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The Algebra of Grand Unified Theories

Introduction

This talk is an introduction to the representation theory used in
I The Standard Model of Particle Physics (SM);
I Certain extensions of the SM, called Grand Unified

Theories (GUTs).
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Introduction

There’s a lot I won’t talk about:
I quantum field theory;
I spontaneous symmetry breaking;
I any sort of dynamics.

This stuff is essential to particle physics. What I discuss here is
just one small piece.



The Algebra of Grand Unified Theories

Introduction

There’s a loose correspondence between particle physics and
representation theory:

I Particles → basis vectors in a representation V of a Lie
group G.

I Classification of particles → decomposition into irreps.
I Unification → G ↪→ H; particles are “unified” into fewer

irreps.
I Grand Unification → as above, but H is simple.
I The Standard Model → a particular representation VSM of

a particular Lie group GSM.
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The Standard Model

The Group

The Standard Model group is

GSM = U(1)× SU(2)× SU(3)

I The factor U(1)× SU(2) corresponds to the electroweak
force. It represents a unification of electromagnetism and
the weak force.

I Spontaneous symmetry breaking makes the
electromagnetic and weak forces look different; at high
energies, they’re the same.

I SU(3) corresponds to the strong force, which binds quarks
together. No symmetry breaking here.
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The Standard Model

The Particles

Standard Model Representation
Name Symbol GSM-representation

Left-handed leptons
(

νL
e−L

)
C−1⊗C2⊗C

Left-handed quarks

(
ur

L, ug
L , ub

L

d r
L, dg

L , db
L

)
C 1

3
⊗C2⊗C3

Right-handed neutrino νR C0 ⊗C ⊗C

Right-handed electron e−R C−2⊗C ⊗C

Right-handed up quarks ur
R , ug

R , ub
R C 4

3
⊗C ⊗C3

Right-handed down quarks d r
R , dg

R , db
R C− 2

3
⊗C ⊗C3
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The Standard Model

The Particles

Here, we’ve written a bunch of GSM = U(1)× SU(2)× SU(3)
irreps as U ⊗ V ⊗W , where

I U is a U(1) irrep CY , where Y ∈ 1
3Z. The underlying vector

space is just C, and the action is given by

α · z = α3Y z, α ∈ U(1), z ∈ C

I V is an SU(2) irrep, either C or C2.
I W is an SU(3) irrep, either C or C3.
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The Standard Model

The Particles

Physicists use these irreps to classify the particles:

I The number Y in CY is called the hypercharge.
I C2 = 〈u, d〉; u and d are called isospin up and isospin

down.
I C3 = 〈r , g, b〉; r , g, and b are called red, green, and blue.

For example:
I ur

L = 1⊗ u ⊗ r ∈ C 1
3
⊗C2 ⊗C3, say “the red left-handed up

quark is the hypercharge 1
3 , isospin up, red particle.”

I e−R = 1⊗ 1⊗ 1 ∈ C−2 ⊗ C⊗ C, say “the right-handed
electron is the hypercharge −2 isospin singlet which is
colorless.”
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The Standard Model

The Representation

I We take the direct sum of all these irreps, defining the
reducible representation,

F = C−1 ⊗ C2 ⊗ C ⊕ · · · ⊕ C− 2
3
⊗ C⊗ C3

which we’ll call the fermions.

I We also have the antifermions, F ∗, which is just the dual of
F .

I Direct summing these, we get the Standard Model
representation

VSM = F ⊕ F ∗
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Grand Unified Theories

The GUTs Goal:
I GSM = U(1)× SU(2)× SU(3) is a mess!

I VSM = C−1 ⊗ C2 ⊗ C ⊕ · · · ⊕ C 2
3
⊗ C⊗ C3∗ is a

mess!
I Explain the hypercharges!
I Explain other patterns:

I dim VSM = 32 = 25;
I symmetry between quarks and leptons;
I asymmetry between left and right.
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Grand Unified Theories

The GUTs trick: if V is a representation of G and GSM ⊆ G,
then

I V is also representation of GSM;
I V may break apart into more GSM-irreps than G-irreps.
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Grand Unified Theories

More precisely, we want:
I A homomorphism φ : GSM → G.
I A unitary representation ρ : G → U(V ).
I An isomorphism of vector spaces f : VSM → V .
I Such that

GSM
φ //

��

G

ρ

��
U(VSM)

U(f ) // U(V )

commutes.

In short: V becomes isomorphic to VSM when we restrict from
G to GSM.
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Grand Unified Theories

The SU(5) Theory

The SU(5) GUT, due to Georgi and Glashow, is all about “2
isospins + 3 colors = 5 things”:

I Take C5 = 〈u, d , r , g, b〉.
I C5 is a representation of SU(5), as is the 32-dimensional

exterior algebra:

ΛC5 ∼= Λ0C5 ⊕ Λ1C5 ⊕ Λ2C5 ⊕ Λ3C5 ⊕ Λ4C5 ⊕ Λ5C5

I Theorem There’s a homomorphism φ : GSM → SU(5) and
a linear isomorphism h : VSM → ΛC5 making

GSM
φ //

��

SU(5)

��
U(VSM)

U(h) // U(ΛC5)

commute.
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Grand Unified Theories

The SU(5) Theory

Proof
I Let S(U(2)× U(3)) ⊆ SU(5) be the subgroup preserving

the 2 + 3 splitting C2 ⊕ C3 ∼= C5.

I Can find φ : GSM → S(U(2)× U(3)) ⊆ SU(5).
I The representation ΛC5 of SU(5) is isomorphic to VSM

when pulled back to GSM.

We define φ by

φ : (α, g, h) ∈ U(1)×SU(2)×SU(3) 7−→
(

α3g 0
0 α−2h

)
∈ SU(5)
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Grand Unified Theories

The SU(5) Theory

φ maps GSM onto S(U(2)× U(3)), but it has a kernel:

ker φ = {(α, α−3, α2)|α6 = 1} ∼= Z6

Thus
GSM/Z6

∼= S(U(2)× U(3))

The subgroup Z6 ⊆ GSM acts trivially on VSM.
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Grand Unified Theories

The SU(5) Theory

Because GSM respects the 2 + 3 splitting

ΛC5 ∼= Λ(C2 ⊕ C3) ∼= ΛC2 ⊗ ΛC3

As a GSM-representation,

ΛC2 ∼= C0 ⊗ Λ0C2 ⊕ C1 ⊗ Λ1C2 ⊕ C2 ⊗ Λ2C2

As a GSM-representation,

ΛC3 ∼= C0⊗Λ0C3 ⊕ C− 2
3
⊗Λ1C3 ⊕ C− 4

3
⊗Λ2C3 ⊕ C−2⊗Λ3C3
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Grand Unified Theories

The SU(5) Theory

Then tensor them together, use C2 ∼= C2∗ and
CY1 ⊗ CY2

∼= CY1+Y2 to see how

VSM
∼= ΛC5

as GSM-representations.

Thus there’s a linear isomorphism h : VSM → ΛC5 making

GSM
φ //

��

SU(5)

��
U(VSM)

U(h) // U(ΛC5)

commute.
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Grand Unified Theories

The Pati–Salam Model

The idea of the Pati–Salam model, due to Pati and Salam:

I Unify the C3 ⊕ C representation of SU(3) into the irrep C4

of SU(4).
I This creates explicit symmetry between quarks and

leptons.
I Unify the C2 ⊕ C⊕ C representations of SU(2) into the

representation C2 ⊗ C ⊕ C⊗ C2 of SU(2)× SU(2).
I This treats left and right more symmetrically.
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Grand Unified Theories

The Pati–Salam Model

Standard Model Representation
Name Symbol GSM-representation

Left-handed leptons
(

νL
e−L

)
C−1⊗C2⊗C

Left-handed quarks

(
ur

L, ug
L , ub

L

d r
L, dg

L , db
L

)
C 1

3
⊗C2⊗C3

Right-handed neutrino νR C0 ⊗C ⊗C

Right-handed electron e−R C−2⊗C ⊗C

Right-handed up quarks ur
R , ug

R , ub
R C 4

3
⊗C ⊗C3

Right-handed down quarks d r
R , dg

R , db
R C− 2

3
⊗C ⊗C3
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Grand Unified Theories

The Pati–Salam Model

The Pati–Salam representation
Name Symbol SU(2)× SU(2)× SU(4)-

representation

Left-handed fermions

(
νL, ur

L, ug
L , ub

L

e−L , d r
L, dg

L , db
L

)
C2⊗C ⊗C4

Right-handed fermions

(
νR , ur

R , ug
R , ub

R

e−R , d r
R , dg

R , db
R

)
C ⊗C2⊗C4

I Write GPS = SU(2)× SU(2)× SU(4).
I Write VPS = C2 ⊗ C⊗ C4 ⊕ C⊗ C2 ⊗ C4 ⊕ dual.
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Grand Unified Theories

The Pati–Salam Model

To make the Pati–Salam model work, we need to prove
Theorem There exists maps θ : GSM → GPS and
f : VSM → VPS which make the diagram

GSM
θ //

��

GPS

��
U(VSM)

U(f ) // U(VPS)

commute.
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Grand Unified Theories

The Pati–Salam Model

Proof

I Want θ : GSM → SU(2)× SU(2)× SU(4):

I Pick θ so GSM maps to a subgroup of
SU(2)× SU(2)× SU(4) that preserves the 3 + 1 splitting

C4 ∼= C3 ⊕ C

and the 1 + 1 splitting

C⊗ C2 ∼= C⊕ C
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Grand Unified Theories

The Pati–Salam Model

We need some facts:

I Spin(2n) has a representation ΛCn, called the Dirac
spinors.

I SU(2)× SU(2) ∼= Spin(4), and C2 ⊗ C ⊕ C⊗ C2 ∼= ΛC2

I SU(4) ∼= Spin(6), and C4 ⊕ C4∗ ∼= ΛC3.
I VPS

∼= ΛC2 ⊗ ΛC3 as a representation of
GPS

∼= Spin(4)× Spin(6).
I C4 ∼= ΛoddC3 ∼= Λ1C3 ⊕ Λ3C3 has a 3 + 1 splitting — the

grading!
I C⊗ C2 ∼= ΛevC2 ∼= Λ0C2 ⊕ Λ2C2 has a 1 + 1 splitting — the

grading!
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The Pati–Salam Model

Build θ so that

I θ maps GSM onto the subgroup S(U(3)× U(1)) ⊆ Spin(6)
that preserves the 3 + 1 splitting:

(α, x , y) ∈ U(1)× SU(2)× SU(3) 7→
(

αy 0
0 α−3

)

I θ maps GSM onto the subgroup
SU(2)× S(U(1)× U(1)) ⊆ Spin(4) that preserves the
1 + 1 splitting:

(α, x , y) ∈ U(1)× SU(2)× SU(3) 7→
(

x ,

(
α3 0
0 α−3

))
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Grand Unified Theories

The Pati–Salam Model

The payoff:
As a GSM-representation,

ΛC2 ∼= C−1 ⊗ Λ0C2 ⊕ C0 ⊗ Λ1C2 ⊕ C1 ⊗ Λ2C2

Earlier, we had

ΛC2 ∼= C0 ⊗ Λ0C2 ⊕ C1 ⊗ Λ1C2 ⊕ C2 ⊗ Λ2C2

As a GSM-representation,

ΛC3 ∼= C1⊗Λ0C3 ⊕ C 1
3
⊗Λ1C3 ⊕ C− 1

3
⊗Λ2C3 ⊕ C−1⊗Λ3C3

Earlier, we had

ΛC3 ∼= C0⊗Λ0C3 ⊕ C− 2
3
⊗Λ1C3 ⊕ C− 4

3
⊗Λ2C3 ⊕ C−2⊗Λ3C3
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We can recycle the fact that VSM
∼= ΛC2 ⊗ ΛC3 from the SU(5)

theory.

Thus there’s an isomorphism of vector spaces
f : VSM → ΛC2 ⊗ ΛC3 such that

GSM
θ //

��

Spin(4)× Spin(6)

��
U(VSM)

U(f ) // U(ΛC2 ⊗ ΛC3)

commutes.
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The Spin(10) Theory

Extend the SU(5) theory to get the Spin(10) theory, due to
Georgi:

I In general,

SU(n)
ψ //

%%KKKKKKKKK
Spin(2n)

��
U(ΛCn)

I Set n = 5:

SU(5)
ψ //

��

Spin(10)

��
U(ΛC5)

1 // U(ΛC5)
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