





# Cost reduction and performance increase of PEM electrolysers NOVEL: New materials & components MEGASTACK: Manufacturing and upscale

Programme Review Days 2016 Brussels, 21-22 November



# NOVEL Novel materials and system designs for low cost, efficient and durable PEM electrolysers

Magnus Thomassen SINTEF

www.novelhydrogen.eu magnus.s.thomassen@sintef.no

Programme Review Days 2016 Brussels, 21-22 November

# **PROJECT OVERVIEW**



|                                                    | Project Information                                                                               |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Call topic                                         | SP1-JTI-FCH.2011.2.7 - Innovative Materials and<br>Components for PEM electrolysers               |
| Grant agreement number                             | 303484                                                                                            |
| Application area (FP7) or<br>Pillar (Horizon 2020) | Hydrogen production and distribution                                                              |
| Start date                                         | 01/09/2012                                                                                        |
| End date                                           | 30/11/2016                                                                                        |
| Total budget (€)                                   | 5 743 445                                                                                         |
| FCH JU contribution (€)                            | 2 663 445                                                                                         |
| Other contribution                                 | 310 683 (Norwegian Research Council)                                                              |
| Stage of implementation                            | 100% project months elapsed vs total project duration, at date of November 1, 2016                |
| Partners                                           | SINTEF, Fraunhofer ISE, CEA Liten, AREVA H2Gen,<br>Johnson Matthey Fuel Cells, Teer Coatings, PSI |

# **PROJECT SUMMARY - Objectives**



Develop and demonstrate a PEM water electrolyser using beyond state of the art materials.

75% Efficiency (LHV), electrolyser stack cost < €2,500 / Nm<sup>3</sup>h<sup>-1</sup>, target lifetime of 40,000 h ( < 15 μVh<sup>-1</sup>)



# **PROJECT SUMMARY - Partners**





### **PROJECT SUMMARY - Main achievements**



Highly active supported electrocatalysts



Membranes with lower cost and H<sub>2</sub> crossover



NOVEL

Advanced CCMs with higher performance



Non-noble metal coatings for bipolar plates



Low-cost stack design



Degradation mechanisms and AST protocols

### **PROJECT PROGRESS/ACTIONS - Cost**



| Achievement        | 8700€/                          |     | 4 €/kg 1500 | €/Nm <sup>3</sup> h <sup>-1</sup> | 2000€/N<br>m <sup>3</sup> h <sup>-1</sup> |
|--------------------|---------------------------------|-----|-------------|-----------------------------------|-------------------------------------------|
| to-date % stage of | Nm <sup>3</sup> h <sup>-1</sup> |     |             |                                   | 5 €/kg                                    |
| implement.         | 6 €/Kg                          | 25% | 50%         | 75%                               |                                           |

| Aspect    | Aspect Deservator (KDI) |                                   | Unit SoA |            | FCH JU Targets |      |  |
|-----------|-------------------------|-----------------------------------|----------|------------|----------------|------|--|
| addressed | d                       |                                   | 2016     | Call topic | 2017           | 2020 |  |
| Cent      | CAPEX (stack only)      | €/Nm <sup>3</sup> h <sup>-1</sup> | 8700     | 2500       | 4000           | 2100 |  |
| COST      | H <sub>2</sub> Cost     | €/kg                              | 5-13     | -          | 5-11           | 5-9  |  |

- Further tests of stacks and novel materials to evaluate long term stability and causes for performance degradation.
- Improve manufacturability of new components

### **PROJECT PROGRESS/ACTIONS - Cost**







### **PROJECT PROGRESS/ACTIONS - Efficiency** NOVEL 83% 84% Achievement 75% (HHV) to-date (HHV) % stage of 25% 75% 50% implement. FCH JU Targets Aspect Unit SoA Parameter (KPI) addressed 2016 Call topic 2020 2017 Efficiency (HHV) % 88 68 71 75 Efficiency kWh/kg 57 44 55 52 Energy use

- Further tests of stacks and novel materials to evaluate long term stability and causes for performance degradation.
- Improve manufacturability of new components



# **PROJECT PROGRESS/ACTIONS - Durability**





| Aspect      | Doromotor (KDI)  | Unit         | SoA  | FCH        | JU Target | ts   |
|-------------|------------------|--------------|------|------------|-----------|------|
| addressed   | ddressed         |              | 2016 | Call topic | 2017      | 2020 |
| Dunchiliter | Lifetime         | h            |      | 40000 h    | -         | -    |
| Durability  | Degradation rate | μ <b>V/h</b> |      | < 15       | < 4       | < 3  |

- Further tests of stacks and novel materials to evaluate long term stability and causes for performance degradation.
- Improve manufacturability of new components

# SYNERGIES WITH OTHER PROJECTS AND PROGRAMMES



| Interact         | ions with projects funded under EU programmes                                                                                                                                                                                            |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NEXPEL           | The NOVEL project is building upon the results generated in the<br>FCH-JU NEXPEL project. Further development of the most<br>promising technical solutions and introducing more novel<br>materials and degradation mitigation strategies |
| SMARTCAT         | Complementary activities on the fundamental understanding of<br>electron mobility in oxides and methods for increasing the<br>electronic conductivity of such materials                                                                  |
| MEGASTACK        | Collaboration on development of testing protocols for components and cells. AST development and dissemination events.                                                                                                                    |
| Interactions wit | h national and international-level projects and initiatives                                                                                                                                                                              |
| Moxilayer        | Development of oxide supported electrocatalysts for PEM electrolysers                                                                                                                                                                    |
| IEA-ANNEX 30     | Collaboration on development of standardized testing protocols for PEM electrolysers and cost reduction strategies.                                                                                                                      |

# **DISSEMINATION ACTIVITIES**



### Public deliverables

- D6.2: condensed findings and conclusions from the organised international workshops on PEM electrolysis
- D6.3 Annual public progress reports

### **Conferences/Workshops**

in

- 2 organised by the project
- >15 (with >20 presentations) in which the project has participated

B

### Social media



### • M. Chandesris; Membrane degradation in PEM water electrolyzer: numerical modeling and experimental evidence of the influence of temperature and current density, Int.J. Hydrogen Energy, 1353-1366 (40) 2015

• A. Albert, A. Barnett, M.Thomassen, T. J. Schmidt, L. Gubler; *Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties. ACS Appl. Mater. Interfaces, 22203 (7) 2015* 

### Patents:





# MEGASTACK Stack design for a megawatt scale PEM electrolyser

Magnus Thomassen SINTEF

www.megastack.eu magnus.s.thomassen@sintef.no

Programme Review Days 2016 Brussels, 21-22 November

# **PROJECT OVERVIEW**



|                                                    | Project Information                                                               |
|----------------------------------------------------|-----------------------------------------------------------------------------------|
| Call topic                                         | SP1-JTI-FCH.2013.2.3 - Large capacity PEM electrolyser stack design               |
| Grant agreement number                             | 621233                                                                            |
| Application area (FP7) or<br>Pillar (Horizon 2020) | Hydrogen production and distribution                                              |
| Start date                                         | 01/10/2014                                                                        |
| End date                                           | 30/09/2017                                                                        |
| Total budget (€)                                   | 3 451 654                                                                         |
| FCH JU contribution (€)                            | 2 168 543                                                                         |
| Other contribution                                 | 363 375 (Norwegian Research Council)                                              |
| Stage of implementation                            | 70% project months elapsed vs total project duration, at date of November 1, 2016 |
| Partners                                           | SINTEF, Fraunhofer ISE, CEA Liten, ITM Power                                      |



# **PROJECT SUMMARY - Objectives**

MEGASTACK

Megastack main objectives: Develop a cost efficient <u>stack design</u> for MW-sized PEM <u>electrolysers</u>.

Construct and demonstrate a <u>prototype stack</u> 75% Efficiency (LHV) @ 1.2 Acm<sup>-2</sup>; stack cost < €2,500 / Nm<sup>3</sup>h<sup>-1</sup> target lifetime of 40,000 h ( < 15 µVh<sup>-1</sup>)



# **PROJECT SUMMARY - Approach**

- Go large & smart
  - Increase active area and current density, reduce waste (square design)
  - Reduce part count and improve manufacturability/assembly



Develop new and more more cost efficient, large volume supply chains





MEGASTACK

0.5MW

**1MW** 

# **PROJECT SUMMARY - Approach**

### MEGASTACK

- Multiscale/multiphysics design tools
  - Improved understanding of fundamental transport processes in PEM electrolyser components
  - Two phase flow model for optimisation of cell designs
  - Multiphysics stack model for stack design and control







### **PROJECT PROGRESS/ACTIONS - Cost**

MEGASTACK

| Achievement | 8700€/                          |     | ~5 €/kg < 300 | 00 <b>€/Nm<sup>3</sup>h</b> -1 | 2500€/N<br>m <sup>3</sup> h <sup>-1</sup> |
|-------------|---------------------------------|-----|---------------|--------------------------------|-------------------------------------------|
| to-date     | Nm <sup>3</sup> h <sup>-1</sup> |     |               |                                | 5 €/kg                                    |
| implement.  | 6 €/kg                          | 25% | 50%           | 75%                            | 5 6/15                                    |

| Aspect    | Aspect Demonster (KDI) |        | tor (KDI) Unit SoA |      | FCH JU Targets |      |  |
|-----------|------------------------|--------|--------------------|------|----------------|------|--|
| addressed |                        | 2016   | Call topic         | 2017 | 2020           |      |  |
| Caral     | CAPEX                  | Nm³h⁻¹ | 8700               | 2500 | 4000           | 2200 |  |
| COST      | H <sub>2</sub> Cost    | €/kg   | 5-13               | -    | 5-11           | 5-9  |  |

- Construct "short stack" demonstration unit
- Perform HAZOP study, complete documentation and ensure safe reliable operation
- Demonstrate electrolyser capabilities



### **PROJECT PROGRESS/ACTIONS - Efficiency**

MEGASTACK



| Aspect<br>addressed Parameter (KPI) |            | Unit   | SoA  | FCH JU Targets |      |      |
|-------------------------------------|------------|--------|------|----------------|------|------|
|                                     |            |        | 2016 | Call topic     | 2017 | 2020 |
| Efficiency                          | Efficiency | %      | 68   | 88             | 71   | 75   |
|                                     | Energy use | kWh/kg | 57   | 42             | 55   | 52   |

- Further improvement of stack design by use of advanced modelling tools developed in the project
- Improved manufacturability, optimised components, higher current densities

## PROJECT PROGRESS/ACTIONS - Durability



| Aspect      | Doromotor (KDI)       | Unit         | SoA  | FCH        | JU Target | ts   |
|-------------|-----------------------|--------------|------|------------|-----------|------|
| addressed   | essed Parameter (KPI) |              | 2016 | Call topic | 2017      | 2020 |
| Dunchiliter | Lifetime              | h            |      | 40000 h    | N/A       | N/A  |
| Durability  | Degradation rate      | μ <b>V/h</b> |      | < 15       | < 4       | < 3  |

- Evaluate long term durability of demonstrator stack
- Investigate possibility for increased current densities and alternative lower cost components without impact on durability

## SYNERGIES WITH OTHER PROJECTS AND PROGRAMMES

| Interact         | ions with projects funded under EU programmes                                                                         |
|------------------|-----------------------------------------------------------------------------------------------------------------------|
| NOVEL            | Collaboration on development of testing protocols for components and cells. AST development and dissemination events. |
| PHAEDRUS         | Megastack design based on elements from Phaedrus stack design                                                         |
| ELECTROHYPEM     | Test protocols for evaluation of CCM durability                                                                       |
| Interactions wit | h national and international-level projects and initiatives                                                           |
| IEA-ANNEX 30     | Collaboration on development of standardized testing protocols for PEM electrolysers and cost reduction strategies.   |
| JRC              | Harmonisation of testing protocols and hardware for PEM electrolysers                                                 |

# **DISSEMINATION ACTIVITIES**



### Public deliverables

- D1.1: Cost benefit analysis and cost and performance target for large scale PEM electrolyser stack
- D2.1: Cost benefit analysis and cost and performance target for large scale PEM electrolyser stack
- D3.2 Large scale MEA manufacture options and suppliers - testing of large scale MEAS

### Publications: 0

 Publications on two phase flow modelling and transport processes in porous media in preparation

# Conferences/Workshops 1 organised by the project 3 in which the project has participated Social media

### Patents: 0

-Megastack design based on existing ITM patents

## **Thank You!**

Coordinator: magnus.s.thomassen@sintef.no