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ABSTRACT 
The rocket equation derived for the case of a rocket 

approaching relativistic speeds looks drastically different from 
the classical rocket equation. The classical rocket equation for 
the mass ratio of the rocket is a simple exponential in terms of 
the mission AV over the exhaust velocity w, while the 
relativistic rocket equation is a complicated function of the 
mission AV raised to the power of c/2w. Since they look so 
completely different, the student assumes the derivation must be 
different, and perhaps too complicated for the student to 
understand. In this paper, the relativistic rocket equation is 
derived side-by-side with the classical (non-relativistic) rocket 

i/ equation. The resulting side-by-side derivation is found to be 
more transparent and more easily understood, since the student 
can see, at what point and how, the relativistic case deviates 
from the non-relativistic case, and why the end result for the 
relativistic mass ratio is a power of a complicated function of 
AV rather than a simple exponential in AV. 

BACKGROUND 

Concepts for a textbook due out this year', I included a 
derivation of the relativistic rocket equation taken from the 
usual primary' and secondary3 sources. 
derivation as simple and as short as possible for the page- 
limited chapter, I came up with a structure for the derivation 
where I derived the non-relativistic and relativistic rocket 
equations side-by-side. I found the resulting presentation to be 
more transparent than the normal derivation, since the student 
can see at what point and how the relativistic case deviates from 
the non-relativistic case, and why the end results of the two 
derivations look so different. 
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While preparing a chapter on Advanced Space Propulsion 

In an attempt to keep the 
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RELATIVISTIC MECHANICS 
Travel at significant fractions of the speed of light 

requires the use of equations for relativistic mechanics instead 

fundamental properties of time, distance, and mass vary with the 
relative velocity of the observer. For example, the time T 
measured on a rocket moving at a velocity v is shorter than the 
time T measured by a stationary observer, by the relation: 

of classical mechanics4. In relativistic mechanics, even the L 

T = (1 - V ’ / C ~ ) ~ ’ *  T (1) 

where c=299.8 Mm/s is the speed of light. 
In the same manner, a distance D on a rocket moving at 

velocity v, as measured by a stationary observer, is shorter than 
the distance r( measured when the rocket is at rest by: 

D = (1 - ~ ~ / i ~ ) ~ / ~  n ( 2 )  

While the mass M of a moving rocket is greater than the rest mass 
M of the rocket by the relation: 

Another result of relativistic mechanics is that nothing can 

velocity v, and shoots a projectile forward with a velocity w 
with respect to the rocket, then the velocity u of the projectile 
as seen by the stationary observer is not U=W+V, but instead is: 

go faster than the speed of light. If a rocket is moving at a b 

w + v  u =  
1 + w v / c 2  ( 4 )  

This equation always produces a velocity for u that is less than 
the speed of light. 

DERIVATION OF THE RELATIVISTIC ROCKET EQUATION 
The rocket equation for the mass ratio of a relativistic 

rocket2 is quite different-looking than the classical mas6 ratio. 
The following derivation shows it is so different. 

In the classical derivation, a rocket with an initial mass M 
ejects an amount dm of reaction mass at an exhaust velocity with 
respect to the rocket of w (assumed to be a constant). In the 
center of mass of the system, the resultant velocity of the 
rocket is U and the velocity of the reaction mass is u. In the 
relativistic case, the masses are replaced with their 
relativistic equivalents given by Equation ( 3 ) ,  which vary with 
the velocities U and u. 
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Below, the derivation of the classical rocket equation (left 
set of equations) is compared with the relativistic derivation 
(right set of equations). If doing this in a classroom, it would 
be useful to use two adjacent blackboards, and carry out the two 
derivations, step-by-step, side-by-side, stopping after each 
phase to comment on the similarities and the differences. 

the relation between the change in the total linear momentum 
d(MU) of the spacecraft due to the expulsion of the small 
increment of reaction mass dm at the velocity u: 

From the law of conservation of linear momentum we obtain 

d ( M U )  = 7.1-dm 

From the law of conservation of mass (mass-energy in the 
relativistic case) we obtain the relations: 

d M =  -dm 

From the law of addition of velocities, with the relativistic 
version of the law given by Equation ( 4 ) ,  with v = -U, we obtain 
the relation: 

u = w - u  w - u  u =  
1 - wu/c= (7) 

We now substitute into Equation ( 5 )  the relation given in 
Equation ( 7 )  for u and the relation given i Equation (6) for dm 
in the classical case and for d~/(l-u~/c~),'fi in the relativistic 
case. In the relativistic case for Equation (6), c2 is a 
constant, and can be taken out from under the derivative and 
cancelled. The result is an equation combining the three laws 
expressed in Equations ( 5 ) ,  (6), and (7) in terms of the constant 
exhaust velocity w, the spacecraft mass M (rest mass M for the 
relativistic case), and the spacecraft velocity U. 
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The derivatives can now be expanded using the well known relation 
that d(ABC)=BCdA+ACdB+ABdC. To simplify calculations in the 
relativistic case, we will also use the fact that: L 

By expanding the derivatives in Equation ( 8 ) ,  using Equation ( 9 )  
in the relativistic equation, nd multiplying the relativistic 
equation through by (1-U2/c2)1b to eliminate a common factor, we 
obtain : 

Combining terms in dU and dM (dM in the relativistic case), we 
obtain: 

(.- 1 -wu/c2 
WON= -MdU 

Amazingly enough, the complicated expressions in the relativistic 
case reduce considerably, and Equation (11) simplifies to: 

dU ON 
M W 

- _ = -  

With these equations side-by-side on the blackboard, the student 
can now see, that although the calculations for the relativistic 
case have been complicated, the two derivations have produced 
nearly the same result so far. The next step is to integrate 
Equation 12. Since the relativistic equation has the velocity U 
appearing in the denominator, the integration of the relativistic 
version of the equation produces a more complicated expression 
than the integration of the classical version. [The integral for 
the relativistic equation can be found in standard mathematical 
handbooks5, or can be checked by simply differentiating the 
answer given in Equation (13) using the fact that d(ln x)=dx/x.] 
Integrating Equation(l2) and setting the integration constant 
equal to the initial mass Mi or M i  of the rocket, we obtain: 

or alternatively: 

. u  
M = M i e  IV 

- 

( 1 3 )  In- M = - 1 + u/c 
Mi 2w 1 - u/c 

M = M i [  1 + u/c 3 -5 
1 - u/c 
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It is right here, in this integration step, that the student sees 
how and why the two derivations start to look significantly 
different from each other. This is also the time to have the 

graph paper for increasing values of U. The students will find 
that although the two equations look quite different, the 
numerical results they give start to diverge significantly only 
after U exceeds c/4. 

If the initial mass of the rocket is Mi when the rocket is 
at rest and U=O, and the final mass of the rocket is Mf when the 
rocket has reached the mission velocity AV, then the rocket mass 
ratio R=Mi/Mf obtained from using these boundary conditions on 
Equation (14) is: 

i/ student plot these two separate equations on the same piece of 

AV - 
R = e W  

These are the classical and relativistic rocket equations. For 
the relativistic case, there is a maximum exhaust velocity for 
the reaction mass that is given by:2 

w = [ e (2  - c ( 1 6 )  

where e is the fuel mass fraction converted into kinetic energy 
of the reaction mass. I was not able to improve on that 
derivation from a presentation point of view. 

'2 
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