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A Geometric Inequality for Cyclic Quadrilaterals

Mark Shattuck

Abstract. In this paper, we establish an inequality involving the cosines of the
arc measures determined by four arbitrary points along the circumference of a
circle. Our proof is analytic in nature and as a consequence of it, we obtain some
inequalities involving the interior angle measures of a triangle. Extending our
arguments yields a sharpened version of the aforementioned inequality and also
the best possible positive constant for which it holds.

1. Introduction

A variety of inequalities have been shown for convex quadrilaterals [4], in par-
ticular, in the bicentric case (see, e.g., [5, 6]). Perhaps the most well-known of
these and simplest states that r

R is at most 1√
2
, where r and R denote the radii of

the incircle and circumcircle of a bicentric quadrilateral ABCD (see [1, p. 132]).
A refinement of this inequality was shown by Yun [7] and is given by
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(1)
which was proved again in different ways by Josefsson [3] and later Hess [2]. Note
that the middle quantity in (1) may be rewritten in terms of the measures of arcs
subtended by the sides of quadrilateral ABCD as
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where 2a = m(
�
AB), etc.

In this paper, we find a lower bound for this quantity (see Theorem 16 below)
that applies to all cyclic quadrilaterals and that differs from (and is incomparable
to) the bound given in (1) in the bicentric case. For the sake of clarity of the proofs,
we first establish the following bound in the next two sections.

Theorem 1. Let ABCD be a cyclic quadrilateral, with 2a = m(
�
AB), 2b =

m(
�
BC), 2c = m(

�
CD) and 2d = m(

�
DA). If a = max{a, b, c, d}, then we have

2 cos a+ cos b+ cos c+ cos d ≤ 5
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, (2)
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with equality if and only if ABCD is a square.

We assume that all arc measures in Theorem 1 and elsewhere are taken in the
same direction as the labeling of the vertices of ABCD. To prove (2), we proceed
analytically, treating separately the acute and obtuse cases of a. We then extend
our arguments in finding a sharpened form of (2), along with the best positive
constant for which it holds. That is, we show that one may replace the weights
of 1

5(2, 1, 1, 1) for the respective cosine terms on the left-hand side of (2) (after

dividing both sides of (2) by 5) with 1
α+3(α, 1, 1, 1), where α = 12−3

√
2

4+
√
2

≈ 1.43

is as small as possible. As corollaries to our approach, we obtain some related
geometric inequalities involving triangles and bicentric quadrilaterals.

2. The acute case of the inequality

To prove (2), we divide into cases based on whether or not a is acute, treating in
this section the acute case. Let

f(a, b, c, d)

=
5
√
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4
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and

S = {(a, b, c, d) ∈ R
4 : a+ b+ c+ d = π, where 0 ≤ b, c, d ≤ a ≤ π/2}.

We will regard S as a closed subset of the metric space M consisting of all points
in R

4 such that a + b + c + d = π. When speaking of the boundary or interior of
S, it will be in reference to M . Then the acute case of (2) is equivalent to showing
f ≥ 0 for all points in S. The next four lemmas show that f is non-negative for all
points along the boundary of S.

Lemma 2. We have f > 0 for all points (a, b, c, d) in S such that abcd = 0.

Proof. We show that h ≥ 0, where

h(a, b, c, d) =
√
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)
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))
−(cos a+cos b+cos c+cos d),

with 0 ≤ a, b, c, d ≤ π/2, abcd = 0 and a + b + c + d = π, which implies the
stated result for f . To show h ≥ 0, we may assume d = 0, by symmetry. Thus, we
must show

j(a, b, c) =
√
2

(
cos

(
a− c

2

)
+ cos

(
b

2

))
−(cos a+cos b+cos c+1) ≥ 0, (3)

where a + b + c = π and 0 ≤ a, b, c ≤ π/2. We first show that inequality (3)
holds for the boundary values. By symmetry of the a and c variables, we need only
consider the following cases: (i) a = 0, (ii) b = 0, (iii) a = π/2, (iv) b = π/2. If (i)
or (ii) holds, then the other two variables must be π/2 and (3) is obvious in either
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case. If (iii), then we must show
√
2
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The last inequality follows from observing that the function k(b) = 2 cos
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b
2
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4

)− 1√
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is decreasing on (0, π/2) with k(π/2) = 0. If (iv), then we need√
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, which holds with equality

since a+ c = π/2.
To complete the proof of (3), we must consider any possible interior local ex-

treme points of j. Making use of Lagrange multipliers and equating the a- and the
c- partial derivative equations implies (I) a+ c = π/2 or (II) a = c. Note that if (I)
holds, then b = π/2, which has already been considered, so assume (II). Using the
cosine double angle formula, we must show in this case that

√
2 (cos y + 1)− 4 cos2 x− 2 cos2 y + 2 ≥ 0, (4)

where 2x + y = π/2 and 0 < x, y < π/4. For (4), we show equivalently√
2 (cos y + 1) ≥ 2 sin y + 2 cos2 y, i.e.,

√
2 cos y + 2

(
sin2 y − sin y

) ≥ 2−
√
2, 0 < y < π/4.

This last inequality holds since the two sides are equal when y = π/4, with the
left-hand side decreasing as one may verify. �

By (3) and the fact that cos(∠A) + cos(∠B) + cos(∠C) = 1 + r
R in a triangle

ABC, we obtain the following bound on the ratio r
R in an acute or right triangle.

Corollary 3. Let ABC be a non-obtuse triangle. Then
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,

with equality if and only if ABC is a right triangle with hypotenuse AC.

Lemma 4. We have f > 0 for all points (a, b, c, d) in S such that a = π/2.

Proof. Let

h(b, c, d) =
5
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We must show h > 0 for all b, c, d ≥ 0 such that b + c + d = π/2. We may
assume bcd �= 0, by the previous lemma. To show h > 0, we apply Lagrange
multipliers and equate the b- and d-partial derivative equations to obtain sin b −
sin d = 5

√
2
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)
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have (i) b + d = 2 cos−1
(
5
√
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)
or (ii) b = d. If (i) holds, then π
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that cos
(
π
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2

)
= 5

√
2

8 , which implies h > 0 in this case. So assume (ii) holds
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and we must show h(b, c, b) > 0, where b, c > 0 and 2b + c = π
2 . Substituting

c = π
2 − 2b into h(b, c, b), we need for

q(b) =

(
5
√
2

4
− 2

)
cos b− sin 2b+

5
√
2

4
> 0, 0 < b < π/4.

This holds since 2− 5
√
2

4 < 1
4 implies q(b) > −1

4+
5
√
2
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4
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2− 1

)
> 0. �

As a consequence of the previous lemma, we obtain the following trigonometric
inequality for acute triangles.

Corollary 5. If ABC is an acute triangle, then
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The next two lemmas concern the case when one of the other variables equals a.

Lemma 6. We have f ≥ 0 for all points (a, b, c, d) in S such that a = c.

Proof. We must show

h(b, c, d) =
5
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)
− (cos b+ 3 cos c+ cos d) ≥ 0, (5)

where 0 ≤ b, d ≤ c ≤ π/2 and b + 2c + d = π. By Lemmas 2 and 4, we may
assume b, d > 0 and c < π/2 in (5). Suppose first that b or d equals c, say d.

Then h(b, c, c) ≥ 0 if and only if 5
√
2

4

(
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2

)
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) ≥ cos b + 4 cos c, where

b+ 3c = π and 0 < b ≤ c < π/3, i.e.,
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4
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Dividing both sides of (6) by cos c, we need to show
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4
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This last inequality follows from noting
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for π/4 < c < π/3, with k(π/4) = 0.
By Lagrange’s method, any interior extreme points (b, c, d) within the set over

which we are minimizing h must satisfy (i) b+ d = 2θ, where θ = cos−1
(
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)
,

or (ii) b = d. If (i) holds, then we have c = π
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which implies (5) in this case. If (ii) holds, then we need to show 5
√
2

2 ≥ 2 cos b+
3 cos c, where b+ c = π/2 and 0 < b ≤ c. Note that 2 cos b+ 3 cos c = 2 sin c+

3 cos c =
√
13 sin(c + λ), where λ = cos−1

(
2√
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)
. Then λ > π/4 implies

√
13 sin(c + λ) ≤ √
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(
π
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)
= 5

√
2

2 for π/4 ≤ c < π/2, as desired,
which establishes (5) and completes the proof. Note that there is equality in (5) iff
a = b = c = d = π/4, i.e., iff ABCD is a square. �

Lemma 7. We have f ≥ 0 for all points (a, b, c, d) in S such that a = b.

Proof. We must show
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5
√
2

4

(
cos

(
a− c

2

)
+ cos

(
a− d

2

))
−(3 cos a+ cos c+ cos d) ≥ 0,

(7)
where 0 ≤ c, d ≤ a ≤ π/2 and 2a + c + d = π. By Lemmas 2 and 4,
we may assume c, d > 0 and a < π/2 in (7). By Lemma 6, we may also
assume a > c and a > d. Thus, we need only check points (a, c, d) corre-
sponding to any possible interior extrema of the function h. Such points must
satisfy sin c − sin d = 5

√
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)
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)
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Since c+ d = π − 2a and π/4 < a < π/2, we have c+ d < π/2 and thus
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whence (i) is not possible. So assume (ii), in which case we must show
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)
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(
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)
. Note that k(π/4) = 0, with
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This implies (8), which completes the proof. �

We now must consider any possible local minima of f located within the interior
of S. Treating these cases will yield the following result.

Theorem 8. We have f ≥ 0 for all points in S, with equality if and only if a =
b = c = d = π/4.
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Proof. Let (a, b, c, d) denote an interior local extreme point of f in S. From the a-
and the c-partial derivative equations, such points must satisfy

2 sin a− sin c =
5
√
2

4
sin

(
a− c

2

)
. (9)

Given 0 < a < π/2, define the function

ha(x) =
5
√
2

4
sin

(
x− a

2

)
− sinx+ 2 sin a, 0 < x < a.

Below, we show that the equation ha(x) = 0 has no solution. Hence, neither does
(9), which implies f has no interior extreme points. Thus, the minimum value of
f on the compact set S must be achieved along its boundary, and by Lemmas 2, 4,
6 and 7, we have f ≥ 0 for all points along the boundary. Thus, f ≥ 0 on all of S,
as desired. From the proofs of Lemmas 6 and 7, there is equality as stated.

We now show ha(x) has no solution. First suppose 0 < x < a
2 . Then

ha(x) > −5
√
2

4
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2

)
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(a
2

)
+ 4 sin
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2

)
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)
>
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2
√
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√
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4

)
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2

)
> 0,

since a < π/2 implies cos (a/2) >
√
2/2. If a/2 ≤ x < a, then
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√
2

4
sin
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)
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4

)
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√
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4

)
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)
>
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√
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)
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(a
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)
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since cos(a/2), cos(a/4) >
√
2/2. �

3. The obtuse case

Assume now 2a′ = m(ÂB) is at least π, as shown below. In this case, we
replace a′ with π − a, where a = b+ c+ d is acute (or possibly right).

A

D

C

B2d

2c
2b

2a′ = 2π − 2a

Figure 1. Case when 2a′ = m(
�

AB) exceeds π.
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Define the set T by

T = {(a, b, c, d) ∈ R
4 : a = b+ c+ d, where b, c, d ≥ 0 and a ≤ π/2}.

We regard T as a closed subset of the metric space comprising all points in R
4 such

that a = b+ c+ d. Define the function g on R
4 by

g(a, b, c, d) =
5
√
2

4

(
sin

(
a+ c

2

)
+ cos

(
b− d

2

))
+2 cos a−(cos b+cos c+cos d).

Then the task of establishing (2) in the case when m(
�
AB) is at least π is equivalent

to showing that g can assume only positive values on T . We first consider the case
of a point in T where c = 0.

Lemma 9. We have g > 0 for all points (a, b, c, d) in T such that c = 0.

Proof. We must show

h(a, b, d) =
5
√
2

4

(
sin
(a
2

)
+ cos

(
b− d

2

))
+2 cos a− (cos b+cos d+1) > 0,

(10)
where a = b + d, 0 ≤ a ≤ π/2 and b, d ≥ 0. By Lemma 4, we may assume
a < π/2. If b = 0 or d = 0, say b = 0, then a = d and (10) reduces in this case to

5
√
2

4

(
sin
(a
2

)
+ cos

(a
2

))
+ cos a− 2 > 0, 0 ≤ a < π/2.

The last inequality can be shown by considering the first two derivatives of the
left-hand side.

We now check h at any possible interior extreme points (a, b, d). From the

b- and d-partial derivative equations, we get sin b − sin d = 5
√
2

4 sin
(
b−d
2

)
, i.e.,

2 sin
(
b−d
2

)
cos
(
b+d
2

)
= 5

√
2

4 sin
(
b−d
2

)
. This implies such points (a, b, d) satisfy

(i) cos
(
b+d
2

)
= 5

√
2

8 or (ii) b = d. If (i) holds, then a = b+ d implies cos a = 9
16 ,

sin
(
a
2

)
=

√
14
8 and cos

(
b−d
2

) ≥ 5
√
2

8 . Since cos b + cos d ≤ 2 cos
(
b+d
2

)
= 5

√
2

4 ,
inequality (10) follows in this case. If (ii) holds, then (10) reduces to

k(b) =
5
√
2

4
(sin b+ 1) + 2 cos 2b− 2 cos b− 1 > 0, 0 < b < π/4. (11)

To show (11), first note that

k′(b)
cos b

=
5
√
2

4
− 8 sin b+ 2 tan b.

Since the function 8 sin b − 2 tan b is increasing on (0, π/4), one has that k′(b)
changes sign once on (0, π/4), from positive to negative. Inequality (11) now
follows from observing that k(0) and k(π/4) are both positive, which completes
the proof. �

Lemma 10. We have g > 0 for all points (a, b, c, d) in T such that d = 0.
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Proof. We must show

h(a, b, c) =
5
√
2

4

(
sin

(
a+ c

2

)
+ cos

(
b

2

))
+2 cos a− (cos b+cos c+1) > 0,

(12)
where a = b+ c, 0 ≤ a ≤ π/2 and b, c ≥ 0. Again, we may assume a < π/2. By
the previous lemma, we may also assume c > 0. On the other hand, if b = 0, then
a = c and (12) reduces to 5

√
2

4 (sin a+ 1) + cos a − 2 > 0, where 0 ≤ a < π/2,
which follows from observing max{sin a, cos a} ≥ √

2/2 for first quadrant a.
We now consider possible internal extreme points (a, b, c) of h and apply the

Lagrange method with constraint −a + b + c = 0. From the b- and c-partial
derivative equations, we get

2 sin

(
b− c

2

)
cos
(a
2

)
=

5
√
2

4
cos
(π
4
+

c

2

)
cos
(π
4
− a

2

)
. (13)

We show that (13) cannot hold, which will imply the desired result. Note first
that (13) implies b > c and hence 0 < c < a/2. Also, observe that the ratio
sin
(
π
4 − c

2

)
/ sin

(
a
2 − c

2

)
for a fixed a is minimized when c = 0. Thus, we have

cos
(
π
4 + c

2

)
sin
(
b
2 − c

2

) · cos
(
π
4 − a

2

)
cos
(
a
2

) >
sin
(
π
4 − c

2

)
sin
(
a
2 − c

2

) · cos (π4 − a
2

)
cos
(
a
2

) >
sin
(
π
4

)
sin
(
a
2

) · cos (π4 − a
2

)
cos
(
a
2

)
=

sin
(
a
2

)
+ cos

(
a
2

)
2 sin

(
a
2

)
cos
(
a
2

) =
1

2

(
sec
(a
2

)
+ csc

(a
2

))
.

Since the function sec
(
a
2

)
+ csc

(
a
2

)
is decreasing on (0, π/2), we have sec

(
a
2

)
+

csc
(
a
2

) ≥ 2
√
2 and thus

cos
(
π
4 + c

2

)
sin
(
b
2 − c

2

) · cos
(
π
4 − a

2

)
cos
(
a
2

) >
√
2,

whence (13) cannot hold, which completes the proof. �
Theorem 11. We have g > 0 for all points in T .

Proof. By Lemmas 4, 9 and 10, we have already shown that g > 0 for all points
along the boundary of the compact set T . To show that g > 0 on all of T , we
need to check g at any possible interior extrema. To do so, we apply Lagrange
multipliers to g with constraint b+c+d−a = 0. Equating the a- and the c- partial
derivative equations gives

2 sin a− sin c =
5
√
2

4
cos

(
a+ c

2

)
. (14)

Let θ = 2 sin−1
(
5
√
2/16

)
and a be fixed where 0 < a < θ. Then (14) can-

not hold for 0 < c < a < θ, upon considering the function ha(x) = sinx +
5
√
2

4 cos
(
x+a
2

) − 2 sin a for each a and showing ha(x) > 0 for 0 < x < a (by
showing ha(0) > 0, ha(a) > 0 with h′′a(x) < 0 for 0 < x < a). Thus, there are no
interior extreme points in T for which a < θ. Henceforth, let us assume a ≥ θ.
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Equating the b- and d-partial derivative equations gives

sin b− sin d =
5
√
2

4
sin

(
b− d

2

)
,

which implies (i) b = d or (ii) cos
(
b+d
2

)
= 5

√
2

8 . First assume (i). We will show
that g > 0 for all interior points in T such that b = d and a ≥ θ. In this case, we
must show j(a, b, c) > 0, where

j(a, b, c) =
5
√
2

4

(
sin

(
a+ c

2

)
+ 1

)
+ 2 cos a− 2 cos b− cos c

and a = 2b + c. By the concavity of the cosine function on (0, π/2), we have
2 cos b + cos c ≤ 3 cos

(
2b+c
3

)
= 3 cos

(
a
3

)
, so to show j > 0, it suffices to show

k(a, c) > 0, where

k(a, c) =
5
√
2

4

(
sin

(
a+ c

2

)
+ 1

)
+ 2 cos a− 3 cos

(a
3

)
.

Since a ≥ θ, we have 5
√
2

4

(
sin
(
a+c
2

)
+ 1
)
> 5

2 , so clearly k(a, c) > 0 for θ ≤ a <

cos−1(1/4). On the other hand, if a ≥ cos−1(1/4), then 5
√
2

4

(
sin
(
a+c
2

)
+ 1
)
>

2.85, whereas 3 cos
(
a
3

)
< 2.72, which again implies k(a, c) > 0.

So assume (ii) holds and let λ = 2 cos−1
(
5
√
2

8

)
. Then a− c = b+ d = λ and

we show that (14) has no solution in this case. Suppose to the contrary that (14)
does hold for some a and c, where a > λ and c = a− λ. Then

5
√
2

4
cos

(
a+ c

2

)
=

5
√
2

4
cos

(
a− λ

2

)
=

25

16
cos a+

5
√
7

16
sin a,

so that (14) holds if and only if(
2− 5

√
7

16

)
sin a− 25

16
cos a = sin c = sin(a− λ) = sin a cosλ− cos a sinλ,

i.e.,

q(a) =

(
2− 5

√
7

16
− cosλ

)
sin a−

(
25

16
− sinλ

)
cos a = 0. (15)

Since the coefficients inside the parentheses are both positive quantities, q(a) is an
increasing function of a, where λ < a < π/2. Since q(λ) > 0, it follows that (15)
and hence (14) cannot hold if (ii) does, which completes the proof. �

Theorem 1 above now follows from combining Theorems 8 and 11, which cover
the acute and obtuse cases of a, respectively, upon replacing a by π−a in Theorem
11. �

We obtain as a corollary to Theorem 1 the following variant of inequality (1).



150 M. Shattuck

Corollary 12. Let ABCD be a cyclic quadrilateral, with 2a = m(
�
AB), 2b =

m(
�
BC), 2c = m(

�
CD) and 2d = m(

�
DA). If AB is the longest side length of

ABCD, then√
2

5
(2 cos a+ cos b+ cos c+ cos d)

≤ 1

2

(
sin

A

2
cos

B

2
+ sin

B

2
cos

C

2
+ sin

C

2
cos

D

2
+ sin

D

2
cos

A

2

)
≤ 1. (16)

Proof. We have

sin
A

2
cos

B

2
+ sin

B

2
cos

C

2
+ sin

C

2
cos

D

2
+ sin

D

2
cos

A

2

= sin
A

2
cos

B

2
+ sin

B

2
sin

A

2
+ cos

A

2
sin

B

2
+ cos

B

2
cos

A

2

= sin

(
A+B

2

)
+ cos

(
A−B

2

)
= sin

(
b+ 2c+ d

2

)
+ cos

(
b− d

2

)
= sin

(
π − (a− c)

2

)
+ cos

(
b− d

2

)
= cos

(
a− c

2

)
+ cos

(
b− d

2

)
,

so that the right inequality in (16) is clear. The left inequality then follows from
Theorem 1. Note that there is equality in the right inequality iff ABCD is a rec-
tangle and in the left iff ABCD is a square. �

4. A sharpened version of the inequality

To sharpen inequality (2), we seek the smallest positive constant δ such that

fδ(a, b, c, d) =
(δ + 3)

√
2

4

(
cos

(
a− c

2

)
+ cos

(
b− d

2

))
− (δ cos a+ cos b+ cos c+ cos d) ≥ 0 (17)

for all points (a, b, c, d) in S and

gδ(a, b, c, d) =
(δ + 3)

√
2

4

(
sin

(
a+ c

2

)
+ cos

(
b− d

2

))
+ δ cos a− (cos b+ cos c+ cos d) ≥ 0 (18)

for all points in T . Theorem 1 above then corresponds to the δ = 2 case. Upon di-
viding (17) by δ+3, one sees that (17) amounts to comparing a certain weighted av-
erage of the individual cosine terms with the quantity

√
2
4

(
cos
(
a−c
2

)
+ cos

(
b−d
2

))
.

A similar interpretation applies to (18). From this, one sees that if inequalities (17)
and (18) hold for some δ0 > 0, then they hold for all δ > δ0. Note that δ = 1
is too small since in the case of a bicentric quadrilateral, the inequalities would be
reversed (see Theorem 17 below). This leaves open the question of finding the best
possible δ for which (17) and (18) hold where 1 < δ < 2.

Taking (a, b, c, d) equal to the origin in (18) implies that the best possible δ

is at least 12−3
√
2

4+
√
2

≈ 1.43, which we will denote by α. In fact, by modifying
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appropriately the proofs of Theorems 8 and 11 above, one can show that (17) and
(18) indeed hold when δ = α. In the proofs of the following lemmas, we carry out
the most extensive modifications that are required.

Lemma 13. Let

ua(x) =
(α+ 3)

√
2

4
sin

(
x− a

2

)
− sinx+ α sin a, 0 < x < a,

where π/4 < a < π/2. Then ua(x) > 0 for 0 < x < a.

Proof. First assume 0 < x < a/2. Then one may verify that u′a(0) < 0 and
u′′a(x) > 0. Note further that

u′a(a/2) =
(α+ 3)

√
2

8
cos(a/4)− cos(a/2)

is an increasing function of a, which is negative at a = 86◦ and positive at a = 87◦.
First assume 45◦ < a ≤ 86◦. Then u′a(x) < 0 for 0 < x < a/2 and

ua(a/2) = α sin a− sin(a/2)− (α+ 3)
√
2

4
sin(a/4) > 0, π/4 < a < π/2,

as one may verify, which implies ua(x) > 0 for 0 < x < a/2 in this case. If
86◦ < a < 90◦, then to establish the desired result in this case, it suffices to show

r(x) = α sin(86◦)− sinx− (α+ 3)
√
2

4
sin
(
45◦ − x

2

)
> 0, 0 < x < π/4.

(19)
Since r′(43◦) < 0, r′(44◦) > 0 and r′′(x) > 0, the function r(x) must achieve its
minimum value somewhere on the interval [43◦, 44◦]. If 43◦ ≤ x ≤ 44◦, then

r(x) > α sin(86◦)− sin(44◦)− (α+ 3)
√
2

4
sin

(
45◦ − 43◦

2

)
> 0,

which implies (19).
Now suppose a/2 ≤ x < a. In this case, we fix x and consider ua(x) as a

function of a, where x < a ≤ 2x. First assume x ≤ π/4 and note that d2

da2
ua(x) <

0 for all a. Since ux(x) > 0 and

u2x(x) = α sin(2x)− sinx− (α+ 3)
√
2

4
sin(x/2) > 0, 0 < x ≤ π/4,

as one may verify, it follows that ua(x) > 0 for x < a ≤ 2x in this case. On the
other hand, if x > π/4, then ua(x) > 0 for x < a < π/2 follows from observing
ux(x) > 0, d2

da2
ua(x) < 0 and

uπ/2(x) = α− sinx− (α+ 3)
√
2

4
sin
(π
4
− x

2

)
> 0, π/4 < x < π/2,

which completes the proof. �
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Lemma 14. We have v ≥ 0 for the function

v(a, b, c) =
(α+ 3)

√
2

4

(
sin
(a
2

)
+ cos

(
b− c

2

))
+α cos a−(cos b+cos c+1),

where a = b+ c, 0 ≤ a ≤ π/2 and b, c ≥ 0.

Proof. By Lemma 4 (suitably extended to fα), we may assume a < π/2. If b or c
equals zero, say b, then a = c and v ≥ 0 reduces in this case to

r(a) =
(α+ 3)

√
2

4

(
sin
(a
2

)
+ cos

(a
2

))
+(α−1) cos a−2 ≥ 0, 0 ≤ a ≤ π/2.

(20)
Note that α > 1 implies r′′(a) < 0. Since r(0) = 0 (by definition of α) and
r(π/2) = α−1

2 > 0, inequality (20) follows, with equality only for a = 0.
We now check v at any possible interior extreme points (a, b, c). From the b-

and c-partial derivative equations, we get (i) cos
(
b+c
2

)
= (α+3)

√
2

8 or (ii) b = c. If
(i) holds, then a = b+ c implies cos a ≈ 0.23 and sin(a/2) ≈ 0.62. Then we have
in this case

v(a, b, c) =
(α+ 3)

√
2

4
sin
(a
2

)
+ 2 cos

(
b+ c

2

)
cos

(
b− c

2

)
+ α cos a− (cos b+ cos c+ 1)

=
(α+ 3)

√
2

4
sin
(a
2

)
+ α cos a− 1 > 0.

If (ii) holds, then v > 0 is equivalent to

s(b) =
(α+ 3)

√
2

4
(sin b+ 1) + α cos(2b)− 2 cos b− 1 > 0, 0 < b < π/4.

One can show that s′(a) has one sign change on the interval (0, π/4), from positive
to negative. Since s(0) = 0 and s(π/4) > 0, this implies s(b) > 0 for 0 < b <
π/4, which completes the proof. �
Lemma 15. We have w > 0 for the function

w(a, b, c) =
(α+ 3)

√
2

4

(
sin

(
a+ c

2

)
+ 1

)
+ α cos a− 2 cos b− cos c,

where a = 2b+ c, b, c > 0 and π/4 < a < π/2.

Proof. By the concavity of cosine on (0, π/2), to show w > 0, it suffices to show

r(a) =
(α+ 3)

√
2

4

(
sin
(a
2

)
+ 1
)
+α cos a−3 cos

(a
3

)
> 0, π/4 < a < π/2.

(21)
A direct computation reveals r′′′(a) > 0 for π/4 < a < π/2 and that r′′(a)
changes sign once on this interval. One may also verify r′(π/4) < 0 and r′(π/2) <
0, which implies r′(a) < 0 for all a. Inequality (21) now follows from observing
r(π/2) > 0. �

One then gets the following strengthened version of Theorem 1.
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Theorem 16. We have

α cos a+ cos b+ cos c+ cos d ≤ (α+ 3)
√
2

4

(
cos

(
a− c

2

)
+ cos

(
b− d

2

))
,

(22)
where α = 12−3

√
2

4+
√
2

, for all 0 ≤ b, c, d ≤ a such that a+b+c+d = π, with equality

if and only if a = b = c = d = π/4 or π − a = b = c = d = 0. Furthermore, α is
the smallest constant for which (22) holds.

Proof. We make appropriate modifications, which we briefly describe, to the proof
of Theorem 1 above using fα and gα in place of f and g. Note that in the proofs
of Theorems 8 and 11 above, one would use, respectively, Lemmas 13 and 15
where needed. One would also substitute Lemma 14 for 9. Note that the proof of
Lemma 2 implies that this result also applies to the function fα. In other proofs,
one would proceed as before, but instead with the function fα in the acute and gα
in the obtuse case, which may at times require a bit more analysis than previously.
Observe further that the strict inequality for g in the statements of Lemmas 9 and 10
and Theorem 11 should be replaced by the inclusive inequality gα ≥ 0, where there
is equality when all arguments are zero. Finally, the statements of the lemmas and
theorems in the acute case will remain unchanged when considering the sharpened
version of the inequality. �

Note that Corollary 12 above may also be strengthened by replacing the leftmost
expression

√
2
5 (2 cos a+cos b+cos c+cos d) with the larger quantity

√
2

α+3(α cos a+

cos b+cos c+cos d). For bicentric quadrilaterals, the inequality is in fact reversed
when α is replaced by 1.

Theorem 17. Let ABCD be a bicentric quadrilateral, with 2a = m(
�
AB), 2b =

m(
�
BC), 2c = m(

�
CD) and 2d = m(

�
DA). Then

√
2

(
cos

(
a− c

2

)
+ cos

(
b− d

2

))
≤ cos a+ cos b+ cos c+ cos d, (23)

with equality if and only if ABCD is a kite.

Proof. Replacing the right-hand side of (23) by

2 cos

(
a+ c

2

)
cos

(
a− c

2

)
+ 2 cos

(
b+ d

2

)
cos

(
b− d

2

)
,

and rearranging, we show equivalently(
cos

(
b+ d

2

)
−

√
2

2

)
cos

(
b− d

2

)
≥
(√

2

2
− cos

(
a+ c

2

))
cos

(
a− c

2

)
.

(24)
Since ABCD has an inscribed circle, we have AB+CD = BC+DA, which im-
plies sin a+sin c = sin b+sin d. This may be rewritten as sin

(
a+c
2

)
cos
(
a−c
2

)
=
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sin
(
b+d
2

)
cos
(
b−d
2

)
, i.e., cos

(
a−c
2

)
= tan

(
b+d
2

)
cos
(
b−d
2

)
, since a+b+c+d = π.

Substituting this into (24), and letting x = b+d
2 , gives

cosx−
√
2/2 ≥ (

√
2/2− sinx) tanx, 0 < x < π/2. (25)

Rearranging (25) gives secx −
√
2
2 tanx ≥

√
2
2 for 0 < x < π/2. To show this,

let f(x) = secx −
√
2
2 tanx. Then f ′(x) = sec2 x

(
sinx−

√
2
2

)
so that f(x) is

minimized when x = π/4, with f(π/4) =
√
2/2. This implies (25) and hence

(23). Note that there is equality in (23) iff x = b+d
2 = π

4 , i.e., a+ c = π
2 = b+ d.

Since ABCD is bicentric, we then have a − c = b − d or a − c = d − b, which
implies a = b, c = d or a = d, b = c. Thus, there is equality iff ABCD is a kite,
which completes the proof. �
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