
In Lieberman, H., Paternò, F., Wulf, V. (Eds) (2004) End User Development - Empowering People to
Flexibly Employ Advanced Information and Communication Technology,
© 2004 Kluwer Academic Publishers, Dordrecht, The Netherlands.

1

M. F. Costabile and A. Piccinno are with the Dipartimento di Informatica, Università di Bari, via Orabona

4, 70125 Bari, Italy (e-mail: costabile@di.uniba.it; piccinno@di.uniba.it).
D. Fogli is with the Dipartimento di Elettronica per l'Automazione, Università di Brescia, via Branze 38,

25123 Brescia, Italy (e-mail: fogli@bsing.ing.unibs.it).
P. Mussio is with the Dipartimento di Informatica e Comunicazione, Università di Milano, via Comelico

39/41, 20135, Milano, Italy (e-mail: mussio@dico.unimi.it).

MARIA FRANCESCA COSTABILE, DANIELA FOGLI,
PIERO MUSSIO, ANTONIO PICCINNO

END-USER DEVELOPMENT:
THE SOFTWARE SHAPING WORKSHOP APPROACH

ABSTRACT

In the Information Society, end-users keep increasing very fast in number, as well as in their demand with
respect to the activities they would like to perform with computer environments, without being obliged to
become computer specialists. There is a great request to provide end-users with powerful and flexible
environments, tailorable to the culture, skills and needs of a very diverse end-user population. In this
paper, we discuss a framework for End-User Development (EUD) and present our methodology for
designing software environments that support the activities of a particular class of end-users, called
domain-expert users, with the objective of making their work with the computer easier. Such
environments are called Software Shaping Workshops, in analogy to artisan workshops: they provide
users only with the necessary tools that allow them to accomplish their specific activities by properly
shaping software artefacts without being lost in virtual space.

1. INTRODUCTION

In the Information Society, new computer technologies have created the potential
to overcome the traditional division between users and the individuals responsible
for developing, operating and maintaining systems. Organizational, business and
commercial technologies increasingly require information technologies to be placed
directly in the hands of technicians, clerks, analysts and managers [9]. Cypher
defines end-users as people who use a computer application as part of their daily life
or daily work, but are not interested in computers per se [16]. It is evident that
several categories of end-users can be defined, for instance depending on whether
the computer system is used for work, for personal use, for pleasure, for overcoming
possible disabilities, etc. The end-user population is not uniform, but divided in non-
mutually exclusive communities characterized by different goals, tasks and
activities. Even these communities cannot be considered uniform, because they
include people with different cultural, educational, training and employment
background, who are novices or experts in the use of the computer, the very young
and the elderly and those with different types of (dis)abilities. End-users operate in
various interactive contexts and scenarios of use, they want to exploit computer
systems to improve their work, but they often complain about the difficulties in the
use of such systems.

2 MARIA FRANCESCA COST ABILE, DANIELA FOGLI,
PIERO MUSSIO, ANTONIO PICCINNO

In 1993, Brancheau and Brown describe end-user computing as "… the adoption

and use of information technology by people outside the information system
department, to develop software applications in support of organizational tasks" [9].
The organization in which such people work requires them to perform end-user
computing and to assume the responsibility of the results of this activity. In [9], the
authors primarily analyse the needs of users who are experts in a specific discipline,
but not in computer science. Our experience is focused on this kind of user, such as
medical doctors, mechanical engineers, geologists, etc. This has motivated our
definition of a particular class of end-users, that we call domain-expert users (or d-
experts for short): they are experts in a specific domain, not necessarily experts in
computer science, who use computer environments to perform their daily tasks. In
the literature, other authors address the needs of domain experts [6][21]. Such end-
users have the responsibility for possible errors and mistakes, even those generated
by wrong or inappropriate use of the software.

Indeed, one fundamental challenge for the next few years is to develop
environments that allow people without a particular background in programming to
develop and tailor their own applications, still maintaining the congruence within the
different evolved instances of the system. Over the next few years, we will be
moving from easy-to-use to easy-to-develop-and-tailor interactive software systems.
We foresee the active participation of end-users in the software development
process. In this perspective, tasks that are traditionally performed by professional
software developers are transferred to the users, who need to be specifically
supported in performing these tasks. Active user participation in the software
development process can range from providing information about requirements, use
cases and tasks, including participatory design [42], to end-user computing [37].
Companies producing software for the mass market are slowly moving in this
direction; examples are the adaptive menus in MS Word or some programming-
by-example techniques in MS Excel. However, we are still a long way from their
systematic adoption.

In this paper, we first analyse the activities domain-expert users usually perform
or are willing to perform with computers. These people reason and communicate
with each other through documents, expressed by notations, which represent abstract
or concrete concepts, prescriptions and results of activities. Often, dialects arise in a
community, because the notation is used in different practical situations and
environments. For example, mechanical drawings are organized according to rules,
which are different in Europe and in the USA. D-experts often complain about the
systems they use, they feel frustrated because of the difficulties they encounter
interacting with them. Moreover, d-experts feel the need to perform various
activities that may even lead to the creation or modification of software artefacts, in
order to obtain a better support for their specific tasks, which are therefore
considered End-User Development (EUD) activities. Indeed the definition provided
by EUD-Net says that “End User Development is a set of methods, techniques, and
tools that allow users of software systems, who are acting as non-professional
software developers, at some point to create or modify a software artefact” [18].

In this paper we discuss a framework for EUD based on Software Shaping
Workshops (SSWs), which are software environments that aim at supporting the
activities of domain-expert users, with the objective of easing the way these users

END-USER DEVELOPMENT :
THE SOFTWARE SHAPING WORKSHOP APPROACH

3

work with computers. In this framework, d-experts play two main roles: 1)
performing their working tasks, 2) participating in the development of the
workshops, as representatives of the workshop users. As we explain in Section 5, in
both roles d-experts perform EUD activities but are required neither to write codes,
nor to know any programming language. D-experts interact with the system through
visual languages, computerized versions of their traditional languages and tools.
Thus, they can program with the feeling of manipulating the objects of interest in a
way similar to what they do in the real world.

The paper is organized as follows. Section 2 discusses the major reasons behind
the difficulties in human-computer interaction. Section 3 proposes a classification of
EUD activities that domain-expert users need to perform. Software Shaping
Workshops are then presented in Section 4: they aim at supporting users in their
interaction with computers and in performing EUD activities. To provide an
example of how d-experts work with SSWs, a case study in a medical domain is
presented in Section 5. Section 6 reports a comparison with related works. Finally,
Section 7 concludes the chapter.

2. PHENOMENA AFFECTING THE HUMAN-COMPUTER INTERACTION
PROCESS

Several phenomena affecting the Human-Computer Interaction (HCI) process
have emerged in the use of interactive systems. They have been observed, studied
and reported in the current literature, often separately and from different points of
view, typically from the points of view of Usability Engineering, Software
Engineering and Information System Development. We present them from a unified,
systemic point of view, framing them in the model of HCI which we have developed
within the Pictorial Computing Laboratory (PCL) [7]. Our aim is to understand their
influence on the HCI process and to derive an approach for system design and
development, which tries to overcome the hurdles these phenomena create and to
exploit the possibilities they offer.

2.1 A model of the human-computer interaction process

In this paper, we capitalize on the model of the HCI process and on the theory of
visual sentences developed by the PCL [7]. In the PCL approach, HCI is modelled
as a syndetic process [4], i.e. a process in which systems of different nature (the
cognitive human - the ‘mechanical’ machine) cooperate to achieve a task. From this
point of view, HCI is a process in which the user and the computer communicate by
materializing and interpreting a sequence of messages at successive instants in time.
If we only consider WIMP (Windows, Icons, Menus, Pointers) interaction [17], the
messages exchanged are the whole images which appear on the screen display of a
computer and include text, icons, graphs and pictures. Two interpretations of each
image on the screen and of each action arise in the interaction: one performed by the
user performing the task, depending on his/her role in the task, as well as on his/her
culture, experience and skills and the second internal to the system, associating the
image with a computational meaning, as determined by the programs implemented

4 MARIA FRANCESCA COST ABILE, DANIELA FOGLI,
PIERO MUSSIO, ANTONIO PICCINNO

in the system [7]. From this point of view, the PCL model reflects a “computer
semeiotics” approach [1], in that it “analyzes computer systems and their context of
use under a specific perspective, namely as signs that users interpret to mean
something” [2]. The HCI process is viewed as a sequence of cycles: the human
detects the image on the screen, derives the message meaning, decides what to do
next and manifests his/her intention by an activity performed by operating on the
input devices of the system; the system perceives these operations as a stream of
input events, interprets them with reference to the image on the screen, computes the
response to human activity and materializes the results on the screen, so that they
can be perceived and interpreted by the human. In theory, this cycle is repeated until
the human decides that the process has to be stopped, either because the task has
been achieved or has failed.

2.2 The phenomena

In our opinion, the major phenomena that affect the HCI process are: the
communicational gap between designers and users [30]; the grain induced by tools
[17]; the co-evolution of system and users [3][8][12][38]; the availability of implicit
information [32] and tacit knowledge [39].
– Communicational gap between designers and users. The PCL model highlights

the existence of two interpretations of each image on the screen and of each
action performed to modify it. The first interpretation is performed by the user,
the second by the system. The interpretation performed by the system reflects
the designer understanding of the task considered, implemented in the programs
that control the machine. Between designers and users there is a
communicational gap due to their different cultural backgrounds. They adopt
different approaches to abstraction, since, for instance, they may have different
notions about the details that can be abridged. Moreover, users reason
heuristically rather than algorithmically, using examples and analogies rather
than deductive abstract tools, documenting activities, prescriptions and results
through their own developed notations, articulating their activities according to
their traditional tools rather than computerized ones. On the whole, users and
designers possess distinct types of knowledge and follow different approaches
and reasoning strategies to modelling, performing and documenting the tasks to
be carried out in a given application domain. Interactive systems usually reflect
the culture, skill and articulatory abilities of the designers. Users often find
hurdles in mapping features of the interactive system into their specific culture,
skill and articulatory abilities.

– Grain. Every tool is suited to specific strategies in performing a given task.
Users are induced by the tool to follow strategies that are apparently easily
executable, but that may be non optimal. This is called “grain” in [17], i.e. the
tendency to push the users towards certain behaviours. Interactive systems tend
to impose their grain on users’ resolution strategies, a grain often not amenable
to the users’ reasoning and possibly even misleading for them.

– User diversity. As highlighted in the introduction, users do not belong to a
uniform population, but constitute communities, characterized by different

END-USER DEVELOPMENT :
THE SOFTWARE SHAPING WORKSHOP APPROACH

5

cultures, goals, tasks. As a consequence, specialized user dialects grow in each
user community, which develop particular abilities, knowledge and notations.
User diversity arises even within the same community, depending not only on
user skill, culture and knowledge, but also on specific abilities (physical and/or
cognitive), tasks and the context of the activity. If, during system design, this
phenomenon is not taken into account, some users may be forced to adopt
specific dialects related with the domain, but different from their own and
possibly not fully understandable, thus making the interaction process difficult.

– Co-evolution of systems and users. It is well known that “using the system
changes the users, and as they change they will use the system in new ways”
[38]. These new uses of the system make the working environment and
organization evolve and force the designers to adapt the system to the evolved
user, organization and environment [8]. This phenomenon is called co-evolution
of system, environment and users. Designers are traditionally in charge of
managing the evolution of the system. This activity is made more difficult by the
communicational gap.

– Implicit information. When adopting user defined notations, a relevant part of
the information carried by the system is embedded in its visual organization and
shape materialization. We call this part of the information carried by the system
‘implicit information’. For example, in the documents of scientific communities,
the use of bold characters and specific styles indicates the parts of the documents
– paper title, abstract, section titles – which synthesize its meaning [6]. Strips of
images, for example illustrating procedures or sequences of actions to be
performed, are organized according to the reading habits of the expected reader:
from left to right for Western readers, from right to left for Eastern ones.
Furthermore, some icons, textual words, or images may be meaningful only to
the experts in some discipline: for example, icons representing cells in a liver
simulation may have a specific meaning only for hepatologists [34], while a X-
ray may be meaningful to physicians but not to other experts.

– Tacit knowledge. Implicit information is significant only to users who possess
the knowledge to interpret it. Most of this knowledge is not explicit and codified
but is tacit, namely it is knowledge that users possess and currently use to carry
out tasks and to solve problems, but that they are unable to express in verbal
terms and that they may even be unaware of. It is a common experience that in
many application fields users exploit mainly their tacit knowledge, since they are
often more able to do than to explain what they do. Tacit knowledge is related to
the specific work domain and it is also exploited by users to interpret the
messages from the software system. User notations let users exploit their tacit
knowledge and allow the system constructed in these notations to incorporate it
as a part of the implicit information.

2.3 Some observations concerning the user

When the system imposes task execution strategies, which are alien to users, it
becomes a fence that forces users to follow unfamiliar reasoning strategies and to

6 MARIA FRANCESCA COST ABILE, DANIELA FOGLI,
PIERO MUSSIO, ANTONIO PICCINNO

adopt inefficient procedures. In order to design a system that meets users’ needs and
expectations, we must take into account the following observations:
1. The notations developed by the user communities from their working practice

are not defined according to computer science formalisms, but they are concrete
and situated in the specific context, in that they are based on icons, symbols and
words that resemble and schematise the tools and the entities which are to be
used in the working environment. Such notations emerge from users’ practical
experience in their specific activity domain. They highlight the kind of
information users consider important for achieving their tasks, even at the
expense of obscuring other kinds and facilitate the problem solving strategies,
adopted in the specific user community.

2. Software systems are in general designed without taking explicitly into account
the problem of implicit information, user articulatory skills and tacit knowledge.
The systems produced can therefore be interpreted with high cognitive costs.

3. Implicit information and tacit knowledge need an externalizing process, which
translates them into a form intelligible to a computer system. Implicit
information must be conveyed by the layout and appearance of the systems, in
order to be exploited by users in performing their work. The final aim is the
creation of interactive software systems that the users may correctly perceive and
work with.

4. A system acceptable to its users should have a gentle slope of complexity: this
means it should avoid big steps in complexity and keep a reasonable trade-off
between ease-of-use and functional complexity. Systems might offer users, for
example, different levels of complexity in performing EUD activities, ranging
from simply setting parameters to integrating existing components and extending
the system by developing new components [18][35][36]. The system should then
evolve with the users (co-evolution, [3]), thus offering them new functionalities
only when needed.
Starting with these observations, we base our methodology for designing

interactive software systems on three principles: i) the language in which the
interaction with systems is expressed must be based on notations traditionally
adopted in the domain (this also supports the system designers in identifying the
grain problems and in defining their solutions); ii) systems must present only the
tools necessary to perform the user work, without overwhelming users with
unnecessary tools and information; iii) systems must provide a layout which
simulates the traditional layout of the tools employed in the domain, such as
mechanical machines or paper-based tools.

3. DOMAIN-EXPERT USERS’ EUD ACTIVITIES

In our work, we primarily address the needs of communities of experts in
scientific and technological disciplines. These communities are characterized by
different technical methods, languages, goals, tasks, ways of thinking and
documentation styles. The members of a community communicate with each other
through documents, expressed in some notations, which represent (materialize)
abstract or concrete concepts, prescriptions and results of activities. Often dialects

END-USER DEVELOPMENT :
THE SOFTWARE SHAPING WORKSHOP APPROACH

7

arise in a community, because the notation is applied in different practical situations
and environments. For example, technical mechanical drawings are organized
according to rules which are different in Europe and in the USA [25]. Explicative
annotations are written in different national languages. Often the whole document
(drawing and text) is organized according to guidelines developed in each single
company. The correct and complete understanding of a technical drawing depends
on the recognition of the original standard, as well as on the understanding of the
national (and also company developed) dialects.

Recognizing users as domain experts means recognizing the importance of their
notations and dialects as reasoning and communication tools. This also suggests the
development of tools customized to a single community. Supporting co-evolution
requires in turn that the tools developed for a community should be tailored by its
members to the newly emerging requirements [31]. Tailoring can be performed only
after the system has been released and therefore when it is used in the working
context. In fact, the contrast often emerging between the user working activity,
which is situated, collaborative and changing, and the formal theories and models
that underlie and constitute the software system can be overcome by allowing users
themselves to adapt the system they are using.

The diversity of the users calls for the ability to represent the meaning of a
concept with different materializations, e.g. text or image or sound and to associate
to the same materialization a different meaning according, for example, to the
context of interaction. For example, in the medical domain the same X-ray is
interpreted in different ways by a radiologist and a pneumologist. These two d-
experts are however collaborating to reach a common goal. Therefore, they use the
same set of data (of a patient), which, however, is represented differently according
to their specific skills. Often experts work in a team to perform a common task and
the team might be composed of members of different sub-communities, each sub-
community with different expertise. Members of a sub-community need an
appropriate computer environment, suited to them to manage their own view of the
activity to be performed.

In [15], some situations that show the real need for environments that allow d-
experts to perform various types of EUD activities were described. They emerged
from the work of the authors primarily with biologists and earth scientists. In the
field of biology software for academic research, there are two types of software
development: 1) large scale projects, developed in important bioinformatics centres;
2) local development by biologists who know some programming languages, for
managing data, analysing results, or testing scientific ideas. The second type of
development can be considered end-user development. Moreover, many biologists
feel the need to modify the application they use to fit their needs better. Here is a list
of real programming situations that occurred when working with molecular
sequences, i.e., either DNA or protein sequences: scripting, i.e. search for a
sequence pattern, then retrieve all the corresponding secondary structures in a
database; parsing, i.e. search for the best match in a database similarity search report
relative to each subsection; formatting, i.e. renumber one's sequence positions from -
3000 to +500 instead of 0 to 3500; variation, i.e. search for patterns in a sequence,
except repeated ones; finer control on the computation, i.e. control in what order
multiple sequences are compared and aligned (sequences are called aligned when,

8 MARIA FRANCESCA COST ABILE, DANIELA FOGLI,
PIERO MUSSIO, ANTONIO PICCINNO

after being compared, putative corresponding bases or amino-acid letters are put
together); simple operations, i.e. search in a DNA sequence for some characters.

In the domain of earth science, some scientists and technicians analyse satellite
images and produce documents such as thematic maps and reports, which include
photographs, graphs, etc. and textual or numeric data related to the environmental
phenomena of interest. Two sub-communities of d-experts are: 1) photo-interpreters
who classify, interpret and annotate remote sensed data of glaciers; 2) service
oriented clerks, who organize the interpreted images into documents to be delivered
to different communities of clients. Photo-interpreters and clerks share
environmental data archives, some models for their interpretation, some notations
for their presentation, but they have to achieve different tasks, documented by
different sub-notations and tools. Therefore, their notations can be considered two
dialects of the Earth Scientist & Technologist general notation.

From these experiences, two classes of d-expert activities have been proposed
[15]:
– Class 1 includes activities that allow users, by setting some parameters, to

choose among alternative behaviours (or presentations or interaction
mechanisms) already available in the application; in the literature such activities
are usually called parameterisation, customization or personalization.

– Class 2 includes all activities that imply some programming in any programming
paradigm, thus creating or modifying a software artefact. Since we want to be as
close as possible to the user, we will usually consider novel programming
paradigms, such as programming by demonstration, programming with
examples, visual programming, macro generation.

In Table 1, examples of activities of both classes are provided.

END-USER DEVELOPMENT :
THE SOFTWARE SHAPING WORKSHOP APPROACH

9

4. SOFTWARE SHAPING WORKSHOPS

In scientific and technological communities, such as mechanical engineers,
geologists, physicians, experts often work in a team to perform a common task. The
team might be composed of members of different sub-communities, each sub-
community with a different expertise. Such domain experts, when working with a
software application, feel the need to perform various activities that may even lead
to the creation or modification of software artefacts, in order to obtain better support
for their specific tasks. These are considered EUD activities. The need for EUD is a
consequence of the user diversity and evolution discussed in Section 2.

Our approach to the design of a software system devoted to a specific
community of domain-expert users is to organize the system into various
environments, each one for a specific sub-community. Such environments are
organized in analogy with the artisan workshops, where the artisans find only the
tools necessary to carry out their activities. In a similar way, d-experts using a
virtual workshop find available only the tools required to develop their activities by
properly shaping the software they use. These tools must be designed and must
behave in such a way that they can be used by the d-expert in the current situation.
For this reason, the software environments are called Software Shaping Workshops
(SSWs) [13]. SSWs allow users to develop software artefacts without the burden of
using a traditional programming language, using high level visual languages,

class Activity name Activity description

Parameterization

This is intended as a specification of unanticipated constraints in data analysis.
In this situation d-experts are required to associate specific computation
parameters to specific parts of the data, or to use different models of
computations available in the program.

C
la

ss
 1

Annotation This is the activity in which d-experts write comments next to the data and the
result files in order to highlight their meaning.

Modelling from
data

The system supporting the d-expert derives some (formal) models by
observing data, e.g. a kind of regular expression is inferred from selected parts
of aligned sequences [5], or patterns of interactions are derived [3].

Programming by
demonstration

D-experts show examples of property occurrences in the data and the system
infers a (visual) function from them.

Use of formula
languages

This is available in spreadsheets and could be extended to other environments,
such as Biok (Biology Interactive Object Kit) that is a programmable
application for biologists [26].

Indirect
interaction with
application
objects

As opposed to direct manipulation, traditional interaction style tools, e.g.
command languages, can be provided to support user activities.

Incremental
programming

This is close to traditional programming, but limited to changing a small part
of a program, such as a method in a class. It is easier than programming from
scratch.

C
la

ss
 2

Extended
Annotation

A new functionality is associated with the annotated data. This functionality
can be defined by any technique previously described.

Table 1: Two classes of d-expert activities, depending on whether the activity
implies creating or modifying a software artefact (Class 2) or not (Class 1) [15].

10 MARIA FRANCESCA COST ABILE, DANIELA FOGLI,
PIERO MUSSIO, ANTONIO PICCINNO

tailored to their needs. Moreover, users have the feeling of simply manipulating the
objects of interest in a way similar to what they do in the real world. Indeed, they are
creating an electronic document through which they can perform some computation,
without writing any textual program code.

An important activity in the professionals’ work is the annotation of documents.
In the SSW methodology, electronic annotation is a primitive operator, on which the
communication among different d-experts and the production of new knowledge are
based. A d-expert has the possibility of performing annotations of a piece of text, of
a portion of an image or of the workshop in use to extend, make his/her current
insights explicit regarding the considered problem, or even the features of the
workshop. D-experts use annotation as a peer-to-peer communication tool when
they exchange annotated documents to achieve a common task. By annotating the
workshop they use, d-experts also use annotation as a tool to communicate with the
design team in charge of the maintenance of the system.

D-experts play two main roles: 1) performing their working tasks, possibly
informing the maintenance team of their usability problems; 2) participating in the
development of the workshops. In the first role, at the time of use, d-experts can
tailor the workshop to their current needs and context. For example, the annotation
tools permit the definition of new widgets: as a reaction to the annotation activity
performed by the d-expert, the workshop may transform the annotated document
area into a new widget, to which a computational meaning is associated. This widget
is added to the common knowledge base and is made accessible to other d-experts,
each one accessing the data through his/her own workshop, enriched by the new
widget that is adapted to the specific context. In the second role, at the design time,
d-expert representatives participate directly in the development of the workshops for
their daily work (application workshops). D-experts, even if they are non
professional software developers, are required to create or modify application
workshops, i.e. software artefacts. To this end, different workshops (system
workshops) are made available to them, which permit the customization of each
application workshop to the d-expert community needs and requirements.

This approach leads to a workshop network that tries to bridge the
communicational gap between designers and domain-expert users, since all
cooperate in developing computer systems customized to the needs of the user
communities without requiring them to become skilled programmers. Thus the
workshop network permits domain-expert users to work cooperatively in different
places and at different time to reach a common goal; in this sense it becomes a
collaboratory, as defined in [43]: “a center without walls, in which researchers [in
our case professionals] can perform their research [work] without regard to physical
location, interacting with colleagues, accessing instrumentation, sharing data and
computational resources and accessing information in digital libraries”.

Two levels can be distinguished in the workshop network:
1. the top level, that we call the design level, involves a sub-network of system

workshops, including the one used by the software engineers to lead the team in
developing the other workshops and the system workshops which are used by
the team of HCI and domain experts to generate and/or adapt other system
workshops or application workshops;

END-USER DEVELOPMENT :
THE SOFTWARE SHAPING WORKSHOP APPROACH

11

2. the bottom level, that we call the use level, includes a network of application

workshops, which are used by end-users to perform their tasks.
Each system workshop in the design level is exploited to incrementally translate

concepts and tools expressed in computer-oriented languages into tools expressed in
notations that resemble the traditional user notations and are therefore
understandable and manageable by users. The network organization of the SSWs
depends on the working organization of the user community to which the SSWs are
dedicated.

To develop an SSW network, software engineers and d-experts have first to
specify the pictorial and semantic aspects of the Interaction Visual Languages
(IVLs) through which users interact with workshops. In our approach, we capitalize
on the theory of visual sentences developed by the Pictorial Computing Laboratory
(PCL) and on the model of WIMP interaction it entails [7]. From this theory, we
derive the formal tools to obtain the definition of IVLs. In the WIMP interaction, the
messages exchanged between the user and the system are the entire images
represented on the screen display, which include texts, pictures, icons, etc. and the
user can manifest his/her intention by operating on the input devices of the system
such as a keyboard or a mouse. Users understand the meaning of such messages
because they recognize some subsets of pixels on the screen as functional or
perceptual units, called characteristic structures (css) [7].

From the machine point of view, a characteristic structure is the manifestation of
a computational process, that is the result of the computer interpretation of a portion
of the program P specifying the interactive system. The computer interpretation
creates an entity, that we call virtual entity (ve) and keeps it active. A ve is defined
by specifying its behaviour, for example through statecharts, from which P can be
implemented. It is important, however, to specify the set CS of css, which can
appear on the screen, as well as their relations to the states of P from which they are
generated. A ve is therefore specified as ve=<P, CS, <INT,MAT>>, where INT
(interpretation) is a function, mapping the current cs∈CS of the ve to the state u of
the program P, generating it and MAT (materialization), a function mapping u to cs.
A simple example of ve is the “floppy disk” icon to save a file in the iconic toolbar
of MS Word. This ve has different materializations to indicate different states of
the computational process: for example, once it is clicked by the user the disk shape
is highlighted and the associated computational process saves the current version of
the document in a disk file. Once the document is saved, the disk shape goes back to
its usual materialization (not highlighted). However, ves extend the concept of
widgets (as in the case of the previously mentioned disk icon) and virtual devices
[40], which are more independent from the interface style and include interface
components possibly defined by users at run time. The creation of virtual entities by
users is an EUD activity and distinguishes our approach from traditional ones, such
as Visual Basic scripted buttons in MS Word. In Section 5, we will discuss the
creation of a ve by a user in a medical domain.

The SSW approach is aimed at overcoming the communicational gap between
designers and users by a ‘gentle slope’ approach to the design complexity [35][36].
In fact, the team of designers performs their activity by: a) developing several
specialized system workshops tailored to the needs of each type of designer in the

12 MARIA FRANCESCA COST ABILE, DANIELA FOGLI,
PIERO MUSSIO, ANTONIO PICCINNO

team (HCI specialists, software engineers, d-experts); and b) using system
workshops to develop application workshops through incremental prototypes
[11][13]. In the summary, the design and implementation of application workshops
is incremental and based on the contextual, progressive gain of insight into the user
problems, which emerge from the activity of checking, revising and updating the
application workshops performed by each member of the design team.

The diversity of the users calls for the ability to represent the meaning of a
concept with different materializations, in accordance with local cultures and the
layouts used, sounds, colours, times and to associate a different meaning to the same
materialization according, for example, to the context of interaction. The SSW
methodology aims at developing application workshops which are tailored to the
culture, skill and articulatory abilities of specific user communities. To reach this
goal, it becomes important to decouple the pictorial representation of data from their
computational representation [7]. In this way, the system is able to represent data
according to the user needs, by taking into account user diversity. Several prototypes
have been developed in this line, in medical and mechanical engineering [33]. XML
technologies, which are based on the same concept of separating the materialization
of a document from its content, are being extensively exploited.

To clarify the concepts on the SSW network, we refer to a prototype under study,
designed to support different communities of physicians, namely radiologists and
pneumologists, in the analysis of chest X-rays and in the generation of the diagnosis.
Radiologists and pneumologists represent two sub-communities of the physicians
community: they share patient-related data archives, some models for their
interpretation, some notations for their presentation, but they have to perform
different tasks, documented through different sub-notations and tools. Therefore,
their notations can be considered two (visual) dialects of the physicians’ general
notation.

The SSW network for this prototype is presented in Figure 1. As we said, we
distinguish two levels. At the top level, the design level includes the workshops used
by the members of the design team to develop the application workshops. The
design level includes system workshops devoted to software engineers (B-SE), HCI
experts (B-HCI) and d-experts (B-UserPn, B-UserRa), in our case, specialists in
pneumology and radiology. The designers in the team collaborate in designing and
updating, as required by co-evolution, the application workshops B-Radiologist and
B-Pneumologist. In the design and updating phases, each member of the design
teams operates on the application workshop under development using his/her own
system workshop tailored to his/her own culture, skills and articulatory abilities. The
application workshops are developed through a participatory design project which is
carried out in an asynchronous and distributed way. At the use level, the
pneumologist and radiologist, who are working in different wards or different
hospitals and are involved in the study of the pulmonary diseases, can reach an
agreed diagnosis using application workshops tailored to their culture, skills and
articulatory abilities, again in an asynchronous and distributed way.

END-USER DEVELOPMENT :
THE SOFTWARE SHAPING WORKSHOP APPROACH

13

Figure 1. The network of Software Shaping Workshops involved in the co-evolutive
use of B-Pneumologist and B-Radiologist

In Section 5, we illustrate how EUD activities can be performed by working with
B-Radiologist and B-Pneumologist. However, EUD activities can also be performed
at design level: using B-UserPn and B-UserRa (see Figure 1), representatives of
end-users may generate or adapt the application workshops B-Radiologist and B-
Pneumologist. The development of B-UserPn and B-UserRa is in progress, so we
focus here only on the EUD activity performed at the use level by interacting with
two prototypes of B-Radiologist and B-Pneumologist. Such prototypes have been
developed to speak with our domain experts, receive feedback from them about the
functionalities the software system offers and understand their needs. In [14][22],
prototypes in the field of mechanical engineering illustrate how d-experts may
perform EUD activity at the design time by interacting with software environments
developed by following the SSW methodology.

5. SOFTWARE SHAPING WORKSHOPS FOR A MEDICAL DOMAIN

To concretize our view on SSWs, we introduce a scenario, drawn from an initial
analysis of physicians collaborating to achieve a diagnosis [13]. In the scenario, a
pneumologist and a radiologist incrementally gain insight into the case by
successive interpretations and annotations of chest X-rays, performed in (possibly)
different places and at (possibly) different times. They are supported by two
interactive prototypes, B-Radiologist and B-Pneumologist, which share a knowledge
repository. They achieve the diagnosis by updating the knowledge repository after
each session of interpretation of the results reached so far and of annotation of their
new findings. In particular, through the annotation activity, new software artefacts
are created (e.g., a widget with a certain functionality): each new software artefact
created in this way implements a virtual entity whose cs corresponds to the shape

14 MARIA FRANCESCA COST ABILE, DANIELA FOGLI,
PIERO MUSSIO, ANTONIO PICCINNO

traced by the user on the X-ray and whose program P depends on the content of the
annotation.

B-Radiologist and B-Pneumologist are application workshops that support the
two physicians in recording and making the observational data available for
reasoning and communication, as well as the paths of the activities physicians are
performing and the progressively obtained results. To this end, they share the
knowledge repository and also some tools for data annotation, archiving and
retrieving. However, they have to support physicians with different experience and
cultural background, performing different tasks in the achievement of the diagnosis.
Hence, each one is also equipped with tools specialized to the specific tasks to be
performed by its own users and makes data and tools available by materializing
them according to the specific culture, experience and situation of its current user.

Figure 2 displays a web page, as it appears to a radiologist – Dr. Bianchi,
interacting with B-Radiologist. Due to space limitations, it is the only figure
showing the complete web page, the remaining figures show only panes of our
interest.

The screen is divided into two parts: the top presents the tools which interact
with Internet Explorer™, the browser managing the process. The underlying part has
a header at the top, presenting general information about the creators of the system.
Below it, there is an equipment area on the right with a title identifying B-
Radiologist as the workshop currently active and a working area on the left. In the
equipment area, the radiologist has repositories of entities available to be worked
(images and annotations) and equipment to work on the entities. Data and tools can
be extracted and used or deployed in the working area and stored in the repositories.
Tools are represented in the working area as icons and data as raster or vector
images, materializing the css of interest. Each image represents an entity to be
worked on and is associated to a handle, a tool-box and other identifiers. These four
entities form a bench. The handle is a ve whose cs is a rectangle which identifies
the bench. It is positioned on top of the toolbox and permits the bench selection and
dislocation. The toolbox contains the tools required for the execution of the current
task. The identifiers identify the physician performing the task, the patient to which
the data refers and the image (set of data) referring to that patient.

In Figure 2, the radiologist is working on two benches, one associated to raster
X-ray which underlies a bench associated to a transparent vector image, which is a
support for annotation. Hence, two handles appear on top of the toolbox, while
system generated identifiers identify Dr. Bianchi as the radiologist annotating the X-
ray, Mr. Rossi as the patient and img1 as the considered image. Figure 2 resumes the
state of the activity of interpretation of a X-ray after the radiologist a) has obtained
the data of his interest (a X-ray of the patient, whose surname is Rossi) and b) has
superimposed the annotation bench on the bench containing the X-ray.

END-USER DEVELOPMENT :
THE SOFTWARE SHAPING WORKSHOP APPROACH

15

Figure 2. Web page with B-Radiologist workshop. The radiologist is analyzing a
chest X-ray

In Figure 3, the radiologist a) has recognized an area of interest denoting a
pleural effusion; b) has selected from the toolbox the tool for free-hand drawing of
close curves, the tenth button from the left (whose cs is a close curve); and c) B-
Radiologist has reacted, presenting him with a cursor, whose cs is the cross. The
radiologist is now circling the area of interest using a mouse to steer the cross, so
identifying a cs. After closing the curve, the radiologist selects the eighth button
(‘a’) in the top menu, firing the annotation activity; then he can type his
classification of the cs ‘Pleural effusion’. Figure 4 shows the radiologist storing
these results by the selection of the ‘add Note’ button. As a reaction to this last user
action, B-Radiologist a) closes the annotation window; b) adds to the framed area an
icon of a pencil as an anchor to the annotation and c) transforms the framed area into
a widget, by associating it to a pop-up menu. The menu title and items depend on the
radiologist’s classification of the css in the framed area. In other words, B-
Radiologist creates an active widget whose characteristics depend on the contextual
activity and which is added to the set of tools known to the system and then becomes
available to the users. In particular, the pop-up menu associated with the widget
allows the radiologist to choose between two activities related with pleural effusion
areas: the density evaluation and the NMR analyses retrieval. After having obtained
the results of the selected computations, the radiologist writes a new annotation
suggesting a possible diagnosis to be shared with the pneumologist (potential
pneumonia).

16 MARIA FRANCESCA COST ABILE, DANIELA FOGLI,
PIERO MUSSIO, ANTONIO PICCINNO

Figure 3. Using B-Radiologist, the radiologist circles a zone of pleural effusion

Figure 4. Using B-Radiologist, the radiologist annotates a zone of pleural effusion

At the end of the annotation activity, B-Radiologist stores the annotation and
other possible results from its activity in the knowledge repository shared with B-
Pneumologist, permanently updating to the patient file, thus evolving B-Radiologist,
B-Pneumologist and the knowledge repository. In the current version, the radiologist
sends an email message to the pneumologist whenever s/he wants to inform the
other physician that the knowledge repository has been updated.

The workshops make two different types of tools available to their users: system
predefined tools, which are always available and the tools created and associated to
the data by the users, such as the annotation button. Their meaning depends on the
medical context in which annotation is used. For example, in B-Pneumologist, a cs
classified as ‘pleural effusion’ is not associated to the same menu as in B-

END-USER DEVELOPMENT :
THE SOFTWARE SHAPING WORKSHOP APPROACH

17

Radiologist, but is associated to a multi-link to the records of available data on the
patient, i.e. radiological interpretation, associated TACs and haematic parameters. In
B-Pneumologist the pencil associated to the area of interest outlined by the
radiologist is associated to the tools for visualizing the data related to the patient and
supporting their exploration in order to reach a final diagnosis. The linking to the
new tools – the new computational meaning of the annotation - occurs at start-up
time, i.e. when a physician accesses B-Pneumologist to initiate the interactive
session. Therefore, when the pneumologist Dr. Neri selects the pencil, B-
Pneumologist displays the text of the annotation performed by the radiologist and
the multi-link (Figure 5). In Figure 5 the pneumologist selects ‘Radiological
interpretation’ to query details on Dr. Bianchi’s observations. He obtains the media
and estimated error of the density of the pleural effusion. He can also add his
diagnosis to the document recording the opinions increasingly annotated by Dr.
Bianchi (Figure 6).

The SSW life cycle follows a star approach [23], starting with the analysis of the
users of the application workshops. The design process proceeds by developing
incremental workshop prototypes at various levels in the hierarchy, going bottom-up
as well as top-down. In the case study, user analysis started by examining how the
radiologists classify, interpret and annotate chest X-rays and how the pneumologists
use the interpreted images, provide their diagnoses and record them using an
annotation tool. On the basis of this analysis, the team of experts involved in the
design felt the need to develop the two separate but consistent application
workshops, each one dedicated to a specific sub-community. Moreover, the team of
experts observed that not all situations can be foreseen in advance and that
sometimes B-Radiologist and B-Pneumologist must both be consistently adapted to
different new tasks and situations. This adaptation requires the knowledge of both
dialects and activities, of the tasks to be executed and of the working organization
and the awareness of the use of diagnostic documents outside the organization. Only
senior physicians have such a global skill and knowledge and can assume this
responsibility. Therefore, the team decided that a senior pneumologist and a senior
radiologist should act as managers of the whole activity and be responsible for
recognizing the tasks to be performed, identifying the dialect notations of interest
and consequently defining the system of consistent application workshops. The
senior physicians achieve these goals using two system workshops, B-UserRa and
B-UserPn, where they find usable tools for implementing and adapting both B-
Radiologist and B-Pneumologist (see Figure 1). They can also collaborate with HCI
experts and software engineers as required by the progressive results of the
experiences.

18 MARIA FRANCESCA COST ABILE, DANIELA FOGLI,
PIERO MUSSIO, ANTONIO PICCINNO

Figure 5. Working in B-Pneumologist the pneumologist accesses the radiological
interpretation

Figure 6. The pneumologist obtains the radiological interpretation and gives his
diagnosis

6. RELATED WORKS

As designers, our challenge is to develop interactive software systems which a)
support their users in exploiting their “practical competence and professional artistry
in achieving a task” [41] and b) enable the practitioner to develop and extend the
knowledge available to the profession [41]. To achieve this goal, we adopt a
‘semeiotic computer’ point of view [1][2], recognizing the existence of two
interpretations of each cs and the importance of notations developed by d-expert
communities such as reasoning, communication and documentation tools.

END-USER DEVELOPMENT :
THE SOFTWARE SHAPING WORKSHOP APPROACH

19

Another important issue in our design approach is the co-evolution of users and

systems. Carroll and Rosson speak about co-evolution of users and tasks in [12],
while co-evolution of artefacts supporting HCI design in the different steps of the
product lifecycle is discussed in [10]. Co-evolution of users and systems, as
proposed in this paper, stresses the importance of co-evolving the systems, as soon
as users evolve the performance of their tasks. Co-evolution of users and systems is
rooted in the usability engineering, in that it supports designers in collecting
feedback on systems from the field of use, to improve the system usability [38].
Tools designed to support co-evolution are suitable for observational evaluation in
user-centred design approaches [40]. Moreover, these evaluation tools integrated
within the SSW networks allow system adaptation [3], in the more general frame of
co-evolution of users, organization, systems and environment, as observed by
Bourguin et al. [8]. This extends the view of Mackay, who postulates that the use of
information technology is a co-adaptive phenomenon [27]. Co-evolution implies
tailoring. SSWs are designed to permit tailoring, i.e. “further development of an
application during use to adapt it to complex work situations” [24] by end-users.

In our approach, d-experts play a role similar to the handymen in [29]. The
handyman bridges between workers (people using a computer application) and
computer professionals; s/he is able to work alongside users and communicate their
needs to programmers. Similarly, d-experts bridge between workers and computer
professionals, but are end-users themselves and not necessarily computer
professionals. They must be provided with environments to be able to participate in
SSWs development that are adapted to their culture, skills and articulatory abilities.
In [14][22] we describe an environment devoted to mechanical engineers who were
the d-experts involved in the development of the application workshop devoted to
assembly-line operators.

In [28] and [37] empirical studies are reported on activities performed by end-
users and generally defined as tailoring activities. Mackay analyses how users of a
UNIX software environment try to customise the system, intending as customisation
the possibility of modifying software to make persistent changes. She finds that
many users do not customise their applications as much as they could. This also
depends on the fact that it takes too much time and deviates from other activities.
Nardi conducted empirical studies on users of spreadsheets and CAD software. She
found out that these users actually perform activities of end user programming, thus
generating new software artefacts; these users are even able to master the formal
languages embedded in these applications when they have a real motivation for
doing so.

SSWs are also in the area of research on Gentle Slope Systems, “which are
systems where for each incremental increase in the level of customizability, the user
only needs to learn an incremental amount” [35]. In fact, the SSW methodology
favours the construction of systems which are more acceptable to the users, since
they are based on a knowledge (often tacit), languages and notations belonging to
the interested user community. Moreover, SSWs allow users to perform end-user
development activities, overcoming the problems currently affecting other types of
end-user development, such as the development of macros in spreadsheets or of
scripts in active web pages, which usually require the learning of conventional
programming [35].

20 MARIA FRANCESCA COSTABILE, DANIELA FOGLI,
PIERO MUSSIO, ANTONIO PICCINNO

Domain knowledge plays a key role in the approach to software system

construction described in [19][20][21]. In these works, the authors propose
designing systems as seeds, with a subsequent evolutionary growth, followed by a
reseeding phase. SER (Seeding, Evolutionary growth, Reseeding) is thus a process
model for the development and evolution of the so-called DODEs (Domain-Oriented
Design Environments), which are “software systems that support design activities
within particular domains and that are built specifically to evolve” [21]. Three
intertwined levels of design activities and system development are envisaged: at the
lower level, there is a multifaceted domain-independent architecture constituting the
framework for building evolvable systems; at the middle level, the multifaceted
architecture is instantiated for a particular domain in order to create a DODE; at the
top level, there are individual artefacts in the domain, developed by exploiting the
information contained in the DODE. The SER model describes the evolution of such
environments at the three levels.

We have a domain-independent architecture as well, which can be instantiated
according to the considered domain [22]. This architecture is implemented by
exploiting open source code, such as XML-suite tools and ECMAscript language, so
that a system SSW and the application SSWs generated from it have the same web-
based structure. However, the construction of SSWs is always based on a formal
specification of the Interaction Visual Languages through which the user interacts in
order to guarantee a variety of properties (such as usability, determinism, viability,
non ambiguity [40]). The architecture reflects the formal model proposed to specify
the static and dynamics component of the systems. In the SSW framework there is a
clear distinction between the design and the use level: the system workshops at the
design level can be used by d-experts to create and/or update application workshops.
Both system and application workshops can first represent seeds, which, according
to the user interaction, can be evolved into new system and application workshops
respectively, still remaining separate. This separation, which helps not to disorient
the users during their task activities, is not so well established in the works with
which we are comparing ours.

There is a separation between the design and use level in many commercial tools
for authoring systems, such as, for example, Micromedia Flash or Toolbook. In
these systems, the author mode and the user mode are present, but the author mode
usually requires the use of a programming language (typically a scripting one).
Therefore, these systems turn out to be less accessible and usable by experts in
domains different from computer science. Moreover, both system and application
workshops present the users with a familiar environment in which only the tools
necessary to carry out the working task are available. On the other hand, also
commercial tools allow the definition of libraries of personalized tools, but they may
only be added to the tools already available in the developmental system.

7. CONCLUSIONS

Nowadays, new computer technologies force many users, who are not experts in
computer science but are experts in their own domain of activity, to ask for software
environments in which they can do some programming activity related to their tasks

END-USER DEVELOPMENT :
THE SOFTWARE SHAPING WORKSHOP APPROACH

21

and adapt the environments to their emerging new needs. Therefore, in such a
scenario, End-User Development becomes a challenging issue for future software
systems. To study novel solutions to cope with this issue, we propose a unified view
of the variety of phenomena affecting the HCI process, such as the communicational
gap which often exists between designers and systems, the user diversity, the co-
evolution of systems and users, the grain imposed by software tools, the implicit
information and tacit knowledge that influence users’ behaviour while interacting
with software systems.

In the paper we have analyzed these phenomena, by showing the hurdles they
impose in user activities and the new interaction and communication possibilities
they offer and have framed them in a systemic HCI model. Such a model underlies
our approach to system design and development - the SSW methodology. Within the
SSW methodology, EUD means that 1) d-experts may create other SSWs suitable to
the considered domain by using simple facilities, such as a drag-and-drop; and 2) d-
experts may create new tools within the workshop they are using, for example as a
result of an annotation activity. The latter case has been analyzed in a medical
domain: physicians use tailored environments (application workshops), which they
can enrich by themselves with new tools through annotation activity. The results of
the annotation are shared by the application workshops, so allowing physicians to
create tools to be used also by their colleagues, possibly according to their own
needs, background, expertise and preferences. In both cases, users are required
neither to write codes, nor to know any programming languages or paradigms. Users
simply create programs by interacting with the system through visual languages
resembling the activities they usually perform in their daily work. For the sake of
brevity, the case study discussed in this paper shows only an example of the second
type of EUD activity. More details about the first one are in [14][22]. The
architecture we have implemented to develop SSWs is based on the W3C
framework and the XML technology, thus permitting the construction of very
“light” applications [22].

8. ACKNOWLEDGMENTS

The authors wish to thank the reviewers for their useful comments and Giuseppe
Fresta for the stimulating discussions during the development of this work and for
his contribution to the implementation of the prototypes presented in the paper. They
also wish to thank Dr. Lynn Rudd for her help in correcting the English manuscript.

The support of EUD-Net Thematic Network (IST-2001-37470) is acknowledged.

9. REFERENCES

[1] Andersen, P. B., What semiotics can and cannot do for HCI, Knowledge Based Systems, 14, 2001,
419-424, Elsevier.

[2] Andersen, P. B., Computer semiotics, Scandinavian Journal of Information Systems, 4, 1992, 3-30.
[3] Arondi, S., Baroni, P., Fogli, D., Mussio, P. Supporting co-evolution of users and systems by the

recognition of Interaction Patterns. Proceedings of the International Conference on Advanced Visual
Interfaces (AVI 2002), Trento (I), May 2002, 177-189.

22 MARIA FRANCESCA COST ABILE, DANIELA FOGLI,
PIERO MUSSIO, ANTONIO PICCINNO

[4] Barnard, P., May, J., Duke, D., Duce, D., Systems, Interactions, and Macrotheory. ACM Trans. on

Human-Computer Interaction, 7(2), 222-262.
[5] Blackwell, A., See What You Need: Toward a visual Perl for end users, Proc. of Workshop on

visual languages for end-user and domain-specific programming, Seattle, USA, September 2000.
[6] Borchers, J. A pattern approach to interaction design, John Wiley & Sons, 2001.
[7] Bottoni, P., Costabile, M.F., Mussio, P. Specification and Dialogue Control of Visual Interaction

through Visual Rewriting Systems, ACM Trans. on Programming Languages and Systems
(TOPLAS), Vol. 21, No. 6, 1077-1136, 1999.

[8] Bourguin, G., Derycke, A., Tarby, J.C. Beyond the Interface: Co-evolut ion inside Interactive
Systems - A Proposal Founded on Activity Theory, Proc. IHM-HCI 2001.

[9] Brancheau, J.C., Brown, C.V. The Management of End-User Computing: Status and Directions.
ACM Computing Surveys, 25(4), 1993.

[10] Brown, J., Graham, T.C.N., Wright, T., The Vista environment for the coevolutionary design of user
interfaces. Proc. of CHI 98, Los Angeles, 1998, 376-383.

[11] Carrara, P., Fogli, D., Fresta, G., Mussio, P. Toward overcoming culture, skill and situation hurdles
in human-computer interaction. Int. Journal Universal Access in the Information Society, 1(4), 288-
304, 2002.

[12] Carroll, J.M., Rosson, M.B., Deliberated Evolution: Stalking the View Matcher in design space.
Human-Computer Interaction, 6 (3 and 4), 281-318, 1992.

[13] Costabile, M.F., Fogli, D., Fresta, G., Mussio, P., Piccinno, A. Computer Environments for
Improving End-User Accessibility. Proc. of 7th ERCIM Workshop "User Interfaces For All", Paris,
187-198. 2002.

[14] Costabile, M. F., Fogli, D., Fresta, G, Mussio, P., Piccinno, A., Building Environments for End-
User Development and Tailoring, Proc. 2003 IEEE Symposia on Human Centric Computing
Languages and Environments (HCC’ 03), Aukland, New Zeland, October 2003, 31-38.

[15] Costabile, M.F., Fogli, D., Letondal, C., Mussio, P., Piccinno, A., Domain-Expert Users and their
Needs of Software Development”, UAHCI Conference, Crete, June 22-27 2003, 232-236.

[16] Cypher, A. Watch What I Do: Programming by Demonstration. The MIT Press, Cambridge, 1993.
[17] Dix, A., Finlay, J., Abowd, G., Beale, R. Human Computer Interaction, Prentice Hall, London,

1998.
[18] EUD-Net Thematic Network, Network of Excellence on End-User Development,

http://giove.cnuce.cnr.it/eud-net.htm.
[19] Fischer, G., Grudin, J., McCall, R., Ostwald, J., Redmiles, D., Reeves, B., Shipman, f. (2001),

Seeding, Evolutionary Growth and Reseeding: The Incremental Development of Collaborative
Design Environments. Coordination Theory and Collaboration Technology, Lawrence Erlbaum
Associates, Mahwah, NJ, 447-472.

[20] Fischer, G., Ostwald, J. (2002), Seeding, Evolutionary Growth, and Reseeding: Enriching
Participatory Design with Informed Participation, PDC’02, Malmö, Sweden, 135-143.

[21] Fischer, G., Seeding, Evolutionary Growth, and Reseeding: Constructing, Capturing, and Evolving
Knowledge in Domain-Oriented Design Environments, Automated Software Engineering, 5(4), 447-
468, 1998.

[22] Fogli, D., Piccinno, A., Salvi, D., What Users See Is What Users Need, Proc. DMS 03, Miami, FL,
September 2003, 335-340.

[23] Hix, D., Hartson, H. R., Developing User Interfaces: Ensuring Usability through Product &
Process, John Wiley (1993).

[24] Kahler, H., Mørch, A., Stiemerling, O., Wulf, V. Introduction to the Special Issue on Tailorable
Systems and Cooperative Work, Computer Supported Cooperative Work, 9, 1-4, 2000, Kluwer
Academic Publishers.

[25] ISO Standard: ISO 5456 Technical Drawing Projection Methods.
[26] Letondal, C., Programmation et interaction, PhD thesis, Université de Paris XI, Orsay, 2001.
[27] Mackay, W. E. Users and Customizable Software: A Co-Adaptive Phenomenon, Ph. D. Thesis,

MIT, 1990.
[28] Mackay, W.E., Triggers and Barriers to Customizing Software. Proc. CHI’90 Human Factors in

Computing Systems, New Orleans, Apr. 27 – May 2, 153-160. ACM Press, 1991.
[29] MacLean, A., Kathleen, C., Lövstrand, L., Moran, T., User-Tailorable Systems: Pressing the Issues

with Buttons, Proc. of ACM CHI’90, April 1990, 175-182.
[30] Majhew, D.J. Principles and Guideline in Software User Interface Design, Prentice Hall, 1992.

END-USER DEVELOPMENT :
THE SOFTWARE SHAPING WORKSHOP APPROACH

23

[31] Mørch, A. I., Mehandjiev, N. D., Tailoring as Collaboration: The Mediating Role of Multiple

Representations and Application Units, Computer Supported Cooperative Work, 9, 2000, 75-100.
[32] Mussio, P. E-Documents as tools for the humanized management of community knowledge.

Keynote Address, to appear in ISD 2003 Proc., Melbourne, AUS, 2003.
[33] Mussio P, Finadri M, Gentini P, Colombo F. A bootstrap technique to visual interface design and

development, The Visual Computer 8(2), 75-93, 1992.
[34] Mussio, P., Pietrogrande, M., Protti, M., Simulation of Hepatological Models: a Study in Visual

Interactive Exploration of Scientific Problems, Journal of Visual Languages and Computing, 2,
1991, 75-95.

[35] Myers, B.A., Hudson, S. E., Randy, P.Past, Present, and Future of User Interface Software Tools,
Human-Computer Interaction in the New Millennium , Carroll (ed.), Addison-Wesley, 2003.

[36] Myers, B.A., Smith, D.C., Horn, B. Report of the `End-User Programming' Working Group,
Languages for Developing User Interfaces, Boston, MA: Jones and Bartlett, 1992, 343-366.

[37] Nardi,B., A small matter of programming: perspectives on end user computing, MIT Press, 1993.
[38] Nielsen, J., Usability Engineering, Academic Press, San Diego, 1993.
[39] Polanyi, M., The Tacit Dimension, Rouledge & Kegan Paul, London, 1967.
[40] Preece, J., Human-Computer Interaction, Addison-Wesley, 1994.
[41] Schön, D., The Reflective Practinioner – How Professionals Think in Action, Basic Books, 1983.
[42] Schuler, D., Namioka, A., Preface, Participatory Design, Principles and Practice, Lawrence

Erlbaum Ass. Inc.Hillsday, vii, N.J, 1993.
[43] Wulf, W. A., The National Collaboratory: A White Paper. Appendix A in Toward a National

Collaboratory, unpublished report of a National Science Foundation invitational workshop held at
Rockfeller University, p. 1.

