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THE ROOTS OF TRIGONOMETRIC INTEGRALS
By N. G. pE BrunnN

1. Introduction. Concerning the roots of trigonometric integrals G. Pdélya
(see references at the end of the paper) has proved a number of results which
he derived from properties of the roots of polynomials. He proved, for instance,
the reality of all the roots of the following functions:

(1_1) f e dt o (n =123, -- .);

(1.2) /_ " e dt 0> 0),

where C'(t) = exp (—A cosh £), and

(1.3) f exp (—at™ 4+ bt™ + cf’) exp izt dt,

where ¢ > 0, breal,c > 0,n =1, 2,3, --- . (See concerning (1.1), [7], [8];
concerning (1.2), [6], [8]; concerning (1.3), [8].)
Another important result of Pélya is the following one (see [8]): Suppose

that the function F(¢) of the real variable ¢ satisfies

F(3) integrable over — o < t < o F(f) = (F(—§))*, —o < t <o}
(1.4)
Ft) = 0@ "") for t >+, b > 2.

(The * indicates the conjugate imaginary.)
Let ¢(t) be an integral function of genus 0 or 1, with real roots only, and let
the number v be > 0. If the function F(¢) is such that all the roots of the

integral
(1.5) f F(e™* dit

are real, then the same holds for the function 2. F()e(it)e” "¢’ * di.

The function ¢(it)e”"” is easily seen to be the limit of a sequence of poly-
nomials, all of whose roots are purely imaginary. Pélya’s result, stated in other
words, is that these functions are universal factors, which conserve the reality
of the roots of any trigonometric integral whose integrand satisfies (1.4). Pélya
also proved that the functions o(it)e”*” indicated above are the only analytical
functions with this property. The latter result will not be used in the present

paper.
Received July 16, 1948.
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198 N. G. DE BRULJN

In the sequel we continue Pélya’s researches. Our main results are

Tarorem 1. Let f(f) be an integral function of t and such that its derivative
f'(t) is the limst (uniformly in any bounded domain of the t-plane) of a sequence
of polynomials, all of whose Toots lie on the imaginary axis. Suppose furthermore
that f(£) 1s not a constant, and that f(t) = f(—1), f(t) = O for real values of t. Then
the integral [2. e’ V¢™" di has real roots only.

(The conditions (f(f) = f(—1), f( = 0) may be replaced by weaker ones,
namely, “f(t) = (f(—1)* Ref(®) > 0for — o <t <o”,if f(2) is a polynomial
or a function of the type (1.6) (see Theorems 19 and 20 respectively). It is not
easy to see whether the latter set of conditions is sufficient in the general case.)

Pélya’s results (1.1) and (1.2) are special cases of this one, but (1.3) is not.

TrareoreM 2. Let N be a positive integer and put
N
(1.6) P() = > p.e™ Repy > 0;p=p_,,n=0,1,2, --+).
N
Let the function g(x) be regular in the sector —x/2N — N Targpy < argz <

x/2N — N* arg py and on its boundary, with possible exception of x = 0 and
x = o which may be poles (of arbitrary finite order) for q(x). Furthermore suppose

(L.7) (g(x))* = ¢(1/2%)

in this sector (in other words, q(x) ts real for | x| = 1. Then all but a finite number
of roots of the function

8 o)) = [ eTOQuE dr Q) = ¢
are real.

It may be remarked that our method fails to give any useful information
concerning the number and location of the non-real roots of (1.8) in the general
case, 80 that this very peculiar result may be of very little practical importance.

The special functions (C(f) = exp( —A\ cosh 7))

@ N
(1.9) 1) = [ 00 Tacd (> 0,08 = a)

which have N pairs of non-real roots at most (Theorem 21), may be of some
interest since the Riemann -function can be approximated by functions of
this type (see [8]). It will be worthwhile to determine classes of functions of
this type with the property that all the roots are real. We shall study these
questions in §6. -

(Those readers who are mainly interested in considerations concerning the
£-function may omit the proof of Theorem 1 and the related results in §5, and
in Theorem 2 need to consider the case P(t) = A’ + ¢™*) only. In that case
the complicated §4 is superfluous since the results of that section then reduce
to well-known asymptotic formulas concerning the I'-function.)
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In §7 we expose what progress has been made in this paper in the direction
of the Riemann hypothesis, and also how small this progress is.

An outline of the proofs of Theorems 1 and 2 concludes our introduction.

Sections 2 and 3 will furnish functions S(f) which are special universal factors
in Pélya’s sense but which have stronger properties than those stated above.
A function S(f) of the real variable ¢, satisfying S{&) = (S(—#)* will be called
a strong unwersal factor if it joins properties () and (8) below, for any function
F () satisfying (1.4).

() If the roots of (1.5) lie in strip | Im 2| < A (A > 0), then those of
[2o F(&)S(t)e'** dt lie in a strip | Im z| < A, , where A, < A, A, independent
of F(1).

(B) If F({) is such that, for any ¢ > 0, all but a finite number of roots of
(1.5) lie in the strip | Im 2 | < ¢, then the function [Z. F({)S()e™’ d¢ has only
a finite number of non-real roots.

It will be evident from (o) that any strong universal factor is a universal
factor in Pélya’s sense.

A function S(?) of the type

. N . )
(1.10) S = > ae™ >0, a, = a*)
) —-N

is a strong universal factor if all its roots lie on the imaginary axis. (Conversely,
if S(t) is a universal factor and if it is of the type (1.10), then its roots lie on the
imaginary axis. - This follows from Pélya’s result on universal factors.) This
result is obtained by generalizing a theorem of J. L. W. V. Jensen on the location
of the roots of the derivative of a polynomial with real coefficients (§2) and
applying it to integral functions (§3).

The functions e”*", ¥ > 0, also turn out to have property (e), but it is doubtful
whether they have property (8).

The functions (1.8) will be shown to have but a finite number of roots outside
any strip | Im 2| < ¢ ¢ > 0. This will be carried out by proving asymptotic
formulas for ®(z), depending on the expansion (5.7). In that formula an
auxiliary function H(s) occurs which is a generalization of the TI'-function.
Asymptotic formulas for H(s) will be derived in §4.

Now let P(t) and Q(t) satisfy the conditions of Theorem 2; then also P(t)
and Q(t)/(e' + 2 + ¢ ') satisfy these conditions. From what is said above it
is evident that the function [Z. e P’Q()(e + 2 + € *)7"¢’** dt has but a
finite number of roots outside any strip | Im 2z | < e Now applying property
(8) with S() = ¢’ 4+ 2 + ¢ * we obtain Theorem 2.

In order to sketch the proof of Theorem 1, let P(f) satisfy the conditions of
Theorem 2 and suppose that P’() has purely imaginary roots only. Let A be
the smallest number with the property that the roots of ®,(2) = [Z. e "¢ dt,
which has but a finite number of non-real roots by virtue of Theorem 2, lie in
the strip | Im z | < A, and suppose A > 0. The function P’({) is a strong uni-
versal factor and hence, by (), the roots of [, e ¥ iP'(f)e'** dt lie in a strip



200 N. G. DE BRUIJN

|[Im z| < A;, Ay < A. But it is easily seen from partial integration that the
latter integral equals —z®,(2). It follows that the roots of ®,(z) also lie in the
strip |Im z| < A, . This contradicts the minimum property of A. Hence
A = 0 and all the roots of ®,(2) are real.

It will be relatively easy to extend this to the integrals of Theorem 1 on con-
sidering F(£) as the limit of a sequence of functions P(?).

The following notations are used throughout the paper.

Re @ and Im « denote the real and imaginary partsof e« = Rea + ¢ Im a; o
denotes the conjugate of a. If f(2) is a function of the complex variable 2, then
f*(2) is defined by f*(z) = (f(z*))*. A polynomial or integral function f(2) is
called real if f(2) = f*(2), that is to say if f(2) is real for real values of z.

All the trigonometric integrals considered in this paper are real integral
functions of z.

%

2. Theorems on polynomials. We shall deal with linear combinations of the
type (2.3) for a given polynomial f(z) with real coefficients; the simplest case
isfi(2) = f(z + ©) + f(z — 7). Several properties of the roots of f1(z) are known;
they all express in some way that the roots of f;(2) lie closer to the real axis
than those of f(2).

1. The number of non-real roots of f,(z) does not exceed that of f(2). (This
is a special case of Poulain’s theorem. See [11; Abschn. VI, Aufg. 63].)

2. If the roots of f(2) lie in the strip | Im 2| < 1, then f,(2) has real roots
only. Namely, |f(z + 9) | # |f(z — ©) | for Im z > 0. (Properties 1 and 2
are contained as special cases in Theorem 9a.)

3. If o , -+, a, are the roots of f(z) and 8, , --- , B, those of f;(z), then
S| ImB, | < 2% |Ima,| (See[l; Theroem 5].)

These properties are meant for illustration and will not be used in the present
paper. We shall now derive a new result of this type, Theorem 3, which forms
the base of our paper. It is a generalization of the second property above. We
first prove

Lemma 1. Putz = z + iy (z and y real), and f(2) = 2° + A" where A > 0;
let \ be a positive number. If uis defined by u = (&° — A} (A > N andp =0
(A < N), then we have |fiz + N | > |flz — N | o (z]° — &)y > 0
and | fz + ) | < |fle — N |if (|27 — )y <O.

Proof. We evaluate |f(z + i\ | — |fe — ) P = | {z + iy + V}* +
AP — | {z 4+ iy — VY + A = 8yA@® + y* + \* — A%). The assertion
directly follows.

Now consider an arbitrary real polynomial f(z) of degree > 0. It can be
written in the form

@ s = 4 T (e — oy + 83 T - b,
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where a; , b; real; A; > 0, A 5 0. Again, let A be a positive number. To any
A; exceeding A we construct the circular region C; , defined by (r — a;)® +
y: < A7 — N4 if A; <\ we take C; to be empty. By S = S(f) we denote the
sum of all C; and the real axis. We now show

-THE(_)REM 3. If f(2) is of the type (2.1) and X > 0, £ a complex number # 0,
then all the roots of the polynomial

(2.2) £f(z 4 N + £f(z — )
(which has real coefficients) lie in S.

Proof. We suppose { to lie in the upper half-plane and outside S. Abbre-
viating (2.1) we write f(2) = A [ g:(¢) T h;(2). Trivially | ;¢ + ) | >
| hi (¢ — 2\) |, and it follows from Lemma 1 that also | g:(¢ +2A) | > | g.(¢ — @N) |
Hence | f(¢ + 4\) | > |f(¢ — 2A) |. If ¢ lies in the lower half-plane and outside
8, then |f(¢ + #A) | < |f(¢ — 2\) |. In both cases we conclude that ¢ is not
a root of (2.2).

We remark that the limit case of Theorem 3 for A — 0 leads to a well-known
theorem of J. L. W. V. Jensen on the roots of the derivative of a polynomial.
(See [3] and [10; Abschn. ITI, Aufg. 35].)

We want to iterate the result of Theorem 3. Therefore, we first define a set
Sy = Sx(f), N = 1,2, --- , which is the sum of the real axis and the regions
Civ,i=1, -+ ,n If A; > AN? we take for C;y the region N '(z — a.)® +
y® < A? — NN, which is bounded by an ellipse; if A; < AN?, C.y is empty.

It is readily deduced from Theorem 3 that if the roots of the real polynomial
g(2) lie in Sy(f) then those of £&g(z + \) + &*g(z — 2N), £ # 0, lie in Sy, (f).

TurorREM 4. Suppose that all the roots of the polynomial o(u) = Y o @,
ay # 0, lie on the unit circle |u| = 1, that f(2) 4s a real polynomial, and that
A > 0. Then the roots of

2.3) T6(T™f@) = 3 auflz + 2k — N)in}

k=0

are contained in Sy(f). Here T represents a translation operator defined by
T'f(2) = fz + ).

Proof. The function u "¢(u’) can be written in the form
N N
u o) = a [T Gu + g™ (@ # 0, & # 0).
%=1

By Theorem 3, the real polynomial (ET + £T)f(2) has its roots in S;(f).
A second application shows that the roots of (5T + T MN(ET + TV (2)
lie in S.(f), eftc., so that the roots of T o(T™)f(2) turn to lie in Sy(f)-

TaEOREM 5. Let f(2) be a real polynomial whose roots lie in the sirip | Im z | <
A, A > 0, and let o(u) satisfy the conditions stated in Theorem 4. Then the roots
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of the polynomial (2.3) satisfy |Im 2| < {A* — NA*} 4f A > AN}, Im 2z = 0
if A < AN ~

Proof. Follows directly from Theorem 4 and from the definition of Sy(f).

3. Application to integral functions. Strong universal factors. Let a real
integral function be given of the type :

.1 @) = e Tt = e/o)e™,

where A is real and # 0, m is a natural number, a isreal, p, # 0, | Im p, | < A,
> | py |7? < = and the roots p, and p} have the same multiplicity. It is possible
to construct a sequence of polynomials f1(2), f2(2), - - , all having their roots
in the strip | Im z| < A, converging uniformly to f(2) in any bounded region.
Since the product (3.1) converges uniformly in any bounded region, it is ob-
viously sufficient to prove it for the functions ¢** (a real), (I — z/p,)e”” if
p, is real and (1 — z/p,)(1 — z/p¥) exp (2/p, + 2/p¥) if p, is not real. In the
latter case p;’ - p¥ " is real, and thus it only remains to be proved that ¢*
(a real) is the uniform limit of a sequence of polynomials with roots only in the
strip | Tm 2| < A. We have indeed ¢”* = lim,.. (1 + az/n)", converging uni-
formly in any finite region. :

Since also ¢7>** (b > 0) is the limit of a sequence of polynomials with real
roots, the same applies to the function ¢ **'f(2), b > 0, if f(z) satisfies the con-
ditions mentioned above.

Conversely, it seems probable that, if a sequence of real polynomials with
roots in the strip | Im z | < A converges, uniformly in any bounded region, to
an integral function, then this function will be of the type e **f(z), where
the genus of f(z) is either 0 or 1. (The corresponding problem for functions
with real roots was solved by Pélya [4].) We do not need the solution of this
problem for our present purposes. (After this paper was written the conjecture
stated above has been proved by Mr. J. Korevaar.) Namely, we are able to
restrict ourselves to integral functions of order < 2; these functions satisfy
|f) | < exp (|2]"),p <2, for|z]|sufficiently large. According to Hadamard’s
theory such a function can be expanded into a product of the type (3.1) with
> |0, |> <. If we now suppose that the roots of f(z) lie in the strip | Im z | <
A and that f(2) is real for real z, it immediately follows that f(z) has all the prop-
erties mentioned in the beginning of this section. We thus obtain

TuEOREM 6. If the order of the real integral function f(z) is < 2 and if the
roots of f(2) lie in the strip | Im z | < A, A >0, then there exists a sequence of real
polynomials £, (z) whose roots lie also in that strip, such that f,(z) — f(z) uniformly
in any finite region.

- For convenience we explicitly formulate the following well-known result (see
[10; 123, Abschn. 3, Aufg. 201]).
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THEOREM 7. Iff(2), f.(2), f.(2), - - - are integral functions, f(z) not identically 0,
with f,(2) — f(2) uniformly in any finite region, and if the roots of fi(2), f2(2), - -+
all belong to a given closed point-set S, then the roots of f(2) also lie in S.

Theorems 4 and 5 can now be applied to sequences of polynomials.

TurorREM 8. If f(2) satisfies the conditions of Theorem 6 and o(w) those of
Theorem 4, then the roots of

3.2) To(T™)f) (>0, T () = fle + i)
satisfy | Imz| < (A — NADYf A > AN, Imz = 04f 0 < A < ANE
Proof. Let f,(2) — f(2) according to Theorem 6. It is easily seen that

3.3) T™Po(T™)fu(®) = T"e(T™)f ()

uniformly in any finite region. By Theorem 5, the polynomials on the left have
their roots in the strip | Im z | = u = {Max (A* — N\% 0)}}. Now the desired
result follows from Theorem 7.

TueoreM 9. Let the real integral function f(z) be of order < 2 and suppose that
f(2) has but a finite number of roots outside the strip | Im 2 | < A. If furthermore
o(u) satisfies the conditions of Theorem 4, then all but a finite number of roots of
(3:2) satisfy | Im 2| < {Max (A% — Na%, 0)}%

Proof. We put f(z) = g(2)h(z), where g(z) is a polynomial, and the roots of
the integral function A(z) lie in the strip | Im z | < A. It is easily seen from the
arguments used in the beginning of this section that f is the limit of a sequence
of polynomials of the type f.(2) = g(2)h.(2), where h,(2) has no roots outside
|Im z| < A. We may actually take for h,(z) polynomials which have, apart
from a number of real ones, only roots which are roots of h(z) also.

According to Theorem 4, the roots of T " 'e(T™)f.(2) lie in Sy(f.). It fol-
lows from the definition of Sy that Sy(f,) = Sx(h.) + Sx(g) & R + Sx(9),
where R represents the set [Im z| < {Max (&> — N\%, 0)}}. Now (3.3) and
Theorem 7 show that the roots of (3.2) belong to B + Sy(g). Sw(g) consists
of a finite number of ellipses. Since each ellipse contains but a finite number
of roots of (3.2), our proof is completed.

In the special case N = 1, A > A we can obtain more complete information
on the number of non-real roots.

TaeoREM 9a. If the real z'ntegml function f(2) of order < 2 has exactly 2k roots
outside the strip | Im 2z | < A, and A2 A20 &30, then the function
fi(®) = Ef(z + iN) + Ef(z — ©N\) has 2k non-real roots at most.

Proof. The function W(z) = £f(z -+ 4\) has not more than & roots in the
Jower half-plane. The theorem now follows by Lemma 2, §6.

In the general case A < A of Theorem 9 the analogue of Theorem 9a is not
true. Even the following statement is false: if f(2) is a real polynomial with
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2k roots outside the strip | Im z | < 1, then f,(2), 0 < X < 1, has at most 2k
roots outside the same strip. Taking £ = 4, A — 0, we should infer that f'(2)
has at most 2k roots outside that strip. This is incorrect, for instance, for
f@) = & + HE 4 12, f'() = 62" + 3(12))"

In order to be able to apply the preceding results to trigonometric integrals
we first state '

TaeorREM 10. Let b be a number > 2, and lé the real or complex function F(t)
be integrable over — o < t < o and satisfy

3.4 F{t) = (F(—)* for all real values of ¢,

(3.5 F@®) = 0" (t £ ).

Then the trigonometric integral

3.6) o= " Fe at

represents a real tntegral function of order < 2.

A simple proof can be found in Pélya [8].

TareoreMm 11. Let F() satisfy the conditions of the preceding theorem and
suppose that the roots of the function S(t) = M ad™, af = a_,, ay # 0,
N > 0, lie on the imaginary axis. Then we have: If the roots (all but a finite number
of the roots) of (3.6) lie in the strip | Im z | < A then the roots (all but a finite number
of the roots) of the real integral function

3.7 f_ " RS(E dt

lic in the strip |Im z | < {A% — 3MN*}Hif A > ANGM)?, and are real if A <
AGM)E

Proof. Since the roots of S(f) are purely imaginary, the roots of the poly-
nomial o(u) = 2" a;u™ " lie on the unit circle | | = 1; hence ¢(u) satisfies
the conditions of Theorem 4 (2M = N). Now our theorem immediately follows
from Theorem 8 (Theorem 9) and from the fact that T7* [Z. F@)e'** dt =
[2o F(H)e'e’* dt, whence

© @© M
T—N)\/2¢(T2)\/2)‘/‘ F(t)eizl dt =f F(t) Zakek)\teizé dt.
—c —® -M

A slightly better result can be obtained if S(¢) contains factors g 4 £ M.
For instance, the function S(f) = g + 2 + g% gives rise to the strip
|Im 2| < {A% — 2%}, but S@) = & + £ gives the strip [Im 2| <
{A* — M\*}} which follows from Theorem 8 (Theorem 9) on taking o(u) =
£ 4+ £*u. By iteration, we obtain
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Taeorem 12. If 8@ = JIV &e™ + &™), where |&] = 1, & > 0,
k=12 -, N, and the roots (all but a finite number of the roots) of (3.6) lie
in the strip | Tm z | < A, then the roots (all but a finite number of the roots) of
(3.7) lie in the strip | Im 2| < {Max (A* — 2.7 A1, O }E

Theorem 11 proves the statements () and (8) made in the introduction con-
cerning strong universal factors. Although it will not be used in this paper,
we shall prove here that also the functions ¢?***, A* > 0, have property (o).
We do not yet know whether they have or have not property (8).

TreoreM 13. If F(Y) satisfies the conditions of Theorem 10, and if all the roots
of (3.6) lie in the strip | Im z | < A, then all the roots of g(2) = [Za F)e™ "™ dt
lie in the strip

(3.8) |Im 2] < {Max (a* — ¥, 0)}%.

Proof. By Theorem 12, the roots of gy(2) = [« F(t) (cosh Xe/N)""-¢"* dt
lie in the strip (3.8). Owing to Theorem 7 it is now sufficient to prove that
gn(2) — g(z) uniformly in any finite region. Now this follows from (3.5) and
from the fact that for x* > A\* we have

(3.9) ¢ (cosh Nt/N)Y" — ¢ 817,

uniformly in —eo < t <. (3.9) results from the inequality cosh y < &,
— o <y <, whence (cosh M/N)"" < " .

For completeness we mention the following theorem, a slight extension of
Pélya’s result on universal factors (see [8]) which deals with the case A = 0.

TaroreM 14. Let F(t) satisfy the conditions of Theorem 10 and suppose that
the roots of (3.6) lie in the strip | Im z | < A. Let ¢(2) be a real integral function
of genus 0 or 1 (that is, a function of the type (3.1)), with real roots only. Then
the roots of '

(3.10) f_ i F()o(it)e’™ dt

lie in the strip | Im z | < A also.

A proof can be given by introducing quite frivial modifications in Pélya’s
proof for the case A = 0. It is, however, also possible to deduce Theorem 14
from Theorem 12.

It is hardly necessary to say that the function o(it)e**’, @ > 0, satisfies as a
‘“universal factor’”’ as well as o(4f), that is to say that the roots of

3.11) | Fayetinee= ar

lie in |Im z| < A for any F(¢) satisfying the conditions of Theorem 14. But
the roots of (3.11) even lie in a narrower strip, which can be shown by applying
Theorem 13 to (3.10).
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4. Application of the saddle-point method. An important part in our con-
siderations will be played by the function

(4.1) HE = [ o*u du,
0

where Re s > 0 and
“.2) g(u) = u+ aluw—nm + azu(N—z)/N Lo oy i
We are interested in the asymptotic behavior of H(s) for Re s > 0, | s | large;
the natural number N and the coefficients «; , --- , ay remaining constant.
The o’s need not be real. For a; = -+ = ay = 0 we have H(s) = sT'(s), so
that asymptotic formulas for the T-function will appear as special cases.

In the sequel, positive constants @, , @, , --- will occur, chosen sufficiently

large to suit some special purpose. These numbers may depend on N, a ,
-, ay , but not on s.
The integrand of (4.1) has, for s large, Just one saddle-point £ in the domain
l arg u | < x satisfying
(4.3) tkg'(8) = s.
Namely, putting s = 2", £ = w" (w and z are positive for s and u positive), we
obtain the equation
w¥ 4+ (N = DN o™ 4+ (V — 2N e + -+ + Nlay_w = 27,

whence, for |w| > a, , the function 1/z can be expanded into a convergent

power series 2 ' = w' — (N — DN ™ + - - Solving this equation
by the Burmann~Lagrange inversion formula we obtam wt =214 B +
82™% 4+ -+ whence w¥ = (1 4+ B2  + Bz P+ )V =21 + e +

v:2~2 4 --+), convergent for |z | > a, . It follows that, for | s| > as, the only
solutions of (4.3) are

(4-4) £=s(1+ ’Y1'5'_MN + 723—2/N + -- ');

where s7*%, 7% ... are derived from one and the same branch of the func-

tion s™¥". We shall restrict ourselves to the regions | arg s | < 37, jargu | < =,
and hence we only have to consider the case where s'/* is positive for s > 0.

We henceforth divide into two cases,

Case a: 47/9 < |arg s| < 3m,

Case B: |args i < 41r/9
andweput L = 3 |£|*in Case o, L = % Is}ll/wm Case B, M = | £, ¢ =
¢ — Lg* in both cases. (The constant 47r/ 9 is of course not essential. In Case
B it may be replaced by any other number < §m; in Case o however, it cannob
be replaced by arbitrary small positive numbers.) Our integration contour for
the integral (4.1) will be

I. A straight line from 0 to ¢.

II. The straight line v = £ + y& —L < y < »; we notice that [ arg £ | <

1r + & for | s | sufficiently large.
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The major contribution to H(s) is furnished by the integral along II passing
through the saddle-point £ Its value is

(4.5) f e du = & f e dy,
q -L

where K(u) = g(u) — slog wand u = § + yt. Wé have

dK /dy = {g() — su " 1§ = wE{ug’w) — £ (®)}
(4.6)

= w7 [ g0}/ dy = 7 [ @lug'))} /) dy.
Tt is easily seen from (4.4) that, for |s| > as, Res > 0,y > —L, we have
@n  ul>dlElL | @}/ — 1] <as[E[,

(4.8) | arg (u/€) | < 3n/8.

Tt follows from (4.6), (4.7), (4.8) that, if |s| > as , Re K(u) decreases from
y = —Ltoy = —M. Furthermore, for y > M we have, again by (4.6), (4.7)
and (4.8), for |s| > ar, ‘ ‘

*.9)  Re(@K/dy) > tlguly > W/ +1) >+
It follows that

4.10) e ay| < a5 e (e - M) L,

(@1 [T ay| <8 (-KG 4+ 28 |

We now consider the interval — M < y < M. Siﬁce M = £°" we have
{eu™ — 1+ gt <ay’ | &, |s| > ao, and by (4.6) and (4.7) we have
|dK/dy —y + 96| < a (& [+ 19757 D) (s> aw).
Hence, for —-M <y < M, '
(4.12) | K@ —K® — 3 + ¥ | < a7+ ]_ yET D,

M
f e dy
-M

_—E® . —5v? 1,3:—% -7/6 Y Y
= ¢ /LMG {1+3y£ +0<IEI+ /N+[£|)}dy

(4.13)

= é"““{(zvr)% + 0 + 0+ O(I—é—l + | zll"” + i—é—‘)}

= (2m P {1 + 0N},
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From (4.12) we easily infer that the right members of (4.10) and (4.11) are
O(£ e ™), 50 that (4.5), (4.10), (4.11) and (4.13) give

(4:.14) f e"ﬂ(u)us du = (2,”5)%6—1{(5) { 1 + O(é_llN)}.
In the second place we consider the integral
(4.15) f IO du
1]

for which the Cases « and 8 have to be treated separately.

Case o. Since ¢ = £ — 5| £|%* and 4x/9 < arg s < %, it is easily seen, on
drawing a figure and carrying out some elementary trigonometric calculations,
that |arg ¢| > |arg (*"° — 3*™°) | — € > 5x/9 for | s | large. It follows
that, if | s | > a:» and if u runs through the straight line from 0 to ¢, the maxi-
mum value of |e™°® | is attained at v = ¢. The same being true for | u" |
(since Re s > 0), we obtain

a
f e "’ du
0

It was noticed before that, if | s| > a5 , Re K(u) decreases from u = g to u =
£ — M#, so that Re K(¢) > Re K(¢ — MEgY), whence the left side of (4.16) is
O£ e ®) (see (4.12)).

Case B. |args| < 4r/9. Weputu = ¢, 0 <t < 1,¢q =% — 3] 5
Then we have (see (4.6))

(4.17) dK/dt = ¢{g'(u) — s/u} = ¢ {ug'(w) — &'®)},

and ug'(w) — & (&) = [t {ug'w)}’ du, {ug @} = 1 + O@w™"). Hence a;
and a,, can be chosen such that for |u | > a5, [ s] > @,

(4.18) ug(w) — g/’ = —~L+nE—w (2] <sinz/20).

(4.16) < | g™ .

Now it is easily seen from a figure that for |s| > ai; , |arg (¢ — w) | <
|arg £| < 97/20. So it follows from (4.17) and (4.18) that, for | s| > a;, Re
K(u) decreases if u runs through the straight line segment from v = w4, =
a15q/] ¢ | to u = ¢, whence | e | < | ¢™*“ | for u on that segment.

Let p be the maximum value of | ¢™*“ | on the remaining segment from 0 to
Uo . If ulies between 0 and u, , 0 < t < ay5 | ¢ |77, we have

Ie—K(u) l S o 1 ea(uo)(u/uo)se—l{(uo) I S © l ea(uo) —K(q) !

je

g {(uo)

Since the constant @, = u | ¢ is independent of s, we obtain

q
f e " du
4]

Just as in Case a, we infer that (4.15) is O e *®).

(4.19) <1+ aw) | g™ |
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TureorREM 15. If b is a positive constant and H(s) is given by (4.1), we have
(420) H(s) = (271'5)%6—0(5)53{1 + 0(8—1/N) }’

uniformly for Re s > —b, |s| —w. Here £ = s + 78" +f 78" + ...
(absolutely convergent for s large) satisfies &' (§) = s.

(We notice that for NV = 1 we obtain ¢’(u) = 1, £ = s and then (4.20) becomes
the familiar Stirling formula for I'(s 4 1).)

Proof. For Re s > 0 the result follows from (4.14), (4.16), and (4.19). In
order to be able to consider values of s in the left half-plane, we continue H(s)
by the formula

s+ DH() =H(is+ 1)+ (N — DN 'His+1~— N7
(4.21) : '
+ oo oy NTH(s + N7Y,

which ean be found by partial integration: (s + 1)H(s) = [¢ e *“¢'(w)-%"** du.
It follows from (4.21) that H(s) can be continued over the whole plane but for
the points s = —1, —1 — 1/N, —1 — 2/N, --- , which are possible poles of
H(s). It also follows that (4.21) holds for all values of s except for these points.

The function h(s) = (2a8)ie L, & = s + 1,.8™YY + ..., is regular and
satisfies :

(4.22) sh(s — p)/h(s) = 1 4+ O(s™")

uniformly for 0 < p < b+ 1, |args| <, | s| > a;» . This can be shown by
some elementary calculations. Now suppose that (4.20) is true for the region
Re s > —k/N. Then, by (4.21) and (4.22), it can be verified for Re s >
—(k 4+ 1)/N. Hence the theorem follows by induction.

In the following Theorems 16 and 17 we shall collect some results concerning
H(s) to be used in the next section.

TaeorEM 16. Puts = o + 27 (o and 7 real), and let b and ¢ be positive constanis.
There are constants A and C (A and C may depend on a, , --- , ay) such that,
for =b <o <c|7l,|7| > A and any positive number p we have

(4.23) | H(s — p) | < C" | s | H(s) |.

Proof. Take C = {1 4+ {oy| 1 — 1/N) 4+ -+ + |av, [/N}Q + A
It follows from Theorem 15 and from (4.22), that A, A > C, can be determined
such that for 0 < p < 1,6 > —b, |7]| > 4, we have |s"H(s — p)/H(s) | <
(1 4+ ¢&)* < C***. Now the case p > 1 can be proved by induction. Suppose
that (4.23) is true for 0 < p < k/N (k an integer, &k > N), and that k/N <
pp < (k + 1)/N. Then we have |H(s — p, + 1) | < C*™ |H(s) |/] s |”*7,
|H(s — pr + 1 — 1/N)| < C**V¥ | H(s) |/| s |”*"****, and so on, and hence,
since || > A >C, |Hs—po+1—k/N)| <C*|s|"™|H@B |, k=12,

-, N — 1. It now follows from (4.21) that
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| s — p1 + DH(s — p1) |
<A+ |a|(N=DN 4+ -+ + [ayy [ NTHC" [s [ [ H(9) |

Since ¢ < ¢ |7|and p, > 1, we have |s — p, + 1| = [s|(L + (?)'J*L and
4. 23) follows forp = p; .

TaroreM 17. If b, ¢ and § are given positive numbers, then posztwe numbers A
and C can be found such that | H(s) | > Ce@*011%e7 s = ¢ + 41, in the region
o> —b,|s| > 4. : .

This follows from Theorem 15 by some mmple calculations.

5. Proof of Theorems 1 and 2. In order to complete the proof for Theorem 2,
which was outlined in the introduction, it is sufficient to show (Theorem 18)
that the integral (1.8) has but a finite number of roots outside any strip | Imz| <
¢, ¢ > 0. Theorem 2 follows (for Q(f)) by applying Theorem 18 to the function
Q.(t) = Qt)/(¢' + 2 + ¢ *) which also satisfies the condltlons of Theorem 2,
and using Theorem 12 or 11.

‘We shall establish a series expansion (formula (5 7)) for ®(z) which generalizes
a formula of Pélya (see [6; formula (11)]) for the function (1.2). The occurrence
of Q(¢) in our ®(z) makes it very difficult to carry out Pélya’s method in the
present case. We therefore develop a new method which uses contour inte-
gration.

Let the numbers oy , a» , + -+ , ay be defined by oy 4 ooyt A e+
1o = Y)Y + @V y)" ' + -+ 4 ay and define g(u) by (4.2). Then
we have, by (1.6),

(5.1) P(t) = g(pxe™") +'g*(pz"ée’m)-

Let B > 0 be such that Q(¢) is regular for | Re ¢ | > B. Consider the following
paths W., W, , W, in the complex ¢-plane.

"W, consists of a half line from 27 + = up to the point 2x7 + B, the line
segment from 2xi + B to B, and the real axis from B to 4 «.

W, is the contour of a rectangle; taken in positive direction, with vertices B,

271 + B, 2ni — B, —B.
W, consists of the segments —« to —B, —B to 2ri — B and 2z — B to

2wy — o0,
Considering ¢ 7V Q(f)e”** as our integrand, we immediately find that

I A R I A

For ¢ on W, , and B sufficiently large, we have an expansion

(53) (exp (~g* @8N = 3 8T GO
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converging absolutely and uniformly with respect to ¢. Hence

(5.4) fW - iK 8, /W (oxp (= gload™ e dt.

The integral

(5.5 [ (exp (~glpue" e at

converges for any complex value of z. To evaluate it, first suppose Im z < 0,
then shift the vertical part of the path W, infinitely to the left. It follows that
(5.5) equals

(1 =) [ (e (—gloe™ e ar

and hence
(5.6) f (exp (—g(pxe™e™ dt = N7H(1 — ¢ )py' " "H@N™" — 1),
W ¢

where H is the function introduced in (4.1). Since H(s) is regular over the
whole plane, with exception of simple poles at s = —k/N, k = 1,2, -+, the
right side of (5.6) is an integral function, and (5.6) holds for all z.

We can deal with [, in the same way, and after that (5.2) and (5.3) lead to
expansion

@(Z) ; tz+v)/NH<Zz N _ 1)

(iz+9) /N V__
5.7 +1 5 pppeomge(=E=2 )

v——K

+ o [T @t = 26 + 26 + 2.6,

This formula holds for all values of z, with the exception of the pomts z = ik,
kE=0,=+1 £2
We are now able to prove

Taeorem 18. If P(f) and Q) satisfy the conditions of Theorem 2, and if we put

(5.8) o) = N7B_xpx O "H((iz + K)N* — 1),
then we have, for ¢ > 0, ’
(5.9) ®(2) = (@) {1 + o(1)}

uniformly in the half-plane Im z < —¢, and ®(2) has but a finite number of roots
in that half-plane. Since ((2))* = &(2*), an analogous result holds for Im z-> e.
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Proof. We first consider the point-set B defined by the inequalities
(5.10) —|Rez| <Imz < —e (lz] > 4).

(On generalizing Theorem 16 it is possible to extend our considerations to the
regions defined by the set of inequalities |Re z| > 1, Im 2z < —¢, jz] > A.
The power of the Phragmén-Lindelsf theorem applied below however enables
us to restrict ourselves to the smaller regions indicated above.) Here A is
chosen sufficiently large to suit some conditions indicated in the following.

By Theorem 16, the first series of (5.7) satisfies

G1D 86 — el | < T | BRI |

<Clz |7 ]e® |,

if A is sufficiently large and z e R. (C,, C>, --- may depend on N, K, p: ,
B; , but not on z.) Analogously

(5.12) | 85(2) — o*(—=2) | < Cs|2|7"" | *(—2) |
Furthermore we have, again by Theorem 16, taking p = (12 — 1z*)/N,

IH*(—zz; K _ 1) H(iz* ; K _ 1)! <z [ H(iz ;K 3 1)‘

for z ¢ R and A sufficiently large. Hence, by (5.11) and (5.12)
(5.13) 3,(2) + ®:(2) = o(2){1 + o(D)}.

We now turn to the third part of (5.7), i.e., the function &,(2). It follows
from the regularity properties of Q(¢) (see Theorem 2) that the path W, can be
reduced to the path W3, consisting of a rectangle with vertices B4+ Gr+ 6 —
arg py)i/N; B + 271 4 (—37 — 6, — aIg pw)i/N; =B + 21t + (=37 — & —
arg py)i/N; — B + (3= + 6, — arg py)i/N for a certain positive number §, .
The rectangle being independent of z, we find, for Im z < —e

l (1 — o) fmw

Csexp {B|Imz| — (3r + 8) | Rez/N | + arg py Re z/N}.

| ®2(2) [

IA

From Theorem 17, with ¢ > BN, 8 < 8, , we now easily derive that (see (5.8))
(5.14) 3,(2) = ¢(2)o(1) (z]—=)

uniformly in the region considered.

It follows from (5.13) and (5.14) that (5.9) holds uniformly for z & E.

In the region R, defined by |Im z| < — [Re z|, | 2| > A, we have, by
Theorem 10, ®(z) = O(exp |z ["), A < 2. On the boundary of R, we have



THE ROOTS OF TRIGONOMETRIC INTEGRALS 213

®(z) = ¢(2){1 4 o0(2)} and furthermore | o(z) | > 1 for zin R, , provided that
A has been chosen sufficiently large. It follows, by a well-known theorem of
Phragmén-Lindelof, that (5.9) holds uniformly in B, .

Since H(s) has only a finite number of roots for Re s > —b, which follows
from Theorem 17, now Theorem 18 is completely proved. Hence Theorem 2
is true (see Introduction).

We now turn to the proof of Theorem 1. In the first place we deduce from
Theorem 2 and Theorem 11, by an argument explained in the introduction,

TaeoreM 19. If P() = 2 %y pe™ (N > 0, Re py > 0, pf = p-,) and if all
the roots of its derivative P'(t) are purely imaginary, then the function [Z. e ¥ Ve
dt has real roots only.

We easily infer

TuroreM 20. If all the roots of the derivative of the polynomial f(t) = e
g.t* (N positive and even) are purely tmaginary, end if qv > 0 (so that f(f) is
real for t purely imaginary), then the function ¥(z) = [Z. ¢ 7¢’** dt has real
rools only. '

Proof. We put f'(t) = Ngy [ )= (¢ = 4p,), p, real, and for A > 0,
) N-1 13
Now [Insinh (¢ = i\ = o), [ o) dr = no).
on(t) has the form

N-1
(5.15) > el

-N+1

Since N is even we have ¢, = 0; hence ¥, (f) also has the form (5.15). It is easily
verified that ¥,(f) is real for purely imaginary values of ¢, and furthermore

\h()\t) — 2N(N _ 1)—-1(%)\)Nqu—iEpv/)\e(N—l)t + —_—

It follows, that, for X > A, = 2" | 27 'p, |, the function Py(t) = ¢a(M)
satisfies the conditions of Theorem 19, so that ®(2) = [T ¢ ¥*“¢’*’ dt has
real roots only. It remains to be proved that (see Theorem 7)
(5.16) lim &,(z) = ¥(2)

Aot

uniformly in any bounded domain of the z-plane.
We can determine positive constants 8, < w/2N and &, such that

(5.17) | (sinh w)/w | > 3%, | arg (sinh w)/w | < 1/2N,
for any value of w satisfying |arg w| < 6, and | Im w| < &, . Furthermore

we can fix positive numbers 4, and A, such that the numbers w = (¢ — 4p,)/A
lie in that region for all values of £ > A4, ,A > 4, and», 1 <» <N -1 It
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now follows from (5.17) that a positive constant ¢ exists such that Re ou(f) >
¥ Ffort > A, N> A,. Hence

fm e Vet dtl =0
A

(5.18) lim lim sup

A—w A—o
uniformly in any bounded domain of the z-plane. The same holds, of course,
for (22 . ,

Since gy > 0, N even, we also find that
® .

A i

(5.19) lim

A—®
uniformly in any bounded domain, and the same for [ Z% . For any fixed value
of A we have

A A
(5.20) lim e dt = f e We"t dt
Ao V-4 —4

uniformly in any bounded domain, because y,(f) — f@® uniformly in —4 <
t< A.

From (5.18), (5.19) and (5.20) we infer (5.16) and our theorem is proved.

Proof of Theorem. 1. Suppose that f({) satisfies the conditions of Theorem 1.
These conditions can also be expressed in the following form (see [4]): f'(?)
is of the type f'(f) = ae’*'¢*** [I7-1 (1 + 5,¢°) where a > 0, b > 0, k an integer
>0,6,>20,rv=12 ---, 37 6 <. Now let f,(f) be defined by fi(t) =
a(l + b¥/n)" ¢ I 4 + 8,89, £.(0) = f(0) and put &() = [ PRI A
$,(2) = [Cwe ™™ " di. Tt is easy to find positive numbers 4, ¢ and 7, , such
that forn > no, t > A or t < —A we have f(f) > ¢’ and f.(f) > «”.

Since f,(t) — f(t) for n — =, uniformly in any finite {-interval, we now easily
infer that (see proof of Theorem 20)
(5.21) lim @,(2) = ®(2)
uniformly in any bounded domain of the z-plane.

Tt is easily seen that the polynomials f,(z) satisfy the conditions of Theorem
20, whence it follows that ®,(2) has real roots only. Application of (5.21) and
Theorem 7 completes the proof of Theorem 1.

6. Functions of the type (1.9). We consider the functions of the type (1.9).
In connection with the Riemann hypothesis (see §7) it may be important to
investigate classes of functions of this type.

In the following we shall prove some results concerning these functions.
Very little of the preceding sections will be needed here, since the reality of
the roots of [Z. C()e™" dt, C(t) = exp (—\ cosh ), (special case of Theorem 1
or 19) was already proved by Pélya (see (1.2)). Only Theorem 25 requires
asymptotic expressions and strong universal factors as its tools.

First we prove '
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Lemma 2. If U(2) and V(2) are real polynomials such that W(z) = U(z) +
iV (2) has n roots in the lower half-plane, then U(z) has n pairs of conjugate complex
rools at most.

(The case n = 0 is the well-known theorem of Hermite-Biehler (see [10;
Abschn. 3, Aufg. 25]).)

Proof. We may assume that U(z) and V(2) have no real roots in common,
so that W(z) has no real roots. We also assume that the degree m of W(z)
satisfies m > 2n, for otherwise the result is trivial. Now if z runs through the
real axis from — o to o, the argument of W(z) increases by an amount of
a(m — 2n). Hence there are at least m — 2n different points on the real axis
where W (z) is purely imaginary. If z = « is not one of these points, we thus
find m — 2n real roots of U(z) at least, and otherwise at least m — 2n — 1.
But in the last case the degree of U(z) must be < m, so that U(z) has at most
2n complex roots in both cases.

TaEorREM 21. The function (1.9) (which has but o finite number of non-real
roots on account of Theorem 2) has N pairs of conjugate complex roots at most.

Proof. The functions, where C(f) = exp (—\ cosh §), A > 0,

6.1) 36 = [ e a

—

62 ®6 = [ (€0 cosh ) dt, w,6) = [ (C(0isinh e de

have real roots only (Theorems 1 and 11), whereas the roots of ®(z — 2) =
®,(z) — 1®,(2) lie in the upper half-plane.

By partial integration it is easily seen that, for k = 0, 1, 2, - - - , the functions
2"®,(2) and 2" ®,(2) are of the form
@ E+1
28.() = f ) S aletett di (i=1,2
—co n=—k—1

where a*{" = ¢! , and the highest coefficients a5y .z, I = 1, 2, are % 0. Further-
more a.'} is real if k 4 [is odd, and purely imaginary if & - lis even. It follows
that the function ¥(z), given by (1.9), can be expressed as a linear combination
of 8(2), B.(2), 2:(2), -+ , 2" " ®i(2), B:(2), -+ , & Py(2), with real coeffi-
cients. Since z®(z) = —AP,(2) we have

(6.3) 2¥(z) = AR 0:(2) + B(2) 2:(2),

where A(z) and B(z) are real polynomials of degree N at most.

Now if F(z) and G(z) are real polynomials, of arbitrary degree, with the
property that the roots of F(z) — 1G(2) all lie in the upper half-plane, then
ARF(2) + B(z)G(2) has at most N pairs of conjugate complex roots. This
follows by application of Lemma 2 to the function U(z) 4 V(2) = (A(2) +
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1B(2))(F(2) — 1G(2)). On approximating &z — 7) = &®,(z2) — 1®,(2) by poly-
nomials F(z — ¢) whose roots also lie in the upper half-plane, we find that
(6.3) has NV pairs of conjugate complex roots at most.

In connection with the Riemann hypothesis it appears to be important to
find large classes of functions

(6.4) _ZNane"‘ . (eF = a_,)

with the property that the integral (1.9) has real roots only. For instance, this
follows from Theorem 11, if all the roots of (6.4) lie on the imaginary axis; but
this result does not help much in the direction of the Riemann problem, which
seems to be related to functions of the type

© N
©6.5) f_ o(t) TT G + cosh 9™ ds,

where u; , -+ , p, are real and > 1. In the following we establish some new
results, which do not help either, but which may serve as material for obser-
vation.

TrrorREM 22. If N > 0, u > 0, the integrals ¥,(2) = [Zo C()(u + cosh t)e™™*
dt and ¥,(2) = [T C(®)(u + cosh® £)e™** dt have real roots only.

Proof. (The reality of the roots of ¥,(2) can also be proved as follows. It
follows from Theorem 21 that ¥;(2) has at most one root in the upper half-
plane. Since ¥, (2) is real and even, this possible one must be purely imaginary.
But since the integrand is positive for z purely imaginary such a root does not
exist. The same argument is used in the proof of Theorem 23.) By partial
integration we easily express ¥, and ¥, in terms of the functions &;(2) and
®,(2) defined by (6.2):

(6.6) 2:(2) = 22:(2) — Mude(2),

(6.7) NW,(2) = 28,(2) + (& — N(1 + 1)} ®:0).

The roots of the polynomials z — i and z + {z° — A*(1 + w)} lie in the
upper half-plane and hence, by the lemma, (6.6) and (6.7) have real roots only
(see the proof of Theorem 21). We notice that the same can be said if —1 <
p < 0, for then p -+ cosh ¢ and u - cosh’ are universal factors.

On the other hand it is not difficult to show that both integrals have a pair
of purely imaginary roots if —pu is positive and sufficiently large.

The following theorem is obtained by a generalization of the method employed
above. The result, however, seems to be too complicated for application to any
wide class of polynomials.

TuarorEM 23. Let X be > 0 and let f(y) be a real polynomial, such that & (2) =
[2. C#)f(cosh £)e'** dt has real roots only. Then the same holds for the polynomial
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A1) = wf@) +7@) + N7 @) + NP @Y) + - if w2 0. It is also true for
u < 0, provided that f,(y) does not change sign for y > 1.

Proof. Putting

&) = f (C(§) f(cosh §) cosh ) ¢ dt,

©

&) = f (C(®) f(cosh f)i sinh §) & dt,
we find by partial integration
6.9 ¢ [ Cl)fieosh 6™ di = () — AT Q).

Furthermore, we notice that the roots of (2 — 7) = ®7(2) — 7%, (2) all have
imaginary part 1. For u > 0 the function A(z) 4+ 4B(2) = wz — <A has no
roots in the lower half-plane so that the argument used in the proof of the pre-
ceding theorem shows that the function (6.8) has real roots only.

If u < 0 we infer that (6.8) has one pair of conjugate complex roots at most.
Since that function is an odd function of z, these possible roots must be purely
imaginary. But if f;(y) does not change sign for y > 1 and if z is purely imagi-
nary, then C(2)f,(cosh £)e*** does not change sign for —®» < { <. It follows
that the integral does not vanish.

The following application may be of some interest. The function f(y) = y"
satisfies the conditions of Theorem 23, for (6.1) has real roots only and %" =
(cosh &)" is a universal factor. Consequently Theorem 23 shows that, for A > 0,

N\ cosh?® ¢ Y cosh?” t}e”’ it

(6.9) f_wC(t){1+>\cosht+ or — Tt T

has real roots only.

TurorEM 24. Let the polynomial f(y) of degree N have negative roots only, and
let X be a number > §N. Then the function & (2) has real roots only.

It may be surmised that the condition A > 3N can be replaced by a much
weaker one.

Proof. We may assume that f(y) has no roots for —1 < y < 1, the factors
y —a = cosht — a (=1 < a < 1) being universal factors (Theorem 11). We
now proceed by double induction, in the first place with respect to the degree
N of f(y) (the theorem is true for N = 0) and secondly with respect to a number
n, the smallest positive integer with the property that f(y) has at least one root
exceeding —1 — n/A." We shall reduce the case (N, n) either to lower N or to
lower n; the case (N, 0) will always be reduced to lower N.

Suppose that f(y) (of degree N) has negative roots < —1 only, the largest
of which, p say, satisfies —1 — n/A < p < =1 — (n — I)/A, n > 1. Now
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consider the polynomial fi(y) = f'(y) — Af(y). Since f(y) has real roots only,
the same applies to fi(y). Now fi(y) has no roots for y > 1 and exactly one
root p, satisfying p + A" < p; < 1. Namely, f/(y)/f(y) decreases monotonically
fory > p. Fory = p + \' we have f'(y)/f(y) > (y — p)™" = A, and, since
the roots of f(y) are supposed to be < —1, the inequality f'(1)/f(1) < 3N <A
holds.

Now if p; < —1, the polynomial f;(y) belongs to a case of lower n and hence

(6.10) | " 0 fi(cosh B dt

is supposed to have real roots only. If, however, —1 < p, < 1, the polynomial
f2() = fily)/(y — py) is of degree N — 1, and it follows that the roots of (6.10),
with f, instead of f, , are real. But since in that case cosh ¢ — p, is a universal
factor the same applies to (6.10) itself.

Again applying a universal factor, we find that

zf C(%) fi(cosh #) sinh te**‘ dt = 2 f C(f) f(cosh §)e'** di

has real roots only. This completes our induction.

We have not yet been able to generalize Theorem 24 to cases where f(cosh ¢)
is an infinite product of factors 1 4 ¢, cosh £, ¢, > 0. Such an extension might
be given perhaps by carrying out a suitable reduction process and using Theorem
25 below. In Theorem.26 we shall use such a method in a different case, where
a reduction process can be found indeed. Theorem 26 may be of some interest
since it gives a result of a type we should hke to have for functions of the form
(6.5). '

TrEorEM 25. IfA > 0,0 < § < im, and if n is & natural number, then there
exisis a posttive number A(\, 8, n) with the property that the roots of
(6.11) v() = [ 00 fcosh 0 s
lie in the smp [ Tm 2 1 < A, 8, m) for omy real polynomial f(y) of degree n whose
roots lie in the sector 37 + 6 < argy < 37 — o.

(It is possible to prove the same for the region consisting of the real axis and
a circle |2] < A(A, §, n). This can be done by introducing a denominator
(e’ + 2 + ") (see the proof of Theorem 2).)

Proof. 'The function (6.1) can be developed as follows:

(=1’ I‘(zz— (—1)" (=72 — »)
B(z) = ;, TR €Y Ked +Zo v! (1>\)”“2”

(see (5.7) or [6]). It follows that for Im 2z < —1 we have
| 8@ GN™/T() = 1] < |2]|7AW),
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A = A()\) independent of z. Consequently, the function

é

B,2) = f_ i C()(cosh )™ dt = 27 Zk Befz + & — 2u)5}
satisfies
(6.12) | BN =2/ T (i) ()" — 1] < AN, B)/| 2] (Im z < —1).

Let Ao(A, ») be the largest of the numbers AQ), A, 1), --- , A(\, n), and
letfy) = A +cy) - 1+ cy) = a4+ ay + -+ + ay", where |arge, | <
gw — &, @, real. Then we have ¥(2) = a,®(2) + ., ®,(2) + -+ + @,9.(2),
and by (6.12), for Im z < —1,

‘\I'(z)(%k)”/l‘(iz) - 5‘: a(iz/N* | < A\, m) |2 | Z:: | ad® | A7

Consequently
OV (; g 0) | < Alum) () 4 | 22])
(6.13) ) H1 1+25) | < 2 H L+ 2).

Here c,4z/\ = d, satisfies | argd, | <7 — dandso |14 d,| >sins (1 + | d, )
is easily verified. It now follows from (6.13) that ¥(z) # 0 if z satisfies Im 2
< —land|z|> A.(\ n) (sin 38)™". Since ¥(z) is real for real values of z, an
analogous result holds for z in the upper half-plane, so that AQ\, §, n) = Max
{4,(\, n) (sin 38)™", 1} has the required property.

TrEOREM 26. Suppose that X > 0 and that the roots of the real polynomial f(y)
all lie on the negative real axis. If f'(1)/f(1) < 2N, then the function

(6.14) W) = [ " o) f(cosh D dt,

where Cy(t) = exp (—X\ cosh® &), has real rools only.

Proof. We use the following Lemma which is not actually a special case of
Theorem 25 but which can be proved in the same way without any essential
difficulty. (First transform ¢ = 3+.) In fact it is an easier case; we omit its
proof.

Lemma 3. If X > 0 and n a natural number; then there exists a positive number
A\, m), such that the roots of (6.14) satisfy | Im 2z | < A\, n) for any polynomial
J(y) of degree n with negative roots only.

For given values of A and n, let As(\, 7) be the smallest possible of the numbers
A with the following property: The roots of (6.14) lie in the strip [Im z | < A
for any polynomial f(y), of degree < n, satisfying the conditions of our theorem.
Lemma 3 shows that such a number A,(A, n) exists. We shall assume A,(\, n) >
0, and show that to be contradictory.
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Let the polynomial f(y) of degree n sa,tlsfy the conditions of our theorem.
By partial integration we find

(6.15) V() = f_ (Ca(d) fi(cosh B)i sinh &) & dt,

where fi(y) = f'(y) — 2:yf ().
Since f/(1)/f(1) < 2\, fi(y) has exactly one root, say a, in the interval

0 <y < 1. Now the polynomla,l f-(y) = fily)/(y — «) has n negative roots
Pry P2y """ 5 Pny satisfying

(6'16) P1S0'1SP2S0'2S"'SP1:S0'"<O,

where ¢, , - - - , 0, denote the roots of f(y). This is easily seen by drawing graphs
of f'(u)/f(w) and of 2ay. It follows from (6.16) that f5(1)/f.(1) < f'(1)/f(1),
so that f»(y) also satisfies the conditions of Theorem 26. Hence the roots of
[0 Co(Df2(De’* di lie in the strip | Tm 2z | < Ao(A, 7).

Since 7 sinh ¢ and (cosh ¢ — a) are strong universal factors the roots of (6.15)
lie in a narrower strip | Im 2z | < A\, n), Ai(A, n) < A, n) Namely, by
virtue of Theorem 11 we may take A,(\, n) = {A(\, n) — 1}¥if A, > 1 and
A, n) = 0if Ay < 1.

_ As this holds for any polynomial f(y) satisfying the conditions of our theorem
1t contradicts the minimum property of Ao (\, n). It follows that A.(\, n) = 0,
which proves our theorem.

The condition f/(1)/f(1) < 2\ in Theorem 26 is a natural one. It is equivalent
to the condition that the function C,(f)f(cosh £), occurring in the integrand of
(6.14), has its maximum for ¢ = O and decreases steadily for ¢ > 0 (it is, of
course, a real and even function of ?).

Theorem 26 can be extended to infinite products immediately.

TueoreMm 27. Ifc,, ¢, - - - are positive numbers and if Z (1 4¢) < 2\,
then the function [Z. Cs(f) Hf_l (1 + ¢, cosh )e*** di has real roots only.

7. Remarks concerning the Riemann hypothesis. The special interest devoted
to integrals of the type (1.9) arose from the Riemann hypothesis concerning the
¢function. Putting s = % + 2 and writing (see [12; Chapter 3])

(7.1) EE) = £s) = 3s(s — DTG ¢(9),
(7.2) o(t) = ’g (n'n%"* — 3n’me e,
we have

(7.3) =2 = [ : (e dt;

here (f) is an even function of . Riemann conjectured that (7.3) has real roots
only.
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Tt is known from Euler’s product expansion {(s) = [ [, (1 — p™*) ™" and from
the functional equation Z(z) = E(—z) that the roots of (7.3) lie in the strip
| Im 22 | < % anyhow. Hence it follows, by Theorem 12, that

74 f (1) cosh 1t 6™ di

has real roots only. (See [9].)

It would be very interesting to have a proof for the reality of the roots of
(7.4) which does not use the known fact that {(s) > 0 for Re s > 1, but only
employs the properties of ¢(f) cosh 3£ and the general properties of trigometric
integrals. Such a proof might open the way to the Riemann hypothesis.

Neither Pélya’s work nor the present paper gave any direct information con-
cerning these problems thus far. But there are some interesting facts. Pélya
[8] noted that, if { —» o,

(7.5) o(®) ~ ¢ (t) = 4x° (cosh 9¢/4) exp (—2x cosh £)

where [Z.. ¢,(t)e"** dt has real roots only, since cosh 9:/4 is a universal factor.
A closer approximation to ¢(f) is

o) = @,(t) + O(e"™* exp (—2r cosh 1)),
— 2 ?}f 3 __ @ 2 _t T
@.(f) = 947 cosh 1 -+ (4x 6m) cosh n + 47° cosh 1 exp (—2r cosh &),

and again [, @,(f)e’** dt has real roots only. (Pélya gives a second approxi-
mation with {16x° cosh 9¢/4 — 24x cosh 5¢/4} (see [8], [12; 45]). This approxi-
mation however is not actually closer than ¢,(f).) We have, namely,

¢2(t) = 2 (cosh 5¢/4) {22° — 37 -+ 4" cosh ¢t} exp (—2r cosh ¢),

so that application of Theorem 22 and of the universal factor cosh 5t/4 gives
the result.

We must not expect that the function Z(¢) can be approximated by functions
[®o (exp (—2r cosh t))f.(0)e’™ di where the f, are analytic universal factors.
For if f,(t) — f(®) in a circle | {| < ¢, then f() can be continued over the whole
plane. (See [4].) This is not true for the function ¢(#), which cannot be con-
tinued over the lines Im ¢ = ==4x. The results of the preceding section however
suggest approximations of a different type.

In the following, we shall devote our attention to Ramanujan’s function
instead of the Riemann function. Owing to the pole at s = 1, the formulas
for Riemann’s function show a complication which is probably unessential.

Let 7(n) be the coefficients of the power series for the well-known elliptic
modular function,

©

(7.6) g) = y{l — A — o) -1 = 2 sy,

1
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With these coefficients Ramanujan [2; Lecture X] constructed his zeta-function
F@Gs) = >0 rm)y/m* = [, {1 — #(@)p™* + p*"} ". The series and the
product are absolutely convergent and 5= 0 for Re s > 13/2. F(s) can be con-
tinued over the whole plane by the formula

(7.7 2(s) = (2m) " "°F(s + 6)I'(s + 6) = j’l;m =" Pg(e™*™) dx.

It follows from z°g(e™™®) = z °g(e”**’") that =~ (2) satisfies the functional
equation Z7(2) = E (—=z). By virtue of the above functional equation of ¢(z)
we have

) = (g g

(7.8) . '
= 6—1r(z+::—1) H {(1 _ e—z-rvz)(l - 6—21rv/z)}12.
y=1

It follows from (7.7) that

(7.9) | =0 = [ w S dt,

where

(7.100  ¢™() = (exp (—2r cosh ) IiIl {(1'— e N1 — 7T,

In analogy with the Riemann hypothesis we have the problem as to the reality
of all the roots of (7.9). Anyhow, the roots lie in the strip |[Im z| < . We
prefer the discussion of (7.9) to that of (7.3) since ¢ () has a simple product
expansion.

There are several aspects connecting the problem concerning the roots of
(7.9) with the results and methods of the preceding sections.

{a). A first indication is given by the domain of regularity and the behaviour
for t — 4= of ¢ (f), in connection with Theorems 2 and 25. We have namely,
introducing a function ¢~ (x), '

(7.11) ¢ () = (exp (—4r cosh £))qg () (z = ¢

where ¢ () is regular for Re¢ 2 > 0, but cannot be continued over the imaginary
axis. TFurthermore ¢~(z) = ¢~ (1/2*) and ¢~ (z) ~ 2° for Re x — + =, so that
g" () is relatively smooth for x —« and « — 0. The nature of ¢”'(x) is therefore
related to that of the functions ¢(z) occurring in Theorem 2 (for the special
case P(t) = 4= cosh t), which lead to trigonometric integrals with a finite number
of non-real roots at most. These g(x) had to be regular in a sector | arg 2| <
ir 4+ 8,6 > 0, and meromorphicat + = Oand x = .

It turns out to be important to construct large classes of functions ¢(z) for
which the finite number of non-real roots is either zero or uniformly bounded.
No such functions have been found yet, apart from polynomials ¢(x) (see §6).
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(b). The infinite product in (7.10) reminds of the functions in Theorems 24-27.
Consider

(7.12) ExQ) = f ) (éxp (—2x cosh ©)) ﬁ {1 — ™)1 — 7)™ dt

We have
(1 _ 6—21”'5’)(1 - e—2rve“‘)

©

= (exp (—2mv cosh )4y [[ {1 4 Vk°)(1 + k%))

pale

= 47 (exp (—2nv cosh 1)) g {1 = »’k7%" + 4°k? cosh’t}.
Hence Ex(z) can be written in the form | |
(7.13) C f_ Z C() H 1+ ,ﬁ cosh® f)e™** dt,

where p runs through an infinite set ‘of real numbers and A > 0. This form
reminds of Theorem 27, although for functions of the type (7.13) we may not ex-
pect a result as general as that theorem. We have to face the rather disappointing
fact that the functions Zy(z) may have an infinity of non-real roots (see (7.18)
below). This does not mean that it is no use considering functions of the type
(7.13), for £~ (2) can of course also be approximated directly by functions of the
type (7.13) without using =y (2).

(c). It may be expected that the reality of the roots of a trigonometric in-
tegral is in some way connected with multiplicative properties of the integrand.
Several theorems in §6 point in this direction. Therefore the fact that the inte-.
grand of (7.9) is given in the form of an infinite product may be important.

As an example of a multiplication theorem we give the following one which
is, however, too weak to be of any use here.

TrrOREM 28. Let the funciion ¢,(f) and ¢.(t) be continuous for — o < § <
and O(e™**") for some positive €, (¢:(£))* = @:(=1), (0:())* = ¢2(—1). Suppose
that ¢, and ¢, are such that the integrals [, e ** goi(t)eiz‘ dt; j = 1, 2, have real
roots only, whatever \, A > 0, may be. Then the same property holds for the product

¢1 (t) (2] (t)
Proof. For A > 0, the product

f e—-)\t’gpl(t)eizl dtf e—)‘s’(pz(s)eiza ds

=3[ far [ 0G0 — e + o) do
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has real roots only. To the right side we apply the universal factor e and
find that also [“w € dr [“w ¢ 0,(3(r — 0))e(3(r 4+ ¢)) do has real roots
only. Now making A —w, we easily deduce that [Z. ¢,(f)¢:(f)e’*" dt has real
roots only. On applying this to ¢ ¢, (f) instead of ¢,(f) the same follows
concerning [Z. ¢ o, () @y (t)e’** dt.

Functions ¢(t) satisfying the conditions of the theorem are, for instance,

(7.14) o(t) = exp (—at* — b — ct® — idi)

where a, b, ¢, d are real and either ¢ > Oora = 0,b =% 0ora =5 =0,c > 0.
Namely, it follows from Theorem 1 that [Z, e ™ *“"¢"** d, @ > 0, ¢ > 0, has
real roots only; since ¢”**, p > 0, is a universal factor we may drop the restriction
about ¢. The statement concerning (7.14) can now be proved on using a sub-
stitution ¢ = ¢~ 4 4g; the cases with ¢ = 0 can be tackled by a limit process.

No items essentially different from (7.14) have been found yet; thus Theorem
28 gave no new trigonometric integrals with real roots only.

(d). Functions of the type (7.12) can be discussed directly by the method de-
veloped in §5. In a simple case we shall find an infinity of non-real roots. The
general case is difficult to deal with but must be expected to show the same
effect.

We consider the function

(7.15)  f@) = /_ : (exp (—2r cosh t))(yz:o 7e->(2 y;ke'2'”°“)ef" dt,

and suppose that for a certain integer k¥ > 0 the polynomial P(y) = v, + vy +
<o 4 v,y" satisfies

(7.16) PA)=P' 1) =P'(1)=---=P*P(1)=0,P"(1) =0.
We also introduce the function
(7.17) V) =7 v+ 73 F b+ - +va@n + DL

We define the coefficients 8; , 841, * - - by (see (5.3))

n -]
e—re—‘ E'Y:ke—mrn_‘ — Z B’e—vl,
v=0 v=k

the terms with 7%, 0 < » < [k, vanish by virtue of (7.16). The following func-
tion plays the same role as H(s) did in §5:

© n

H™(s) = /0 e ™ ZO ve X du = Y(s + DI(s + 1).
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The process carried out in §5 now leads to (see (5.7))
(718)  JG) = 2 Bl — NGz — ») + 3 B (—iz — NT(—iz — ),

from which some information on the roots of f(2) can be obtained.

From (7.18) we can deduce that if all but a finite number of roots of (7.17)
lie in the half-plane Re s > w, then all but a finite number of roots of f(z) lie
in the strip | Im 2z | < Max (k + w + 3, 8), forany § > 0. Namely, if Im z < 0,
the major contribution to (7.18) is given by 8w (12 — k)I'(iz — k).

Now turning to the integrals (7.12) we see that k is large, £ = 12N, but it is
not likely that the number « introduced above is < —k. So probably the
functions (7.12) have an infinity of non-real roots.

In a simple case, namely,

(7.19) file) = ‘[_m (exp (—2a cosh ©))(1 — e—be‘)(l . e—b,—z)e;zt dt,

where a > 0, b > 0, we show that an infinity of non-real roots exist. We have
Ui(s) = a° — (a 4+ b)~°, whose roots are s = 2vmi/log (1 4+ b/a), » = 0, £1,
+2, --- . It follows from (7.18) that for |[Rez| > 1, Im2z < —§,0 < § < 3,
we have f1(2) = bfi(iz — TGz — 1) + 0{z*'T'(iz — 1)}. Now, by Rouché’s
theorem, we infer that f,(z) has, from a certain value of | » | onward, just one
root in the neighborhood of any point —z 4+ 2vr/log (1 4+ b/a). Apart from
these f,(2) has but a finite number of roots for Im z < —é.

This failure must not be considered as an argument against the Riemann
hypothesis. Objections of the same “strength” could be used against the true
fact that the roots of [Z., ¢~ (f) cosh it ¢**’ dt (see (7.10) and (7.4)) are real.

I express my gratitude to Professor Pélya for his kind interest in the results,
and to Messrs. J. Korevaar and F. van der Blij, of the Mathematisch Centrum,
Amsterdam, for reading the manusecript and indicating many corrections.
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