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Introduction

This note will give some methods to solve equations

(1) ax2 + bxy + cy2 + dx + ey + f = 0

in integers or rational numbers. For many of these equations, the combination
of this page with the page “Solving the generalized Pell equation x2−Dy2 =
N” gives a complete, self-contained solution to the problem. For one case,
we transform the equation into another equation that is well-covered in the
literature. Everything here is well-known (with the possible exception of
our method of “completing the square”), but no one source seems to cover
methods for solving all of these equations.

We assume a, b, c, d, e, and f are given integers, not all three of a, b, c
are zero, and we want to find integral or rational x and y that solve equation
(1).

The general approach here begins by looking at the discriminant ∆ =
b2 − 4ac of ax2 + bxy + cy2. If ∆ is zero or a positive square, equation
(1) is solved using factoring methods. Otherwise the general approach is to
transform equation (1) to one of the form

(2) x2 −Dy2 = N,

and solve equation (2). If we are looking for rational solutions, then, under
(any of) our transformation(s), all solutions of (2) correspond to solutions of
(1), while if we are looking for integral solutions an extra step may be needed
to determine which solutions of equation (2) produce solutions of equation
(1).

Finding integer solutions to (1) is not, in general, equivalent to finding
rational solutions. For one thing, a given equation generally has “many
more” rational solutions than integer solutions. For example, the equation
x2 − 34y2 = −1 has infinitely many rational solutions, such as (3/5, 1/5) or
(5/3, 1/3), but does not have any integral solutions. The equation x2+y2 = 1
has four integral solutions, and infinitely many rational solutions. Also, if an
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integral solution is found to (1), it is usually easy to then find all the rational
solutions. But, methods that give all rational solutions are seldom helpful
in determining whether there are integral solutions, much less identifying all
integral solutions. So, the problem of finding integral solutions and that of
finding rational solutions are of a somewhat different character.

There are a number of topics discussed below, and as not all are relevant
to every equation, here’s a road map. There are four main cases. For each
of the first two, 1) ∆ = 0 and 2) ∆ > 0 is square, see the section below
with that heading. The last two cases are 3) ∆ < 0 and 4) ∆ > 0 is not
a square. While these two are somewhat different, the starting point for
each is the section, “Completing the square,” which puts the equation into
the form (2). Then use the appropriate subsection of the section, “Cases
for x2 − Dy2 = N .” For some equations, you will be done at this point. If
not, for integral solutions, refer to the section, “Recovering solutions to the
original equation,” to complete the solution. For rational solutions, refer first
to the section “Solving Ax2 + By2 + Cz2 = 0” to get one rational solution
(if there are any), and then to the section “All rational solutions from one”
to finish the solution.

There are two additional sections that provide other comments. While
equations of the form Ax2 + Bxy + Cy2 = N can be put into the form (2)
and then solved, there are methods that solve these equations more directly.
There is a section that has some discussion of these equations and gives ref-
erences for the direct methods. There are times you might want to transform
an equation (1) that has a = 0 or c = 0 to an equivalent equation with a 6= 0
and c 6= 0, or just a 6= 0, and there is a section that shows how to do this.

If we are seeking integral solutions, the third case (above), ∆ < 0, is
potentially not covered fully in this or the related web page. Methods here
do transform any such equation into one of the form (2). If N < 0, then there
are no solutions, while if N = 0 there is only the solution (to (2)) x = 0,
y = 0. If N > 0, see the subsection “D < 0, N > 0” in the section “Cases for
x2 −Dy2 = N .” For integral solutions, we do show how to do a brute-force
search, which is feasible when

√
−N/D is not too large. But, sometimes (for

integral solutions) it is better to use the methods of binary quadratic forms,
and that is not covered here. Finding rational solutions when ∆ < 0 is fully
covered here.

Methods presented here, and on the web page “Solving the generalized
Pell equation x2 − Dy2 = N” are good when the coefficients of (1) are
small, up to maybe 6 to 8 digits. For integral solutions to Pell equation
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x2 −Dy2 = ±1 with large D, see Williams [13] or Lenstra [7]. For rational
solutions (large D, any N) see Cremona and Rusin [3].

Self-contained approaches to solving (1) in integers are given in Chrystal,
Edwards, and Mathews [2, 4, 9], with, perhaps, Edwards [4] being the most
comprehensive.

Equations of the form Ax2 + Bxy + Cy2 = N

While equations of the form

(3) Ax2 + Bxy + Cy2 = N.

can be handled by the methods discussed herein, there are methods that deal
more directly with these equations.

We call Ax2 +Bxy +Cy2 a binary quadratic form. If ∆ = B2− 4AC > 0
is not square and N 6= 0, then Matthews’ method [10] is the most efficient.
If ∆ is not a square and N 6= 0, you can use the methods of binary quadratic
forms given in Hurwitz [6] and many other sources, e.g., [1, 8, 9]. If ∆ is
square or N = 0, then the equation is fully treated by the methods given
here for (1).

We will not give the details of the standard method for solving (3) in
integers, but we will outline here how this method works when ∆ is not a
square and N 6= 0. A form f = f(x, y) = Ax2 + Bxy + Cy2 represents N if
there are integers x, y so that Ax2 +Bxy +Cy2 = N . In the theory of binary
quadratic forms, an equivalence relation among forms is defined. Equivalent
forms have the same discriminant and, for a given discriminant ∆, there
are only a finite number of equivalence classes. Any two equivalent forms
represent the same integers (this is not to say that a given integer cannot be
represented by two inequivalent forms).

It is a theorem that if a form f represents N , there is a form g equivalent
to f so that g = g(x, y) = Nx2 + Rxy + Sy2, i.e., the coefficient of the x2

term of g is N . Of course g represents N by taking x = 1, y = 0. There is
a notion of a reduced form, which are forms whose coefficients satisfy certain
inequalities. There is a reduction step that, applied to a form, produces
an equivalent form. Applied iteratively, this process, in a finite number of
steps, produces all of the reduced forms equivalent to the original form f
(if the discriminant is negative, there is only one reduced form equivalent to
any given form; if the discriminant is positive, there may be several reduced
forms equivalent to the original form).
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There is a finite procedure for generating a list of the forms g = g(x, y) =
Nx2+Rxy+Sy2 that have x2 coefficient N , discriminant ∆, and xy coefficient
R satisfying R2 ≡ ∆ (mod |4N |) and −|N | < R ≤ |N |. To find all solutions
to f(x, y) = N , it suffices to find which, if any, of these g are equivalent to
f .

So the method of solving the binary quadratic form equation Ax2+Bxy+
Cy2 = N is to find the reduced forms equivalent to f = Ax2 + Bxy + Cy2,
and for each g = Nx2 + Rxy + Sy2 in our list, find an equivalent reduced
form, and see if this reduced form is in the list of reduced forms equivalent
to f . If it is, then the solution x = 1, y = 0 to g(x, y) = N can be tracked
back to a solution to f(x, y) = N . All solutions to the original equation can
be generated from the solutions found in this way.

Making a 6= 0 and c 6= 0

Some methods below require that a 6= 0 and c 6= 0, so we show how to
transform an equation (1) with a = 0 or c = 0 to one with a 6= 0 and c 6= 0.

First suppose a = 0 and c = 0, so b 6= 0. Then the transformation
x = X + Y , y = X + 2Y makes (1)

b(X + Y )(X + 2Y ) + d(X + Y ) + e(X + 2Y ) + f = 0,

or
bX2 + 3bXY + 2bY 2 + (d + e)X + (d + 2e)Y + f = 0,

which is of the desired form.
Now suppose a = 0 and c 6= 0. Then the transformation x = X, y =

X + Y makes (1)

bX(X + Y ) + c(X + Y )2 + dX + e(X + Y ) + f = 0,

or
(b + c)X2 + (b + 2c)XY + cY 2 + (d + e)X + eY + f = 0.

This is of the desired form if b + c 6= 0. If b + c = 0, then the analogous
transform with x = X, y = −X + Y will have c− b as the coefficient of X2

and this will not be zero (and the coefficient of Y 2 will still be c).
The remaining possibility, a 6= 0 and c = 0, is analogous to the previous

case, with the roles of a and c, x and y, and X and Y reversed.
If we just want to make a 6= 0, and we are indifferent to whether c = 0,

we can proceed as follows. If c 6= 0, use the transformation x = Y , y = X.
If c = 0 (so b 6= 0), use x = X, y = X + Y .
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The Case ∆ = 0

First, consider the equation

(4) X2 − AY −K = 0

where A 6= 0. For this to have integral solutions, it is necessary and sufficient
that X2 ≡ K (mod A) have (obviously integral) solutions. If {xi}1≤i≤N is
the set of X-values for solutions of (4) so that 0 ≤ xi < |A|, then all X-values
of solutions have x = xi + k|A| for some xi and some integer k. For rational
solutions, one can take any rational X, and Y = (X2 −K)/A.

If A = 0, then we have

(5) X2 = K.

This only has solutions when K is square, say K = r2. The solutions are
X = ±r, Y any integer or rational number.

Other equations (1) with ∆ = 0 can be reduced to one of the two equations
(4, 5) just considered, as we now show.

In (1) a and c cannot both be zero, because if they were b would also
have to be zero for ∆ to be zero. If a = 0, switch x and y, a and c, and d
and e, so a is not zero.

Now, after multiplying through by 4a, (1) can always be rearranged as

(6) (2ax + by)2 − (b2 − 4ac)y2 + 4adx + 4aey + 4af = 0.

As ∆ = 0, this is

(2ax + by)2 + 4adx + 4aey + 4af = 0,

or
(2ax + by + d)2 − (2bd− 4ae)y − (d2 − 4af) = 0.

Let X = 2ax+ by +d, A = 2bd−4ae, and K = d2−4af , and we are reduced
to one of the equations (4, 5). We recover x from x = (X − by − d)/2a. If
we are seeking rational solutions, we are done. If we seek integral solutions,
it is necessary that 2a divide X − by − d. If A 6= 0, for each xi satisfying
x2

i ≡ K (mod A), 0 ≤ xi < |A|, test xi, xi + |A|, xi + 2|A|, . . . , xi + 2a|A|,
and see which give solutions. For any xi + k|A| that gives an integral x,
xi + k|A| + 2aj|A| will also be a solution, and all solutions arise this way.
If A = 0, there are integral solutions, as above, only if K is a square, say
K = r2. For all y so that x = (±r−by−d)/2a is an integer, x, y is a solution
to the original equation.
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∆ > 0 is Square

First, consider the situation where a = c = 0. Of course b 6= 0, as otherwise
the equation would be linear, so ∆ = b2 > 0.

We have

(7) bxy + dx + ey + f = 0.

Multiply through by b, and note that the equation factors as

(bx + e)(by + d) = ed− bf.

Write ed− bf = N . If N 6= 0, for every factorization of N = rs into inte-
gers (and there are finitely many such factorizatons), solve the simultaneous
equations

bx + e = r, by + d = s

to get
x = (r − e)/b, y = (s− d)/b.

If there are integral solutions to (7), they will be among these x and y. To
find all rational solutions, let r be an arbitrary nonzero rational number, set
s = N/r, and take the solution given just above.

If N = 0 there are two infinite sets of solutions, namely x = −e/b, any y,
and y = −d/b, any x.

As an example, let’s find the integer solutions to 3xy − 10x− y − 2 = 0.
Then N = ed − bf = 16, and the factors of 16 are ±1, ±2, ±4, ±8, ±16.
Taking r = 2, s = 8, gives x = 1, y = 6; r = 8, s = 2, gives x = 3, y = 4;
r = −1, s = −16, gives x = 0, y = −2; r = −4, s = −4, gives x = −1, y = 2;
r = −16, s = −1, gives x = −5, y = 3. All other r, s so that rs = 16 give
non-integral solutions. So there are 5 integral solutions to this equation.

Returning to the general equation (1), we can now assume not both a
and c are zero. If a is zero, switch x and y, etc. so that a is not zero. Now
rewrite (1) as (6), substitute r2 for b2 − 4ac, and rewrite as

(8) (2ax + by + ry)(2ax + by − ry) + 4adx + 4aey + 4af = 0.

Set S = 2ax + by + ry, T = 2ax + by − ry. We can write x and y as
x = (bT + rS + rT − bS)/(4ar), y = (S − T )/(2r). Substituting in the
obvious way, and clearing denominators puts the equation into the form

(9) BST + DS + ET + F = 0.
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This is in the form (7), and is solved by the methods above. Every rational
solution of (9) gives a rational solution of (1). If there are finitely many
integral solutions to (9), each can be checked to see if it produces a solution
to (1). If there are infinitely many integral solutions to (9), then only finitely
many equivalence classes modulo 4ar need to be checked to determine the
integral solutions to (1).

Completing the Square

The purpose of the methods in this section is to transform equation (1) to
equation (2). The methods of this section are most useful if the discriminant,
∆ = b2− 4ac, is not a square. In this case, note that a 6= 0 and c 6= 0. When
the discriminant is a square, sections above show how to find solutions. But,
the methods in this section apply to any equation (1) that has a 6= 0, and
c 6= 0. If you want to transform an equation (1) to an equation (2), and a = 0
or c = 0, first use the methods in the section “Making a 6= 0 and c 6= 0.”

As noted above, we will transform equation (1) to equation (2). Given
a, b, c, d, e and f , we will find D and N . The transformation will be such

that there are matrices A =

(
r s
t u

)
and B =

(
v
w

)
so that if x, y is an

integral solution to (1) then there are integral X, Y that solve

(10) X2 −DY 2 = N

and

(11)

(
x
y

)
= A

(
X
Y

)
+ B

While r, s, t, u, v, w will be rational numbers, they will not, in general, be
integers. So there may be integral solutions to (10) that do not correspond
to integral solutions to (1) under the transformation (11). How to use the
set of integral solutions to (10) to find the integral solutions to (1) in a
finite number of steps is discussed in the section “Recovering solutions to
the original equation.” Any rational solution to the transformed equation
corresponds to a rational solution of the original equation.

There are a number of ways to transform (1) into (2). For alternatives to
what we present here, see Edwards [4, p. 339], Chrystal [2, p. 486], or Gauss
[5, §216, p. 205].
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First we transform (1) so as to make b = 0. If b is already 0, then skip
this step. Note that we also assume a 6= 0. The idea is to find T, A, B, C so
that

aTx2 + bTxy + . . . = A(Bx + Cy)2 + . . . = AB2x2 + 2ABCxy + . . .

So, set aT = AB2 and bT = 2ABC. Consider the ratio aT/bT = AB2/2ABC =
B/2C, which gives 2a/b = B/C. Set B equal to the numerator of 2a/b, re-
duced, and set C equal to the denominator. Also, a/B2 = A/T , so set A
equal to the numerator of a/B2, reduced, and set T equal to the denominator.
With X = Bx + Cy and Y = y, we have(

x
y

)
=

(
1
B

−C
B

0 1

) (
X
Y

)
.

Substituting in (1) for x, y in terms of X,Y gives

AX2 + (cT − AC2)Y 2 + (dT/B)X + (eT − dTC/B)Y + fT = 0,

or

AB′X2 +B′(cT −AC2)Y 2 +(dTB′/B)X +(eTB′−dTCB′/B)Y +fTB′ = 0,

where B′ is the least positive integer that makes all the coefficients integers.
This last equation is of the form

ax2 + cy2 + dx + ey + f = 0,

i.e., of the form (1) with b = 0. The discriminant of the transformed equation
is

−4(AB′)(B′)(cT − AC2) = 4A2B′2C2 − 4cAB′2T

= (bTB′/B)2 − 4ca(TB′/B)2 = (TB′/B)2(b2 − 4ac).

So the discriminant of the transformed equation is a rational square times
the discriminant of the original equation.

It is always possible to use T = 4a, A = 1, B = 2a, and C = b to effect
the above transformation, but the method as presented sometimes results in
smaller coefficients for the transformed equation.

Now assume we have an equation (1) with a 6= 0, b = 0, and d 6= 0 (if
d = 0 then skip this step). We will transform this equation into one with
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d = 0 by a method similar to that used to make b = 0. We want T,A, B, C
so that

aTx2 + dTx + . . . = A(Bx + C)2 + . . . = AB2x2 + 2ABCx + . . .

where the “. . .” represent the “y” terms and the constant term.
Similarly to the step above, set aT = AB2 and dT = 2ABC. Consider

the ratio aT/dT = AB2/2ABC = B/2C, which gives 2a/d = B/C. Set B
equal to the numerator of 2a/d, reduced, and set C equal to the denominator
of 2a/d, reduced. Also, a/B2 = A/T , so set A equal to the numerator of
a/B2, reduced, and set T equal to the denominator. With X = Bx + C and
Y = y, we have (

x
y

)
=

(
1
B

0
0 1

) (
X
Y

)
+

( −C
B

0

)
.

Substituting we get

AX2 + cTY 2 + eTY + fT − AC2 = 0.

This last equation is of the form

ax2 + cy2 + ey + f = 0

i.e., of the form (1) with b = d = 0. As above, the discriminant of the trans-
formed equation is a rational square times the discriminant of the equation
we began with.

Making e = 0 is similar to making d = 0. Assume we have an equation
(1) with c 6= 0, b = d = 0, and e 6= 0 (if e = 0 then skip this step). We will
transform this equation into one with e = 0. We want T,A, B, C so that

cTy2 + eTy + . . . = A(By + C)2 + . . . = AB2y2 + 2ABCy + . . .

where the “. . .” represent the “x” terms and the constant term.
Set cT = AB2 and eT = 2ABC. Consider the ratio cT/eT = AB2/2ABC =

B/2C, which gives 2c/e = B/C. Set B equal to the numerator of 2c/e, re-
duced, and set C equal to the denominator of 2c/e, reduced. Also, c/B2 =
A/T , so set A equal to the numerator of c/B2, reduced, and set T equal to
the denominator. With Y = By + C and X = x, we have(

x
y

)
=

(
1 0
0 1

B

) (
X
Y

)
+

(
0
−C
B

)
.
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Substituting we get

aTX2 + AY 2 + fT − AC2 = 0.

This last equation is of the form

ax2 + cy2 + f = 0

i.e., of the form (1) with b = d = e = 0. As above, the discriminant of
the transformed equation is a rational square times the discriminant of the
equation we began with.

Henceforth in this section we assume b = d = e = 0, i.e., our equation is
of the form

(12) ax2 + cy2 + f = 0

with a, c 6= 0 and gcd(a, c, f) = 1. If gcd(a, c) does not divide f , then there
are no solutions to the transformed equation or the original equation, and
we are done.

It may be possible to transform (12) so as to reduce the size of the co-
efficients a, c, f , which generally makes the equation easier to solve. For
example, if a prime p divides a and f (and there is a solution), p must divide
y. So we could write x = X, y = pY , a = pA, cp = C, f = pF , and we have

pAX2 + c(pY )2 = pF,

or (canceling a p)
AX2 + CY 2 = F.

The variables transform as(
x
y

)
=

(
1 0
0 p

) (
X
Y

)
.

If a power of p divides a and f , the above can be repeated until p does not
divide both.

A similar transformation can be made if a prime divides both c and f .
If a and c are odd, a ≡ c (mod 4), and f ≡ 0 (mod 4) then for any

solution to (12) a and c must be even, as can be checked by considering the
equation modulo 4. So we can write(

x
y

)
=

(
2 0
0 2

) (
X
Y

)
.
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and use the equation
aX2 + cY 2 + f/4 = 0.

It might be possible to repeat this reduction.
Now we are ready to make our final transformation to the general Pell

equation (2). If |a| = 1 or |c| = 1, the final transformation should be clear.
Otherwise, we can multiply through by a to get (ax)2 + acy2 + af = 0.

Then take X = ax, Y = y, D = −ac, and M = −af to have X2−DY 2 = M .
Rather than multiply through by a, it may be possible to obtain smaller

coefficients in the final equation as follows. Find nonzero r of smallest mag-
nitude (r might be negative) so that ra is a square, and find nonzero s of
smallest magnitude so that sc is square. If |rc| < |sa|, use the transforma-
tion X = x

√
ra, Y = y, to get a Pell equation with D = −rc, M = −rf . If

|rc| > |sa|, switch the roles of r and s and of x and y in the transformation
of the previous sentence. If |rc| = |sa|, pick the transform that minimizes
the magnitude of M .

To produce final matrices for the transform, combine the various individ-
ual transformations in the obvious way.

Cases for x2 −Dy2 = N

• D < 0, N = 0
The only integral or rational solution is x = y = 0.

• D < 0, N < 0
There are no integral or rational solutions.

• D < 0, N > 0
There may or may not be solutions. If there are integer solutions, there

will be finitely many, while if there are rational solutions, there will be in-
finitely many.

A simple way to find integer solutions is to search on 0 ≤ y ≤
√
−N/D.

For any such y for which N + Dy2 is a square, set x =
√

N + Dy2 and then
solutions are (±x,±y).

Often a better method to find integer solutions is to use the method
of binary quadratic forms for positive definite forms, given, for instance, in
Hurwitz [6]. While we outline this method in the section “Equations of the
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form Ax2 + Bxy + Cy2 = N ,” this is the one case where we do not give full
details of the method. Alternatively, see [1, 8, 9].

For rational solutions, see the section “Solving Ax2 + By2 + Cz2 = 0.”

• D = 0
The equation reduces to x2 = N . If N < 0, or if N > 0 is not a square,

then there are no integral or rational solutions. If N ≥ 0 is a square, then
there are infinitely many solutions given by x = ±

√
N , and any y (integer

or rational as appropriate).

• D > 0, D is a square, N = 0
There are infinitely many integral or rational solutions. Write D = r2.

All solutions are x = ry, or x = −ry for arbitrary y (integer or rational as
appropriate).

• D > 0, D is a square, N 6= 0
There are finitely many integral solutions. Write D = r2. Write N = st

in every possible way (including ways with s < 0). For each pair, s, t solve
the simultaneous equations x − ry = s, x + ry = t to get x = (s + t)/2,
y = (t− s)/2r. Select the integral solutions.

Or, you can search on 0 ≤ y ≤ (N − 1)/2r when N > 0, or 0 ≤ y ≤
(1−N)/2r when N < 0, taking x =

√
Dy2 + N when Dy2 + N is a square,

and taking (±x,±y) as the solutions.
There are always infinitely many rational solutions. One is x = (N +

1)/2, y = (N − 1)/2r. From this, all of the infinitely many solutions can
be generated using the method discussed below in the section “All rational
solutions from one.”

• D > 0, D not a square, N = 0
The only integral or rational solution is x = y = 0.

• D > 0, D not a square, N 6= 0
First consider the case where we want integral solutions. This is the

generalized Pell equation. Either there are no solutions, or there are infinitely
many. If N = +1, there are always infinitely many solutions.

For N = ±1, N = ±4, or N2 < D, use the continued fraction method.
If N does not fall into one of these categories use LMM, brute-force search,
Lagrange reduction, the method of binary quadratic forms, or the cyclic
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method. The page, “Solving the generalized Pell equation x2 − Dy2 = N”
gives references for all of these methods, and gives detailed descriptions of
all but the last three of these methods.

For rational solutions, see the section “Solving Ax2 + By2 + Cz2 = 0.” If
there are rational solutions, there will be infinitely many.

Recovering solutions to the original equation

We assume we have transformed equation (1) to equation (10), and that we
have completely solved equation (10). We also assume we have matrices with

rational entries A =

(
r s
t u

)
and B =

(
v
w

)
so that if (x, y) is an integral

solution to (1), then there is an integral solution (X, Y ) to (10) with(
x
y

)
=

(
r s
t u

) (
X
Y

)
+

(
v
w

)
If we are interested in rational solutions to (1), then all rational solutions

of (10) correspond to rational solutions to (1), and we are done.
From now on, for this section, assume we are interested in integral so-

lutions to (1). If D < 0, or D > 0 is square and N 6= 0, then there are
only finitely many solutions to (10), and we can check each to see whether it
corresponds to a solution to (1).

Now assume D > 0. If r, s, t, u, v, and w are integers, then all solutions
to (10) correspond to solutions to (1), and we are done. If at least one of r,
s, t, u, v, and w is rational without being an integer, then we need a finite
procedure to generate the integral solutions to (1) from the integral solutions
to (10). Let L be the least common multiple of the denominators of r, s, t,
u, v, and w.

If D > 0 is square, say D = k2, and N = 0, then all of the solutions to (10)
are given by X = ±kY . Separately for each sign ±1, the congruence class
of Y determines whether X = kY or X = −kY corresponds to a solution to
(1). So one only needs to check Y = 0, 1, 2, . . . , L − 1 in each of these two
equations, see which of these Y correspond to integer solutions to (1), and
take the whole congruence class for any Y that does correspond to solutions
to (1).

Now assume D > 0 is not square. Let (T, U) be the minimal positive
solution to x2 − Dy2 = 1. Let k be the least positive integer so that (T +
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U
√

D)k ≡ 1 (mod L), i.e., writing Tk+Uk

√
D = (T +U

√
D)k, so that Tk ≡ 1

(mod L) and Uk ≡ 0 (mod L). [Exercise: show that k exists. Hint: x = 1,
y = 0 is a solution to x2 −Dy2 = 1.]

Then for (X,Y ) any solution to (10), (X, Y ) generates an integral solution
to (1) if and only if (X ′, Y ′) generates and integral solution to (1), where
X ′ +Y ′

√
D = (X +Y

√
D)(T +U

√
D)k. So, it suffices to consider all (X, Y )

that are fundamental solutions to (10), and for each, determine which of
(X +Y

√
D)(T +U

√
D)i for 0 ≤ i ≤ k−1 correspond to solutions to (1). For

any such (X, Y ) and i that correspond to a solution to (1), and any integer
j, (X + Y

√
D)(T + U

√
D)i+jL also corresponds to a solution to (1), and all

solutions to (1) arise in this manner.

Solving Ax2 + By2 + Cz2 = 0

In the context of this article, the material in this section is used to find
rational solutions to x2 − Dy2 = N either when D > 0 is not a square and
N 6= 0, or when D < 0 and N > 0. If Z is the common denominator of x and
y, rational, then by writing x = X/Z and y = Y/Z, our equation becomes
X2 −DY 2 −NZ2 = 0, and so is of the form considered here.

We seek solutions of

(13) Ax2 + By2 + Cz2 = 0

in rational numbers. We assume A, B, and C are nonzero integers.
The following method of solution, due to Lagrange, is given in Weil [12,

pp. 100-101]. Or see Serre [11, p. 42]. If the coefficients of (13) are large,
see the method of Cremona and Rusin [3].

For (13) to have nontrivial solutions, i.e., solutions other than x = y =
z = 0, it is necessary and sufficient that the signs of A, B, and C are not
all the same, and that there are solutions w to each of the following three
equations:

w2 ≡ −BC (mod |A|),

w2 ≡ −AC (mod |B|),

w2 ≡ −AB (mod |C|).

Assuming (13) satisfies these conditions, we can multiply through by C,
replace Cz with z, and rearrange and re-label coefficients to get an equation
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of the form

(14) z2 = Ax2 + By2.

Here, A and B cannot both be negative. We can also assume both are square-
free, for if, say, A = A′m2, we could set X = mx and have the equivalent
equation z2 = A′X2 + By2. And we can assume that |A| ≤ |B|. (We do not
assume that A and B are relatively prime.)

It suffices to solve (14) in integers. In fact, we can assume that x, y, and
z are pairwise relatively prime. If a prime p were to divide, say, z and x,
then p2 would divide By2 and, as B is squarefree, p would divide y. So the
common factor of p could be removed from x, y, and z. Arguments for z and
y, and for x and y are similar.

Now, x and B are relatively prime, as any common divisor would divide
z, so x has an inverse x′ modulo |B|. From Ax2 ≡ z2 (mod |B|), we get
A ≡ (x′z)2 (mod |B|). Note that this shows that for there to be a solution
to (14), A must be a quadratic residue, not necessarily prime to B, modulo
|B| (which is one of our tests above).

Write A ≡ a2 (mod |B|), where 0 ≤ a ≤ 1
2
|B|. Because A is squarefree,

A 6= a2 unless A = 1 and a = ±1. This case will be treated below. Write
a2 − A = BB1d

2, where d is selected so that B1 is squarefree. Then

|B1| ≤
∣∣∣∣a2 − A

B

∣∣∣∣ ≤ 1

4
|B|+ 1.

So |B1| < |B| except when B = ±1 and A = ±1, which is easily solved.
Otherwise,

B1(Bdy)2 = (a2 − A)(z2 − Ax2) = (az ± Ax)2 − A(ax± z)2.

Putting X = ax ± z, Y = Bdy, Z = az ± Ax, we have that (X,Y, Z) is a
solution of Z2 = AX2+B1Y

2. Now A ≡ a2 (mod |B1|), so this reduction can
be repeated until we reach an equation Z2 = AX2 + BnY

2 with |Bn| < |A|.
Then put A′ = |Bn|, B′ = A, and continue. As the magnitudes of the
coefficients A and B decrease steadily, one of two things must occur. One is
that we eventually reach an equation of the form Z2 = MX2 + NY 2 where
M is not a quadratic residue modulo |N |. In this case (13) does not have
a solution. Note that this cannot occur if (13) passed the tests that we set
above. The other possibility is that we eventually reach an equation of the
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form Z2 = X2 + NY 2, which has the solution (1, 0, 1). We obtain a solution
to the original equation (13) by following our steps backwards.

If we have found one solution to our equation (2), then the next section
shows how to find all rational solutions.

All rational solutions from one

If the equation (2) has a rational solution, then it has infinitely many rational
solutions, when either D > 0 and N 6= 0 or D < 0 and N > 0. In both these
cases, the equation (2), taken over the reals, is a non-degenerate conic section.
In the first case, it is a hyperbola, and in the second case it is an ellipse.

Clearly, if we have two rational points on a curve, the slope of the line con-
necting them is rational, or undefined (if they have the same x–coordinate).
Conversely, if you have a rational point on a conic section, and draw a line
with rational slope through it, that line either intersects the conic at exactly
one more rational point, or is tangent to the curve at the original point.

More formally, suppose we have a non-degenerate curve (2), with the
rational point (x0, y0) on it. Draw a line with rational slope α through this
point. This line has equation

y − y0

x− x0

= α.

Solving this for x gives

(15) x =
1

α
(y − y0) + x0.

Plugging this in to (2), and substituting x2
0−Dy2

0 for N (because x2
0−Dy2

0 =
N), and collecting all terms on the left hand side, gives an expression that
factors as

(y − y0)

(
1

α2
(y − y0)−D(y + y0) +

2

α
x0

)
= 0.

This gives two solutions for y, namely y = y0 (which we already knew) and

y =
y0 + Dα2y0 − 2αx0

1−Dα2
.

This second solution is rational whenever x0 and α are rational, and 1 −
Dα2 6= 0. If α 6= 0, use (15) to get x, which is also rational. If α = 0,
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the second solution is (−x0, y0). For the vertical line through (x0, y0), the
second solution is (x0, − y0).

This method generates all of the rational solutions from any one.
As an example, consider the curve x2 + y2 = 1, which has the rational

point (−1, 0). Take the line through this point with slope α = b/a. Then
the other point of intersection has

x =
1− α2

1 + α2
=

a2 − b2

a2 + b2

and

y =
2α

1 + α2
=

2ab

a2 + b2
.
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