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Gauss-Manin connections

Given a family Xs of algebraic varieties depending on a parameter s
and an integer i , there is a differential equation that expresses the
variation in the cohomology H i (Xs ,C).
More formally let f : X → S be a proper and smooth morphism,
with S smooth. Then there is canonical integrable connection

∇ : H i
DR(X/S) := Ri f∗Ω•X/S −→ H i

DR(X/S)⊗OS Ω1
S

called the Gauss-Manin connection. Note that

H i
DR(X/S) = R i f∗C⊗C OS , (R i f∗C)s = H i (Xs ,C).

It has regular singular points at infinity (relative to any smooth
compactification of S ; theorem of Griffiths, Deligne, Katz).
regular singular = of the Fuchsian class.
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To get a differential equation for (multivalued) functions rather
than cohomology classes we can consider the periods

p(δ, ω, s) :=

∫
δs

ωs , ω ∈ H i
DR(X/S), δ ∈ R i f∗C

Then ∇(ω) = 0⇒ ∇(p(δ, ω, s)) = 0 for any δ. In other words, the
Gauss-Manin connection is equivalent to a first-order linear system

dy
dt

= My

for a matrix M of rational functions on S (assumed of dimension 1
with local corrdinate t for simplicity).
We call these Picard-Fuchs equations.
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Elliptic curves

Example

Let Et be the family of projective plane curves

y2 = x3 − g2(t)x − g3(t).

For all t ∈ S := {g2(t)3 − 27g3(t)2 6= 0} ⊂ P1 these are elliptic
curves.
Let

ω1 =
dx
y
, ω2 =

xdx
y
.

These form a basis of H1
DR(E/S).

The DE is
d
dt

(
ω1
ω2

)
=

(
A1 A2
A3 A4

)(
ω1
ω2

)
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Arithmetic properties of Picard-Fuchs differential equations



Gauss-Manin connections Families of elliptic curves Dwork’s theory Modular forms Examples

Elliptic curves

Example

Let Et be the family of projective plane curves

y2 = x3 − g2(t)x − g3(t).

For all t ∈ S := {g2(t)3 − 27g3(t)2 6= 0} ⊂ P1 these are elliptic
curves.
Let

ω1 =
dx
y
, ω2 =

xdx
y
.

These form a basis of H1
DR(E/S).

The DE is
d
dt

(
ω1
ω2

)
=

(
A1 A2
A3 A4

)(
ω1
ω2

)
Jerome William Hoffman Louisiana State University

Arithmetic properties of Picard-Fuchs differential equations



Gauss-Manin connections Families of elliptic curves Dwork’s theory Modular forms Examples

Elliptic curves

Example

Let Et be the family of projective plane curves

y2 = x3 − g2(t)x − g3(t).

For all t ∈ S := {g2(t)3 − 27g3(t)2 6= 0} ⊂ P1 these are elliptic
curves.
Let

ω1 =
dx
y
, ω2 =

xdx
y
.

These form a basis of H1
DR(E/S).

The DE is
d
dt

(
ω1
ω2

)
=

(
A1 A2
A3 A4

)(
ω1
ω2

)
Jerome William Hoffman Louisiana State University

Arithmetic properties of Picard-Fuchs differential equations



Gauss-Manin connections Families of elliptic curves Dwork’s theory Modular forms Examples

Example

Where

A1 =
−1
12∆

d∆

dt
, A2 =

3G
2∆

A3 =
−g2G
8∆

, A4 =
1

12∆

d∆

dt

∆ = g3
2 − 27g2

3 , G = 3g3
dg2

dt
− 2g2

dg3

dt

We can write this first order system as a second order equation in
the shape

A(t)
d2y
dt2 + B(t)

dy
dt

+ C (t)y = 0

for rational functions A(t),B(t),C (t).
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Dwork’s theory

Consider the Γ(2) modular family: Legendre’s family. This is
Et : y2 = x(x − 1)(x − t), which gives the DE

t(t − 1)
d2y
dt2 + (2t − 1)

dy
dt

+
1
4
y = 0.

This is hypergeometric with parameters 1/2, 1/2, 1. A period is a
solution

2πF
(
1
2
,
1
2
, 1; t

)
= 2

∫ 1

0

dx√
x(1− x)(1− xt)

F (1/2, 1/2, 1; t) = 1 +
t
4

+
9t2

64
+

25t3

256
+

1225t4

16384
+

3969t5

65536
+ ...
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Now regard the series

F (1/2, 1/2, 1; t) =
∞∑
j=0

(
−1

2
j

)2

t j

as a function of a p-adic variable t. (p odd). Let

U(t) = F (1/2, 1/2, 1; t)/F (1/2, 1/2, 1; tp).

Then Dwork showed:
1 The series U(t) can be analytically continued to a function

defined in p-adic disk of radius ≥ 1.
2 Let λ0 ∈ P1(Fq)− {0, 1,∞}, q = ps . Suppose that

Hasse(λ0) 6= 0. Let t0 ∈W (Fq) be the Teichmuller lifting.Let
1− a(λ0)X + qX 2 be the numerator of the zeta function of the
elliptic curve y2 = x(x − 1)(x − λ0) defined over Fq. Then:

1− a(λ0)X + qX 2 = (1− α(t0)X )(1− (q/α(t0))X )
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where
α(t) = U(t)U(tp)U(tp2

)...U(tps−1
)

In other words, the unit root of the zeta function of the elliptic
curve is given by a p-adic power series that comes from the solution
to the Picard-Fuchs differential equation of the family of elliptic
curves.
Conceptually, the family f : X → S defines an F -crystal on the
rigid analyic space S(Cp)− supersingular disks. Roughly speaking,
F -crystal = DE (connection) with a Frobenius structure.
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Here are some key points in Dwork’s proof.
1. The truncated hypergeometric series

H(λ) = (−1)(p−1)/2
(p−1)/2∑

j=0

(
−1

2
j

)2

λj
0

is the Hasse invariant = Frobenius mod p of the elliptic curve
y2 = x(x − 1)(x − λ0). This was discovered by Igusa and
generalized by Manin.
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Next
2. Let u be a parameter at the origin of the elliptic curve
E : y2 = x(x − 1)(x − t), regarded as a scheme over
Z[t, 1/2t(t − 1)]. Then expanding the differential

ω =
dx√

x(x − 1)(x − t)
=
∑
n≥1

qn(t)un−1du

Then ∫
ω =

∑
n≥1

n−1qn(t)un

is the logarithm of the formal group Ê .
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Therefore
2 cont. We have Cartier-Honda congruences: This was first
observed by Lazard and Tate, and this gives a connection to the
zeta function of the elliptic curves in the family. For simplicity
assume λ ∈ Z. Then

qmpa(λ)− qp(λ)qmpa−1(λ) + pqmpa−2(λ) ≡ 0 mod pa

For the parameter t = 1/
√

x we have

q2n+1(t) = (−1)n
n∑

i=0

(
−1/2
n − i

)(
−1/2

i

)
t i
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Then: 2 cont. If qp(λ) = Hasse(λ) 6= 0 mod p, then these
congruences show that

lim
a→∞

qmpa+1(λ)

qmpa(λp)

converges p-adically to the unit root of the zeta function of the
elliptic curve y2 = x(x − 1)(x − λ) mod p.
3. Finally we have Dwork’s congruence:

qmpa+1(λ)

qmpa(λp)
≡ F (1/2, 1/2, 1;λ)

F (1/2, 1/2, 1;λp)
modpa
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Dwork set up a general theory of zeta functions of families of
hypersurfaces. This theory related the zeta function to the period
matrices in the family, but this theory was only valid for regular
values of the parameter t, that is, values where Xt is nonsingular.
The Legendre family of elliptic curves is different in this respect:
the expression for the unit root of the zeta function of the elliptic
curves in terms of the series F (1/2, 1/2, 1; t) which is the
holomorphic solution to the Picard-Fuchs differential equation at a
singular point t = 0. This holomorphic solution is the period of the
differential over the vanishing cycle at t = 0.
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Here are the key points: Give a family of hypersurfaces Xλ for
λ ∈ Cp there are finite-dimensional Cp-vector spaces (cohomology
spaces) W (λ), such that
1. For all λ0 with |λ0| ≤ 1 there is a map

α(λ0) : W (λ0)→W (λp
0).

2. If |λ0 − λ1| < 1 there are maps

C (λ0, λ1) : W (λ0)→W (λ1)
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3. The diagram commutes:

W (λ0)
α(λ0)−−−−→ W (λp

0)

C(λ0,λ1)

y yC(λp
0 ,λ

p
1)

W (λ1)
α(λ0)−−−−→ W (λp

1)
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4. If λps

0 = λ0 then the trace of the endomorphism

α(λps−1
)α(λps−2

)...α(λ0)

of W (λ0) is essentially the number of points in

Xλ0(Fps ).

5. The matrix C (λ) = C (0, λ) satisfies a differential equation

dC (λ)

dλ
= C (λ)B(λ)

for a matrix of rational functions (Picard-Fuchs DE).
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Modular forms

The following theorem was essentially known in the 19th century:
Theorem.( Zagier) Let Γ ⊂ SL2(Z) be a subgroup of finite index.
Let f (z) be a (meromorphic) modular form of weight k for Γ
(z ∈ H). Let t(z) be a modular function (=meromorphic modular
form of weight 0) for Γ.
The (many-valued) function F (t) defined by F (t(z)) = f (z)
satisfies a differential equation of order k + 1 with algebraic
coefficients.
The monodromy of the DE is the image of Γ under the kth
symmetric power representation: SL2(R)→ SLk+1(R)
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That is, there is an equation

a0(t)
dk+1F
dtk+1 + ...+ ak(t)

dF
dt

+ ak+1(t)F = 0

with the ai (t) in the function field C(Γ) = C(XΓ) (hence algebraic
functions of the t).
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Examples

Γ1(6).

t(z) =
η(6z)8η(z)4

η(2z)8η(3z)4

is a generator of the function field C(Γ1(6)).

f (z) =
η(2z)6η(3z)

η(z)3η(6z)2

has weight 1.
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The function F (t) defined by F (t(z)) = f (z) satisfies a 2nd order
DE:

t(t − 1)(9t − 1)
d2F
dt2 + (27t2 − 20t + 1)

dF
dt

+ 3(3t − 1)F = 0

This is the PF equation for the universal family of elliptic curves
with a point of order 6:

(x + y + z)(xy + yz + zx) =
1
t
xyz
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The expansion for the solution has all integer coefficients:

F (t) = 1 + 3t + 15t2 + 93t3 + 639t4 + 4653t5 + 35169t6 + ...

Let
F (t2) =

∑
m≥0

c2m+1t2m

Then we have ASDCH congruences:

cmpr+1 − αpcmpr + p2cmpr−1 ≡ 0 mod pr+1
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Where αp = Trace(Frobp | H1(P1, j∗R1π∗Ql ))

π : Y → U, j : U → P1 = t − line,

where Y ⊂ X is the corresponding open subset of the surface

(x + y + z)(xy + yz + zx) =
1
t2 xyz .

This example is due to Beukers and Stienstra.
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The key is that
∫

F (t2)dt =
∑

n≥1 n−1cntn is the logarithm of the
formal Brauer group BrXp of the elliptic K3 surface Xp = X mod p.
The zeta function has the shape:

Z (Xp/Fp,T ) =
1

(1− T )(1− p2T )P(T )

where the polynomial of degree 22 is

P(T ) = det(1− TFrobp | H2
cris(Xp/Zp)).

In the deRham-Witt decomposition

H2
cris(Xp/Zp)) = H2(Xp,WO)⊕ H1(Xp,W Ω1)⊕ H0(Xp,W Ω2)

the last two summands the Frobenius has slopes ≥ 1.
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If p is not supersingular, then H2(Xp,WO) is free over Zp of rank
= the height of BrXp = 1. Moreover, for this example, the
Neron-Severi group has rank 20, which means that the interesting
part of the zeta function is determined by the action of Frobenius
on the transcendental part, H2(Xp,WO)⊕ H0(Xp,W Ω2), of rank
2, and this in turn is determined by the formal Brauer group. In
the ASDCH congruences,

αp = Trace
(
Frobp | H2(Xp,WO)⊕ H0(Xp,W Ω2)

)
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Γ1(7). This was worked out by my REU students in 2010 (Suzanne
Carter, Shaunak Das, Steffen Docken). The family of elliptic curves
is

y2 + (1 + t − t2)xy + (t2 − t3)y = x3 + (t2 − t3)x2

The solution to the PF equation is

F (t) = 1− t + 6t2 − 25t3 + 125t4 − 642t5 + 3423t6 − ...

The coefficients satisfy congruences

cmpr+1 − αpcmpr + p2cmpr−1 ≡ 0 mod pr+1

with αp the trace in parabolic cohomology as before.
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p αp

5 0
11 −6
13 0
17 0
19 0
23 18
29 −54
31 0
37 −38
41 0
43 58
47 0
53 −6
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Symmetric square of the Γ0(8) family of elliptic curves. Also
worked out in the 2010 REU. Here the DE is of third order:

t2(16t2 + 1)F ′′′ + 3t(16t2 + 1)(48t2 + 1)F ′′ + (4864t4 + 256t2 + 1)F ′ + 64t(32t2 + 1)F = 0,

related to a family of K3-surfaces. Solution:

F (t) = 1− 8t2 + 88t4 − 1088t6 + 14296t8 + ...

(Experimentally) these satisfy congruences

cmpr+1 − αpcmpr + p3cmpr−1 ≡ 0 mod pr+1

Where αp = Trace(Frobp | H1(P1, j∗Sym2(R1π∗Ql ))).
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p αp

5 −2
7 24
11 −44
13 22
17 50
19 44
23 −56
29 128
31 −160
37 −162
41 −198
43 52
47 528
53 −242
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The formal Brauer group, namely the functor H2(X ,G∧m), is a
special case of Artin-Mazur formal groups, defined by H i (X ,G∧m).
Stienstra has generalized these methods to AM formal groups in
various situations (complete intersections, cyclic branched
coverings).
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Here is a
Problem. Katz has shown that one can define a unit root part of
an F -crystal for a family X → S . Moreover this unit root crystal
can be reconstructed (locally) from the expansion coefficients of
H0(X ,Ωi

X/S). Hence the unit root part of the zeta functions of the
fibers Xs can be determined by this data.
Can one (or: under what conditions can one) reconstruct the unit
root F -crystals by expansions at singular points of solutions to
Picard-Fuchs differential equations?
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This work continues in the 2011 REU directed with my colleague
Chris Bremer, Students: Cody Gunton, Zane Li, Jason Steinberg,
Avi Steiner, Alex Walker,
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Thanks to

KingFai Lai and Winnie Li!
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