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Everything that we're presenting today has been a real team effort. A lot of people
contributed to the systems we're describing



High-Definition Render Pipeline Design Goals

e Cross-Platform
m PC (DX11, DX12, Vulkan), XBox One, PS4, Mac (Metal)
e Physically-based rendering throughout
e Unified lighting
o Same lighting features for opaque, transparent and volumetric
e Coherent lighting
o All light types work with all materials and with global illumination
o Whenever possible avoid double lighting / double occlusion

& unity

PBR: Material, lighting, camera






Render Pipeline Architecture

e Key components:
o Lighting and material architecture
o GBuffer Design
o Forward / Deferred path features parity (aka Features parity)
o Decal architecture
e Follow up by
o Material overview
o Volumetric lighting

& unity




Lighting Architecture

e Lighting architecture is defined by a loop on the visible scene lights

ﬁ For each Q

\ Evaluate @




Lighting Architecture

e Lighting architecture is defined by a loop on the visible scene lights

For each -Q- I(;\r:;;r(w:tlzl,clmjop can be done
' N “Multipass”

\ Evaluate @ Or GPU

“Single pass”

Evaluate on GPU




Lighting Architecture

e Lighting architecture is defined by a loop on the visible scene lights

Evaluate @ m

Can be optimized with a light partitioning structure (Tile, Cluster...)
for either GPU or CPU path

Such a loop can be optimized with CPU or GPU help to remove lights that don’t affect
the material.



Lighting Architecture

e Lighting architecture is defined by a loop on the visible scene lights

Evaluate @ m

Same for deferred or forward renderer
Only materials properties’ source differ

e =

GBuffer

Note that this light loop is conceptually identical in deferred or in forward. Only the
source of the properties of the material differ. In deferred it comes from the GBuffer
and in Forward it comes from the object uniforms / textures.



Lighting Architecture

e Lighting architecture is defined by a loop on the visible scene lights
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For each light TYPE, evaluate material response



Lighting Architecture

e Lighting architecture is defined by a loop on the visible scene lights

For each -:O-

~ ! ’
’ E ~ \ ” .
! S~ \ Evaluate @
- - .
A~

ﬁ For each .‘('z-_'\,
AT
\ Evaluate @

\@ ﬂ Foreach (7§
S Evaluate @

For performance reasons, in game there is often a coupling between a light type and
the material evaluation response. Like we pre-integrate IBL by the lighting model of

the material.
So we need to do one loop for each light TYPE.



Lighting Architecture

e Lighting architecture is defined by a loop on the visible scene lights
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passes or not
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\ Evaluate @

This series of light type loop is sometime split in different call, performance may vary



Lighting Architecture

e One GPU Light loop in HDRP (Sun, Punctual, Area, IBL, Sky)

For each —:O:—

\ Evaluate @

ﬁ For each _‘(IES
N

\ Evaluate @

For each (&

S Evaluate @

In HDRP we use a single light loop with all the light type. We have Sun, punctual light
(spot, point), area light, IBL, sky.



Lighting Architecture

e Deferred path

ﬁ For each —:Q:—

Deferred material Evaluate @ .
Transparent material

For each (4
Gi ~ &
E \ Evaluate m

GBuffer -
g Foreach N

S Evaluate @

HDRP support both deferred and forward renderer. Let’s take the example of deferred
renderer. We have one deferred material that fill a gbuffer and one transparent
material that use

The same light loop. Unified lighting.



Lighting Architecture

e Forward path

ﬁ For each —9:—
p Evaluate @
Transparent or Opaque material

ﬁ For each _‘(IES
N

\ Evaluate m

g Foreach D
\ Evaluate @

Example of forward renderer. We have forward opaque and transparent material



Lighting Architecture

e Mixed Deferred and Forward path

Forward Material (Like Cloth)

ﬁ For each —:Q:— Q

N c
Deferred material valuate
Transparent material

For each (4
Gi ~ &
E \ Evaluate m
B

A
GBuffer -
g Foreach N

S Evaluate @

HDRP also support both forward and deferred at the same time. In this case, in
addition to what we have seen for deferred path, we also have forward opaque

material.



Lighting Architecture

e Can switch to full forward

Forward Material (Like Cloth)

ﬁ For each —:O:— Q
\ Evaluate @ ¢

i, Transparent Material
For each .
ﬁ ,CIE}
- Evaluate m
B

g For each "?\ Forward material
(Was deferred Material)

S Evaluate @ m

A

We can switch (dynamically or not) to full forward



Material Architecture

e Artist-friendly data vs Engine data

Forward material
Artist-Friendly Data Engine Data

Q ConvertToEngineData() @

B

\II

For each Q‘

Deferred material (Can switch to Forward + Transparent path) =

Artist-Friendly Data \
Engine Data Evaluate
Q ConvertToEngineData()

T

GBuffer

20

This schema show how we write a material in HDRP to work with our deferred and
forward architecture. These are guidelines. And we introduce the concept of artists
friendly data and engine friendly data.

Let’s say that the inputs fill by an artists in a Ul or shader graph is artists friendly data.
Like Smoothess. We add a conversion function to engine data (For example
roughness), that the lighting engine is able to used.

The Gbuffer is then just an intermediate storage. It can be compressed.

Material of HDRP need to follow this material guidelines to fit in the lighting
architecture.



Lighting Architecture

e Remember

ﬁ For each —:O:—
\ Evaluate @

For each (>
~ &
\ Evaluate

g Foreach D
\ Evaluate @




Lighting Architecture

e With Volumetric material

ﬁ For each —:O:—
p Evaluate '

For each (>
~ &
\ Evaluate '

g Foreach D
S Evaluate ’

With volumetric the concept is exactly the same, except we used volumetric material
instead (absorption, scattering)



Lighting Architecture

e With Volumetric material

ﬁ For each —:O:—
p Evaluate '

For each (>
- ~ &
\ Evaluate '
VBuffer )
ﬁ Foreach 7§%

S Evaluate ’

Similar to GBuffer we use VBuffer as input of volumetric material for evaluation.



Lighting Architecture

e In practice: Decoupled lighting pass at lower resolution

Foreach|||‘ ‘ ‘

ﬁ For each —Q

. Evaluate '

E Apply on Q
ﬂ For each .‘@")
S~

VBuffer

\ Evaluate '

ﬁ Foreach (%
. Evaluate ’

And in practice we decouple the lighting pass and evaluate for each cell of a froxels.
Then apply the result on the opaque and transparent material in a separate pass.



Lighting Architecture

e Optimize with both Tile and Cluster approaches
e Goal
o Focus on removing false positives
m Ex: Narrow shadow casting spot lights
o False positives are more expensive in lighting pass
m Light culling execute async during shadow rendering
» Deferred lighting pass is not running async
m Move cost where it can be hidden
m High register pressure in lighting pass

& unity

1. Major emphasis on aggressive (but fast) removal of false positives even for spot
light with sphere cap.
- Important since spot lights are often shadow casting and narrow.
- List building using basic bounding sphere testing is highly insufficient.
2. All list building work is absorbed by leveraging asynchronous compute.
3. False positives are much more expensive to deal with during lighting rather than
early on.
- Final lighting shader has higher loop complexity and greater register pressure.
- Final lighting shader cannot leverage asynchronous compute during rendering of
shadow maps.
4. The lists can be used for either deferred or forward or both.
5. Lists are delivered in order of increasing index to preserve order by type which
helps reduce thread divergence during lighting.



Lighting Architecture

e Hierarchical approach
1. Find screen-space AABB for each visible light
2. Big tile 64x64 prepass
e Coarse intersection test
3. Build Tile or Cluster Light list

e Narrow intersection test

1. Find screen-space AABB for each visible light
2. Big tile 64x64 tile pre-pass. Use AABBs for initial early out (2D no depth).

- Follow up with exact intersection test between tile and convex hull.

- Use bounding sphere as an extra testing criteria (helps with point lights and sphere
capped spot lights).

Basically first comes AABB pass, then comes big tile pass which uses what AABB
pass produced and then comes FPTL and Clustered list building passes which use
both what big tile pass but also what AABB pass produced fptl and clustered both use
the list of potential tile overlaps generated in big tile prepass

they both use the AABBs to test the ones left in the list from big tile prepass

the convex hull is the oriented bounding box but with 2 scale values so we can
squeeze the top 4 vertices along separate axis X and Y to create either a pyramid or
a wedge when the scales are set to 1.0 it's just an obb if they are less than 1.0 they
get scaled inward. If they both go all the way in it becomes a pyramid if only one goes
in its a wedge and then the bounding sphere helps give us the sphere capped part of
the spot light, the obb and the two scales is what we use as the convex hull but we
also use the bounding sphere as an extra constraint for rejecting more tiles which is
important for both point lights but also for the sphere cap in both FPTL and clustered
they loop over what the big tile pass generated per 64x64 tile as a list. They both



check AABB:s first against the list and build up a coarse list in LDS. Then they both
follow up with checking if the silhouette of the bounding sphere overlaps the tile for
each light in the coarse list. finally fptl does fine pruning and clustered checks clusters
against the remaining lights

when bigtile prepass checks AABBs it's 2D and against 64x64 tiles. When fptl does it
for instance it's 3D aabb test and against 16x16 tiles

for fptl it's particularly tight since it only needs it to cover opaque pixels so we can
reject a lot in that early pass alone by including that min/max depth in the intersection
test so big tile only does .xy in the aabb test. fptl does .xyz (edited) the sphere overlap
against tile is 2D overlap test in all cases but of course you can remove a little extra
because it's a smaller tile so | decided to do the test again because it's pretty cheap
for clustered the second AABB test is still 2D but it prunes a little extra since it runs on
32x32 instead of 64x64 and it's a very fast test



Tiled Lighting

e 3.Tile 16x16
o Based on Fine Prune Tile Lighting (FPTL) [Mikkelsen 2016]
e Build FTPL light list for tile 16x16
o Fine pruning: Test if any depth pixel is in volume
o Aggressive removal of false positives
o One light list per tile. Allows attributes to be read into scalar registers

& unity

FPTL implementation
1. For FPTL we use 16x16 tiles with no clustering.
2. First do trivial AABB test (3D). Then do tile vs. bounding sphere test.
big tile only does .xy in the aabb test. fptl does .xyz
3. Fine pruning removes any light that does not have at least one opaque pixel/point
inside its true volume.

- Aggressive removal of false positives but works for opaque only.
4. Since all false positives are removed and since FPTL is for opaques only we write
one list per tile.

- During deferred this allows light attributes to be read into scalar registers instead
of vector registers since all pixels in the tile visit the same list.

- No thread divergence during deferred since all threads processing the tile read the
same list.

What is new compare to the article referenced:

1. Clustered

2. big tile prepass

3. fast silhouette of sphere vs. 2D tile overlap test



Clustered Lighting

e 3. Build 32x32 tiles with 64 clusters
o Use geometric series for cluster position and size
o Half of cluster (32) consumes between near and max per tile depth
m Good resolution in visible range
m Permit queries behind max per tile depth
e Particles, volume, FX

Clustered implementation
1. Cluster resolution is 32x32 tiles with 64 clusters.
2. Performs accurate but fast cluster vs. light intersection test - even for sphere
capped spot lights.
3. Use geometric series to establish cluster position and size.
4. Common ratio established per tile such that half of the clusters (32) are consumed
between near plane and max. opaque depth.

- Provides highly optimal cluster resolution in the visible area while still permitting
gueries behind max. opaque depth (for things like particles, volume lights and
transmission fx).

(3 + 4) it's choosing the parameter for the geometric series such that it has spent
exactly half of the clusters by the time it reaches max opaque depth in the tile



Lighting Architecture

e Performance
s PS4 @ 1080p

Scene (Time in ys) Forward Tile Forward Cluster
Opaque (around 30 punctual lights, 3 area
lights, 5 environment lights) 5675.5 7135.9

e Note: MSAA can have non negligible impact (not measure here)

& unity




Lighting Architecture

e In HDRP
m Transparent materials use cluster
m Deferred materials use FPTL
m Forward opaque materials can choose between FPTL or cluster




Lighting Architecture

e Tile / Cluster Performance (no MSAA)
o 1080p PS4: Tile + Cluster list generation

Scene (Time in ps)  Light count Total ScreenBounds AABB Big Tile Build Tile light list  Build Cluster light list
Punctual ights 10 955.755 167.119 25.788 359.718 403.13
Punctual lights 50 1006.902 169.906 49.681 370.274 417.041
Punctual lights 100 1095.595 170.902 91.869 387.872 444,952
Punctual lights 2646.833 170.367 390.881 701.986 1383.619 I
Mixed lights 954.28 168.348 37.324 359.753 388.855
Mixed lights 1030.835 166.841 80.266 ar1.427 412,301
Mixed lights 1445.809 175.426 241.569 456.004 572.81
Mixed lights 4475.837 1794 1059.159 1100.698 2136.58

Entry cost is expensive: 1ms, almost same cost for 1 or 10 light, but it scale well.
Scene on the side is display with our debug tile lighting mode
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& unity

o Material classification

e Deferred renderer [Coffin 2011][Garawany 2016]
o Light classif

e Want to reduce VGPR pressure

e Forward renderer




Lighting Architecture

e Classification Performance
o 1080p PS4 - Deferred Lighting pass

Deferred Lighting Pass Deferred Lighting Pass
Light count without classification  with classification Gain
664.911 468.459
1032.637 668.69
971.958 555.371
2575.065 1227.77

758.027 560.903
935.974 679.763
1819.571 1302.828
4973.466 3595.635




GBuffer Design

e GBuffer design constraints

m Do not support blending
e Allow aggressive compression scheme
o Ex: Compress normal
e Avoid constraint with blendable parameter location
o Ex: Smoothness can be in alpha channel

m Static diffuse lighting (Lightmaps / Lightprobe)
m Static shadow masks

Static diffuse lighting is sampled during GBuffer pass



GBuffer Design

RTO RGBA8 sRGB BaseColor.rgh Specular Occlusion
RT1 RGBA8 Normal.xy (Octahedral 12/12) Perceptual Smoothness
RT2 RGBAS Material Data FeaturesMask(3) / Material Data .
RT3 RGB111110f Static diffuse lighting
(Optional) RT4 RGBAS Extra specular occlusion data Ambient Occlusion Light Layering Mask
(Optional) RT5 RGBAS 4 Shadow Masks

e Ambient occlusion apply on static lighting during GBuffer pass if no
RT5

o This implies double occlusion when combined with SSAO
Q’ugtgferred Material classification use Fsz only

Default to 4 RT for XboneOne

Light layering is light linking, mean linking a light to a set of objects, so it only affect
those objects.

RT4 can be dynamically allocated. For example it could be enabled only when doing
in game cinematics but not during regular gameplay



Features Parity

e Engine features often vary with selected rendering path
o Want SSAQO? SSR? - Use deferred path

e HDRP supports a mix of Deferred and Forward Materials
o Need the same features to be supported

e HDRP is designed to have features parity from the start
o Allows users to select based on their performance need

SSR: Screen space reflection
SSAOQ: Screen space ambient occlusion



Features Parity

e Features required in deferred and forward

o Light layerings a.k.a Light linking
m Light Mask available from light data =

Evaluate

m Deferred: Object Mask Store in RT4 (On demand)
m Forward: Object Mask use Constant Buffer syl
For each - (&

Evaluate

Light layering can be enabled per camera, meaning that we allocated an extra RT

only when required. Typically for in game cinematic
The blue dragon is affected only by blue light and the grey in the middle of the white

is not affected by reflection probe



Features Parity

e Features required in deferred and forward
o SSAOQ, SSR, Deferred normal bias shadow
m |.e lighting features
m Must be processed before lighting pass

Depth Prepass Lighting Features Deferred Lighting

SSR: Screen space reflection
SSAO: Screen space refraction



Features Parity

e Deferred: Use data from GBuffer

Depth Prepass Lighting Features Deferred Lighting
Normal \ j




Features Parity

e Deferred: Use data from GBuffer
e Forward: Output data from Depth Prepass

Normal /

Depth Prepass GBuffer Lighting Features Deferred Lighting
Normal \ j

For forward path we require to output data during depth prepass. Note: for opaque
forward material we always perform a depth prepass in HDRP



Features Parity

e Deferred: Use data from GBuffer
e Forward: Output data from Depth Prepass
e Must use same data encoding

Normal /

Depth Prepass GBuffer Lighting Features Deferred Lighting

Normal \ j
Standard n I A

RT1 RGBA8 Normal.xy (Octahedral 12/12) Perceptual Smoothness

& unity




Features Parity

e Features required in deferred and forward
o Screen-space subsurface scattering (SSSSS)
m Must be processed after the lighting pass

Depth Prepass Deferred Lighting 8SS8SS




Features Parity

e Features required in deferred and forward
o Screen-space subsurface scattering (SSSSS)
m Must be processed after the lighting pass
m Separate diffuse (RGB111110f) and specular lighting (RGBA16f)

Depth Prepass Deferred Lighting 8SS8SS




Features Parity

e Deferred: Use Data from GBuffer

Depth Prepass Deferred Lighting 8SS8SS

SSS Data &




Features Parity

e Deferred: Use Data from GBuffer
e Forward: Output Data from Prepass ? - Costly ?

SSS Data ? //

—

Depth Prepass Deferred Lighting 8SS8SS

SSS Data &

Outputing SSS data during prepass will make prepass expensive. We prefer to avoid
it.



Features Parity

e Deferred: Use Data from GBuffer
e Forward: Output Data from Forward Opaque (For SSS Material)

SSS Data { \

Depth Prepass Deferred Lighting 8SS8SS

SSS Data &

Note: For XBoneOne we aim at keep 4 RT 32 bit. This is what we get. 1RT diffuse, 2
RT specular , 1 RT sss data



Features Parity

e Deferred: Use Data from GBuffer
e Forward: Output Data from Forward Opaque (For SSS Material)

SSS Data { \

Depth Prepass Deferred Lighting 8SS8SS

SSS Data &

¢ Must use same data encoding

-

RTO RGBAS sRGB BaseColor.rgb Specular Occlusion

& unity

Standard




Features Parity

e Deferred: Use Data from GBuffer
e Forward: Output Data from Forward Opaque (For SSS Material)

SSS Data { \

Depth Prepass Deferred Lighting 8SS8SS

SSS Data &

¢ Must use same data encoding

-

RTO RGBAS sRGB BaseColor.rgb Diffusion Profile / SSS Mask

& unity

Standard

Note: This is discuss later but in case of SSS material, we store diffusion profile and
SSS Mask and not specular occlusion in RTO, specular occlusion is store in RT2 for
SSS material.



Opaque Material Render Pass

¢ Stencil usage
o Stencil cleared to 0 at beginning of the frame
o Deferred Materials tag stencil

GBuffer
Depth Prepass Regular Deferred Lighting Forward Opaque SSSSS
SplitLighting




Opaque Material Render Pass

¢ Stencil usage
o Deferred Lighting pass
m Don't do lighting on Forward Material and Sky
m SplitLighting done per tile

Deferred Lighting
Test Regular
GBuffer
Depth Prepass Regular Forward Opaque SSSSS
SplitLighting Deferred Lighting
Test SplitLighting




Opaque Material Render Pass

¢ Stencil usage
o Forward Opaque tag stencil for SplitLighting
o Process SSSSS for SplitLighting tag

Deferred Lighting
rorere Opaque
GBuffer
SS8S8Sss
DER e I Test SplitLighting
e Tty Deferred Lighting Forward Opaque
Test SplitLighting Tag SplitLighting

Regular




Opaque Material Render Pass

e Depth Prepass o Tile deferred Lighting

n Deferred material: Optional o Indirect dispatch for each shader variants
m Forward material: Output Normal Buffer m Read stencil

o GBuffer e No lighting: Skip Forward material and sky
m Tag stencil for regular lighting or split lighting e Regular lighting: Output lighting

o Render Shadow o Split lighting: Separate diffuse and specular
m Async Light list generation + Light / Material e Forward Opaque

classification o (Optional) Output BaseColor+Diffusion Profile

= Async SSAO (Use Normal buffer) o (Optional) Output + Tag stencil for split lighting
= Async SSR (Use Normal buffer) e SS Subsurface scattering

o Deferred directional cascade shadow o Test stencil for split lighting
u (Use Normal buffer for normal shadow bias) o Combine lighting

& unity

Here are all the pass we have speak about, | wont go into the detail of them, if you
are interested, slides will be availables after the conferences.



Decal Architecture

e Desired decal features Projector:
o Both deferred and forward
o No constraints on GBuffer layout
o Blend properly with material (PBR)
o Affect static lighting
Mesh decals:
o Support transparents

o Support normal orientation fading

Normal orientation fading is desired by the artists to avoid artifacts when projecting
decals along edge that become stretched. Goald is to smoothly out the decal in this
case but this require the underlying normal



Decal Architecture

e 3 possible approaches
o ‘Classic’ deferred decals
m Blend attributes within GBuffer directly
o DBuffer (Decal Buffer)

m Blend attributes into a separate DBuffer
m Apply DBuffer before lighting in regular pass

o Cluster decals [Sousa 2016]
m Decals are like clustered lights
m Apply before lighting in regular pass

& unity

DBuffer is the decal buffer approach use in Unreal engine 4 (There is no presentation
about it that | am aware). It is similar to GBuffer but for decals
[Sousa 2016] Tiago Sousa and Jean Geffroy. The devil is in the details: idTech 666.



Features: Deferred Decal Cluster Decal

Arbitrary Gbuffer
Layout

Blending Mode Many
(But variant hell)

Affect static lighting

Support deferred

and forward
Support Transparent
Support Decal Mesh

Support Normal
fading

& unity

No silver bullet!
Note: We output normal buffer for forward material during prepass, so we can’t do
normal fading with DBuffer for forward path



Decal Architecture

e HDRP use DBuffer for Opaque Material
o Requires full depth prepass
o Render Projector and Mesh Decals before GBuffer

Depth Prepass GBuffer Deferred Lighting




DBuffer Design

o DBuffer approach uses Decal alpha compositing

o Same as half resolution particles compositing [Cantlay 2007]
e Supports separate attribute blending

o Opacity per attribute

o Be careful packing for AO and Metal - Optional support

RTO RGBA8 sRGB DiffuseColor.rgb DiffuseOpacity
RT1 RGBAS Normal.rgb NormalOpacity
RT2 RGBAS8 [WEET AO Smoothness SmoothnessOpacity

RT3 RG8 (Optional) MetallicOpacity AOOpacity

& unity

To support separate attribute blending, each attributes need to have an opacity. The
DBuffer layout here show how we have packed the attributes and the opacity.
Note: Multiply blend mode is not supported. We use lerp only.



Decal Architecture

e Deferred: Use DBuffer

Depth Prepass GBuffer Deferred Lighting




Decal Architecture

e Deferred: Use DBuffer
e Forward: Use DBuffer

_—

Depth Prepass GBuffer Deferred Lighting




Decal Architecture

e Deferred: Use DBuffer
e Forward: Use DBuffer - Output Normal Buffer in DepthPrepass?

e Lighting Features? / f—\

Depth Prepass GBuffer Deferred Lighting

Normal

\

Remember that for lighting features we use normal buffer during prepass. But in this
case the DBuffer don’t affect the normal for the lighting features effect



Decal Architecture

e Deferred: Use DBuffer
e Forward: Use DBuffer - Output Normal Buffer in DepthPrepass
e Patch Normal Buffer after DBuffer

Depth Prepass Palcg\ull:lfgrrmal GBuffer Deferred Lighting
Normal




Decal Architecture

e Deferred: Use DBuffer

e Forward: Use DBuffer - Output Normal Buffer in DepthPrepass
e Patch Normal Buffer after DBuffer

e Stencil use to optimize patch Normal buffer

Depth Prepass DBuffer s
Tag DecalNormal Tag Decal Tost Docal and GBuffer Deferred Lighting Forward opaque

DecalNormal




Opaque Material + Decal Render Pass

e Depth Prepass
m Forward material: Output Normal Buffer
e Tag stencil for DecalNormal
o DBuffer
m Tag stencil for Decal
o Patch Normal Buffer
m Test stencil for Decal and DecalNormal
o GBuffer
m Tag stencil for regular lighting or split lighting
o Render Shadow
m Async work
o Deferred directional cascade shadow

m Use normal buffer for normal shadow bias

& unity

o Tile deferred Lighting
o Indirect dispatch for each shader variants
m Read stencil
e No lighting: Skip Forward material and sky
e Regular lighting: Output lighting
o Split lighting: Separate diffuse and specular
e Forward Opaque
o (Optional) Output BaseColor+Diffusion Profile
o (Optional) Output split lighting
e SS Subsurface scattering
o Test stencil for split lighting
o Combine lighting

Here are all the pass we have speak about, | wont go into the detail of them, if you
are interested, slides will be availables after the conferences.

Note: now depth prepass is mandatory.

Reduce all aysnc work (SSR, SSAO), in label async work.

This is our Render Frame allowing features parity betweend deferred and forward.



Decal Architecture

e HDRP uses Cluster decal for transparent
o Projector only
o Optional
o Supports separate attribute blending
o Cluster Decal list prepared like Cluster Light list
o Gather textures in one Atlas

- "

&
‘(_ =

N

Decal don't affect transparent mesh Decal affect transparent mesh

& unity




Decal Architecture
e HDRP uses Cluster decal for transparent

Forward Transparent pass

GPU light culling




Decal Architecture

e HDRP uses Cluster decal for transparent
o Accumulate Decals modification in a loop

m Can't use regular UVs for mip

m Use world space position derivative instead

f positionRWSDdx = ddx(positionRWS);
float3 positionRWSDdy = ddy(positionRWS);

for (uint i = 8; i < decalCount; i++)
{
DecalData decalData = FetchDecal(decalStart, i);

3 positionDSDdx = mul(worldToDecal, positiol
oat3 positionDSDdy = mul(worldToDecal, f 4(positionRk
float2 sampleDiffuseDdx = positionDSDdx.xz * decalData.diffuseScaleBias.xy;

float2 sampleDiffuseDdy = positionDSDdy.xz * decalData.diffuseScaleBias.xy;
float lodDiffuse = ComputeTextureLOD(sampleDiffuseDdx, sampleDiffuseDdy, _DecalAtlasResclution);

Note that to sample the correct mip with cluster decal it is not trivial, we can used the
derivative of the position convert to decal space. Take care of the atlas coordinate.



Decal Architecture
e GPU decals Performance number (Simple scene to highlight entry cost)

Number of Decals DBuffer pass GBuffer pass Forward Transparent pass using Atlas

0 (Decals off) . 2.87549

0.018079 . 3.217145

0.450224 . 3.601721

1.40057 -
2.675754 . X (not supported)

Decals off mean with have remove the decals code. Goal is to measure the overhead
induce by the DBuffer and cluster approach when there is 0 decals and when there is
no decal code.

As we can see currently with our approach there is extra cost induced that is non
negligeable. But then it scale well. Transparent material can chose to receive or not
deals.

For DBuffer approache we perform an extra step of ‘decal classification’ that save a
bit of performance.

These measurement have been done on a scene compose of multiple simple objects.
Mean the decals that require to fetch multiple textures hurt a lot. With real world
scene with complex layering where the material have plenty of ALU and fetch
severals tetures already the difference between decals off and decals 0 is way lower.
Also the extra cost show here is for the whole scene.



Opaque Material Render Pass

e Additional optimization
m Deferred directional cascade shadow
e Project cascade shadow map in screen space
e Better wavefront occupancy outside of the lighting pass
m Optimize opaque alpha tested material
e Render opaque alpha test during prepass
e Disable alpha test and use Z-equal during GBuffer or Forward

[ Deffered Directional Shadow (Deffered) Alpha Pass (Deffered)

LightPass | 3 GBuffer

On but At start

The test scene for performance number are a typical area of our demo Fontainebleau
with various foliage and tree + a complex layered ground with some tessellation.






HDRP BRDF

e Lit shader
o Default shader of HDRP
o Deferred Material (Can switch to Forward Material)
o Sum of material features




HDRP BRDF

e Lit shader
o Diffuse term: Burley's diffuse a.ka. Disney Diffuse [Burley 2012]
o BaseColor/Metallic parametrization




HDRP BRDF

e Lit shader
o Diffuse term: Burley's diffuse a.ka. Disney Diffuse [Burley 2012]
o Or DiffuseColor/SpecularColor parametrization




HDRP BRDF

e Lit shader
o SSS term: Disney SSS




HDRP BRDF

e Lit shader
o Translucent term: based on Disney diffuse




HDRP BRDF

e Lit shader
o Specular term: Multiscattering Isotropic GGX [Heitz 2016]




HDRP BRDF

e Lit shader
o Specular term: Multiscattering Anisotropic GGX [Heitz 2014]
m A hack




HDRP BRDF

e Lit shader
o Iridescence term: Replace Fresnel term [Belcour 2017]




HDRP BRDF

e Lit shader
o Clear coat specular term: Multiscattering Isotropic GGX
m A hack




HDRP BRDF

e Lit shader
o Material ID in HDRP: Bitmask of Material Features
o Ex: Standard + Translucency
o Ex: Standard + ClearCoat + Anisotropy
o Ex: Standard + Iridescence + Subsurface scattering
e GBuffer constrain
o Exclusive Material features due to storage space
o Iridescence, Anisotropy and Subsurface scattering / Translucency

& unity




GBuffer Design

e Standard
Standard

RTO RGBAS sRGB BaseColor.rgb Specular Occlusion
RT1 RGBA8 Normal.xy (Octahedral 12/12) Perceptual Smoothness
RT2 RGBA8 FresnelO.rgb FeaturesMask(3) / CoatMask(5)

e Clear coat available with all variants
e No metallic — Decompress to Fresnel0
o Optimization + Handle both parametrization (Metallic / Specular
color)

& unity




Anisotropy

e Anisotropic GGX [Heitz 2014]
o With height-correlated visibility term
o Simplification [McAuley 2015] + Optimization

float D_GGXAnisoNoPI(flo BdotH, float NdotH, float roughnessT, float roughness8)
float a2 = roughnes:

floatd v = . * pdotH, a2 * NdotH);

float s = dot(v, v);

urn INV_PI * a2 * (a

at V_SmithJointGGXAniso(float Tdotv, float Bdotv, float Ndotv, float Tdotl, float Bdotl, float Ndotl, float roughnessT, float roughnesst)
real lambdaV = NdotL * length(float3(roughnessT * TdotV, roughnessB * BdotV, NdotV));
real lambdalL = NdotV * length(float3(roughnessT * Tdotl, roughnessB * Bdotl, NdotL));

turn 0.5 / (lasbdav + lambdal);

[Heizt 2014] Understanding the Masking-Shadowing Function in Microfacet-Based
BRDFs

[McAuley15] S. McAuley, The rendering of far cry 4, Cedec 2015



Anisotropy

roughnessT
roughnessg

e Revisit the normal vector hack from [Revie 2011][McAuley 2015]
o Support tangent and bitangent stretching
o Modify roughness use to fetch IBL texture mip

o Eye-ball the magic number

iedNormalandRoughn
at iblPerceptualRough

nDirWS = (anisotropy >= 0.0) ? bitangenthS : tangenths

aturate(1.5 * sqrt(perceptualRoughness));

[Reviell] D. Revie, Implementing Fur Using Deferred Shading, GPU Pro 2
[McAuley15] S. McAuley, The rendering of far cry 4, Cedec 2015

Hack purely empirical :)



Normal vector Hack
\‘A

Use this calibration cubemap to check the stretching
Anisotropy left to right: -1 to 1
Perceptual Smoothness bottom to top: 1 to 0



Reference (In engine)
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Looks rather incorrect, but with high frequency cubemap....



Normal vector Hack
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Looks ok and there is almost something that (from far) could looks like reference...
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in the future we would like at anisotropic filtering instead of this hack.



GBuffer Design

e Anisotropy
Anisotropy

RTO RGBA8 sRGB BaseColor.rgh Specular Occlusion

RT1 RGBA8 Normal.xy (Octahedral 12/12) Perceptual Smoothness
RT2 RGBA8 Anisotropy Tangent frame angle(11) / Metallic(5) FeaturesMask(3) / CoatMask(5)

e Use the angle between the actual tangent frame and a default one

tation angle of the actual tangent frame wi pect to the default t(inGBuffer2.b, 8, unused, tangentFlags);
dot(tangentws, frame[1]); tion angle of the actual tangent frame wit
dot(tangentws, frame[0]); tangentFlags;
inFrame) < abs(cosFrame) ? 4 : ©; in = tangentFlags & 4;
quadrant ? ) | ((cosFran 22:0); inGBuffer2.g *
a ximat t sqre(l - sin0rG
oreSin ? sinOrCos

lo inOrCos = min(abs(si » abs(co: * sqrt(2);
outGBuffer2.rgb = float3 * @.5 + 0.5, sinOrCos,

?
= storeSin ?
(quadrant & 1) ?
(quadrant & 2) ?

tangentws Frame * frame[1] + cosFrame *
bitangentws = cross(frame[2], frame[0]);




Clear Coat

e Not physical - Simplified approach
o Isotropic GGX on top of base
o Fixed index of refraction (IOR) of 1.5 (FO of 0.04) and roughness of 0.03
o Calculate base specular with FO accounting for coat interface
m Game used Schlick Fresnel with input FO (i.e Specular Color)
e F0 in game is calculated with air (IOR 1) interface

AIRIOR 1

AIRIOR 1 CLEAR COATIOR 1.5




Clear Coat

e For dielectric can adapt base FO for Coat (IOR 1.5) interface with

IorToFresnele(float transmittedIor, float incidentIor) { return Sq((transmittedIor - incidentIor) / (transmittedIor + incidentIor)); }
Fresnel@Tolor(float f@) { return ((1.0 + sqrt(fe)) / (1.e - sqrt(fe)); }
InterfaceToF@ForClearCoat15(float f@) { IorToFresnel@(FresneleTolor(fe), 1.5); };
(onve"‘;‘é;o’;«i’lnt;'fa(eTc’B:c"Cie’a’(oatlS‘vast(f';ca‘tkfa) “etu"n‘;a(uratve(-BAéZ;ESGS #fB "(.6A3£6846 + (©.978946 - ©.283835 * fe) * fe))));
o For conductor require convolving spectral complex IOR
o ldea
m Calculate reference for IOR 1.5 interface [Lagarde 2011]

m Try compare with above formula for conductor

[Lagarde 2011] Sébastien Lagarde. Feeding a physically based shading model.
FO is FresnelO i.e reflectance at incident angle.



Clear Coat

e Given that the cost it is not so bad for runtime perf
o Error increases with lower value
o Use this approach to update base FO when clear coat enabled

FO for air interface FO for IOR 1.5 interface lorToFresnel0(Fresnel0Tolor(fresnelD), 1.5)
G G
Silver 0.959915 1532 ). 9 0.893812 57 0.940477

Aluminium . 0.921454 2 74331 7 .89. 7 8 0.884564 0.888933

=1

Gold 0.765557 1 2 7! iv 0 0669332 0.18447

Chromium L 0.556114 Si ) 0.411383 0.409266

Copper 0.637427 . 4 0.507081 0.391058

Relative error (%)
Silver 0.288954744|0.5496602956|  2.0274: 5
Aluminium 0.2529631437)0 3212702062 0.457437588
Gold 7.956633186 20 68424357
Chromium 2.803135662| 2902197182 475208583
Copper 0.09922928709| 7.659739522| 10.80979989




Clear Coat

e For all light types
m Calculate base specular with FO accounting for coat interface
m Calculate Fresnel term for clear coat
m Apply approximate energy conservation on base
m Add coat specular contribution to base specular

rAirInterfaceToF@ForClearCoatlSFast(fresnele);

tF = F_Schlick(CLEAR_COAT_F®, LdotH);

lar *= 5q(1.0 - coatF); scale base specular for ingouing and outgoi

= DV_SmithJointGGX(NdotH, NdotL, NdotV, CLEAR_COAT_ROUGHNESS);
baseSpecular += coatF * DV;

o IBL: Use Schlick Fresnel with NdotV + Extra IBL fetch
& unity

Area Light use an extra LTC calculation
In the future we will use a more physical way based on our stacklit shader approach






Multiscattering GGX

e Improve energy conservation
o Lack of multi-scattering in GGX formulation
m Up to 60% light lost (rough case) on furnace test (uniform HDRI)
e Current trend is to approximate with an added compensation term
o [Kulla 2017] [Hill 2018]
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Multiscattering GGX

e [Heitz 2016] provided ground truth behavior
o Rougher is more saturated for both diffuse and specular
o Simulation show that bounce lobes are similar

Conductor

1st bounce 2nd bounce 3rd bounce
E, = 0.561 E, =0.389 E, =0.049

P Ps (I E = ed

simubated

m Implies that the scale factor on single scattering GGX is enough

& unity

[Heitz 2016] Eric Heitz, Johannes Hanika, Eugene d’Eon and Carsten Dachsbacher
Multiple-Scattering Microfacet BSDFs with the Smith Model



Multiscattering GGX

e Credit Emmanuel Turquin
e Scale factor must depend on Fresnel

P(wo s Wi ) = Pss (wo-; Wy ) + Fms kms (wo )pss (wm Wi )

e With s (wo) = - And Ess(w,) = jQ p(wo, w;)|wi - n|dw;

e Fresnel term is average cosine weighted Schlick Fresnel in HDRP

(1+20F0)

5 ~ F0

Ens ~ R-. =2 J;'l F(p]pd,u =

F_{mshapprox F_{ss}=2\int_{O}{1}F(\mu)\mu \mathrm{d}{\mu } = \frac{(1 +
20F0)}{21\approx FO

E_{ss}({\omega_o})=\int_{\Omega_i} \rho({\omega_o}, {\omega_i}) |{\omega_i \cdot
n}| \mathrm{d}{\omega_i}

k_{ms}({\omega_o})= {\frac{1 - E_{ss}({\omega_o})HE_{ss}({\omega_o})}}

\rho (\omega_o, \omega_i) = \rho_{ss} (\omega_o, \omega_i) +
F_{ms}k_{ms}(\omega_o) \rho_{ss} (\omega_o, \omega_i)



Multiscattering GGX

e Apply factor at end of lightloop on both direct and indirect specular
o Work as it is a scale of original GGX lobe
o Store Ess(wo) in a texture. Share with cubemap preintegration.

specularLighting = lighting.direct.specular + lighting.indirect.specularReflected;

float3 prefFd E_TEXTURE2D_LOD(_PreIntegratedFGD_GGXDisneyDiffuse, s_linear_clamp_sampler, float2(NdotV, perceptualRoughness), @).xyz;
float reflectiv prefGD.y;

cpecularLighting *= 1.0 + fresneld * (1.9 / reflectivity) -
e No multiscattering for Diffuse term
o Disney diffuse is empirical and not energy-conserving

m No darkening with increased roughness

& unity




A B B B R B

No multiple scattering

1st colum is dieletric pure white - Diffuse term here is Disney diffuse
2nd colum is FO = 1 - Conductor

3nd is FO = gold = 1 - Conductor

3nd is FO = copper = 1 - Conductor
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With multiple scattering

1st colum is dieletric pure white - Diffuse term here is Disney diffuse
2nd colum is FO = 1 - Conductor

3nd is FO = gold = 1 - Conductor

3nd is FO = copper = 1 - Conductor



No multiple scattering

1st colum is dieletric pure white - Diffuse term here is Disney diffuse
2nd colum is FO = 1 - Conductor

3nd is FO = gold = 1 - Conductor

3nd is FO = copper = 1 - Conductor



With multiple scattering

1st colum is dieletric pure white - Diffuse term here is Disney diffuse
2nd colum is FO = 1 - Conductor

3nd is FO = gold = 1 - Conductor

3nd is FO = copper = 1 - Conductor



Anisotropy with no multiscattering



Anisotropy with multiscattering



Anisotropy with no multiscattering => We are using fake anisotropy with stretch hack,
so the visual above is exactly the same than for no anisotropy.




Anisotropy with multiscattering perfectly energy conserving! Totally fake but visual
result isn’t bad.




Multiscattering GGX

e Made comparison with Mitsuba for validation

e Note: Mitsuba use spectral complex gold IOR + have inter-reflection

< 4 0

Mitsuba

Top HDRP, bottom Mitsuba

Comparison with Mitsuba is not so bad. But it is not simple to do fair comparison as

Mitsuba is way more accurate and include light transport (reflection of sphere in
sphere).



Material Optimization

e Ess(wo) Can be shared with other algorithm
e Re-arrange cubemap preintegration FGD term [Karis 2013]
FGD = [, (FO+ (1 - F0)* (1— |V - H|)%)p(V, L)|L - N|dL
FGD = (1—F0) * [, (1 — |V - H|)*p(V,L)|L- N|dL + FO* [, p(V,L)|L- N|dL
FGD=(1—-F0)*xxz+ F0xvy
e FGD.y use for
o Prelntegrated FGD
o Multiscattering
o Area Light: LTC Fresnel Approximation [Hill 2016]

& unity

Quick pass on this one, just for reference

FGD =\int_{\Omega_i} \rho({\omega_o}, {\omega_i}) [{\omega_i \cdot n}|
\mathrm{d}{\omega_i}

FGD=\int_{\Omega_I} (FO + (1 - FO) * (1 - |{V \cdot H}| )*5)\rho({V}, {L}) [{L \cdot N}|
\mathrm{d}{L}

FGD= (1 - FO) ®\int_{\Omega_I} (1 - |{V \cdot H}| )*5\rho({V}, {L}) [{L \cdot N}
\mathrm{dH{L}+ FO*\int_{\Omega_I}\rho({V}, {L}) |{L \cdot N}| \mathrm{d}L}

FGD= (1 - FO) *x+ FO *y

[Hill 2016] LTC Fresnel approximation



Iridescence

e Base on Unity Labs’ research
o Laurent Belcour: A Practical Extension to Microfacet Theory for the
Modeling of Varying Iridescence
o Code provided for BRDF explorer
o Costly to evaluate for real-time, needs an approximation




Iridescence

e Approximation for real time (Credit: Laurent Belcour)

o Use Schlick Fresnel
m Schick Fresnel wrong outside of IOR range 1.4 - 2.2 [Lagarde 2013]
m IOR 1.0 suppose to cancel the effect - Use mask parameter instead

o Use RGB color space only
m Original code uses XYZ color

o Simplify phase shift

o Use less reflectance term

&} unity




Iridescence

1Iridescence(float eta cosThetal, float iridescenceThickness seLayerFresneld)
P!

Theta2 = Sq(et

float cosTheta2 = sqrt( inTheta2);

float RO ToFresnelo(eta_2, eta_1); R12 = F_Schlick(Re,
float R21 = R12; float T121 f

t phil2 = 0.0; float phi

= 1.0 - R12;

loat3 R23 = F_Schlick(baseLayerFresnel®, cosTheta2); float phi23 = 0.0;

float OPD = Dinc * cosTheta2; float phi = phi2l + phi23;

3 = R12 * qrt(R123);
- sq(T121) *

.e, 1.0, 1.0) - R123);

float3 C@ = R12 + Rs; fl

T121;

1; m <= 2; ++m)

* EvalSensitivity(m * OPD, m * phi);

Code provide as reference. EvalSensitivity is the same function than in the original
provided code of the paper.



Iridescence

e Evallridescence call to replace base Fresnel0

o Done for all light types

o Theoretically suppose to call it for each punctual lights - Too expensive
e Combine with clear coat (Hacky way)
t%c?;af‘:ﬂ;;b:dioztarvate"xa‘lFeatu'es MATERIALFEATUREFLAGS_LIT_CLEAR_COAT))

NdotV = sqrt(1.@ + Sq(1.@ / topIor) * (Sq(dot(bsdfData.normalws, V)) - 1.0));

fresnel® = Evallridescence(toplor, NdotV, iridescenceThickness, fresnelo);

e Parametrization is still not friendly

& unity




e [ridescence

Iridescence
RTO RGBAS8 sRGB
RT1 RGBA8
RT2 RGBA8

GBuffer Design

BaseColor.rgb
Normal.xy (Octahedral 12/12)

Thickness Unused (3) /
Metallic(5)

e 3 bit unused for optimization purposes

o Match metallic encoding of Anisotropy

Specular Occlusion
Perceptual Smoothness
FeaturesMask(3) / CoatMask(5)
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Tréns)ucency

e See next talk in this se§,§j5n!
o Efficient Screen-Space Subsurface Scattering Using Burley’s Normalized
Diffusion = /
e Separate material features from Subsurface scattering
e HDRP support:
o Subsurface scattering + Translucency
o Subsurface scattering only -«
o Translucency"ofW fro—
m Foliage —




GBuffer Design

e Subsurface scattering and/or Translucency

RTO RGBAS8 sRGB BaseColor.rgb DiffusionProfile(4) /

SubsurfaceMask(4)

RT1 RGBA8 Normal.xy (Octahedral 12/12) Perceptual Smoothness

RT2 RGBA8 Specular Occlusion Thickness DiffusionProfile(4) /  FeaturesMask(3) / CoatMask(5)
SubsurfaceMask(4)

e SSSSS pass require RTO only
o Swap specular occlusion location to save bandwidth
e Duplicate DiffusionProfile/SurfaceMask for optimization purposes

& unity

The weird arrangement is to be able to save bandwidth and store all required
information for SSS in one RTO. The lighting code don’t need to read RTO until the

very end, so DiffusionProfile and SubsurfaceMask are duplicated to not have to read
RTO ahead.



Lit shader performance

e Base PS4 -1080p - Fullscreen quad with the material with simple input
e Affected by a Single light + Sky - No shadow
Use material and light classification
o Subsurface scattering features write in two render targets
Forward pass sample global illumination (Extra cost)

All times are in miliseconds Standard Iridescent Anisotropy

Punctual Rectangular ReflectionProbe Punctual Rectangular | ReflectionProbe Punctual Rectangular | ReflectionProbe
Deffered Mode (Lighting pass) 1.131269 2.32051 1.741142 1.774674 2.89209 1.836177 1.549801 3.039909 1.847629
Forward Mode (Forward pass) 2.294004 3.260511 2267381 2725634 3694113 2688607 2.455848 3.420852 2390015

88s SSS + Ti issi Transmission
Punctual Rectangular ReflectionProbe Punctual Rectangular | ReflectionProbe Punctua Rectangular | ReflectionProbe
Deffered Mode (Lighting pass) 1.549171 3.459631 1.808749 1631744 3.521049 1.77821 1.576882 3.47842
Forward Mode (Forward pass) 2.474051 34232871 2.462119 2658449 4.026517 2.567901 2.424006 3.811705
StandardClearCoat AnisotropicClearCoat IridescentClearCo:

Punctual Rectangular ReflectionProbe Punctual Rectangular | ReflectionProbe Punctual Rectangular
Deffered Mode (Lighting pass) 1.388901 3.35079 1.927229 2601673 4.212729 1.86724 2.816857 4.497486
Forward Mode (Forward pass) 2.437424 3.886043 255829 2623948 4.065559 2.685529 2.899818 4.380542

What can be observe is that our area light cost twice the price of a punctual light.
Reflection probe have good performance with complex material (Due to various
approximation we do)



StackLit Shader

e Target VFX/Movie/Film
o Accurate version of Lit
m Remove some approximation
o Support all materials features at the same times
m Ex: Iridescence + SSS + Translucency + Coat
o Always Forward material
e Vertical 2 layer shaders
o Base + Coat Layer

& unity




StackLit Shader

e Base on Unity Labs’ research - Laurent Belcour
o Efficient Rendering of Layered Materials using an Atomic Decomposition
with Statistical Operators
m Tuesday, 14 August 10:45am




4

Characters

e Characters shader
o Always Forward Material
m Hair
m Cloth
m Eye

And here is another example showcasing organic material properties,
from the Windup project done using HD from Yibing Jiang and the
graphics team, which shows the power of anisotropic materials (used for
hair), subsurface scattering, cloth BRDFs, and more advanced materials.

115



LayeredLit

e Facilities to mix several Lit materials together
o Support various weights for masking
o Influence mode targeting photogrammetry

e Describe in depth in “Photogrammetry workflow Layered A
Shader” ebook
e Want to build complex and rich environment

o Mean complex layering of normal map
o But...

& unity




Normal mapping issues

e But normal mapping has many issues
o Requires one tangent frame per UVs, even procedural UVs
o Hard to handle volume bump mapping (Triplanar / Noise)
o Multiple blending formulation [Brisebois 2012]
= Some order-dependent
o Impractical with procedural geometry
m Hard to handle many blendshapes




Normal mapping

e On the fly tangent basis built from position, normal and uv [Mikkelsen
2010]

On the fly
tangent basis

&} unity

Bump Mapping Unparametrized Surfaces on the GPU Morten S. Mikkelsen 2010
Built from UVSet, position and normal



Normal mapping

e Each UV set adds extra GPU cost [ALUs]

oid SurfaceGradientGenBasisTB(re igmay, real flip: t real3 vB)

real2 dsTdx = ddx_fine(texST), dSTdy = ddy_fine(texsT);

real det = dot(dsTdx, real2(dsTdy.y, -dSTdy.x));
real sign_det = det ¢ @ ? -1 : 1;
vCe = sign_det * real2(dsTd,
invCe.x + sigmay * invCo.y;
if (abs(det) > 0.8)

* cross{nrmVertextormal, vT);




Normal mapping

e In practice
o Tangent basis based on UV0 use Mikktspace [Mikkelsen 2008]
m On the fly TBN not good at handling low poly mesh with hard
surface
e |.e when normal map is use to correct shape of the mesh
o Generate on the fly basis for other UV1-3
o Only solve small part of the normal mapping issues...

[Mikkelsen 2008] Morten S. Mikkelsen. Simulation of Wrinkled face Revisited.



Surface Gradient Framework

e Surface gradient based approach [Mikkelsen 2010]
m Surface gradients are vectors in the direction of the surface slope
m Build from the Height derivatives

ANV VNN YT TP R FFRFF

Image courtesy of Rory Driscoll

Given a scalar height field (i.e. a two-dimensional array of scalar values), the
gradient of that field is a 2D vector field where each vector points in the
direction of greatest change. The length of the vectors corresponds to the rate
of change.



Surface Gradient Framework

e Perturbed normal can be expressed a - SurfGrad(Height)

e SurfGrad() is a linear operator
o Works for any weighted combination of bump influences
e Everything can converted to surface gradients
m Regular tangent basis
m On the fly tangent basis build from UV, Position, Normal
m Object-space normal
= Volume bump maps

& unity

1. The surface gradient based approach [MM2010 - sfgrad] allows us to unify all of
this into one framework.
2. It is shown in [MM2010 - sfgrad] that Blinn's perturbed normal can be expressed as
n'=n - SurfGrad(H)
3. SurfGrad(H) is a linear operator and will work for any weighted combination of
bump influences.
- An object space normal can be converted on the fly (in the pixel shader) into a
surface gradient.
- Conventional mikktspace compliant vertex level tangent space can be converted
on the fly to a surface gradient.
- We can also generate a surface gradient on the fly from a uv, position and
normal WITHOUT a vertex tangent space (though not mikktspace compliant).
- For volume bump maps we can generate a surface gradient on the fly which as
shown in [MM2010 - sfgrad] provides the correct result



Surface Gradient Framework

Float3 SurfaceGradientFromTBN(float2 deriv, float3 vi, float3 vB)
i

return der * VT + deriv.y * vB;

1, float3 v)

nravertexiornal;
at s = 1.0 / max(FLT_EPS, abs(dot(n, v)));

(dot(n, v) * n

VolumeGradient(float3 nrmvertexhormal,

eturn grad - dot(nravertexormal, gr \ravertextormal ;

t3 SurfaceGradientFromTriplanarProjection(f triplanarWeights, float2 deriv_xplane, float2 de ane, float2 deriv_zplane)

onst float wo = triplanarWeights.x, wl = teiplanarkeight iplanarkeights.z;

xplane.x + wi * deriv_yplane.x);

_zplane.y + wa * derdv_xplane.y, wo * dert

float3 volumeGrad = float3(w2 * de:

return SurfaceGradientfronVolumeGradient(nrmvertexhornal, volumeGrad);




Surface Gradient Framework

// The 128 means 11 come out no greater than 128 numerically (where 1 is 45 degrees so 128 is
// Basically tan(angle) limited to 128
¢ rees ;) id argue thats close enough to the vertical limit at 9@ degrees
space nermal in[-1; 1]
/ out: conv v t a -
float2 tspaceNormalToDerivativeRGB(floatd packedNormal, float scale = 1.8)
{
const float fS = 1.8 / (128.8 * 128.8);
float3 vT = packedNormal.xyz * 2.8 - 1.8;
float3 wTsq = vT * vT;
float maxcompxy_sq = S * max(vTsq.x, vTsq.y);
float z_inv = rsqrt(max(vTsq.z, maxcompxy_sq)};
float2 deriv = -z_inv * float2(vT.x, vT.y);
return deriv * scale;

conversion from tangent space normal to derivative allows us to rewrite tbn
transformation as surfgradient since it represents a uniform scale

n = (nx, ny, nz) as derivative is d = (-nx/nz, -ny/nz)

So after final normalization we get tbn transform vT*n.x + vB*n.y + vN*n.z is the same
as VN - (d.x*vT + d.y*vB) where the part in parenthesis is basically a tbn style surface
gradient when used together with your other slide where tbn are uniformly scaled.
The normal mapping slide with code involving worldToTangent. So in the former
version vT, vB and vN are all unnormalized since interpolation. In the latter surfgrad
variant they’re uniformly scaled (as a trick to normalize vN since surfgrad formulation
requires it). This factor is canceled out in final normalization along with division by nz
to make the derivative which is also a uniform scale



Surface Gradient Framework

e Triplanar normal mapping can be tricky to implement
o Often result in wrong orientation




Surface Gradient Framework

e Surface gradient is simpler and don’t exhibit the issue
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Surface Gradient Framework

e Nice solution to normal mapping issues
o Example use
m Layered material

e Base + 3 layers
o Base UVO
o Layers UV0-2 or Planar
o UV3 for details map

e Various blend mask mode

& unity




Surface Gradient Framework

e Performance number
o Cost imply by on the fly tangent basis
o Scene with complex material, tree, foliage, ground

Normal Gradient
(Deffered)

State GBufferTime

6.964854

6.570049







Physical light unit

e Base on [Lagarde 2014] - Same formulation

Punctual Light V Lumir
‘ Area Light .
‘ Emissive
‘ Environment

Sun INumir

e Two modes for aperture of spot lights
o Occlusion k& e s )

o Reflector

m Intensity vary with aperture

&} unity

People may not be aware but using inverse square attenuation mean that you use
physical unit. l.e it is candela and directional light is in Lux (if divide by PI), else PI Lux



Physical light unit

e Punctual and Sun light color
o Filter + Color temperature

o Accurate Fit approximation (Max error: 0.008)




Physical light unit

e HDRI
o Plenty of relative HDRI available but want absolute HDRI
m Require measurement data [Lagarde 2016]
o Enter desired illuminance value (Lux) instead for upper hemisphere
o Compute ratio with effective value of HDRI and apply multiplier
m Use brute force sphere uniform sampling on GPU in Editor

[Lagarde 2016] An Artist-Friendly Workflow for Panoramic HDRI (Sébastien Lagarde)
Lux value can easily be measure with a lux meter
Typical value for clear sky HDRI without Sun: 20 000 lux



Physical light unit

e Area lights [Heitz 2017]
o Base on Linearly Transformed Cosine
o Joint Unity Labs and Lucasfilm research
m Support Rectangle and Line
m Upcoming sphere and disc

e Line light have no area so integrate radiance along the line

t CalculatelL menToLuminance(fl: int 1i

eturn intensity / (4.0f * Mathf.PI * lineWidth);

No shadow :(



Next up: volumetrics! See SIGGRAPH 2018 HD RP volumetrics.mp4

Do not remove this slide. It has a video.



Volumetric Lighting

Thank you, Sebastien.

In the remaining time, | will shed some light onto our implementation of volumetric
lighting (along with some open problems).



Overview

e Uses the popular frustum-aligned 3D texture (voxel buffer) technique
[Vos 2014] [Wronski 2014] [Hillaire 2015] [Wright 2017]
o Handles forward and deferred opaque, as well as transparent objects
o Supports sub-native resolution rendering and temporal reprojection

We implemented the so-called “froxel” lighting algorithm, which is a popular AAA
solution for volumetric lighting.

Some of its advantages include support of all surface types, as well as the ability to
efficiently perform sub-native resolution rendering with temporal reprojection.

My goal is not to repeat the information that’s already been published, but rather
describe how our implementation differs from the existing approaches, and provide
the missing details.



Participating Media Authoring

We support 2 ways of adding fog to the scene:
- an artist can add global, unbounded fog, or
- a local density volume represented by an oriented bounding box with a
grayscale 3D texture.
See SIGGRAPH 2018 HD RP volumetrics participating media authoring.mp4




Participating Media Authoring

e Single Scattering Albedo and Mean Free Path parameterization [Fong 2017]
o Monochromatic extinction and transmission

In both cases, we expose an artist-friendly volumetric material parametrization of
single scattering albedo and mean free path, which we then internally convert to the
scattering and extinction coefficients.

For performance reasons, we only support monochromatic mean free paths, which
means that extinction coefficients are also monochromatic.

As a result, while light bounces can tint scattered light, fog attenuation will never
affect the color of light travelling along straight paths (such as camera rays).



Participating Media Authoring

e Cornette-Shanks anisotropic phase function

H

]

Mie

HG

We chose to support the Cornette-Shanks anisotropic phase function with the global
anisotropy parameter. Compared to the Henyey-Greenstein, it provides a better
match for the “true” Mie phase function.

Note: Cornette-Shanks anisotropic phase function [Cornette 1992] [Toublanc 1996].



Participating Media Authoring

For example, this is how a spot light acts within highly forward-scattering fog. (see
SIGGRAPH 2018 HDRP talk - spotlight with forward scatter fog.gif)

For local fog, we use 3D textures to represent participating media because volumetric
lighting is evaluated at such a low rate that many involved signals quickly become
undersampled and thus alias...



Participating Media Authoring
ALIASING

k)

ALIASINGN EVERYWHERE

This includes shadow maps, light cookies and density textures. Luckily, for textures
we can just* use MIP maps, while handling geometry LOD is more complicated.

* see “Open Problems and Future Work”



Depth Distributions

Our implementation is quite flexible when it comes to slice distributions.

We started with work of Brano Kemen of Outerra, who described the logarithmic
depth distribution in his blog post [Klemen 2012].

In some sense, his distribution is optimal. However, different content may have
different needs, therefore we expose a tweak parameter which controls the
generalized logarithmic depth distribution, which smoothly transitions between linear
and logarithmic.



Depth Distributions

Now, how to read this graph (https://www.desmos.com/calculator/grtatrirba):

* on the X axis, you have the depth slice of the buffer, from O to 64;

* on the Y axis, you have the linear depth corresponding to this slice, from 0.5 to 64
meters;

* I've also drawn a vertical line in the middle, at 32 slices, which we’ll examine.



Depth Distributions

In red, we have the typical inverse Z distribution, which is predictably awful, and
covers the range of 0.5 to 1 meter.

In green, we have the standard logarithmic distribution, covering the distance of up to
5.6 meters.

In blue, we have the generalized distribution with the tweak parameter set to 0.5,
which covers the distance of up to 10 meters.

Depending on the value of the tweak parameter, it can span the range from the
logarithmic distribution in green to the linear distribution in purple.



Implementation

e 3 passes:
o Volume Voxelization
o Volumetric Lighting
o Temporal Reprojection
e Computed lighting and opacity is bilaterally upsampled and applied during
subsequent mesh rendering passes

Our implementation is split into 3 passes.

During the 1st pass, we fill the density buffer by voxelizing density volumes.

During the 2nd pass, we solve the single scattering integral.

During the 3rd pass, we combine the results from the current frame with accumulated
results of previous frames.

As a result, we obtain volumetric lighting and opacity buffers, which we bilaterally
upsample and apply during mesh rendering.

Note: opacity is (1 - transmittance).



Volume Voxelization

We start by performing conservative solid voxelization of density volumes. To put it
plainly, we determine the set of voxels overlapping a box.

We want to compute partial coverage in order to anti-alias the resulting buffer and
achieve temporal stability. While this may seem like a nice application for a
conservative rasterizer, our goal is to use async compute.

We haven’t yet found a paper which describes an efficient solution to this problem.
Therefore, we came up with our own.

Itis inspired by techniques presented in the paper of Samuli Laine titled “A
Topological Approach to Voxelization” [Laine 2013].

Just as for clustered lighting, we start with a clustered pre-pass to prune and localize
a set of volumes.

Then, for each voxel, we look up the set of volumes overlapping its cluster, and
voxelize those.



Volume Voxelization

In order to determine partial coverage, we take the closest face of the box and

compute its normal.

Then we take the diagonal of the voxel most aligned with this normal, and compute
the overlap of this diagonal with the box.

This gives us an approximation of partial coverage of the voxel.



Volume Voxelization

e Crude approximation involving resampling
¢ Correct solution has the cost O(NumSegments * NumLights) * Costintegrate

e Our solution has the cost O(NumVolumes) * CostVoxelize + O(NumLights) *
CostIntegrate

e Better fit for current GPUs
o 2 simpler shaders instead of 1 giant UberShader

A solution involving voxelization is by its nature an approximation. The largest issue is
resampling, which causes an irreversible loss of information.

Ideally, during the lighting pass, we would integrate over individual ray segments
overlapping density volumes, skipping voxelization altogether.

However, since volumetric lighting is already quite expensive, we prefer to have an
approximation involving two simpler shaders over a giant ubershader with nested
loops.



Volumetric Lighting? Elementary!

= Evaluate Monte-Carlo estimator:
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We solve the Volume Rendering Equation using Monte Carlo. It’'s “just” a plain old
recursive multidimensional integral.

Instead of spending 10 minutes on this slide, ...

Note: joke slide, don’t waste time deciphering this one. :-)



Volumetric Lighting

e We solve the Volume Rendering Equation (VRE) using the Monte Carlo (MC)
integration methods
o This presentation already has too much math :-)
m Refer to [Dutré 2006] [Veach 1997] for the intro to the MC theory in CG
m Refer to [Fong 2017] [Novak 2018] for the intro to the VRE

.. Il will only cover the way the math applies to our use case of voxel buffer lighting.

If you feel lost, please check out the references.



Volumetric Lighting

Imagine that d is the distance to the closest opaque surface along the ray.

In that case, the amount of incoming radiance L _i is the sum of reflected radiance L_r
attenuated by transmittance T, and the integral of in-scattered radiance L_s
continuously attenuated by transmittance T along the ray.



Volumetric Lighting

In case there are two voxels along the ray, it’s trivial to split the integral in two.

*5s pause*



Volumetric Lighting

L; = T(d)L,.(d) L; = T(d)L,(d)
+ [ T(t)L,(t)dt + [ T(t)LS(tEs

)
+ [ ()L, (t)dt +T(2) [ T(8) Loz + t)dt

& unity

Finally, we can utilize the multiplicative property of transmittance to obtain
independent voxel integrals.



Volumetric Lighting

1. Evaluate voxel integrals using Monte Carlo
2. Multiplicatively accumulate voxel transmittance along the camera ray
3. Compute a prefix sum of voxel integrals attenuated by transmittance

L = T(d)L,( ) L; = T(d)L,(d)
T t)dt + [y T(t)Ls( tEf}

+ 3 T(t)Ls (t)dt +T(z) [0 T(t)Ly(x + t)dt

& unity

Therefore, our lighting algorithm is conceptually very simple:
- evaluate voxel integrals using Monte Carlo
- multiplicatively accumulate voxel transmittance along the camera ray
- finally, compute a prefix sum of voxel integrals attenuated by transmittance



Computing Voxel Integrals

e After voxelization, we don't have volume bounds information anymore
o Consider voxel's participating media to be homogeneous

° Compute voxel integrals using MC
1 n f(Xr)
=T t)dt =~ -3 -

i=1 p(X;)

Since we pre-voxelize density volumes, we can consider voxel's participating media
to be homogeneous. This considerably simplifies integral evaluation.

We use Monte Carlo tools for the job. In particular, we use importance sampling for
variance reduction.



Computing Voxel Integrals

e Variance reduction via importance sampling
m Directional lights — analytic free path sampling [Novak 2018]
m Punctual lights — equiangular sampling [Kulla 2011]
m Area lights — null sampling*

For directional and box projector lights, we use analytic distance sampling.

For punctual and spot lights, we use equiangular sampling, which is designed to
handle inverse square attenuation.

For area lights, we use null sampling, which means we take 0 samples because area
lights are not yet supported (sorry, Eric).



g Voxel Integrals

Here is some programmer art with equiangular sampling in action. This is global fog...



And this one uses a density volume, giving the fog a spatially-varying texture.



Temporal Integration

e Compute voxel integrals using MC
I= [ T(t)L, ()t~ 137, 22
o Take 1x sample per voxel per frame |
o Combine with exponentially weighted average over previous frames [Yang

2009]

Monte Carlo integration usually involves taking several samples. However, taking
more than one sample per voxel every frame is typically too expensive, especially on
the current generation of console hardware.

Therefore, we take a single sample per voxel per frame instead, and then combine it
with exponentially weighted average over previous frames.



Temporal Integration

e |n practice:
i. Compute radiance and transmittance values per voxel

ii. Combine them with the contents of the history buffer
iii.Write results to the feedback buffer
iv.Swap the history and feedback buffers

In practice, we compute radiance and transmittance estimates per voxel, combine
them with the contents of the history buffer, and write the results into the feedback

buffer.
We perform reprojection in the world space, trilinearly interpolating radiance and

transmittance estimates from 8 closest voxels.



Will It Blend?

How do we perform temporal blending?

Let’s say that we computed voxel radiance and transmittance estimates at time 0, and
want to reproject and combine them with estimates at time 1.

If we have a fast forward camera motion, we may end up reprojecting from the voxel
at the back to the voxel at the front.

What's immediately obvious is that their dimensions are very different. Therefore,
radiance and transmittance estimates are not going to be similar.

For instance, you may experience brightness of your entire screen changing as a
result of fast camera motion.



Will It Blend?

So, what do we do?

The idea is to somehow “normalize” both radiance and transmittance estimates w.r.t.
the voxel dimensions to obtain blendable densities.

However, the radiance integral over the length of the voxel and transmittance are not
linear functions of length.

Transmittance is an exponential of optical depth, which is a linear function of length,
so we can easily use that.

As for the radiance integral, the story is more complicated.

On the graph, as a function of length, | plotted the estimate of the integral given by the
weight of analytic distance sampling
[https:/iwww.desmos.com/calculator/divvz5957p].

The solid line represents the estimate, and the dotted line represents its 1st derivative
w.r.t. length.



The derivative is non-constant, so the function is not linear. However, for small
displacements the linear approximation is not too bad.



Will It Blend?

We can improve upon this a bit by dividing the estimate by the length, as shown here
in green. It's much closer to being linear.

Another idea is to integrate incoming radiance along the unit interval rather than the
actual length of the voxel, and use that for reprojection.

While both of these methods are relatively simple for directional lights, correctly
handling punctual lights with equiangular sampling remains an open problem.

Also, I suspect a more elegant, generic solution exists. If you have one, please let me
know!

Given a reprojected voxel with “normalized” radiance and transmittance, we can
rescale it back using the length of our current voxel, and then blend it with the
estimate from the current frame. The correct way of volume blending is given by Tom
Duff in his paper titled “Deep Compositing Using Lie Algebras” [Duff 2017].



Will It Blend?

However, there is a catch: all of this works assuming that the phase function is
isotropic. Generally speaking, it’s not.

Let’s say that we have a strongly forward-scattering phase function. If we look straight
at a directional light, we obtain a high radiance estimate for the voxel.



Will It Blend?

If we rotate our camera, and therefore our voxel, by 90 degrees, we obtain a very low
radiance estimate, since our medium is forward scattering, and we are facing the light
at the right angle.

Therefore, the high value reprojected from the previous frame is no longer valid in the

current context.

You can try to be clever, and say that since we know the light direction, we can
rescale the phase function of the previous frame to fit the direction of the current
frame...



Will It Blend?

However, once you have several lights illuminating the voxel, it's “game over” for this
approach.

So, what is the solution?

| can only offer a workaround which, nonetheless, works reasonably well in practice.
When computing the voxel integral, we compute two estimates... One multiplied by
the phase function, and one that is not. We store the isotropic version in the history
buffer, and that is what we reproject.

To reconstruct the influence of the phase function during the current frame, we divide
the estimate with the phase function by the one without it, and use the ratio to rescale
the reprojected radiance.

This excludes anisotropy from the temporal integration process, which is of course
bad, but it also removes a lot of jarring reprojection artifacts.



Will It Blend?

One of the most obvious results of temporal integration is the reduction in shadow
aliasing and banding, as you can see here.

*flip back and forth*



Will It Blend?

One of the most obvious results of temporal integration is the reduction in shadow
aliasing and banding, as you can see here.

*flip back and forth*



Sampling and Reconstruction

High quality sampling is essential for quick convergence of the Monte Carlo algorithm.
We also need to ensure that our low resolution buffers are well anti-aliased, since all
issues will be magnified by upsampling.

For high convergence rates, we want our sampling pattern to be rather uniform.

We also want the spectrum of our sampling pattern to contain most of its energy in
high frequencies, which are less perceptible to the human observer, and which are
going to be attenuated by the low-pass component of the reconstruction filter [Mitchell
1991].

These are blue-noise, or Poisson-hypersphere properties.



Sampling and Reconstruction

Additionally, as perceptively noted by Timothy Lottes, the shape of the sampling
pattern should approximate a good reconstruction filter. While it’s difficult to have
spatially-varying weights in the temporal integration context, we can at least make
sure that the footprint of the pattern is circular rather than square [Smith 1995].

Finally, while using a random pattern can mask structured artifacts with noise, it
becomes more difficult to control the quality of the resulting distribution.



Sampling and Reconstruction

Therefore, we decided to use a deterministic pattern called hexagonal sphere-packed
lattice [Wiki H]. It is the highest density sphere packing, and it fits all of our criteria.
We slightly rotate the pattern by 15 degrees to minimize the discrepancy along the X
and Y axes.

Currently, each pixel uses the same pattern, but we would like to try per-pixel
rotations in the future.

To avoid visible jitter, we make sure to traverse the samples in the order which keeps
the average of coordinates as close to the center as possible.

Finally, Don Mitchell’'s paper [Mitchell 1991] tells us that in addition to the Poisson
sphere properties in 3D, the distribution should satisfy Poisson rod properties after
projections onto individual axes.

With that in mind, for now, we simply use a uniform distribution along the Z axis. We
are planning to explore sphere packing in 3D in the future.



Sampling and Reconstruction

To upsample the volumetric lighting buffer, we perform biquadratic filtering in the
screen plane [Getreuer 2011], and simple linear filtering in Z.

It's 4 bilinear taps in total.

The idea is to limit both the memory bandwidth and the spatial extent of the filter,
which tends to be quite large due to the low resolution of the buffer.

Additionally, we use bilateral filtering, which basically means that the coordinate of the
texture look-up depends on the depth of the closest surface.

It would be interesting to experiment with generalized filters in the future [Nehab
2014].



Sampling and Reconstruction

Image upsampling should be performed in the perceptually-linear space [Nehab
2014].

Therefore, we upsample tone-mapped radiance and transmittance rather than
physically-linear optical depth.

Interestingly, the same should be done for anti-aliasing [Persson 2008]. However, the
Monte Carlo formulation of the temporal integrator expects physically-linear rather
than perceptually-linear values.

So there’s a certain conflict between correctness and aliasing in this case.



Open Problems And Future Work

e Texture LOD anisotropy

Finally, I'd like to make a few comments about open problems and future work.

Voxels usually have highly anisotropic footprints in the texture space. However, the
hardware doesn’t offer anisotropic filtering support for 3D textures, which means that
we overfilter in practice.

Manually writing a texture filter loop in the shader is not particularly appealing from
the performance perspective.

It is worth noting that we have exactly the same issue with anisotropic cubemap
filtering.



Open Problems And Future Work

e Texture LOD anisotropy
e “Spherical” buffers

Another issue is that, since volumetric buffers are shaped like a frustum, distances
from the near to the far plane increase as you move away from the center of the
screen.

This results in different radiance and transmittance estimates even for constant
lighting and participating media.

It can show up as darkened corners during cubemap rendering, for example.



Open Problems And Future Work

e Texture LOD anisotropy
e “Spherical” buffers

The solution is to use spherical buffers, parametrized by distance from the eye rather
than depth.

Additionally, rotational reprojection becomes nearly perfect, which is a nice bonus.
We had a concern that it could make light culling more complicated, but turns out that
it may actually be more efficient than the traditional methods [Zhang 2018].



Open Problems And Future Work

e Texture LOD anisotropy
¢ “Spherical” buffers
e Temporal integration of anisotropic phase function
e Normalization of equiangular
e Area light support
e Correct handling of dynamic lights
¢ Performance
o 1-6 ms on the base PS4 depending on the light and pipeline setup
o Mostly limited by other parts of the pipe, e.g. shadows, clustered lighting...

& unity

As I've already mentioned, temporal support of anisotropy and equiangular needs
improve.

We need to support area lights.

Dynamic lights need to be handled correctly. Marco’s Variance Clipping seems
promising [Salvi 2016].

Finally, performance needs to improve. The current numbers are mostly limited by the
cost of shadows, and clustered lighting not being scalarized on GCN.
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Please note that the source code of hdrp is available on github at this link above. You
can retrieve the code mention in these slides
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