parts,
we can rewrite (10.20) in the equivalent form

ϕ′i = ωi + Kr sin(ψ − ϕi) ,

which emphasizes the mean-filed character of interactions between the oscillators: they
are all pulled into the synchronized cluster (ϕi → ψ) with the effective strength pro-
portional to the cluster size r. This pull is offset by the random frequency deviations
ωi, which pull away from the cluster.
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dex (10.21) describes the degree of coherence in
the network (10.20).

Let us assume that the frequencies ωi are distributed randomly around 0 with a
symmetric probability density function g(ω) (e.g., Gaussian). Kuramoto (1975) has
shown that in the limit n →∞, the cluster size r obeys the self-consistency equation

r = rK

∫ +π/2

−π/2

g(rK sin ϕ) cos2 ϕdϕ (10.22)

derived in exercise 21. Note that r = 0, corresponding to the incoherent state, is always
a solution of this equation. When the coupling strength K is greater than a certain
critical value,

Kc =
2

πg(0)
,

an additional, nontrivial solution r > 0 appears, which corresponds to a partially
synchronized state. It scales as r =

√
16(K −Kc)/(−g′′(0)πK4

c ), as the reader can
prove by expanding g in a Taylor series. Thus, the stronger the coupling K relative
to the random distribution of frequencies, the more oscillators synchronize into a co-
herent cluster. The issue of stability of incoherent and partially synchronized states is
discussed by Strogatz (2000).

10.4 Examples

Below we consider simple examples of oscillators to illustrate the theory developed in
this chapter. Our goal is to understand which details of oscillators are important in
shaping the PRC, the form of the function H in the phase deviation model, and, hence,
the existence and stability of synchronized states.

10.4.1 Phase Oscillators

Let us consider the simplest possible kind of a nonlinear oscillator, known as the phase
oscillator:

ẋ = f(x) + εp(t) , x ∈ S1 , (10.23)

where f(x) > 0 is a periodic function, for example, f(x) = a + sin x with a > 1.
Note that this kind of oscillator is quite different from the two- or high-dimensional
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conductance-based models with limit cycle attractors that we considered in the earlier
chapters. Here, the state variable x is one-dimensional, defined on a circle S1. It may be
interpreted as a measure of distance along a limit cycle attractor of a multi-dimensional
system.

Consider the unperturbed (ε = 0) phase oscillator ẋ = f(x), and let x(t) be its
solution with some period T > 0. Following Kuramoto’s idea, we substitute x(ϑ) into
(10.23) and use the chain rule,

f(x(ϑ)) + εp(t) = {x(ϑ)}′ = x′(ϑ) ϑ′ = f(x(ϑ))ϑ′ ,

to get the new phase equation

ϑ̇ = 1 + εp(t)/f(x(ϑ)) , (10.24)

which is equivalent to (10.23) for any, not necessarily small, ε.
We can also obtain (10.24) by using any of the three methods of reduction of

oscillators to phase models:

• Malkin’s method is the easiest one. We do not even have to solve the one-
dimensional adjoint equation (10.10) having the form Q̇ = −f ′(x(t)) Q, because
we can obtain the solution Q(t) = 1/f(x(t)) directly from the normalization
condition Q(t)f(x(t)) = 1.

• Kuramoto’s method relies on the function ϑ(x), which we can find implicitly.
Since the phase at a point x(t) on the limit cycle is t, x(ϑ) is the inverse of ϑ(x).
Using the rule for differentiating of inverse functions, ϑ′(x) = 1/x′(ϑ), we find
gradϑ = 1/f(x(ϑ)).

• Winfree’s method relies on PRC (ϑ), which we find using the following procedure:
A pulsed perturbation at phase ϑ moves the solution from x(ϑ) to x(ϑ) + A,
which is x(ϑ + PRC(ϑ,A)) ≈ x(ϑ) + x′(ϑ)PRC (ϑ,A) when A is small. Hence,
PRC (ϑ,A) ≈ A/x′(ϑ) = A/f(x(ϑ)), and the linear response is Z(ϑ) = 1/f(x(ϑ))
when A → 0.

Two coupled identical oscillators

ẋ1 = f(x1) + εg(x2)

ẋ2 = f(x2) + εg(x1)

can be reduced to the phase model (10.17) with G(χ) = H(−χ)−H(χ), where

H(χ) =
1

T

∫ T

0

Q(t) g(x(t + χ)) dt =
1

T

∫ T

0

g(x(t + χ))

f(x(t))
dt .

The condition for exponential stability of the in-phase synchronized state, χ = 0, can
be expressed in the following three equivalent forms

∫ T

0

g′(x(t)) dt > 0 or

∫

S1

g′(x)

f(x)
dx > 0 or

∫

S1

f ′(x)

f 2(x)
g(x) dx > 0 , (10.25)

as we prove in exercise 24.
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10.4.2 SNIC Oscillators

Let us go through all the steps of derivation of the phase equation using a neuron
model exhibiting low-frequency periodic spiking. Such a model is near the saddle-node
on invariant circle (SNIC) bifurcation studied in section 6.1.2. Appropriate rescaling
of the membrane potential and time converts the model into the normal form

x′ = 1 + x2 , x ∈ R .

Because of the quadratic term, x escapes to infinity in a finite time, producing a spike
depicted in Fig.10.34. If we identify −∞ and +∞, then x exhibits periodic spiking of
infinite amplitude. Such a spiking model is called a quadratic integrate-and-fire (QIF)
neuron (see also section 8.1.3 for some generalizations of the model).

Strong Pulse

The solution of this system, starting at the spike, that is, at x(0) = ±∞, is

x(t) = − cot t ,

as the reader can check by differentiating. It is a periodic function with T = π;
hence, we can introduce the phase of oscillation via the relation x = − cot ϑ. The
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corresponding PRC can be found explicitly (see exercise 9) and it has the form

PRC (ϑ,A) = π/2 + atan (A− cot ϑ)− ϑ ,

depicted in Fig.10.35, where A is the magnitude of the pulse. Note that the PRC tilts
to the left as A increases. Indeed, the density of isochrons, denoted by black points on
the x-axis in the figure, is maximal at the ghost of the saddle-node point x = 0, where
the parabola 1+x2 has the knee. This corresponds to the inflection point of the graph
of x(t) in Fig.10.34, where the dynamics of x(t) is the slowest. The effect of a pulse
is maximal just before the ghost because x can jump over the ghost and skip the slow
region. The stronger the pulse, the earlier it should arrive; hence the tilt.

Weak Coupling

The PRC behaves as A sin2 ϑ, with ϑ ∈ [0, π], when A is small, as the reader can
see in Fig.10.35 or prove by differentiating the function PRC (ϑ,A) with respect to A.
Therefore, Z(ϑ) = sin2 ϑ, and we can use Winfree’s approach to transform the weakly
perturbed quadratic integrate-and-fire (QIF) oscillator

x′ = 1 + x2 + εp(t)

into its phase model

x′ = 1 + ε(sin2 ϑ)p(t) , ϑ ∈ [0, π] .

The results of the previous section, Q(ϑ) = 1/f(x(ϑ)) = 1/(1+cot2 ϑ) = sin2 ϑ, confirm
the phase model. In fact, any neuronal model CV̇ = I − I∞(V ) near saddle-node on
invariant circle bifurcation point (Isn, Vsn) has infinitesimal PRC:

PRC (ϑ) =
C

I − Isn

sin2 ϑ , ϑ ∈ [0, π] ,

as the reader can prove as an exercise. The function sin2 ϑ has the same form as
(1 − cos θ) if we change variables θ = 2ϑ (notice the font difference). The change of
variables scales the period from π to 2π.

In Fig.10.36a we compare the function with numerically obtained PRCs for the
INa + IK-model in the Class 1 regime. Since the ghost of the saddle-node point,
revealing itself as an inflection of the voltage trace in Fig.10.36b, moves to the right as
I increases away from the bifurcation value I = 4.51, so does the peak of the PRC.

Figure 10.36a emphasizes the common features of all systems undergoing saddle-
node on invariant circle bifurcation: they are insensitive to the inputs arriving during
the spike, since PRC≈ 0 when ϑ ≈ 0, T . The oscillators are most sensitive to the input
when they are just entering the ghost of the resting state, where PRC is maximal.
The location of the maximum tilts to the left as the strength of the input increases,
and may tilt to the right as the distance to the bifurcation increases. Finally, PRCs
are non-negative, so positive (negative) inputs can only advance (delay) the phase of
oscillation.
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Figure 10.36: (a) Numerically found PRCs of the INa + IK-oscillator in Class 1 regime
(parameters as in Fig.4.1a) and various I using the MATLAB program in exercise 12.
(b) Corresponding voltage traces show that the inflection point (slowest increase) of V
moves right as I increases.

Gap Junctions

Now consider two oscillators coupled via gap junctions (discussed in section 2.3.4):

x′1 = 1 + x2
1 + ε(x2 − x1) ,

x′2 = 1 + x2
2 + ε(x1 − x2) .

Let us determine the stability of the in-phase synchronized state x1 = x2. The corre-
sponding phase model (10.12) has the form

ϑ′1 = 1 + ε(sin2 ϑ1)(cot ϑ1 − cot ϑ2) ,

ϑ′2 = 1 + ε(sin2 ϑ2)(cot ϑ2 − cot ϑ1) .

The function (10.16) can be found analytically:

H(χ) =
1

π

∫ π

0

sin2 t (cot t− cot(t + χ)) dt =
1

2
sin 2χ ,

so that the model in the phase deviation coordinates, ϑ(t) = t + ϕ, has the form

ϕ′1 = (ε/2) sin{2(ϕ2 − ϕ1)} ,

ϕ′2 = (ε/2) sin{2(ϕ1 − ϕ2)} .

The phase difference, χ = ϕ2 − ϕ1, satisfies the equation (compare with Fig.10.26)

χ′ = −ε sin 2χ ,

and, apparently, the in-phase synchronized state, χ = 0, is always stable while the
anti-phase state χ = π/2 is not.
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Weak Pulses

Now consider two weakly pulse-coupled oscillators

x′1 = 1 + x2
1 + ε1δ(t− t2) ,

x′2 = 1 + x2
2 + ε2δ(t− t1) ,

where t1 and t2 are the moments of firing (x(t) = ∞) of the first and the second
oscillator, respectively, and ε1 and ε2 are the strengths of synaptic connections. The
corresponding phase model (10.12) has the form

ϑ′1 = 1 + ε1(sin
2 ϑ1)δ(t− t2)

ϑ′2 = 1 + ε2(sin
2 ϑ2)δ(t− t1) .

Since

H(χ) =
1

π

∫ π

0

sin2 t δ(t + χ) dt =
1

π
sin2 χ ,

the corresponding phase deviation model (10.15) is

ϕ′1 =
ε1

π
sin2(ϕ2 − ϕ1) ,

ϕ′2 =
ε2

π
sin2(ϕ1 − ϕ2) .

The phase difference χ = ϕ2 − ϕ1 satisfies the equation

χ′ =
ε2 − ε1

π
sin2 χ,

which becomes χ′ = 0 when the coupling is symmetric. In this case, the oscillators pre-
serve (on average) the initial phase difference. When ε1 6= ε2, the in-phase synchronized
state χ = 0 is only neutrally stable. Interestingly, it becomes exponentially unstable
in a network of three or more pulse-coupled Class 1 oscillators (see exercise 23).

Weak Pulses with Delays

The synchronization properties of weakly pulse-coupled oscillators can change signifi-
cantly when explicit axonal conduction delays are introduced. As an example, consider
the system

x′1 = 1 + x2
1 + εδ(t− t2 − d) ,

x′2 = 1 + x2
2 + εδ(t− t1 − d) ,

where d ≥ 0 is the delay. exercise 18 shows that delays introduce simple phase shifts,
so that the phase model has the form

ϕ′1 =
ε

π
sin2(ϕ2 − ϕ1 − d) ,

ϕ′2 =
ε

π
sin2(ϕ1 − ϕ2 − d) ,
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Figure 10.37: Synaptic transmission function p(t) typically has an asymmetric shape
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The phase difference χ = ϕ2 − ϕ1 satisfies

χ′ =
ε

π

(
sin2(χ + d)− sin2(χ− d)

)
=

ε sin 2d

π
sin 2χ .

The stability of synchronized states is determined by the sign of the function sin 2d.
The in-phase state χ = 0 is unstable when sin 2d > 0, that is, when the delay is shorter
than the half-period π/2, stable when the delay is longer than the half-period but
shorter than one period π, unstable for even longer delays, and so on. The stability of
the anti-phase state χ = π/2 is reversed, that is, it is stable for short delays, unstable
for longer delays, then stable again for even longer delays, and so on. Finally, when the
pulses are inhibitory (ε < 0), the (in)stability character is flipped so that the in-phase
state becomes stable for short delays.

Weak Synapses

Now suppose that each pulse is not a delta function, but is smeared in time (i.e., it
has a time course p(t − ti) with p(0) = p(π) = 0). That is, the synaptic transmission
starts right after the spike of the presynaptic neuron and ends before the onset of
the next spike. The function p has a typical unimodal shape with fast rise and slow
decay, depicted in Fig.10.37. The discussion below is equally applicable to the case of
p(t, x) = g(t)(E − x) with g > 0 being the synaptic conductance with the shape in
the figure and E being the synaptic reverse potential, positive (negative) for excitatory
(inhibitory) synapses.

Two weakly synaptically coupled SNIC (Class 1) oscillators

x′1 = 1 + x2
1 + εp(t− t2) ,

x′2 = 1 + x2
2 + εp(t− t1)

can be converted into a general phase model with the connection function (10.16) in
the form

H(χ) =
1

π

∫ π

0

sin2 t p(t + χ) dt ,
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Figure 10.38: Top. Periodic spiking of the INa+IK-neuron near saddle-node homoclinic
orbit bifurcation (parameters as in Fig.4.1a with τ(V ) = 0.167 and I = 4.49). Bottom.
Spiking in the corresponding quadratic integrate-and-fire model.

and it can be computed explicitly for some simple p(t).
The in-phase synchronized solution, χ = 0, is stable when

H ′(0) =
1

π

∫ π

0

sin2 t p′(t) dt > 0 .

Since the function sin2 t depicted in Fig.10.37 is small at the ends of the interval and
large in the middle, the integral is dominated by the sign of p′ in the middle. Fast-rising
and slowly decaying excitatory (p > 0) synaptic transmission has p′ < 0 in the middle
(as in the figure), so the integral is negative and the in-phase solution is unstable. In
contrast, fast-rising slowly decaying inhibitory (p < 0) synaptic transmission has p′ > 0
in the middle, so the integral is positive and the in-phase solution is stable. Another
way to see this is to integrate the equation by parts, reduce it to − ∫

p(t) sin 2t dt,
and note that p(t) is concentrated in the first (left) half of the period, where sin 2t
is positive. Hence, positive (excitatory) p results in H ′(0) < 0, and vice versa. Both
approaches confirm the theoretical results independently obtained by van Vreeswijk
et al. (1994) and Hansel et al. (1995) that inhibition, not excitation, synchronizes
Class 1 (SNIC) oscillators. The relationship is inverted for the anti-phase solution
χ = π/2 (the reader should prove this), and no relationships are known for other types
of oscillators.

10.4.3 Homoclinic Oscillators

Besides the SNIC bifurcation considered above, low-frequency oscillations may also
indicate the proximity of the system to a saddle homoclinic orbit bifurcation, as in
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Figure 10.39: (a) Numerically found PRCs of the INa + IK-oscillator near saddle-node
homoclinic orbit bifurcation (as in Fig.10.38), using the MATLAB program in exer-
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during the spike. (b) A pulsed input during the downstroke of the spike can produce a
significant phase delay (pulse A) or advance (pulse B) not captured by the quadratic
integrate-and-fire model.

Fig.10.38 (top). The spiking trajectory in the figure quickly approaches a small shaded
neighborhood of the saddle along the stable direction, and then slowly diverges from
the saddle along the unstable direction, thereby resulting in a large-period oscillation.
As often the case in neuronal models, the saddle equilibrium is near a stable node
equilibrium corresponding to the resting state, and the system is near the codimension-
2 saddle-node homoclinic orbit bifurcation studied in section 6.3.6. As a result, there
is a drastic difference between the attraction and divergence rates to the saddle, so
that the dynamics in the shaded neighborhood of the saddle-node in the figure can be
reduced to the one-dimensional V -equation, which in turn can be transformed into the
“quadratic integrate-and-fire” form

x′ = −1 + x2 , if x = +∞, then x ← xreset ,

with solutions depicted in Fig.10.38 (bottom). The saddle and the node correspond
to x = +1 and x = −1, respectively. One can check by differentiating that the
solution of the model with x(0) = xreset > 1 is x(t) = − coth(t − T ), where coth(s) =
(es + e−s)/(es− e−s) is the hyperbolic cotangent and T = acoth (xreset) is the period of
oscillation, which becomes infinite as xreset → 1.

Using the results of section 10.4.1, we find the function

Q(ϑ) = 1/(−1 + coth2(ϑ− T )) = sinh2(ϑ− T )

whose graph is shown in Fig.10.39a. For comparison, we plotted the numerically found
PRC for the INa + IK-oscillator to illustrate the disagreement between the theoretical
and numerical curves in the region ϑ < 0.1T corresponding to the downstroke of
the spike. Such a disagreement is somewhat expected, since the quadratic integrate-
and-fire model ignores spike downstroke. If a pulse arriving during the downstroke
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displaces the trajectory to the exterior of the limit cycle (as in Fig.10.39b, pulse A),
then the trajectory becomes closer to the saddle equilibrium when it reenters a small
neighborhood of the saddle, thereby leading to a significant phase delay. Displacements
to the interior of the cycle (as in Fig.10.39b, pulse B) push away from the saddle
and lead to phase advances. The direction and the magnitude of displacements are
determined by the derivative of the slow variable n′ along the limit cycle.

The region of disagreement between theoretical and numerical PRCs becomes in-
finitesimal relative to T → ∞ near the bifurcation. Theoretical PRC can be used to
study anti-phase and out-of-phase synchronization of pulse-coupled oscillators, but not
of in-phase synchronization, because the region of breakdown is the only important
region in this case. Finally, note that as T →∞, the spiking limit cycle fails to be ex-
ponentially stable, and the theory of weakly coupled oscillators is no longer applicable
to it.

Though the PRC in Fig.10.39 is quite different from the one corresponding to
SNIC oscillators in Fig.10.36, there is an interesting similarity between these two cases:
both can be reduced to quadratic integrate-and-fire neurons, and both have cotangent-
shaped periodic spiking solutions and sine-squared-shape PRCs, except that they are
“regular” in the SNIC case and hyperbolic in the homoclinic case (see also exercise 26).

10.4.4 Relaxation Oscillators and FTM

Consider two relaxation oscillators having weak fast → fast connections

µẋi = f(xi, yi) + εpi(xi, xk) ,
ẏi = g(xi, yi) ,

(10.26)

where i = 1, 2 and k = 2, 1. This system can be converted to a phase model in the
relaxation limit ε ¿ µ → 0 (Izhikevich 2000b). The connection functions Hi(χ) have a
positive discontinuity at χ = 0, which occurs because the x-coordinate of the relaxation
limit cycle is discontinuous at the jump points. Hence, the phase difference function
G(χ) = H2(−χ)−H1(χ) has a negative discontinuity at χ = 0 (depicted in Fig.10.31).
This reflects the profound difference between behaviors of weakly coupled oscillators
of the relaxation and non-relaxation types, discussed in section 10.3.1: The in-phase
synchronized solution, χ = 0, in the relaxation limit µ → 0 is stable and persistent
in the presence of the frequency mismatch ω, and it has a rapid rate of convergence.
The reduction to a phase model breaks down when ε À µ → 0, that is, when the
connections are relatively strong. One can still analyze such oscillators in the special
case considered below.

Fast Threshold Modulation

Consider (10.26) and suppose that p1 = p2 = p is a piecewise constant function: p = 1
when the presynaptic oscillator, xk, is on the right branch of the cubic x-nullcline
corresponding to an active state, and p = 0 otherwise (see Fig.10.40a). Somers and
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Figure 10.40: Fast threshold modulation of relaxation oscillation. (a) The Heaviside
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the x-nullcline. (b) In the relaxation limit µ = 0, the synchronized limit cycle consists
of the left branch of the nullcline f(x, y) = 0 and the right branch of the nullcline
f(x, y) + ε = 0. When oscillator 1 is ahead of oscillator 2 (c), the phase difference
between them decreases after the jump (d).

Kopell (1993, 1995) referred to such a coupling in the relaxation limit µ → 0 as fast
threshold modulation (FTM), and found a simple criterion of stability of synchronized
state that works even for strong coupling.

Since the oscillators are identical, the in-phase synchronized state exists, during
which the variables x1 and x2 follow the left branch of the x-nullcline defined by
f(x, y) = 0 (see Fig.10.40b) until they reach the jumping point a. During the in-
stantaneous jump, they turn on the mutual coupling ε, and land at some point b′ on
the perturbed x-nullcline defined by f(x, y) + ε = 0. They follow the new nullcline to
the right (upper) knee, and then jump back to the left branch.

To determine the stability of the in-phase synchronization, we consider the case
when oscillator 1 is slightly ahead of oscillator 2, as in Fig.10.40c. We assume that the
phase difference between the oscillators is so small – or alternatively, the strength of
coupling is so large – that when oscillator 1 jumps and turns on its input to oscillator
2, the latter, being at point d in Fig.10.40d, is below the left knee of the perturbed
x-nullcline f(x, y) + ε = 0 and therefore jumps, too. As a result, both oscillators jump
to the perturbed x-nullcline and reverse their order. Although the apparent distance
between the oscillators, measured by the difference of their y-coordinates, is preserved
during such a jump, the phase difference between them usually is not.

The phase difference between two points on a limit cycle is the time needed to
travel from one point to the other. Let τ0(d) be the time needed to slide from point
d to point a along the x-nullcline in Fig.10.40d (i.e., the phase difference just before
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the jump). Let τ1(d) be the time needed to slide from point b′ to point d′ (i.e., the
phase difference after the jump). The phase difference between the oscillators during
the jump changes by the factor C(d) = τ1(d)/τ0(d), called the compression function.
The difference decreases when the compression function C(d) < 1 uniformly for all d
near the left knee a. This condition has a simple geometrical meaning: the rate of
change of y(t) is slower before the jump than after it, so that y(t) has a “scalloped”
shape, as in Fig.10.40c. As an exercise, prove that C(d) → |g(a)|/|g(b′)| as d → a.

If the compression function at the right (upper) knee is also less than 1, then the
in-phase synchronization is stable. Indeed, the phase difference does not change while
the oscillators slide along the nullclines, and it decreases geometrically with each jump.
In fact, it suffices to require that the product of compression factors at the two knees
be less than 1, so that any expansion at one knee is compensated for by even stronger
compression at the other knee.

10.4.5 Bursting Oscillators

Let us consider bursting neurons coupled weakly through their fast variables:

ẋi = f(xi, yi) + εp(xi, xj) , (10.27)

ẏi = µg(xi, yi) , (10.28)

i = 1, 2 and j = 2, 1. Since bursting involves two time scales, fast spiking and slow
transition between spiking and resting, there are two synchronization regimes: spike
synchronization and burst synchronization, illustrated in Fig.9.51 and discussed in
section 9.4. Below, we outline some useful ideas and methods of studying both regimes.
Our exposition is not complete, but it lays the foundation for a more detailed research
program.

Spike Synchronization

To study synchronization of individual spikes within the burst, we let µ = 0 in order to
freeze the slow subsystem (10.28), and consider the fast subsystem (10.27) describing
weakly coupled oscillators. When yi ≈ yj, the fast variables oscillate with approxi-
mately equal periods, so (10.27) can be reduced to the phase model

ϕ̇i = εH(ϕj − ϕi, yi) ,

where yi = const parameterize the form of the connection function. For example,
during the “circle/Hopf” burst, the function is transformed from H(χ) = sin2 χ or
1 − cos χ at the beginning of the burst (saddle-node on invariant circle bifurcation)
to H(χ) = sin χ at the end of the burst (supercritical Andronov-Hopf bifurcation).
Changing yi slowly, one can study when spike synchronization appears and when it
disappears during the burst. When the slow variables yi have different values, fast
variables typically oscillate with different frequencies, so one needs to look at low-order
resonances to study the possibility of spike synchronization.
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Figure 10.41: Reduction of the INa,p+IK+IK(M)-burster to a relaxation oscillator. The
slow variable exhibits “scalloped” oscillations needed for stability of in-phase burst
synchronization. C1 and C2 are compression functions at the two jumps.

Burst synchronization

In chapter 9 we presented two methods, averaging and equivalent voltage, that remove
fast oscillations and reduce bursters to slow relaxation oscillators. Burst synchroniza-
tion is then reduced to synchronization of such oscillators, and it can be studied using
phase reduction or fast threshold modulation (FTM) approaches.

To apply FTM, we assume that the coupling in (10.27) is piecewise constant, that
is, p(xi, xj) = 0 when the presynaptic burster xj is resting, and p(xi, xj) = 1 (or any
function of xi) when the presynaptic burster is spiking. We also assume that the slow
subsystem (10.28) is one-dimensional, so that we can use the equivalent voltage method
(section 9.2.4) and reduce the coupled system to

0 = Xequiv(yi, εp)− xi ,

y′i = g(xi, yi) .

When the burster is of the hysteresis loop type (i.e., the resting and spiking states
coexist), the function x = Xequiv(y, εp) often, but not always, has a Z-shape on the
slow/fast plane, as in Fig.9.16, so that the system corresponds to a relaxation oscilla-
tor with nullclines as in Fig.10.41. Fast threshold modulation occurs via the constant
εp, which shifts the fast nullcline up or down. The compression criterion for stability
of the in-phase burst synchronization, presented in the previous section, has a simple
geometrical illustration in the figure. The slow nullcline has to be sufficiently close
to the jumping points that y(t) slows before each jump and produces the “scalloped”
curve. Many hysteresis loop fast/slow bursters do generate such a shape. In partic-
ular, “fold/*” bursters exhibit robust in-phase burst synchronization when they are
near the bifurcation from quiescence to bursting, since the slow nullcline is so close to
the left knee that the compression during the resting → spiking jump (C1 in Fig.10.41)
dominates the expansion, if any, during the spiking → resting jump.
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Review of Important Concepts

• Oscillations are described by their phase variables ϑ rotating on a circle
S1. We define ϑ as the time since the last spike.

• The phase response curve, PRC (ϑ), describes the magnitude of the phase
shift of an oscillator caused by a strong pulsed input arriving at phase ϑ.

• PRC depends on the bifurcations of the spiking limit cycle, and it defines
synchronization properties of an oscillator.

• Two oscillators are synchronized in-phase, anti-phase, or out-of-phase
when their phase difference, ϑ2−ϑ1, equals 0, half-period, or some other
value, respectively; see Fig.10.42.

• Synchronized states of pulse-coupled oscillators are fixed points of the
corresponding Poincare phase map.

• Weakly coupled oscillators

ẋi = f(xi) + ε
∑

gij(xj)

can be reduced to phase models

ϑ̇i = 1 + εQ(ϑi)
∑

gij(xj(ϑj)) ,

where Q(ϑ) is the infinitesimal PRC defined by (10.10).

• Weak coupling induces a slow phase deviation of the natural oscillation,
ϑi(t) = t + ϕi, described by the averaged model

ϕ̇i = ε
(
ωi +

∑
Hij(ϕj − ϕi)

)
,

where ωi denote the frequency deviations, and

Hij(ϕj − ϕi) =
1

T

∫ T

0

Q(t) gij(xj(t + ϕj − ϕi)) dt

describes the interactions between the phases.

• Synchronization of two coupled oscillators corresponds to equilibria of
the one-dimensional system

χ̇ = ε(ω + G(χ)) , χ = ϕ2 − ϕ1 ,

where G(χ) = H21(−χ) − H12(χ) describes how the phase difference χ
compensates for the frequency mismatch ω = ω2 − ω1.
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Figure 10.42: Different types of synchronization.

Bibliographical Notes

Surprisingly, this chapter turned out to be quite different from chapter 9 (“Weakly
Connected Oscillators”) of the book Weakly Connected Neural Networks by Hoppen-
steadt and Izhikevich (1997) and from the book Synchronization: A Universal Concept
in Nonlinear Sciences by Pikovsky, Rosenblum, and Kurths (2001). All three texts,
though devoted to the same subject, do not repeat, but rather complement, each other.
The last provides an excellent historical overview of synchronization, starting with the
work of the famous Dutch mathematician, astronomer, and physicist Christiaan Huy-
gens (1629–1695), who was the first to describe synchronization of two pendulum clocks
hanging from a common support (which was, incidentally, anti-phase). While providing
many examples of synchronization of biological, chemical, and physical systems, the
book by Pikovsky et al. also discusses the definition of a phase and synchronization of
nonperiodic, e.g., chaotic, oscillators, a topic not covered here. A major part of Spiking
Neuron Models by Gerstner and Kistler (2002) is devoted to synchronization of spik-
ing neurons, with the emphasis on the integrate-and-fire model and the spike-response
method.

The formalism of the phase response curve (PRC) was introduced by Hastings
and Sweeney (1958), and it has been used extensively in the context of resetting the
circadian rhythms. “Forty Years of PRC – What Have We Learned?” by Johnson
(1999) gives a historical overview of this idea and some recent developments. John
Guckenheimer (1975) used the theory of normally hyperbolic invariant manifolds to
provide a mathematical foundation for the existence of isochrons, and their geometrical
properties. An encyclopedic exposition on isochrons and phase-resettings in nature, as
well as numerous anecdotes, can be found in Arthur Winfree’s remarkable book The
Geometry of Biological Time (1980, 2nd ed., 2001). In particular, Winfree describes
the work of George R. Mines (1914), who was doing phase-resetting experiments by
shocking rabbits at various phases of their heartbeat. He found the phase and shock
that could stop a rabbit’s heart (black hole in Fig.10.8), and then applied it to himself.
He died.

Glass and Mackey (1988) provide a detailed exposition of circle phase maps. Al-
though the structure of phase-locking regions in Fig.10.15 was discovered by Cartwright
and Littlewood (1945), it is better known today as Arnold tongues (Arnold 1965). Gue-
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Figure 10.43: Frank Hoppensteadt,
the author’s adviser and mentor, circa
1989.

vara and Glass (1982) found this structure analytically for the Andronov-Hopf oscillator
in Fig.10.3 (radial isochron clock). Hoppensteadt (1997, 2000) provides many examples
of oscillatory systems arising in biology and neuroscience (see also Hoppensteadt and
Peskin 2002).

Malkin’s method of reduction of coupled oscillators to phase equations has been
known, at least to Russian scientists, since the early 1950s (Malkin 1949, 1956; Blech-
man 1971). For example, Melnikov (1963) applied Malkin’s theorem to a homoclinic
orbit of infinite period to obtain the transversality condition for the saddle homoclinic
orbit bifurcation (Kuznetsov 1995).

Malkin’s method was rediscovered in the West by Neu (1979), and hoorayed by
Winfree (1980), who finally saw a mathematical justification for his usage of phase
variables. Since then, the field of phase equations has been largely dominated by Bard
Ermentrout and Nancy Kopell (Ermentrout 1981, 1986, 1992; Ermentrout and Kopell
1986a,b, 1990, 1991, 1994; Kopell and Ermentrout 1990; Kopell 1986; Kopell et al.
1991). In particular, they developed the theory of traveling wave solutions in chains
of oscillators, building on the seminal paper by Cohen et al. (1982). Incidentally, the
one-page proof of Malkin’s theorem provided by Hoppensteadt and Izhikevich (1997,
Sect. 9.6) is based on Ermentrout and Kopell’s idea of using the Fredholm alternative;
Malkin’s and Neu’s proofs are quite long, mostly because they reprove the alternative.

There are only a handful of examples in which the Malkin adjoint problem can be
solved analytically (i.e., without resort to simulations). The SNIC, homoclinic and
Andronov-Hopf cases are the most important, and have been considered in detail in
this chapter. Brown et al. (2004) also derive PRCs for oscillators with homoclinic
orbits to pure saddles (see exercise 25) and for Bautin oscillators.

Throughout this chapter we define the phase ϑ or ϕ on the interval [0, T ], where T
is the period of free oscillation, and do not normalize it to be on the interval [0, 2π].
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Figure 10.44: Nancy Kopell in her Boston University office in 1990 (photograph pro-
vided by Dr. Kopell).

As a result, we have avoided the annoying terms 2π/T and 2π/Ω in the formulas. The
only drawback is that some of the results may have an “unfamiliar look”, such as sin2 ϑ
with ϑ ∈ [0, π] for the PRC of Class 1 neurons, as opposed to 1− cos ϑ with ϑ ∈ [0, 2π]
used previously by many authors before.

Hansel, Mato, and Meunier (1995) were the first to note that the shape of the PRC
determines the synchronization properties of synaptically coupled oscillators. Ermen-
trout (1996) related this result to the classification of oscillators and proved that PRCs
of all Class 1 oscillators have the form of 1 − cos ϑ, though the proof can be found
in his earlier papers with Kopell (Ermentrout and Kopell 1986a, 1986b). Reyes and
Fetz (1993) measured the PRC of a cat neocortical neuron and largely confirmed the
theoretical predictions. The experimental method in section 10.2.4 is related to that
of Rosenblum and Pikovsky (2001). It needs to be developed further, for instance, by
incorporating the measurement uncertainty (error bars). In fact, most experimentally
obtained PRCs, including the one in Fig.10.24, are so noisy that nothing useful can be
derived from them. This issue is the subject of active research.

Our treatment of the FTM theory in this volume closely follows that of Somers and
Kopell (1993, 1995). Anti-phase synchronization of relaxation oscillators is analyzed
using phase models by Izhikevich (2000b), and FTM theory, by Kopell and Somers
(1995). Ermentrout (1994) and Izhikevich (1998) considered weakly coupled oscilla-
tors with axonal conduction delays and showed that delays result in mere phase shifts
(see exercise 18). Frankel and Kiemel (1993) observed that slow coupling can be re-
duced to weak coupling. Izhikevich and Hoppensteadt (2003) used Malkin’s theorem
to extend the results to slowly coupled networks, and to derive useful formulas for the
coupling functions and coefficients. Ermentrout (2003) showed that the result could
be generalized to synapses having fast-rising and slow-decaying conductances. Goel
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and Ermentrout (2002) and Katriel (2005) obtained interesting results on in-phase
synchronization of identical phase oscillators.

Interactions between resonant oscillators were considered by Ermentrout (1981),
Hoppensteadt and Izhikevich (1997), and Izhikevich (1999) in the context of quasi-
periodic (multi-frequency) oscillations. Baesens et al. (1991) undertook the heroic
task of studying resonances and toroidal chaos in a system of three coupled phase
oscillators. Mean-field approaches to the Kuramoto model are reviewed by Strogatz
(2000) and Acebron et al. (2005). Daido (1996) extended the theory to the general
coupling function H(χ). van Hemmen and Wreszinski (1993) were the first to find the
Lyapunov function for the Kuramoto model, which was generalized (independently) by
Hoppensteadt and Izhikevich (1997) to the arbitrary coupling function H(χ).

Ermentrout (1986), Aronson et al. (1990), and Hoppensteadt and Izhikevich (1996,
1997) studied weakly coupled Andronov-Hopf oscillators, and discussed the phenomena
of self-ignition (coupling-induced oscillations) and oscillator death (coupling-induced
cessation of oscillation). Collins and Stewart (1993, 1994) and Golubitsky and Stewart
(2002) applied group theory to the study of synchronization of coupled oscillators in
networks with symmetries.

In this chapter we have considered either strong pulsed coupling or weak continuous
coupling. These limitations are severe, but they allow us to derive model-independent
results. Studying synchronization in networks of strongly coupled neurons is an active
area of research, though, most such studies fall into two categories: (1) simulations
and (2) integrate-and-fire networks. In both cases, the results are model-dependent. If
the reader wants to pursue this line of research, he or she will definitely need to read
Mirollo and Strogatz (1990), van Vreeswijk et al. (1994), Chow and Kopell (2000),
Rubin and Terman (2000, 2002), Bressloff and Coombes (2000), van Vreeswijk (2000),
van Vreeswijk and Hansel (2001), Pfeuty et al. (2003), and Hansel and Mato (2003).

Exercises

1. Find the isochrons of the Andronov-Hopf oscillator

ż = (1 + i)z − z|z|2, z ∈ C,

in Fig.10.3.

2. Prove that the isochrons of the Andronov-Hopf oscillator in the form

ż = (1 + i)z + (−1 + di)z|z|2, z ∈ C,

are the curves

z(s) = s(−1+di) eχi , s > 0 ,

where χ is the phase of the isochron (see Fig.10.45).
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Figure 10.45: Isochrons of the Andronov-Hopf oscillator; see exercise 2.
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Figure 10.46: Pulsed stimulation of the
Andronov-Hopf oscillator in Fig.10.3;
see exercise 4.

3. [MATLAB] To determine isochrons of an oscillator ẋ = F (x), one can start with
many initial points near the limit cycle and integrate the system backwards, that
is, ẋ = −F (x). The images of the points at any time t lie on the same isochron.
Write a MATLAB program that implements this algorithm.

4. Prove that the phase response curve of the Andronov-Hopf oscillator in Fig.10.3
is

PRC (ϑ,A) =

{ −ψ when 0 ≤ ϑ ≤ π,
+ψ when π ≤ ϑ ≤ 2π,

(10.29)

where

ψ = arcos
1 + A cos ϑ√

1 + 2A cos ϑ + A2

and A is the magnitude of the horizontal displacement of z(t); see Fig.10.46.

5. [MATLAB] Write a program that stimulates an oscillator at different phases and
determines its phase response curve (PRC).

6. Show that Z(ϑ) = gradϑ, so that Winfree’s phase model (10.6) is equivalent to
Kuramoto’s phase model (10.8).

7. Show that Z(ϑ) = Q(ϑ), so that Winfree’s phase model (10.6) is equivalent to
Malkin’s phase model (10.9).
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8. Show that the PRC of the leaky integrate-and-fire neuron (section 8.1.1)

v̇ = b− v , if v ≥ 1 (threshold), then v ← 0 (reset)

with b > 1 has the form

PRC (ϑ) = min {ln(b/(b exp(−ϑ)− A)), T} − ϑ ,

where T = ln(b/(b− 1)) is the period of free oscillations and A is the amplitude
of the pulse.

9. Prove that the quadratic integrate-and-fire neuron

v̇ = 1 + v2 , if v = +∞ (peak of spike), then v ← −∞ (reset)

has PTC (ϑ) = π/2 + atan (A− cot ϑ).

10. Find the PRC of the quadratic integrate-and-fire neuron (section 8.1.3)

v̇ = b + v2 , if v ≥ 1 (peak of spike), then v ← vreset (reset)

with b > 0.

11. Consider two mutually pulsed coupled oscillators with periods T1 ≈ T2 and type
1 phase transition curves PTC1 and PTC2, respectively. Show that the locking
behavior of the system can be described by the Poincare phase map

χn+1 = T1 − PTC1(T2 − PTC2(χn)) ,

where χn is the phase difference between the oscillators, that is, the phase of
oscillator 2 when oscillator 1 fires a spike.

12. [MATLAB] Write a program that solves the adjoint equation (10.10) numerically.
(Hint: Integrate the equation backward to achieve stability.)

13. [MATLAB] Write a program that finds the infinitesimal PRC using the relation-
ship

ϑ̇ = 1 + PRC (ϑ) εp(t) ,

the moments of firings of a neuron (zero crossings of ϑ(t)), and the injected
current εp(t); see section 10.2.4 and Fig.10.24.

14. Use the approaches of Winfree, Kuramoto, and Malkin to transform the integrate-
and-fire neuron v̇ = b− v + εp(t) in exercise 8 into its phase model

ϑ̇ = 1 + ε
(
eϑ/b

)
p(t) ,

with T = ln(b/(b− 1)).
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15. Use the approaches of Winfree, Kuramoto, and Malkin to transform the quadratic
integrate-and-fire neuron v̇ = 1 + v2 + εp(t) in exercise 9 into its phase model

ϑ̇ = 1 + ε (sin2 ϑ) p(t) ,

with T = π.

16. Use the approaches of Winfree, Kuramoto, and Malkin to transform the Andronov-
Hopf oscillator ż = (1 + i)z − z|z|2 + εp(t) with real p(t) into its phase model

ϑ̇ = 1 + ε (− sin ϑ)p(t) ,

with T = 2π.

17. (PRC for Andronov-Hopf) Consider a weakly perturbed system near supercritical
Andronov-Hopf bifurcation (see section 6.1.3)

ż = (b + i)z + (−1 + di)z|z|2 + εp(t) , z ∈ C .

with b > 0. Let ε = b
√

b/ε be small. Prove that the corresponding phase model
is

θ̇ = 1 + d + ε Im {(1 + di)p(t)e−iθ} .

When the forcing p(t) is one-dimensional (i.e., p(t) = cq(t) with c ∈ C and scalar
function q(t)), the phase model has the sinusoidal form

θ̇ = 1 + d + εs sin(θ − ψ)q(t) ,

with the strength s and the phase shift ψ depending only on d and c.

18. (Delayed coupling) Show that weakly coupled oscillators

ẋi = f(xi) + ε

n∑
j=1

gij(xi(t), xj(t− dij))

with explicit axonal conduction delays dij ≥ 0 have the phase model

ϕ′i = ωi +
n∑

j 6=i

Hij(ϕj − dij − ϕi)

where ′ = d/dτ , τ = εt is the slow time, and H(χ) is defined by (10.16). Thus,
explicit delays result in explicit phase shifts.

19. Determine the existence and stability of synchronized states in the system

ϕ̇1 = ω1 + c1 sin(ϕ2 − ϕ1)

ϕ̇2 = ω2 + c2 sin(ϕ1 − ϕ2)

as a function of the parameters ω = ω2 − ω1 and c = c2 − c1.



488 Synchronization

20. Consider the Kuramoto model

ϕi = ω +
n∑

j=1

cij sin(ϕj + ψij − ϕi) ,

where cij and ψij are parameters. What can you say about its synchronization
properties?

21. Derive the self-consistency equation (10.22) for the Kuramoto model (10.20).

22. Consider the phase deviation model

ϕ′1 = ω + c1H(ϕ2 − ϕ1)

ϕ′2 = ω + c2H(ϕ1 − ϕ2)

with an even function H(−χ) = H(χ). Prove that the in-phase synchronized
state, ϕ1 = ϕ2, if it exists, cannot be exponentially stable. What can you say
about the anti-phase state ϕ1 = ϕ2 + T/2?

23. Prove that the in-phase synchronized state in a network of three or more pulse
coupled quadratic integrate-and-fire neurons is unstable.

24. Prove (10.25).

25. (Brown et al. 2004) Show that the PRC for an oscillator near saddle homoclinic
orbit bifurcation scales as PRC (ϑ) ∼ eλ(T−ϑ), where λ is the positive eigenvalue
of the saddle and T is the period of oscillation.

26. Consider the quadratic integrate-and-fire neuron ẋ = ±1 + x2 with the resetting
“ if x = +∞, then x ← xreset”. Prove that

regime SNIC homoclinic
model x′ = +1 + x2 x′ = −1 + x2, (xreset > 1)

xreset x xreset
x -1 1

period T π/2− atanxreset acothxreset

solution x(t) − cot(t− T ) − coth(t− T )
PRC Q(ϑ) sin2(ϑ− T ) sinh2(ϑ− T )

0
0

1

T

xreset=-1.1

0
0

5

T

xreset=+1.1



Solutions to Exercises, chapter 10 489

g

a1
b1

a2b2

f(x, y)=0g(x, y)=0

a1
a1

m << |g(a1)| |g(a1)| << m

Figure 10.47: Left: Relaxation oscillator in the limit µ = 0 near the onset of oscillation.
Middle and right: A magnification of a neighborhood of the jump point a1 for various
g(a1) and µ. Canard solutions can appear when g(a1) ¿ µ.

where coth, acoth, and sinh are hyperbolic cotangent, hyperbolic inverse cotan-
gent and hyperbolic sine, respectively.

27. [M.S.] Derive the PRC for an oscillator near saddle homoclinic orbit bifurcation
that is valid during the spike downstroke. Take advantage of the observation in
Fig.10.39 that the homoclinic orbit consists of two qualitatively different parts.

28. [M.S.] Derive the PRC for a generic oscillator near fold limit cycle bifurcation
(beware of the problems of defining the phase near such a bifurcation).

29. [M.S.] Simplify the connection function H for coupled relaxation oscillators
(Izhikevich 2000b) when the slow nullcline approaches the left knee, as in Fig.10.47.
Explore the range of parameters ε, µ, and |g(a1)| where the analysis is valid.

30. [Ph.D.] Use ideas outlined in section 10.4.5 to develop the theory of reduction of
weakly coupled bursters to phase models. Do not assume that bursting trajectory
is periodic.

Solutions to Chapter 10

1. In polar coordinates, z = reiϑ, the system has the form

ϑ̇ = 1 , ṙ = r − r3.

Since the phase of oscillation does not depend on the amplitude, the isochrons have the radial
structure depicted in Fig.10.3.

2. In polar coordinates, the oscillator has the form

ϑ̇ = 1 + dr2 , ṙ = r − r3.

The second equation has an explicit solution r(t), such that

r(t)2 =
1

1− (1− 1/r(0)2)e−2t
.
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The phase difference between ϑ̇lc = 1+ d(1)2 and ϑ̇ = 1+ dr(t)2 grows as χ̇ = d(r(t)2− 1), and
its asymptotic value is

χ(∞) =
∫ ∞

0

d(r(t)2 − 1) = d log r(0) .

Thus, on the χ-isochron, we have ϑ + d log r = χ.

3. An example is the file isochrons.m

function isochrons(F,phases,x0)
% plot isochrons of a planar dynamical system x’=F(t,x)
% at points given by the vector ’phases’.
% ’x0’ is a point on the limit cycle (2x1-vector)
T= phases(end); % is the period of the cycle
tau = T/600; % time step of integration
m=200; % spatial grid
k=5; % the number of skipped cycles

[t,lc] = ode23s(F,0:tau:T,x0); % forward integration
dx=(max(lc)-min(lc))’/m; % spatial resolution
center = (max(lc)+min(lc))’/2; % center of the limit cycle
iso=[x0-m^0.5*dx, x0+m^0.5*dx]; % isochron’s initial segment

for t=0:-tau:-(k+1)*T % backward integration
for i=1:size(iso,2)

iso(:,i)=iso(:,i)-tau*feval(F,t,iso(:,i)); % move one step
end;
i=1;
while i<=size(iso,2) % remove infinite solutions

if any(abs(iso(:,i)-center)>1.5*m*dx) % check boundaries
iso = [iso(:,1:i-1), iso(:,i+1:end)]; % remove

else
i=i+1;

end;
end;
i=1;
while i<=size(iso,2)-1

d=sqrt(sum(((iso(:,i)-iso(:,i+1))./dx).^2)); % normalized distance
if d > 2 % add a point in the middle

iso = [iso(:,1:i), (iso(:,i)+iso(:,i+1))/2 ,iso(:,i+1:end)];
end;
if d < 0.5 % remove the point

iso = [iso(:,1:i), iso(:,i+2:end)];
else

i=i+1;
end;

end;
if (mod(-t,T)<=tau/2) & (-t<k*T+tau) % refresh the screen

cla;plot(lc(:,1),lc(:,2),’r’); hold on; % plot the limit cycle
end;
if min(abs(mod(-t,T)-phases))<tau/2 % plot the isochrons

plot(iso(1,:),iso(2,:),’k-’); drawnow;
end;

end;
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hold off;

The call of the function is isochrons(’F’,0:0.1:2*pi,[1;0]); with

function dx = F(t,x);
z=x(1)+1i*x(2);
dz=(1+1i)*z-z*z*conj(z);
dx=[real(dz); imag(dz)];

4. (Hoppensteadt and Keener 1982) From calculus, B · C = |B| |C| cos(ψ). Since |B| = 1 and
C = (A + cos ϑ, sin ϑ) – see Fig.10.46 – we have B · C = A cosϑ + cos2 ϑ + sin2 ϑ. Hence,
cos ψ = (1+A cos ϑ)/

√
1 + 2A cos ϑ + A2. When ϑ is in the upper (lower) half-plane, the phase

is delayed (advanced).

5. An example is the file prc.m

function PRC=prc(F,phases,x0,A)
% plot phase-resetting curve (PRC) of system x’=F(t,x) + A delta(t)
% at points given by the vector ’phases’.
% ’x0’ is a point on the limit cycle with zero phase
% A is the strength of stimulation (row-vector)
% use peaks of spikes to find the phase differences
T= phases(end); % is the period of the cycle
tau = T/6000; % time step of integration
k=3; % the number of cycles needed to determine the new phase
PRC=[];
[tc,lc] = ode23s(F,0:tau:k*T,x0); % find limit cycle
peak=1+find(lc(2:end-1,1)>lc(1:end-2,1)&lc(2:end-1,1)>=lc(3:end,1));
peak0 = tc(peak(end)); % the last peak is used for reference
for i=1:length(phases)

[m,j]=min(abs(phases(i)-tc));
[t,x] = ode23s(F,phases(i):tau:k*T,lc(j,:)+A); % stimulate
peaks=1+find(x(2:end-1,1)>x(1:end-2,1)&x(2:end-1,1)>=x(3:end,1));
PRC=[PRC, mod(T/2+peak0-t(peaks(end)),T)-T/2];
subplot(2,1,2);drawnow;
plot(phases(1:length(PRC)),PRC);
xlabel(’phase of stimulation’);ylabel(’induced phase difference’);
subplot(2,1,1);
plot(tc,lc(:,1),’r’,t,x(:,1),t(peaks(end)),x(peaks(end),1),’ro’);
xlabel(’time’);ylabel(’membrane potential’);

end;

An example of a call of the function is PRC=prc(’F’,0:0.1:2*pi,[-1 0],[0.1 0]); with

function dx = F(t,x);
z=x(1)+1i*x(2);
dz=(1+1i)*z-z*z*conj(z);
dx=[real(dz); imag(dz)];

6.

gradϑ(x) =
(

ϑ(x + h1)− ϑ(x)
h1

, . . . ,
ϑ(x + hm)− ϑ(x)

hm

)

=
(

PRC1(ϑ(x), h1)
h1

, . . . ,
PRCm(ϑ(x), hm)

hm

)
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(in the limit h → 0)

=
(

Z1(ϑ(x))h1

h1
, . . . ,

Zm(ϑ(x))hm

hm

)

= (Z1(ϑ(x)), . . . , Zm(ϑ(x))) = Z(ϑ(x)) .

7. (Brown et al. 2004, appendix A) Let x be a point on the limit cycle and z be an arbitrary
nearby point. Let x(t) and z(t) be the trajectories starting from the two points, and y(t) =
z(t) − x(t) be the difference. All equations below are valid up to O(y2). The phase shift
∆ϑ = ϑ(z(t)) − ϑ(x(t)) = grad ϑ(x(t)) · y(t) does not depend on time. Differentiating with
respect to time and taking grad ϑ(x(t)) = Z(ϑ(t)) (see previous exercise), results in

0 = (d/dt) (Z(ϑ(t)) · y(t)) = Z ′(ϑ(t)) · y(t) + Z(ϑ(t)) ·Df(x(t))y(t)

= Z ′(ϑ(t)) · y(t) + Df(x(t))>Z(ϑ(t)) · y(t)

=
(
Z ′(ϑ(t)) + Df(x(t))>Z(ϑ(t))

)
· y(t) .

Since y is arbitrary, Z satisfies Z ′(ϑ) + Df(x(ϑ))>Z(ϑ) = 0, that is, the adjoint equation
(10.10). The normalization follows from (10.7).

8. The solution to v̇ = b− v with v(0) = 0 is v(t) = b(1− e−t) with the period T = ln(b/(b− 1))
determined from the threshold crossing v(T ) = 1. From v = b(1−e−ϑ) we find ϑ = ln(b/(b−v)),
hence

PRC (ϑ) = ϑnew − ϑ = min {ln(b/(b exp(−ϑ)−A), T} − ϑ .

9. The system v̇ = 1 + v2 with v(0) = −∞ has the solution (the reader should check this by
differentiating) v(t) = tan(t− π/2) with the period T = π. Since t = π/2 + atan v, we find

PTC (ϑ) = π/2 + atan [A + tan(ϑ− π/2)]

and
PRC (ϑ) = PTC (ϑ)− ϑ = atan [A + tan(ϑ− π/2)]− (ϑ− π/2) .

10. The system v̇ = b + v2 with b > 0 and the initial condition v(0) = vreset has the solution (the
reader should check this by differentiating)

v(t) =
√

b tan(
√

b(t + t0))

where
t0 =

1√
b

atan
vreset√

b
.

Equivalently,

t =
1√
b

atan
v√
b
− t0 .

From the condition v = 1 (peak of the spike), we find

T =
1√
b

atan
1√
b
− t0 =

1√
b

(
atan

1√
b
− atan

vreset√
b

)
,

Hence

PRC (ϑ) = ϑnew − ϑ = min { 1√
b

atan [
A√
b

+ tan(
√

b(ϑ + t0))]− t0, T} − ϑ .
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11. Let ϑ denote the phase of oscillator 1. Let χn denote the phase of oscillator 2 just before
oscillator 1 fires a spike (i.e., when ϑ = 0). This spike resets χn to PTC2(χn). Oscillator 2 fires
a spike when ϑ = T2−PTC2(χn), and it resets ϑ to PTC1(T2−PTC2(χn)). Finally, oscillator
1 fires its spike when oscillator 2 has the phase χn+1 = T1−PTC1(T2−PTC2(χn)).

12. [MATLAB] An example is the file adjoint.m

function Q=adjoint(F,t,x0)
% finds solution to the Malkin’s adjoint equation Q’ = -DF^t Q
% at time-points t with t(end) being the period
% ’x0’ is a point on the limit cycle with zero phase
tran=3; % the number of skipped cycles
dx = 0.000001; dy = 0.000001; % for evaluation of Jacobian

Q(1,:)=feval(F,0,x0)’; % initial point;
[t,x] = ode23s(F,t,x0); % find limit cycle

for k=1:tran
Q(length(t),:)=Q(1,:); % initial point;
for i=length(t):-1:2 % backward integration

L = [(feval(F,t(i),x(i,:)+[dx 0])-feval(F,t(i),x(i,:)))/dx,...
(feval(F,t(i),x(i,:)+[0 dy])-feval(F,t(i),x(i,:)))/dy];

Q(i-1,:) = Q(i,:) + (t(i)-t(i-1))*(Q(i,:)*L);
end;

end;
Q = Q/(Q(1,:)*feval(F,0,x0)); % normalization

An example of a call of the function is Q=adjoint(’F’,0:0.01:2*pi,[1 0]); with

function dx = F(t,x);
z=x(1)+1i*x(2);
dz=(1+1i)*z-z*z*conj(z);
dx=[real(dz); imag(dz)];

13. [MATLAB] We assume that PRC (ϑ) is given by its truncated Fourier series with unknown
Fourier coefficients. Then, we find the coefficients that minimize the difference between pre-
dicted and actual interspike intervals. The MATLAB file findprc.m takes the row vector of
spike moments, not counting the spike at time zero, and the input function p(t), determines the
sampling frequency and the averaged period of oscillation; and then calls the file prcerror.m
to find PRC.

function PRC=findprc(sp,pp)
global spikes p tau n
% finds PRC of an oscillator theta’= 1 + PRC(theta)pp(t)
% using the row-vector of spikes ’sp’ (when theta(t)=0)
spikes = [0 sp];
p=pp;
tau = spikes(end)/length(p) % time step (sampling period)
n=8; % The number of Fourier terms approximating PRC
coeff=zeros(1,2*n+1); % initial approximation
coeff(2*n+2) = spikes(end)/length(spikes); % initial period

coeff=fminsearch(’prcerror’,coeff);
a = coeff(1:n) % Fourier coefficients for sin
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b = coeff(n+1:2*n) % Fourier coefficients for cos
b0= coeff(2*n+1) % dc term
T = coeff(2*n+2) % period of oscillation
PRC=b0+sum((ones(floor(T/tau),1)*a).*sin((tau:tau:T)’*(1:n)*2*pi/T),2)+...

sum((ones(floor(T/tau),1)*b).*cos((tau:tau:T)’*(1:n)*2*pi/T),2);

The following program must be in the file prcerror.m.

function err=prcerror(coeff)
global spikes p tau n
a = coeff(1:n); % Fourier coefficients for sin
b = coeff(n+1:2*n); % Fourier coefficients for cos
b0= coeff(2*n+1); % dc term
T = coeff(2*n+2); % period of oscillation
err=0;
i=1;
clf;
for s=2:length(spikes)

theta=0;
while i*tau<=spikes(s)

PRC=b0+sum(a.*sin((1:n)*2*pi*theta/T))+...
sum(b.*cos((1:n)*2*pi*theta/T));

theta = theta + tau*(1+PRC*p(i));
i=i+1;

end;
err = err + (theta-T)^2;
subplot(2,1,1);
plot(spikes(s),T,’r.’,spikes(s),theta,’b.’);hold on;

end;
axis([0 spikes(end) 0.75*T 1.25*T])
subplot(2,1,2);
PRC=b0+sum((ones(floor(T/tau),1)*a).*sin((tau:tau:T)’*(1:n)*2*pi/T),2)+...

sum((ones(floor(T/tau),1)*b).*cos((tau:tau:T)’*(1:n)*2*pi/T),2);
plot(PRC);
err = (err/(length(spikes)-1))^0.5; % normalization
text(0,mean(PRC),[’err=’ num2str(err)]);
drawnow;

14. Winfree approach: Using results of exercise 8,

∂

∂A
ln

b

be−ϑ −A
=

1
be−ϑ −A

and setting A = 0, we obtain Z(ϑ) = eϑ/b.

Kuramoto approach: The solution is v(ϑ) = b(1 − e−ϑ) with T = ln(b/(b − 1)) and f(v(ϑ)) =
be−ϑ. From the condition (10.7), grad (ϑ) = 1/f(v(ϑ)) = eϑ/b.

Malkin approach: Df = −1; hence Q̇ = 1 · Q has the solution Q(t) = Cet. The free constant
C = 1/b is found from the normalization condition Q(0) · (b− 0) = 1.

15. Winfree approach: Using results of exercise 10 and the relation PRC=PTC−ϑ, we obtain,

∂

∂A
(π/2 + atan (A− cot ϑ)− ϑ) =

1
1 + (A− cot ϑ)2



Solutions to Exercises, chapter 10 495

and, setting A = 0, Z(ϑ) = sin2 ϑ.
Kuramoto approach: The solution is v(ϑ) = − cot ϑ with T = π and f(v(ϑ)) = 1/ sin2 ϑ. From
the normalization condition (10.7), grad (ϑ) = 1/f(v(ϑ)) = sin2 ϑ.
Malkin approach: Df = 2v, hence Q̇ = 2 cot(t) · Q has the solution Q(t) = C sin2 t. The free
constant C = 1 is found from the normalization condition Q(π/2) · (1 + 02) = 1.

16. Winfree approach: Using results of exercise 4,

Z(ϑ) =
∂

∂A
acos

1 + A cos ϑ√
1 + 2A cosϑ + A2

= − sinϑ

at A = 0.
Kuramoto approach: Since grad ϑ(x) is orthogonal to the contour line of the function ϑ(x) at
x (i.e., the isochron of x) and the results of exercise 1 that isochrons are radial, we obtain
grad (ϑ) = (− sinϑ, cos ϑ), using purely geometrical considerations. Since p(t) is real, we need
to keep only the first component.

Malkin approach: Let us work in the complex domain. On the circle z(t) = eit we obtain
Df = i. Since Df> is equivalent to complex-conjugation in the complex domain, we obtain
Q̇ = i · Q, which has the solution Q(t) = Ceit. The free constant C = i is found from the
normalization condition Q(0)∗i = 1, where ∗ means complex-conjugate.

Alternatively, on the circle z(t) = eit, we have f(z(t)) = f(eit) = ieit. From the normalization
condition Q(t)∗f(z(t)) = 1 we find Q(t) = ieit = − sin ϑ + i cos ϑ.

17. Rescaling the state variable z =
√

bu and the time, τ = εt, we obtain the reduced system

u′ = (1 + i)u + (−1 + di)u|u|2 + εp(t) .

We can apply the theory only when ε is small. That is, the theory is guaranteed to work in
a very weak limit ε ¿ b

√
b ¿ 1. As is often the case, numerical simulations suggest that the

theory works well outside the guaranteed interval. Substituting u = reiθ into this equation,

r′eiθ + reiθiθ′ = (1 + i)reiθ + (−1 + di)r3eiθ + εp(t) ,

dividing by eiθ, and separating real and imaginary terms, we represent the oscillator in polar
coordinates

r′ = r − r3 + εRe p(t)e−iθ

θ′ = 1 + dr2 + ε Im r−1p(t)e−iθ .

When ε = 0, this system has a limit cycle attractor r(t) = 1 and θ(t) = (1 + d)t, provided that
d 6= −1. On the attractor, the solution to Malkin’s adjoint equation (10.10),

Q′ = −
( −2 0

2d 0

)>
Q with Q(t) ·

(
0

1 + d

)
= 1 ,

is Q(t) = (d, 1)/(1+d). Indeed, the normalization condition results in Q2(t) = 1/(1+d). Hence,
unique periodic solution of the first equation, Q′1 = 2Q1 − 2d/(1 + d), is Q1(t) = d/(1 + d).
One can also use Kuramoto’s approach and the results of exercise 2. The corresponding phase
model,

ϑ′ = 1 + ε{d Re p(t)e−i(1+d)ϑ + Im p(t)e−i(1+d)ϑ}/(d + 1) ,

can be simplified via θ = (1 + d)ϑ (notice the font difference) to get the result.
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18. (Delayed coupling) Let ϑ(t) = t + ϕ(τ), where τ = εt is the slow time. Since ϑ(t − d) =
t− d + ϕ(τ − εd) = t− d + ϕ(τ) +O(ε), we have xj(ϑi(t− dij)) = xj(t− dij + ϕ(τ)), so that
we can proceed as in section 10.2.5, except that there is an extra term, −dij , in (10.16). See
also Izhikevich (1998).

19. Let χ = ϕ2 − ϕ1; then we have
χ̇ = ω − c sin χ .

If |ω/c| ≤ 1, then there are two synchronized states, χ = arcsin (ω/c) and χ = π− arcsin (ω/c),
one stable and the other unstable.

20. From the theorem of Hoppensteadt and Izhikevich (1997), presented in section 10.3.3, it follows
that Kuramoto’s model is a gradient system when cij = cji and ψij = −ψji. From Ermentrout’s
theorem presented in the same section, it follows that the synchronized state ϕi = ϕj is stable
if, for example, all ψij = 0 and cij > 0.

21. Since the probability density function g(ω) is symmetric, the averaged frequency deviation of
the network is zero, and, rotating the coordinate system, we can make the cluster phase ψ = 0.
The network is split into two populations: One oscillating with the cluster (|ω| < Kr), thereby
forming the cluster, and one drifting in and out of the cluster. The latter does not contribute
to the Kuramoto synchronization index, because contributions from different oscillators cancel
each other on average. In the limit n →∞, the sum (10.21) becomes the integral

r =
∫

eiϕ(ω)g(ω)dω ≈
∫

|ω|<Kr

eiϕ(ω)g(ω)d ω .

Next, since there are as many oscillators with positive ϕ as with negative, the imaginary parts
of eiϕ(ω) cancel each other, so that

r =
∫

|ω|<Kr

cos ϕ(ω)g(ω)dω .

Using the condition for locking with the cluster, ω = Kr sin ϕ, we change the variables in the
integral and obtain (10.22).

22. Let χ = ϕ2−ϕ1; then χ′ = (c2− c1)H(χ). The in-phase state χ = 0 exists when either c1 = c2

or H(0) = 0. Since H(χ) is even, H ′(0) = 0, and hence it is neutrally stable in either case.
The anti-phase state χ = T/2 exists when H(T/2) = 0, and it can be exponentially stable or
unstable, depending on the sign of H ′(T/2).

23. See Izhikevich (1999), Sect IVB.

24. The exponential stability requirement is G′(0) = −2H ′(0) < 0. Since x′(t) = f(x(t)), we have

TH ′(0) =
∫ T

0

g′(x(t))f(x(t))
f(x(t))

dt =
∫ T

0

g′(x(t)) dt =
∫

S1

g′(x)
f(x)

dx > 0

Integrating the latter equation by parts, or differentiating

H(χ) =
1
T

∫ T

0

g(x(t))
f(x(t− χ))

dt at χ = 0, we obtain
∫

S1

f ′(x)
f2(x)

g(x) dx > 0 .

25. (Brown et al. 2004) The solution of x′ = λx with x(0) = x0 is x(t) = x0e
λt. The period T =

log(∆/x0)/λ is found from the condition x(T ) = ∆. Hence, Q(ϑ) = 1/(λx(ϑ)) = 1/(λx0e
λϑ) =

eλ(T−ϑ)/(∆λ).
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26. Let us first consider the SNIC case ẋ = 1+x2. The solution starting with x(0) = xreset has the
form (the reader should check by differentiating) x(t) = tan(t+t0), where t0 = atan xreset. The
period should be found from the condition tan(T + t0) = +∞, and it is T = π/2− t0. Hence,
x(t) = tan(t + π/2− T ) = − cot(t− T ). Now, Q(ϑ) = 1/(1 + x(ϑ)2) = 1/(1 + cot2(ϑ− T )) =
sin2(ϑ− T ).
The homoclinic case ẋ = −1 + x2 is quite similar. The solution starting with x(0) = xreset > 1
has the form (the reader should check by differentiating) x(t) = − coth(t + t0), where t0 =
acoth(−xreset) = − acoth(xreset). The period is found from the condition − coth(T + t0) = +∞
resulting in T = −t0. Hence, x(t) = − coth(t − T ). Finally, Q(ϑ) = 1/(−1 + x(ϑ)2) =
1/(1 + coth2(ϑ− T )) = sinh2(ϑ− T ).


