

OpenMAX™ Integration Layer
Application Programming Interface

Specification

Version 1.0

Copyright © 2005 The Khronos Group Inc.

December 16, 2005
Document version 1.10

 ii

Copyright © 2005 The Khronos Group Inc. All Rights Reserved.

This specification is protected by copyright laws and contains material proprietary to the
Khronos Group, Inc. It or any components may not be reproduced, republished,
distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner
without the express prior written permission of the Khronos Group. You may use this
specification for implementing the functionality therein, without altering or removing any
trademark, copyright or other notice from the specification, but the receipt or possession
of this specification does not convey any rights to reproduce, disclose, or distribute its
contents, or to manufacture, use, or sell anything that it may describe, in whole or in part.

Khronos Group grants express permission to any current Promoter, Contributor or
Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this
specification in any fashion, provided that NO CHARGE is made for the specification
and the latest available update of the specification for any version of the API is used
whenever possible. Such distributed specification may be reformatted AS LONG AS the
contents of the specification are not changed in any way. The specification may be
incorporated into a product that is sold as long as such product includes significant
independent work developed by the seller. A link to the current version of this
specification on the Khronos Group website should be included whenever possible with
specification distributions.

Khronos Group makes no, and expressly disclaims any, representations or warranties,
express or implied, regarding this specification, including, without limitation, any implied
warranties of merchantability or fitness for a particular purpose or non-infringement of
any intellectual property. Khronos Group makes no, and expressly disclaims any,
warranties, express or implied, regarding the correctness, accuracy, completeness,
timeliness, and reliability of the specification. Under no circumstances will the Khronos
Group, or any of its Promoters, Contributors or Members or their respective partners,
officers, directors, employees, agents or representatives be liable for any damages,
whether direct, indirect, special or consequential damages for lost revenues, lost profits,
or otherwise, arising from or in connection with these materials.

SAMPLE CODE and EXAMPLES, as identified herein, are expressly depicted herein
with a “grey” watermark and are included for illustrative purposes only and are expressly
outside of the Scope as defined in Attachment A - Khronos Group Intellectual Property
(IP) Rights Policy of the Khronos Group Membership Agreement. A Member or
Promoter Member shall have no obligation to grant any licenses under any Necessary
Patent Claims covering SAMPLE CODE and EXAMPLES.

Khronos and OpenMAX are trademarks of the Khronos Group Inc. Bluetooth is a
registered trademark of the Bluetooth Special Interest Group. RealAudio and RealVideo
are registered trademarks of RealNetworks, Inc. Windows Media is a registered
trademark of Microsoft Corporation.

 iii

Contents

1 OVERVIEW...8

1.1 INTRODUCTION..8
1.1.1 About the Khronos Group..8
1.1.2 A Brief History of OpenMAX ...8

1.2 THE OPENMAX INTEGRATION LAYER..8
1.2.1 Key Features and Benefits ...8
1.2.2 Design Philosophy ...9
1.2.3 Software Landscape...9
1.2.4 Stakeholders...10
1.2.5 The Interface..11

1.3 DEFINITIONS..12
1.4 AUTHORS ..13

2 OPENMAX IL INTRODUCTION AND ARCHITECTURE..14
2.1 OPENMAX IL DESCRIPTION ...14

2.1.1 Architectural Overview..14
2.1.2 Key Vocabulary ...15
2.1.3 System Components ...17
2.1.4 Component States ..18
2.1.5 Component Architecture ..20
2.1.6 Communication Behavior ..20
2.1.7 Tunneled Buffer Allocation and Sharing ...21
2.1.8 Port Reconnection ...28
2.1.9 Queues and Flush ..30
2.1.10 Marking Buffers ..31
2.1.11 Events and Callbacks ..32
2.1.12 Buffer Payload ..33
2.1.13 Buffer Flags and Timestamps..35
2.1.14 Synchronization...35
2.1.15 Rate Control..36
2.1.16 Component Registration ...36
2.1.17 Resource Management..36

3 OPENMAX INTEGRATION LAYER CONTROL API..41
3.1 OPENMAX TYPES...42

3.1.1 Enumerations...42
3.1.2 Structures...53
3.1.3 OMX_PORTDOMAINTYPE..65
3.1.4 OMX_HANDLETYPE..66

3.2 OPENMAX CORE METHODS/MACROS..66
3.2.1 Return Codes for the Functions ...67
3.2.2 Macros ...69
3.2.3 Functions ...87

3.3 OPENMAX COMPONENT METHODS AND STRUCTURES...94
3.3.1 nSize...94
3.3.2 nVersion...94
3.3.3 pComponentPrivate ...94
3.3.4 pApplicationPrivate ...94
3.3.5 GetComponentVersion...94

 iv

3.3.6 SendCommand ...94
3.3.7 GetParameter ..95
3.3.8 SetParameter ...95
3.3.9 GetConfig...95
3.3.10 SetConfig...96
3.3.11 GetExtensionIndex ..96
3.3.12 GetState...96
3.3.13 ComponentTunnelRequest ..96
3.3.14 UseBuffer ..98
3.3.15 AllocateBuffer ...98
3.3.16 FreeBuffer ...99
3.3.17 EmptyThisBuffer ...99
3.3.18 FillThisBuffer..99
3.3.19 SetCallbacks..100
3.3.20 ComponentDeinit ..100

3.4 CALLING SEQUENCES..101
3.4.1 Initialization...101
3.4.2 Data Flow ..107
3.4.3 De-Initialization...110
3.4.4 Port Disablement and Enablement ..112
3.4.5 Dynamic Port Reconfiguration ..114
3.4.6 Resource Management...116

4 OPENMAX IL DATA API..120
4.1 AUDIO ...120

4.1.1 Audio Use Case Examples ...120
4.1.2 Special Issues...121
4.1.3 General Enumerations...121
4.1.4 OMX_AUDIO_PORTDEFINITIONTYPE...124
4.1.5 OMX_AUDIO_PARAM_PORTFORMATTYPE ..125
4.1.6 OMX_AUDIO_PARAM_PCMMODETYPE ..126
4.1.7 OMX_AUDIO_PARAM_MP3TYPE ..128
4.1.8 OMX_AUDIO_PARAM_AACPROFILETYPE ..131
4.1.9 OMX_AUDIO_PARAM_VORBISTYPE...135
4.1.10 OMX_AUDIO_PARAM_WMATYPE ..137
4.1.11 OMX_AUDIO_RATYPE ...139
4.1.12 OMX_AUDIO_PARAM_SBCTYPE ..140
4.1.13 OMX_AUDIO_PARAM_ADPCMTYPE..143
4.1.14 OMX_AUDIO_PARAM_G723TYPE ..144
4.1.15 OMX_AUDIO_PARAM_G726TYPE ..146
4.1.16 OMX_AUDIO_PARAM_G729TYPE ..148
4.1.17 OMX_AUDIO_PARAM_AMRTYPE ...150
4.1.18 OMX_AUDIO_PARAM_GSMFRTYPE ..153
4.1.19 OMX_AUDIO_PARAM_GSMEFRTYPE..154
4.1.20 OMX_AUDIO_PARAM_GSMHRTYPE..156
4.1.21 OMX_AUDIO_PARAM_TDMAFRTYPE..158
4.1.22 OMX_AUDIO_PARAM_TDMAEFRTYPE ...159
4.1.23 OMX_AUDIO_PARAM_PDCFRTYPE ..161
4.1.24 OMX_AUDIO_PARAM_PDCEFRTYPE..162
4.1.25 OMX_AUDIO_PARAM_PDCHRTYPE..164
4.1.26 OMX_AUDIO_PARAM_QCELP8TYPE...165
4.1.27 OMX_AUDIO_PARAM_QCELP13TYPE...167
4.1.28 OMX_AUDIO_PARAM_EVRCTYPE ...169
4.1.29 OMX_AUDIO_PARAMSMVTYPE ...172
4.1.30 OMX_AUDIO_PARAM_MIDITYPE ..174
4.1.31 OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE ...176

 v

4.1.32 OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE...178
4.1.33 OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE...180
4.1.34 OMX_AUDIO_CONFIG_MIDICONTROLTYPE...181
4.1.35 OMX_AUDIO_CONFIG_MIDISTATUSTYPE...183
4.1.36 OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE ..186
4.1.37 OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE ..188
4.1.38 OMX_AUDIO_CONFIG_VOLUMETYPE ...189
4.1.39 OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE ...191
4.1.40 OMX_AUDIO_CONFIG_BALANCETYPE ..192
4.1.41 OMX_AUDIO_CONFIG_MUTETYPE...194
4.1.42 OMX_AUDIO_CONFIG_CHANNELMUTETYPE...195
4.1.43 OMX_AUDIO_CONFIG_LOUDNESSTYPE..196
4.1.44 OMX_AUDIO_CONFIG_BASSTYPE...198
4.1.45 OMX_AUDIO_CONFIG_TREBLETYPE ...199
4.1.46 OMX_AUDIO_CONFIG_EQUALIZERTYPE ..200
4.1.47 OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE..202
4.1.48 OMX_AUDIO_CONFIG_CHORUSTYPE..204
4.1.49 OMX_AUDIO_CONFIG_REVERBERATIONTYPE...206
4.1.50 OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE ..208
4.1.51 OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE..210

4.2 IMAGE AND VIDEO COMMON ..211
4.2.1 Uncompressed Data Formats ..211
4.2.2 Minimum Buffer Payload Size for Uncompressed Data ..215
4.2.3 Buffer Payload Requirements for Uncompressed Data ...215
4.2.4 Parameter and Configuration Indexes...216
4.2.5 OMX_ PARAM_DEBLOCKINGTYPE ..220
4.2.6 OMX_PARAM_INTERLEAVETYPE ...222
4.2.7 OMX_PARAM_SENSORMODETYPE...223
4.2.8 OMX_CONFIG_COLORCONVERSIONTYPE ...224
4.2.9 OMX_SCALEFACTORTYPE...226
4.2.10 OMX_CONFIG_IMAGEFILTERTYPE ..227
4.2.11 OMX_CONFIG_COLORENHANCEMENTTYPE ..229
4.2.12 OMX_CONFIG_COLORKEYTYPE ...231
4.2.13 OMX_CONFIG_COLORBLENDTYPE ..232
4.2.14 OMX_FRAMESIZETYPE..234
4.2.15 OMX_CONFIG_ROTATIONTYPE...235
4.2.16 OMX_CONFIG_MIRRORTYPE ...236
4.2.17 OMX_CONFIG_POINTTYPE ..237
4.2.18 OMX_CONFIG_RECTTYPE ..239
4.2.19 OMX_CONFIG_FRAMESTABTYPE..240
4.2.20 OMX_CONFIG_WHITEBALCONTROLTYPE...241
4.2.21 OMX_CONFIG_EXPOSURECONTROLTYPE ..243
4.2.22 OMX_CONFIG_CONTRASTTYPE ..244
4.2.23 OMX_CONFIG_BRIGHTNESSTYPE...246
4.2.24 OMX_CONFIG_BACKLIGHTTYPE ..247
4.2.25 OMX_CONFIG_GAMMATYPE ...248
4.2.26 OMX_CONFIG_SATURATIONTYPE ..249
4.2.27 OMX_CONFIG_LIGHTNESSTYPE ...250
4.2.28 OMX_CONFIG_PLANEBLENDTYPE ...251
4.2.29 OMX_CONFIG_DITHERTYPE..252

4.3 VIDEO ...254
4.3.1 General Enumerations...254
4.3.2 Parameter and Configuration Indices ...255
4.3.3 Video Use Cases Examples..257
4.3.4 OMX_VIDEO_PORTDEFINITIONTYPE ...258
4.3.5 OMX_VIDEO_PARAM_PORTFORMATTYPE...260

 vi

4.3.6 OMX_VIDEO_PARAM_QUANTIZATIONTYPE ..261
4.3.7 OMX_VIDEO_PARAM_VIDEOFASTUPDATETYPE ..263
4.3.8 OMX_VIDEO_PARAM_BITRATETYPE...264
4.3.9 OMX_VIDEO_PARAM_MOTIONVECTORTYPE ..266
4.3.10 OMX_VIDEO_PARAM_INTRAREFRESHTYPE..267
4.3.11 OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE...269
4.3.12 OMX_VIDEO_PARAM_VBSMCTYPE...270
4.3.13 OMX_VIDEO_PARAM_H263TYPE...272
4.3.14 OMX_VIDEO_PARAM_MPEG2TYPE...275
4.3.15 OMX_VIDEO_PARAM_MPEG4TYPE...277
4.3.16 OMX_VIDEO_PARAM_WMVTYPE...280
4.3.17 OMX_VIDEO_PARAM_RVTYPE...282
4.3.18 OMX_VIDEO_PARAM_AVCTYPE ..283

4.4 IMAGE ...287
4.4.1 Parameter and Configuration Indices ...288
4.4.2 Image Use Case Example ..288
4.4.3 OMX_IMAGE_PORTDEFINITIONTYPE...288
4.4.4 OMX_IMAGE_PARAM_PORTFORMATTYPE ..291
4.4.5 OMX_IMAGE_PARAM_FLASHCONTROLTYPE ..292
4.4.6 OMX_IMAGE_PARAM_FOCUSCONTROLTYPE ...294
4.4.7 OMX_IMAGE_PARAM_QFACTORTYPE ..295
4.4.8 OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE ..297
4.4.9 OMX_IMAGE_PARAM_HUFFMANTABLETYPE ...298

5 OPENMAX COMPONENT EXTENSION APIS ...300
5.1 DESCRIPTION OF THE EXTENSION PROCESS...300

5.1.1 GetExtensionIndex...300
5.1.2 Custom Data Structures...301

5.2 EXAMPLES OF USING EXTENSION QUERYING API...301
5.2.1 Sample Code Showing Calling Sequence...301

6 OPENMAX GENERIC COMPONENTS..303
6.1 SEEKING COMPONENT...303

6.1.1 Seeking Configurations..303
6.1.2 Seeking Buffer Flags..304
6.1.3 Seek Event Sequence..304

6.2 CLOCK COMPONENT..305
6.2.1 Timestamps ..305
6.2.2 Media Clock...305
6.2.3 Wall Clock ...308
6.2.4 Reference Clocks ...308
6.2.5 Clock Component Implementation...313
6.2.6 Audio-Video File Playback Example Use Case ...315

7 APPENDIX A – REFERENCES ..317
7.1 SPEECH ...317

7.1.1 3GPP ...317
7.1.2 3GPP2 ...317
7.1.3 ARIB...317
7.1.4 ITU...317
7.1.5 IETF...318
7.1.6 TIA ...318

7.2 AUDIO ...318
7.2.1 ISO...318
7.2.2 MISC..319

7.3 SYNTHETIC AUDIO ..319

 vii

7.3.1 MIDI ..319
7.4 IMAGE...320

7.4.1 IETF...320
7.4.2 ISO...321
7.4.3 ITU...322
7.4.4 JEITA...322
7.4.5 MIPI...322
7.4.6 Miscellaneous ..322
7.4.7 SMIA ..323
7.4.8 W3C ...323

7.5 VIDEO..323
7.5.1 3GPP ...323
7.5.2 AVS ..323
7.5.3 DLNA...323
7.5.4 ETSI ...324
7.5.5 IETF...324
7.5.6 ISO...325
7.5.7 ITU...325
7.5.8 MISC..325

7.6 JAVA..326
7.6.1 Multimedia...326
7.6.2 Broadcast...326

 8

1 Overview

1.1 Introduction
This document details the Application Programming Interface (API) for the OpenMAX
Integration Layer (IL). Developed as an open standard by The Khronos Group, the IL
serves as a low-level interface for audio, video, and imaging codecs used in embedded
and/or mobile devices. The principal goal of the IL is to give codecs a degree of system
abstraction for the purpose of portability across operating systems and software stacks.

1.1.1 About the Khronos Group
The Khronos Group is a member-funded industry consortium focused on the creation of
open standard APIs to enable the authoring and playback of dynamic media on a wide
variety of platforms and devices. All Khronos members may contribute to the
development of Khronos API specifications, may vote at various stages before public
deployment, and may accelerate the delivery of their multimedia platforms and
applications through early access to specification drafts and conformance tests. The
Khronos Group is responsible for open APIs such as OpenGL ES, OpenML, and
OpenVG.

1.1.2 A Brief History of OpenMAX
The OpenMAX set of APIs was originally conceived as a method of enabling portability
of codecs and media applications throughout the mobile device landscape. Brought into
the Khronos Group in mid-2004 by a handful of key mobile hardware companies,
OpenMAX has gained the contributions of companies and institutions stretching the
breadth of the multimedia field. As such, OpenMAX stands to unify the industry in
taking steps toward media codec portability. Stepping beyond mobile platforms, the
general nature of the OpenMAX IL API makes it applicable to all media platforms.

1.2 The OpenMAX Integration Layer
The OpenMAX IL API strives to give media codecs portability across an array of
platforms. The interface abstracts the hardware and software architecture in the system.
Each codec and relevant transform is encapsulated in a component interface. The
OpenMAX IL API allows the user to load, control, connect, and unload the individual
components. This flexible core architecture allows the Integration Layer to easily
implement almost any media use case and mesh with existing graph-based media
frameworks.

1.2.1 Key Features and Benefits
The OpenMAX IL API gives applications and media frameworks the ability to interface
with multimedia codecs and supporting components (i.e., sources and sinks) in a unified
manner. The codecs themselves may be any combination of hardware or software and
are completely transparent to the user. Without a standardized interface of this nature,
codec vendors must write to proprietary or closed interfaces to integrate into mobile

 9

devices. In this case, the portability of the codec is minimal at best, costing many
development-years of effort in re-tooling these solutions between systems.

Thus, the IL incorporates a specialized arsenal of features, honed to combat the problem
of portability among many vastly different media systems. Such features include:

• A flexible component-based API core

• Ability to easily plug in new codecs

• Coverage of targeted domains (audio, video, and imaging) while remaining easily
extensible by both the Khronos Group and individual vendors

• Capable of being implemented as either static or dynamic libraries

• Retention of key features and configuration options needed by parent software (such
as media frameworks)

• Ease of communication between the client and the codecs and between codecs
themselves

1.2.2 Design Philosophy
As previously stated, the key focus of the OpenMAX IL API is portability of media
codecs. The diversity of existing devices and media implementation solutions
necessitates that the OpenMAX IL target the higher level of the media software stack as
the key initial user. For most operating systems, this means an existing media framework.

Thus, much of the OpenMAX IL API is defined by requirements generated by the needs
of media frameworks. Similarly, the IL is designed to allow the media framework layer
to be as lightweight as possible. The result is an interface that is easily pluggable into
most software stacks across operating system and framework boundaries. Likewise,
several features of media frameworks were perceived to be handled at higher levels and
not included in the API. Among these is the issue of file handling, which, if desired, may
be easily added to the IL structure outside of the standard.

The design of the API also strove to accommodate as many system architectures as
possible. The resulting design uses highly asynchronous communications, which allows
processing to take place in another thread, on multiple processing elements, or on
specialized hardware. In addition, the ability of hardware-accelerated codecs to
communicate directly with one another via tunneling affords implementation
architectures even greater flexibility and efficiency.

1.2.3 Software Landscape
In most systems, a user-level media framework already exists. The OpenMAX IL API is
designed to easily fit below these frameworks with little to no overhead between the
interfaces. In most cases, the media framework provided by the operating system can be
replaced with a thin layer that simply translates the API. Figure 1-1 illustrates the
software landscape for the OpenMAX IL API.

 10

Figure 1-1. OpenMAX IL API Software Landscape

To remove possible reader confusion, the OpenMAX standard also defines a set of
Development Layer (DL) primitives on which codecs can be built. The DL primitives
and their full relationship to the IL are specified in other OpenMAX specification
documents.

1.2.4 Stakeholders
A few categories of stakeholders represent the broad array of companies participating in
the production of multimedia solutions, each with their own interest in the IL API.

1.2.4.1 Silicon Vendors
Silicon vendors (SV) are responsible for delivering a representative set of OpenMAX IL
components that are specific to the vendor’s platform. The vendors are anticipated to
also supply components that are representative of the capabilities of their platforms.

System Media Driver

inform the IL client of the completion of its

OpenMAX Development Layer

DL Primitives DL Primitives

Codec Codec

Multimedia Framework / Middleware

Application

Application

OpenMAX Integration Layer

Component
Interface

Component
Interface

Component
Interface

Application

 11

1.2.4.2 Independent Software Vendors
Independent software vendors (ISV) are anticipated to deliver additional differentiated
OpenMAX IL components that may or may not be specific to a given silicon vendor’s
platform.

1.2.4.3 Operating System Vendors
Operating System Vendors (OSV) are anticipated to deliver software multimedia
framework and standard reference OpenMAX IL components that enable integration of
the representative silicon vendor’s components and ISV components. The OSV is
responsible for conformance testing of the standard reference OpenMAX components.

1.2.4.4 Original Equipment Manufacturers
Original Equipment Manufacturers (OEM) are anticipated to modify and optimize the
integration of OpenMAX components provided by SVs, ISVs, and OSVs to their specific
product architectures to enable delivery of OpenMAX integrated multimedia devices.
OEMs may also develop and integrate their own proprietary OpenMAX components.

1.2.5 The Interface
The OpenMAX IL API is a component-based media API that consists of two main
segments: the core API and the component API.

1.2.5.1 Core
The OpenMAX IL core is used for dynamically loading and unloading components and
for facilitating component communication. Once loaded, the API allows the user to
communicate directly with the component, which eliminates any overhead for high
commands. Similarly, the core allows a user to establish a communication tunnel
between two components. Once established, the core API is no longer used and
communications flow directly between components.

1.2.5.2 Components
In the OpenMAX Integration Layer, components represent individual blocks of
functionality. Components can be sources, sinks, codecs, filters, splitters, mixers, or any
other data operator. Depending on the implementation, a component could possibly
represent a piece of hardware, a software codec, another processor, or a combination
thereof.

The individual parameters of a component can be set or retrieved through a set of
associated data structures, enumerations, and interfaces. The parameters include data
relevant to the component’s operation (i.e., codec options) or the actual execution state of
the component.

Buffer status, errors, and other time-sensitive data are relayed to the application via a set
of callback functions. These are set via the normal parameter facilities and allow the API
to expose more of the asynchronous nature of system architectures.

Data communication to and from a component is conducted through interfaces called
ports. Ports represent both the connection for components to the data stream and the

 12

buffers needed to maintain the connection. Users may send data to components through
input ports or receive data through output ports. Similarly, a communication tunnel
between two components can be established by connecting the output port of one
component to a similarly formatted input port of another component.

1.3 Definitions
When this specification discusses requirements and features of the OpenMAX IL API,
specific words are used to convey their necessity in an implementation. Table 1-1 shows
a list of these words.

Word Definition
May The stated functionality is an optional requirement for an

implementation of the OpenMAX IL API. Optional features are not
required by the specification but may have conformance requirements
if they are implemented. This is an optional feature as in “The
component may have vendor specific extensions.”

Shall The stated functionality is a requirement for an implementation of the
OpenMAX IL API. If a component fails to meet a shall statement, it is
not considered to conform to this specification. Shall is always used
as a requirement, as in “The component designers shall produce good
documentation.”

Should The stated functionality is not a requirement for an implementation of
the OpenMAX IL API but is recommended or is a good practice.
Should is usually used as follows: “The component should begin
processing buffers immediately after it transitions to the
OMX_StateExecuting state.” While this is good practice, there may
be a valid reason to delay processing buffers, such as not having input
data available.

Will The stated functionality is not a requirement for an implementation of
the OpenMAX IL API. Will is usually used when referring to a third
party, as in “the application framework will correctly handle errors.”

Table 1-1. Definitions of Commonly Used Words

 13

1.4 Authors
The following individuals, listed alphabetically by company, contributed to the
OpenMAX Integration Layer Application Programming Interface Specification.

• Gordon Grigor (ATI)

• Andrew Rostaing (Beatnik)

• Chris Grigg (Beatnik)

• Russell Tillitt (Beatnik)

• Roger Nixon (Broadcom)

• Brian Murray (Freescale)

• Norbert Schwagmann (Infineon)

• Mark Kokes (Nokia)

• Samu Kaajas (Nokia)

• Yeshwant Muthusamy (Nokia)

• Jim Van Welzen (NVIDIA)

• David Siorpaes (STMicroelectronics)

• Diego Melpignano (STMicroelectronics)

• Giulio Urlini (STMicroelectronics)

• Kevin Butchart (Symbian)

• Viviana Dudau (Symbian)

• David Newman (Texas Instruments)

• Leo Estevez (Texas Instruments)

• Richard Baker (Texas Instruments)

 14

2 OpenMAX IL Introduction and Architecture
This section of the document describes the OpenMAX IL features and architecture.

2.1 OpenMAX IL Description
The OpenMAX IL layer is an API that defines a software interface used to provide an
access layer around software components in a system. The intent of the software
interface is to take components with disparate initialization and command methodologies
and provide a software layer that has a standardized command set and a standardized
methodology for construction and destruction of the components.

2.1.1 Architectural Overview
Consider a system that requires the implementation of four multimedia processing
functions denoted as F1, F2, F3, and F4. Each of these functions may be from different
vendors or may be developed in house but by different groups within the organization.
Each may have different requirements for setup and teardown. Each may have different
methods of facilitating configuration and data transfer. The OpenMAX IL API provides
a means of encapsulating these functions, singly or in logical groups, into components.
The API includes a standard protocol that enables compliant components that are
potentially from different vendors/groups to exchange data with one another and be used
interchangeably.

The OpenMAX IL API interfaces with a higher-level entity denoted as the IL client,
which is typically a functional piece of a filter graph multimedia framework or an
application. The IL client interacts with a centralized IL entity called the core. The IL
client uses the OpenMAX core for loading and unloading components, setting up direct
communication between two OpenMAX components, and accessing the component’s
method functions.

An IL client always communicates with a component via the IL core. In most cases, this
communication equates to calling one of the IL core’s macros, which translates directly
to a call on one of the component methods. Exceptions (where the IL client calls an
actual core function that works) include component creation and destruction and
connection via tunneling of two components.

Components embody the media processing function or functions. Although this
specification clearly defines the functionality of the OpenMAX core, the component
provider defines the functionality of a given component. Components operate on four
types of data that are defined according to the parameter structures that they export: audio,
video, image, and other (e.g., time data for synchronization).

An OpenMAX component provides access to a standard set of component functions via
its component handle. These functions allow a client to get and set component and port
configuration parameters, get and set the state of the component, send commands to the
component, receive event notifications, allocate buffers, establish communications with a
single component port, and establish communication between two component ports.

Every OpenMAX component shall have at least one port to claim OpenMAX
conformance. Although a vendor may provide an OpenMAX-compatible component

 15

without ports, the bulk of conformance testing is dependent on at least one conformant
port. The four types of ports defined in OpenMAX correspond to the types of data a port
may transfer: audio, video, and image data ports, and other ports. Each port is defined as
either an input or output depending on whether it consumes or produces buffers.

In a system containing four multimedia processing functions F1, F2, F3, and F4, a system
implementer might provide a standard OpenMAX interface for each of the functions. The
implementer might just as easily choose any combination of functions. The delineation
for the separation of this functionality is based on ports. Figure 2-1 shows a few possible
partitions for an OpenMAX implementation that provides these functions.

F1 F2 F3 F4

F1 F2

F1

F3 F4

F2 F3 F4

OpenMAXComponent A

OpenMAX Component B

OpenMAX Component C

OpenMAX Component D

OpenMAX Component A OpenMAXComponent B

OpenMAX Component A

Figure 2-1. Possible Partitions for an OpenMAX Implementation

2.1.2 Key Vocabulary
This section describes acronyms and definitions commonly used in describing the
OpenMAX IL API.

 16

2.1.2.1 Acronyms
Table 2-1 lists acronyms commonly used in describing the OpenMAX IL API.

Acronym Meaning

IPC Abbreviation of inter-processor communication.

OMX Used as a prefix in the names of OpenMAX functions and
structures. For example, a component may be place in the
OMX_StateExecuting state.

Table 2-1. Acronyms

2.1.2.2 Key Definitions
Table 2-2 lists key definitions used in describing the OpenMAX IL API.

Key word Meaning

Accelerated
component

OpenMAX components that wrap a function with a portion
running on an accelerator. Accelerated components have
special characteristics such as being able to support some types
of tunneling.

Accelerator Hardware designed to speed up processing of some functions.
This hardware may also be referred to as accelerated hardware.
Note that the accelerator may actually be software running in a
different processor and not be hardware at all.

AMR Abbreviation of adaptive multimedia retrieval, which is an
adaptive multi-rate codec from the 3GGP consortium.

Host processor The processor in a multi-core system that controls media
acceleration and typically runs a high-level operating system.

IL client The layer of software that invokes the methods of the core or
component. The IL client may be a layer below the GUI
application, such as GStreamer, or may be several layers below
the GUI layer. In this document, the application refers to any
software that invokes the OpenMAX methods.

Main memory Typically external memory that the host processor and the
accelerator share.

OpenMAX
component

A component that is intended to wrap functionality that is
required in the target system. The OpenMAX wrapper provides
a standard interface for the function being wrapped.

OpenMAX core Platform-specific code that has the functionality necessary to
locate and then load an OpenMAX component into main
memory. The core also is responsible for unloading the
component from memory when the application indicates that
the component is no longer needed.

 17

Key word Meaning

In general, after the OpenMAX core loads a component into
memory, the core will not participate in communication
between the application and the component.

Resource manager A software entity that manages hardware resources in the
system.

RTP Abbreviation of real-time protocol, which is the Internet-
standard protocol for the transport of real-time data, including
audio and video.

Synchronization A mechanism for gating the operation of one component with
another.

Tunnels/Tunneling The establishment and use of a standard data path that is
managed directly between two OpenMAX components.

Table 2-2. Key Definitions

2.1.3 System Components
Figure 2-2 depicts the various types of communication enabled with OpenMAX. Each
component can have an arbitrary number of ports for data communication. Components
with a single output port are referred to as source components. Components with a single
input port are referred to as sink components. Components running entirely on the host
processor are referred to as host components. Components running on a loosely coupled
accelerator are referred to as accelerator components. OpenMAX may be integrated
directly with an application or may be integrated with multimedia framework
components enabling heterogeneous implementations.

Three types of communication are described. Non-tunneled communications defines a
mechanism for exchanging data buffers between the IL client and a component.
Tunneling defines a standard mechanism for components to exchange data buffers
directly with each other in a standard way. Proprietary communication describes a
proprietary mechanism for direct data communications between two components and
may be used as an alternative when a tunneling request is made, provided both
components are capable of doing so.

 18

IL Client

Host
Component Accelerator

Component

Hardware
Accelerated

Codec

Source
Component

Sink
Component

IPCIPC

Framework
Component

Framework
Component

Framework
Component

Framework
Component

Multimedia Framework

Tunneled
Communication

Tunneled
Communication

Non-Tunneled
Communication

O
pe

nM
A

X
C

or
e

Figure 2-2. OpenMAX IL API System Components

2.1.3.1 Component Profiles
OpenMAX component functionality is grouped into two profiles: base profile and interop
profile.

The base profile shall support non-tunneled communication. Base profile components
may support proprietary communication. Base profile components do not support
tunneled communication.

The interop profile is a superset of the base profile. An interop profile component shall
support non-tunneled communication and tunneled communication. An interop profile
component may support proprietary communication.

The primary difference between the interop profile and the base profile is that the
component supports tunneled communication. The base profile exists to reduce the
adoption barrier for OpenMAX implementers by simplifying the implementation. A base
profile component does not need to implement tunneled communication.

2.1.4 Component States
Each OpenMAX component can undergo a series of state transitions, as depicted in
Figure 2-3. Every component is first considered to be unloaded. The component shall be

 19

loaded through a call to the OpenMAX core. All other state transitions may then be
achieved by communicating directly with the component.

A component can enter an invalid state when a state transition is made with invalid data.
For example, if the callback pointers are not set to valid locations, the component may
time out and alert the IL client of the error. The IL client shall stop, de-initialize, unload,
and reload the component when the IL client detects an invalid state. Figure 2-3 depicts
the invalid state as enterable from any state, although the only way to exit the invalid
state is to unload and reload the component.

LOADED

IDLE

EXECUTING

PAUSED

INVALID

UNLOADED

WAIT FOR
RESOURCES

Figure 2-3. Component States

Transitioning into the IDLE state may fail since this state requires allocation of all
operational resources. When the transition from LOADED to IDLE fails, the IL client
may try again or may choose to put the component into the WAIT FOR RESOURCES
state. Upon entering the WAIT FOR RESOURCE state, the component registers with a
vendor-specific resource manager to alert it when resources have become available. The
resource manager subsequently puts the component into the IDLE state. A command that
the IL client sends controls all other state transitions except to INVALID.

The IDLE state indicates that the component has all of its needed resources but is not
processing data. The EXECUTING state indicates that the component is pending
reception of buffers to process data and will make required callbacks as specified in
section 3. The PAUSED state maintains a context of buffer execution with the component
without processing data or exchanging buffers. Transitioning from PAUSED to
EXECUTING enables buffer processing to resume where the component left off.

 20

Transitioning from EXECUTING or PAUSED to IDLE will cause the context in which
buffers were processed to be lost, which requires the start of a stream to be reintroduced.
Transitioning from IDLE to LOADED will cause operational resources such as
communication buffers to be lost.

2.1.5 Component Architecture
Figure 2-4 depicts the component architecture. Note that there is only one entry point for
the component (through its handle to an array of standard functions) but there are
multiple possible outgoing calls that depend on how many ports the component has. Each
component will make calls to a specified IL client event handler. Each port will also
make calls (or callbacks) to a specified external function. A queue for pointers to buffer
headers is also associated with each port. These buffer headers point to the actual buffers.
The command function also has a queue for commands. All parameter or configuration
calls are performed on a particular index and include a structure associated with that
parameter or configuration, as depicted in Figure 2-4.

Parameter/
Configuration

SET/GET

Commands

Buffer Sent

Port A
Input

Port B
Output

IL Client
Event
Handler

Component
Handle

Command
Queue

Port A Buffer
Header
Pointer
Queue

Port B Buffer
Header
Pointer
Queue

Port
Callbacks

IL Client
Or other
component

Component Event
Handler

Configuration
Structures

Port
Callbacks
And Calls

Figure 2-4. OpenMAX IL API Component Architecture

A port must support callbacks to the IL client and, when part of an interop profile
component, must support communication with ports on other components.

2.1.6 Communication Behavior
Configuration of a component may be accomplished once the handle to the component
has been received from the OpenMAX core. Data communication calls with a component
are non-blocking and are enabled once the number of ports has been configured, each
port has been configured for a specific data format, and the component has been put in
the appropriate state. Data communication is specific to a port of the component. Input

 21

ports are always called from the IL client with OMX_EmptyThisBuffer (for more
information, see section 3.2.2.17). Output ports are always called from the IL client with
OMX_FillThisBuffer (for more information, see section 3.2.2.18). In an in-context
implementation, callbacks to OMX_EmptyBufferDone or OMX_FillBufferDone
will be made before the return. Figure 2-5 depicts the anticipated behavior for an in-
context versus an out-of-context implementation. Note that the IL client should not make
assumptions about return/callback sequences to enable heterogeneous integration of in-
context and out-of-context OpenMAX components.

Calling Application/Framework

OpenMAX Component

Parametric
check

Call Return

Function

Callback

Calling Application/Framework

OpenMAX Component

Parametric
check

Call Return

Function

Callback

OpenMAX Component runs in
Separate thread/process
As application/framework

OpenMAX Component runs in
Same thread/process
As application/framework

Figure 2-5. Out-of-Context versus In-Context Operation

Data communications with components is always directed to a specific component port.
Each port has a component-defined minimum number of buffers it shall allocate or use. A
port associates a buffer header with each buffer. A buffer header references data in the
buffer and provides metadata associated with the contents of the buffer. Every component
port shall be capable of allocating its own buffers or using pre-allocated buffers; one of
these choices will usually be more efficient than the other.

2.1.7 Tunneled Buffer Allocation and Sharing
This section describes buffer allocation for tunneling components and buffer sharing. For
a given tunnel, exactly one port supplies the buffers and passes those buffers to the non-
supplier port. In the simplest case, the supplier also allocates the buffers. Under the right
circumstances, however, a tunneling component may choose to re-use buffers from one
port on another to avoid memory copies and optimize memory usage. This practice is
known as buffer sharing.

A tunnel between any two ports represents a dependency between those ports. Buffer
sharing extends that dependency so that all ports that share the same set of buffers form

 22

an implicit dependency chain. Exactly one port in that dependency chain allocates the
buffers shared by all of them.

Buffer sharing is implemented within a component and is transparent to other
components. The non-supplier port is unaware whether the supplier’s component
allocated the buffers itself or re-used buffers from another of its ports. Furthermore, the
supplier is unaware of whether the non-supplier’s component will re-use the buffers that
the supplier provided.

Strictly speaking, a component is only obligated to obey the external semantics required
of it and may implement buffer sharing behind those semantics. More specifically,
external semantics require that a component do the following:

• Provide buffers on all of its supplier ports.

• Accurately communicate buffer requirements on its ports.

• Pass a buffer from an output port to an input port with an OMX_EmptyThisBuffer
call.

• Return a buffer from an input port to an output port with an
OMX_FillThisBuffer call.

If a component chooses to share buffers, its implementation may fulfill those
requirements by doing the following:

• Provide re-used buffers on some supplier ports.

• Account for the needs of shared ports when communicating buffer requirements on
ports.

• Internally pass a buffer from an input port to an output port between an
OMX_EmptyThisBuffer call and its corresponding OMX_EmptyBufferDone
call.

OpenMAX defines external component semantics to be compatible with sharing,
although it does not explicitly require that a component support sharing. This section
discusses the implementation of those semantics in the context of buffer sharing. If no
components are sharing buffers, the implementation reduces to a simpler set of steps and
obligations.

2.1.7.1 Relevant Terms
This section describes terms used in discussions of tunneled buffer allocation and sharing.
Figure 2-6 illustrates the concepts.

 23

Figure 2-6. Example of Buffer Allocation and Sharing Relationships

Among a pair of ports that are tunneling, the port that calls UseBuffer on its neighbor is
known as a supplier port. A buffer supplier port does not necessarily allocate its buffers;
it may re-use buffer from another port on the same component. Ports a and c in Figure 2-
6 illustrate supplier ports.

The port that receives the UseBuffer calls from its neighbor is known as a non-supplier
port. Ports b and d Figure 2-6 illustrate non-supplier ports.

A port’s tunneling port is the port neighboring it with which it shares a tunnel. For
example, port b in Figure 2-6 is the tunneling port to port a. Likewise, port a is the
tunneling port to port b.

An allocator port is a supplier port that also allocates its own buffers. Port a in Figure 2-6
is the only allocator port.

A sharing port is a port that re-uses buffers from another port on the same component.
For example, port c in Figure 2-6 is a sharing port.

A tunneling component is a component that uses at least one tunnel.

The set of buffer requirements for a port includes the number of buffers required and the
required size of each buffer. The maximum of multiple sets of buffer requirements is
defined as the largest number of buffers mandated in any set combined with the largest
size mandated in any set. One port retrieves buffer requirements from its tunneled port in
a OMX_PORTDEFINITIONTYPE structure via an OMX_GetParameter call on the
tunneled port's component. Note that one port may determine buffer requirements from a
port that shares its buffers without resorting to an OMX_GetParameter call since they
are both contained in the same component.

2.1.7.2 IL Client Component Setup
To set up tunneling components, the IL client shall perform the following setup
operations in this order:

1. Load all tunneling components and set up the tunnels on these components.

2. Command all tunneling components to transition from the loaded state to the idle
state.

If the IL client does not operate in this manner, a tunneling component might never
transition to idle because of the possible dependencies between components.

UseBuffer(K) UseBuffer(K) share K

Component 1 Component 2

Buffer K

 a b c d

Component 3

 24

2.1.7.3 Component Transition from Loaded to Idle State with
Sharing

During the OMX_SetupTunnel call, the two ports of a tunnel establish which port
(input or output) will act as the buffer supplier. Thus, when a component is commanded
to transition from loaded to idle, it is aware of the roles of all its supplier or non-supplier
ports.

When commanded to transition from loaded to idle, a component performs the following
operations in this order:

1. The component determines what buffering sharing it will implement, if any. The
following rules apply:

a) A component may re-use a buffer only from one of its one input ports on one or
more of its output ports or from one of its output ports on one of its input ports.

b) Only a supplier port may re-use the buffers from another port.

c) A component sharing buffers over multiple output ports requires read-only output
port as shown in Figure 2-7.

Figure 2-7. Possible Sharing Relationships

2. The component determines which of its supplier ports, if any, are also allocator ports.
A supplier port is also an allocator port only if it does not re-use buffers from a non-
supplier port on the same component (i.e., is not a sharing port). In Figure 2-8, a
supplier port is a port with an arrow pointing away. A non-supplier port is a port with
an arrow pointing toward it. An arrow from one port represents a sharing relationship.
A port with boxes (buffers) adjacent to it represents an allocator port.

 Input to supplier output(s) Output to supplier input

 No sharing to non-suppliers No sharing to multiple inputs

 25

Figure 2-8. Determining Allocators

3. The component allocates its buffers for each of its allocator ports as follows:

a) For each port that re-uses the allocator ports buffer, the allocator port determines
the buffer requirements of the sharing port. See obligation A below.

b) The allocator port determines the buffer requirements of its tunneled port via an
OMX_GetParameter call. See obligation B below.

c) The allocator port allocates buffers according to the maximum of its own
requirements, the requirements of the tunneled port, and the requirement of all of
the sharing ports.

d) The allocator port informs the non-supplier port that it is tunneling with of the
actual number of buffers via an OMX_SetParameter call on
OMX_IndexParamPortDefinition by setting the value of
nBufferCountActual appropriately. See obligation E below.

e) The allocator port shares its buffers with each sharing port that re-uses its buffers.
See obligation D below.

f) For every allocated buffer, the allocator port calls OMX_UseBuffer on its
tunneling port. See obligation C below.

A component shall also fulfill the following obligations:

A. For a sharing port to determine its requirements, the sharing port shall first call
OMX_GetParameter on its tunneled port to query for requirements and then return
the maximum of its own requirements and the requirements of the tunneled ports.

B. When a non-supplier port receives an OMX_GetParameter call querying its buffer
requirements, the non-supplier port shall first determine the requirements of all ports
that re-use its buffers (see obligation A) and then return the maximum of its own
requirements and those of its ports.

C. When a non-supplier port receives an OMX_UseBuffer call from its tunneled port,
the non-supplier port shall share the buffer with all ports on that component that re-
use it.

D. When a port A shares a buffer with a port B on the same component where port B re-
uses the buffer of port A, then port B shall call OMX_UseBuffer and pass the
buffer on its tunneled port.

 26

E. When a non-supplier port receives a OMX_SetParameter call on
OMX_IndexParamPortDefinition from its tunneled port, the non-supplier
port shall pass the nBufferCountActual field to any port that re-uses its buffers.
Likewise, each supplier port that receives the nBufferCountActual field in this
way shall pass the nBufferCount to its tunneled port by performing an
OMX_SetParameter call on OMX_IndexParamPortDefinition. The actual
number of buffers used throughout the dependency chain is propagated in this way.

A component may transition from loaded to idle when all enabled ports have all the
buffers they require.

In practice, there could be a direct mapping between the following:

• Steps 1-3 discussed earlier and code in the loaded-to-idle case in the state transition
handler

• Obligation A and a subroutine to determine a shared ports buffer requirements

• Obligation B and the OMX_GetParameter implementation

• Obligation C and the OMX_UseBuffer implementation

• Obligation D and a subroutine to share a buffer from one port to another

To clarify why conformity to these steps and obligations leads to proper buffer allocation,
consider the example illustrated in Figure 2-9. Note that this example is contrived to
exercise every step and obligation outlined above, and is therefore more complex then
most real use cases.

Figure 2-9. Example of Buffer Allocation

This discussion focuses only on the transition of component 3 to idle; similar operations
occur inside the other components.

When the IL client commands component 3 to transition from loaded to idle, it follows
the following prescribed steps:

1. Component 3 notices that it can re-use port d’s buffers since port e is a supplier port.
Component 3 establishes a sharing relationship from port d to port e.

2. Component 3 decides that since port d is a supplier port that does not re-use buffers,
port d shall be an allocator port.

3. Component 3 allocates and distributes port d’s buffers:

Component 2 Component 3

 c d e f

Component 4Component 1

 a b

 27

a) Since port e will re-use the buffer of port d, component 3 determines the buffer
requirements of port e. In accordance with obligation A, port e calls
OMX_GetParameter on port f to determine its buffer requirements and reports
the requirements as the maximum between its own and those of port f.

b) Port d calls OMX_GetParameter on port c to determine its buffer requirements.
In accordance with obligation B, port c shall determine the buffer requirements of
port b. In accordance with obligation A, port b returns the maximum of its own
requirements and the requirement of port a (retrieved via OMX_GetParameter)
when queried. Port c then returns the maximum of its own requirements and the
requirements that port b returns.

c) Port d allocates buffers according to the maximum of its own requirements and
the requirements that ports c and e return. The resulting buffers are effectively
allocated according to the maximum requirements of ports a, b, c, d, e, and f, all
of which use the buffers of port d.

d) Since port e will re-use the buffers of port d, component 3 shares these buffers
with port e. In accordance with obligation D, port e calls OMX_UseBuffer on
port f for every buffer that is shared.

e) For each buffer allocated, port d calls OMX_UseBuffer on port c. In accordance
with obligation C, port c shares each buffer with port b. Port b, in turn, obeys
obligation D and calls OMX_UseBuffer on port a with the buffer.

Since all ports of all components now have their buffers, all components may transition
to idle.

2.1.7.4 Protocol for Using a Shared Buffer
When an input port receives a shared buffer via an OMX_EmptyThisBuffer call, the
input port may re-use that buffer on an output port that it is sharing with the output port
by obeying the following rules:

• The output port calls OMX_EmptyThisBuffer on its tunneling port before the
input port sends the corresponding OMX_EmptyBufferDone call to its tunneling
port.

• The input port does not call OMX_EmptyBufferDone until all output ports on
which the buffer is shared (i.e., via OMX_EmptyThisBuffer calls) return
OMX_EmptyBufferDone.

2.1.7.5 Component Transition from Loaded to Idle State without
Sharing

If a component does not share buffers, the component implementation reduces to a
simpler set of steps and obligations than the case for sharing buffers.

When commanded to transition from loaded to idle, a non-sharing component performs
the following operations in this order:

 28

1. The component determines what buffering sharing it will implement, if any. In this
case, there is no sharing.

2. The component determines which of its supplier ports, if any, are also allocator ports.
All supplier ports are allocator ports.

3. The component allocates it buffers for each allocator port as follows:

a. Since there is no sharing, the component does not ask the sharing port for
requirements.

b. The allocator determines the buffer requirements of its tunneled port via an
OMX_GetParameter call.

c. The allocator allocates buffers according to the maximum of its own requirements
and the requirements of the tunneled ports.

d. Since there is no sharing, no buffers must be passed to sharing ports.
e. For every allocated buffer, the allocator port calls OMX_UseBuffer on its

tunneling port.
All component obligations described for sharing components do not apply to non-sharing
components.

2.1.8 Port Reconnection
Port reconnection enables a tunneled component to be replaced with another tunneled
component without having to tear down surrounding components. In Figure 2-10,
component B1 is to be replaced with component B2. To do this, the component A output
port and the component B input port shall first be disabled with the port disable command.
Once all allocated buffers have returned to their rightful owner and freed, the component
A output port may be connected to component B2. The component B1 output port and the
component C input port should similarly be given the port disable command. After all
allocated buffers have returned to their owners and freed, the component C input port
may be connected to the component B2 output port. Then all ports may be given the
enable command.

 29

Component
A

Component
B1

Component
C

Component
B2

Component
A

Component
A

Component
B2

Component
C

Component
B1

Component
C

1.

2.

3.

4.

Figure 2-10. Port Reconnection

In some cases such as audio, reconnecting one component to another and then fading in
data for one component while fading out data for the original component may be
desirable. Figure 2-11 illustrates how this would work. In step 1, component A sends data
to component B1, which then sends the data on to component C. Components A and C
both have an extra port that is disabled. In step 2, the IL client first establishes a tunnel
between component A and B2, then establishes a tunnel between B2 and C, and then
enables all ports in the two tunnels. Component C may be able to mix data from
components B1 and B2 at various gains, assuming that these are audio components. In
step 3, the ports connected to component B1 from components A and C are disabled, and
component B1 resources may be de-allocated.

 30

A

B1

C

A

B1

C

B2

A C

B2

1.

2.

3.

Figure 2-11. Reconnecting Components

2.1.9 Queues and Flush
A separate command queue enables the component to flush buffers that have not been
processed and return these buffers to the IL client when using non-tunneled
communication, or to the tunneled port when using tunneled communication. In Figure 2-
12, assume that the component has an output port that is using buffers allocated by the IL
client. In this example, the client sends a series of five buffers to the component before
sending the flush command. Upon processing the flush command, the component returns
each unprocessed buffer in the original order, and finally triggers its event handler to
notify the IL client. Two buffers were already processed before the flush command got
processed. The component returns the remaining three buffers unfilled and generates an
event. The IL client should wait for the event before attempting to de-initialize the
component.

 31

OpenMAX
Component

IL client

1. Send buffer 1
2. Send buffer 2
3. Send buffer 3
4. Send buffer 4
5. Send buffer 5
6. Flush

Last 3 buffer requests will not be
filled but all buffers will be returned
(in original order). Separate
command and data queues enable
this behavior.

7. Return buffer 1 – buffer filled
8. Return buffer 2 – buffer filled
9. Return buffer 3 – buffer not filled
10. Return buffer 4 – buffer not filled
11. Return buffer 5 – buffer not filled
12. Trigger event handler

Figure 2-12. Flushing Buffers

2.1.10 Marking Buffers
An IL client can also trigger an event to be generated when a marked buffer is
encountered. A buffer can be marked in its buffer header. The mark is internally
transmitted from an input buffer to an output buffer in a chain of OpenMAX components.
The mark enables a component to send an event to the IL client when the marked buffer
is encountered. Figure 2-13 depicts how this works.

 32

A B C

IL Client

Mark
Buffer

B1 B2

Marked
Buffer Event

Figure 2-13. Marking Buffers

The IL client sends a command to mark a buffer. The next buffer sent from the output
port of the component is marked B1. Component B processes the B1 buffer and provides
the results in buffer B2 along with the mark. When component C receives the marked
buffer B2 through its input port, the component does not trigger its event handler until it
has processed the buffer.

2.1.11 Events and Callbacks
Six kinds of events are sent by a component to the IL client:

• Error events are enumerated and can occur at any time

• Command complete notification events are triggered upon successful execution of a
command.

• Marked buffer events are triggered upon detection of a marked buffer by a component.

• A port settings changed notification event is generated when the component changes
its port settings.

• A buffer flag event is triggered when an end of stream is encountered.

• A resources acquired event is generated when a component gets resources that it has
been waiting for.

Ports make buffer handling callbacks upon availability of a buffer or to indicate that a
buffer is needed.

 33

Case 1

2.1.12 Buffer Payload
The port configuration is used to determine and define the format of the data to be
transferred on a component port, but the configuration does not define how that data
exists in the buffer.

There are generally three cases that describe how a buffer can be filled with data. Each
case presents its own benefits.

In all cases, the range and location of valid data in a buffer is defined by the pBuffer,
nOffset, and nFilledLength parameters of the buffer header. The pBuffer
parameter points to the start of valid data in the buffer. The nOffset parameter
indicates the number of bytes between the start of the buffer and the start of valid data.
The nFilledLength parameter specifies the number of contiguous bytes of valid data
in the buffer. The valid data in the buffer is therefore located in the range pBuffer +
nOffset to pBuffer + nOffset + nFilledLength.

The following cases are representative of compressed data in a buffer that is transferred
into or out of a component when decoding or encoding. In all cases, the buffer just
provides a transport mechanism for the data with no particular requirement on the content.
The requirement for the content is defined by the port configuration parameters.

The shaded portion of the buffer represents data and the white portion denotes no data.

Case 1: Each buffer is filled in whole or in part. In the case of buffers containing
compressed data frames, the frames are denoted by f1 to fn.

Case 1 provides a benefit when decoding for playback. The buffer can accommodate
multiple frames and reduce the number of transactions required to buffer an amount of
data for decoding. However, this case may require the decoder to parse the data when
decoding the frames. It also may require the decoder component to have a frame-building
buffer in which to put the parsed data or maintain partial frames that would be completed
with the next buffer.

f1

buffer 1 buffer 2buffer 3buffer 4buffer n

f2f3f4f5 fn

 34

Case 2

Case 3

Case 2: Each buffer is filled with only complete frames of compressed data.

Case 2 differs from case 1 because it requires the compressed data to be parsed first so
that only complete frames are put in the buffers. Case 2 may also require the decoder
component to parse the data for decoding. This case may not require the extra working
buffer for parsing frames required in case 1.

Case 3: Each buffer is filled with only one frame of compressed data.

The benefit in case 3 is that a decoding component does not have to parse the data.
Parsing would be required at the source component. However, this method creates a
bottleneck in data transfer. Data transfer would be limited to one frame per transfer.
Depending on the implementation, one transaction per frame could have a greater impact
on performance than parsing frames from a buffer.

At a minimum, a decoder or encoder component would be required to support case 1. By
definition, if a codec component can support case 1, then it can support cases 2 and 3, but
only if the compression format allows for byte-aligned frame boundaries. Operating in
case 2 or 3 may not make sense when, for example, configuring an Adaptive Multi-Rate
(AMR) codec for RTP-payload format, bandwidth-efficient mode. The non-byte aligned
frames defined by this format would not fit the byte-aligned frame boundaries defined by
these cases.

When filling a buffer with compressed data for input to a decoder or output from an
encoder, a problem with limiting the filling to complete frames only might arise when

f1

buffer 1 buffer 2buffer 3buffer 4buffer n

f2f3f4f5fn f6

f1

buffer 1 buffer 2buffer 3buffer 4buffer n

f2f3f4fn

 35

frames are not byte aligned. Padding would have to be added outside of any padding
defined in the format specification. The padding would then need to be removed, since
the data could not be appended as is. This would require knowledge of the padding bits
outside of any standard specification. Likewise, if this padding were not in place to
maintain compliance with the standards specification for the port configuration, complete
frames could not always be placed in the buffers. In either case, specific knowledge of
how this situation is handled would be required, and may be different between
components.

For interoperability, the content delivered in a buffer should not be assumed or required
to be any number of complete frames, although at least one complete unit of data will be
delivered in a buffer for uncompressed data formats. Compressed data formats do not
place restrictions on the amount of content delivered in each buffer.

2.1.13 Buffer Flags and Timestamps
Buffer flags associate certain properties (e.g., the end of a data stream) with the data
contained in a buffer. A buffer timestamp associates a presentation time in microseconds
with the data in the buffer used to time the rendering of that data. Once a timestamp is
associated with a buffer, no component should alter the timestamp for rate control or
synchronization, which are implemented in the clock component.

Buffer metadata (i.e., flags and timestamps) applies to the first new logical unit in the
buffer. Thus, given the presence of multiple logical units in a buffer, the metadata applies
to the logical unit whose starting boundary occurs in the buffer. Unless otherwise stated
(e.g., in a flag definition), a component that receives a logical input unit marked with a
flag or timestamp shall copy that metadata to all logical output units that the input
contributes to.

2.1.14 Synchronization
Synchronization is enabled by the use of synchronization (sync) ports on a clock
component. These ports and the clock component are defined within the “other” domain
and operate with the same protocols and calls that regulate data ports. The clock
component maintains a media clock that tracks the position in the media stream based on
audio and video reference clocks. The clock component transmits buffers containing time
information (denoted by a media time update and containing the media clock’s current
position, scale, and state) to client components via sync ports. A client component may
time the execution of an operation (e.g., the presentation of a video frame) to a timestamp
by requesting that the clock component send that timestamp when it matches the media
clock. In this case, the client component executes the operation when it receives the
fulfillment of the request over its sync port. Figure 2-14 illustrates the flow of time and
data buffers in an example configuration of components.

 36

Figure 2-14. Flow of Time and Data Buffers

2.1.15 Rate Control
The clock component also implements all rate control by exposing a set of configurations
for controlling its media clock. The IL client may change the scale factor of the media
clock (effectively changing the rate and direction that the media clock advances) to
implement play, fast forward, rewind, pause, and slow motion trick modes. The IL client
may also start and stop the clock by using these configurations to change the state of the
media clock. The clock component makes all of its client components aware of a change
to the media clock scale and state by sending a media time update with the new scale or
state on all sync ports. Although a component may not alter a buffer timestamp in
reaction to a scale change, a component may alter its processing accordingly. For
instance, an audio component might scale and pitch correct audio during trick modes or
cease transmitting output entirely.

2.1.16 Component Registration
How components are registered with a core is generally core specific.

However, if the core supports static linking with components, then it will support a
standard compile-time component registration scheme as described in section 3. Vendors
can therefore supply components that are suitable for static linking with all cores that
support it; this is achieved by placing component information into a data structure that is
linked with the component and the core.

A component can be registered statically using this mechanism but have the bulk of its
code dynamically loaded.

2.1.17 Resource Management
This section discusses the role of resource management in the OpenMAX IL API.

2.1.17.1 Need for Resource Management
When a component is not allowed to go to idle state due to lack of resources, the IL client
has cannot know what the limited resource is or which components are using that
resource. Therefore, the IL client cannot, for example, free up resources for a mandatory
audio stream to play without turning off all of the IL components or having specific

time

data

data data

data
File
Reader/
Demux

Audio
Decoder

Video
Renderer

Clock
Component

Video
Decoder

Audio
Renderer time

time

 37

knowledge of IL component implementations, neither of which is a viable option. These
situations necessitate IL resource management.

One of the goals of OpenMAX is hardware independence provided by the IL layer to the
layers above it. The goal of hardware independence can be achieved by specifying the
following requirements regarding resource management:

● An IL client (e.g., a multimedia plug-in that is typically part of a software platform)
should not need to know the details of an IL implementation or which resource an IL
component is using. For example, the IL client might have no information on whether
a component is hardware accelerated or not.

● In case of resource conflicts, an IL client should be able to rely on consistent
component behavior across IL implementations and hardware platforms.

● An IL client should not have to interface directly with a hardware vendor-specific
resource manager for two reasons.

• This method violates the goal of hardware independence.

• This method adds considerable re-work to the IL client, which has an impact on
the re-usability of the IL client on multiple hardware platforms.

Although resource management is not fully addressed in OpenMAX IL API version 1.0,
“hooks” for resource management have been put in place in the form of behavioral rules,
component priorities, and a resource management-related component state. These
“hooks” lay the groundwork for full-fledged resource management in later versions of the
OpenMAX IL API.

Before proceeding further, the terms resource management and policy are defined for the
benefit of the discussion that follows:

● Resource management is responsible for managing the access of components to a
limited resource. A resource manager will be aware of how much of a specific
resource is available, which components are currently using the resource, and how
much of the resource the components are using. A resource manager will recommend
to policy which components should be pre-empted or resumed based on resource
conflicts and availability.

● Policy is responsible for managing component chains or streams. The policy manager
determines if a stream is allowed to run or resume based on information it receives
from resource management, system configuration, requests from applications, or
other factors.

2.1.17.2 Architectural Assumptions
The following discussion makes two architectural assumptions about the OpenMAX IL:

● Assumption 1: A framework exists that contains a policy manager between the
applications and the OpenMAX IL.

● Assumption 2: A system can have one or more hardware platforms that are used by
different OpenMAX components and that are managed by hardware vendor-specific
resource manager(s).

 38

These assumptions are illustrated in the high-level architecture shown in Figure 2-15. For
systems that do not have a framework (that is, where user applications interface directly
with the IL), version 1.0 of the OpenMAX IL API specification does not specify how
resource management will be handled. Assumption 2 covers systems that have a single,
centralized resource manager as well.

Figure 2-15. Architectural Assumptions

To ensure consistent component behavior in case of resource conflicts, a common
definition of component priority and a set of behavioral rules are needed.

2.1.17.3 Component Priorities
Each IL component has a priority value (an OMX_U32 integer) that the IL client sets.

The actual range of priorities can be left up to the platform, but the priority order is
important and needs to be the same across IL implementations. A descending order of
priority is chosen with 0 denoting the highest priority. The following tie-breaking rule

Applications

Multimedia Framework
(includes Policy Mgr)

OpenMAX IL

Component
A1

Component
A2

Component
An Component

B1
Component

B2
Component

Bn

Adaptation to HW "A" (includes resource
manager specific to HW "A")

Adaptation to HW "B" (includes
resource manager specific to HW "B")

Resource managers
are always HW
vendor-specific

The framework layer could be
thin or thick, depending on the
platform, but will always
include a Policy Manager that
handles preemption, based on
feedback from the Resource
Manager(s).

Includes OpenMAX IL
core and
component
interfaces

 39

also applies: When comparing components with the same priority, components that have
acquired the resource most recently should be deemed to be of higher priority than
components that have had the resource longer.

2.1.17.4 Behavioral Rules
The following behavior is defined on the IL layer:

● The OMX_ErrorInsufficientResources error is called only on a component
that attempts to go to the idle state when there are insufficient resources and sufficient
resources cannot be freed by preempting lower priority components.

● A component is not aware that preemption is occurring when it tries to go to the idle
state, and the resources it requires need to be freed by preempting lower priority
components.

● When a component that already has resources needs to be preempted, it will send the
OMX_ErrorResourcesPreempted and OMX_ErrorResourcesLost errors
to the IL client as it moves from the Executing or Paused state to the Idle state and
from the Idle state to the Loaded state, respectively.

● In cases where the IL client wants to know when the stream associated with the
component can be resumed or started, the IL client shall request to be notified when
resources are available. This occurs by putting the component into the
OMX_StateWaitForResources state. When the resources become available, the
component automatically goes to the idle state. When the client receives the
notification that the component is in the idle state, it can try to move the rest of the
components in that chain to the idle state as well. This automatic movement to the
idle state ensures that in cases where multiple IL clients are waiting for the same
resource, the IL client can resume or start the stream as soon as the resource is
available. If the component were to automatically move just to the loaded state, then
another IL client could grab that resource first.

These behavioral rules are intended to cover only the interactions between the IL client(s)
and the IL components.

2.1.17.5 Hardware Vendor-Specific Resource Manager
To implement the behavioral rules, a hardware vendor-specific resource manager will
need to exist below the IL layer and perform the following functions:

● Implement and manage the wait queue(s).

● Keep track of available resources.

● Keep track of each component that has resources and which resources they are using.

● Notify a component or multiple components that they need to give up their resources
when a higher priority component requests the resource.

● Notify the highest priority component waiting for a resource when the resource is
available.

 40

The actual interactions between the components and the hardware vendor-specific
resource manager(s) are vendor-specific and outside the scope of this document. Section
3 provides more details of the parameter structures and use cases related to priority and
resource management.

 41

3 OpenMAX Integration Layer Control API
The OpenMAX Integration Layer API allows integration layer clients to control
multimedia components in the audio, video and image domains. An “other” domain is
also included to provide for extra functionality, such as audio-video (A/V)
synchronization. The user of the OpenMAX Integration Layer API is usually a
multimedia framework. In the rest of this document, the user of the OpenMAX
Integration Layer API will be referred to as the IL client.

The OpenMAX Integration Layer API is defined in a set of header files, namely:

● OMX_Types.h: Data types used in the OpenMAX IL

● OMX_Core.h: OpenMAX IL core API

● OMX_Component.h: OpenMAX component API

● OMX_Audio.h: OpenMAX audio domain data structures

● OMX_IVCommon.h: OpenMAX structures common to image and video domains

● OMX_Video.h: OpenMAX video domain data structures

● OMX_Image.h: OpenMAX image domain data structures

● OMX_Other.h: OpenMAX other domain data structures (includes A/V
synchronization)

● OMX_Index.h: Index of all OpenMAX-defined data structures

This section describes how the OpenMAX core and OpenMAX components are
configured for operation.

First, the OpenMAX data types are introduced. Next, the methods of the OpenMAX core
are described. The methods that components implement are discussed in section 3.3.
Finally, section 3.4 shows calling sequences for a few meaningful operations, including
component initialization, normal data flow, data tunnel setup, and data flow in the
presence of data tunneling. Such sequence diagrams aim at describing the dynamic
interactions between the IL client, the IL core, and the OpenMAX components.

When documenting functions, the following convention is used for function parameters:

● <param_name> [in] specifies an input parameter, which is set by the function caller
and read by the function implementation.

● <param_name> [out] specifies an output parameter, which is set by the function
implementation and passed back to the caller. When the function returns, the caller
can read the new value of the parameter, which is passed as a reference.

● <param_name> [inout] specifies an input/output parameter, which the function caller
can set. The function implementation can modify the parameter before returning it
back to the function caller.

This parameter classification can also be found in the OpenMAX header files, where the
null macros OMX_IN, OMX_OUT and OMX_INOUT are defined. OMX_IN corresponds to
the function parameter <param_name> [in]. OMX_OUT corresponds to the function

 42

parameter <param_name> [out], and OMX_INOUT corresponds to the function
parameter <param_name> [inout].

3.1 OpenMAX Types

3.1.1 Enumerations
Five 32-bit integer enumerations are defined in OMX_Core.h:

● OMX_ERRORTYPE is returned by each function defined in the OpenMAX Integration
Layer API (see section 3.1.1.3).

● OMX_COMMANDTYPE includes the possible commands that an IL client can send to
an OpenMAX component (see section 3.1.1.1).

● OMX_EVENTTYPE includes events that can be generated inside an OpenMAX
component and that are passed to the IL client through a callback function (see
section 3.1.1.4).

● OMX_BUFFERSUPPLIERTYPE includes all the possibilities for the buffer supplier
in the case of tunneled ports. A description of the use of this enumerative type can be
found in section 3.1.1.5.

● OMX_STATETYPE, which is described in section 3.1.1.2.

Figure 3-1 shows the enumerations defined in OMX_Core.h.

 43

cd core_types

«enumeration»
OMX_COMMANDTYPE

+ OMX_CommandStateSet: int
+ OMX_CommandFlush: int
+ OMX_CommandPortDisable: int
+ OMX_CommandPortEnable: int
+ OMX_CommandMarkBuffer: int
+ OMX_CommandMax: int = 0X7FFFFFFF

«enumeration»
OMX_ERRORTYPE

+ OMX_ErrorNone: int = 0
+ OMX_ErrorInsufficientResources: int = 0x80001000
+ OMX_ErrorUndefined: int = 0x80001001
+ OMX_ErrorInval idComponentName: int = 0x80001002
+ OMX_ErrorComponentNotFound: int = 0x80001003
+ OMX_ErrorInval idComponent: int = 0x80001004
+ OMX_ErrorBadParameter: int = 0x80001005
+ OMX_ErrorNotImplemented: int = 0x80001006
+ OMX_ErrorUnderflow: int = 0x80001007
+ OMX_ErrorOverflow: int = 0x80001008
+ OMX_ErrorHardware: int = 0x80001009
+ OMX_ErrorInval idState: int = 0x8000100A
+ OMX_ErrorStreamCorrupt: int = 0x8000100B
+ OMX_ErrorPortsNotCompatible: int = 0x8000100C
+ OMX_ErrorResourcesLost: int = 0x8000100D
+ OMX_ErrorNoMore: int = 0x8000100E
+ OMX_ErrorVersionMismatch: int = 0x8000100F
+ OMX_ErrorNotReady: int = 0x80001010
+ OMX_ErrorT imeout: int = 0x80001011
+ OMX_ErrorSameState: int = 0x80001012
+ OMX_ErrorResourcesPreempted: int = 0x80001013
+ OMX_ErrorPortUnresponsiveDuringAl location: int = 0x80001014
+ OMX_ErrorPortUnresponsiveDuringDeal location: int = 0x80001015
+ OMX_ErrorPortUnresponsiveDuringStop: int = 0x80001016
+ OMX_ErrorIncorrectStateTransition: int = 0x80001017
+ OMX_ErrorIncorrectStateOperation: int = 0x80001018
+ OMX_ErrorUnsupportedSetting: int = 0x80001019
+ OMX_ErrorUnsupportedIndex: int = 0x8000101A
+ OMX_ErrorBadPortIndex: int = 0x8000101B
+ OMX_ErrorMax: int = 0x7FFFFFFF

«enumeration»
OMX_BUFFERSUPPLIERTYPE

+ OMX_BufferSupplyUnspeci fied: int = 0x0
+ OMX_BufferSupplyInput: int
+ OMX_BufferSupplyOutput: int
+ OMX_BufferSupplyMAX: int = 0x7FFFFFFF

«enumeration»
OMX_STATETYPE

+ OMX_StateInval id: int
+ OMX_StateLoaded: int
+ OMX_StateIdle: int
+ OMX_StateExecuting: int
+ OMX_StatePause: int
+ OMX_StateWaitForResources: int
+ OMX_StateMax: int = 0X7FFFFFFF

«enumeration»
OMX_EVENTTYPE

+ OMX_EventCmdComplete: int
+ OMX_EventError: int
+ OMX_EventMark: int
+ OMX_EventPortSettingsChanged: int
+ OMX_EventBufferFlag: int
+ OMX_EventResourcesAcquired: int
+ OMX_EventMax: int = 0x7FFFFFFF

Figure 3-1. Enumerations Defined in OMX_Core.h

3.1.1.1 OMX_COMMANDTYPE
Table 3-1 represents the possible commands that an IL client can send to an OpenMAX
component. Since commands are non-blocking, the OpenMAX component generates a
command completion event via a callback function when the command has completed.
Callbacks are defined in a dedicated structure; see section 3.1.2.7.

Field Name Description
OMX_CommandStateSet Change the component state
OMX_CommandFlush Flush the queue(s) of buffers on a port of a

component
OMX_CommandPortDisable Disable a port on a component
OMX_CommandPortEnable Enable a port on a component
OMX_CommandMarkBuffer Mark a buffer and specify which other component

will raise the event mark received
Table 3-1. OpenMAX IL Commands

 44

Table 3-2 describes the parameters to be used for each command.

Command code nParam pCmdData
OMX_CommandStateSet OMX_STATETYPE – state

to transition to
NULL

OMX_CommandFlush OMX_U32 – target port ID NULL

OMX_CommandPortDisable OMX_U32 – target port ID NULL

OMX_CommandPortEnable OMX_U32 – target port ID NULL

OMX_CommandMarkBuffer OMX_U32 – target port ID OMX_MARKTYPE*
- mark data and
target component

Table 3-2. Command Syntax

3.1.1.2 OMX_STATETYPE
Figure 3-2 illustrates the transitions among states that occur as a consequence of the IL
client calling OMX_SendCommand(OMX_StateSet, <state>), where the new state for
the component is passed as a parameter. A transition name surrounded by curly braces
indicates that the transition is not triggered by a command sent by the IL client but is a
consequence of internal component events.

Figure 3-2. OpenMAX Component State Transitions

sm OpenMAX component states

OMX_StateIdle

OMX_StateExecuting

OMX_StatePause

OMX_StateLoadedInitial Final

OMX_StateInvalid

OMX_StateWaitForResources
OMX_FreeHandle()

<internal_error> OR
OMX_StateInvalid

OMX_StateLoaded

<resources available>

OMX_StateWaitForResources

OMX_StateLoaded OR
<OMX_ErrorResourcesLost>

OMX_StateIdle OR
<OMX_ErrorResourcesLost>

OMX_StateExecuting

OMX_StatePause

OMX_StateExecuting

OMX_FreeHandle()

OMX_StateIdle

OMX_GetHandle()

OMX_StatePause OMX_StateIdle OR
<OMX_ErrorResourcesLost>

 45

This section describes component states. An IL client commands a component to change
states via the OMX_SendCommand function using the OMX_CommandStateSet
command.

Table 3-3 represents the states of an OpenMAX component.

Field Name Description
Resources
Allocated

Location of
buffer

OMX_StateInvalid Component is corrupt or has
encountered an error from
which it cannot recover.

Unknown Unknown

OMX_StateLoaded Component has been loaded but
has no resources allocated.

No Not available

OMX_StateIdle Component has all resources
but has not transferred any
buffers or begun processing
data.

Yes Supplier only

OMX_StateExecuting Component is transferring
buffers and is processing data
(if data is available).

Yes Supplier or
non-supplier

OMX_StatePause Component data processing has
been paused but may be
resumed from the point it was
paused.

Yes Supplier or
non-supplier

OMX_StateWaitFor
Resources

Component is waiting for a
resource to become available.

No Not available

Table 3-3. OpenMAX Component States

3.1.1.2.1 OMX_StateLoaded
A component is in the OMX_StateLoaded state after it has been created via an
OMX_GetHandle call and before allocation of its resources. In this state, the IL client
may modify the component’s parameters via OMX_SetParameter, set up data tunnels
on the component’s ports with OMX_SetupTunnel, or transition the component to
either the OMX_StateIdle state or the OMX_StateWaitForResources state.

The IL client may elect to transition a component that is currently in the
OMX_StateLoaded state into the OMX_StateWaitForResources state if, for example, the
component failed to acquire all of its resources on an attempted transition to the
OMX_StateIdle state.

3.1.1.2.1.1 OMX_StateLoaded to OMX_StateIdle
If the IL client requests a state transition from OMX_StateLoaded to OMX_StateIdle, the
component must acquire all of its resources, including buffers, before completing the
transition. Furthermore, before the transition can complete, the buffer supplier, which is
always the IL client when not tunneling, must ensure that the non-supplier possesses all
of its buffers. For a port connected to the IL client, the IL client may allocate the buffers
itself and then pass them to the port via an OMX_UseBuffer call on the port, or it may

 46

direct the port to perform the allocation via an OMX_AllocateBuffer call on the port.
When a port is tunneling, the supplier port either allocates buffers itself or, if the port
implements buffer sharing, re-uses buffers from a port on the same component. A
tunneling supplier port then passes the buffers to the non-supplier port via an
OMX_UseBuffer call on the non-supplier.

The number of buffers used on a port is specified in its port definition (see
OMX_IndexParamPortDefinition), which defaults to the minimum (specified in
the same structure) but which may be modified by the supplier before the sequence of
OMX_UseBuffer and OMX_AllocateBuffer calls via a call to
OMX_SetParameter.

3.1.1.2.2 OMX_StateIdle
In the OMX_StateIdle state, the component is ready to be used, meaning that all
necessary resources have been properly allocated. However, the suppliers retain all their
buffers, and no buffer exchange or processing is taking place. Thus, if this state is entered
from an OMX_StateExecuting or OMX_StatePause state, the component shall have
returned all buffers it was processing to their respective suppliers. The IL client may
transition the component to any states other than the OMX_StateInvalid and
OMX_StateWaitForResources states.

3.1.1.2.2.1 OMX_StateIdle to OMX_StateLoaded
On a transition from OMX_StateIdle to OMX_StateLoaded, each buffer supplier must
call OMX_FreeBuffer on the non-supplier port for each buffer residing at the non-
supplier port. If the supplier allocated the buffer, it must free the buffer before calling
OMX_FreeBuffer. If the non-supplier port allocated the buffer, it must free the buffer
upon receipt of an OMX_FreeBuffer call. Furthermore, a non-supplier port must
always free the buffer header upon receipt of an OMX_FreeBuffer call. When all of
the buffers have been removed from the component, the state transition is complete; the
component communicates that the initiating OMX_SendCommand call has completed via
a callback event.

3.1.1.2.2.2 OMX_StateIdle to OMX_StateExecuting
If the IL client requests a state transition from OMX_StateIdle to OMX_StateExecuting,
the component shall begin transferring and processing data. For ports that communicate
with the IL client, the IL client will initiate buffer transfers via
OMX_EmptyThisBuffer and OMX_FillThisBuffer. Among tunneling ports, any
input port that is also a supplier shall transfer its empty buffers to the tunneled output port
via OMX_FillThisBuffer.

3.1.1.2.3 OMX_StateExecuting
In this state, an OpenMAX component is transferring and processing data buffers. The
component shall accept calls to OMX_EmptyThisBuffer on its input ports and
OMX_FillThisBuffer on its output ports. Any port that communicates with the IL
client shall call the EmptyBufferDone and FillBufferDone callbacks to return an
empty or full buffer, respectively, back to the IL client. Any tunneling port shall call

 47

OMX_FillThisBuffer or OMX_EmptyThisBuffer on its corresponding tunneled
port to return an empty or full buffer, respectively, back to its tunneled port. An IL client
may transition a component in the OMX_StateExecuting state to either the
OMX_StateIdle state or the OMX_StatePaused state.

3.1.1.2.3.1 OMX_StateExecuting to OMX_StateIdle
If the IL client requests a state transition from OMX_StateExecuting to OMX_StateIdle,
the component shall return all buffers to their respective suppliers and receive all buffers
belonging to its supplier ports before completing the transition. Any port communicating
with the IL client shall return any buffers it is holding via OMX_EmptyBufferDone
and OMX_FillBufferDone callbacks, which are used by input and output ports,
respectively. Any non-supplier port shall return all buffers it is holding to the input port
or output port it is tunneling with using OMX_EmptyThisBuffer or
OMX_FillThisBuffer, respectively. Likewise, any supplier tunneling port shall wait
for all of its buffers to be returned from its tunneled port.

3.1.1.2.4 OMX_StatePause
In this state, an OpenMAX component is not transferring or processing data but buffers
are not necessarily returned to their suppliers. From the OMX_StatePause state,
execution may be resumed via a transition to OMX_StateExecuting, preferably without
dropping data. The component may still accept data buffers at its input, but such buffers
will be queued only and not processed further. The IL client may transition a component
in the OMX_StatePause state to OMX_StateIdle or OMX_StateExecuting. On a
transition from OMX_StatePause to OMX_StateIdle, the component shall return all
buffers to their respective suppliers in a manner identical to the OMX_StateExecuting-to-
OMX_StateIdle transition described in section 3.1.1.2.3.1.

3.1.1.2.5 OMX_StateWaitForResources
In this state, the component is waiting for one or more of its required resources to become
available. This state is related to resource management. The assumption is that one or
more hardware-specific resource managers exist on the platform to handle available
resources. The interaction among OpenMAX components and resource managers is
outside the scope of this specification.

If a component in the OMX_StateLoaded state fails to enter the OMX_StateIdle state
because resources other than buffers are insufficient, the IL client may put the component
in the OMX_StateWaitForResources state if the IL client wants to be notified when the
needed resources become available. The IL client may command the component to
discontinue waiting for resources by transitioning it from the
OMX_StateWaitForResources state to the OMX_StateLoaded state. If a component in
the OMX_StateWaitForResources state acquires all the resources upon which it is
waiting, it shall initiate a transition to the OMX_StateIdle state.

3.1.1.2.5.1 OMX_StateWaitForResources to OMX_StateIdle
When a component initiates a transition from the OMX_StateWaitForResources state to
the OMX_StateIdle state, it shall communicate the initiation of this transition to the IL

 48

client via an OMX_EventResourcesAcquired event. When the IL client receives
the OMX_EventResourcesAcquired event, it shall call OMX_UseBuffer and
OMX_AllocateBuffer in the manner of a transition from OMX_StateLoaded to
OMX_StateIdle. Likewise, the component cannot complete its transition to
OMX_StateIdle until it acquires all of its resources, including buffers.

3.1.1.2.6 OMX_StateInvalid
In this state, the component has suffered internal corruption or an error from which it
cannot recover. When it detects such a condition, the component transitions itself to
OMX_StateInvalid and informs the IL client by generating an OMX_ErrorEvent event
with the value OMX_ErrorInvalidState. When the IL client receives OMX_EventError
indicating a transition to OMX_StateInvalid, it shall free all resources associated with
that component and eventually call OMX_FreeHandle to release the handle associated
with the component.

A component in the OMX_StateInvalid state shall fail every call made upon it and return
an OMX_ErrorStateInvalid error message except for OMX_GetState,
OMX_FreeBuffer, or OMX_ComponentDeinit. The IL client may also command a
transition to the OMX_StateInvalid state explicitly via OMX_SendCommand. A
component may transition between any state and the OMX_StateInvalid state.

3.1.1.3 OMX_ERRORTYPE
The OMX_ERRORTYPE enumeration shown in Table 3-4 defines the standard
OpenMAX errors that all functions defined in the OpenMAX IL API return. These errors
should cover most of the common failure cases. However, vendors are free to add
additional error messages of their own as long as they follow these rules:

● Vendor error messages shall be in the range of 0x90000000 to 0x9000FFFF.

● Vendor error messages shall be defined in a header file provided with the component.
No error messages are allowed that are not defined.

Field Name Value Description
OMX_ErrorNone 0 The function returned successfully.
OMX_ErrorInsufficientResour
ces

0x800010
00

There were insufficient resources to
perform the requested operation.

OMX_ErrorUndefined 0x800010
01

There was an error but the cause of the
error could not be determined.

OMX_ErrorInvalidComponentNa
me

0x800010
02

The component name string was
invalid.

OMX_ErrorComponentNotFound 0x800010
03

No component with the specified name
string was found.

OMX_ErrorInvalidComponent 0x800010
04

The component specified did not have a
OMX_ComponentInit
entry point, or the component did not
correctly complete the
OMX_ComponentInit call.

 49

OMX_ErrorBadParameter 0x800010
05

One or more parameters were invalid.

OMX_ErrorNotImplemented 0x800010
06

The requested function is not
implemented.

OMX_ErrorUnderflow 0x800010
07

The buffer was emptied before the next
buffer was ready.

OMX_ErrorOverflow 0x800010
08

The buffer was not available when it
was needed.

OMX_ErrorHardware 0x800010
09

The hardware failed to respond as
expected.

OMX_ErrorInvalidState 0x800010
0A

The component is in the
OMX_StateInvalid state.

OMX_ErrorStreamCorrupt 0x800010
0B

The stream is found to be corrupt.

OMX_ErrorPortsNotCompatible 0x800010
0C

Ports being set up for tunneled
communication are incompatible.

OMX_ErrorResourcesLost 0x800010
0D

Resources allocated to a component in
the OMX_StateIdle state have been
lost, which has resulted in the
component returning to the
OMX_StateLoaded state.

OMX_ErrorNoMore 0x800010
0E

No more indices can be enumerated.

OMX_ErrorVersionMismatch 0x800010
0F

The component detected a version
mismatch.

OMX_ErrorNotReady 0x800010
10

The component is not ready to return
data at this time.

OMX_ErrorTimeout 0x800010
11

A timeout occurred.

OMX_ErrorSameState 0x800010
12

The component tried to transition into
the state that it is currently in.

OMX_ErrorResourcesPreempted 0x800010
13

Resources allocated to a component in
the OMX_StateExecuting or
OMX_Pause states have been pre-
empted, causing the component to
return to the OMX_StateIdle state.

OMX_ErrorPortUnresponsive
DuringAllocation

0x800010
14

The non-supplier port deemed that it
had waited an unusually long time for
the supplier port to send it an allocated
buffer via an OMX_UseBuffer call.
A non-supplier port sends this error to
the IL client via the EventHandler
callback during the allocation of buffers
on a transition from the LOADED to
the IDLE state or on a port enable.

 50

OMX_ErrorPortUnresponsive
DuringDeallocation

0x800010
15

The non-supplier port deemed that it
had waited an unusually long time for
the supplier port to request the de-
allocation of a buffer header via a
OMX_FreeBuffer call. A non-
supplier port sends this error to the IL
client via the EventHandler
callback during the de-allocation of
buffers on a transition from the IDLE to
LOADED state or on a port
disablement.

OMX_ErrorPortUnresponsive
DuringStop

0x800010
16

The supplier port deemed that it had
waited an unusually long time for the
non-supplier port to return a buffer via
an EmptyThisBuffer or
FillThisBuffer call. A supplier
port sent this error to the IL client via
the EventHandler callback during
the disabling of a port, either on a
transition from the IDLE to LOADED
state or on a port disablement.

OMX_ErrorIncorrectStateTran
sition

0x800010
17

A state transition was attempted that is
not allowed.

OMX_ErrorIncorrectStateOper
ation

0x800010
18

A command or method was attempted
that is not allowed during the present
state.

OMX_ErrorUnsupportedSetting 0x800010
19

One or more values encapsulated in the
parameter or configuration structure are
unsupported.

OMX_ErrorUnsupportedIndex 0x800010
1A

The parameter or configuration
indicated by the given index is
unsupported.

OMX_ErrorBadPortIndex 0x800010
1B

The port index that was supplied is
incorrect.

OMX_ErrorPortUnpopulated 0x800010
1C

The port has lost one or more of its
buffers and is thus unpopulated.

Table 3-4. OpenMAX Error Codes

3.1.1.4 OMX_EVENTTYPE
The OMX_EVENTTYPE enumeration shown in Table 3-5 includes the event types that
an OpenMAX component can generate. Section 3.1.2.7 describes events that the
OpenMAX component generates and passes to the IL client by means of the callback
mechanism. Events have associated parameters that are also passed in the callback.

 51

Field Name Description
OMX_EventCmdComplete Component has completed the execution of

a command.
OMX_EventError Component has detected an error condition.
OMX_EventMark A buffer mark has reached the target

component, and the IL client has received
this event with the private data pointer of
the mark.

OMX_EventPortSettingsChanged Component has changed port settings. For
example, the component has changed port
settings resulting from bit stream parsing.

OMX_EventBufferFlag The event that a component sends when it
detects the end of a stream.

OMX_EventResourcesAcquired The component has been granted resources
and is transitioning from the
OMX_StateWaitForResources state to the
OMX_StateIdle state.

Table 3-5. OpenMAX Event Types

3.1.1.4.1 OMX_EventCmdComplete
A component generates an OMX_EventCmdComplete event as soon as a command
sent by the IL client has completed its execution. In case of a component state change, the
new state that the component has entered is returned as an event parameter. A component
that transitions to the OMX_StateInvalid state does not generate this event.

3.1.1.4.2 OMX_EventError
A component generates the OMX_EventError event when the component detects an
error condition; the type of error detected is returned as an event parameter and will use
values defined in OMX_ERRORTYPE. A component shall send the following errors via
OMX_EventError:

● A component sends the OMX_ErrorInvalidState error if the component transitions to
the OMX_StateInvalid state.

● A component sends the OMX_ErrorResourcesPreempted error if the component
transitions from OMX_StateExecuting or OMX_StatePause to OMX_StateIdle due to
the loss of a resource.

● A component sends the OMX_ErrorResourcesLost error if the component transitions
from OMX_StateIdle to OMX_StateLoaded due to the loss of a resource.

3.1.1.4.3 OMX_EventMark
A component generates the OMX_EventMark event when it receives a marked buffer.
When a component receives a buffer, it shall compare its own pointer to the
pMarkTargetComponent field contained in the buffer. If the pointers match, then the
component shall send a mark event including pMarkData as a parameter, immediately

 52

after the component has finished processing the buffer. The IL client can use the mark
event to measure the propagation delay of a data buffer through a chain of components,
or to notify a component that a particular buffer has reached the given destination.

3.1.1.4.4 OMX_EventPortSettingsChanged
A component generates the OMX_EventPortSettingsChanged event as soon as
component port settings change. For example, a video decoder may not know a priori the
output frame size and frame rate, as these parameters are coded in the input bit stream. As
soon as such parameters are parsed, the component changes the values of the
configuration structures of its output port and sends the
OMX_EventPortSettingsChanged event to the IL client.

3.1.1.4.5 OMX_EventBufferFlag
A component generates the OMX_EventBufferFlag event when an output port emits
a buffer with the OMX_BUFFERFLAG_EOS flag set in the nFlags field. The nData1
field of EventHandler specifies the value of the output port’s portindex field. The
nData2 field of EventHandler specifies the unaltered nFlags field containing the
end-of-stream (EOS) flag.

If a component does not propagate a stream further (e.g., the component is an audio or
video sink), then the component shall send an OMX_EventBufferFlag event for that
stream when it has finished processing a buffer with OMX_BUFFERFLAG_EOS set. The
nData1 field of EventHandler specifies the input port that received the buffer. The
nData2 field of EventHandler specifies the unaltered nFlags field containing the
EOS flag.

3.1.1.4.6 OMX_EventResourcesAcquired
A component generates the OMX_EventResourcesAcquired event when it is in the
OMX_StateWaitForResources state, and the resource manager detects that the needed
resources are available. When the component receives this event, it is ready to change
state into the OMX_StateIdle, and it waits for all the buffers to be allocated and assigned
to its ports.

3.1.1.5 OMX_BUFFERSUPPLIERTYPE
The OMX_BUFFERSUPPLIERTYPE enumerative type shown in Table 3-6 specifies the
port in the tunnel that is the supplier port. A buffer supplier port either may allocate its
buffers or reuse buffers provided by another port within the same component.

Field Name Value Description
OMX_BufferSupplyUnspec
ified

0x0 The port supplying the buffers is
unspecified, or no supplier is preferred.

OMX_BufferSupplyInput The input port supplies the buffers.
OMX_BufferSupplyOutput The output port supplies the buffer.

Table 3-6. OpenMAX Buffer Supplier Type Used in Tunnel Setup

 53

3.1.2 Structures
This section discusses the data structures defined in the OpenMAX core. The first two
fields of each OpenMAX data structure denote the size of the structure and the version of
type OMX_VERSIONTYPE, which is defined in section 3.1.2.4. The entity that allocates
an OpenMAX structure is responsible for filling in these two values.

3.1.2.1 OMX_COMPONENTREGISTERTYPE
The OMX_COMPONENTREGISTERTYPE structure is used in the case of static linking
of components to the core. The core optionally uses it to load the component and run the
specific component initialization functions.

OMX_COMPONENTREGISTERTYPE is defined as follows.
typedef struct OMX_COMPONENTREGISTERTYPE
{
 const char * pName;
 OMX_COMPONENTINITTYPE pInitialize;

} OMX_COMPONENTREGISTERTYPE;

3.1.2.2 OMX_COMPONENTINITTYPE Type Definition
The OMX_COMPONENTINITTYPE type definition is the type of function pointer for the
component initialization entry point. The definition is as follows:
typedef OMX_ERRORTYPE (* OMX_COMPONENTINITTYPE)(OMX_IN OMX_HANDLETYPE

hComponent);

3.1.2.2.1 pName
pName contains the string name of the component and has limit of 128 bytes (including
‘\0’).

3.1.2.2.2 pInitialize
pInitialize contains the pointer to the initialization function of the component.

3.1.2.3 OMX_ComponentRegistered[]
Any core that statically links its components shall define this global array containing the
list of all registered components in the form of OMX_COMPONENTREGISTERTYPE
fields.

3.1.2.4 OMX_VERSIONTYPE
The OMX_VERSIONTYPE type indicates the version of a component or structure. Each
structure uses an OMX_VERSIONTYPE field to indicate the OpenMAX specification
version under which the structure is defined. For OpenMAX IL version 1.0, the
specification version is 1.0.0.0. The component structure also includes an
OMX_VERSIONTYPE field to indicate a vendor-specific component version.

 54

OMX_VERSIONTYPE is defined as follows.

 typedef union OMX_VERSIONTYPE
{
 struct
 {
 OMX_U8 nVersionMajor;
 OMX_U8 nVersionMinor;
 OMX_U8 nRevision;
 OMX_U8 nStep;
 } s;
 OMX_U32 nVersion;

} OMX_VERSIONTYPE;

3.1.2.4.1 nVersionMajor
nVersionMajor identifies the major version number.

3.1.2.4.2 nVersionMinor
nVersionMinor identifies the minor version number.

3.1.2.4.3 nRevision
nRevision identifies the revision number.

3.1.2.4.4 nStep
nStep identifies the step number.

3.1.2.5 OMX_PRIORITYMGMTTYPE
The OMX_PRIORITYMGMTTYPE type describes the priority assigned to a set of
components. A component group identifies a set of co-dependent components associated
with the same feature. All components in the same group share the same group ID and
priority. If one component in a group loses resources and stops running, the entire feature
they collectively contribute to is lost. In this case, all of the other components in the same
group shall transition to OMX_StateLoaded. A component that is the only one with a
certain nGroupID acts atomically.

OMX_PRIORITYMGMTTYPE is defined as follows.
typedef struct OMX_PRIORITYMGMTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nGroupPriority;
 OMX_U32 nGroupID;
} OMX_PRIORITYMGMTTYPE;

3.1.2.5.1 nGroupPriority
The value of nGroupPriority is the priority value associated with a group of
components. If a parameter of this type is assigned to a component, that component

 55

belongs to the group identified with nGroupID and has a priority equal to
nGroupPriority. By definition, the value 0 represents the highest priority for a group
of components.

The exact mechanism to assign priorities to groups of components is outside the scope of
this document.

3.1.2.5.2 nGroupID
The value for nGroupID is a unique ID for all components in the same component
group.

3.1.2.6 OMX_BUFFERHEADERTYPE
In the context of a single port, each data buffer has a header associated with it that
contains meta-information about the buffer. The IL client shares buffer headers with each
port with which it is communicating. Likewise, each pair of tunneling ports share buffer
headers; otherwise, the same buffer transferred over multiple ports will have distinct
buffer headers associated with it for each port. The definition of the buffer header is
shown as follows.

 typedef struct OMX_BUFFERHEADERTYPE
{
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U8* pBuffer;
 OMX_U32 nAllocLen;
 OMX_U32 nFilledLen;
 OMX_U32 nOffset;
 OMX_PTR pAppPrivate;
 OMX_PTR pPlatformPrivate;
 OMX_U32 nOutputPortPrivate;
 OMX_U32 nInputPortPrivate;
 OMX_HANDLETYPE hMarkTargetComponent;
 OMX_PTR pMarkData;
 OMX_U32 nTickCount;
 OMX_TICKS nTimeStamp;
 OMX_U32 nFlags;
 OMX_U32 nOutputPortIndex;
 OMX_U32 nInputPortIndex;
} OMX_BUFFERHEADERTYPE;

3.1.2.6.1 pBuffer
pBuffer is a pointer to the actual buffer where data is stored but not necessarily the
start of valid data; for more information, see the description of nOffset in section
3.1.2.6.4.

3.1.2.6.2 nAllocLen
nAllocLen is the total size of the allocated buffer in bytes, including valid and unused
byte.

 56

3.1.2.6.3 nFilledLen
nFilledLen is the total size of valid bytes currently in the buffer starting from the
location specified by pBuffer and nOffset.

3.1.2.6.4 nOffset
nOffset is the start offset of valid data in bytes from the start of the buffer. A pointer to
the valid data may be obtained by adding nOffset to pBuffer.

3.1.2.6.5 pAppPrivate
pAppPrivate is a pointer to an IL client private structure.

3.1.2.6.6 pPlatformPrivate
pPlatformPrivate is a pointer to a platform private structure. The core that
allocated this buffer header structure uses this pointer.

3.1.2.6.7 pOutputPortPrivate
pOutputPortPrivate is a private pointer of the output port that uses the buffer. If a
buffer header is used on an input port communicating with the IL client, the value of the
buffer’s pOutputPortPrivate is undefined.

3.1.2.6.8 pInputPortPrivate
pInputPortPrivate is a private pointer of the input port that uses the buffer. If a
buffer header is used on an output port communicating with the IL client, the value of the
buffer’s pInputPortPrivate is undefined.

3.1.2.6.9 hMarkTargetComponent
hMarkTargetComponent is the handle of the component that should emit an
OMX_EventMark event upon processing this buffer. A NULL handle indicates that the
buffer carries no mark. The OMX_CommandMarkBuffer command provides this
handle to the marking component. The marking component, in turn, copies this handle to
the marked buffer. Each component that is processing a buffer should compare its own
handle to this handle and emit the mark if the handles match. A component should
propagate this field from an input buffer to its associated output buffer.

3.1.2.6.10 pMarkData
The pMarkData pointer refers to IL client-specific data associated with the mark that is
sent on OMX_EventMark when emitted. Upon receipt of a mark, the IL client may use
this data to disambiguate this mark from others. The OMX_CommandMarkBuffer
command provides this pointer to the marking component. The marking component, in
turn, copies this pointer to the marked buffer. A component should propagate this field
from an input buffer to its associated output buffer.

 57

3.1.2.6.11 nTickCount
nTickCount is an optional entry that the component and IL client can update with a
tick count when they access the component; not all components will update it. The value
of nTickCount is in microseconds. Since this is a value relative to an arbitrary starting
point, nTickCount cannot be used to determine absolute time.

3.1.2.6.12 nTimeStamp
nTimeStamp is a timestamp corresponding to the sample starting at the first logical
sample boundary in the buffer. Timestamps of successive samples within the buffer may
be inferred by adding the duration of the preceding buffer to the timestamp of the
preceding buffer. A component should propagate this field from an input buffer to its
associated output buffer.

3.1.2.6.13 nFlags
The nFlags field contains buffer specific flags, such as the EOS flag. A component
should propagate this field from an input buffer to its associated output buffer. The list of
flags is as follows:

#define OMX_BUFFERFLAG_EOS 0x00000001
#define OMX_BUFFERFLAG_STARTTIME 0x00000002
#define OMX_BUFFERFLAG_DECODEONLY 0x00000004
#define OMX_BUFFERFLAG_DATACORRUPT 0x00000008
#define OMX_BUFFERFLAG_ENDOFFRAME 0x00000010

3.1.2.6.13.1 OMX_BUFFERFLAG_EOS
A component sets EOS when it has no more data to emit on a particular output port. Thus,
an output port shall set EOS on the last buffer it emits. The determination by a
component of when an output port should cease sending data is implementation specific.

3.1.2.6.13.2 OMX_BUFFERFLAG_STARTTIME
The source of a stream (e.g., a de-multiplexing component) sets the
OMX_BUFFERFLAG_STARTTIME flag on the buffer that contains the starting
timestamp for the stream. The starting timestamp corresponds to the first data that should
be displayed at startup or after a seek operation.

The first timestamp of the stream is not necessarily the start time. For instance, in the
case of a seek to a particular video frame, the target frame may be an interframe. Thus the
first buffer of the stream will be the intraframe preceding the target frame, and the start
time will occur with the target frame along with any other required frames required to
reconstruct the target intervening.

The OMX_BUFFERFLAG_STARTTIME flag is directly associated with the buffer
timestamp. Thus, the association of the OMX_BUFFERFLAG_STARTTIME flag to
buffer data and its propagation is identical to that of the timestamp.

 58

A clock component client that receives a buffer with the STARTTIME flag shall perform
an OMX_SetConfig call on its sync port using
OMX_ConfigTimeClientStartTime and pass the timestamp for the buffer.

3.1.2.6.13.3 OMX_BUFFERFLAG_DECODEONLY
The source of a stream (e.g., a de-multiplexing component) sets the
OMX_BUFFERFLAG_DECODEONLY flag on any buffer that should be decoded but
not rendered. This flag is used, for instance, when a source seeks to a target interframe
that requires decoding of frames preceding the target to facilitate reconstruction of the
target. In this case, the source would emit the frames preceding the target downstream but
mark them as decode only.

The OMX_BUFFERFLAG_DECODEONLY flag is associated with buffer data and
propagated in a manner identical to that of the buffer timestamp.

A component that renders data should ignore all buffers with the
OMX_BUFFERFLAG_DECODEONLY flag set.

3.1.2.6.13.4 OMX_BUFFERFLAG_DATACORRUPT
The OMX_BUFFERFLAG_DATACORRUPT flag is set when the IL client identifies the
data in the associated buffer as corrupt.

3.1.2.6.13.5 OMX_BUFFERFLAG_ENDOFFRAME
OMX_BUFFERFLAG_ENDOFFRAME is an optional flag that is set by an output port
when the last byte that a buffer payload contains is an end-of-frame. Any component that
implements setting the OMX_BUFFERFLAG_ENDOFFRAME flag on an output port
shall set this flag for every buffer sent from the output port containing an end-of-frame.
No buffer payload can contain data from two separate frames.

These restrictions enable input ports that receive data from the output port to detect an
end-of-frame without requiring additional processing. These restrictions also enable an
input port to easily detect if an output port supports this flag by its presence or absence on
completion of the first frame.

3.1.2.6.14 nOutputPortIndex
nOutputPortIndex contains the port index of the output port that uses the buffer. If a
buffer header is used on an input port that is communicating with the IL client, the value
of nOutputPortIndex is undefined.

3.1.2.6.15 nInputPortIndex
nInputPortIndex contains the port index of the input port that uses the buffer. If a
buffer header is used on an input port that is communicating with the IL client, the value
of nInputPortIndex is undefined.

3.1.2.7 OMX_PORT_PARAM_TYPE
 A component uses the OMX_PORT_PARAM_TYPE structure to identify the number
and starting index of ports of a particular domain.

 59

OMX_PORT_PARAM_TYPE is defined as follows.

typedef struct OMX_PORT_PARAM_TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPorts;
 OMX_U32 nStartPortNumber;
} OMX_PORT_PARAM_TYPE;

3.1.2.7.1 nPorts
nPorts is the number of ports of a given port domain (audio, video, image, or other) for
the component.

3.1.2.7.2 nStartPortNumber
nStartPortNumber is the index of the first port of a given port domain (audio, video,
image, or other) for the component . Subsequent ports of the given domain are numbered
sequentially from nStartNumber.

3.1.2.8 OMX_CALLBACKTYPE
The OpenMAX IL includes a callback mechanism that allows a component to
communicate the following with the IL client:

● An asynchronous command triggered by the IL client has completed successfully or
failed and generated an error. Commands include those sent by OMX_SendCommand
and those implied by IL client calls to EmptyThisBuffer or FillThisBuffer.

● An error unassociated with a command triggered by the IL client has occurred. For
example, the component has suffered an unrecoverable error and is transitioning to
the OMX_StateInvalid state.

To accomplish a callback, the OpenMAX IL has three callback functions defined: a
generic event handler and two callbacks related to the dataflow (EmptyBufferDone
and FillBufferDone).

The IL client is responsible for filling in an OMX_CALLBACKTYPE structure with its
callback entry points and passing the structure to the OpenMAX core at initialization
(init) time, usually in the OMX_GetHandle function.

 60

OMX_CALLBACKTYPE is defined as follows.
 typedef struct OMX_CALLBACKTYPE
{
 OMX_ERRORTYPE (*EventHandler)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_PTR pAppData,
 OMX_IN OMX_EVENTTYPE eEvent,
 OMX_IN OMX_U32 nData1,
 OMX_IN OMX_U32 nData2,
 OMX_IN OMX_PTR pEventData);

 OMX_ERRORTYPE (*EmptyBufferDone)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_PTR pAppData,
 OMX_IN OMX_BUFFERHEADERTYPE* pBuffer);

 OMX_ERRORTYPE (*FillBufferDone)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_PTR pAppData,
 OMX_IN OMX_BUFFERHEADERTYPE* pBuffer);

} OMX_CALLBACKTYPE;

3.1.2.8.1 EventHandler
A component uses the EventHandler method to notify the IL client when an event of
interest occurs within the component. The OMX_EVENTTYPE enumeration defines the
set of OpenMAX IL events; refer to the definition of this enumeration for the meaning of
each event. nData1 carries the value of OMX_COMMANDTYPE that has been completed
or OMX_ERRORTYPE. nData2 carries further event parameters, e.g.,
OMX_STATETYPE. pEventData contains event specific data. The pEventData
pointer may contain additional data associated with the event (e.g., mark-specific data). A
call to EventHandler is a blocking call, so the IL client should respond within five
msec to avoid blocking the component for an excessively long time period.

The EventHandler method is defined as follows.

OMX_ERRORTYPE(* OMX_CALLBACKTYPE::EventHandler)(

OMX_IN OMX_HANDLETYPE hComponent,
OMX_IN OMX_PTR pAppData,
OMX_IN OMX_EVENTTYPE eEvent,
OMX_IN OMX_U32 nData1,
OMX_IN OMX_U32 nData2,
OMX_IN OMX_PTR pEventData)

The parameters are as follows.

Parameter Description
hComponent The handle of the component that calls this function.
eEvent The event that the component is communicating to the IL client.

 61

nData1 The first integer event-specific parameter. See Table 3-7 for the meaning in
the context of each event.

nData2 The second integer event-specific parameter. See Table 3-7 for the meaning
in the context of each event. The default value is 0 if not used.

pEventData A pointer to additional event-specific data. See Table 3-7 for the meaning
in the context of each event.

Table 3-7 lists the parameters used in each event.

eEvent nData1 nData2 pEventData

OMX_EventCmdComplete
OMX_CommandStateS
et

State
reached Null

 OMX_CommandFlush
Port
index Null

OMX_CommandPortDi
sable

Port
index Null

OMX_CommandPortEn
able

Port
index Null

OMX_CommandMarkBu
ffer

Port
index Null

OMX_EventError Error code 0 Null

OMX_EventMark
0 0 Data linked to the

mark, if any
OMX_EventPortSettings
Changed port index

0
Null

OMX_EventBufferFlag

port index

nFlag
s
unaltere
d Null

OMX_EventResourcesAcq
uired 0 0

Null
Table 3-7. Event Parameter Usage

3.1.2.8.2 EmptyBufferDone
A component uses the EmptyBufferDone callback to pass a buffer from an input port
back to the IL client. A component sets the nOffset and nFilledLength values of
the buffer header to reflect the portion of the buffer it consumed; for example,
nFilledLength is set equal to 0x0 if completely consumed.

In addition to facilitating normal data flow between an executing component and the IL
client, a component uses the EmptyBufferDone function to return input buffers to the
IL client in the following cases:

 62

● The IL client commands a transition from OMX_StateExecuting or OMX_StatePause
to OMX_StateIdle or to OMX_StateInvalid.

● The IL client flushes or disables a port.

The EmptyBufferDone call is a blocking call that should return from within five msec.
Therefore, the IL client may elect not to fill the buffers during this call but queue them
for processing outside this call.

The EmptyBufferDone call is defined as follows.

OMX_ERRORTYPE(* OMX_CALLBACKTYPE::EmptyBufferDone)(
 OMX_OUT OMX_HANDLETYPE hComponent,
 OMX_OUT OMX_PTR pAppData,
 OMX_OUT OMX_BUFFERHEADERTYPE* pBuffer)

The parameters are as follows.

Parameter Description
hComponent The handle of the component that is calling this function.
pAppData A pointer to IL client-defined data.
pBuffer A pointer to an OMX_BUFFERHEADERTYPE structure that was consumed

or returned.

3.1.2.8.3 FillBufferDone
A component uses the FillBufferDone callback to pass a buffer from an output port
back to the IL client. A component sets the nOffset and nFilledLength of the
buffer header to reflect the portion of the buffer it filled; for example, nFilledLength
is equal to 0x0 if it contains no data).

In addition to facilitating normal dataflow between an executing component and the IL
client, a component uses this function to return output buffers to the IL client in the
following cases:

• The IL client commands a transition from OMX_StateExecuting or OMX_StatePause
to OMX_StateIdle or to OMX_StateInvalid.

• The IL client flushes or disables a port.

The FillBufferDone call is a blocking call that should return from within five msec.
The IL client may elect not to empty the buffers during this call but queue them for
consumption outside this call.

FillBufferDone is defined as follows.
OMX_ERRORTYPE(* OMX_CALLBACKTYPE::FillBufferDone)(
OMX_OUT OMX_HANDLETYPE hComponent,
OMX_OUT OMX_PTR pAppData,
OMX_OUT OMX_BUFFERHEADERTYPE* pBuffer)
The parameters are as follows.

 63

Parameter Description
hComponent The handle of the component to access. This handle is the component

handle returned by the call to the GetHandle function.
pAppData A pointer to IL client-defined data
pBuffer A pointer to an OMX_BUFFERHEADERTYPE structure that was filled or

returned.

3.1.2.9 OMX_PARAM_BUFFERSUPPLIERTYPE
The OMX_PARAM_BUFFERSUPPLIERTYPE structure is used to communicate buffer
supplier settings or buffer supplier preferences.

OMX_PARAM_BUFFERSUPPLIERTYPE is defined as follows.

typedef struct OMX_PARAM_BUFFERSUPPLIERTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BUFFERSUPPLIERTYPE eBufferSupplier;
} OMX_PARAM_BUFFERSUPPLIERTYPE;

3.1.2.9.1 nPortIndex
nPortIndex represents the port that this structure applies to.

3.1.2.9.2 eBufferSupplier
eBufferSupplier is a field that contains the index of the buffer supplier, if input or
output.

3.1.2.10 OMX_TUNNELSETUPTYPE
The ComponentTunnelRequest function uses the OMX_TUNNELSETUPTYPE structure
to pass data between two ports when an IL client connects these ports via an
OMX_SetupTunnel call.

OMX_TUNNELSETUPTYPE is defined as follows.

typedef struct OMX_TUNNELSETUPTYPE
{
 OMX_U32 nTunnelFlags;
 OMX_BUFFERSUPPLIERTYPE eSupplier;
 } OMX_TUNNELSETUPTYPE;

3.1.2.10.1 nTunnelFlags
The nTunnelFlags integer parameter contains one or more bit flags applied to the port
that receives this structure. Flags include:
#define OMX_PORTTUNNELFLAG_READONLY 0x00000001

 64

If the flag is set as read only, the input port that receives this structure cannot alter the
contents of buffers supplied on the tunnel.

3.1.2.10.2 eSupplier
The eSupplier field defines whether the input port or the output port provides the
buffers. The exact sequence of calls to set up a tunnel is specified in section 3.4.1.2.

3.1.2.11 OMX_PARAM_PORTDEFINITIONTYPE
The OMX_PARAM_PORTDEFINITIONTYPE structure contains a set of generic fields
that characterize each port of the component. Some of these fields are common to all
domains while other fields are specific to their respective domains. The IL client uses this
structure to retrieve general information from each port.

OMX_PARAM_PORTDEFINITIONTYPE is defined as follows.

typedef struct OMX_PARAM_PORTDEFINITIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_DIRTYPE eDir;
 OMX_U32 nBufferCountActual;
 OMX_U32 nBufferCountMin;
 OMX_U32 nBufferSize;
 OMX_BOOL bEnabled;
 OMX_BOOL bPopulated;
 union {
 OMX_AUDIO_PORTDEFINITIONTYPE audio;
 OMX_VIDEO_PORTDEFINITIONTYPE video;
 OMX_IMAGE_PORTDEFINITIONTYPE image;
 OMX_OTHER_PORTDEFINITIONTYPE other;
 } format;
} OMX_PARAM_PORTDEFINITIONTYPE;

3.1.2.11.1 nPortIndex
nPortIndex is a read-only field the identifies the port. The value of nPortIndex is a
unique 32-bit number for the component. No two ports on a single component may share
the same port number, but ports on different components may have the same port number.

3.1.2.11.2 eDir
eDir is a read-only field that indicates the direction (OMX_DirInput or
OMX_DirOutput) for the port.

3.1.2.11.3 nBufferCountActual
nBufferCountActual represents the number of buffers that are required on this port
before it is populated, as indicated by the bPopulated field of this structure. The
component shall set a default value no less than nBufferCountMin for this field.

 65

3.1.2.11.4 nBufferCountMin
nBufferCountMin is a read-only field that specifies the minimum number of buffers
that the port requires. The component shall define this non-zero default value.

3.1.2.11.5 nBufferSize
nBufferSize is a read-only field that specifies the minimum size in bytes for buffers
that are allocated for this port. .

3.1.2.11.6 bEnabled
bEnabled is a read-only Boolean field that indicates if the port is enabled. Ports default
to bEnabled = OMX_TRUE and are enabled/disabled by sending the
OMX_CommandPortEnable and OMX_CommandPortDisable commands with the
OMX_SendCommand method.

A port shall not be populated when it is not enabled.

3.1.2.11.7 bPopulated
bPopulated is a read-only Boolean field that indicates if a port is populated. A port is
populated when all of the buffers indicated by nBufferCountActual with a size of
at least nBufferSize have been allocated on the port. A populated port shall be
enabled. Enabled ports shall be populated on a transition to OMX_StateIdle and
unpopulated on a transition to OMX_StateLoaded.

3.1.2.11.8 eDomain
eDomain is a read-only field that indicates the domain of the port. This field determines
the contents of the format union explained in section 3.1.2.11.9.

3.1.2.11.9 format
The format fields are a union of domain-specific parameters. For more information on
parameters for audio, video, image, and other domains, see section 4.

3.1.3 OMX_PORTDOMAINTYPE
Table 3-8 enumerates the fields used in the OMX_PARAM_PORTDEFINITIONTYPE
structure to define the domain of the port.

Field Name Description
OMX_PortDomainAudio Specifies that the field format is a structure

of the
OMX_AUDIO_PORTDEFINITIONTYPE
type.

OMX_PortDomainVideo Specifies that the field format is a structure
of the
OMX_VIDEO_PORTDEFINITIONTYPE
type.

 66

OMX_PortDomainImage Specifies that the field format is a structure
of the
OMX_IMAGE_PORTDEFINITIONTYPE
type.

OMX_PortDomainOther Specifies that the field format is a structure
of the
OMX_OTHER_PORTDEFINITIONTYPE
type.

Table 3-8. Port Domain Names

3.1.4 OMX_HANDLETYPE
The OMX_HANDLETYPE structure defines the component handle as seen by the IL client.
The component handle is used to access all of the public methods of the component. The
component handle also contains pointers to the private data area of the component. The
OpenMAX core allocates and initializes the component handle with help from the
component during the process of loading the component. After the component is
successfully loaded, the IL client can safely access any of the public functions of the
component, although some may return an error because the state is inappropriate for the
access.

3.2 OpenMAX Core Methods/Macros
The OpenMAX core implements the main interface for an IL client that wants to use
OpenMAX components. For efficiency, OpenMAX IL defines a set of OpenMAX core
macros that map on one-to-one basis to most OpenMAX component methods.

Some macros and methods recommend that the function return within either five
milliseconds or 20 milliseconds, depending on the function. The 5-millisecond timeout
was deemed by the standards body to be a reasonable response time for commands that
may not require buffer processing. The standards body identified the 20-millisecond
timeout to be a reasonable response time for commands that may require buffer
processing to be completed; the assumption here is that the longest buffer processing
would be less than 30 milliseconds, which corresponds to 30-frames per second video.
These timeouts are intended primarily to enable component integrators to get a good idea
of component response latency via conformance testing.

The macros include the following:

• Get component information (version, capabilities).

• Set/Get component parameters at init time.

• Set/Get component parameters at run time.

• Allocate/De-allocate buffers.

• Send a buffer full of data to an OpenMAX component port.

• Send an empty buffer to an OpenMAX component port.

• Send commands to a component.

• Get the actual state of the component.

 67

• Get references to OpenMAX component-proprietary parameters.

The OpenMAX Core also implements methods for the following:

• Initializing/de-initializing the whole OpenMAX IL Core

• Getting an OpenMAX component handle

• Releasing an OpenMAX component handle

• Detecting all OpenMAX components available on the platform at run time

• Setting up data tunnels among OpenMAX components

When a time limit for the execution of a method is specified, it is not intended as a hard
restriction for the conformance of the component to the standard, but if the limit is not
respected, a note shall appear in the description document related to the component.

3.2.1 Return Codes for the Functions
Table 3-9 lists all of the possible return error codes for each function. A critical error
denotes an error from which the component cannot recover. The component should
transition to the OMX_StateInvalid state when a critical error occurs. All columns but the
last two correspond to errors returned from a call to the component. The rightmost two
columns denote errors sent asynchronously as the result of an internal error.

 68

 O
M
X
_
G
e
t
C
o
m
p
o
n
e
n
t
V
e
r
s
i
o
n

O
M
X
_
S
e
n
d
C
o
m
m
a
n
d

O
M
X
_
G
e
t
P
a
r
a
m
e
t
e
r

O
M
X
_
S
e
t
P
a
r
a
m
e
t
e
r

O
M
X
_
G
e
t
C
o
n
f
i
g

O
M
X
_
S
e
t
C
o
n
f
i
g

O
M
X
_
G
e
t
E
x
t
e
n
s
i
o
n
I
n
d
e
x

O
M
X
_
G
e
t
S
t
a
t
e

O
M
X
_
U
s
e
B
u
f
f
e
r

O
M
X
_
A
l
l
o
c
a
t
e
B
u
f
f
e
r

O
M
X
_
F
r
e
e
B
u
f
f
e
r

O
M
X
_
E
m
p
t
y
T
h
i
s
B
u
f
f
e
r

O
M
X
_
F
i
l
l
T
h
i
s
B
u
f
f
e
r

O
M
X
_
C
o
m
p
o
n
e
n
t
D
e
I
n
i
t

O
M
X
_
I
n
i
t

O
M
X
_
D
e
i
n
i
t

O
M
X
_
C
o
m
p
o
n
e
n
t
N
a
m
e
E
n
u
m

O
M
X
_
G
e
t
H
a
n
d
l
e

O
M
X
_
F
r
e
e
H
a
n
d
l
e

O
M
X
_
S
e
t
u
p
T
u
n
n
e
l

Se
nt

 w
ith

 E
v
e
n
t
H
a
n
d
l
e
r

Cr
iti

ca
l e

rr
or

OMX_ErrorNone X
OMX_ErrorInsufficient
 Resources

 X X X X X X

OMX_ErrorUndefined X X X X X X X X X X X X X X X X X
OMX_ErrorInvalid
 ComponentName

 X

OMX_ErrorComponent
 NotFound

 X

OMX_ErrorInvalidComponen
t

X X X X X X X X X X X X X X X X X

OMX_ErrorBadParameter X X X X X X X X X X X X X X X X X X
OMX_ErrorNotImplemented X
OMX_ErrorUnderflow X
OMX_ErrorOverflow X
OMX_ErrorHardware X X
OMX_ErrorInvalidState X X X X X X X X X X X X X X X X
OMX_ErrorStreamCorrupt X
OMX_ErrorPorts
 NotCompatible

 X

OMX_ErrorResourcesLost X
OMX_ErrorNoMore X X X
OMX_ErrorVersionMismatch X
OMX_ErrorNotReady X X
OMX_ErrorTimeout X X X X X X X X X X X X X X X X X X
OMX_ErrorSameState X
OMX_ErrorResources
 Preempted

 X

OMX_ErrorPortUnResponsiv
e
 DuringAllocation

 X

OMX_ErrorPortUnresponsiv
e
 DuringDeallocation

 X

OMX_ErrorPortUnresponsiv
e
 DuringStop

 X

OMX_ErrorIncorrectState
 Transition

 X

OMX_ErrorIncorrectState
 Operation

 X X X X X X X

OMX_ErrorUnsupported
 Setting

 X X

OMX_ErrorUnsupportedInde
x

 X X X X X

OMX_ErrorBadPortIndex X X X X X X X X X X X X
OMX_ErrorPortUnpopulated X

Table 3-9. Error Codes

 69

3.2.2 Macros
This section describes the OpenMAX core macros.

Table 3-10 defines which macros may be called on a component in each component state.

 O
M
X
_
G
e
t
C
o
m
p
o
n
e
n
t

V
i

O
M
X
_
S
e
n
d
C
o
m
m
a
n
d

O
M
X
_
G
e
t
P
a
r
a
m
e
t
e
r

O
M
X
_
S
e
t
P
a
r
a
m
e
t
e
r

O
M
X
_
G
e
t
C
o
n
f
i
g

O
M
X
_
S
e
t
C
o
n
f
i
g

O
M
X
_
G
e
t
E
x
t
e
n
s
i
o
n

I
d

O
M
X
_
G
e
t
S
t
a
t
e

O
M
X
_
U
s
e
B
u
f
f
e
r

O
M
X
_
A
l
l
o
c
a
t
e
B
u
f
f

O
M
X
_
F
r
e
e
B
u
f
f
e
r

O
M
X
_
E
m
p
t
y
T
h
i
s
B
u
f

f O
M
X
_
F
i
l
l
T
h
i
s
B
u
f
f

O
M
X
_
C
o
m
p
o
n
e
n
t
D
e
I

i
t

O
M
X
_
S
e
t
u
p
T
u
n
n
e
l

OMX_StateLoaded X X X X X X X X X X X X X
OMX_StateIdle X X X X X X X X X X X
OMX_StateExecuting X X X X X X X X X X X
OMX_StatePaused X X X X X X X X X X X
OMX_StateWaitForResources X X X X X X X X X X X X
OMX_StateInvalid X X X
Disabled Port X X X X X X X X X X X X X X X

Table 3-10. Valid Component Calls

3.2.2.1 OMX_GetComponentVersion
The GetComponentVersion macro will query the component and returns
information about it. This is a blocking call. The component should return from this call
within five msec.

The macro is defined as follows.
#define OMX_GetComponentVersion (
 hComponent,
 pComponentName,
 pComponentVersion,
 pSpecVersion,
 pComponentUUID)
((OMX_COMPONENTTYPE*)hComponent)->GetComponentVersion(\
 hComponent, \
 pComponentName, \
 pComponentVersion, \
 pSpecVersion, \
 pComponentUUID)

The parameters are as follows.

Parameter Description
hComponent
[in] The handle of the component that executes the command.

pComponentName
[out]

A pointer to a component name string. Component names are
strings limited to a length of less than 127 bytes plus the trailing null

 70

for a maximum length of 128 bytes. An example of a valid
component name is
"OMX.<vendor_name>.AUDIO.DSP.MIXER\0". Names are
assigned by the vendor, but shall start with "OMX." concatenated to
the vendor specified string.

pComponentVersion
[out]

A pointer to an OpenMAX version structure that the component will
populate. The component will fill in a value that indicates the
component version. Note that the component version is not the same
as the OpenMAX specification version, which is found in all
structures. The vendor of the component defines the component
version and establishes its value.

pSpecVersion
[out]

A pointer to an OpenMAX version structure that the component will
populate. SpecVersion is the version of the specification that the
component was built against. Note that this value may or may not
match the version of the structure. For example, if the component
was built against the version 2.0 specification but the IL client,
which creates the structure, was built against the version 1.0
specification, the versions would be different.

pComponentUUID
[out]

A pointer to the universal unique identifier (UUID) of the
component, which the component will fill in. The UUID is a unique
identifier that is set at run time for the component and is unique to
each instance of the component.

3.2.2.1.1 Prerequisites for This Method
This method has no prerequisites.

3.2.2.1.2 Sample Code Showing Calling Sequence
The following sample code shows a calling sequence.
/* detect mismatch between IL client's and component's spec version */
OMX_GetComponentVersion(

hComp,
&CompName,
&CompVersion,
&CompSpecVersion,
&CompUUID);

if (CompSpecVersion != IlClientVersion){
 printf("ERROR: version mismatch\n");
}

3.2.2.2 OMX_SendCommand
The OMX_SendCommand macro will invoke a command on the component. This is a
non-blocking call that should, at a minimum, validate command parameters but return
within five msec. The component normally executes the command outside the context of
the call, though a solution without threading may elect to execute it in context. In either
case, the component uses an event callback to notify the IL client of the results of the
command once completed. If the component executes the command successfully, the

 71

component generates an OMX_EventCmdComplete callback. If the component fails to
execute the command, the component generates an OMX_EventError and passes the
appropriate error as a parameter.

The component may elect to queue commands for later execution. The only restriction is
that the completion shall be done in the same order as the requests arrived.

The macro is defined as follows.
#define OMX_SendCommand (
 hComponent,
 Cmd,
nParam,
pCmdData)
 ((OMX_COMPONENTTYPE*)hComponent)->SendCommand(\

 hComponent, \
 Cmd, \
 nParam,
 pCmdData)

The parameters are as follows.

Parameter Description
hComponent
[in] The handle of the component that executes the command

Cmd
[in] Command for the component to execute

nParam
[in] Integer parameter for the command that is to be executed

pCmdData
[in]

A pointer that contains implementation-specific data that cannot be
represented with the numeric parameter nParam

Section 3.3.6.describes the corresponding function that each component implements.

3.2.2.3 OMX_CommandStateSet
The IL client calls this command to request that the component transition into the state
given in nParam. The component shall make the transition between the old state and the
new state successfully only if it is a legal transition and all prerequisites for this transition
are met. For more information on component states, see section 3.1.1.2.

If the component successfully transitions to the new state, it notifies the IL client of the
new state via the OMX_EventCmdComplete event, indicating OMX_CommandStateSet
for nData1 and the new state for nData2. If a state transition fails, the component shall
notify the IL client of the error that prevented it via OMX_EventError event. Relevant
errors include but are not limited to the following:

• OMX_ErrorSameState: The component is already in the state requested.

• OMX_ErrorIncorrectStateTransition: The transition requested is not legal.

• OMX_ErrorInsufficientResources: The transition required the allocation of resources
and the component failed to acquire the resources.

 72

3.2.2.4 OMX_CommandFlush
This IL client calls this command to flush one or more component ports. nParam
specifies the index of the port to flush. If the value of nParam is -1, the component shall
flush all ports.

When the IL client flushes a non-supplier port, that port shall return all buffers it is
holding to the supplier port. If the supplier port is the IL client, the flushed port uses
EmptyBufferDone and FillBufferDone (appropriate for an input port or an
output port, respectively) to return the buffers. If the supplier port is a tunneled port, the
flushed port uses EmptyThisBuffer or FillThisBuffer (appropriate for an input
port or an output port, respectively) to return the buffers.

For each port that the component successfully flushes, the component shall send an
OMX_EventCmdComplete event, indicating OMX_CommandFlush for nData1
and the individual port index for nData2, even if the flush resulted from using a value
of -1 for nParam. If a flush fails, the component shall notify the IL client of the error via
an OMX_EventError event.

3.2.2.5 OMX_CommandPortDisable
The OMX_CommandPortDisable command disables a port. nParam specifies the index
of the port to disable. If the value of nParam is -1, the component shall disable all ports.
A disabled port has no buffers and is not connected to either the IL client or another port
via a tunnel. A disabled port does not allocate buffers on a transition from
OMX_StateLoaded or OMX_StateWaitForResources to OMX_StateIdle. An IL client
can change the parameters via OMX_SetParameter of a disabled port or set up a
tunnel on it regardless of the component state. Thus the OMX_CommandPortDisable
command, in co-operation with OMX_CommandPortEnable, is useful for the dynamic
reconfiguration or re-tunneling of a port.

The port must immediately clear bEnabled in its port definition structure when it
receives OMX_CommandPortDisable. If the port that the IL client is disabling is a
non-supplier port, the IL client shall return any buffers it is holding to the supplier port
via OMX_EmptyThisBuffer/OMX_FillThisBuffer if tunneling or
EmptyBufferDone/FillBufferDone if not tunneling. Then, the IL client shall
wait for the supplier port to free the buffers via OMX_FreeBuffer before completing
the disable command. If the port that the IL client is disabling is a supplier port with
buffers allocated, the IL client shall wait for the non-supplier port to return all buffers via
OMX_EmptyThisBuffer or OMX_FillThisBuffer. Then, the IL client shall free
the buffers via OMX_FreeBuffer before completing the disable command.

For each port that the component successfully disables, the component shall send an
OMX_EventCmdComplete event indicating OMX_CommandPortDisable for nData1
and the individual port index for nData2, even if using a value of -1 for nParam caused
the port to be disabled. If the disable operation fails, the component shall notify the IL
client of the error via the OMX_EventError event.

 73

3.2.2.6 OMX_CommandPortEnable
The OMX_CommandPortEnable command enables a port. nParam specifies the index
of the port to be enabled. If the value of nParam is -1, the component shall enable all
ports. An enabled port shall abide by all the requirements of the component’s state. Thus,
the port shall:

• Have no buffers allocated if the component is in the OMX_StateLoaded state or the
OMX_StateWaitForResources state and all buffers are allocated otherwise.

• Allocate buffers on a transition from either the OMX_StateLoaded state or the
OMX_WaitForResources state to the OMX_IdleState.

• Transfer a buffer to facilitate data flow in the OMX_StateExecuting state.

• Disallow modification of its parameters via OMX_SetParameter in all states but
OMX_StateLoaded.

The OMX_CommandPortEnable command, in co-operation with
OMX_CommandPortDisable, is useful for the dynamic reconfiguration or re-tunneling of
a port.

The port must immediately set bEnabled in its port definition structure when the port
receives OMX_CommandPortEnable. If the IL client enables a port while the component
is in any state other than OMX_StateLoaded or OMX_WaitForResources, then that port
shall allocate its buffers via the same call sequence used on a transition from
OMX_StateLoaded to OMX_StateIdle. If the IL client enables while the component is in
the OMX_Executing state, then that port shall begin transferring buffers.

For each port that the component successfully enables, the component shall send an
OMX_EventCmdComplete event, indicating OMX_CommandPortEnable for nData1
and the individual port index for nData2, even if using the value of -1 for nParam
caused the enable operation. If a port enablement operation fails, the component shall
notify the IL client of the error via OMX_EventError event.

3.2.2.7 OMX_CommandMarkBuffer
The OMX_CommandMarkBuffer command instructs the given port to mark a buffer.
nParam holds the index of the port that will perform the mark. The pCmdData
parameter of OMX_SendCommand points to an OMX_MARKTYPE structure. The
pMarkTargetComponent field of this structure holds a pointer to the component that
will send an event after processing the marked buffer. The pMarkData field of this
structure holds a pointer to application-specific data associated with the mark to uniquely
identify the mark to the application upon a mark event (denoted the mark data).

When instructed to mark a buffer, the component will mark the next buffer that it
receives as input after it receives the mark command. The exception is a source
component, which will mark the next buffer it adds to its output buffer queue. For
components other than source components, the port index value in nParam holds the
index of the input port that will mark its next buffer. For source components, the port
index value in nParam holds the index of the output port that will mark its next buffer.

 74

In the following cases, multiple marks may compete for a single buffer:

• A component receives two or more mark commands with no intervening buffer(s).

• Two or more input buffers, each with a mark, contribute to an output buffer (e.g., in a
mixer).

• A component receives a mark command and the next buffer is already marked.

If multiple marks compete for application to the same buffer, the component uses the first
mark received to mark the buffer and applies the remaining marks to subsequent buffers
in the order that the component received them. If there are no subsequent buffers, the
component may send the remaining marks on one or more empty buffers.

For each port that the component successfully marks a buffer, the component shall send
an OMX_EventCmdComplete event indicating OMX_CommandPortMarkBuffer for
nData1 and the individual port index for nData2. If a mark operation fails, the
component shall notify the IL client of the error via OMX_EventError event.

A buffer header includes pMarkTargetComponent and the pMarkData fields,
whose meaning is identical to those in OMX_MARKTYPE. A component marks a buffer
by copying pMarkTargetComponent and the pMarkData fields from the mark
command to the buffer headers. Both fields are NULL by default (i.e., before the buffer
being marked). A component propagates the mark fields from an input buffer to an output
buffer according to the buffer metadata rules established for buffer flags and timestamps.
The target component does not propagate the mark but instead clears both fields to NULL.

When a component receives a buffer, it shall compare its own pointer to the
pMarkTargetComponent. If the pointers match, the component shall send a mark
event, including pMarkData as a parameter, immediately after the buffer exits the
component or has been completely processed in the case where it does not exit the
component.

3.2.2.7.1 Prerequisites for This Method
This method has no prerequisites.

3.2.2.7.2 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.

 75

/* disable every audio port of a component*/
OMX_GetParameter(hComp, OMX_IndexParamAudioInit, &oParam);
for (i=0;i<oParam.nPorts;i++) {

OMX_SendCommand(
hComp,
OMX_CommandPortDisable,
oParam.nStartPortNumber + i,
0);

}

3.2.2.8 OMX_GetParameter
The OMX_GetParameter macro will get a parameter setting from a component. The
nParamIndex parameter indicates which structure is requested from the component.
The caller shall provide memory for the structure and populate the nSize and
nVersion fields before invoking this macro. If the parameter settings are for a port, the
caller shall also provide a valid port number in the nPortIndex field before invoking
this macro. All components shall support a set of defaults for each parameter so that the
caller can obtain the structure populated with valid values.

This call is a blocking call. The component should return from this call within 20 msec.

The OMX_GetParameter macro is defined as follows.

#define OMX_GetParameter (
 hComponent,
 nParamIndex,
ComponentParameterStructure)
((OMX_COMPONENTTYPE*)hComponent)->GetParameter(\
 hComponent, \
 nParamIndex, \
 ComponentParameterStructure)

The parameters are described as follows.

Parameter Description
hComponent
[in] The handle of the component that executes the call

nParamIndex
[in]

The index of the structure to be filled. This value is
from the OMX_INDEXTYPE enumeration.

ComponentParameterStructure
[in,out]

A pointer to the IL client-allocated structure that the
component fills

Section 3.3.7 describes the corresponding function that each component implements.

3.2.2.8.1 Prerequisites for This Method
The macro can be invoked when the component is in any state except the
OMX_StateInvalid state.

 76

3.2.2.8.2 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* disable every audio port of a component*/
OMX_GetParameter(hComp, OMX_IndexParamAudioInit, &oParam);
for (i=0;i<oParam.nPorts;i++) {

OMX_SendCommand(
hComp,
OMX_CommandPortDisable,
oParam.nStartPortNumber + i,
0);

}

3.2.2.9 OMX_SetParameter
The OMX_SetParameter macro will send a parameter structure to a component. The
nParamIndex parameter indicates which structure is passed to the component.

The caller shall provide the memory for the correct structure and shall fill in the structure
nSize and nVersion fields in addition to all other fields before invoking this macro.
The caller is free to dispose of this structure after the call, as the component is required to
copy any data it shall retain.

Some parameter structures contain read-only fields. The OMX_SetParameter method
will preserve read-only fields, and shall not generate an error when the caller attempts to
change the value of a read-only field.

This call is a blocking call. The component should return from this call within 20 msec.

The OMX_SetParameter macro is defined as follows.
#define OMX_SetParameter (
 hComponent,
 nParamIndex,
ComponentParameterStructure)
((OMX_COMPONENTTYPE*)hComponent)->SetParameter(\
 hComponent, \
 nParamIndex, \
 ComponentParameterStructure)

The parameters are as follows.

Parameter Description
hComponent
[in] The handle of the component that executes the call.

nIndex
[in]

The index of the structure that is to be sent. This value is
from the OMX_INDEXTYPE enumeration.

ComponentParameterStructure
[in]

A pointer to the IL client-allocated structure that the
component uses for initialization.

Section 3.3.8 describes the corresponding function that each component implements.

 77

3.2.2.9.1 Prerequisites for This Method
The OMX_SetParameter macro can be invoked only when the component is in the
OMX_StateLoaded state or on a port that is disabled.

3.2.2.9.2 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* force a port to be the supplier */
OMX_GetParameter(hComp, OMX_IndexParamPortDefinition, &oPortDef);
if (oPortDef.eDir == OMX_DirInput){
 oSupplier.eBufferSupplier = OMX_BufferSupplyInput;
} else {
 oSupplier.eBufferSupplier = OMX_BufferSupplyOutput;
}
oSupplier.nPortIndex = nPortIndex;
OMX_SetParameter(hComp, OMX_IndexParamCompBufferSupplier, &oSupplier);

3.2.2.10 OMX_GetConfig
The OMX_GetConfig macro will get a configuration structure from a component. This
macro can be invoked at any time after the component has been loaded. The
nParamIndex parameter indicates which structure is being requested from the
component. The caller shall provide the memory for the structure and populate the
nSize and nVersion fields before invoking this macro. If the configuration settings
are for a port, the caller shall also provide a valid port number in the nPortIndex field
before invoking this macro. All components shall support a set of defaults for each
configuration so that the caller can obtain the structure populated with valid values.

This call is a blocking call. The component should return from this call within five msec.

The OMX_GetConfig macro is defined as follows.
#define OMX_GetConfig (
 hComponent,
 nConfigIndex,
ComponentConfigStructure)
((OMX_COMPONENTTYPE*)hComponent)->GetConfig(\
 hComponent, \
 nConfigIndex, \
 ComponentConfigStructure)

The parameters are as follows.

Parameters Description
hComponent
[in] The handle of the component that executes the call.

nIndex
[in]

The index of the structure to be filled. This value is from the
OMX_INDEXTYPE enumeration.

ComponentConfigStructure
[in,out]

A pointer to the IL client-allocated structure that the
component fills.

Section 3.3.9 describes the corresponding function that each component implements.

 78

3.2.2.10.1 Prerequisites for This Method
The macro can be invoked when the component is in any state except the
OMX_StateInvalid state.

3.2.2.10.2 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* Wait until a certain playback position */
do {

OMX_GetConfig(hClockComp, OMX_IndexConfigTimeCurrentMediaTime,
 oMediaTime);
} while (oMediaStamp.nTimestamp < nTargetTimeStamp);

3.2.2.11 OMX_SetConfig
The OMX_SetConfig macro will set a component configuration value. This macro can
be invoked anytime after the component has been loaded.

The caller shall provide the memory for the correct structure and fill in the structure
nSize and nVersion fields in addition to all other fields before invoking this macro.
The caller can dispose of this structure after the call, as the component is required to copy
any data it shall retain.

Some configuration structures contain read-only fields. The OMX_SetConfig method
will preserve read-only fields in configuration structures that contain them, and shall not
generate an error when the caller attempts to change the value of a read-only field.

This call is a blocking call. The component should return from this call within five msec.

The OMX_SetConfig macro is defined as follows.
#define OMX_SetConfig (
 hComponent,
 nConfigIndex,
ComponentConfigStructure)
((OMX_COMPONENTTYPE*)hComponent)->SetConfig(\
 hComponent, \
 nConfigIndex, \
 ComponentConfigStructure)

The parameters are as follows.

Parameter Description
hComponent
[in] The handle of the component that executes the call.

nIndex
[in]

The index of the structure that is to be sent. This value is
from the OMX_INDEXTYPE enumeration.

ComponentConfigStructure
[in]

A pointer to the IL client-allocated structure that the
component uses for initialization.

Section 3.3.10 describes of the corresponding function that each component implements.

 79

3.2.2.11.1 Prerequisites for This Method
The macro can be invoked when the component is in any state except the
OMX_StateInvalid state.

3.2.2.11.2 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* Change the time scale of the clock component*/
oScale.xScale = 0x00020000; /*2x*/
OMX_SetConfig(hClockComp, OMX_IndexConfigTimeScale, (OMX_PTR)&oScale);

3.2.2.12 OMX_GetExtensionIndex
The OMX_GetExtensionIndex macro will invoke a component to translate from a
standardized OpenMAX or vendor-specific extension string for a configuration or a
parameter into an OpenMAX structure index. The vendor is not required to support this
command for the indexes already found in the OMX_INDEXTYPE enumeration, which
reduces the memory footprint. The component may support any standardized OpenMAX
or vendor-specific extension indexes that are not found in the master OMX_INDEXTYPE
enumeration.

This call is a blocking call. The component should return from this call within five msec.

The OMX_GetExtensionIndex macro is defined as follows.

#define OMX_GetExtensionIndex (
 hComponent,
 cParameterName,
pIndexType)
((OMX_COMPONENTTYPE*)hComponent)->GetExtensionIndex(\
 hComponent, \
 cParameterName, \
 pIndexType)

The parameters are as follows.

Parameter Description
hComponent
[in] The handle of the component that executes the call.

cParameterName
[in]

An OMX_STRING value that shall be less than 128 characters long
including the trailing null byte. The component will translate this
string into a configuration index.

pIndexType
[out]

A pointer to the OMX_INDEXTYPE structure that is to receive the
index value.

Section 3.3.11 describes the corresponding function that each component implements.

3.2.2.12.1 Prerequisites for This Method
The macro can be invoked when the component is in any state except the
OMX_StateInvalid state.

 80

3.2.2.12.2 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* Set the vendor-specific filename parameter on a reader */
OMX_GetExtensionIndex(

hFileReaderComp,
"OMX.CompanyXYZ.index.param.filename",
&eIndexParamFilename);

OMX_SetParameter(hComp, eIndexParamFilename, &oFileName);

3.2.2.13 OMX_GetState
The OMX_GetState macro will invoke the component to get the current state of the
component and place the state value into the location pointed to by pState. The
component should return from this call within five msec.

The OMX_GetState macro is defined as follows.
#define OMX_GetState (
 hComponent,
pState)
((OMX_COMPONENTTYPE*)hComponent)->GetState(\
 hComponent, \
 pState)

The parameters are as follows.

Parameter Definition
hComponent
[in] The handle of the component that executes the call.

pState
[out]

A pointer to the location that receives the state. The value returned is one
of the OMX_STATETYPE members.

Section 3.3.12 describes the corresponding function that each component implements.

3.2.2.13.1 Prerequisites for This Method
This method has no prerequisites.

3.2.2.13.2 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
OMX_SendCommand(hComp, OMX_CommandStateSet, OMX_StateIdle, 0);
do {

OMX_GetState(hComp, &eState);
} while (OMX_StateIdle != eState);

3.2.2.14 OMX_UseBuffer
The OMX_UseBuffer macro requests the component to use a buffer already allocated
by the IL client or a buffer already supplied by a tunneled component. The

 81

OMX_UseBuffer implementation shall allocate the buffer header, populate it with the
given input parameters, and pass it back via the ppBufferHdr output parameter.

The OMX_UseBuffer macro shall be executed under the following conditions:

• While the component is in the OMX_StateLoaded state and has already sent a
request for the state transition to OMX_StateIdle

• While the component is in the OMX_StateWaitForResources state, the resources
needed are available, and the component is ready to go to the OMX_StateIdle state

• On a disabled port when the component is in the OMX_StateExecuting, the
OMX_StatePause, or the OMX_StateIdle state

This is a blocking call. The component should return from this call within 20 msec.

The OMX_UseBuffer macro is defined as follows.
#define OMX_UseBuffer(\

hComponent,\
ppBufferHdr,\
nPortIndex,\
pAppPrivate,\
nSizeBytes,\
pBuffer)\

((OMX_COMPONENTTYPE*)hComponent->UseBuffer(\
hComponent,\
ppBufferHdr,\
nPortIndex,\
pAppPrivate,\
nSizeBytes,\
pBuffer)

The parameters are as follows.

Parameter Description
hComponent
[in] The handle of that component that executes the call.

ppBufferHdr
[out]

A pointer to a pointer of an OMX_BUFFERHEADERTYPE
structure that receives the pointer to the buffer header.

nPortIndex
[in]

The index of the port that will use the specified buffer. This
index is relative to the component that owns the port.

pAppPrivate
[in]

A pointer that refers to an implementation-specific memory area
that is under responsibility of the supplier of the buffer.

nSizeBytes
[in] The buffer size in bytes.

pBuffer
[in] A pointer to the memory buffer area to be used.

Section 3.3.14 describes the corresponding function that each component implements.

3.2.2.14.1 Prerequisites for This Method
The component shall be in the OMX_StateLoaded or the OMX_StateWaitForResources
state, or the port to which the call applies shall be disabled.

 82

3.2.2.14.2 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* supplier port allocates buffers and pass them to non-supplier */
for (i=0;i<pPort->nBufferCount;i++)
{

pPort->pBuffer[i] = malloc(pPort->nBufferSize);
OMX_UseBuffer(pPort->hTunnelComponent,

 &pPort->pBufferHdr[i],
 pPort->nTunnelPort,
 pPort,

pPort->nBufferSize,
pPort->pBuffer[j]);

}

3.2.2.15 OMX_AllocateBuffer
The OMX_AllocateBuffer macro will request that the component allocate a new
buffer and buffer header. The component will allocate the buffer and the buffer header
and return a pointer to the buffer header. This call is a blocking call that shall be
performed under the following conditions:

• While the component is in the OMX_StateLoaded state and has already sent a request
for the state transition to OMX_StateIdle

• While the component it is in the OMX_StateWaitForResources state, the resources
needed are available, and the component is ready to go to the OMX_StateIdle state

• On a disabled port when the component is the OMX_StateExecuting, the
OMX_StatePause, or the OMX_StateIdle states.

The OMX_AllocateBuffer macro allocates buffers on a specific port for
communication with the IL client only. This macro cannot be used to allocate buffers for
tunneled ports. Buffers allocated before a port was configured for tunneling will result in
the component failing OMX_SetupTunnel calls to the port.

The component should return from this call within five msec.

The OMX_AllocateBuffer macro is defined as follows.

#define OMX_AllocateBuffer (
 hComponent,
 pBuffer,
 nPortIndex,
 pAppPrivate,
nSizeBytes)
((OMX_COMPONENTTYPE*)hComponent)->AllocateBuffer(\
 hComponent, \
 pBuffer, \
 nPortIndex, \
 pAppPrivate, \
 nSizeBytes)

 83

The parameter are as follows.

Paramter Description
hComponent
[in] The handle of the component that executes the call.

ppBufferHdr
[out]

A pointer to a pointer of an OMX_BUFFERHEADERTYPE structure that
receives the pointer to the buffer header.

nPortIndex
[in]

Selects the port on the component that the buffer will be used with. The
port can be found by using the nPortIndex value as an index into the
port definition array of the component.

pAppPrivate
[in] Initializes the pAppPrivate member of the buffer header structure.

nSizeBytes
[in] The size of the buffer to allocate.

Section 3.3.15 describes the corresponding function that each component implements.

3.2.2.15.1 Prerequisites for This Method
The component shall be in the OMX_StateLoaded or the OMX_StateWaitForResources
state, or the port to which the call applies shall be disabled.

3.2.2.15.2 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* IL client asks component to allocate buffers */
for (i=0;i<pClient->nBufferCount;i++)
{

OMX_AllocateBuffer(hComp,
 &pClient->pBufferHdr[i],

 pClient->nPortIndex,
pClient,
pClient->nBufferSize);

}

3.2.2.16 OMX_FreeBuffer
The OMX_FreeBuffer macro will release a buffer and buffer header from the
component. The component shall free only the buffer header if it allocated only the buffer.
The component shall free both the buffer and the buffer header if it allocated both the
buffer and the buffer header. Thus, the component shall track which buffers it allocated
so it can perform the corresponding de-allocation.

The call should be performed under the following conditions:

• While the component is in the OMX_StateIdle state and the IL client has already sent
a request for the state transition to OMX_StateLoaded (e.g., during the stopping of
the component)

• On a disabled port when the component is in the OMX_StateExecuting, the
OMX_StatePause, or the OMX_StateIdle state.

 84

The call can be made at any time, but may result in the port sending an
OMX_ErrorPortUnpopulated error if the call is not performed as described. The call is
made from buffer supplier ports when tunneling to release buffer headers from the port
that the supplier port is tunneling with.

This call is a blocking call. The component should return from the call within 20 msec.

The OMX_FreeBuffer macro is defined as follows.
#define OMX_FreeBuffer (
 hComponent,
 nPortIndex,
pBuffer)
((OMX_COMPONENTTYPE*)hComponent)->FreeBuffer(\
 hComponent, \
 nPortIndex,
 pBuffer)

The parameters are as follows.

Parameter Description
hComponent
[in] The handle of the component that executes the call

nPortIndex
[in] The index of the port that is using the specified buffer

pBuffer
[in]

A pointer to an OMX_BUFFERHEADERTYPE structure used to provide or
receive the pointer to the buffer header.

Section 3.3.16 describes the corresponding function that each component implements.

3.2.2.16.1 Prerequisites for This Method
The component should be in the OMX_StateIdle state or the port should be disabled.

3.2.2.16.2 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* supplier port frees buffers */
for (i=0;i<pPort->nBufferCount;i++)
{

free(pPort->pBuffer[i]);
pPort->pBuffer[i] = 0;
OMX_FreeBuffer(pPort->hTunnelComponent,

pPort->nTunnelPort,
pPort->pBufferHdr[i]);

 pPort->pBufferHdr[j] = 0;
}

3.2.2.17 OMX_EmptyThisBuffer
The OMX_EmptyThisBuffer macro will send a filled buffer to an input port of a
component. When the buffer contains data, the value of the nFilledLength field of
the buffer header will not be zero. If the buffer contains no data, the value of

 85

nFilledLength is 0x0. The OMX_EmptyThisBuffer macro is invoked to pass
buffers containing data when the component is in or making a transition to the
OMX_StateExecuting or in the OMX_StatePaused state.

When a port is non-tunneled, buffers sent to OMX_EmptyThisBuffer are returned to
the IL client with the EmptyBufferDone callback once they have been emptied.

When a port is tunneled, buffers sent to OMX_EmptyThisBuffer are sent to the
tunneled port once they are emptied so long as the component is in the
OMX_StateExecuting state. Buffers are returned to the input port that supplied them
using OMX_EmptyThisBuffer whenever the tunneled port is flushed or disabled.
Buffers are also returned to the input port that supplied them when the component calling
OMX_FillThisBuffer is transitioning from the OMX_StateExecuting state or the
OMX_StatePaused state to the OMX_StateIdle state.

This call is a non-blocking call since the component will queue the buffer and return
immediately. The buffer will be emptied later at the proper time. If the parameter
nInputPortIndex in the buffer header does not specify a valid input port, the
component returns OMX_ErrorBadPortIndex. The component should return from
this call within five msec.

The OMX_EmptyThisBuffer macro is defined as follows.
#define OMX_EmptyThisBuffer (
 hComponent,
pBuffer)
((OMX_COMPONENTTYPE*)hComponent)->EmptyThisBuffer(\
 hComponent, \
 pBuffer)

The parameters are as follows.

Parameter Description
hComponent
[in] The handle of the component that executes the call.

pBuffer
[in]

A pointer to an OMX_BUFFERHEADERTYPE structure that is used to
provide or receive the pointer to the buffer header. The buffer header shall
specify the index of the input port that receives the buffer

Section 3.3.17 describes the corresponding function that each component implements.

3.2.2.17.1 Prerequisites for This Method
The component must be in the appropriate state as shown in Table 3-10.

3.2.2.17.2 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.

 86

/* deliver full buffer */
if (pPort->hTunnelComponent)

OMX_EmptyThisBuffer(pPort->hTunnelComponent, pBuffer);
else
 pCallbacks->FillBufferDone(hComp, pBuffer,
pPort->pCallbackAppData);

3.2.2.18 OMX_FillThisBuffer
The OMX_FillThisBuffer macro will send an empty buffer to an output port of a
component. The OMX_FillThisBuffer macro is invoked to pass buffers containing
no data when the component is in or making a transition to the OMX_StateExecuting
state or is in the OMX_StatePaused state.

When a port is non-tunneled, buffers sent to OMX_FillThisBuffer return to the IL
client with the FillBufferDone callback once they have been filled.

When a port is tunneled, buffers sent to OMX_FillThisBuffer are sent to the
tunneled port once they are filled so long as the component is in the
OMX_StateExecuting state. Buffers are returned to the output port that supplied them
using OMX_FillThisBuffer whenever the tunneled port is flushed or disabled.
Buffers are also returned to the output port that supplied them when the component that
calls OMX_FillThisBuffer is transitioning from the OMX_StateExecuting state or
OMX_StatePaused state to the OMX_StateIdle state.

This call is a non-blocking call since the component will queue the buffer and return
immediately. The buffer will be filled later at the proper time. If the parameter
nOutputPortIndex in the buffer header does not specify a valid output port, the
component returns OMX_ErrorBadPortIndex. The component should return from
this call within five msec.

The OMX_FillThisBuffer macro is defined as follows.
#define OMX_FillThisBuffer (
 hComponent,
pBuffer)
((OMX_COMPONENTTYPE*)hComponent)->FillThisBuffer(\
 hComponent, \
 pBuffer)

The parameters are as follows.

Parameter Description
hComponent
[in] The handle of the component that executes the call.

pBuffer
[in]

A pointer to an OMX_BUFFERHEADERTYPE structure used to provide or
receive the pointer to the buffer header. The buffer header shall specify the
index of the input port that receives the buffer.

Section 3.3.18 describes the corresponding function that each component implements.

 87

3.2.2.18.1 Prerequisites for This Method
The component must be in the appropriate state as shown in Table 3-10.

3.2.2.18.2 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* On a port enable, if tunneling and an input and not supplier */
/* then give buffers to supplier port */
if (pPort->hTunnelComponent &&
 (pPort->oPortDef.eDir == OMX_DirInput) &&
 (pPort->eSupplierSetting == OMX_BufferSupplyInput))
{
 for (i=0;i<pPort->nBuffers;i++){

OMX_FillThisBuffer(pPort->hTunnelComponent,
pPort->ppBufferHdrs[i]);

 }
}

3.2.3 Functions
This section describes the functions in the OpenMAX IL API.

3.2.3.1 OMX_Init
The OMX_Init method initializes the OpenMAX core. OMX_Init shall be the first call
made into OpenMAX and should be executed only one time without an intervening
OMX_Deinit call. If OMX_Init is called twice, OMX_ErrorNone is returned but the
init request is ignored. The core should return from this call within 20 msec.

The usage of OMX_Init() is as follows.
OMX_API OMX_ERRORTYPE OMX_APIENTRY OMX_Init()

3.2.3.1.1 Prerequisites for This Method
This method has no prerequisites.

3.2.3.1.2 Results/Outputs for This Method
If the command successfully executes, the return code will be OMX_ErrorNone.
Otherwise, the appropriate OpenMAX error will be returned. The OpenMAX core
functions are ready to be used when this function returns successfully.

3.2.3.1.3 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* Initialize OpenMax and create some components */
OMX_Init();
OMX_GetHandle(hMp3Decoder, "OMX.CompanyXYZ.mp3.decoder",

pAppData, pCallbacks);
OMX_GetHandle(hAudioMixer, "OMX.CompanyXYZ.audio.mixer",

pAppData, pCallbacks);

 88

3.2.3.2 OMX_Deinit
The OMX_Deinit method de-initializes the OpenMAX core. OMX_Deinit should be
the last call made into the OpenMAX core after all OpenMAX-related resources have
been released. The core should return from this call within 20 msec. While it may be
preferable to have the core command each of the components back to the loaded state and
then de-initialize them, doing so may require more than the recommended 20 msec call
time. It further requires the OpenMAX core to track all component handles, which may
add unnecessary complexity for some platforms.

The OMX_Deinit method usage is as follows.
OMX_API OMX_ERRORTYPE OMX_APIENTRY OMX_Deinit()

3.2.3.2.1 Prerequisites for This Method
The use of OMX_Deinit requires that all component handles in the system have been
released, implying that all resources associated with components have been freed.

3.2.3.2.2 Results/Outputs for This Method
The use of OMX_Deinit returns OMX_ERRORTYPE. If the command successfully
executes, the return code will be OMX_ErrorNone. Otherwise, the appropriate
OpenMAX error will return.

3.2.3.2.3 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* Determine if a component of a particular name exists. */
OMX_Init();
eError = OMX_ErrorNone;
for (i=0; OMX_ErrorNone == eError; i++)
{

eError = OMX_ComponentNameEnum(szCompEnumName, 256, i);
if ((OMX_ErrorNone == eError) &&

 (!strcmp(szCompEnumName, szComponentName))
{

 OMX_Deinit();
return OMX_TRUE;

 }
}
OMX_Deinit();
return OMX_FALSE;

3.2.3.3 OMX_ComponentNameEnum
The OMX_ComponentNameEnum method will enumerate through all the names of
recognized components in the system to detect all the components in the system run-time.
There is no strict ordering to the enumeration of component names, although each name
shall be enumerated only once. If the OpenMAX core supports run-time installation of
new components, it is required to detect newly installed components only when the first
call to enumerate component names occurs (i.e., when the value of nIndex is 0x0).

 89

The OMX_ComponentNameEnum method is defined as follows.
OMX_API OMX_ERRORTYPE OMX_APIENTRY OMX_ComponentNameEnum(
 OMX_OUT OMX_STRING cComponentName,
 OMX_IN OMX_U32 nNameLength,
 OMX_IN OMX_U32 nIndex
)

The parameters are as follows.

Parameter Description
cComponentName
[out]

A pointer to a null-terminated string with the component name.
Component names are strings limited to less than 127 bytes in length
plus the trailing null for a maximum length of 128 bytes. An example
of a valid component name is
"OMX.<vendor_name>.AUDIO.DSP.MIXER\0". The name shall
start with "OMX." concatenated to a vendor-specified string.

nNameLength
[in]

The number of characters in the cComponentName string. Since all
component name strings are restricted to less than 128 characters, not
including the trailing null, the caller should provide an input string of
at least 128 characters.

nIndex
[in]

A number containing the enumeration index for the component.
Multiple calls to OMX_ComponentNameEnum with increasing
values of nIndex will enumerate through the component names in
the system until OMX_ErrorNoMore returns. The value of nIndex
is 0 to N-1, where N is the number of installed components in the
system.

3.2.3.3.1 Prerequisites for This Method
OMX_ComponentNameEnum can be called after the OMX_Init function.

3.2.3.3.2 Results/Outputs for This Method
If OMX_ComponentNameEnum successfully executes, the return code will be
OMX_ErrorNone. When the value of nIndex exceeds the number of components in
the system minus 1, OMX_ErrorNoMore will be returned. Otherwise, the appropriate
OpenMAX error will be returned.

3.2.3.3.3 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* print a list of all components */
eError = OMX_ErrorNone;
for (i=0; OMX_ErrorNoMore != eError; i++)
{

eError = OMX_ComponentNameEnum(szCompName, 256, i);
 if (OMX_ErrorNone == eError)

 printf("Component %i: %s\n", szCompName);
}

 90

3.2.3.4 OMX_GetHandle
The OMX_GetHandle method will locate the component specified by the component
name given, load that component into memory, and validate it. If the component is valid,
OMX_GetHandle will invoke the component's methods to fill the component handle
and set up the callbacks. The OMX_GetHandle method will allocate the actual
OMX_HANDLETYPE structure, ensures it is populated correctly, and then updates the
value of *pHandle with a pointer to the newly created handle. The component should
return from this call within 20 msec.

Each time the OMX_GetHandle function returns successfully, a new component
instance is created. The IL client shall configure the newly created component, which is
in the OMX_StateLoaded state, before the component can be used.

Since components are requested by name, a naming convention is defined. OpenMAX
component names are NULL terminated strings with the following format:

“OMX.<vendor_name>.<vendor_specified_convention>”.

No standardization among component names is dictated across different vendors.

OMX_GetHandle is defined as follows.

OMX_API OMX_ERRORTYPE OMX_APIENTRY OMX_GetHandle(
 OMX_OUT OMX_HANDLETYPE * pHandle,
 OMX_IN OMX_STRING cComponentName,
 OMX_IN OMX_PTR pAppData,
 OMX_IN OMX_CALLBACKTYPE * pCallBacks
)

The parameters are as follows.

Parameter Description
pHandle
[out] A pointer to OMX_HANDLETYPE to be filled in by this method.

cComponentName
[in]

A pointer to a null-terminated string with the component name.
Component names are strings limited to less than 128 bytes in length
plus the trailing null for a maximum length of 128 bytes. An example
of a valid component name is
"OMX.<vendor_name>.AUDIO.DSP.MIXER\0". The name shall
start with "OMX." concatenated to a vendor-specified string.

pAppData
[in]

A pointer to an IL client-defined value that will be returned during
callbacks so that the IL client can identify the source of the callback.

pCallBacks
[in]

A pointer to an OMX_CALLBACKTYPE structure containing the
callbacks that the component will use for this IL client.

3.2.3.4.1 Prerequisites for This Method
The OpenMAX core shall be initialized.

 91

3.2.3.4.2 Results/Outputs for This Method
If successful, the function returns a valid component handle to the IL client.

3.2.3.4.3 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* determine maximum number of instantiations of a component */
eError = OMX_ErrorNone;
for (i=0; OMX_ErrorNone == eError; i++)
{

eError = OMX_GetHandle(&hComp[i],
szComponentName,
pAppData,
pCallbacks);

}
printf("Created %i instantiations.\n",i);

3.2.3.5 OMX_FreeHandle
The OMX_FreeHandle method will free a handle allocated by the OMX_GetHandle
method. The component should return from this call within 20 msec. The IL client
should call OMX_FreeHandle only when the component is in the OMX_StateLoaded
or the OMX_StateInvalid state; calling OMX_FreeHandle from any other state may
result in the component taking longer than the recommended 20 msec execution time, and
is provided only as a failure recovery mechanism.

OMX_FreeHandle is defined as follows.

OMX_API OMX_ERRORTYPE OMX_APIENTRY OMX_FreeHandle(
OMX_IN OMX_HANDLETYPE hComponent)

The single parameter is as follows.

Parameter Description
hComponent
[in] The handle of the component to freed.

3.2.3.5.1 Prerequisites for This Method
The component should be in the OMX_StateLoaded or the OMX_StateInvalid state when
this method is called.

3.2.3.5.2 Results/Outputs for This Method
All resources associated with the components are freed.

3.2.3.5.3 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.

 92

/* stop executing component and clean up component */
OMX_SendCommand(hComp, OMX_CommandStateSet, OMX_StateIdle, 0);
OMX_SendCommand(hComp, OMX_CommandStateSet, OMX_StateLoaded, 0);
do {

OMX_GetState(hComp, &eState);
} while (OMX_StateLoaded != eState);
OMX_FreeHandle(hComp);

3.2.3.6 OMX_SetupTunnel
The OMX_SetupTunnel method sets up tunneled communication between an output
port and an input port. This method is an actual method and not a defined macro. The
OMX_SetupTunnel method will make calls to the component’s
ComponentTunnelRequest() method to set up the tunnel.

When setting up non-tunneled communication for an input port, the value of the
hOutput parameter shall be 0x0. When setting up non-tunneled communication for an
output port, the value of hInput shall be 0x0.

When setting up tunneled communication between an output port and an input port, the
method first issues a call to ComponentTunnelRequest() on the component with
the output port. If the call is successful, a second call to
ComponentTunnelRequest() on the component with the input port is made.
Should either call to ComponentTunnelRequest() fail, the method will set up both
the output and input ports for non-tunneled communication.

The components may negotiate proprietary communication in place of tunneled
communication so long as both the output and input ports can support proprietary
communication. An IL client cannot disambiguate between tunneled and proprietary
communication.

The component should return from this call within 20 msec.

This method is unsupported by base profile components, which shall return
OMX_ErrorNotImplemented.

For a detailed description of the process to set up a data tunnel between two components,
see section 3.4.1.2.

OMX_SetupTunnel is defined as follows.

OMX_API OMX_ERRORTYPE OMX_APIENTRY OMX_SetupTunnel(
 OMX_IN OMX_HANDLETYPE hOutput,
 OMX_IN OMX_U32 nPortOutput,
 OMX_IN OMX_HANDLETYPE hInput,
 OMX_IN OMX_U32 nPortInput
)

The parameters are as follows.

 93

Parameter Description
hOutput
[in]

The handle of the component containing the output port used in the tunnel,
where the output port is identified by the nPortOutput parameter. By
definition, an output port has the direction OMX_DirOutput. If the value
of this parameter is 0x0, the hPortInput port on the hInput
component will be set up for non-tunneled communication.

nPortOutput
[in] Indicates the output port of the component specified by hOutput that is to

be used for tunneled or proprietary communication.

hInput
[in]

The handle of the component containing the input port used in the tunnel,
where the input port is identified by the nPortInput parameter. By
definition, an input port has the direction OMX_DirInput. If the value of
this parameter is 0x0, the hPortOutput port on the hOutput
component will be set up for non-tunneled communication.

nPortInput
[in] Indicates the input port of the component specified by hInput that is to

be used for tunneled or proprietary communication.

3.2.3.6.1 Prerequisites for This Method
Each component that is being tunneled shall be in the OMX_StateLoaded state, or its port
shall be disabled.

3.2.3.6.2 Results/Outputs for This Method
If the method returns successfully when both an output and input component are supplied,
tunneled or proprietary communication has been set up between the specified output and
input ports. When only an output or an input component is supplied or if an error occurs
during processing, the ports are set up for non-tunneled communication.

3.2.3.6.3 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* set up tunnel between two components then transition to idle */
OMX_SetupTunnel(hCompA, nCompAOutPort, hCompB, nCompBInPort);
OMX_SendCommand(hCompA, OMX_CommandStateSet, OMX_StateIdle, 0);
OMX_SendCommand(hCompB, OMX_CommandStateSet, OMX_StateIdle, 0);

 94

3.3 OpenMAX Component Methods and Structures
OpenMAX components are defined in the OMX_Component.h header file. The structure
OMX_COMPONENTTYPE holds the data fields and function entry points for a component.

3.3.1 nSize
nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or an output from a function.

3.3.2 nVersion
nVersion is the version of the OpenMAX specification that the structure is built
against. The creator of this structure is responsible for initializing this value. Every user
of this structure should verify that it knows how to use the exact version of this structure.

3.3.3 pComponentPrivate
pComponentPrivate is a pointer to the component private data area. The component
allocates and initializes this member when the component is first loaded. The application
should not access this data area.

3.3.4 pApplicationPrivate
pApplicationPrivate is a pointer to the application private data area. The
component initializes this field during the call to OMX_SetCallbacks, as this field is
provided back to the IL client when the component issues callbacks..

3.3.5 GetComponentVersion
The IL client calls the GetComponentVersion component method via the
OMX_GetComponentVersion core macro. See the definition of
OMX_GetComponentVersion in section 3.2.2.1 for a description of its semantics.

GetComponentVersion is defined as follows.

 OMX_ERRORTYPE (*GetComponentVersion)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_OUT OMX_STRING pComponentName,
 OMX_OUT OMX_VERSIONTYPE* pComponentVersion,
 OMX_OUT OMX_VERSIONTYPE* pSpecVersion,
 OMX_OUT OMX_UUIDTYPE* pComponentUUID);

3.3.6 SendCommand
The IL client calls the SendCommand component method via the OMX_SendCommand
core macro. See the definition of OMX_SendCommand in section 3.2.2.2 for a
description of its semantics.

SendCommand is defined as follows.

 95

 OMX_ERRORTYPE (*SendCommand)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_COMMANDTYPE Cmd,
 OMX_IN OMX_U32 nParam,
 OMX_IN OMX_PTR pCmdData);

3.3.7 GetParameter
The IL client or a tunneled component calls the GetParameter component method via the
OMX_GetParameter core macro. See the definition of OMX_GetParameter in section
3.2.2.8 for a description of its semantics.

GetParameter is defined as follows.

 OMX_ERRORTYPE (*GetParameter)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_INDEXTYPE nParamIndex,
 OMX_INOUT OMX_PTR ComponentParameterStructure);

3.3.8 SetParameter
The IL client or a tunneled component calls the SetParameter component method via the
OMX_SetParameter core macro. See the definition of OMX_SetParameter in
section 3.2.2.9 for a description of its semantics.

SetParameter is defined as follows.

 OMX_ERRORTYPE (*SetParameter)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_INDEXTYPE nIndex,
 OMX_IN OMX_PTR ComponentParameterStructure);

3.3.9 GetConfig
The IL client calls the GetConfig component method via the OMX_GetConfig core
macro. See the definition of OMX_GetConfig in section 3.2.2.10 for a description of its
semantics.

GetConfig is defined as follows.

 OMX_ERRORTYPE (*GetConfig)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_INDEXTYPE nIndex,
 OMX_INOUT OMX_PTR pComponentConfigStructure);

 96

3.3.10 SetConfig
The IL client calls the SetConfig component method via the OMX_SetConfig core
macro. See the definition of OMX_SetConfig in section 3.2.2.11 for a description of its
semantics.

SetConfig is defined as follows.

 OMX_ERRORTYPE (*SetConfig)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_INDEXTYPE nIndex,
 OMX_IN OMX_PTR pComponentConfigStructure);

3.3.11 GetExtensionIndex
The IL client calls the GetExtenstionIndex component method via the
OMX_GetExtensionIndex core macro. See the definition of
OMX_GetExtensionIndex in section 3.2.2.12 for a description of its semantics.

GetExtensionIndex is defined as follows.

 OMX_ERRORTYPE (*GetExtensionIndex)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_STRING cParameterName,
 OMX_OUT OMX_INDEXTYPE* pIndexType);

3.3.12 GetState
The IL client calls the GetState component method via the OMX_GetState core macro.
See the definition of OMX_GetState in section 3.2.2.13 for a description of its
semantics.

GetState is defined as follows.

 OMX_ERRORTYPE (*GetState)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_OUT OMX_STATETYPE* pState);

3.3.13 ComponentTunnelRequest
The OMX_ComponentTunnelRequest method will interact with another OpenMAX
component to determine if tunneling is possible and to set up the tunneling if it is possible.
The return codes for this method can determine if tunneling is not possible or if
proprietary communication or tunneling is used.

The interop profile-conformant component shall support tunneling to a component with
compatible parameters. The component may also support proprietary communication. If

 97

proprietary communication is supported, the negotiation of proprietary communication is
performed in a vendor-specific way. The only requirement is that the proper result be
returned. The details of the proprietary communication setup are left to the vendor’s
component implementer.

The ComponentTunnelRequest method is invoked on both components that support the
tunneling communication. When this method is invoked on the component that provides
the output port, the component will do the following:

1. Indicate its supplier preference in pTunnelSetup.

2. Set the OMX_PORTTUNNELFLAG_READONLY flag to indicate that buffers
from this output port are read-only and that the buffers cannot be shared through
components or modified.

When this method is invoked on the component that provides the input port, the
component will do the following:

1. Check the data compatibility between the ports using one or more
GetParameter calls.

2. Review the buffer supplier preferences of the output port and use
OMX_SetParameter with index
OMX_IndexParamCompBufferSupplier to inform the output port of
which port supplies the buffers.

If this method is invoked with a NULL parameter for the pTunnelComp parameter, the
port should be set up for non-tunneled communication with the IL client.

The component should return from this call within five msec.

ComponentTunnelRequest is defined as follows.

 OMX_ERRORTYPE (*ComponentTunnelRequest)(
 OMX_IN OMX_HANDLETYPE hComp,
 OMX_IN OMX_U32 nPort,
 OMX_IN OMX_HANDLETYPE hTunneledComp,
 OMX_IN OMX_U32 nTunneledPort,
 OMX_INOUT OMX_TUNNELSETUPTYPE* pTunnelSetup);

The parameters are as follows.

Parameter Description
hComp
[in]

The handle of the target component of the RequestTunnel call
and one of the components that will participate in the tunnel.

nPort
[in]

The index of the port belonging to hComp that will participate
in the tunnel.

hTunneledComp
[in]

The handle of the other component that participates in the
tunnel. When this parameter is NULL, the port specified in
nPort should be configured for non-tunneled communication
with the IL client.

 98

nTunneledPort
[in]

The index of the port belonging to hTunneledComp that
participates in the tunnel.

pTunnelSetup
[in,out]

The structure that contains data for the tunneling negotiation
between components. The supplier field can be filled by both
components; the callbacks field is filled by the output port
component. The read-only flag can be applied by both
components.

3.3.13.1 Prerequisites for This Method
The component shall be in the OMX_StateLoaded state.

3.3.13.2 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* Translate a SetupTunnel call to two ComponentTunnelRequest calls */
pCompOut = (OMX_COMPONENTTYPE *)hOutput;
pCompIn = (OMX_COMPONENTTYPE *)hInput;
pCompOut->ComponentTunnelRequest(hOutput, nPortOutput, hInput,

nPortInput, &oTunnelSetup);
pCompIn->ComponentTunnelRequest(hInput, nPortInput, hOutput,
 nPortOutput, &oTunnelSetup);

3.3.14 UseBuffer
The IL client or a tunneled component calls the UseBuffer component method via the
OMX_UseBuffer core macro. See the definition of OMX_UseBuffer in section 3.2.2.14
for a description of its semantics.

UseBuffer is defined as follows.

 OMX_ERRORTYPE (*UseBuffer)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_INOUT OMX_BUFFERHEADERTYPE** ppBufferHdr,
 OMX_IN OMX_U32 nPortIndex,
 OMX_IN OMX_PTR pAppPrivate,
 OMX_IN OMX_U32 nSizeBytes,
 OMX_IN OMX_U8* pBuffer);

3.3.15 AllocateBuffer
The IL client calls the AllocateBuffer component method via the OMX_AllocateBuffer
core macro. See the definition of OMX_AllocateBuffer in section 3.2.2.15 for a
description of its semantics.

AllocateBuffer is defined as follows.

 99

 OMX_ERRORTYPE (*AllocateBuffer)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_INOUT OMX_BUFFERHEADERTYPE** pBuffer,
 OMX_IN OMX_U32 nPortIndex,
 OMX_IN OMX_PTR pAppPrivate,
 OMX_IN OMX_U32 nSizeBytes);

3.3.16 FreeBuffer
The IL client or a tunneled component calls the FreeBuffer component method via the
OMX_FreeBuffer core macro. See the definition of OMX_FreeBuffer in section 3.2.2.16
for a description of its semantics.

FreeBuffer is defined as follows.

 OMX_ERRORTYPE (*FreeBuffer)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_U32 nPortIndex,
 OMX_IN OMX_BUFFERHEADERTYPE* pBuffer);

3.3.17 EmptyThisBuffer
The IL client or a tunneled component calls the EmptyThisBuffer component method via
the OMX_EmptyThisBuffer core macro. See the definition of OMX_EmptyThisBuffer in
section 3.2.2.17 for a description of its semantics.

EmptyThisBuffer is defined as follows.

 OMX_ERRORTYPE (*EmptyThisBuffer)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_BUFFERHEADERTYPE* pBuffer);

3.3.18 FillThisBuffer
The IL client or a tunneled component calls the FillThisBuffer component method via the
OMX_FillThisBuffer core macro. See the definition of OMX_FillThisBuffer in section
3.2.2.18 for a description of its semantics.

FillThisBuffer is defined as follows.

 OMX_ERRORTYPE (*FillThisBuffer)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_BUFFERHEADERTYPE* pBuffer);

 100

3.3.19 SetCallbacks
The SetCallbacks method will allow the core to transfer the callback structure from
the IL client to the component. This is a blocking call. The component should return from
this call within five msec.

SetCallbacks is defined as follows.

 OMX_ERRORTYPE (*SetCallbacks)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_CALLBACKTYPE* pCallbacks,
 OMX_IN OMX_PTR pAppData);

The parameters are as follows.

Parameter Description
hComponent
[in] The handle of the component that executes the call.

pCallbacks
[in]

A pointer to an OMX_CALLBACKTYPE structure that is used to provide the
callback information to the component.

pAppData
[in]

A pointer to a value that the IL client has defined (for example, a pointer to
a data structure) that allows the callback in the IL client to determine the
context of the call.

3.3.19.1 Prerequisites for This Method
The component shall be in the OMX_StateLoaded state.

3.3.19.2 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* On GetHandle (for statically linked components):
 create component, initialize it, and set its callbacks */
pComp = (OMX_COMPONENTTYPE *)malloc(sizeof(OMX_COMPONENTTYPE));
hHandle = (OMX_HANDLETYPE)pComp;
pComp->nVersion = version_1_0;
pComp->nSize = sizeof(OMX_COMPONENTTYPE);
OMX_ComponentRegistered[i].pInitialize(hHandle);
pComp->SetCallbacks(hHandle, pCallBacks, pAppData);

3.3.20 ComponentDeinit
The core calls the ComponentDeinit function when the core needs to dispose of a
component.

ComponentDeinit is defined as follows.

 OMX_ERRORTYPE (*ComponentDeInit)(
 OMX_IN OMX_HANDLETYPE hComponent);

 101

The single parameter is as follows.

Parameter Description
hComponent
[in]

The handle of the component that executes the
call.

3.3.20.1 Prerequisites for This Method
There are no prerequisites for this method. The IL client may execute this function
regardless of component state so that de-initialization is guaranteed even on components
that are unresponsive to state changes. However, executing ComponentDeinit when the
component is in the OMX_StateLoaded state is recommended for proper shutdown.

3.3.20.2 Sample Code Showing Calling Sequence
The following sample code shows the calling sequence.
/* On FreeHandle: de-initialize component and destroy it */
pComp = (OMX_COMPONENTTYPE*)hComponent;
(pComp->ComponentDeInit)(hComponent);
OMX_OSAL_Free(pComp);

3.4 Calling Sequences
This section describes how the IL client, the OpenMAX core, and the components
dynamically interact in a few meaningful use cases, namely initialization, de-initialization,
data flow, data tunneling setup, and data flow in the case of data tunneling and dynamic
port reconfiguration. The interaction between the core, the components, and the possible
implementation of a resource manager is also described.

3.4.1 Initialization
This section describes the operations for initializing the OpenMAX components. The
components can be handled directly by the IL client, can be tunneled to each other, or
both. The tunneled and non-tunneled cases are distinguished for clarity, but the two cases
can be both present in the component framework.

3.4.1.1 Non-tunneled Initialization
Figure 3-3 shows how an IL client should initialize an OpenMAX component.

 102

Figure 3-3. Component Initialization

First, the IL client shall call the OMX_GetHandle function, which activates the actual
component creation (1.1) by the core. Also, all of the configuration resources of the
component are loaded into memory. The core passes IL client callback functions to the
component by means of the SetCallbacks method (1.2). If previous steps are
successful, a valid handle is returned in step 1.3 and the component will be in the
OMX_StateLoaded state.

The IL client shall configure the component and its ports. For this purpose, the IL core
macro OMX_SetParameter shall be used; it may be called multiple times (step 1.4) if
needed.

When the client has completed the configuration phase, it can request the component to
make the state transition to OMX_StateIdle. Only after this request shall the IL client set
up buffers for the component to use for all of its ports. The IL client shall use either
OMX_AllocateBuffer or OMX_UseBuffer to set up buffers. If the IL client asks
components for a tunnel, it does not allocate setup buffers because the tunneled
components allocate any buffers. See section 3.4.1.2 for more details on tunneling.

This process may be repeated multiple times, depending on the number of ports and the
total number of buffers needed on each port. If OMX_UseBuffer is used, the IL client
shall have allocated a buffer and passed it to the component. Alternatively, the IL client

sd Buffer Allocation - no tunneling
IL client

OpenMAX
Component

IL Core

1.0 OMX GetHandle(handle, componentName, NULL, callBacks)
1.0 The IL client ask for an handle. The
returned component is in the loaded state.

1.1 component allocation

1.2 SetCallbacks
1.2 The Core assigns to the component the
callbacks.

1.3 return

1.4 SetParameter

2.0 SendCommand(handle, OMX CommandStateSet, OMX StateIdle)
2.0 The IL client requests the change of
component state.

2.1 OMX AllocateBuffer(handle, bufferHeader, portIndex, NULL, bufferSize)
2.1 The IL client requests to the
component to allocate the buffer with the
specified size and assign it to the specified
port. 2.2 allocate buffer

and buffer header
2.2 The component allocates the buffer
and the buffer header.

2.3 return

2.4 allocate buffer2.4 The client allocates in a system
specific way the buffer memory.

2.5 OMX UseBuffer(handle, bufferHeader, portIndex, NULL)
2.5 The IL client sends the buffer to the
component.

2.6 allocate buffer header2.6 The IL client allocates the buffer
header that will contain the buffer given by
the client.

2.7 return

2.8 EventHandler(handle, NULL, OMX EventCmdComplete, OMX CommandStateSet, OMX StateIdle, NULL)
2.8 When the component detects that all
the ports have the needed buffers, it can
perform the state transition to Idle and
inform the IL client of the completion of its
request.

 103

may ask the component to allocate a buffer and a buffer header using the
OMX_AllocateBuffer method. In the latter case, the component will allocate both a
buffer and its related header and return it to the IL client by reference.

As soon as these initial configuration steps are completed, the component shall complete
the state transition and return an event to the client for the SendCommand request
completion (step 2.8).

The component is now ready to be used by the IL client.

3.4.1.2 Tunneled Initialization
To avoid moving data buffers back and forth among the IL client and OpenMAX
components, data tunnels can be set up so that the output buffer of one component is
passed directly to the input port of the next component in the chain.

Consider the example shown in Figure 3-4, where an IL client generates data for a chain
of three tunneled components identified as A, B, and C. Component C is a sink and does
not return data to the IL client.

cd DT

A :
OMXComponent

A1

A0

B :
OMXComponent

B0 B1

C :
OMXComponent

C0

ILClient

Output

Data tunneling:
data pipeline

«event»«event»«callbacks»

Figure 3-4. Example of Data Tunneling Among OpenMAX Components

Note that all callbacks are always directed to and managed by the IL client when ports
communicate using proprietary or tunneled communication. The tunneling setup and
initialization require a detailed description, based on the following steps:

• The components are constructed with the calls to OMX_GetHandle.

• The components are tunneled, linking an output port of the first component to an
input port of the second component. The port that shall supply the buffer is decided in
this phase.

• The IL client may override the input ports’ choice of buffer supplier after
OMX_SetupTunnel has completed by setting the buffer supplier into the input port,
which in turn will reprogram the supplier to the output port..

During the transition from OMX_StateLoaded to OMX_StateIdle, each component shall
not transition until the required buffers on all enabled ports have been allocated.

 104

OMX_SetupTunnel shall be executed only when the components are in the
OMX_StateLoaded state or when ports are disabled. Figure 3-5 illustrates the setup
process:

sd DT - setupTunnel

ILClient
:OMXCallback

:ILCore A
:OMXComponent

B
:OMXComponent

opt Unsuccessful tunnel setup

[B does not accept tunneling]

1.0 OMX_SetupTunnel(A,1,B,0)
1.0 IL client tunnelling request

1.1 ComponentTunnelRequest(A,1,B,0,*pTunnelSetup)
1.1 The core starts the
negotiation

1.2 *pTunnelSetup
1.2 A returns its tunnel setup
requirements to the core by
means of the
OMX_TUNNELSETUPTYPE
struct.

1.3 ComponentTunnelRequest(B,0,A,1,*pTunnelSetup)
1.3 The core calls component
tunnel request on component
B and passes the tunnel setup
structure defined by A. 1.4 getParameter(A, nParamIndex, ComponentParameterStructure)
1.4 B checks if i ts input port is
compatible with the output
port of component A.

1.5 SetParameter(A, OMX_IndexParamCompBufferSupplier, supplierStructure)
1.5 The component B informs
component A about the final
result of negotiation.

1.6 *pTunnelSeup
1.6 The setup tunnel struct is
returned to the core.

1.7 ComponentTunnelRequest(A, 1, NULL, 0, NULL)
1.7 If the tunneling request is
rejected by B, the setup on A is
canceled

1.8 OK
0R Errror1.8 By examining the tunnel

setup struct the core decides
that the tunnel can be
established and returns an
OMX_ERRORNONE or return
an error i f the tunnel fails

Figure 3-5. Tunnel Setup

The IL client shall start the data setup process by calling the OMX_SetupTunnel
function of the IL core when the components that are being tunneled are in the
OMX_StateLoaded state (step 1.0).

As a result, the IL core shall call the ComponentTunnelRequest methods of
component A and B in sequence. The structure OMX_TUNNELSETUPTYPE defined in
section 3.1.2.9 shall be passed by the IL core to the component with the output port first.
The component receiving such a call shall fill in the structure and return it to the core. If
the ComponentTunnelRequest call returns successfully, the IL core shall call the
same function on the second component (1.3), passing the OMX_TUNNELSETUPTYPE
structure that was filled in by the first component. The component also shall check that
the output port of the peer component is compatible with its input port (i.e., the data type
should be the same) (1.4). If the tunnel setup parameters included in the structure are
agreed to by the second component, the ComponentTunnelRequest call will send
back to the first component the result of negotiation (1.5) and returns successfully (1.6).
The IL core shall check that both calls of ComponentTunnelRequest did not return
errors. If so, the initial OMX_SetupTunnel will return successfully.

 105

If the call to ComponentTunnelRequest on component B fails, component A will
be set to not tunnel by a second call to ComponentTunnelRequest with a pointer to
NULL in place of the component B handle and pTunnelSetup parameter.

After the successful tunnel setup, the IL client may override the buffer supplier
negotiation with the procedure illustrated in Figure 3-6:

sd DT - Client ov erride

IL Client IL Core Component A :
output port
prov ider

Component B :
input port
prov ider

1.0 SetParameter(B, OMX_IndexParamCompBufferSupplier, supplierStructure)
1.0 The IL cl ient is al lowed to call the
SetParameter to change the buffer
supplier only on the input port provider (B)

1.1 change buffer supplier setting
1.1 The component B takes care of the
cl ient's request

1.2 SetParameter(A, OMX_IndexParamCompBufferSupplier, supplierStructure)
1.2 The compoent B is responsible to
change the buffer supplier parameter on
the component A

1.3 change buffer supplier setting

1.4 return(OMX_ErrorNone)

1.5 return(OMX_ErrorNone)

Figure 3-6. IL Client Buffer Supplier Override

If the IL client wants to override the negotiation of tunneled components that specifies
which component is the buffer supplier, it shall call the function SetParameter on the
component that provides the input port. That component is responsible for signaling to
the other tunneled component the new buffer supplier, with the same call to
SetParameter.

The last step of the tunnel initialization phase is the state transition from
OMX_StateLoaded to OMX_StateIdle that also involves the buffer allocation and
assignment. Figure 3-7 illustrates the state transition behavior in which the tunnels are
already created and configured.

id allocation_tunnel

Component A OutputA Component BInputB OutputB Component CInputC

buffer supplier
ports

Buffer user ports

Figure 3-7. Tunneling Example

 106

Component A is tunneled with component B, and component B is the buffer supplier.
Component B is tunneled with component C, and component C is the buffer supplier.

Figure 3-8 illustrates the behavior of each tunneled component during the state transition.
sd DT - buffer allocation

IL Client Component A Component B Component C

1.0 SendCommand(A, OMX_CommandStateSet, OMX_StateIdle)
1.0 The IL cl ient starts to change the
state to al l the components, starting
from component A. The order of
SendCammand cal ls to the
component is does NOT matter

1.1 wait
1.1 The component A detects i t is
m issing buffers on output port and
suspends the execution waiting for
those buffers

1.2 SendCommand(B, OMX_CommandStateSet, OMX_StateIdle)
1.2 The IL cl ient requests the
component B to change state from
loaded to idle

1.3 buffer al location
1.3 The needed buffers are
al located or provided from another
port in case of buffer sharing

1.4 UseBuffer(A, pBuffer)
1.4 The Component B suppl ies the
buffers to the tunnel at i ts input port.
It calss the UseBuffer on tunneled
component A

1.5 EventHandler(A, OMX_CommandStateSet, OMX_StateIdle)
1.5 The Component A has now al l
the needed buffers, and can perform
the state change

1.6 wait
1.6 The Component B waits for the
other buffers sti l l needed

1.7 SendCommand(C, OMX_CommandStateSet, OMX_StateIdle)
1.7 The IL cl ient requests the
component C to change state from
loaded to idle

1.8 UseBuffer(B, pBuffer)
1.8 he Component C suppl ies the
buffers to the tunnel at i ts input port.
It calss the UseBuffer on tunneled
component B

1.9 EventHandler(B, OMX_CommandStateSet, OMX_StateIdle)
1.9 The Component B has now al l
the needed buffers, and can perform
the state change

1.10 EventHandler(C, OMX_CommandStateSet, OMX_StateIdle)
1.10 The Component C has now al l
the needed buffers, and can perform
the state change

Figure 3-8. State Transition to Idle in the Case of Tunneled Component s

Each supplier port on a component shall pass its buffers to the non-supplier port it is
tunneling with via OMX_UseBuffer. After all of its supplier ports have passed buffers,
the component waits until all of its non-supplier ports have received all of their buffers
via OMX_UseBuffer.

In Figure 3-8, component A receives the state transition request from the IL client.
Component A is tunneled with component B. The input port of B is set as buffer supplier
for the tunnel. In this case, component A shall wait until its output port receives all of the
needed buffers.

Meanwhile, the IL client asks component B to change its state. In this case, component B
has a port that is a buffer supplier, the input port, and it shall call UseBuffer on the
output port of component A. Then, component B waits for all of the needed buffers on its
output port.

 107

Now component A has all of the needed buffers, so it can perform the state transition to
OMX_StateIdle. The exact sequence of transitions can be different, since it depends on
the platform, the operating system, and the implementation. The only rule is to wait until
all the resources are available.

The IL client requests that component C change its state. Component C behaves like
component B: Component C gives the buffers needed to component B, and then can
change its state, since it does not need any other buffers.

Finally, component B can change its state to OMX_StateIdle since it has obtained all of
the needed buffers.

3.4.2 Data Flow
OpenMAX defines two means of data communication:

• Tunneled communication, where a port exchanges data directly with a port on another
component

• Non-tunneled communication, where a port exchanges data only with the IL client

A port may implement data tunneling via proprietary communication, taking advantage
of platform-specific features. The following sections describe the data flow inherent to
each means of communication.

3.4.2.1 Non-tunneled Data Flow
An IL client that has a data buffer to deliver to a component input port shall issue an
OMX_EmptyThisBuffer call.

Conversely, for the component output port, the IL client shall initially provide one or
more empty buffers into which the component can write output data; the
OMX_FillThisBuffer call accomplishes this task. As soon as one buffer is available
from the component output port, the component shall send an OMX_FillBufferDone
callback. The component is aware of the callback entry point from the earlier SetBacks
call.

Note that the IL client is entirely responsible for moving data buffers among components
if data tunneling is not used.

Figure 3-9 illustrates the dynamic behavior related to data flow.

 108

Figure 3-9. Data Flow Between Non-tunneled Components

3.4.2.2 Tunneled Data Flow
In data tunneling, OpenMAX components directly pass data buffers among themselves
without returning them to the IL client. This data flow uses a different convention from
the situation where all data buffers are exchanged with the IL client.

If the buffer supplier is the output component, it shall call OMX_EmptyThisBuffer on
the other tunneled component to pass the buffer that is to be emptied. When the input
component has terminated the operation, it shall return the buffer to the output
component by calling OMX_FillThisBuffer on it.

If the buffer supplier is the input component, the communication mechanism is the same
but is initiated by calling OMX_FillThisBuffer on the output component. Figure 3-
10 illustrates this process.

sd dataflow

ILClient
:OMXCallbac
k

:ILCore A
:OMXComponent

1.0
OMX_FillThisBuffer(pHandle,1,pBufferOut)1.0 The application provides an empty

buffer for component A’s output
port. 1.1 fillThisBuffer(pHandle, 1, pBufferOut)
1.1 ...this is actually a macro

2.0
OMX_EmptyThisBuffer(pHandle,0,pBufferIn)2.0 The application passes one buffer for

component A’s input port (push model).

2.1 emptyThisBuffer(pHandle,0,pBuffer)
2.1 This is a macro, so it gets
called directly to component A.

2.2 OMX_FillBufferDone(pBufferOut)
2.2 When component A has an output
buffer available, it will issue a callback (pull model).

2.3
OMX_FillThisBuffer(pHandle,1,pBufferOut)2.3 When the application is done with

the output buffer, it will send it back to
the component to be filled in again.

2.4 fillThisBuffer(nPortIndex,hComponent,pBuffer)
2.4 ...macro

2.5
OMX_EmptyBufferDone(pBufferIn)2.5 Component A has finished

processing the input buffer and signals
it to the application via callback.

 109

Figure 3-10. Data Flow Between Tunneled Components

3.4.2.3 Proprietary Communication
On some platforms data tunneling among components can be optimized by proprietary
communication mechanisms, which can be based on specific hardware such as DMA or
shared memory. Such resources are set up in a proprietary manner during the standard
data tunneling setup phase. Although the IL client uses the standard
OMX_SetupTunnel call, platform-specific optimizations can prepare optimized
transport channels among components.

Assuming a chain of components A, B, and C that support proprietary communication,
the resulting data flow would appear as illustrated in Figure 3-11.

sd DT - dataflow

A
:OMXComponen
t

B
:OMXComponent

The supplier is
component A,
which provides the
output port of the
tunnel.

The supplier is
component B,
which provides the
input port of the
tunnel
.

1.0 OMX_EmptyThisBuffer(B, pBuffer)
1.0 The supplier port calls EmptyThisBuffer on the
tunneling port.

1.1 OMX_FillThisBuffer(A,
pBuffer)1.1 When done with processing that buffer, the

tunneling port invokes OMX_FillThisBuffer on A.

2.0 OMX_FillThisBuffer(A,
pBuffer)2.0 The communication is started by B, which is the

buffer supplier.

2.1 OMX_EmptyThisBuffer(B, pBuffer)
2.1 Component A receives the buffer and fills it
before returning the buffer to component B.

 110

sd Proprietary communication

ILClient
:OMXCallback

A
:OMXComponent

B
:OMXComponent

C
:OMXComponent

Since optimized proprietary
communication is used, no buffer
management callbacks among
components are issued.

1.0 emptyThisBuffer(A,0,pBuffer1)

1.1 emptyThisBuffer(A,0,pBuffer2)

1.2 OMX_EmptyBufferDone(pBuffer1)

1.3 OMX_EmptyBufferDone(pBuffer2)

Figure 3-11. Data Flow with Proprietary Communication Between Components

Assuming that all components are in the OMX_StateExecuting state, the IL client sends
two buffers to component A using the OMX_EmptyThisBuffer call (steps 1.0 and
1.1). Given the data tunnel setup, the output of component A is sent to the input port of
component B. The output of component B is sent to the input port of component C, which
is the sink.

No callbacks will be invoked since the components will use their proprietary mechanisms
to move data.

The OMX_EmptyBufferDone callback will be issued to the IL client only when
component A has finished processing buffers.

Even though buffer-related callbacks are not used in this use case, note that components
may still generate events to the IL client using the OMX_EventHandler callback entry
point.

3.4.3 De-Initialization
This section describes tunneled and non-tunneled component de-initialization.

3.4.3.1 Non-tunneled De-initialization
When the IL client decides to stop the execution and dispose of the components, it should
first switch the components to the OMX_StateIdle state so that all buffers are returned to
their suppliers.

When the transition to OMX_StateIdle is completed, the IL client can request the
component to change its state to OMX_StateLoaded. The IL client shall free all of the
component’s buffers by calling OMX_FreeBuffer for each buffer. The
OMX_FreeBuffer function requires that the component remove the specified buffer
from the specified port. If the component allocated the buffer with an
OMX_AllocateBuffer call, the component shall also free the buffer memory. If the
IL client allocated the buffer and assigned it to the component with an

 111

OMX_UseBuffer call, then the IL client shall de-allocate the buffer memory after
calling OMX_FreeBuffer.

When all of the buffers have been freed, the component shall complete the state transition.
Finally, the IL client calls the OMX_FreeHandle function that disposes of the
component.

This procedure is performed for each non-tunneled port. Figure 3-12 illustrates non-
tunneled de-initialization.

Figure 3-12. De-initialization of Non-tunneled Components

A port that is tunneled shall follow the component de-initialization procedure illustrated
in section 3.4.3.2.

3.4.3.2 Tunneled De-Initialization
Figure 3-13 illustrates the component de-initialization for a port that is tunneled.

sd De-init
IL client OpenMAX component

opt - the buffer has been allocated by the
component

alt - the buffer has been allocated by the IL client

1.0 SendCommand(handle, OMX_CommandStateSet,
OMX_StateIdle)1.0 The IL client stops the execution of the

component by asking for transition to the
OMX_StateIdle state.

1.1 return buffers
1.1 The component shall flush all of the
buffers currently being processed by calling
the relevant callback, FillBufferDone or
EmptyBufferDone. 1.2 EventHandler(handle, NULL, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_StateIdle, NULL)
1.2 The component changes state and
informs the IL client.

2.0 SendCommand(handle, OMX_CommandStateSet,
OMX_StateLoaded)2.0 When, for example, the client wants

to destroy the component, it switches the
component state to loaded.

2.1 OMX_FreeBuffer
2.1 The client shall remove all of the
buffers from every port of the component. It
calls FreeBuffer for each buffer.

2.2 de-allocate buffer
header 2.2 The component de-allocates the buffer

header.
2.3 de-allocate buffer

2.3 The component frees the buffer only if
it has allocated the
buffer.

2.4 return

2.5 de-allocate the
buffer2.5 The client frees the buffer only if

it has allocated the buffer.

2.6 EventHandler(handle, NULL, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_StateLoaded, NULL)
2.6 The component can complete
the state transition to Idle now that
all of the buffers have been freed.

 112

Figure 3-13. De-initialization of Tunneled Components

3.4.4 Port Disablement and Enablement
Disabling a port causes it to behave as if its component transitioned to the
OMX_StateLoaded state. Thus, all of the port’s buffers are returned to their suppliers,
and any buffers the disabled port allocated are freed. The act of enabling a port inverts
this process, putting a port that is effectively in the OMX_StateLoaded state into the
component’s state. Thus, if the component is in a state where its ports have buffers, then
an enabled port will acquire buffers. Likewise, if the component is exchanging buffers, an
enabled port will begin exchanging buffers.

Note that if a port is disabled when the component is in the OMX_StateLoaded state, the
port’s effective state is still made disjoint from the component’s state. Thus, when a
component transitions from OMX_StateLoaded to OMX_StateIdle, any disabled port will
not acquire buffers but, instead, will effectively remain in OMX_StateLoaded.

The description of port disablement and enablement is divided into tunneling and non-
tunneling cases.

3.4.4.1 Tunneled Ports Disablement and Enablement
Figure 3-14 illustrates the behavior of enabling and disabling tunneled ports.

sd DT - de-initialization
IL Client Component

A(output,
supplier)

Component
B (input, non

supplier)

1.0 SendCommand(A, OMX_CommandStateSet, OMX_StateIdle)
1.0 As in the non-tunneled case, the IL client
ends buffer processing by transitioning
the component to the OMX_StateIdle state.

1.1 wait1.1 Component A cannot change state until
each buffer that it sends to the tunneled
component has been flushed.

1.2 SendCommand(B, OMX_CommandStateSet, OMX_StateIdle)
1.2 The IL client asks for the change of
state of component B.

1.3
FillThisBuffer 1.3 Component B returns buffers to the supplier,

component A. Component A must be in the
executing or paused states. 1.4 EventHandler(A, OMX_EventCmdComplete, OMX_CommandStateSet,

OMX_SateIdle)1.4 Finally, component A can change state to
OMX_StateIdle.

1.5 EventHandler(B, OMX_EventCmdComplete, OMX_CommandStateSet,
OMX_SateIdle)

1.5 Component B completes the state change to
OMX_StateIdle and signals its completion to
the IL client.

2.0 SendCommand(A, OMX_CommandStateSet, OMX_StateLoaded)
2.0 The IL client asks a component, in this case
component A, to change state to OMX_StateLoaded.

2.1 SendCommand(B, OMX_CommandStateSet, OMX_StateLoaded)
2.1 The IL client asks component B to change state.

2.2 FreeBuffer
2.2 Component A calls FreeBuffer on component B
for each buffer supplied.

2.3 EventHandler(A, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_SateLoaded)

2.3 Finally, component A can change its state to
OMX_StateLoaded. 2.4 EventHandler(B, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_SateLoaded)
2.4 Component B is not a buffer supplier, so it
may change state to OMX_StateLoaded
immediately.

 113

Figure 3-14. Disablement and Enablement of Tunneled Ports

3.4.4.2 Non-tunneled Port Disablement and Enablement
Figure 3-15 illustrates the case of the disablement and enablement procedure for a non-
tunneled port. A detailed discussion of OMX_AllocateBuffer, OMX_UseBuffer,
and OMX_FreeBuffer is omitted here; for more detailed descriptions of the use of
these functions, see sections 3.3.15, 3.3.14, and 3.3.16, respectively.

sd Stop_Restart_Port tunneled

IL Client Component
A(non-
supplier)

Component B
(supplier)

1.0 SendCommand(OMX_CommandPortDisable)
1.0 The IL client requests that component B
stop one of its ports.

1.1 wait
1.1 Component B waits until its buffers
are released by the tunneled port of
component A.

1.2 SendCommand(OMX_CommandPortDisable)
1.2 The IL client requests that component A
stop the connected port on component A.

1.3 return
buffers1.3 Component A returns buffers supplied by

component B with a call to EmptyThisBuffer or
FillThisBuffer.

1.4 free buffers
1.4 Component B can free the memory.

1.5 FreeBuffer
1.5 Component B calls FreeBuffer on
Component A for each buffer that it frees.

1.6 free buffer headers
1.6 Component A frees each buffer header
associated with each FreeBuffer call
from component B.

1.7 EventHandler(OMX_EventCmdComplete,
OMX_CommandPortDisable)1.7 Component A can complete the

PortDisable request.
1.8 EventHandler(OMX_EventCmdComplete, OMX_CommandPortDisable)

1.8 Component B can complete the
PortDisable request.

2.0 SendCommand(OMX_CommandPortEnable)
2.0 The IL client requests that component A
restarts the connected port on component
A.

2.1 wait
2.1 Component A shall wait for the required
buffers to be supplied.

2.2
SendCommand(OMX_CommandPortEnable)2.2 The IL client requests that component B

restart the connected port on component B.
2.3 allocate
buffers 2.3 As supplier, component B shall allocate all

of the required buffers for the tunnel.
2.4 UseBuffer

2.4 Component B sends to component A
the required buffers for the tunnel.

2.5 allocate buffer headers
2.5 Component A shall allocate the buffer
header for each buffer passed by UseBuffer
calls.

2.6 EventHandler(OMX_EventCmdComplete, OMX_CommandPortEnable)
2.6 After all the needed buffers have
been assigned, component A can complete
the port enablement and notify the client.

2.7 EventHandler(OMX_EventCmdComplete,
OMX_CommandPortEnable)2.7 After all the needed buffers have

been allocated and assigned, component A can
complete the port enablement and notify
the client

 114

Figure 3-15. Disablement and Enablement of Non-tunneled Ports

3.4.5 Dynamic Port Reconfiguration
This section describes how a component may change its port settings dynamically.

The following examples show where this functionality is typically needed:

• A video decoder parses a sequence header and discovers the frame size of the output
pictures, so buffers associated with its output ports shall be rearranged.

• The parameters of an audio stream vary dynamically, and a decoder should change its
port settings.

Figure 3-16 shows how a video decoder and a video renderer, both of which exchange
data through the IL client, should dynamically change their port settings.

sd Stop_Restart port (non

IL OpenMAX Component

1.0 SendCommand(OMX_CommandPortDisable)
1.0 The IL client asks the component to
disable a port.

1.1 return buffers
1.1 The component shall return the
buffers with a call to
EmptyBufferDone/FillBufferDone,

1.2
1.2 For each buffer returned, the IL client
shall call FreeBuffer on the connected

1.3 EventHandler(OMX_EventCmdComplete, OMX_CommandPortDisable)
1.3 When all the buffers have been returned
 and FreeBuffer called, the component can
complete the port disablement.

2.0 SendCommand(OMX_CommandPortEnable)
2.0 The IL client asks the component to
enable the disabled port.

2.1 AllocateBuffer/UseBuffer
2.1 The IL client shall provide to the
component all of the buffers that the port needs.

2.2 EventHandler(OMX_EventCmdComplete, OMX_CommandPortEnable)
2.2 When all of the required buffers needed are
available, the component can complete
the port enablement.

 115

Figure 3-16. Dynamic Port Reconfiguration

The sequence starts with the IL client putting a video renderer and a video decoder in the
OMX_StateExecuting state (1.0 through 1.3). At this stage, the output port of the video
decoder and the input port of the renderer are not yet configured, since the dimension of

sd videoparse example

videodecoder
:OMXComponent

ILClient
:OMXCallback

rendere
r:OMXComponent

1.0 sendCommand(hRend,OMX_StateExecuting)
1.0 The IL client puts the video
renderer into the executing state. It is
assumed that the component is in the
idle state (i.e., it is fully configured). 1.1 sendCommand(hDec, OMX_StateExecuting)
1.1 The same conditions apply to the video
decoder as apply to the video renderer.

1.2 EventHandler(OMX_EventCmdComplete, OMX_StateExecuting)
1.2 The video decoder replies with the
callback.

1.3 OMX_EventHandler(OMX_EventCmdComplete, OMX_StateExecuting)
1.3 The video renderer is now
executing.

1.4 emptyThisBuffer(hDec,0,pBuf1)
1.4 The IL client sends the first buffer
to process to the video decoder input.

1.5 OMX_EventHandler(OMX_EventPortSettingsChanged)
1.5 The video decoder has parsed the sequence
header and determined the frame
size. 1.6 sendCommand(hDec,

OMX_CommandPortDisable)1.6 The decoder output port is now
stopped.

1.7 FreeBuffer
1.7 The IL client frees all of the buffers
associated with the decoder output port.

1.8 sendCommand(hRend, OMX_CommandPortDisable)
1.9
FreeBuffer1.9 The IL client frees all of the buffers

associated with the video renderer input port.
1.10 OMX_EventHandler(OMX_CommandPortDisable)

1.10 When all of the buffers have been
freed, the component can disable the
port. 1.11 OMX_EventHandler(OMX_CommandPortDisable)
1.11 When all the buffers have been
freed, the component can disable the
port.

1.12 getParameter(hDec, portIndex, OMX_IndexParamPortDefinition)
1.12 The IL client gets the frame size
and other parameter values.

1.13 setParameter(hRend, portIndex, OMX_IndexParamPortDefinition)
1.13 Make sure the input port of the
video renderer is properly configured.

1.14 sendCommand(hRend,
OMX_CommandPortEnable)1.14 The video renderer input port is

now enabled.
1.15 sendCommand(hDec,
OMX_CommandPortEnable)1.15 The decoder output port is now

enabled.

1.16
allocateBuffer(hDec,pBuffer,1,pAppPrivate,nSizeBytes)1.16 The IL client asks the video

decoder to allocate a buffer with the
right dimension for its output port.

1.17 useBuffer(hRend,pBuffer,0)
1.17 The IL client clients tells the
video rendered to use the newly allocated
buffer. 1.18 OMX_EventHandler(OMX_CommandPortEnable)
1.18 When all of the required buffers are
available, the component can enable
the port.

1.19 OMX_EventHandler(OMX_CommandPortEnable)
1.19 When all the required buffers are
available, the component can enable the port.

 116

the output frame is unknown a priori. The decoder needs to start parsing the input bit
stream to derive such information.

In fact, the IL client sends the first buffer to the decoder in step 1.4. Assuming that the
video sequence header is included in that first buffer, the OpenMAX decoder component
will parse it and change its output port settings accordingly.

The OpenMAX decoder component shall then notify the IL client by generating the
OMX_PortSettingsChanged event (step 1.5). As soon as the IL client receives this
callback, it shall disable the output port of the video decoder and the input port of the
video renderer (steps 1.6 through 1.11).

The IL client shall then read the new port settings with OMX_GetConfig and allocate
one or more buffers with the right dimensions for the output port. Once the buffers are
allocated, they will be also communicated to the video renderer using OMX_UseBuffer
(1.17). The input port of the video renderer shall also be set up with OMX_SetConfig
(1.18).

Finally, ports can be enabled and normal processing resumes.

3.4.6 Resource Management
This section describes the entry points for resource management. The interface between
components and the resource manager are presented only as an example. Only the
interface between the IL client and the components is part of the OpenMAX standard
definition. An IL client may use the resource manager entry points.

Figure 3-17 proposes the behavior of an IL client that ignores the resource manager. The
resource manager handles the component internally only, and the IL client has to take no
special action.

Figure 3-17. Transition from Loaded to Idle with Resource Management

In Figure 3-17, the IL client is unaware of the existence of a resource manager. In the
implementation of the OpenMAX component, an asynchronous call to the resource
manager is implemented.

sd Resource Management - Resource Available

IL
Client OpenMAX

Component
Resource
Manager

1.0 OMX_SendCommand(handle, OMX_CommandStateSet, OMX_StateIdle, 0)
1.0 The Client asks the component
to go to the idle state. During the state
switch all the resources needed
by the component are allocated or
reserved.

1.1 AcquireResourceRequest(Resource_X, handle,
priority)1.1 The component asks the

Resource Manager about
Resource_X availability.

1.2 AcquireResourceResponse(Resource_X, allowed)
1.2 The Resource Manager answers
"allowed" if the resource is available
(for the component priority level).

1.3 OMX_EventHandler(handle, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_StateIdle)

1.3 The IL Client can receive the
normal completion signal about
state
switch.

 117

The OpenMAX component provides a callback to the resource manager, which receives
the signal for the completion of the request.

Figure 3-17 represents a possible implementation of a resource manager, and shows how
it can be transparent to the client. The functions AcquireResourceRequest and
AcquireResourceResponse are examples. This specification is concerned only
about the interface between the IL client and the components. Details of the interactions
between the components and the vendor/specific manager(s) are outside the scope of this
specification.

Figure 3-18 presents a more complex use case.

Figure 3-18. Busy Resource Management

In Figure 3-18, two different OpenMAX components, A and B, need the same resource to
work, and they have different priorities. Here, as in the preceding example, the IL clients
use the standard transition from Loaded to Idle to set up the component and allocate all of
the required resources.

The first component, component A, takes ownership of the resource, requesting it from
the resource manager. Component A switches to the idle state and is ready to execute.

The second component, component B, asks for the same resource, but in this case the
resource manager denies it since a higher priority component, component A, has that
resource. This event is reported to the IL client with an error message including the value
OMX_ErrorInsufficientResources. If IL client Y decides that it needs to be
notified when this resource becomes available again, it may direct component B to
change state to OMX_StateWaitForResources. This action puts component B in a
waiting queue until the resource X will become available. Alternatively, IL client Y may
request component B to switch back to the Loaded state.

sd Resource Management - Resource Busy
IL Client X IL Client Y OpenMAX

Component
A

OpenMAX
Component

B Resource
Manager

1.0 OMX_SendCommand(A, OMX_CommandStateSet, OMX_StateIdle)
1.0 The IL Client X needs component A,
which uses Resource X.

1.1 AcquireResourceRequest(Resource_X, A, priorityA)
1.1 The Resource manager receives the
request for Resource_X. The priority of A
is higher that the priority of B.

1.2 AcquireResourceResponse(Resource_X, allowed)
1.3 OMX_EventHandler(A, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_StateIdle)

1.3 The IL Client can use
Component A.

1.4 OMX_SendCommand(B, OMX_CommandStateSet, OMX_StateIdle)
1.4 The IL Client Y needs component B,
which uses Resource X.

1.5 AcquireResourceRequest(Resource_X, B, priorityB)
1.5 The Resource manager receives the
request for Resource_X that is already
allocated. 1.6 AcquireResourceResponse(Resource_X, not_allowed)
1.6 The request is denied. B cannot
switch to IDLE state.

1.7 OMX_EventHandler(B, OMX_EventError, OMX_ErrorInsufficientResources)
1.7 Resource X is not available. The
error is signaled to the IL Client Y, and
the state of B remains LOADED.

1.8 OMX_SendCommand(B, OMX_CommandStateSet, OMX_StateWaitForResources)1.8 The IL Client puts B in a waiting
state until resource X will become
available.

1.9 WaitForResourceRequest(Resource_X, B)

1.10 OMX_EventHandler(B, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_SateWaitForResources)

2.0 OMX_SendCommand(A, OMX_CommandStateSet, OMX_StateLoaded)
2.0 The client disposes of A; no longer
needed. It releases its
resources.

2.1 FreeResourceRequest(Resource_X, A)
2.2 FreeResourceResponse(Resource_X)

2.3 OMX_EventHandler(A, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_StateLoaded)

2.4
WaitForResourceResponse(Resource_X)2.4 The Resource Manager becomes

aware that the resource X has been
released, and becomes available for B,
which is in a waiting queue. 2.5 EventHandler(B, OMX_EventResourcesAcquired)
2.5 The component B informs the client
Y that the needed resources are
available.

 118

Figure 3-18 also shows the behavior of components when resource X becomes available.
Component A changes state to Loaded and releases all of the resources. The resource
manager becomes aware of the available resource and calls Component B, which is
already in the waiting queue.

When the resource manager provides the component with all the resources it is waiting
on, the component informs the IL client that all resources needed are available with an
OMX_EventResourcesAcquired event. The IL client shall now provide all of the
needed buffers to the component. Then, the component can change state by itself to
OMX_StateIdle and alert the client about the state change. This waiting queue represents
a unique case of automatic state change.

In Figure 3-18, the priorities of components A and B are not compared within the IL
layer, and no preemption mechanism is implemented or proposed; an external policy
manager, which should communicate with the resource manager, should have this
responsibility. The description of such a policy manager is outside the scope of this
document and the OpenMAX standard in general.

Figure 3-19 presents an example of a client that actively uses the resource management
API.

Figure 3-19. State Change from Loaded to WaitForResources

The IL client may request a state change from OMX_StateLoaded to
OMX_StateWaitForResources in case the IL client wants to be notified when the
resource becomes available again. For an explanation of OMX_StateWaitForResources,
see section 3.1.1.2.5.

In this case, the client puts the component into a waiting queue, handled by the resource
manager; the change to the idle state happens effectively when the resource will become

sd Resource Management - Wait For Resources
IL
Client

Resourc
e Manage
r OpenMAX

Component

1.0 OMX_SendCommand(handle, OMX_CommandStateSet, OMX_StateWaitForResources, 0)

1.0 The IL Client SHALL request a state change to the wait
for resources status. This happens when the IL client wishes to
be notified of resource availability In this way the client does
not implement any error checking, but wait for the resource

1.1 WaitForResourceRequest(Resource_X,
handle)1.1 The manager puts the component into the waiting

queue for the resource X. In this use case the resource
is already available.

1.2 OMX_EventHandler(handle, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_SateWaitForResources)
1.2 In any case the client MUST be notified that
the component has been inserted in the waiting queue.

1.3 WaitForResourceResponse(Resource_X)
1.3 The resource is available, and the waiting component is
signaled

1.4 EventHandler(handle, OMX_EventResourcesAcquired)
1.4 The component informs the IL client that the needed
resources are available.

1.5 UseBuffer/AllocateBuffer
1.5 The IL client MUST provide to the component all the
buffers needed to the component, before it can switch to
IDLE.

1.6 OMX_EventHandler(handle, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_SateIdle)
1.6 The transition to the idle state is executed by the
component itself. This is possible only for the existence of the
special state WaitForResources, that is the only one from
which the state could be changed without an explicit request
by the client. This transition could happen only when the
client has assigned to the component all the needed buffers.

 119

available or if it is available immediately. In any case, the client receives two different
OMX_EventHandler callbacks that correspond to two different state changes.

The two functions WaitForResourceRequest and
WaitForResourceResponse in Figure 3-19 are not defined in this specification but
are examples of an interaction between components and the resource manager.

The IL client may decide to stop waiting at a certain time. In this case, it shall request the
component to change state back to Loaded, as shown in Figure 3-20.

Figure 3-20. Remove Component from Waiting Status

sd Resource Management - Wait canceled
IL
Client OpenMAX

Component
Resourc
e Manager

1.0 OMX_SendCommand(handle, OMX_CommandStateSet, OMX_StateWaitForResources, 0)
1.0 The IL Client SHALL request a state
change to the wait for resources status. This
happens when the IL client wishes to be
notified of resource availability. In this way
the client does not implement any error
checking, but waits for the
resource. 1.1 WaitForResourceRequest(Resource_X, handle)
1.1 The manager puts the component into
the waiting queue for the resource X.

1.2 OMX_EventHandler(handle, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_SateWaitForResources)
1.2 In any case the client MUST be notified
that the component has been inserted in the
waiting queue.

2.0 OMX_SendCommand(handle, OMX_CommandStateSet, OMX_StateLoaded, 0)
2.0 The IL client decides to stop waiting for
the resource. It asks the component to
switch state back to the Loaded state.

2.1 CancelWaitForResourceRequest(Resource_X, handle)
2.1 The component asks to be is removed
from the waiting queue of the resource
manager.

2.2 CancelWaitForResourceResponse(Resource_X)
2.2 The resource manager confirms that the
component has been removed from the internal
waiting queue.

2.3 OMX_EventHandler(handle, OMX_EventCmdComplete, OMX_CommandStateSet, OMX_StateLoaded)
2.3 The IL client is informed about the state
change completion.

 120

4 OpenMAX IL Data API
This section describes the typical component usage for the audio, video, image, and other
domains. This section also details all of the structures, parameters, and configurations
that apply to ports for each of the domains and provides use case examples where
appropriate.

4.1 Audio
This section describes the structures, parameters, and configuration details for ports in the
audio domain. These parameter and configurations details are specified in the
OMX_Audio.h header.

4.1.1 Audio Use Case Examples
Figure 4-1 illustrates an example of an audio playback processing chain. Two sound
sources are played simultaneously and are mixed with effects added to both the
individual processing paths and the mixed signal. Only OpenMAX standard components
are shown in this example.

MP3

MIDIMIDI Equalizer

Audio
mixer

Stereo
widening HeadsetHeadset

Figure 4-1. Audio Payback Processing Chain

Figure 4-2 illustrates a simple example of speech processing chains with echo
cancellation added for an uplink speech path. Speech codecs can be any specified
OpenMAX codecs.

Dow nlink
speech
stream

MicrophoneMicrophone
Echo

cancellat ion
Speech
encoder

SpeakerSpeaker

Uplink
speech
stream

Uplink
speech
stream

Speech
decoder

Figure 4-2. Speech Processing Chain

 121

4.1.2 Special Issues
Some audio formats have special or unique requirements that are different from other
audio formats, or even from other domains. These issues are described in the following
sections.

4.1.2.1 Minimum Buffer Payload Size for Uncompressed Data
OpenMAX has specified a minimum buffer payload sizes for all types of uncompressed
data. The minimum payload size for pulse code modulation (PCM) audio is five msec.
This means that an output port of a PCM component shall produce at least five msec of
audio data for each buffer. The minimum payload size is applied only for PCM (i.e.,
OMX_AUDIO_CodingADPCM) and not for any other formats.

4.1.2.2 Whole-file Buffering for MIDI Formats
Most MIDI content formats contain multiple parallel tracks of media data that appear in
the file in serial track order rather than interleaved in real-time execution order. In
addition, the MIDI state is deterministic only from the beginning of file playback, and
thus seeks within any MIDI file require that at least some part of the file be re-processed
from the beginning. For these reasons, callers shall provide the full length of the MIDI
file data to the MIDI OpenMAX component using the nFileSize field of the
OMX_AUDIO_PARAM_MIDITYPE structure. For more information on the
OMX_AUDIO_PARAM_MIDITYPE structure, see section 4.1.30.

4.1.3 General Enumerations
OMX_AUDIO_CODINGTYPE is the enumeration used to define the possible audio coding.
If OMX_AUDIO_CodingUnused is selected, the coding selection shall be done in a
vendor-specific way. Table 4-1 shows the contents of OMX_AUDIO_CODINGTYPE.

Field Name Value Description
References to
Standard(s)

OMX_AUDIO_CodingUnused 0 Placeholder
value when
coding is
not
available

Not available

OMX_AUDIO_CodingAutoDe
tect

 Auto
detection of
audio
format

Not available

OMX_AUDIO_CodingPCM Any variant
of PCM
coding

 PCM

OMX_AUDIO_CodingADPCM Any variant
of ADPCM
encoded
data

 ADPCM

 122

Field Name Value Description
References to
Standard(s)

OMX_AUDIO_CodingAMR Any variant
of AMR
encoded
data

AMR-NB ,
AMR-WB

OMX_AUDIO_CodingGSMFR Any variant
of GSM
Full-Rate
(i.e.,
GSM610)

GSM-FR

OMX_AUDIO_CodingGSMEFR Any variant
of GSM
Enhanced
Full-Rate
encoded
data

GSM-EFR

OMX_AUDIO_CodingGSMHR Any variant
of GSM
Half-Rate
encoded
data

GSM-HR

OMX_AUDIO_CodingPDCFR Any variant
of PDC
Full-Rate
encoded
data

PDC-FR

OMX_AUDIO_CodingPDCEFR Any variant
of PDC
Enhanced
Full-Rate
encoded
data

PDC-EFR

OMX_AUDIO_CodingPDCHR Any variant
of PDC
Half-Rate
encoded
data

PDC-HR

OMX_AUDIO_CodingTDMAFR Any variant
of TDMA
Full-Rate
encoded
data
(TIA/EIA-
136-420)

TDMA-FR

OMX_AUDIO_CodingTDMAEF Any variant TDMA-EFR

 123

Field Name Value Description
References to
Standard(s)

R of TDMA
Enhanced
Full-Rate
encoded
data
(TIA/EIA-
136-410)

OMX_AUDIO_CodingQCELP8 Any variant
of QCELP
8 kbps
encoded
data

QCELP8

OMX_AUDIO_CodingQCELP1
3

 Any variant
of QCELP
13 kbps
encoded
data

QCELP13

OMX_AUDIO_CodingEVRC Any variant
of EVRC
encoded
data

EVRC

OMX_AUDIO_CodingSMV Any variant
of SMV
encoded
data

SMV

OMX_AUDIO_CodingG711 Any variant
of G.711
encoded
data

G.711

OMX_AUDIO_CodingG723 Any variant
of G.723.1
encoded
data

G.723.1

OMX_AUDIO_CodingG726 Any variant
of G.726
encoded
data

G.726

OMX_AUDIO_CodingG729 Any variant
of G.729
encoded
data

G.729

OMX_AUDIO_CodingAAC Any variant
of AAC
encoded

MPEG-2 AAC ,
MPEG-4 AAC HE-
AAC v1 ,

 124

Field Name Value Description
References to
Standard(s)

data HE-AAC v2
OMX_AUDIO_CodingMP3 Any variant

of MP3
encoded
data

 MPEG-1 Audio ,
 MPEG-2 Audio

OMX_AUDIO_CodingSBC Any variant
of SBC
encoded
data

 SBC

OMX_AUDIO_CodingVORBIS Any variant
of VORBIS
encoded
data

 VORBIS

OMX_AUDIO_CodingWMA Any variant
of WMA
encoded
data

 WMA

OMX_AUDIO_CodingRA Any variant
of RA
encoded
data

 RA

OMX_AUDIO_CodingMIDI Any variant
of MIDI
encoded
data

SP-MIDI,
DLS 1,
DLS 2
General MIDI,
General MIDI 2 ,
GM Lite ,
XMF type 0 and 1,
Mobile XMF

OMX_AUDIO_CodingMax 0x7FFFFFFF

Table 4-1. Audio Coding Types

4.1.4 OMX_AUDIO_PORTDEFINITIONTYPE
The OMX_AUDIO_PORTDEFINITION structure is used to define all of the parameters
necessary for the compliant component to set up an input or an output audio path. If
additional information is needed to define the parameters of the port, such as frequency,
additional structures such as the OMX_AUDIO_PARAM_PCMMODETYPE structure
shall be sent to supply the extra parameters for the port. The number of audio paths for
input and output will vary by the type of the audio component.

OMX_Component.h contains common port definition structures for all media domains.

OMX_AUDIO_PORTDEFINITIONTYPE is defined as follows.

 125

 typedef struct OMX_AUDIO_PORTDEFINITIONTYPE {
 OMX_STRING cMIMEType;
 OMX_NATIVE_DEVICETYPE pNativeRender;
 OMX_BOOL bFlagErrorConcealment;
 OMX_AUDIO_CODINGTYPE eEncoding;
} OMX_AUDIO_PORTDEFINITIONTYPE;

The parameters for OMX_AUDIO_PORTDEFINITIONTYPE are defined as follows.

• cMIMEType is the MIME type of data for the port.

• pNativeRender is the platform-specific reference for an output device; otherwise
this field is 0.

• bFlagErrorConcealment turns on error concealment if it is supported by the
OpenMAX component.

• eEncoding is the type of data expected for this port (e.g., PCM, AMR, MP3, and so
forth).

4.1.5 OMX_AUDIO_PARAM_PORTFORMATTYPE
OMX_AUDIO_PARAM_PORTFORMATTYPE is the structure for the port format
parameter. This structure enumerates the various data input/output formats that the port
supports.

This parameter call can be use with both OMX_GetParameter and
OMX_SetParameter. In the OMX_GetParameter case, the caller specifies all
fields and the OMX_GetParameter call returns the value of eFormat. The value of
nIndex goes from 0 to N-1, where N is the number of formats supported by the port.
The port does not need to report N as the caller can determine N by enumerating all the
formats supported by the port. Each port shall support at least one format. If there are no
more formats, OMX_GetParameter returns OMX_ErrorNoMore (i.e., nIndex is
supplied where the value is N or greater). Ports supply formats in order of preference:
Higher preference formats are provided with lower values of
nIndex.

For OMX_SetParameter, the field is nIndex ignored. If the format is supported, it
is set as the format of the port, and the default values for the format are programmed into
the port definition type as a side effect. This allows the caller to query the default values
for the format without having to know them in advance.

OMX_AUDIO_PARAM_PORTFORMATTYPE is defined as follows.

 typedef struct OMX_AUDIO_PARAM_PORTFORMATTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nIndex;
 OMX_AUDIO_CODINGTYPE eEncoding;
} OMX_AUDIO_PARAM_PORTFORMATTYPE;

 126

The parameters for OMX_AUDIO_PARAM_PORTFORMATTYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nIndex indicates the enumeration index for the format from 0x0 to N-1.

• eEncoding is the type of data expected for this port (e.g., PCM, AMR, MP3, and so
forth).

4.1.6 OMX_AUDIO_PARAM_PCMMODETYPE
The OMX_AUDIO_PARAM_PCMMODETYPE structure is used to set or query the
current or default settings for PCM audio using the OMX_GetParameter function. It
is also used to set the parameters for PCM audio using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioPcm.

Note that the minimum buffer payload size is applied to all modes of PCM audio. The
payload size is defined by OMX_MIN_PCMPAYLOAD_MSEC and is five msec.

OMX_AUDIO_PARAM_PCMMODETYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_PCMMODETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_NUMERICALDATATYPE eNumData;
 OMX_ENDIANTYPE eEndian;
 OMX_BOOL bInterleaved;
 OMX_U32 nBitPerSample;
 OMX_U32 nSamplingRate;
 OMX_AUDIO_PCMMODETYPE ePCMMode;
 OMX_AUDIO_CHANNELMAPPINGTYPE
eChannelMapping[OMX_AUDIO_MAXCHANNELS];
} OMX_AUDIO_PARAM_PCMMODETYPE;

4.1.6.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_PCMMODETYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

 127

• nChannels is the number of channels of audio (mono, stereo, multi-channel).

• eNumData indicates whether the PCM data is signed or unsigned.

• eEndian indicates whether PCM data is in little- or big-endian order.

• bInterleaved indicates whether the data is normal interleaved or non-interleaved.
True represents normal interleaved data, and false represents non-interleaved data
such as block data.

• nBitPerSample is the number of bits per sample.

• nSamplingRate is the sampling rate of the source data. Use the value 0 for
variable or unknown sampling rate.

• ePCMMode is the PCM mode enumeration. Table 4-2 identifies the PCM mode.

Field Name Value Description
OMX_AUDIO_PCMModeLinear 0 Linear PCM encoded data
OMX_AUDIO_PCMModeALaw A law PCM encoded data

(G.711)
OMX_AUDIO_PCMModeMULaw μ law PCM encoded data

(G.711)
OMX_AUDIO_PCMModeMax 0x7FFFFFFF
Table 4-2. PCM Mode

• eChannelMapping is the audio channel mapping enumeration. A component will
indicate the order of the audio channels as shown in Table 4-3. A component should
use the default channel mapping (standard RIFF/WAV mapping as present in
standard multi-channel WAV files: FRONT_LEFT FRONT_RIGHT
FRONT_CENTER LOW_FREQUENCY BACK_LEFT BACK_RIGHT ...) if
possible.

Field Name Value Description
OMX_AUDIO_ChannelNone 0 Unused or empty
OMX_AUDIO_ChannelLF 0x1 Left front
OMX_AUDIO_ChannelRF 0x2 Right front
OMX_AUDIO_ChannelCF 0x3 Center front
OMX_AUDIO_ChannelLS 0x4 Left surround
OMX_AUDIO_ChannelRS 0x5 Right surround
OMX_AUDIO_ChannelLFE 0x6 Low frequency effects
OMX_AUDIO_ChannelCS 0x7 Back surround
OMX_AUDIO_ChannelLR 0x8 Left rear
OMX_AUDIO_ChannelRR 0x9 Right rear
OMX_AUDIO_ChannelMax 0x7FFFFFFF
Table 4-3. Audio Channel Mapping

 128

4.1.6.2 Dependencies
The structure may be queried at any time that the component is not in the
OMX_StateInvalid state. The structure may be set using OMX_SetParameter only
when the component is in the OMX_StateLoaded state.

4.1.6.3 Functionality
The OMX_AUDIO_PARAM_PCMMODETYPE structure sets the parameters of PCM
audio.

4.1.6.4 Error Conditions
On processing the OMX_AUDIO_PARAM_PCMMODETYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.6.5 Post-processing Conditions
The characteristics of the PCM codec component at the port indicated by nPortIndex
are fully specified.

4.1.7 OMX_AUDIO_PARAM_MP3TYPE
The OMX_AUDIO_PARAM_MP3TYPE structure is used to set or query the current or
default settings for the MPEG Layer-3 (MP3) codec component using the
OMX_GetParameter function. It is also used to set the parameters of the MP3 codec
component using the OMX_SetParameter function. The index specified for this
structure is OMX_IndexParamAudioMp3 when calling either the
OMX_GetParameter or the OMX_SetParameter functions.

OMX_AUDIO_PARAM_MP3TYPE is defined as follows.

 129

typedef struct OMX_AUDIO_PARAM_MP3TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_U32 nBitRate;
 OMX_U32 nSampleRate;
 OMX_U32 nAudioBandWidth;
 OMX_AUDIO_CHANNELMODETYPE eChannelMode;
} OMX_AUDIO_PARAM_MP3TYPE;

4.1.7.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_MP3TYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo, multi-channel).

• nBitrate is the bit rate of the encoded MP3 audio. If the bit rate is variable or
unknown, this parameter has the value 0.

• nSamplerate is the sample rate of the encoded or decoded audio.

• nAudioBandWidth is the audio bandwidth in Hz to which an encoder should limit
the audio signal. Use the value 0 to let encoder decide.

• eChannelMode is the enumeration of OMX_AUDIO_CHANNELMODETYPE for
the audio channel mode. AAC and MP3 use this value, although the names are more
appropriate for MP3. Table 4-4 shows the values.

Mode Value Description
OMX_AUDIO_ChannelModeStereo 0 Two channels. The

bit rate allocation
between the two
channels changes
according to each
channel’s
information.

OMX_AUDIO_ChannelModeJointStereo A mode that takes
advantage of what
is common
between the two
channels for higher
compression gain.

 130

OMX_AUDIO_ChannelModeDual Two mono
channels. Each
channel is encoded
with half the bit
rate of the overall
bit rate.

OMX_AUDIO_ChannelModeMono Mono channel
mode.

OMX_AUDIO_ChannelModeMax 0x7FFFFFFF
Table 4-4. Audio Channel Mode

4.1.7.2 Dependencies
The structure may be queried at any time that the component is not in the
OMX_StateInvalid state. The structure may be set using OMX_SetParameter only
when the component is in the OMX_StateLoaded state.

4.1.7.3 Functionality
The OMX_AUDIO_PARAM_MP3TYPE structure sets the parameters of the MP3 codec.

4.1.7.4 Error Conditions
On processing the OMX_AUDIO_PARAM_MP3TYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.7.5 Post-processing Conditions
The characteristics of the MP3 codec component at the port indicated by nPortIndex
are fully specified.

 131

4.1.8 OMX_AUDIO_PARAM_AACPROFILETYPE
The OMX_AUDIO_PARAM_AACPROFILETYPE structure is used to set or query the
current or default settings for the MPEG AAC codec component using the
OMX_GetParameter function. It is also used to set the parameters of the AAC codec
component using the OMX_SetParameter function. The index specified for this
structure is OMX_IndexParamAudioAac when calling either the
OMX_GetParameter or the OMX_SetParameter functions.

OMX_AUDIO_PARAM_AACPROFILETYPE is defined as follows.

typedef struct OMX_AUDIO_PARAM_AACPROFILETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_U32 nSampleRate;
 OMX_U32 nBitRate;
 OMX_U32 nAudioBandWidth;
 OMX_U32 nFrameLength;
 OMX_U32 nAACtools;
 OMX_U32 nAACERtools;
 OMX_AUDIO_AACPROFILETYPE eAACProfile;
 OMX_AUDIO_AACSTREAMFORMATTYPE eAACStreamFormat;
 OMX_AUDIO_CHANNELMODETYPE eChannelMode;
} OMX_AUDIO_PARAM_AACPROFILETYPE;

4.1.8.1 Parameter Definitions
The parameters for the OMX_AUDIO_PARAM_AACPROFILETYPE structure are
defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is a read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo, multi-channel).

• nSamplerate is the sample rate of the encoded or decoded audio.

• nBitrate is the bit rate of the encoded AAC audio. If the bit rate is variable or
unknown, this parameter has the value 0.

• nAudioBandWidth is the audio bandwidth in Hz to which an encoder should limit
the audio signal. Use the value 0 to let the encoder decide.

• nFrameLength is the frame length of the codec in audio samples per channel. The
value can be 1024 or 960 (AAC-LC), 2048 (HE-AAC), 512 or 480 (AAC-LD). Use
the value 0 to let encoder decide.

 132

• nAACtools is the AAC tool usage. Table 4-5 shows the preprocessor defines that
should be used to signal the use of AAC coding tools. Use
OMX_AUDIO_AACToolAll to let the encoder decide. Preprocessor defines are used
to allow parameter passing in the following fashion:
“AACtoolParam = OMX_AUDIO_AACToolMS +
OMX_AUDIO_AACToolTNS;”

Define Name Value Description
OMX_AUDIO_AACToolNone 0x00000000 No AAC tools allowed (encoder

configuration) or active (optional
decoder information output).

OMX_AUDIO_AACToolMS 0x00000001 Mid/Side (MS) joint coding tool.
OMX_AUDIO_AACToolIS 0x00000002 Intensity Stereo (IS) tool.
OMX_AUDIO_AACToolTNS 0x00000004 Temporal Noise Shaping (TNS)

tool.
OMX_AUDIO_AACToolPNS 0x00000008 MPEG-4 Perceptual Noise

Substitution (PNS) tool.
OMX_AUDIO_AACToolLTP 0x00000010 MPEG-4 Long Term Prediction

(LTP) tool.
OMX_AUDIO_AACToolAll 0x7FFFFFFF All AAC tools allowed or active.
Table 4-5. AAC Tool Usage

• nAACERtools is the AAC Error Resilience tool usage. Table 4-6 shows the
preprocessor defines that should be used to signal the use of AAC Error Resilience
tools. Use OMX_AUDIO_AACERAll to let encoder decide. Preprocessor defines are
used to allow parameter passing in the following fashion:
“AACERtoolParam = OMX_AUDIO_AACERRVLC +
OMX_AUDIO_AACERHCR;”

Define Name Value Description
OMX_AUDIO_AACERNone 0x00000000 No AAC ER tools allowed/used
OMX_AUDIO_AACERVCB11 0x00000001 Virtual Code Books for AAC

section data (VCB11)
OMX_AUDIO_AACERRVLC 0x00000002 Reversible Variable Length Coding

(RVLC)
OMX_AUDIO_AACERHCR 0x00000004 Huffman Codeword Reordering

(HCR)
OMX_AUDIO_AACERAll 0x7FFFFFFF All AAC ER tools allowed/used
Table 4-6. AAC Error Resilience Tool Usage

• eAACProfile is the enumeration of OMX_AUDIO_AACPROFILETYPE for the
AAC profile type. The term profile is used in the MPEG-2 AAC standard and the
terms object type and profile are used in the MPEG-4 AAC standard. Table 4-7 shows
the values and descriptions.

 133

Field Name Value Description
OMX_AUDIO_AACObjectNull 0 Null - not used
OMX_AUDIO_AACObjectMain 1 AAC Main object/profile
OMX_AUDIO_AACObjectLC 2 AAC Low Complexity

object/profile
(MPEG-4: AAC profile)

OMX_AUDIO_AACObjectSSR 3 AAC Scalable Sample
Rate object/profile

OMX_AUDIO_AACObjectLTP 4 AAC Long Term
Prediction object

OMX_AUDIO_AACObjectHE 5 High Efficiency AAC
(object type SBR, MPEG-
4: HE-AAC profile)

OMX_AUDIO_AACObjectScalable 6 AAC Scalable object
OMX_AUDIO_AACObjectERLC 17 ER AAC Low Complexity

object
(Error Resilient AAC-LC)

OMX_AUDIO_AACObjectLD 23 AAC Low Delay object
(Error Resilient)

OMX_AUDIO_AACObjectHE_PS 29 AAC High Efficiency
with Parametric Stereo
coding
(HE-AAC v2, object type
PS)

OMX_AUDIO_AACObjectMax 0x7FFFFFFF
Table 4-7. AAC Profile Type

• eAACStreamFormat is the enumeration of
OMX_AUDIO_AACSTREAMFORMATTYPE for the AAC stream format. Table 4-
8 shows the field names and values.

Field Name Value Description
OMX_AUDIO_AACStreamFormatMP2ADTS 0 MPEG-2 AAC

Audio Data
Transport Stream
format

OMX_AUDIO_AACStreamFormatMP4ADTS MPEG-4 AAC
Audio Data
Transport Stream
format

OMX_AUDIO_AACStreamFormatMP4LOAS Low Overhead
Audio Stream
format

 134

Field Name Value Description
OMX_AUDIO_AACStreamFormatMP4LATM Low Overhead

Audio Transport
Multiplex

OMX_AUDIO_AACStreamFormatADIF Audio Data
Interchange
Format

OMX_AUDIO_AACStreamFormatMP4FF AAC inside
MPEG-4/ISO File
Format

OMX_AUDIO_AACStreamFormatRAW AAC Raw Format
(access units)

OMX_AUDIO_AACStreamFormatMax 0x7FFFFFFF
Table 4-8. AAC Stream Format Type

• eChannelMode is the enumeration for the audio channel mode used by AAC and
MP3, although the names are more appropriate for MP3. For more information on
MP3, see section 4.1.7.

4.1.8.2 Dependencies
The OMX_AUDIO_PARAM_AACPROFILETYPE structure may be queried at any time
that the component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.8.3 Functionality
The OMX_AUDIO_PARAM_AACPROFILETYPE structure sets the parameters of the
AAC codec.

4.1.8.4 Error Conditions
On processing the OMX_AUDIO_PARAM_AACPROFILETYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

 135

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.8.5 Post-processing Conditions
The characteristics of the AAC codec component at the port indicated by nPortIndex
are fully specified.

4.1.9 OMX_AUDIO_PARAM_VORBISTYPE
The OMX_AUDIO_PARAM_VORBISTYPE structure is used to set or query the current
or default settings for the Vorbis codec component of the Ogg Vorbis format using the
OMX_GetParameter function. It is also used to set the parameters of the Vorbis
codec component using the OMX_SetParameter function. The index specified for this
structure is OMX_IndexParamAudioVorbis when calling either the
OMX_GetParameter or the OMX_SetParameter functions.

OMX_AUDIO_PARAM_VORBISTYPE is defined as follows.

typedef struct OMX_AUDIO_PARAM_VORBISTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_U32 nBitRate;
 OMX_U32 nMinBitRate;
 OMX_U32 nMaxBitRate;
 OMX_U32 nSampleRate;
 OMX_U32 nAudioBandWidth;
 OMX_S32 nQuality;
 OMX_BOOL bManaged;
 OMX_BOOL bDownmix;
 OMX_AUDIO_CHANNELMODETYPE eChannelMode;
} OMX_AUDIO_PARAM_VORBISTYPE;

4.1.9.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_VORBISTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo, multi-channel).

• nBitRate is the bit rate of the encoded Vorbis audio. If the bit rate is variable or
unknown, this parameter has the value 0. Encoding is set to the bit rate closest to the
specified value in bits per second (bps).

• nMinBitRate sets the minimum bit rate in bps.

 136

• nMaxBitRate sets the maximum bit rate in bps.

• nSampleRate is the sample rate of the encoded or decoded audio. Use the value 0
for variable or unknown sampling rate.

• nAudioBandWidth is the audio bandwidth in Hz to which an encoder should limit
the audio signal. Use the value 0 to let encoder decide.

• nQuality sets the encoding quality between -1 (low) and 10 (high). In the default
mode of operation, the quality level is 3. The normal quality range is 0-10.

• bManaged sets the bit rate management mode. This turns off the normal variable bit
rate (VBR) encoding but allows the encoder to enforce hard or soft bit rate constraints.
This mode can be slower and may also be of lower quality; it is primarily useful for
streaming.

• bDownmix sets the downmix input from stereo to mono. This parameter has no
effect on non-stereo streams. This parameter is useful for lower bit-rate encoding.

4.1.9.2 Dependencies
The OMX_AUDIO_PARAM_VORBISTYPE structure may be queried at any time that
the component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.9.3 Functionality
The OMX_AUDIO_PARAM_VORBISTYPE structure sets the parameters of the Vorbis
codec.

4.1.9.4 Error Conditions
On processing the OMX_AUDIO_PARAM_VORBISTYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

 137

4.1.9.5 Post-processing Conditions
The characteristics of the Vorbis codec component at the port indicated by
nPortIndex are fully specified.

4.1.10 OMX_AUDIO_PARAM_WMATYPE
The OMX_AUDIO_PARAM_WMATYPE structure is used to set or query the current or
default settings for the Windows Media® audio codec component using the
OMX_GetParameter function. It is also used to set the parameters of the Windows
Media audio codec component using the OMX_SetParameter function. When calling
either the OMX_GetParameter or the OMX_SetParameter functions, the index
specified for this structure is OMX_IndexParamAudioWma.

OMX_AUDIO_PARAM_WMATYPE is defined as follows.

typedef struct OMX_AUDIO_PARAM_WMATYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_U32 nBitRate;
 OMX_AUDIO_WMAFORMATTYPE eFormat;
} OMX_AUDIO_PARAM_WMATYPE;

4.1.10.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_WMATYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo).

• nBitrate is the bit rate of the encoded Windows Media audio. If the bit rate is
variable or unknown, this parameter has a value 0.

• eFormat is the enumeration for the version of the Windows Media audio codec.
Table 4-9 shows the field names and values.

Field Name Value Description
OMX_AUDIO_WMAFormatUnused 0 The version of the Windows

Media audio codec is either not
applicable or is unknown.

OMX_AUDIO_WMAFormat7 Windows Media audio version
7.

OMX_AUDIO_WMAFormat8 Windows Media audio version
8.

 138

OMX_AUDIO_WMAFormat9 Windows Media audio version
9.

OMX_AUDIO_WMAFormatMax 0x7FFFFFFF For future versions of Windows
Media audio codecs.

Table 4-9. Windows Media Audio Codec Version

4.1.10.2 Dependencies
The OMX_AUDIO_PARAM_WMATYPE structure may be queried at any time that the
component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.10.3 Error Conditions
On processing the OMX_AUDIO_PARAM_WMATYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.10.4 Post-processing Conditions
The characteristics of the WMA codec component at the port indicated by nPortIndex
are fully specified.

 139

4.1.11 OMX_AUDIO_RATYPE
The OMX_AUDIO_RATYPE structure is used to set or query the current or default
settings for the RealAudio® codec component using the OMX_GetParameter function.
It is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioRa.

OMX_AUDIO_RATYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_RATYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_U32 nSamplingRate;
 OMX_U32 nBitsPerFrame;
 OMX_U32 nSamplePerFrame;
 OMX_U32 nCouplingQuantBits;
 OMX_U32 nCouplingStartRegion;
 OMX_U32 nNumRegions;
} OMX_AUDIO_PARAM_RATYPE;

4.1.11.1 Parameter Definitions
The parameters for OMX_AUDIO_RATYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex: is the read-only value containing the index of the port.

• nChannels is the number of audio channels.

• nSamplingRate is the sampling rate of the source data. The values allowed for the
sampling rate are 8000 Hz, 11025 Hz, 22050Hz, and 44100Hz.

• nBitsPerFrame is the value for bits per frame. The range is 46-12288 bits per
frame.

• nSamplePerFrame is the value for samples per frame. The values allowed for the
samples per frame are 256, 512, or 1024.

• nCouplingQuantBits is the number of coupling quantization bits in the stream.

• nCouplingStartRegion is the coupling start region in the stream.

• nNumRegions is the number of regions value.

 140

4.1.11.2 Dependencies
The OMX_AUDIO_RATYPE structure may be queried at any time that the component is
not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.11.3 Functionality
The OMX_AUDIO_RATYPE structure sets the parameters of the RealAudio codec.

4.1.11.4 Error Conditions
On processing the OMX_AUDIO_RATYPE structure, the following error conditions can
occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.11.5 Post-processing Conditions
The characteristics of the RealAudio codec component at the port indicated by
nPortIndex are fully specified.

4.1.12 OMX_AUDIO_PARAM_SBCTYPE
The Subband codec (SBC) is a mandatory audio codec for applications that supports the
Bluetooth™ Advance Audio Distribution Profile (A2DP). The A2DP codec algorithm is
designed to obtain high quality audio at medium bit rates with a low computational
complexity.

The OMX_AUDIO_PARAM_SBCTYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioSbc.

OMX_AUDIO_PARAM_SBCTYPE is defined as follows.

 141

typedef struct OMX_AUDIO_PARAM_SBCTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_U32 nBitRate;
 OMX_U32 nSampleRate;
 OMX_U32 nBlocks;
 OMX_U32 nSubbands;
 OMX_U32 nBitPool;
 OMX_BOOL bEnableBitRate;
 OMX_AUDIO_CHANNELMODETYPE eChannelMode;
 OMX_AUDIO_SBCALLOCMETHODTYPE eSBCAllocType;
} OMX_AUDIO_PARAM_SBCTYPE;

4.1.12.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_SBCTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of audio channels.

• nBitrate is the bit rate of the encoded SBC audio. If the bit rate is variable or
unknown, this parameter has the value 0.

• nSampleRate is the sample rate of the source data. If the sample rate is variable or
unknown, this parameter has the value 0.

• nBlocks is the block length with which the stream has been encoded.

• nSubbands is the number of frequency subbands.

• nBitpool is the size of the bit allocation pool used for encoding the stream.

• bEnableBitRate is the Boolean value to use nBitRate or nBitpool.

• bChannelMode is the audio channel mode.

• eSBCAllocType is the enumeration of the adaptive bit allocation algorithm. Table
4-10 shows the field names and values.

Field Name Value Description
OMX_AUDIO_SBCAllocMethodLoudness 0 Loudness

allocation method
OMX_AUDIO_SBCAllocMethodSNR 1 Signal-to-noise

ratio (SNR)
allocation method

OMX_AUDIO_SBCAllocMethodMax 0x7FFFFFFF
Table 4-10. Adaptive Bit Allocation Algorithm Values

 142

4.1.12.2 Dependencies
The OMX_AUDIO_PARAM_SBCTYPE structure may be queried at any time that the
component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.12.3 Functionality
This OMX_AUDIO_PARAM_SBCTYPE structure configures the parameters of the
SBC codec.

4.1.12.4 Error Conditions
On processing the OMX_AUDIO_PARAM_SBCTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.12.5 Post-processing Conditions
The characteristics of the SBC codec component at the port indicated by nPortIndex
are fully specified.

 143

4.1.13 OMX_AUDIO_PARAM_ADPCMTYPE
Adaptive Differential PCM (ADPCM) is a waveform coding generic algorithm. It can be
implemented in many ways and with different rates.

The OMX_AUDIO_PARAM_ADPCMTYPE structure is used to set or query the current
or default settings for the ADPCM codec component using the OMX_GetParameter
function. It is also used to set the parameters of the ADPCM codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioAdpcm.

OMX_AUDIO_PARAM_ADPCMTYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_ADPCMTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_U32 nBitsPerSample;
 OMX_U32 nSampleRate;
} OMX_AUDIO_PARAM_ADPCMTYPE;

4.1.13.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_ADPCMTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo).

• nBitrate is the bit rate of the encoded ADPCM audio. If the bit rate is variable or
unknown, this parameter has the value 0.

• nBitsPerSample is the number of bits per sample of audio.

• nSamplerate is the sampling rate of the source data. Use the value 0 for variable
or unknown sampling rate.

4.1.13.2 Dependencies
The OMX_AUDIO_PARAM_ADPCMTYPE structure may be queried at any time that
the component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.13.3 Functionality
The OMX_AUDIO_PARAM_ADPCMTYPE structure sets the parameters of a generic
ADPCM codec.

 144

4.1.13.4 Error Conditions
On processing the OMX_AUDIO_PARAM_ADPCMTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.13.5 Post-processing Conditions
The characteristics of the ADPCM codec component at the port indicated by
nPortIndex are fully specified.

4.1.14 OMX_AUDIO_PARAM_G723TYPE
ITU G.723.1 is a standard speech codec that has two rates, 5.3 and 6.3 kbps, and is used
in video telephony. The input sampling rate is 8 kHz.

The OMX_AUDIO_PARAM_G723TYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioG723.

OMX_AUDIO_PARAM_G723TYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_G723TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels
 OMX_BOOL bDTX;
 OMX_AUDIO_G723RATE eBitRate;
 OMX_BOOL bHiPassFilter;
} OMX_AUDIO_PARAM_G723TYPE;

 145

4.1.14.1 Parameter Definitions
The parameters of OMX_AUDIO_PARAM_G723TYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo).

• bDTX enables Discontinuous Transmission according to Annex A of the standard.

• eBitrate is the bit rate of the encoded speech. Table 4-11 identifies bit rate values.

Field Name Value Description
OMX_AUDIO_G723ModeUnused 0 Rate unused or

unknown
OMX_AUDIO_G723ModeLow 5.3 kbps
OMX_AUDIO_G723ModeHigh 6.3 kbps
Table 4-11. G.723 Bit Rate Values

• bHiPassFilter enables high-pass filter preprocessing in the encoder.

4.1.14.2 Dependencies
The OMX_AUDIO_PARAM_G723TYPE structure may be queried at any time that the
component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.14.3 Functionality
The OMX_AUDIO_PARAM_G723TYPE structure sets the parameters of the ITU-
G.723.1 codec.

4.1.14.4 Error Conditions
On processing the OMX_AUDIO_PARAM_G723TYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

 146

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.14.5 Post-processing Conditions
The characteristics of the codec component at the port indicated by nPortIndex are
fully specified.

4.1.15 OMX_AUDIO_PARAM_G726TYPE
ITU G.726 is a standard ADPCM waveform codec having four rates. The rate of 32 kbps
is the most used rate and identical to an older standard, ITU G.721. The input sampling
rate is 8 kHz.

The OMX_AUDIO_PARAM_G726TYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioG726.

OMX_AUDIO_PARAM_G726TYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_G726TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels
 OMX_AUDIO_G726MODE eG726Mode;
} OMX_AUDIO_PARAM_G726TYPE;

4.1.15.1 Parameter Definitions
The parameters of OMX_AUDIO_PARAM_G726TYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo).

• eG726Mode is the bit rate of the encoded speech. Table 4-12 identifies the bit rate
values.

 147

•

Field Name Value Description
OMX_AUDIO_G726ModeUnused 0 Rate unused or unknown
OMX_AUDIO_G726Mode16 16 kbps
OMX_AUDIO_G726Mode24 24 kbps
OMX_AUDIO_G726Mode32 32 kbps (equals G.721)
OMX_AUDIO_G726Mode40 40 kbps
Table 4-12. G.726 Bit Rate Values

4.1.15.2 Dependencies
The OMX_AUDIO_PARAM_G726TYPE structure may be queried at any time that the
component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.15.3 Functionality
The OMX_AUDIO_PARAM_G726TYPE structure sets the parameters of the ITU-
G.726 codec.

4.1.15.4 Error Conditions
On processing the OMX_AUDIO_PARAM_G726TYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.15.5 Post-processing Conditions
The characteristics of the codec component at the port indicated by nPortIndex are
fully specified.

 148

4.1.16 OMX_AUDIO_PARAM_G729TYPE
ITU G.729 is a standard speech codec with a coding rate of 8 kbps that is used in various
applications. The input sampling rate is 8 kHz. A bit-compatible, low-complexity version
is called G.729 appendix A (or G.729A). Support for DTX is described in annex B of the
G.729 standard.

The OMX_AUDIO_PARAM_G729TYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioG729.

OMX_AUDIO_PARAM_G729TYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_G729TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels
 OMX_BOOL bDTX;
 OMX_AUDIO_G729TYPE eAnnex;
 OMX_BOOL bHiPassFilter;
} OMX_AUDIO_PARAM_G729TYPE;

4.1.16.1 Parameter Definitions
The parameters of OMX_AUDIO_PARAM_G729TYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo).

• bDTX enables Discontinuous Transmission when Annex B of the standard is used.

• eAnnex identifies the standard annexes used. Table 4-13 identifies the standard
annexes.

Field Name Value Description
OMX_AUDIO_G729 0 G.729 without annexes
OMX_AUDIO_G729A G.729 with annex A
OMX_AUDIO_G729B G.729 with annex B
OMX_AUDIO_G729AB G.729 with annexes A and B
Table 4-13. Standard Annexes

• bHiPassFilter enables High-Pass filter preprocessing in the encoder.

 149

4.1.16.2 Dependencies
The OMX_AUDIO_PARAM_G729TYPE structure may be queried at any time that the
component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.16.3 Functionality
The OMX_AUDIO_PARAM_G729TYPE structure sets the parameters of the ITU-
G.729 codec.

4.1.16.4 Error Conditions
On processing the OMX_AUDIO_PARAM_G729TYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.16.5 Post-processing Conditions
The characteristics of the codec component at the port indicated by nPortIndex are
fully specified.

 150

4.1.17 OMX_AUDIO_PARAM_AMRTYPE
The Adaptive Multi-Rate coder is defined in 3GPP standards as having two main
versions:

• Narrow Band (AMR-NB), where the sampling rate is 8 kHz. It is defined in standards
26.07x and 26.09x. This version is used in cellular phones and other wireless devices
mainly for speech conversation.

• Wide Band (AMR-WB), where the sampling rate is 16 kHz. It is defined in standards
26.17x and 26.19x, and in ITU G.722.2. This version is used in cellular phones and
other wireless devices mainly for streaming and voice-over-IP (VoIP) communication.

 The OMX_AUDIO_PARAM_AMRTYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioAmr.

OMX_AUDIO_PARAM_AMRTYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_AMRTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannels;
 OMX_AUDIO_AMRBANDMODETYPE eAMRBandMode;
 OMX_AUDIO_AMRDTXMODETYPE eAMRDTXMode;
 OMX_AUDIO_AMRFRAMEFORMATTYPE eAMRFrameFormat;
} OMX_AUDIO_PARAM_AMRTYPE;

4.1.17.1 Parameter Definitions
The parameters of OMX_AUDIO_PARAM_AMRTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nChannels is the number of channels of audio (mono, stereo).

• eAMRBandMode is the bit rate of the encoded speech. Table 4-14 shows the bit rate
values.

Field Name Value Description
OMX_AUDIO_AMRBandModeUnused 0 Rate unused or

unknown
OMX_AUDIO_AMRBandModeNB0 4.75 kbps
OMX_AUDIO_AMRBandModeNB1 5.15 kbps
OMX_AUDIO_AMRBandModeNB2 5.9 kbps
OMX_AUDIO_AMRBandModeNB3 6.7 kbps

 151

Field Name Value Description
OMX_AUDIO_AMRBandModeNB4 7.4 kbps
OMX_AUDIO_AMRBandModeNB5 7.95 kbps
OMX_AUDIO_AMRBandModeNB6 10.2 kbps
OMX_AUDIO_AMRBandModeNB7 12.2 kbps
OMX_AUDIO_AMRBandModeWB0 6.6 kbps
OMX_AUDIO_AMRBandModeWB1 8.85 kbps
OMX_AUDIO_AMRBandModeWB2 12.65 kbps
OMX_AUDIO_AMRBandModeWB3 14.25 kbps
OMX_AUDIO_AMRBandModeWB4 15.85 kbps
OMX_AUDIO_AMRBandModeWB5 18.25 kbps
OMX_AUDIO_AMRBandModeWB6 19.85 kbps
OMX_AUDIO_AMRBandModeWB7 23.05 kbps
OMX_AUDIO_AMRBandModeWB8 23.85 kbps
OMX_AUDIO_AMRBandModeMax 0x7FFFFFFF 5.15 kbps
Table 4-14. Adaptive Multi-Rate Bit Rate Values

• eAMRDTXMode identifies the AMR Discontinuous Transmission mode and voice
activity detection (VAD) type. Table 4-15 describes the modes and types.

Field Name Value Description
OMX_AUDIO_AMRDTXModeUsed DTX used or unused
OMX_AUDIO_AMRDTXModeOnVAD1 Use Type 1 VAD
OMX_AUDIO_AMRDTXModeOnVAD2 Use Type 2 VAD
OMX_AUDIO_AMRDTXModeOnAuto VAD type automatic
OMX_AUDIO_AMRDTXModeAsEFR DTX frames as EFR

(3GPP 26.101, frame
type equals 8,9,10)

OMX_AUDIO_AMRDTXModeMax 0x7FFFFFFF
Table 4-15. Adaptive Multi-Rate Discontinuous Transmission Mode and VAD Type

• eAMRFrameFormat identifies the encoded frame format. Table 4-16 shows the
frame formats.

Field Name Value Description
OMX_AUDIO_AMRFrameFormatConformance 0 Standard test-

sequence
format
(3GPP
26.074)

OMX_AUDIO_AMRFrameFormatIF1 Interface
format 1
(NB- 3GPP
26.101, sec. 4
 WB- 3GPP
26.201, sec. 4)

 152

Field Name Value Description
OMX_AUDIO_AMRFrameFormatIF2 Interface

format 2
(NB- 3GPP
26.101, annex
A
 WB- 3GPP
26.201, annex
A)

OMX_AUDIO_AMRFrameFormatFSF File Storage
format
(RFC 3267,
sec. 5)

OMX_AUDIO_AMRFrameFormatRTPPayload RTP payload
format
(RFC 3267,
sec. 4)

OMX_AUDIO_AMRFrameFormatITU ITU frame
format

OMX_AUDIO_AMRDTXModeMax 0x7FFFFFFF
Table 4-16. Encoded Frame Format

4.1.17.2 Dependencies
The OMX_AUDIO_PARAM_AMRTYPE structure may be queried at any time that the
component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.17.3 Functionality
The OMX_AUDIO_PARAM_AMRTYPE structure sets the parameters of the AMR
codec.

4.1.17.4 Error Conditions
On processing the OMX_AUDIO_PARAM_AMRTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

 153

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.17.5 Post-processing Conditions
The characteristics of the codec component at the port indicated by nPortIndex are
fully specified.

4.1.18 OMX_AUDIO_PARAM_GSMFRTYPE
The GSM Full-Rate codec is defined in ETSI standards 06.1x and 06.3x, which became
3GPP standards 26.01x and 26.03x.

The GSM Full-Rate coder is used in legacy GSM cellular phones. The sampling rate is 8
kHz. The encoded speech has a rate of 13 kbps, or 260 bits per frame of 20 msec. The
coding algorithm is RPE-LTP.

 The OMX_AUDIO_PARAM_GSMFRTYPE structure is used to set or query the current
or default settings for the codec component using the OMX_GetParameter function.
It is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioGsm_FR.

OMX_AUDIO_PARAM_GSMFRTYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_GSMFRTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bDTX;
} OMX_AUDIO_PARAM_GSMFRTYPE;

4.1.18.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_GSMFRTYPE as defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bDTX enables Discontinuous Transmission (3GPP 46.031, 46.032).

4.1.18.2 Dependencies
The OMX_AUDIO_PARAM_GSMFRTYPE structure may be queried at any time that
the component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

 154

4.1.18.3 Functionality
The OMX_AUDIO_PARAM_GSMFRTYPE structure sets the parameters of the GSM
Full-Rate codec.

4.1.18.4 Error Conditions
On processing the OMX_AUDIO_PARAM_GSMFRTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.18.5 Post-processing Conditions
The characteristics of the codec component at the port indicated by nPortIndex are
fully specified.

4.1.19 OMX_AUDIO_PARAM_GSMEFRTYPE
The GSM Enhanced Full-Rate codec is defined in ETSI standards 06.5x, 06.6x, and
06.8x; these standards became 3GPP standards 26.05x, 26.06x, and 26,08x.

The GSM Enhanced Full-Rate codec is used in GSM cellular phones. The sampling rate
is 8 kHz. The encoded speech has a rate of 12.2 kbps, or 244 bits per frame of 20 msec.
Each coded frame is augmented by 16 error-protection bits that provide the complement
of 260 bits, which is the same as the Full Rate codec. However this augmentation is
performed outside of the speech coder. The coding algorithm is ACELP.

 The OMX_AUDIO_PARAM_GSMEFRTYPE structure is used to set or query the
current or default settings for the codec component using the OMX_GetParameter
function. It is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioGsm_EFR.

 155

OMX_AUDIO_PARAM_GSMEFRTYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_GSMEFRTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bDTX;
 OMX_BOOL bHiPassFilter;
} OMX_AUDIO_PARAM_GSMEFRTYPE;

4.1.19.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_GSMEFRTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bDTX enables Discontinuous Transmission (3GPP 46.041, 46.042).

• bHiPassFilter enables High-Pass filter preprocessing in the encoder.

4.1.19.2 Dependencies
The OMX_AUDIO_PARAM_GSMEFRTYPE structure may be queried at any time that
the component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.19.3 Functionality
The OMX_AUDIO_PARAM_GSMEFRTYPE structure sets the parameters of the GSM
Enhanced Full-Rate codec.

4.1.19.4 Error Conditions
On processing the OMX_AUDIO_PARAM_GSMEFRTYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

 156

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.19.5 Post-processing Conditions
The characteristics of the codec component at the port indicated by nPortIndex are
fully specified.

4.1.20 OMX_AUDIO_PARAM_GSMHRTYPE
The GSM Half-Rate codec is defined in ETSI standards 06.2x and 06.4x; these standards
became 3GPP standards 26.02x and 26.04x.

The GSM Half-Rate codec is used in GSM cellular phones. The sampling rate is 8 kHz.
The encoded speech has a rate of 5.6 kbps, or 112 bits per frame of 20 msec. The coding
algorithm is VSELP.

The OMX_AUDIO_PARAM_GSMHRTYPE structure is used to set or query the current
or default settings for the codec component using the OMX_GetParameter function.
It is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioGsm_HR.

OMX_AUDIO_PARAM_GSMHRTYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_GSMHRTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bDTX;
 OMX_BOOL bHiPassFilter;
} OMX_AUDIO_PARAM_GSMHRTYPE;

4.1.20.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_GSMHRTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bDTX enables Discontinuous Transmission (3GPP 46.041, 46.042).

• bHiPassFilter enables High-Pass filter preprocessing in the encoder.

 157

4.1.20.2 Dependencies
The OMX_AUDIO_PARAM_GSMHRTYPE structure may be queried at any time that
the component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.20.3 Functionality
The OMX_AUDIO_PARAM_GSMHRTYPE structure sets the parameters of the GSM
Half-Rate codec.

4.1.20.4 Error Conditions
On processing the OMX_AUDIO_PARAM_GSMHRTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.20.5 Post-processing Conditions
The characteristics of the codec component at the port indicated by nPortIndex are
fully specified.

 158

4.1.21 OMX_AUDIO_PARAM_TDMAFRTYPE
The TDMA Full-Rate codec is defined in theTIA/EIA-136-420 American cellular
standard, also referred to as IS-136. It is a legacy codec used in the American cellular
standard known as DAMPS.

The sampling rate is 8 kHz. The encoded speech has a rate of 7.95 kbps, or 159 bits per
frame of 20 msec. The coding algorithm is VSELP.

The OMX_AUDIO_PARAM_TDMAFRTYPE structure is used to set or query the
current or default settings for the codec component using the OMX_GetParameter
function. It is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioTdma_FR.

OMX_AUDIO_PARAM_TDMAFRTYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_TDMAFRTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bDTX;
 OMX_BOOL bHiPassFilter;
} OMX_AUDIO_PARAM_TDMAFRTYPE;

4.1.21.1 Parameter Definitions
The parameters of OMX_AUDIO_PARAM_TDMAFRTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bDTX enables Discontinuous Transmission.

• bHiPassFilter enables High-Pass filter preprocessing in the encoder.

4.1.21.2 Dependencies
The OMX_AUDIO_PARAM_TDMAFRTYPE structure may be queried at any time that
the component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.21.3 Functionality
The OMX_AUDIO_PARAM_TDMAFRTYPE structure sets the parameters of the
TDMA Full-Rate codec.

 159

4.1.21.4 Error Conditions
On processing the OMX_AUDIO_PARAM_TDMAFRTYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.21.5 Post-processing Conditions
The characteristics of the codec component at the port indicated by nPortIndex are
fully specified.

4.1.22 OMX_AUDIO_PARAM_TDMAEFRTYPE
The TDMA Enhanced Full-Rate codec is defined in the TIA/EIA-136-410 American
cellular standard, which is also referred to as IS-641, DAMPS-EFR. It is the codec used
in the American cellular standard known as DAMPS.

The sampling rate is 8 kHz. The encoded speech has a rate of 7.4 kbps, or 148 bits per
frame of 20 msec. The coding algorithm is ACELP.

 The OMX_AUDIO_PARAM_TDMAEFRTYPE structure is used to set or query the
current or default settings for the codec component using the OMX_GetParameter
function. It is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioTdma_EFR.

OMX_AUDIO_PARAM_TDMAEFRTYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_TDMAEFRTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bDTX;
 OMX_BOOL bHiPassFilter;
} OMX_AUDIO_PARAM_TDMAEFRTYPE;

 160

4.1.22.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_TDMAEFRTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bDTX enables Discontinuous Transmission.

• bHiPassFilter enables High-Pass filter preprocessing in the encoder.

4.1.22.2 Dependencies
The OMX_AUDIO_PARAM_TDMAEFRTYPE structure may be queried at any time
that the component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.22.3 Functionality
The OMX_AUDIO_PARAM_TDMAEFRTYPE structure sets the parameters of the
TDMA Enhanced Full-Rate codec.

4.1.22.4 Error Conditions
On processing the OMX_AUDIO_PARAM_TDMAEFRTYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

 161

4.1.22.5 Post-processing Conditions
The characteristics of the codec component at the port indicated by nPortIndex are
fully specified.

4.1.23 OMX_AUDIO_PARAM_PDCFRTYPE
The PDC Full-Rate codec is defined in ARIB standard RCR-27B. It is the legacy codec
used in the Japanese cellular system.

The sampling rate is 8 kHz. The encoded speech has a rate of 6.7 kbps, or 134 bits per
frame of 20 msec. The coding algorithm is VSELP.

The OMX_AUDIO_PARAM_PDCFRTYPE structure is used to set or query the current
or default settings for the codec component using the OMX_GetParameter function.
It is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioPdc_FR.

OMX_AUDIO_PARAM_PDCFRTYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_PDCFRTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bDTX;
 OMX_BOOL bHiPassFilter;
} OMX_AUDIO_PARAM_PDCFRTYPE;

4.1.23.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_PDCFRTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bDTX enables Discontinuous Transmission.

• bHiPassFilter enables High-Pass filter preprocessing in the encoder.

4.1.23.2 Dependencies
The OMX_AUDIO_PARAM_PDCFRTYPE structure may be queried at any time that
the component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.23.3 Functionality
The OMX_AUDIO_PARAM_PDCFRTYPE structure sets the parameters of the PDC
Full-Rate codec.

 162

4.1.23.4 Error Conditions
On processing the OMX_AUDIO_PARAM_PDCFRTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.23.5 Post-processing Conditions
The characteristics of the codec component at the port indicated by nPortIndex are
fully specified.

4.1.24 OMX_AUDIO_PARAM_PDCEFRTYPE
The PDC Full-Rate codec is defined in ARIB standard RCR-27H. The codec is used in
the Japanese cellular system.

The sampling rate is 8 kHz. The encoded speech has a rate of 6.7 kbps, or 134 bits per
frame of 20 msec. The coding algorithm is ACELP.

 The OMX_AUDIO_PARAM_PDCEFRTYPE structure is used to set or query the
current or default settings for the codec component using the OMX_GetParameter
function. It is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioPdc_EFR.

OMX_AUDIO_PARAM_PDCEFRTYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_PDCEFRTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bDTX;
 OMX_BOOL bHiPassFilter;
} OMX_AUDIO_PARAM_PDCEFRTYPE;

 163

4.1.24.1 Parameter Definitions
The parameters of OMX_AUDIO_PARAM_PDCEFRTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bDTX enables Discontinuous Transmission.

• bHiPassFilter enables High-Pass filter preprocessing in the encoder.

4.1.24.2 Dependencies
The OMX_AUDIO_PARAM_PDCEFRTYPE structure may be queried at any time that
the component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.24.3 Functionality
The OMX_AUDIO_PARAM_PDCEFRTYPE structure sets the parameters of the PDC
Enhanced Full-Rate codec.

4.1.24.4 Error Conditions
On processing the OMX_AUDIO_PARAM_PDCEFRTYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.24.5 Post-processing Conditions
The characteristics of the codec component at the port indicated by nPortIndex are
fully specified.

 164

4.1.25 OMX_AUDIO_PARAM_PDCHRTYPE
The PDC Full-Rate codec is defined in ARIB standard RCR-27C. The codec is used in
the Japanese cellular system.

The sampling rate is 8 kHz. The encoded speech has a rate of 3.45 kbps, or 138 bits per
frame of 40 msec. The coding algorithm is PSI-CELP.

 The OMX_AUDIO_PARAM_PDCHRTYPE structure is used to set or query the current
or default settings for the codec component using the OMX_GetParameter function.
It is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioPdc_HR.

OMX_AUDIO_PARAM_PDCHRTYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_PDCEFRTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bDTX;
 OMX_BOOL bHiPassFilter;
} OMX_AUDIO_PARAM_PDCEFRTYPE;

4.1.25.1 Parameter Definitions
The parameters of OMX_AUDIO_PARAM_PDCHRTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bDTX enables Discontinuous Transmission.

• bHiPassFilter enables High-Pass filter preprocessing in the encoder.

4.1.25.2 Dependencies
The OMX_AUDIO_PARAM_PDCHRTYPE structure may be queried at any time that
the component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.25.3 Functionality
The OMX_AUDIO_PARAM_PDCHRTYPE structure sets the parameters of the PDC
Full-Rate codec.

 165

4.1.25.4 Error Conditions
On processing the OMX_AUDIO_PARAM_PDCHRTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.25.5 Post-processing Conditions
The characteristics of the codec component at the port indicated by nPortIndex are
fully specified.

4.1.26 OMX_AUDIO_PARAM_QCELP8TYPE
The QCELP (lower rate) variable rate codec is defined in the TIA/EIA-96 standard. It is
the legacy codec used in the CDMA cellular standard, mainly in Korea and North
America.

The sampling rate is 8 kHz. The encoded speech has a maximal rate called Rate 1 of 8
kbps, or 160 bits per frame of 20 msec. The codec can work on lower rates, namely Rates
1/2, 1/4, and 1/8, depending on the speech activity and channel capacity. Rate 1 adds 11
parity bits per frame, so its rate becomes 8.55 kbps.

The coding algorithm is QCELP.

 The OMX_AUDIO_PARAM_QCELP8TYPE structure is used to set or query the
current or default settings for the codec component using the OMX_GetParameter
function. It is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioQcelp8.

 166

OMX_AUDIO_PARAM_QCELP8TYPE is defined as follows.
typedef struct OMX_AUDIO_PARAMQCELP8TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_AUDIO_CDMARATETYPE eCDMARate;
 OMX_U32 nMinBitRate;
 OMX_U32 nMaxBitRate;
} OMX_AUDIO_PARAMQCELP8TYPE;

4.1.26.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_QCELP8TYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eCDMARate is the frame rate or type. Table 4-17 shows the frame rate values.

Field Name Value Description
OMX_AUDIO_CDMARateBlank 0 Blank frame
OMX_AUDIO_CDMARateFull 4 Rate 1
OMX_AUDIO_CDMARateHalf 3 Rate 1/2
OMX_AUDIO_CDMARateQuarter 2 Rate 1/4
OMX_AUDIO_CDMARateEighth 1 Rate 1/8
OMX_AUDIO_CDMARateErasure 14 Erasure frame (due to

channel errors)
OMX_AUDIO_CDMARateMax 0x7FFFFFFF
Table 4-17. QCELP8 Frame Rate Values

• nMinBitRate is the minimal restriction on the encoder for the current frame. The
value is 1, 2, 3, or 4. The default value is 1.

• nMaxBitRate is the maximal restriction on the encoder for the current frame. The
value is 1, 2, 3, or 4. This value shall be greater than or equal to the minimal rate. The
default value is 4.

4.1.26.2 Dependencies
The OMX_AUDIO_PARAM_QCELP8TYPE structure may be queried at any time that
the component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.26.3 Functionality
The OMX_AUDIO_PARAM_QCELP8TYPE structure sets the parameters of the
QCELP8 codec.

 167

4.1.26.4 Error Conditions
On processing the OMX_AUDIO_PARAM_QCELP8TYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.26.5 Post-processing Conditions
The characteristics of the codec component at the port indicated by nPortIndex are
fully specified.

4.1.27 OMX_AUDIO_PARAM_QCELP13TYPE
The QCELP (high-rate) variable rate codec is defined in the TIA/EIA-733 standard. It is
the codec that is used in the high-rate service option of CDMA cellular standard, mainly
in Korea and North America.

The sampling rate is 8 kHz. The encoded speech has a maximal rate called Rate 1 of 13.3
kbps, or 266 bits per frame of 20 msec. The codec can work on lower rates, namely Rates
1/2, 1/4, and 1/8, depending on the capacity of the speech activity channel.

The coding algorithm is QCELP.

The OMX_AUDIO_PARAM_QCELP13TYPE structure is used to set or query the
current or default settings for the codec component using the OMX_GetParameter
function. It is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioQcelp13.

 168

OMX_AUDIO_PARAM_QCELP13TYPE is defined as follows.
typedef struct OMX_AUDIO_PARAMQCELP13TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_AUDIO_CDMARATETYPE eCDMARate;
 OMX_U32 nMinBitRate;
 OMX_U32 nMaxBitRate;
} OMX_AUDIO_PARAMQCELP13TYPE;

4.1.27.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_QCELP13TYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eCDMARate is the frame rate or type. Table 4-18 shows the frame rate values.

Field Name Value Description
OMX_AUDIO_CDMARateBlank 0 Blank frame
OMX_AUDIO_CDMARateFull 4 Rate 1
OMX_AUDIO_CDMARateHalf 3 Rate 1/2
OMX_AUDIO_CDMARateQuarter 2 Rate 1/4
OMX_AUDIO_CDMARateEighth 1 Rate 1/8
OMX_AUDIO_CDMARateErasure 14 Erasure frame (due to

channel errors)
OMX_AUDIO_CDMARateMax 0x7FFFFFFF
Table 4-18. QCELP13 Frame Rate Values

• nMinBitRate is the minimal restriction on the encoder for the current frame. The
value is 1, 2, 3, or 4. The default value is 1.

• nMaxBitRate is the maximal restriction on the encoder for the current frame. The
value is 1, 2, 3, or 4. The value shall be greater than or equal to the minimal rate. The
default value is 4.

4.1.27.2 Dependencies
The OMX_AUDIO_PARAM_QCELP13TYPE structure may be queried at any time that
the component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.27.3 Functionality
The OMX_AUDIO_PARAM_QCELP13TYPE structure sets the parameters of the
QCELP13 codec.

 169

4.1.27.4 Error Conditions
On processing the OMX_AUDIO_PARAM_QCELP13TYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.27.5 Post-processing Conditions
The characteristics of the codec component at the port indicated by nPortIndex are
fully specified.

4.1.28 OMX_AUDIO_PARAM_EVRCTYPE
The Enhanced Variable Speech Coder is defined in the TIA/EIA-127 standard. It is the
codec used in the CDMA cellular standard, mainly in Korea and North America.

The sampling rate is 8 kHz. The encoded speech has a maximal rate called Rate 1 of 8.55
kbps, or 171 bits per frame of 20 msec. The codec can work on lower rates, namely Rate
1/2 and 1/8, depending on the speech activity and the channel capacity.

The coding algorithm is RCELP.

 The OMX_AUDIO_PARAM_EVRCTYPE structure is used to set or query the current
or default settings for the codec component using the OMX_GetParameter function.
It is also used to set the parameters of the codec component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_IndexParamAudioEvrc.

 170

OMX_AUDIO_PARAM_EVRCTYPE is defined as follows.
typedef struct OMX_AUDIO_PARAMEVRCTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_AUDIO_CDMARATETYPE eCDMARate;
 OMX_U32 nMinBitRate;
 OMX_U32 nMaxBitRate;
 OMX_U32 bNoiseSuppressor;
} OMX_AUDIO_PARAMEVRCTYPE;

4.1.28.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_EVRCTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eCDMARate is the frame rate or type. Table 4-19 shows the frame rate values.

Field Name Value Description
OMX_AUDIO_CDMARateBlank 0 Blank frame
OMX_AUDIO_CDMARateFull 4 Rate 1
OMX_AUDIO_CDMARateHalf 3 Rate 1/2
OMX_AUDIO_CDMARateEighth 1 Rate 1/8
OMX_AUDIO_CDMARateErasure 14 Erasure frame (due to

channel errors)
OMX_AUDIO_CDMARateMax 0x7FFFFFFF
Table 4-19. Enhanced Variable Speech Frame Rate Values

• nMinBitRate is the minimal restriction on the encoder for the current frame. The
value is 1, 3, or 4. The default value is 1.

• nMaxBitRate is the maximal restriction on the encoder for the current frame. The
value is 1, 3, or 4. The value shall be greater than or equal to the minimal rate. The
default value is 4.

• bNoiseSuppressor enables the encoder's noise suppressor preprocessing as a
part of the encoder.

4.1.28.2 Dependencies
The OMX_AUDIO_PARAM_EVRCTYPE structure may be queried at any time that the
component is not in the OMX_StateInvalid state. The structure only be set using
OMX_SetParameter may when the component is in the OMX_StateLoaded state.

 171

4.1.28.3 Functionality
The OMX_AUDIO_PARAM_EVRCTYPE structure sets the parameters of the Enhanced
Variable Speech Coder (EVRC) speech codec.

4.1.28.4 Error Conditions
On processing the OMX_AUDIO_PARAM_EVRCTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.28.5 Post-processing Conditions
The characteristics of the codec component at the port indicated by nPortIndex are
fully specified.

 172

4.1.29 OMX_AUDIO_PARAMSMVTYPE
The Selectable Mode Vocoder (SMV) is defined in 3GPP2 standard C.S0030-2. It is the
codec used in the CDMA2000 cellular standard.

The sampling rate is 8 kHz. The encoded speech has a maximal rate, called Rate 1, of
8.55 kbps, or 171 bits per frame of 20 msec. It can work on lower rates, namely Rates 1/2,
1/4, and 1/8, depending on the speech activity and the channel capacity.

The coding algorithm is eX-CELP.

 The OMX_AUDIO_PARAMSMVTYPE structure is used to set or query the current or
default settings for the codec component using the OMX_GetParameter function. It is
also used to set the parameters of the codec component using the OMX_SetParameter
function. When calling either the OMX_GetParameter or the OMX_SetParameter
functions, the index specified for this structure is OMX_IndexParamAudioSmv.

OMX_AUDIO_PARAMSMVTYPE is defined as follows.
typedef struct OMX_AUDIO_PARAMSMVTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_AUDIO_CDMARATETYPE eCDMARate;
 OMX_U32 nMinBitRate;
 OMX_U32 nMaxBitRate;
 OMX_U32 bNoiseSuppressor;
} OMX_AUDIO_PARAMSMVTYPE;

4.1.29.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAMSMVTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eCDMARate is the frame rate or type. Table 4-20 identifies the frame rate values.

Field Name Value Description
OMX_AUDIO_CDMARateBlank 0 Blank frame
OMX_AUDIO_CDMARateFull 4 Rate 1
OMX_AUDIO_CDMARateHalf 3 Rate 1/2
OMX_AUDIO_CDMARateEighth 1 Rate 1/8
OMX_AUDIO_CDMARateErasure 14 Erasure frame (due to

channel errors)
OMX_AUDIO_CDMARateMax 0x7FFFFFFF
Table 4-20. Selectable Mode Vocoder Frame Rate Values

 173

• nMinBitRate is the minimal restriction on the encoder for the current frame. The
value is 1, 3, or 4. The default value is 1.

• nMaxBitRate is the maximal restriction on the encoder for current frame. The
value is 1, 3, or 4. The value shall be greater than or equal to the minimal rate. The
default value is 4.

• bNoiseSuppressor enables the encoder's noise suppressor preprocessing as a
part of the encoder.

4.1.29.2 Dependencies
The OMX_AUDIO_PARAMSMVTYPE structure may be queried at any time that the
component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.29.3 Functionality
The OMX_AUDIO_PARAMSMVTYPE structure sets the parameters of the Selectable
Mode Vocoder codec.

4.1.29.4 Error Conditions
On processing the OMX_AUDIO_PARAMSMVTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.29.5 Post-processing Conditions
The characteristics of the codec component at the port indicated by nPortIndex are
fully specified.

 174

4.1.30 OMX_AUDIO_PARAM_MIDITYPE
The OMX_AUDIO_PARAM_MIDITYPE structure is used to set or query the initial
basic parameters of the MIDI engine. The parameters define the number of output
channels of PCM audio, the maximum polyphony that the device supports, and whether
the default soundbank is loaded at initialization.

OMX_AUDIO_PARAM_MIDITYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_MIDITYPE {

 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nFileSize;
 OMX_BU32 sMaxPolyphony;
 OMX_BOOL bLoadDefaultSound;
 OMX_AUDIO_MIDIFORMATTYPE eMidiFormat;
} OMX_AUDIO_PARAM_MIDITYPE;

4.1.30.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_MIDITYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nFileSize is the size of the MIDI file data in bytes. This field shall be specified
by the IL client or the component configuring this port before data is accepted..

• sMaxPolyphony specifies the range of simultaneous polyphonic voices that are
supported. Since this parameter is of type OMX_BU32 (a bounded, unsigned 32-bit
integer; see OMX_Types.h), it allows the querying and setting of minimum, nominal,
and maximum values. A value of zero indicates that the default polyphony of the
device is used.

• bLoadDefaultSound is a Boolean value that indicates whether the default
soundbank is it to be loaded at initialization.

• eMidiFormat is an enumeration for the format of the MIDI file. Table 4-21 shows
the MIDI file format.

Field Name Value Description
OMX_AUDIO_MIDIFormatUnkno
wn

0 MIDI format is unknown or
not used.

OMX_AUDIO_MIDIFormatSMF0

 Standard MIDI File format 0

OMX_AUDIO_MIDIFormatSMF1 Standard MIDI File format 1
OMX_AUDIO_MIDIFormatSMF2 Standard MIDI File format 2

 175

OMX_AUDIO_MIDIFormatSPMID
I

 SP-MIDI

OMX_AUDIO_MIDIFormatXMF0 XMF type 0
OMX_AUDIO_MIDIFormatXMF1 XMF type 1

OMX_AUDIO_MIDIFormatMobil
eXMF

 Mobile XMF (XMF type 2)

OMX_AUDIO_MIDIFormatMax 0x7FFFFF
FF

Allowance for expansion in
the
number of MIDI file formats

Table 4-21. MIDI File Format

4.1.30.2 Dependencies
The OMX_AUDIO_PARAM_MIDITYPE structure may be queried at any time that the
component is not in the OMX_StateInvalid state. The structure may be set using
OMX_SetParameter only when the component is in the OMX_StateLoaded state.

4.1.30.3 Error Conditions
On processing the OMX_AUDIO_PARAM_MIDITYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is not supported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.30.4 Post-processing Conditions
The characteristics of the MIDI IL component at the port indicated by nPortIndex are
fully specified.

 176

4.1.31 OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE
The OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE structure is used to set
or query the parameters required for loading and unloading user-specified MIDI
downloadable soundbanks (DLS). This structure contains a major exception to the
memory rules used in OpenMAX: It includes a pointer to data, namely the DLS, which is
outside the structure. This is because DLS soundbanks can get upwards of 400 KB in
some cases. Without this exception, the implementations would be forced to make
redundant copies of these large soundbanks, wasting valuable system resources.

OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE is defined as follows.
typedef struct OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nDLSIndex;
 OMX_U32 nDLSSize;
 OMX_PTR pDLSData;
 OMX_AUDIO_MIDISOUNDBANKTYPE eMidiSoundBank;
OMX_AUDIO_MIDISOUNDBANKLAYOUTTYPE eMidiSoundBankLayout;
} OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE;

4.1.31.1 Parameter Definitions
The parameters for OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE are
defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nDLSIndex is the DLS file index to be loaded.

• nDLSSize is the size of the DLS in bytes.

• pDLSData is the pointer to the DLS file data.

• eMidiSoundBank is an enumeration for the various types of MIDI DLS
soundbanks. Table 4-22 identifies the MIDI soundbanks.

Field Name Value Description
OMX_AUDIO_MIDISoundBankUnused 0 Unused/unknown

soundbank type
OMX_AUDIO_MIDISoundBankDLS1 DLS 1
OMX_AUDIO_MIDISoundBankDLS2 DLS 2
OMX_AUDIO_MIDISoundBankMobile
DLSBase

 Mobile DLS, using
the base functionality

 177

OMX_AUDIO_MIDISoundBankMobile
DLSPlusOptions

 Mobile DLS, using
the specification-
defined optional
feature set

OMX_AUDIO_MIDISoundBankMax 0x7FFFFFFF Allowance for
expansion in the
number of
soundbank types

Table 4-22. MIDI Soundbanks

• eMidiSoundBankLayout is an enumeration for the various layouts of MIDI DLS
soundbanks. Bank layout describes how the bank most significant bit (MSB) and least
significant bit (LSB) are used in the DLS instrument definitions soundbank Table 4-
23 shows the MIDI soundbank layouts.

Field Name Value Description
OMX_AUDIO_MIDISoundBankL
ayoutUnused

0 Unknown/unused soundbank
layout type.

OMX_AUDIO_MIDISoundBankL
ayoutGM

 GS layout based on bank MSB
0x00.

OMX_AUDIO_MIDISoundBankL
ayoutGM2

 General MIDI 2 layout using
MSB 0x78/0x79, LSB 0x00.

OMX_AUDIO_MIDISoundBankL
ayoutUser

 Does not conform to any bank
numbering standards.

OMX_AUDIO_MIDISoundBankL
ayoutMax

0x7FFFFF
FF

Allowance for expansion in the
number of soundbank layout
types.

Table 4-23. MIDI Soundbank Layouts

4.1.31.2 Dependencies
The OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE structure may be
queried at any time that the component is not in the OMX_StateInvalid state. The
structure may be set using OMX_SetParameter only when the component is in the
OMX_StateLoaded state.

4.1.31.3 Error Conditions
On processing the OMX_AUDIO_PARAM_MIDILOADUSERSOUNDTYPE structure,
the following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

 178

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

4.1.31.4 Post-processing Conditions
The characteristics of the MIDI IL component at the port indicated by nPortIndex are
fully specified.

4.1.32 OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE
The OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE structure is used to set
the parameters for live MIDI events and Maximum Instantaneous Polyphony (MIP)
messages, which are part of the SP-MIDI standard. The
OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE structure does not specify
the format of MIDI events or MIP messages; it simply provides an array for the MIDI
events or the MIP message buffer. The MIDI engine can parse this array and process it
appropriately.

OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE {

 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nMidiEventSize;
 OMX_U8 nMidiEvents[1];
} OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE;

4.1.32.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE are
defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nMidiEventSize is the size of the immediate MIDI events or MIP message in
bytes.

 179

• nMidiEvents is the MIDI event array to be rendered immediately, or an array for
the MIP message buffer, where the size is indicated by nMidiEventSize.

4.1.32.2 Dependencies
The OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE structure may be
queried at any time that the component is not in the OMX_StateInvalid state. The
structure may be set at any time using OMX_SetConfig as long as the component is not
in the OMX_StateInvalid state.

4.1.32.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_MIDIIMMEDIATEEVENTTYPE structure,
the following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is not supported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.32.4 Post-processing Conditions
The live MIDI event array is rendered by the MIDI engine, or the MIP message contained
in the buffer is processed.

 180

4.1.33 OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE
The OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE structure is used
to query and set the parameters for soundbank/program pairs in a given MIDI channel. It
will be called once for each of the 16 MIDI channels. Note that the entire MIDI stream
goes to a single port. One-to-one mapping does not occur between ports and MIDI
channels.

OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannel;
 OMX_U16 nIDProgram;
 OMX_U16 nIDSoundBank;
 OMX_U32 nUserSoundBankIndex;
} OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE;

4.1.33.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE
are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nChannel refers to a MIDI channel. Valid channel values are 1 to 16.

• nIDProgram refers to a MIDI program. Valid program ID range is 1 to 128.

• nIDSoundBank is the soundbank ID.

• nUserSoundBankIndex is the user soundbank index. The index makes access to
soundbanks easier if multiple banks are present.

4.1.33.2 Dependencies
The OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE structure may be
queried at any time that the component is not in the OMX_StateInvalid state. The
structure may be set at any time using OMX_SetConfig as long as the component is not
in the OMX_StateInvalid state.

4.1.33.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_MIDISOUNDBANKPROGRAMTYPE
structure, the following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

 181

• OMX_ErrorInvalidState when the OMX_SetConfig function is called and
the component is in the OMX_StateInvalid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.33.4 Post-processing Conditions
The specified MIDI channel has a soundbank and program associated with it.

4.1.34 OMX_AUDIO_CONFIG_MIDICONTROLTYPE
The OMX_AUDIO_CONFIG_MIDICONTROLTYPE structure is used to query and set
the parameters for controlling the rate and the looping (repeated playback) of MIDI
playback.

OMX_AUDIO_CONFIG_MIDICONTROLTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_MIDICONTROLTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BS32 sPitchTransposition;
 OMX_BU32 sPlayBackRate;
 OMX_BU32 sTempo ;
 OMX_U32 nMaxPolyphony;
 OMX_U32 nNumRepeat;
 OMX_U64 nStopTime;
 OMX_U16 nChannelMuteMask;
 OMX_U16 nChannelSoloMask;
 OMX_U32 nTrack0031MuteMask;
 OMX_U32 nTrack3263MuteMask;
 OMX_U32 nTrack0031SoloMask;
 OMX_U32 nTrack3263SoloMask;
} OMX_AUDIO_CONFIG_MIDICONTROLTYPE;

4.1.34.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_MIDICONTROLTYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• sPitchTransposition is the pitch transposition in semitones, stored as Q22.10
format, based on the Java MMAPI (JSR-135) requirement. As it is a bounded value

 182

type (OMX_BS32), it allows the querying and setting of a range of values, including
minimum, actual, and maximum.

• sPlayBackRate is the relative playback rate, stored as a Q14.17 fixed-point
number based on the JSR-135 requirement. As it is a bounded value type
(OMX_BU32), it allows the querying and setting of a range of values, including
minimum, actual, and maximum.

• sTempo is the tempo in beats per minute (BPM), stored as a Q22.10 fixed-point
number based on the JSR-135 requirement. As it is a bounded value type
(OMX_BS32), it allows the querying and setting of a range of values, including
minimum, actual, and maximum.

• nMaxPolyphony specifies the maximum number of simultaneous polyphonic
voices, which is the maximum run-time polyphony. A value of zero indicates that the
default polyphony of the device is used.

• nNumRepeat specifies the number of times to repeat the playback.

• nStopTime is the time in milliseconds to indicate when playback will stop
automatically. This value is set to zero if not used.

• nChannelMuteMask is a 16-bit mask for channel mute status.

• nChannelSoloMask is a 16-bit mask for channel solo status.

• nTrack0031MuteMask is a 32-bit mask for track mute status for tracks 0-31.

• nTrack3263MuteMask is a 32-bit mask for track mute status for tracks 32-63.

• nTrack0031SoloMask is a 32-bit mask for track solo status for tracks 0-31.

• nTrack3263SoloMask is a 32-bit mask for track mute status for tracks 32-63.

4.1.34.2 Dependencies
The OMX_AUDIO_CONFIG_MIDICONTROLTYPE structure may be queried at any
time that the component is not in the OMX_StateInvalid state. The structure may be set at
any time using OMX_SetConfig as long as the component is not in the
OMX_StateInvalid state.

4.1.34.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_MIDICONTROLTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetConfig function is called and
the component is in the OMX_StateInvalid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

 183

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.34.4 Post-processing Conditions
In case of a OMX_SetConfig call using the
OMX_AUDIO_CONFIG_MIDICONTROLTYPE structure, the parameters required to
control MIDI playback are set. In case of a OMX_GetConfig call using the
OMX_AUDIO_CONFIG_MIDICONTROLTYPE structure, the MIDI IL client can
determine the parameters controlling MIDI playback.

4.1.35 OMX_AUDIO_CONFIG_MIDISTATUSTYPE
The OMX_AUDIO_CONFIG_MIDISTATUSTYPE structure is used to query the current
status of the MIDI playback. As such, it can be used only by an OMX_GetConfig call.
The OMX_AUDIO_CONFIG_MIDISTATUSTYPE structure returns all of the
parameters that characterize the current status of the MIDI engine.

OMX_AUDIO_CONFIG_MIDISTATUSTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_MIDISTATUSTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U16 nNumTracks;
 OMX_U32 nDuration;
 OMX_U32 nPosition;
 OMX_BOOL bVibra;
 OMX_U32 nNumMetaEvents;
 OMX_U32 nNumActiveVoices;
 OMX_AUDIO_MIDIPLAYBACKSTATETYPE eMIDIPlayBackState;
} OMX_AUDIO_CONFIG_MIDISTATUSTYPE;

4.1.35.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_MIDISTATUSTYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as an output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nNumTracks is a read-only field that identifies the number of MIDI tracks in the
file. Note that this parameter will have a valid value only when the entire file has
been parsed and buffered. An OMX_GetConfig call issued before the entire file has
been processed will not contain the correct number of MIDI tracks.

 184

• nDuration is the length of the currently open MIDI resource in milliseconds. As
with nNumTracks, this parameter will have a meaningful value only after the entire
file has been buffered.

• nPosition is the current position in milliseconds of the MIDI resource being
played.

• bVibra is a Boolean value that indicates if a vibra track exists in the file. This
parameter will return a meaningful value only after the entire file has been buffered.
The value returned when in the middle of the file cannot be relied upon.

• nNumMetaEvents is the total number of MIDI meta events in the currently open
MIDI resource. This parameter will return a valid value only after the entire file is
buffered. The value returned when in the middle of the file cannot be relied upon.

• nNumActiveVoices is the number of active voices in the currently playing MIDI
resource, or the current polyphony level. This parameter may not return a meaningful
value until the entire file is parsed and buffered.

• eMIDIPlayBackState is the enumeration for the MIDI playback state. Table 4-
24 describes the payback states.

Field Name Value Description
OMX_AUDIO_MIDIPlayBackStateUnknown 0 Unknown/unused

MIDI playback state,
or state does not map
to one of the defined
states.

OMX_AUDIO_MIDIPlayBackStateClosedEngaged No MIDI resource is
currently open. The
MIDI engine is
currently processing
MIDI events.

OMX_AUDIO_MIDIPlayBackStateParsing A MIDI resource is
open and is being
primed. The MIDI
engine is currently
processing MIDI
events.

 185

OMX_AUDIO_MIDIPlayBackStateOpenEngaged A MIDI resource is
open and primed but
not playing. The
MIDI engine is
currently processing
MIDI events. The
transition to this state
is only possible from
the
OMX_AUDIO_MIDI
PlayBackStatePlaying
state when the
'playback head'
reaches the end of
media data or the
playback stops due to
a stop time setting.

OMX_AUDIO_MIDIPlayBackStatePlaying A MIDI resource is
open and currently
playing. The MIDI
engine is currently
processing MIDI
events.

OMX_AUDIO_MIDIPlayBackStatePlayingPartially Best-effort playback
due to
SP-MIDI/DLS
resource constraints

OMX_AUDIO_MIDIPlayBackStatePlayingSilently Due to system
resource constraints
and SP-MIDI content
constraints, there is
currently no audible
MIDI content during
playback. The
situation may change
if resources are freed
later.

OMX_AUDIO_MIDIPlayBackStateMax 0x7FFFFFFF Allowance for
expansion in the
number of playback
states.

Table 4-24. MIDI Playback States

 186

4.1.35.2 Dependencies
The OMX_AUDIO_CONFIG_MIDISTATUSTYPE structure may be queried at any time
that the component is not in the OMX_StateInvalid state. The structure contains read-
only parameters and therefore cannot be set.

4.1.35.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_MIDISTATUSTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is not supported.

• OMX_ErrorInvalidState when the OMX_GetConfig function is called and
the component is in the OMX_StateInvalid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is not supported
by the component during an OMX_SetConfig call.

4.1.35.4 Post-processing Conditions
The IL client has the status of the MIDI engine.

4.1.36 OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE
MIDI meta events are like audio metadata, except that they are interspersed with the
MIDI content throughout the file and not localized in the header. As such, it is necessary
to retrieve information about these meta-events from the engine as it encounters these
meta events within the MIDI content. Component vendors are not required to enumerate
all types of meta events; vendors can choose the meta events they want to support. Meta
events are enumerated in the same order that they are detected in the MIDI file. Meta
event data will always be provided as binary data, as it is present in the MIDI file.

The OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE structure is used to query the
meta event, its track number, and the size of the meta event data using
OMX_GetConfig. This allows the application to quickly determine meta events of
interest. If the application requires the meta event data, the
OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE structure, which is defined in
section 4.1.37, needs to be used in a second OMX_GetConfig call.

 187

OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE is defined as follows.
typedef struct OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nIndex;
 OMX_U8 nMetaEventType;
 OMX_U32 nMetaEventSize;
 OMX_U32 nTrack;
 OMX_U32 nPosition;
} OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE;

4.1.36.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nIndex is the index of the meta event. Meta events will be numbered 0 to N-1,
where N is the number of meta events that the MIDI decoder reports.

• nMetaEventType is the meta event type. The values are 0-127.

• nMetaEventSize is the size of the meta event in bytes.

• nTrack is the track number for the meta event.

• nPosition is the position of the meta event in milliseconds.

4.1.36.2 Dependencies
The OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE structure may be queried at
any time that the component is not in the OMX_StateInvalid state. The structure cannot
be set.

4.1.36.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetConfig function is called and
the component is in the OMX_StateInvalid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

 188

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.36.4 Post-processing Conditions
The IL client knows the type, track number, and size of the meta events in the MIDI file.

4.1.37 OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE
The OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE structure is typically
used by the IL client via an OMX_GetConfig call to retrieve the meta event data, after
the type, size and track number of the meta event have been determined by a previous
OMX_GetConfig call using the OMX_AUDIO_CONFIG_MIDIMETAEVENTTYPE
structure defined in section 4.1.36. The IL client is responsible for sizing the structure
appropriately so that it can hold the meta event data.

OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE is defined as follows.

typedef struct OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nIndex;
 OMX_U32 nMetaEventSize;
 OMX_U8 nData[1];
} OMX_AUDIO_CONFIG__MIDIMETAEVENTDATATYPE;

4.1.37.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE are
defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nIndex is the index of the meta event. Meta events are numbered 0 to N-1, where N
is the number of meta events that the MIDI decoder reports.

• nMetaEventSize is the size of the meta event in bytes.

• nData is an array of one or more bytes of meta data as indicated by the
nMetaEventSize field

 189

4.1.37.2 Dependencies
The OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE structure may be
queried at any time that the component is not in the OMX_StateInvalid state. The
structure cannot be set.

4.1.37.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_MIDIMETAEVENTDATATYPE structure,
the following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetConfig function is called and
the component is in the OMX_StateInvalid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of audio ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.37.4 Post-processing Conditions
The IL client has access to the required meta event data in the MIDI file.

4.1.38 OMX_AUDIO_CONFIG_VOLUMETYPE
The OMX_AUDIO_CONFIG_VOLUMETYPE structure is used to adjust the audio
volume for a port.

OMX_AUDIO_CONFIG_VOLUMETYPE is defined as follows.

4.1.38.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_VOLUMETYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

typedef struct OMX_AUDIO_CONFIG_VOLUMETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bLinear;
 OMX_BS32 sVolume;
} OMX_AUDIO_CONFIG_VOLUMETYPE;

 190

• nPortIndex: is the read-only value containing the index of the port.

• bLinear is the volume to be set on a linear (0-100) or a logarithmic scale
(millidecibel, which is abbreviated mB).

• sVolume is the linear volume setting in the range 0-100, or the logarithmic volume
setting for this port. The values for volume are in millibel (abbreviated mB, where 1
millibel = 1/100 decibel) relative to a gain of 1 (i.e., the output is the same as the
input level). Values are in mB from nMax (maximum volume) to nMin (minimum
volume, typically negative). Since the volume is voltage and not a power, it takes a
setting of -600 mB to decrease the volume by half. If a component cannot accurately
set the volume to the requested value, it shall set the volume to the closest value
below the requested value. When getting the volume setting, the current actual
volume shall be returned.

4.1.38.2 Dependencies
The OMX_AUDIO_CONFIG_VOLUMETYPE structure may be queried using
OMX_GetConfig and set using OMX_SetConfig at any time after the component has
been loaded.

4.1.38.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_VOLUMETYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetConfig function is called and
the component is not in a valid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.38.4 Post-processing Conditions
In case of an OMX_SetConfig call using this structure, the volume of the port is set. In
case of an OMX_GetConfig call using this structure, the IL client can determine the
current volume setting for the port.

 191

4.1.39 OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE
The OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE structure is used to adjust
the audio volume for a channel.

OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE is defined as follows.

4.1.39.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nChannel is the channel to select in the range 0 to N-1 using OMX_ALL to apply
volume settings to all channels.

• bLinear is the volume to be set on a linear scale (0-100) or a logarithmic scale
(mB).

• sVolume is the linear volume setting in the range 0-100 or the logarithmic volume
setting for this port. The values for volume are in millidecibel (abbreviated mB,
where 1 millibel = 1/100 dB) relative to a gain of 1 (i.e., the output is the same as the
input level). Values are in mB from nMax (maximum volume) to nMin (minimum
volume, typically negative). Since the volume is voltage and not a power, it takes a
setting of -600 mB to decrease the volume by half. If a component cannot accurately
set the volume to the requested value, it shall set the volume to the closest value
below the requested value. When getting the volume setting, the current actual
volume shall be returned.

• bIsMidi is OMX_TRUE if nChannel refers to a MIDI channel, or OMX_FALSE
otherwise.

typedef struct OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannel;
 OMX_BOOL bLinear;
 OMX_BS32 sVolume;
 OMX_BOOL bIsMIDI;
} OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE;

 192

4.1.39.2 Dependencies
The OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE structure may be queried
using OMX_GetConfig and set using OMX_SetConfig at any time after the
component has been loaded.

4.1.39.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_CHANNELVOLUMETYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetConfig function is called and
the component is not in a valid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.39.4 Post-processing Conditions
In case of an OMX_SetConfig call using this structure, the volume of the audio
channel is set. In case of an OMX_GetConfig call using this structure, the IL client can
determine the current volume setting for the channel.

4.1.40 OMX_AUDIO_CONFIG_BALANCETYPE
The OMX_AUDIO_CONFIG_BALANCETYPE structure defines the audio left-right
balance adjustment for a port.

OMX_AUDIO_CONFIG_BALANCETYPE is defined as follows.

4.1.40.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_BALANCETYPE are as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

typedef struct OMX_AUDIO_CONFIG_BALANCETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 nBalance;
} OMX_AUDIO_CONFIG_BALANCETYPE;

 193

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port. Select the input
port to set just that port's balance. Select the output port to adjust the master balance.

• nBalance is the balance setting for this port. The values are -100 to 100, where -
100 indicates all left, and no right.

4.1.40.2 Dependencies
The OMX_AUDIO_CONFIG_BALANCETYPE structure may be queried using
OMX_GetConfig and set using OMX_SetConfig at any time after the component has
been loaded.

4.1.40.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_BALANCETYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetConfig function is called and
the component is not in a valid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.40.4 Post-processing Conditions
In case of an OMX_SetConfig call using this structure, the balance setting is set to the
specified value. In case of an OMX_GetConfig call using this structure, the IL client
can determine the current balance setting parameter.

 194

4.1.41 OMX_AUDIO_CONFIG_MUTETYPE
The OMX_AUDIO_CONFIG_MUTETYPE structure adjusts the audio mute for a port.

OMX_AUDIO_CONFIG_MUTETYPE is defined as follows.

4.1.41.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_MUTETYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port. Select the input
port to set just that port's mute setting. Select the output port to adjust the master
mute.

• bMute identifies whether the port is muted (OMX_TRUE) or playing normally
(OMX_FALSE).

4.1.41.2 Dependencies
The OMX_AUDIO_CONFIG_MUTETYPE structure may be queried using
OMX_GetConfig and set using OMX_SetConfig at any time after the component has
been loaded.

4.1.41.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_MUTETYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetConfig function is called and
the component is not in a valid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of ports for the component.

typedef struct OMX_AUDIO_CONFIG_MUTETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bMute;
} OMX_AUDIO_CONFIG_MUTETYPE;

 195

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.41.4 Post-processing Conditions
In case of an OMX_SetConfig call using this structure, the specified audio port is
muted or unmuted according to the structure data. In case of an OMX_GetConfig call
using this structure, the IL client can determine if the port is muted or not.

4.1.42 OMX_AUDIO_CONFIG_CHANNELMUTETYPE
The OMX_AUDIO_CONFIG_CHANNELMUTETYPE structure adjusts the audio mute
for a channel.

OMX_AUDIO_CONFIG_CHANNELMUTETYPE is defined as follows.

4.1.42.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_CHANNELMUTETYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port. Select the input
port to set just that port's mute setting. Select the output port to adjust the master
mute.

• nChannel is the channel to select in the range 0 to N-1. Use OMX_ALL to apply
volume settings to all channels.

• bMute identifies whether port is muted (OMX_TRUE) or playing normally
(OMX_FALSE).

• bIsMidi identifies whether the channel is a MIDI channel. The values are
OMX_TRUE if nChannel refers to a MIDI channel, OMX_FALSE if otherwise.

typedef struct OMX_AUDIO_CONFIG_CHANNELMUTETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nChannel;
 OMX_BOOL bMute;
 OMX_BOOL bIsMidi;
} OMX_AUDIO_CONFIG_CHANNELMUTETYPE;

 196

4.1.42.2 Dependencies
The OMX_AUDIO_CONFIG_CHANNELMUTETYPE structure may be queried using
OMX_GetConfig and set using OMX_SetConfig at any time after the component has
been loaded.

4.1.42.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_CHANNELMUTETYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetConfig function is called and
the component is not in a valid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.42.4 Post-processing Conditions
In case of an OMX_SetConfig call using this structure, the specified audio channel is
muted or unmuted according to the structure data. In case of an OMX_GetConfig call
using this structure, the IL client can determine if the channel is muted or not.

4.1.43 OMX_AUDIO_CONFIG_LOUDNESSTYPE
The OMX_AUDIO_CONFIG_LOUDNESSTYPE structure is used to enable or disable
the loudness audio effect, which boosts the bass and the high frequencies to compensate
for the limited hearing range of humans at the extreme ends of the audio spectrum. The
setting can be changed using the OMX_SetConfig function. The current state can be
queried using the OMX_GetConfig function. When calling either OMX_SetConfig
or OMX_GetConfig, the index specified for this structure is
OMX_IndexConfigAudioLoudness.

OMX_AUDIO_CONFIG_LOUDNESSTYPE is defined as follows.

typedef struct OMX_AUDIO_CONFIG_LOUDNESSTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bLoudness;
} OMX_AUDIO_CONFIG_LOUDNESSTYPE;

 197

4.1.43.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_LOUDNESSTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bLoudness enable the loudness if set to OMX_TRUE or disables the loudness
effect if set to OMX_FALSE.

4.1.43.2 Dependencies
The OMX_AUDIO_CONFIG_LOUDNESSTYPE structure may be queried using
OMX_GetConfig and set using OMX_SetConfig at any time after the component has
been loaded.

4.1.43.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_LOUDNESSTYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetConfig function is called and
the component is not in a valid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.43.4 Post-processing Conditions
In case of an OMX_SetConfig call using this structure, the loudness effect is enabled
or disabled according to the struct data. In case of an OMX_GetConfig call using this
structure, the IL client can determine if the loudness effect is enabled.

 198

4.1.44 OMX_AUDIO_CONFIG_BASSTYPE
The OMX_AUDIO_CONFIG_BASSTYPE structure is used to enable or disable the low-
frequency level (bass) audio effect, and to set or query the current bass level. The setting
can be changed using the OMX_SetConfig function, and the current state can be
queried using the OMX_GetConfig function. When calling either function, the index
specified for this structure is OMX_IndexConfigAudioBass.

OMX_AUDIO_CONFIG_BASSTYPE is defined as follows.

4.1.44.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_BASSTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port..

• bEnable enables the bass-level setting if set to OMX_TRUE or disables the bass-
level setting if set to OMX_FALSE.

• nBass is the bass-level setting for the port, as a continuous value from -100 to 100.
The value –100 means minimum bass level, zero means no change in level, and 100
represents the maximum low-frequency boost.

4.1.44.2 Dependencies
The OMX_AUDIO_CONFIG_BASSTYPE structure may be queried using
OMX_GetConfig and set using OMX_SetConfig at any time after the component has
been loaded.

4.1.44.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_BASSTYPE structure, the following error
conditions can occur:

 OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

 OMX_ErrorUnSupportedIndex when the feature is unsupported.

 OMX_ErrorInvalidState when the OMX_SetConfig function is called
and the component is not in a valid state.

typedef struct OMX_AUDIO_CONFIG_BASSTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnable;
 OMX_S32 nBass;
} OMX_AUDIO_CONFIG_BASSTYPE;

 199

 OMX_ErrorVersionMismatch when the nVersion field of the structure
does not match the expected version for the component.

 OMX_ErrorNoMore when the OMX_GetConfig function is called and the
value of nPortIndex exceeds the number of ports for the component.

 OMX_ErrorUnsupportedSetting when a field in the structure is
unsupported by the component during an OMX_SetConfig call.

4.1.44.4 Post-processing Conditions
In case of a SetConfig call using this structure, the bass level is set. In case of a
GetConfig call using this structure, the IL client can determine the level.

4.1.45 OMX_AUDIO_CONFIG_TREBLETYPE
The OMX_AUDIO_CONFIG_TREBLETYPE structure is used to enable or disable the
high-frequency level (treble) audio effect, and to set or query the current level. The
setting can be changed using the OMX_SetConfig function, and the current state can
be queried using the OMX_GetConfig function. When calling either function, the index
specified for this structure is OMX_IndexConfigAudioTreble.

OMX_AUDIO_CONFIG_TREBLETYPE is defined as follows.

4.1.45.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_TREBLETYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bEnable enables the treble level setting if set to OMX_TRUE or disables the treble
level setting if set to OMX_FALSE.

• nTreble is the treble-level setting for the port, as a continuous value from -100 to
100. The value –100 means minimum high-frequency level, zero means no change in
level, and 100 represents the maximum high-frequency boost.

typedef struct OMX_AUDIO_CONFIG_TREBLETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnable;
 OMX_S32 nTreble;
} OMX_AUDIO_CONFIG_TREBLETYPE;

 200

4.1.45.2 Dependencies
The OMX_AUDIO_CONFIG_TREBLETYPE structure may be queried using
OMX_GetConfig and set using OMX_SetConfig at any time after the component has
been loaded.

4.1.45.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_TREBLETYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetConfig function is called and
the component is not in a valid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.45.4 Post-processing Conditions
In case of an OMX_SetConfig call using this structure, the treble level is set. In case of
an OMX_GetConfig call using this structure, the IL client can determine the level.

4.1.46 OMX_AUDIO_CONFIG_EQUALIZERTYPE
The OMX_AUDIO_CONFIG_EQUALIZERTYPE structure is used to set or query the
current parameters of the graphic equalizer (EQ) effect. The settings can be changed
using the OMX_SetConfig function, and the current state can be queried using the
OMX_GetConfig function. When calling either function, the index specified for this
structure is OMX_IndexConfigAudioEqualizer.

An equalizer modifies the audio signal by frequency-dependent amplification or
attenuation. A graphic EQ typically lets the user control the character of sound by
controlling the levels of several fixed-frequency bands. The bands are characterized by
their center and crossover frequencies.

In practice, the calling application or framework is often first interested in the number of
bands that the EQ implementation supports. This number can be queried by a single call
to OMX_GetConfig with sBandIndex set to zero. The query results in the same data
structure with the maximum value of sBandIndex filled with N-1, where N is the
number of frequency bands. The same structure will also contain the frequency and level
limits for the first band. Similar queries for the rest of the bands yield the information
needed, for example, to construct a user interface for the equalizer.

 201

OMX_AUDIO_CONFIG_EQUALIZERTYPE is defined as follows.

4.1.46.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_EQUALIZERTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bEnable enables the EQ effect if set to OMX_TRUE or disables the EQ effect if set
to OMX_FALSE.

• sBandIndex is the index of the band to be set or retrieved. The upper limit is N-1,
where N is the number of bands. The lower limit is 0.

• sCenterFreq is the center frequencies in Hz. This is a read-only element and is
used by the caller to determine the lower, center, and upper frequency of this band.

• sBandLevel is the band level in millibels.

4.1.46.2 Dependencies
The OMX_AUDIO_CONFIG_EQUALIZERTYPE structure may be queried using
OMX_GetConfig and set using OMX_SetConfig at any time after the component has
been loaded.

4.1.46.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_EQUALIZERTYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetConfig function is called and
the component is not in a valid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

typedef struct OMX_AUDIO_CONFIG_EQUALIZERTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnable;
 OMX_BU32 sBandIndex;
 OMX_BU32 sCenterFreq;
 OMX_BS32 sBandLevel;
} OMX_AUDIO_CONFIG_EQUALIZERTYPE;

 202

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.46.4 Post-processing Conditions
In case of an OMX_SetConfig call using this structure, the graphic equalizer algorithm
parameters are set. In case of an OMX_GetConfig call using this structure, the IL client
can determine algorithm parameters.

4.1.47 OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE
The OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE structure is used to enable or
disable the stereo widening audio effect, and to set or query the current strength of the
effect. The setting can be changed using the OMX_SetConfig function, and the current
state can be queried using the OMX_GetConfig function. When calling either function,
the index specified for this structure is OMX_IndexConfigAudioStereoWidening.

Stereo widening is a special case of the “audio virtualizer” effect, and is designed to
remove the inside-the-head effect in headphone listening, or to extend the stereo image
beyond the physical loudspeaker span in loudspeaker reproduction.

OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE is defined as follows.

4.1.47.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bEnable enables the stereo widening effect if set to OMX_TRUE or disables the
stereo widening effect if set to OMX_FALSE.

• eWideningType is the stereo widening processing type, as shown in Table 4-25.

typedef struct OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnable;
 OMX_AUDIO_STEREOWIDENINGTYPE eWideningType;
 OMX_U32 nStereoWidening;
} OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE;

 203

Field Name Value Description
OMX_AUDIO_StereoWideningHeadphones Stereo widening for

headphones.
OMX_AUDIO_StereoWidenindLoudspeakers Stereo widening for

two closely spaced
loudspeakers.

OMX_AUDIO_StereoWideningMax 0x7FFFFFFF Allowance for
expansion in the
number of stereo
widening types.

Table 4-25. Stereo Widening Processing Type

• nStereoWidening is the stereo widening setting for the port, as a continuous
value from 0 (minimum effect) to 100 (maximum effect). If the component can
implement only a discrete set of presets (say, only on or off), it may round the value
to a nearest available setting. When getting the setting, the exact current value shall
be returned.

4.1.47.2 Dependencies
The OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE structure may be queried
using OMX_GetConfig and set using OMX_SetConfig at any time after the
component has been loaded.

4.1.47.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetConfig function is called and
the component is not in a valid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.47.4 Post-processing Conditions
In case of an OMX_SetConfig call using the
OMX_AUDIO_CONFIG_STEREOWIDENINGTYPE structure, the stereo widening

 204

algorithm parameters are set. In case of an OMX_GetConfig call using this structure,
the IL client can determine algorithm parameters.

4.1.48 OMX_AUDIO_CONFIG_CHORUSTYPE
The OMX_AUDIO_CONFIG_CHORUSTYPE structure is used to enable or disable the
chorus audio effect, and to set or query the current parameters of the effect. The settings
can be changed using the OMX_SetConfig function, and the current state can be
queried using the OMX_GetConfig function. When calling either function, the index
specified for this structure is OMX_IndexConfigAudioChorus.

Chorus is an audio effect that presents a sound, such as a vocal track, as though it was
performed by two or more singers simultaneously. The effect is produced by feeding the
sound through one or more delay lines with time-variant lengths, and summing the
delayed signals with the original, non-delayed sound. The length of each delay line is
modulated by a low-frequency signal. Modulation waveform and stereo output details are
implementation dependent.

OMX_AUDIO_CONFIG_CHORUSTYPE is defined as follows.

4.1.48.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_CHORUSTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bEnable enables the chorus effect if set to OMX_TRUE or disables the chorus
effect if set to OMX_FALSE.

• sDelay is the average delay in milliseconds.

• sModulationRate is the rate of modulation in MHz.

• nModulationDepth is the depth of modulation as a percentage of delay. The
range of values is 0-100.

• nFeedback is the feedback from the chorus output to the input in percentage.

typedef struct OMX_AUDIO_CONFIG_CHORUSTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnable;
 OMX_BU32 sDelay;
 OMX_BU32 sModulationRate;
 OMX_U32 nModulationDepth;
 OMX_BU32 nFeedback;
} OMX_AUDIO_CONFIG_CHORUSTYPE;

 205

4.1.48.2 Dependencies
The OMX_AUDIO_CONFIG_CHORUSTYPE structure may be queried using
OMX_GetConfig and set using OMX_SetConfig at any time after the component has
been loaded.

4.1.48.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_CHORUSTYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetConfig function is called and
the component is not in a valid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.48.4 Post-processing Conditions
In case of an OMX_SetConfig call using this structure, the chorus algorithm
parameters are set. In case of an OMX_GetConfig call using this structure, the IL client
can determine the algorithm parameters.

 206

4.1.49 OMX_AUDIO_CONFIG_REVERBERATIONTYPE
The OMX_AUDIO_CONFIG_REVERBERATIONTYPE structure is used to enable or
disable the reverberation effect, and to set or query the current parameters of the effect.
The settings can be changed using the OMX_SetConfig function, and the current state
can be queried using the OMX_GetConfig function. When calling either function, the
index specified for this structure is OMX_IndexConfigAudioReverberation.

The reverberation effect models the effect of a room (room response) to the sound. The
room response is divided into three sections: direct path, early reflections, and late
reverberation. This division and the effect parameters are essentially the same as used in
the Interactive 3D Audio Rendering Guidelines – Level 2.0 by the Interactive Audio
Special Interest Group (IASIG) of the MIDI Manufacturers Association (MMA). For
more information on this specification, see http://www.iasig.org/pubs/3dl2v1a.pdf.

OMX_AUDIO_CONFIG_REVERBERATIONTYPE is defined as follows.

4.1.49.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_REVERBERATIONTYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bEnable enables the reverberation effect if set to OMX_TRUE or disables the
reverberation effect if set to OMX_FALSE.

• sRoomLevel is the intensity level for the whole room effect, including both early
reflections and late reverberation, in millibels.

typedef struct OMX_AUDIO_CONFIG_REVERBERATIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnable;
 OMX_BS32 sRoomLevel;
 OMX_BS32 sRoomHighFreqLevel;
 OMX_BS32 sReflectionsLevel;
 OMX_BU32 sReflectionsDelay;
 OMX_BS32 sReverbLevel;
 OMX_BU32 sReverbDelay;
 OMX_BU32 sDecayTime;
 OMX_BU32 nDecayHighFreqRatio;
 OMX_U32 nDensity;
 OMX_U32 nDiffusion;
 OMX_BU32 sReferenceHighFreq;
} OMX_AUDIO_CONFIG_REVERBERATIONTYPE;

 207

• sRoomHighFreqLevel is the attenuation in millibels at high frequencies relative
to the intensity at low frequencies.

• sReflectionsLevel is the intensity level of early reflections, which are relative
to the room level value, in millibels.

• sReflectionsDelay is the time delay in milliseconds of the first reflection
relative to the direct path.

• sReverbLevel is the intensity level in millibels of late reverberation relative to the
room level.

• sReverbDelay is the time delay in milliseconds from the first early reflection to
the beginning of the late reverberation section.

• sDecayTime is the late reverberation decay time in milliseconds at low frequencies,
defined as the time needed for the reverberation to decay by 60 dB.

• nDecayHighFreqRatio is the ratio of high-frequency decay time relative to low-
frequency decay time as percentage in the range 0–100.

• nDensity is the modal density in the late reverberation decay as a percentage. The
range of values is 0-100.

• nDiffusion is the echo density in the late reverberation decay as a percentage. The
range of values is 0-100.

• sReferenceHighFreq is the reference high frequency in Hertz. This is the
frequency used as the reference for all of the high-frequency parameter settings.

4.1.49.2 Dependencies
The OMX_AUDIO_CONFIG_REVERBERATIONTYPE structure may be queried using
OMX_GetConfig and set using OMX_SetConfig at any time after the component has
been loaded.

4.1.49.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_REVERBERATIONTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetConfig function is called and
the component is not in a valid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of ports for the component.

 208

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.49.4 Post-processing Conditions
In case of an OMX_SetConfig call using this structure, the reverberation algorithm
parameters are set. In case of an OMX_GetConfig call using this structure, the IL client
can determine the algorithm parameters.

4.1.50 OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE
The OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE structure is used to enable
or disable echo canceling, which removes undesired echo from speech or audio. The
setting can be changed using the OMX_SetConfig function, and the current state can
be queried using the OMX_GetConfig function. When calling either function, the index
specified for this structure is OMX_IndexConfigAudioEchoCancelation.

OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE is defined as follows.

4.1.50.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE are defined
as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eEchoCancelation is the enumeration for enabling/disabling echo cancellation
and selecting the mode, as shown in Table 4-26.

Field Name Value Description
OMX_AUDIO_EchoCanOff 0 Echo cancellation is disabled.
OMX_AUDIO_EchoCanNormal Echo cancellation normal

operation; echo from handset
plastics and face.

OMX_AUDIO_EchoCanHFree Echo cancellation optimized
for hands-free operation.

OMX_AUDIO_EchoCanCarKit Echo cancellation optimized
for car kit (longer echo).

typedef struct OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_AUDIO_ECHOCANTYPE eEchoCancelation;
} OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE;

 209

Field Name Value Description
OMX_AUDIO_EchoCanMax 0x7FFFFFFF Allowance for expansion

with additional types.
Table 4-26. Echo Cancellation Values

4.1.50.2 Dependencies
The OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE structure may be queried
using OMX_GetConfig and set using OMX_SetConfig at any time after the
component has been loaded.

4.1.50.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE structure,
the following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetConfig function is called and
the component is not in a valid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.50.4 Post-processing Conditions
In case of an OMX_SetConfig call using the
OMX_AUDIO_CONFIG_ECHOCANCELATIONTYPE structure, echo cancellation is
enabled or disabled according to the struct data. In case of an OMX_GetConfig call
using this structure, the IL client can determine if the processing is enabled.

 210

4.1.51 OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE
The OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE structure is used to enable or
disable noise reduction processing, which removes undesired noise from audio. The
setting can be changed using the OMX_SetConfig function, and the current state can
be queried using the OMX_GetConfig function. When calling either function, the index
specified for this structure is OMX_IndexConfigAudioNoiseReduction.

OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE is defined as follows.

4.1.51.1 Parameter Definitions
The parameters for OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bNoiseReduction enables noise reduction processing if set to OMX_TRUE or
disables noise reduction processing if set to OMX_FALSE.

4.1.51.2 Dependencies
The OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE structure may be queried
using OMX_GetConfig and set using OMX_SetConfig at any time after the
component has been loaded.

4.1.51.3 Error Conditions
On processing the OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnSupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when OMX_SetConfig function is called and the
component is not in a valid state.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

typedef struct OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bNoiseReduction;
} OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE;

 211

• OMX_ErrorNoMore when the OMX_GetConfig function is called and the value
of nPortIndex exceeds the number of ports for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

4.1.51.4 Post-processing Conditions
In case of an OMX_SetConfig call using the
OMX_AUDIO_CONFIG_NOISEREDUCTIONTYPE structure, noise reduction
processing is enabled or disabled according to the struct data. In case of an
OMX_GetConfig call using this structure, the IL client can determine if the processing
is enabled.

4.2 Image and Video Common
This section describes the parameter and configuration details for ports in the video and
image domains. These parameter and configurations details are specified in the
OMX_ivcommon.h header.

4.2.1 Uncompressed Data Formats
Both image and video ports operate on compressed and uncompressed data. The formats
for uncompressed pixel data are common to both image and video. Table 4-27 lists the
uncompressed formats.

OMX_COLOR_FORMATTYPE Description
OMX_COLOR_FormatUnused Placeholder value when format is

unknown, or specified using a
vendor-specific means.

OMX_COLOR_FormatMonochrome 1 bit per pixel monochrome.
OMX_COLOR_FormatL2 2 bit per pixel luminance.
OMX_COLOR_FormatL4 4 bit per pixel luminance.
OMX_COLOR_FormatL8 8 bit per pixel luminance.
OMX_COLOR_FormatL16 16 bit per pixel luminance.
OMX_COLOR_FormatL24 24 bit per pixel luminance.
OMX_COLOR_FormatL32 32 bit per pixel luminance.
OMX_COLOR_Format8bitRGB332 8 bits per pixel RGB format with

colors stored as Red 7:5, Green
4:2, and Blue 1:0.

OMX_COLOR_Format12bitRGB444 12 bits per pixel RGB format with
colors stored as Red 11:8, Green
7:4, and Blue 3:0.

OMX_COLOR_Format16bitARGB4444 16 bits per pixel ARGB format
with colors stored as Alpha 15:12,
Red 11:8, Green 7:4, and Blue 3:0.

 212

OMX_COLOR_Format16bitARGB1555 16 bits per pixel ARGB format
with colors stored as Alpha 15,
Red 14:10, Green 9:5, and Blue
4:0.

OMX_COLOR_Format16bitRGB565 16 bits per pixel RGB format with
colors stored as Red 15:11, Green
10:5, and Blue 4:0.

OMX_COLOR_Format16bitBGR565 16 bits per pixel BGR format with
colors stored as Blue 15:11, Green
10:5, and Red 4:0.

OMX_COLOR_Format18bitRGB666 18 bits per pixel RGB format with
colors stored as Red 17:12, Green
11:6, and Blue 5:0.

OMX_COLOR_Format18bitARGB1665 18 bits per pixel ARGB format
with colors stored as Alpha 17,
Red 16:11, Green 10:5, and Blue
4:0.

OMX_COLOR_Format19bitARGB1666 19 bits per pixel ARGB format
with colors stored as Alpha 18,
Red 17:12, Green 11:6, and Blue
5:0.

OMX_COLOR_Format24bitRGB888 24 bits per pixel RGB format with
colors stored as Red 23:16, Green
15:8, and Blue 7:0.

OMX_COLOR_Format24bitBGR888 24 bits per pixel BGR format with
colors stored as Blue 23:16, Green
15:8, and Red 7:0.

OMX_COLOR_Format24bitARGB1887 24 bits per pixel ARGB format
with colors stored as Alpha 23,
Red 22:15, Green 14:7, and Blue
6:0.

OMX_COLOR_Format25bitARGB1888 25 bits per pixel ARGB format
with colors stored as Alpha 24,
Red 23:16, Green 15:8, and Blue
7:0.

OMX_COLOR_Format32bitBGRA8888 32 bits per pixel ARGB format
with colors stored as Alpha 31:24
Red 23:16, Green 15:8, and Blue
7:0.

OMX_COLOR_Format32bitARGB8888 24 bits per pixel ABGR format
with colors stored as Alpha 31:24,
Blue 23:16, Green 15:8, and Red
7:0.

 213

OMX_COLOR_FormatYUV411Planar YUV planar format, organized
with three separate planes for each
color component, namely Y, U,
and V. U and V pixels are sub-
sampled by a factor of four both
horizontally and vertically.

OMX_COLOR_FormatYUV411PackedPlanar YUV planar format, organized
with three separate planes for each
color component, namely Y, U,
and V. U and V pixels are sub-
sampled by a factor of four both
horizontally and vertically. This
format differs from
OMX_COLOR_FormatYUV411P
lanar in that each slice of data
shall contain a plane of Y, U, and
V data, whereas the
OMX_COLOR_FormatYUV411P
lanar format transfers each
plane in its entirety.

OMX_COLOR_FormatYUV420Planar YUV planar format, organized
with three separate planes for each
color component, namely Y, U,
and V. U and V pixels are sub-
sampled by a factor of two both
horizontally and vertically.

OMX_COLOR_FormatYUV420PackedPlanar YUV planar format, organized
with three separate planes for each
color component, namely Y, U,
and V. U and V pixels are sub-
sampled by a factor of two both
horizontally and vertically. This
format differs from
OMX_COLOR_FormatYUV420P
lanar in that each slice of data
shall contain a plane of Y, U, and
V data, whereas the
OMX_COLOR_FormatYUV420P
lanar format transfers each
plane in its entirety.

 214

OMX_COLOR_FormatYUV420SemiPlanar YUV planar format, organized
with a first plane containing Y
pixels, and a second plane
containing interleaved U and V
pixels. U and V pixels are sub-
sampled by a factor of two both
horizontally and vertically.

OMX_COLOR_FormatYUV422Planar YUV planar format, organized
with three separate planes for each
color component, namely Y, U,
and V.

OMX_COLOR_FormatYUV422PackedPlanar YUV planar format, organized
with three separate planes for each
color component, namely Y, U,
and V. This format differs from
OMX_COLOR_FormatYUV422P
lanar in that each slice of data
shall contain a plane of Y, U, and
V data, whereas the
OMX_COLOR_FormatYUV422P
lanar format transfers each
plane in its entirety.

OMX_COLOR_FormatYUV422SemiPlanar YUV planar format, organized
with a first plane containing Y
pixels and a second plane
containing interleaved U and V
pixels.

OMX_COLOR_FormatYCbYCr 16 bits per pixel YUV interleaved
format organized as YUYV (i.e.,
YCbYCr).

OMX_COLOR_FormatYCrYCb 16 bits per pixel YUV interleaved
format organized as YVYU (i.e.,
YCrYCb).

OMX_COLOR_FormatCbYCrY 16 bits per pixel YUV interleaved
format organized as UYVY (i.e.,
CbYCrY).

OMX_COLOR_FormatCrYCbY 16 bits per pixel YUV interleaved
format organized as VYUY (i.e.,
CrYCbY).

OMX_COLOR_FormatYUV444Interleaved 12 bits per pixel YUV format with
colors stores as Y 11:8, U 7:4, and
V 3:0.

OMX_COLOR_FormatRawBayer8bit SMIA 8-bit raw Bayer pattern
camera format.

OMX_COLOR_FormatRawBayer10bit SMIA 10-bit raw Bayer pattern
camera format.

 215

OMX_COLOR_FormatRawBayer8bitcompressed SMIA compressed 8-bit camera
output format.

Table 4-27. Uncompressed Data Formats

4.2.2 Minimum Buffer Payload Size for Uncompressed Data
Uncompressed image and video data have a minimum buffer payload size. The
minimum buffer payload size is determined by the nSliceHeight and nStride
fields of the port definition structure. nStride indicates the width of a span in bytes;
when negative, it indicates the data is bottom-up instead of the top-down).
nSliceHeight indicates the number of spans in a slice.

The minimum buffer payload size can be easily calculated as the absolute value of
(nSliceHeight * nStride).

4.2.3 Buffer Payload Requirements for Uncompressed Data
Each image or video port on a component shall meet several requirements for buffer
payloads of uncompressed image and video data. These requirements are in place to
enable components from different vendors to inter-operate together correctly, and are
collectively referred to as inter-op.

The requirements are as follows:

• Each non-empty buffer payload shall contain at least one full slice, unless it contains
the end of the image (which may not be aligned to a integer multiple of slice height).
For example, if the image height is 100 and the slice height is 16, the last slice of the
image will contain only four spans.

• Each non-empty buffer payload shall contain an integer multiple of slice height.

• When the uncompressed image data format is planar, data from two different planes
cannot reside in the same buffer payload. This means that a component shall pass a
full plane in its entirety in one or more buffers, followed by another plane starting in a
different buffer.

• An exception to the above requirement exists for the packed planar uncompressed
formats, OMX_COLOR_FormatYUV420PackedPlanar,
OMX_COLOR_FormatYUV411PackedPlanar, and
OMX_COLOR_FormatYUV422PackedPlanar. For each of these uncompressed
formats, each buffer payload contains a slice of the Y, U, and V planes. The slices
are always ordered Y, U, and V. The nSliceHeight refers to the slice height of
the Y plane. The slice height of the U and V planes are derived from the slice height
for the Y plane based upon for the format. For example, for
OMX_COLOR_FormatYUV420PackedPlanar with a nSliceHeight of 16, a
buffer payload shall contain 16 spans of Y followed by 8 spans of U (half the stride)
and 8 spans of V (half the stride). This enables ports that process planar data in slices
to operate on all three planes simultaneously, instead of forcing the ports to buffer the
entire image before processing can begin.

 216

4.2.4 Parameter and Configuration Indexes
The header OMX_Index.h contains the enumeration OMX_INDEXTYPE, which contains
all of the standard index values used with the functions OMX_GetParameter,
OMX_SetParameter, OMX_GetConfig, and OMX_SetConfig. Table 4-28
describes the index values that relate to video.

Index Description

OMX_IndexParamCommonDeblocking

Used with
OMX_GetParameter and
OMX_SetParameter to access
OMX_CONFIG_DEBLOCKINGT
YPE. De-blocking reduces the
appearance of block-like artifacts
that appear in compressed images
or video streams.

OMX_IndexParamCommonSensorMode

Used with
OMX_GetParameter and
OMX_SetParameter to access
OMX_CONFIG_SENSORMODET
YPE. The mode of the sensor
controls the resolution and frame
rate of data captured by a camera.

OMX_IndexParamCommonInterleave

Used with
OMX_GetParameter and
OMX_SetParameter to access
OMX_PARAM_INTERLEAVETY
PE. This feature is used to
interleave plane or input port
data.

OMX_IndexConfigCommonColorFormatConversio
n

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_COLORCONVER
SIONTYPE. Color conversion
programs the coefficients used
when converting pixel data from
RGB to YUV and visa-versa.

OMX_IndexConfigCommonScale

Used with OMX_GetConfig
and OMX_SetConfig to access
the
OMX_CONFIG_SCALEFACTOR
TYPE. Scaling stretches or
shrinks a rectangular region of
pixels.

 217

Index Description

OMX_IndexConfigCommonImageFilter

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_IMAGEFILTER
TYPE. Image filtering applies
digital effects to a video or image
stream.

OMX_IndexConfigCommonColorEnhancement

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_COLORENHANC
EMENTTYPE. Color
enhancement replaces U and V
values of a YUV image with
specified constant values to apply
a color effect to an image or
video stream.

OMX_IndexConfigCommonColorKey

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_COLORKEYTYP
E. Color keying performs per-
pixel selection between two
sources with mixing image or
video data.

OMX_IndexConfigCommonColorBlend

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_COLORBLENDT
YPE. Color blending performs
arithmetic operations between
two sources.

OMX_IndexConfigCommonFrameStabilisation

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_FRAMESTABTY
PE.

OMX_IndexConfigCommonRotate

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_ROTATIONTYP
E. Rotation rotates video or
image frames clockwise by a
specified angle.

OMX_IndexConfigCommonMirror
Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_MIRRORTYPE.

 218

Index Description

Mirroring reflects video or image
frames along the horizontal and
vertical axes.

OMX_IndexConfigCommonOutputPosition

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_POINTTYPE.
The output position indicates the
location of a video or image
stream relative to another image
or video stream. The output
position is also used to indicate
the location of a video or image
stream relative to an output
device such as an LCD display.

OMX_IndexConfigCommonCrop

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_RECTTYPE.
Crops the image or video stream
to the specified rectangle.

OMX_IndexConfigCommonDigitalZoom

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_SCALEFACTOR
TYPE. Digital zoom implements
a camera zoom feature digitally.

OMX_IndexConfigCommonOpticalZoom

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_SALEFACTORT
YPE. Optical zoom “zooms” an
image in or out using a lens on a
camera.

OMX_IndexConfigCommonWhiteBalance

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_WHITEBALCON
TROLTYPE. White balance
performs color correction so that
a white object appears truly white
and not a tint of the color of the
light source.

OMX_IndexConfigCommonExposure
Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_EXPOSURECON

 219

Index Description

TROLTYPE. Exposure controls
the image sensor exposure when
capturing images or streaming
video.

OMX_IndexConfigCommonContrast

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_CONTRASTTYP
E. Contrast controls the relative
difference between pixels in
video or image data.

OMX_IndexConfigCommonBrightness

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_BRIGHTNESST
YPE. Brightness controls the
luminosity of the pixels in video
or image data.

OMX_IndexConfigCommonBacklight

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_BACKLIGHTTY
PE. Backlight controls the
strength of the backlight, and the
time that the backlight is turned
on.

OMX_IndexConfigCommonGamma

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_GAMMATYPE.
Gamma corrects for the non-
linear intensity of pixels on a
display relative to the digital
value of the pixel for video or
image data.

OMX_IndexConfigCommonSaturation

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_SATURATIONT
YPE. Saturation controls the hue
intensity of video or image data.

OMX_IndexConfigCommonLightness

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_LIGHTNESSTY
PE. Lightness controls the non-
linear response to the brightness

 220

Index Description

of pixels in video or image data.

OMX_IndexConfigCommonExclusionRect

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_EXCLUSIONRE
CTTYPE. This feature enables a
component to exclude a specific
region from rendering to save on
processing, resulting in higher
performance and lower power
consumption. This configuration
is often used in video
conferencing where a section of
the decoded input stream is
covered by a preview of the
viewer’s image.

OMX_IndexConfigCommonPlaneBlend

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_PLANEBLENDT
YPE. This feature controls the
blending of multiple input
sources or ports into a single
destination.

OMX_IndexConfigCommonTransitionEffect

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_TRANSITIONE
FFECTTYPE.

OMX_IndexConfigCommonDithering

Used with OMX_GetConfig
and OMX_SetConfig to access
OMX_CONFIG_DITHERTYPE.
Dithering is used when
performing color space
conversion from a color format
that has a higher precision to a
color format with a lower
precision.

Table 4-28. Index Values for Video

4.2.5 OMX_ PARAM_DEBLOCKINGTYPE
De-blocking is used to reduce the appearance of block-like artifacts that appear in
compressed images or video streams.

 221

OMX_ PARAM_DEBLOCKINGTYPE is defined as follows.

4.2.5.1 Parameters
The parameters for OMX_ PARAM_DEBLOCKINGTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bDeblocking is a Boolean value that enables or disables de-blocking.

4.2.5.2 Dependencies
The parameter may be queried using OMX_GetParameter or set using
OMX_SetParameter at any time that the component is initialized.

4.2.5.3 Error Conditions
On processing the OMX_ PARAM_DEBLOCKINGTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorTimeout if the component did not respond in time.

typedef struct OMX_PARAM_DEBLOCKINGTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bDeblocking;
} OMX_PARAM_DEBLOCKINGTYPE;

 222

4.2.5.4 Post-processing Conditions
The de-blocking filter used when processing image or video data for the component on
the port specified by nPortIndex is configured explicitly when set using
OMX_SetParameter.

4.2.6 OMX_PARAM_INTERLEAVETYPE
Interleaving is used to interleave or de-interleave pixel data between multiple ports.
When interleaving, a component uses pixel data from multiple input ports to merge into a
single output port. When de-interleaving, a component uses pixel data from a single
input port, splitting the color channels into separate output ports.

For example, a input port receiving 16-bit RGB can de-interleave R, G, and B color
channels to three separate output ports, where the output ports are formatted as
monochrome.

Similarly, a component could interleave three luminance ports containing Y, U, and V
data into a single output port formatted as YUV420.

The OMX_PARAM_INTERLEAVETYPE structure interleaves pixel data.
OMX_PARAM_INTERLEAVETYPE is defined as follows.

4.2.6.1 Parameters
The parameters for OMX_PARAM_INTERLEAVETYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bEnable is a Boolean value that enables interleaving.

• nInterleavePortIndex indicates the port to interleave or de-interleave with.
When nPortIndex is an input port, nInterleavePortIndex contains the
output port to interleave with. When nPortIndex is an output port,
nInterleavePortIndex contains the input port to de-interleave with.

4.2.6.2 Dependencies
The parameter may be queried using OMX_GetParameter or set using
OMX_SetParameter at any time that the component is initialized.

typedef struct OMX_PARAM_INTERLEAVETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnable;
 OMX_U32 nInterleavePortIndex;
} OMX_CONFIG_INTERLEAVETYPE;

 223

4.2.6.3 Error Conditions
On processing the OMX_PARAM_INTERLEAVETYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorTimeout if the component did not respond in time.

4.2.6.4 Post-processing Conditions
Interleaving or de-interleaving for the component on the port specified by nPortIndex
is configured explicitly when set using OMX_SetParameter.

4.2.7 OMX_PARAM_SENSORMODETYPE
The sensor mode is used to specify the frame rate and resolution that an image sensor or
camera uses to capture image or video. The sensor mode is distinctly separate from the
port on a video source, which may modify the resolution of the data produced by the
image sensor.

OMX_ PARAM_SENSORMODETYPE is defined as follows.

4.2.7.1 Parameters
The parameters for OMX_ PARAM_SENSORMODETYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

typedef struct OMX_PARAM_SENSORMODETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nFrameRate;
 OMX_FRAMESIZETYPE sFrameSize;
} OMX_PARAM_SENSORMODETYPE;

 224

• nPortIndex is the read-only value containing the index of the port.

• nFrameRate is the frame rate of the image sensor in frames per second.

• sFrameSize is the resolution of the image sensor mode.

4.2.7.2 Dependencies
The parameter may be queried using OMX_GetParameter or set using
OMX_SetParameter at any time that the component is initialized.

4.2.7.3 Error Conditions
On processing the OMX_ PARAM_SENSORMODETYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetParameter call.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorTimeout if the component did not respond in time.

4.2.7.4 Post-processing Conditions
The sensor mode used when processing image or video data for the component on the
port specified by nPortIndex is configured explicitly when set using
OMX_SetParameter.

4.2.8 OMX_CONFIG_COLORCONVERSIONTYPE
Color conversion is used to specify the coefficients when converting image or video pixel
data from YUV to RGB and visa-versa.

Converting from RGB to YUV format uses the following standard formulae:

Y = 0.299R + 0.587G + 0.114B

U = -0.147R - 0.289G + 0.436B

V = 0.615R - 0.515G - 0.100B

Converting from YUV to RGB format uses the following standard formulae:

R = Y + 1.140V

 225

G = Y - 0.395U - 0.581V

B = Y + 2.032U

The color matrix and color offset specified in the color conversion allow for the
coefficients used when converting from RGB to YUV and visa-versa to be programmed
explicitly.

OMX_CONFIG_COLORCONVERSIONTYPE is defined as follows.

4.2.8.1 Parameters
The parameters for OMX_CONFIG_COLORCONVERSIONTYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only field indicating the index of the port.

• xColorMatrix[3][3] is the color conversion matrix when converting from RGB
to YUV in Q16 format with the following standard formulae:

Y = Yr*R + Yg*G + Yb*B
U = Ur*R – Ug*G + Ub*B
V = Vr*R – Vg*G – Vb*B

Each constant is represented in the 3x3 matrix as:

Yr Yg Yb
Ur Ug Ub
Vr Vg Vb

Y constants are in the first row, followed by U and V constants in subsequent rows.
All constants multiplied against red color values are in the first column followed by
green and blue color constants, as follows
xColorMatrix[1][1] = Yr

xColorMatrix[3][3] = Vb,
xColorMatrix[1][3] = Yb

• xColorOffset[4] is the color conversion vector when converting from YUV to
RGB in Q16 format. The standard formulae are as follows:

typedef struct OMX_CONFIG_COLORCONVERSIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 xColorMatrix[3][3];
 OMX_S32 xColorOffset[4];
}OMX_CONFIG_COLORCONVERSIONTYPE;

 226

R = Y + C1*U
G = Y – C2*U – C3*V
B = Y – C4*V

Each constant is represented in the array:

C1 C2 C3 C4

4.2.8.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.8.3 Error Conditions
On processing the OMX_CONFIG_COLORCONVERSIONTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation that has not completed
processing. The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.8.4 Post-processing Conditions
The color conversion used when processing image or video data for the component on the
port specified by nPortIndex is configured explicitly when set using
OMX_SetConfig.

4.2.9 OMX_SCALEFACTORTYPE
Scaling is used to stretch or shrink video or image data on the specified input or output
port.

OMX_SCALEFACTORTYPE is defined as follows.

typedef struct OMX_SCALEFACTORTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 xWidth;
 OMX_S32 xHeight;
}OMX_SCALEFACTORTYPE;

 227

4.2.9.1 Parameters
The parameters for OMX_SCALEFACTORTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• xWidth is the scaling in the horizontal direction in Q16 format (i.e., signed 15.16
fixed pointed format). For example, a scaling factor of 0x10000 would not change
the width, but a scaling factor of 0x8000 would scale the width by 50%.

• xHeight is the scaling in the vertical direction in Q16 format (i.e., signed 15.16
fixed pointed format). For example, a scaling factor of 0x10000 would not change
the height, but a scaling factor of 0x20000 would scale the height by 200%.

4.2.9.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.9.3 Error Conditions
On processing the OMX_SCALEFACTORTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.
This error may also occur when the component does not support the scaling factor
requested.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.9.4 Post-processing Conditions
The scaling used when processing image or video data for the component on the port
specified by nPortIndex is configured explicitly when set using OMX_SetConfig.

4.2.10 OMX_CONFIG_IMAGEFILTERTYPE
Image filtering is used to apply digital effects to video or image data on the specified port.

 228

OMX_CONFIG_IMAGEFILTERTYPE is defined as follows.

4.2.10.1 Parameters
The parameters for OMX_CONFIG_IMAGEFILTERTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eImageFilter is the enumerated valued indicating the image filter used. Table 4-
29 details the values that can be selected for the image filter.

OMX_IMAGEFILTERTYPE
Enumerated Value Description
OMX_ImageFilterNone Used to disable image filtering.
OMX_ImageFilterNoise Filters data to remove noise from the image.
OMX_ImageFilterEmboss Filters data to give an embossed appearance

(stamped from the rear for a raised effect
along edges).

OMX_ImageFilterNegative Filters data to negate colors.
OMX_ImageFilterSketch Filters data to give the appearance of having

been sketched by an artist.
OMX_ImageFilterOilPaint Filters data to appear as if it were hand painted

using a brush with oil paints.
OMX_ImageFilterHatch Filters data to appear as if it were printed on a

material with a grain.
OMX_ImageFilterGpen Filters data to appear as if it were drawn with a

pen.
OMX_ImageFilterAntialias Filters data to anti-alias pixels so as to sharpen

edges in the image or video stream.
OMX_ImageFilterDeRing Filters data to remove erroneous artifacts

introduced by inherent limitations of the
numerical processing of digital image data.

typedef struct OMX_CONFIG_IMAGEFILTERTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_IMAGEFILTERTYPE eImageFilter;
} OMX_CONFIG_IMAGEFILTERTYPE;

 229

OMX_ImageFilterSolarize Filters data to create a solarization effect.
Table 4-29. Image Filter Values

4.2.10.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.10.3 Error Conditions
On processing the OMX_CONFIG_IMAGEFILTERTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.10.4 Post-processing Conditions
The image filtering used when processing image or video data for the component on the
port specified by nPortIndex is configured explicitly when set using
OMX_SetConfig.

4.2.11 OMX_CONFIG_COLORENHANCEMENTTYPE
Color enhancement is applied to image or video data in YUV formats, where the U and V
color components of each pixel are replaced with the specified values. Replacement
occurs for each pixel and every frame. This enables a component to add specified color
hues to the data. For example, this configuration can be used to convert color image or
video data to sepia tone.

OMX_CONFIG_COLORENHANCEMENTTYPE is defined as follows.

typedef struct OMX_CONFIG_COLORENHANCEMENTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bColorEnhancement;
 OMX_U8 nCustomizedU;
 OMX_U8 nCustomizedV;
 } OMX_CONFIG_COLORENHANCEMENTTYPE;

 230

4.2.11.1 Parameters
The parameters for OMX_CONFIG_COLORENHANCEMENTTYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bColorEnhancement is the Boolean value that enables or disables color
enhancement.

• nCustomizedU is a value for replacing the U color component of each pixel. The
range of values is 0-255. Practical values are in the range of 16-240.

• nCustomizedV is the value for replacing the V color component of each pixel. The
range of values is 0-255. Practical values are in the range of 16-240.

4.2.11.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.11.3 Error Conditions
On processing the OMX_CONFIG_COLORENHANCEMENTTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.11.4 Post-processing Conditions
The color enhancement used when processing image or video data for the component on
the port specified by nPortIndex is configured explicitly when set using
OMX_SetConfig.

 231

4.2.12 OMX_CONFIG_COLORKEYTYPE
Color keying is used to perform per-pixel selection between two sources when mixing
image or video data.

OMX_CONFIG_COLORKEYTYPE is defined as follows.

4.2.12.1 Parameters
The parameters for OMX_CONFIG_COLORKEYTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nARGBColor indicates a 32-bit color used for keying, where bits 0-7 are blue, bits
15-8 are green, bits 24-16 are red, and bits 31-24 are for alpha. The 32-bit ARGB
color is converted to the RGB color format of the port before performing keying
operations.

• nARGBMask indicates a 32-bit logical AND mask, which is converted to the RGB
color format of the port before performing keying operations.

4.2.12.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.12.3 Error Conditions
On processing the OMX_CONFIG_COLORKEYTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

typedef struct OMX_CONFIG_COLORKEYTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nARGBColor;
 OMX_U32 nARGBMask;
} OMX_CONFIG_COLORKEYTYPE;

 232

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.12.4 Post-processing Conditions
The color key used when processing image or video data for the component on the port
specified by nPortIndex is configured explicitly when set using OMX_SetConfig.

4.2.13 OMX_CONFIG_COLORBLENDTYPE
Color blending is used to perform arithmetic operations between two sources when
mixing image or video data.

OMX_CONFIG_COLORBLENDTYPE is defined as follows.

4.2.13.1 Parameters
The parameters for OMX_CONFIG_COLORBLENDTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nRGBAlphaConstant is the 32-bit per color channel constant alpha value for
blending when the OMX_COLORBLENDTYPE is OMX_ColorBlendAlphaConstant.

• eColorBlend is the enumerated valued indicating the color blend operation used.
Table 4-30 details the values that can be selected for color blending.

OMX_COLORBLENDTYPE
Enumerated Value Description
OMX_ColorBlendNone Disables color blending.
OMX_ColorBlendAlphaConstant Blends source and destination using

the function (alpha_constant * source)
+ ((1 – alpha_constant) * destination),
where the alpha constant is specified
for the entire operation.

typedef struct OMX_CONFIG_COLORBLENDTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nRGBAlphaConstant;
 OMX_COLORBLENDTYPE eColorBlend;
} OMX_CONFIG_COLORBLENDTYPE;

 233

OMX_ColorBlendAlphaPerPixel Blends source and destination using
the function (alpha * source) + ((1 –
alpha) * destination), where the alpha
value is per pixel.

OMX_ColorBlendAlternate Alternates between selecting source
and destination pixels (i.e.,
checkerboard of source and destination
pixels)..

OMX_ColorBlendAnd Combines source and destination
pixels using the function (source &
destination).

OMX_ColorBlendOr Combines source and destination
pixels using the function (source |
destination).

OMX_ColorBlendInvert Combines source and destination
pixels using the function ~(source).

Table 4-30. Color Blending Values

4.2.13.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.13.3 Error Conditions
On processing the OMX_CONFIG_COLORBLENDTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.13.4 Post-processing Conditions
The color blend used when processing image or video data for the component on the port
specified by nPortIndex is configured explicitly when set using OMX_SetConfig.

 234

4.2.14 OMX_FRAMESIZETYPE
Frame size is a generic structure used to indicate the size of a frame. This structure is
referred to by the OMX_PARAM_SENSORMODE structure.

OMX_FRAMESIZETYPE is defined as follows.

4.2.14.1 Parameters
The parameters for OMX_FRAMESIZETYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nWidth is the width of the rectangle in pixels.

• nHeight is the height of the rectangle in pixels.

4.2.14.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.14.3 Error Conditions
On processing the OMX_FRAMESIZETYPE structure, the following error conditions
can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

typedef struct OMX_FRAMESIZETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nWidth;
 OMX_U32 nHeight;
} OMX_FRAMESIZETYPE;

 235

4.2.14.4 Post-processing Conditions
The frame size used when processing image or video data for the component on the port
specified by nPortIndex is configured explicitly when set using OMX_SetConfig.

4.2.15 OMX_CONFIG_ROTATIONTYPE
Rotation is applied to image or video data on a specified port. Components may support
rotation only on right angles such as 0°, 90°, 180°, and 270°, although components may
support arbitrary rotation angles. Values are interpreted as clockwise.

OMX_CONFIG_ROTATIONTYPE is defined as follows.

4.2.15.1 Parameters
The parameters for OMX_CONFIG_ROTATIONTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nRotation is an integer value that represents the angle of rotation. Some
components may only support rotation on right angles such as 0°, 90°, 180°, and 270°.
Rotation is clockwise.

4.2.15.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.15.3 Error Conditions
On processing the OMX_CONFIG_ROTATIONTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.
This error may occur when the value specified in nRotation is not supported.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

typedef struct OMX_CONFIG_ROTATIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 nRotation;
} OMX_CONFIG_ROTATIONTYPE;

 236

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.15.4 Post-processing Conditions
The angle of rotation used when processing image or video data for the component on the
port specified by nPortIndex is configured explicitly when set using
OMX_SetConfig.

4.2.16 OMX_CONFIG_MIRRORTYPE
Mirroring is applied to pixel or image data on a specified port. The data can be mirrored
in the horizontal direction, vertical direction, or both horizontal and vertical directions.

OMX_CONFIG_MIRRORTYPE is defined as follows.

4.2.16.1 Parameters
The parameters for OMX_CONFIG_MIRRORTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eMirror contains the enumerated values indicating the mirroring applied to image
or video data. OMX_MirrorNone is used to disable mirroring or have no mirroring.
Table 4-31 identifies the mirroring values.

OMX_MIRRORTYPE
Enumerated Value Description
OMX_MirrorNone Disables mirroring (i.e., no mirroring).
OMX_MirrorHorizontal Mirrors pixels in the horizontal direction. Hence,

pixel at 0,1 is swapped with pixel W,1 where W is
the width of the image.

typedef struct OMX_CONFIG_MIRRORTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_MIRRORTYPE eMirror;
} OMX_CONFIG_MIRRORTYPE;

 237

OMX_MirrorVertical Mirrors pixels in the vertical direction. Hence, pixel
at 1,0 is swapped with pixel 1,H where H is the
height of the image.

OMX_MirrorBoth Mirrors pixels in the horizontal and vertical
directions. Hence, pixel at 0, 0 is swapped with
pixel W,H where W is the width of the image and H
is the height of the image.

Table 4-31. Mirror Type Values

4.2.16.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.16.3 Error Conditions
On processing the OMX_CONFIG_MIRRORTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.16.4 Post-processing Conditions
The mirroring used when processing image or video data for the component on the port
specified by nPortIndex is configured explicitly when set using OMX_SetConfig.

4.2.17 OMX_CONFIG_POINTTYPE
A point is used to specify the location of image or video data on a port relative to another
source image or video stream.

OMX_CONFIG_POINTTYPE is defined as follows.

 238

4.2.17.1 Parameters
The parameters for OMX_CONFIG_POINTTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nX is the X-coordinate location in pixels in the horizontal direction.

• nY is the Y-coordinate location in pixels in the vertical direction.

4.2.17.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.17.3 Error Conditions
On processing the OMX_CONFIG_POINTTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.17.4 Post-processing Conditions
The point location specified by the X,Y coordinates used when processing image or video
data for the component on the port specified by nPortIndex is configured explicitly
when set using OMX_SetConfig.

typedef struct OMX_ CONFIG_POINTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 nX;
 OMX_S32 nY;
} OMX_ CONFIG_POINTTYPE;

 239

4.2.18 OMX_CONFIG_RECTTYPE
Rectangles are used with several configuration types to indicate orientation, position,
inclusion, or exclusion.

OMX_CONFIG_RECTTYPE is defined as follows.

4.2.18.1 Parameters
The parameters for OMX_CONFIG_RECTTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nLeft is the leftmost coordinate of the rectangle.

• nTop is the topmost coordinate of the rectangle.

• nWidth is the width of the rectangle in pixels.

• nHeight is the height of the rectangle in pixels.

4.2.18.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.18.3 Error Conditions
On processing the OMX_CONFIG_RECTTYPE structure, the following error conditions
can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

typedef struct OMX_CONFIG_RECTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 nLeft;
 OMX_S32 nTop;
 OMX_U32 nWidth;
 OMX_U32 nHeight;
} OMX_ CONFIG_RECTTYPE;

 240

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.18.4 Post-processing Conditions
The rectangle used when processing image or video data for the component on the port
specified by nPortIndex is configured explicitly when set using OMX_SetConfig.

4.2.19 OMX_CONFIG_FRAMESTABTYPE
Frame stabilization reduces motion blur during image capture or video recording. Frame
stabilization is most often associated with camera sensor source components, a camera
sensor filter, or a digital signal processor (DSP).

The frame stabilization feature compensates for the extremely unsteady nature of cameras
on handheld devices such as a cell phone or personal digital assistant (PDA).

OMX_CONFIG_FRAMESTABTYPE is defined as follows.

4.2.19.1 Parameters
The parameters for OMX_CONFIG_FRAMESTABTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bStab is the Boolean value that enables or disables frame stabilization.

4.2.19.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.19.3 Error Conditions
On processing the OMX_CONFIG_FRAMESTABTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

typedef struct OMX_CONFIG_FRAMESTABTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bStab;
} OMX_CONFIG_FRAMESTABTYPE;

 241

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during a OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.19.4 Post-processing Conditions
The frame stabilization used when processing image or video data for the component on
the port specified by nPortIndex is configured explicitly when set using
OMX_SetConfig.

4.2.20 OMX_CONFIG_WHITEBALCONTROLTYPE
White balance control is used with camera sensors to adjust the color temperature of the
image so that pure white appears as white in the image. This adjustment can be
controlled automatically or manually.

OMX_CONFIG_WHITEBALCONTROLTYPE is defined as follows.

4.2.20.1 Parameters
The parameters for OMX_CONFIG_WHITEBALCONTROLTYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eWhiteBalControl is the enumerated valued indicating the type of white balance
control used. Table 4-32 details the values that can be selected for white balance
control.

OMX_WHITEBALCONTROLTYPE
Enumerated Value Description
OMX_WhiteBalControlOff Disables exposure control.

typedef struct OMX_CONFIG_WHITEBALCONTROLTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_WHITEBALCONTROLTYPE eWhiteBalControl;
} OMX_CONFIG_WHITEBALCONTROLTYPE;

 242

OMX_WhiteBalControlAuto Automatic white balance control. The
color temperature of the captured image
or video stream is adjusted per frame
using a white reference from within each
frame.

OMX_WhiteBalControlSunLight Manual white balance control when the
sun provides the light source.

OMX_WhiteBalControlCloudy Manual white balance control when the
sun provides the light source through
clouds.

OMX_WhiteBalControlShade Manual white balance control when the
light source is the sun and the scene is in
the shade.

OMX_WhiteBalControlTungsten Manual white balance control when the
light source is tungsten.

OMX_WhiteBalControlFluorescen
t

Manual white balance control when the
light source is fluorescent.

OMX_WhiteBalControlIncandesce
nt

Manual white balance control when the
light source is incandescent.

OMX_WhiteBalControlFlash Manual white balance control when the
light source is a flash.

OMX_WhiteBalControlHorizon Manual white balance control when the
light source is the sun on the horizon.

Table 4-32. White Balance Control

4.2.20.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.20.3 Error Conditions
On processing the OMX_CONFIG_WHITEBALCONTROLTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.
This error may also occur when a specific white balance control is not supported.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

 243

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.20.4 Post-processing Conditions
The frame stabilization used when processing image or video data for the component on
the port specified by nPortIndex is configured explicitly when set using
OMX_SetConfig.

4.2.21 OMX_CONFIG_EXPOSURECONTROLTYPE
Exposure is used to control the image sensor exposure when capturing images or
streaming video.

OMX_CONFIG_EXPOSURECONTROLTYPE is defined as follows.

4.2.21.1 Parameters
The parameters for OMX_CONFIG_EXPOSURECONTROLTYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eExposureControl is an enumerated value that selects the type of exposure used.
Table 4-33 details the values that can be selected for exposure.

OMX_EXPOSURECONTROLTYPE
Enumerated Value Description
OMX_ExposureControlOff Disables exposure control
OMX_ExposureControlAuto Automatic exposure
OMX_ExposureControlNight Exposure at night
OMX_ExposureControlBacklight Exposure with backlight

illuminating the subject
OMX_ExposureControlSpotlight Exposure with a spotlight

illuminating the subject

typedef struct OMX_CONFIG_EXPOSURECONTROLTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_EXPOSURECONTROLTYPE eExposureControl;
} OMX_CONFIG_EXPOSURECONTROLTYPE;

 244

OMX_ExposureControlSports Exposure for sports
OMX_ExposureControlSnow Exposure for the subject in snow
OMX_ExposureControlBeach Exposure for the subject at a beach
OMX_ExposureControlLargeAperture Exposure when using a large

aperture on the camera
OMX_ExposureControlSmallAperture Exposure when using a small

aperture on the camera
Table 4-33. Exposure Control

4.2.21.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.21.3 Error Conditions
On processing the OMX_CONFIG_EXPOSURECONTROLTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.21.4 Post-processing Conditions
The exposure used when processing image or video data for the component on the port
specified by nPortIndex is configured explicitly when set using OMX_SetConfig.

4.2.22 OMX_CONFIG_CONTRASTTYPE
Contrast controls the relative difference between the pixels. Contrast is applied to image
or video data on the specified port.

OMX_CONFIG_CONTRASTTYPE is defined as follows.

 245

4.2.22.1 Parameters
The parameters for OMX_CONFIG_CONTRASTTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nContrast is the value for contrast. The range of values is -100 to 100. The value
0x0 indicates no contrast change to pixel data.

4.2.22.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.22.3 Error Conditions
On processing the OMX_CONFIG_CONTRASTTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.22.4 Post-processing Conditions
The contrast used when processing image or video data for the component on the port
specified by nPortIndex is configured explicitly when set using OMX_SetConfig.

typedef struct OMX_CONFIG_CONTRASTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 nContrast;
 } OMX_CONFIG_CONTRASTTYPE;

 246

4.2.23 OMX_CONFIG_BRIGHTNESSTYPE
Brightness controls the luminosity of the pixels in the video or image data. Brightness is
applied to the image or video data on the specified port.

OMX_CONFIG_BRIGHTNESSTYPE is defined as follows.

4.2.23.1 Parameters
The parameters for OMX_CONFIG_BRIGHTNESSTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nBrightness is the value for brightness in the range 0% to 100%, where 0%
produces all black pixels and 100% produces entirely white.

4.2.23.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.23.3 Error Conditions
On processing the OMX_CONFIG_BRIGHTNESSTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

typedef struct OMX_CONFIG_BRIGHTNESSTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nBrightness;
} OMX_CONFIG_BRIGHTNESSTYPE;

 247

4.2.23.4 Post-processing Conditions
The brightness applied by the component on the port specified by nPortIndex is
configured explicitly when set using OMX_SetConfig.

4.2.24 OMX_CONFIG_BACKLIGHTTYPE
The backlight of a flat panel type of display such as a liquid crystal display (LCD) or a
thin film transistor (TFT) panel can be controlled using this configuration setting. The IL
client sets the percentage brightness of the backlight and the timeout before the backlight
automatically turns off.

OMX_CONFIG_BACKLIGHTTYPE is defined as follows.

4.2.24.1 Parameters
The parameters for OMX_CONFIG_BACKLIGHTTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nBacklight is a value that represents the backlight brightness. The range of values
is 0% to 100%, where 0% is completely off and 100% is full backlight intensity.

• nTimeout is the number of milliseconds before the backlight automatically turns off.
A value of 0x0 forces the backlight to remain on.

4.2.24.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.24.3 Error Conditions
On processing the OMX_CONFIG_BACKLIGHTTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

typedef struct OMX_CONFIG_BACKLIGHTTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nBacklight;
 OMX_U32 nTimeout;
} OMX_CONFIG_BACKLIGHTTYPE;

 248

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during a OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.24.4 Post-processing Conditions
The backlight of the display for the component on the port specified by nPortIndex is
configured explicitly when set using OMX_SetConfig.

4.2.25 OMX_CONFIG_GAMMATYPE
Gamma is applied to the image or pixel data on the specified port to correct for the non-
linear response to the brightness of pixels on a display relative to the digital value of the
pixel. Gamma correction is typically applied when data is captured digitally by a camera
source, or when data is shown on a display device such as a panel, CRT, or TV.

OMX_CONFIG_GAMMATYPE is defined as follows.

4.2.25.1 Parameters
The parameters for OMX_CONFIG_GAMMATYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nGamma is the value for gamma in the range of -100 to 100. The value 0x0 indicates
no gamma change to pixel data. A value of -100 produces all black pixels, and a
value of 100 produces all white pixels.

4.2.25.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

typedef struct OMX_CONFIG_GAMMATYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 nGamma;
} OMX_CONFIG_GAMMATYPE;

 249

4.2.25.3 Error Conditions
On processing the OMX_CONFIG_GAMMATYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.25.4 Post-processing Conditions
The gamma used when performing color format conversion for the component on the
port specified by nPortIndex is configured explicitly when set using
OMX_SetConfig.

4.2.26 OMX_CONFIG_SATURATIONTYPE
Saturation is applied to image or pixel data on the specified port to control the hue
intensity.

OMX_CONFIG_SATURATIONTYPE is defined as follows.

4.2.26.1 Parameters
The parameters for OMX_CONFIG_SATURATIONTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nSaturation is the value for saturation. The range of values is -100 to 100. The
value 0x0 indicates no saturation change to pixel data. A value of -100 produces all
black pixels, and a value of 100 produces all white pixels.

typedef struct OMX_CONFIG_SATURATIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 nSaturation;
} OMX_CONFIG_SATURATIONTTYPE;

 250

4.2.26.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.26.3 Error Conditions
On processing the OMX_CONFIG_SATURATIONTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.26.4 Post-processing Conditions
The saturation used when performing color format conversion for the component on the
port specified by nPortIndex is configured explicitly when set using
OMX_SetConfig.

4.2.27 OMX_CONFIG_LIGHTNESSTYPE
Lightness is applied to image or pixel data on the specified port to control the non-linear
response to the brightness of pixels.

OMX_CONFIG_LIGHTNESSTYPE is defined as follows.

4.2.27.1 Parameters
The parameters for OMX_CONFIG_LIGHTNESSTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

typedef struct OMX_CONFIG_LIGHTNESSTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_S32 nLightness;
} OMX_CONFIG_LIGHTNESSTYPE;

 251

• nPortIndex is the read-only value containing the index of the port.

• nLightness is the value for lightness. The range of values is -100 to 100. The
value 0x0 indicates no lightness change to pixel data. A value of -100 produces all
black pixels, and a value of 100 produces all white pixels.

4.2.27.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.27.3 Error Conditions
On processing the OMX_CONFIG_LIGHTNESSTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

• OMX_NotReady if is an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.27.4 Post-processing Conditions
The type of lightness used when performing color format conversion for the component
on the port specified by nPortIndex is configured explicitly when set using
OMX_SetConfig.

4.2.28 OMX_CONFIG_PLANEBLENDTYPE
Plane blending is used to blend pixels from multiple sources into a single destination.
The plane depth is specified such that planes with lower numbers are on top of planes
with higher numbers. The blending of two planes with the same depth is undefined.

OMX_CONFIG_PLANEBLENDTYPE is defined as follows.

typedef struct OMX_CONFIG_PLANEBLENDTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nDepth;
 OMX_U32 nAlpha;
} OMX_CONFIG_PLANEBLENDTYPE;

 252

4.2.28.1 Parameters
The parameters for OMX_CONFIG_PLANEBLENDTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nDepth is the depth of the plane for the port. Lower values indicate higher planes,
and higher values indicate lower planes. By default, the depth value is the same as
the value of nPortIndex.

• nAlpha indicates the alpha value used when blending planes, if the blending
operation uses global alpha. For information on blending operations, see section
4.2.13.

4.2.28.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.28.3 Error Conditions
On processing the OMX_CONFIG_PLANEBLENDTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.28.4 Post-processing Conditions
The type of plane blending used when enabled for the component on the port specified by
nPortIndex is configured explicitly when set using OMX_SetConfig.

4.2.29 OMX_CONFIG_DITHERTYPE
Dithering is used when performing color format conversion where the source color
format has higher precision than the destination color format. Two standard types of
dithering are supported: OMX_DitherOrdered and OMX_DitherErrorDiffusion.
OMX_DitherOther provides a means for vendor-specific dithering algorithms.

 253

OMX_CONFIG_DITHERTYPE is defined as follows.

4.2.29.1 Parameters
The parameters for OMX_CONFIG_DITHERTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eDither is the type of dithering used when performing color format conversion.
Table 4-34 details the values that can be selected for dithering.

OMX_DITHERTYPE Enumerated
Value Description
OMX_DitherNone Disables dithering
OMX_DitherOrdered Enables ordered dithering

OMX_DitherErrorDiffusion Enables error diffusion dithering

OMX_DitherOther Enables a vendor specific dithering
algorithm

Table 4-34. Dithering Values

4.2.29.2 Dependencies
The parameter may be queried using OMX_GetConfig or set using OMX_SetConfig
at any time that the component is initialized.

4.2.29.3 Error Conditions
On processing the OMX_CONFIG_DITHERTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorUnsupportedIndex when the feature is unsupported.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorUnsupportedSetting when a field in the structure is unsupported
by the component during an OMX_SetConfig call.

typedef struct OMX_CONFIG_DITHERTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_DITHERTYPE eDither;
 } OMX_CONFIG_DITHERTYPE;

 254

• OMX_ErrorTimeout if the component did not respond in time.

• OMX_NotReady if an OMX_SetConfig operation has not completed processing.
The caller should retry the OMX_GetConfig or OMX_SetConfig call.

4.2.29.4 Post-processing Conditions
The type of dithering used when performing color format conversion for the component
on the port specified by nPortIndex is configured explicitly when set using
OMX_SetConfig.

4.3 Video
This section describes the parameter and configuration details for ports in the video
domain. These parameter and configuration details are specified in the omx_video.h
header.

4.3.1 General Enumerations
The OMX_VIDEO_CODINGTYPE enumeration defines the video coding types supported
in OpenMAX IL version.1.0. If OMX_VIDEO_CodingUnused is selected, then the
coding selection shall be done in a vendor-specific way. Table 4-35 shows the
OpenMAX-supported video compression formats.

Field Name Value
Coding Type
Descriptions

References
to
Standards

OMX_VIDEO_CodingUnused 0x0
No coding
applied. Use
eColorFormat

Not
available

OMX_VIDEO_CodingAutoDetect 0x1
Auto-detection by
the OpenMAX
component

Not
available

OMX_VIDEO_CodingMPEG2 0x2
MPEG-2, also
known as H.262
video format

MPEG2

OMX_VIDEO_CodingH263 0x3 ITU H.263 video
format H263

OMX_VIDEO_CodingMPEG4 0x4 MPEG-4 video
format MPEG4

OMX_VIDEO_CodingWMV 0x5

All versions of
the Windows
Media video
format

WMV

OMX_VIDEO_CodingRV 0x6
All versions of
the RealVideo®
format

RV

OMX_VIDEO_CodingAVC 0x7 ITU H.264/AVC
video format H264

 255

OMX_VIDEO_CodingMJPEG 0x8 Motion JPEG
video format MJPEG

OMX_VIDEO_CodingMax 0x7FFFFFFF Maximum value N/A
Table 4-35. Supported Video Compression Formats

The OMX_VIDEO_PICTURETYPE enumeration defines the video picture types
supported in OpenMAX IL version.1.0. Table 4-36 describes the supported video picture
types.

Field Name Value Picture Type Descriptions
OMX_VIDEO_PictureTypeI 0x01 General I-frame type
OMX_VIDEO_PictureTypeP 0x02 General P-frame type
OMX_VIDEO_PictureTypeB 0x04 General B-frame type
OMX_VIDEO_PictureTypeSI 0x08 H.263 SI-frame type
OMX_VIDEO_PictureTypeSP 0x10 H.263 SP-frame type
OMX_VIDEO_PictureTypeEI 0x20 H.264 EI-frame type
OMX_VIDEO_PictureTypeEP 0x40 H.264 EP-frame type
OMX_VIDEO_PictureTypeS 0x80 MPEG-4 S-frame type
OMX_VIDEO_PictureTypeMax 0x7FFFFFFF Maximum value

Table 4-36. Supported Video Picture Types

4.3.2 Parameter and Configuration Indices
The header OMX_Index.h contains the enumeration OMX_INDEXTYPE, which contains
all of the standard index values used with the OpenMAX core functions
OMX_GetParameter, OMX_SetParameter, OMX_GetConfig, and
OMX_SetConfig.

The index values that relate to video are described in this section. For example,
OMX_IndexParamVideoPortFormat index is used with OMX_GetParameter
and OMX_SetParameter to access the OMX_VIDEO_PARAM_PORTFORMATTYPE.
Table 4-37 identifies the video indices.

 256

OpenMAX IL Indices
(OMX_Index.h)

Corresponding OpenMAX IL Video
Structures (OMX_Video.h)

OMX_IndexParamVideoPortFormat OMX_VIDEO_PARAM_PORTFORMATTYPE
OMX_IndexParamQuantization OMX_VIDEO_PARAM_QUANTIZATIONTYPE
OMX_IndexParamVideoFastUpdate OMX_VIDEO_PARAM_VIDEOFASTUPDATETYPE
OMX_IndexParamVideoBitrate OMX_VIDEO_PARAM_BITRATETYPE
OMX_IndexParamVideoMotionVector OMX_VIDEO_PARAM_MOTIONVECTORTYPE
OMX_IndexParamVideoIntraRefresh OMX_VIDEO_PARAM_INTRAREFRESHTYPE
OMX_IndexParamVideoCorrection OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE
OMX_IndexParamVideoVBSMC OMX_VIDEO_PARAM_VBSMCTYPE
OMX_IndexParamVideoMpeg2 OMX_VIDEO_PARAM_MPEG2TYPE
OMX_IndexParamVideoMpeg4 OMX_VIDEO_PARAM_MPEG4TYPE
OMX_IndexParamVideoWmv OMX_VIDEO_PARAM_WMVTYPE
OMX_IndexParamVideoRv OMX_VIDEO_PARAM_RVTYPE
OMX_IndexParamVideoAvc OMX_VIDEO_PARAM_AVCTYPE
OMX_IndexParamVideoH263 OMX_VIDEO_PARAM_H263TYPE

Table 4-37. Video Indices

 257

4.3.3 Video Use Cases Examples
Figure 4-3 depicts one possible set of components as well as the tunneling of ports for
these components to implement a H.263 video encoding scheme. This use case encodes
raw video into H.263 format and writes it to a file while previewing the captured video
on a display.

Figure 4-3. H.263 Video Encode Use Case

Figure 4-3 shows six components, namely the camera, the image filter, the splitter, the
H.263 video encoder, the file writer, and the video sink.

Figure 4-4 shows a more complex use case, which is video conferencing. This use case
supports simultaneous encoding and decoding of video streams. To simplify the use case,
the corresponding audio components are not included.

Figure 4-4. Video Conferencing Use Case

Raw video is encoded to H.263 format and then transmitted via a video uplink to the far-
side conferencing participant. At the same time, a H.263 video stream is received from
the far-side participant via a video downlink and decoded to raw video format before
being mixed into a pre-determined presentation layout via the video mixer such that both
the local participant’s video and far-side participant’s video are displayed via the local
video sink.

 258

4.3.4 OMX_VIDEO_PORTDEFINITIONTYPE
The PortDefinition structure defines all of the parameters necessary for the compliant
component to set up an input or an output video path. If additional information is needed
to define the parameters of the port such as frame rate and bit rate, additional structures
shall be sent. For example, to change the bit rate, send the
OMX_VIDEO_PARAM_BITRATETYPE structure to supply the extra parameters for
the port. The number of video paths for input and output will vary by the type of the
video component.

The OMX_VIDEO_PORTDEFINITIONTYPE structure can query the current or default
definition of a video port for a component using the OMX_GetParameter function. It
is also used to set the definition of a video port for a component using the
OMX_SetParameter function. When calling either the OMX_GetParameter or the
OMX_SetParameter functions, the index specified for this structure is
OMX_Index_ParamVideoPort.

OMX_VIDEO_PORTDEFINITIONTYPE is defined as follows.

4.3.4.1 Parameters
The parameters for OMX_VIDEO_PORTDEFINITIONTYPE are defined as follows.

• cMIMEType is the MIME type of data for the port.

• pNativeRender is the read-only field containing a reference to the platform-
specific native renderer. This is NULL if a platform specific native renderer is not
available.

• nFrameWidth is the width of the data in pixels. If the value is 0x0 for an input port,
the component will automatically detect and configure the width. For output ports,
the width will be detected during OMX_SetupTunnel.

• nFrameHeight is the height of the data in pixels. If the value is 0x0 for an input
port, the component will automatically detect and configure the height. For output
ports, the height will be detected during OMX_SetupTunnel.

• nStride is the read-only field indicating the number of bytes per span of an image,
where nStride is the amount added to go from span N to span N+1. A negative

typedef struct OMX_VIDEO_PORTDEFINITIONTYPE {
 OMX_STRING cMIMEType;
 OMX_NATIVE_DEVICETYPE pNativeRender;
 OMX_U32 nFrameWidth;
 OMX_U32 nFrameHeight;
 OMX_S32 nStride;
 OMX_U32 nSliceHeight;
 OMX_U32 nBitrate;
 OMX_U32 xFramerate;
 OMX_BOOL bFlagErrorConcealment;
} OMX_VIDEO_PORTDEFINITIONTYPE;

 259

value for nStride indicates that the data is stored bottom-to-top instead of top-to-
bottom. The value for nStride cannot be 0x0.

• nSliceHeight is a read-only field containing the slice height parameter used when
processing uncompressed image data. Buffers received on the port shall contain
integer multiples of slices. For more information on the minimum buffer payload for
uncompressed data, see section 4.2.2.

• nBitrate is the bit rate in bits per second of the frame to be used on the port if the
data is compressed. The value 0x0 is used if the bit rate is unknown, variable or is
not needed.

• xFramerate is the frame rate is in frames per second. This value is represented in
Q16 format. The frame rate specified is that used on the port if the data is not
compressed. The value 0x0 is used to indicate the frame rate is unknown, variable, or
is not needed.

• bFlagErrorConcealment is a Boolean value that enables or disables error
concealment if it is supported by the port.

4.3.4.2 Dependencies
The parameter may be queried at any time that the component is initialized. The
parameter may only be set using OMX_SetParameter when the component is in the
OMX_StateLoaded state.

4.3.4.3 Error Conditions
On processing the OMX_VIDEO_PORTDEFINITIONTYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorNotImplemented when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of video ports for the component.

4.3.4.4 Post-processing Conditions
The generic characteristics for the port indicated by nPortIndex are fully specified
when set using OMX_SetParameter.

 260

4.3.5 OMX_VIDEO_PARAM_PORTFORMATTYPE
OMX_VIDEO_PARAM_PORTFORMATTYPE is the structure for the port format
parameter. It enumerates the various data input/output formats supported by the port.

OMX_VIDEO_PARAM_PORTFORMATTYPE can be used with both
OMX_GetParameter and OMX_SetParameter. In the OMX_GetParameter
case, the caller specifies all fields and the OMX_GetParameter call returns the value
of eFormat. The value of nIndex is the range 0 to N-1, where N is the number of
formats supported by the port. There is no need for the port to report N, as the caller can
determine N by enumerating all the formats supported by the port. Each port shall
support at least one format. If there are no more formats, OMX_GetParameter returns
OMX_ErrorNoMore (i.e., nIndex is supplied where the value is N or greater). Ports
supply formats in order of preference, which means that higher preference formats are
provided with lower values of nIndex.

On OMX_SetParameter, the field in nIndex is ignored. If the format is supported,
it is set as the format of the port, and the default values for the format are programmed
into the port definition type as a side effect. This allows the caller to query the default
values for the format without having to know them in advance.

OMX_VIDEO_PARAM_PORTFORMATTYPE is defined as follows.

4.3.5.1 Parameters
The parameters for OMX_VIDEO_PARAM_PORTFORMATTYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eCompressionFormat is the compression format used on the port. This
essentially refers to the file extension. If the coding is being used to specify the
ENCODE type, then additional work shall be done to configure the exact flavor of the
compression to be used. For decode cases where the user application cannot
differentiate between MPEG-4 and H.264 bit streams, the codec is responsible for the
compression format. When OMX_VIDEO_CodingUnused is specified, the
eColorFormat field is valid. For possible coding types, see Table 4-35.

typedef struct OMX_VIDEO_PARAM_PORTFORMATTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nIndex;
 OMX_VIDEO_CODINGTYPE eCompressionFormat;
 OMX_COLOR_FORMATTYPE eColorFormat;
} OMX_VIDEO_PARAM_PORTFORMATTYPE;

 261

• eColorFormat is the color format of the data for the port. This field is invalid
unless the eCompressionFormat is OMX_VIDEO_CodingUnused. For more
information on color format types, see Table 4-33.

4.3.5.2 Dependencies
The OMX_VIDEO_PARAM_PORTFORMATTYPE structure may be queried at any
time that the component is not in the NULL state. The structure may be set using
OMX_SetParameter when the component is in the OMX_StateLoaded state.

4.3.5.3 Error Conditions
On processing the OMX_VIDEO_PARAM_PORTFORMATTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorNotImplemented when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorNoMore when the OMX_GetParameter function is called and the
value of nPortIndex exceeds the number of video ports for the component.

4.3.5.4 Post-processing Conditions
The OMX_VIDEO_PARAM_PORTFORMATTYPE structure has no post-processing
conditions.

4.3.6 OMX_VIDEO_PARAM_QUANTIZATIONTYPE
Quantization controls the compression used during the discrete cosine transform (DCT)
step of video encoding. This generic structure is shared between several video standards.
The structure allows independent settings of quantization factors for I, P, and B video
frames. The structure is not applicable to variable bit rate encoding or constant rate
encoding. Not all video standards support independent settings of quantization factors
for different frame types.

OMX_VIDEO_PARAM_QUANTIZATIONTYPE is defined as follows.

 262

4.3.6.1 Parameters
The parameters for OMX_VIDEO_PARAM_QUANTIZATIONTYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nQpI is the quantization parameter for I frames.

• nQpP is the quantization parameter for P frames.

• nQpB is the quantization parameter for bi-directional (B) frames).

4.3.6.2 Dependencies
The parameter may be queried at any time that the component is not in the NULL state.
The parameter may only be set using OMX_SetParameter when the component is in
the OMX_StateLoaded state after OMX_VIDEO_PORTDEFINITIONTYPE has been set
for the port. This parameter is only applicable to certain video encoders, which include
MPEG-2 and MPEG-4.

4.3.6.3 Error Conditions
On processing the OMX_VIDEO_PARAM_QUANTIZATIONTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorNotImplemented when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

typedef struct OMX_VIDEO_PARAM_QUANTIZATIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nQpI;
 OMX_U32 nQpP;
 OMX_U32 nQpB;
} OMX_VIDEO_PARAM_QUANTIZATIONTYPE;

 263

4.3.6.4 Post-processing Conditions
The quantization characteristics for a video encoder on the port specified by
nPortIndex are configured explicitly when set using OMX_SetParameter.

4.3.7 OMX_VIDEO_PARAM_VIDEOFASTUPDATETYPE
Video fast update is a shared parameter between multiple video encoding standards (for
example, H.261 and H.263) that specifies fast update parameters for the video encoder.

OMX_VIDEO_PARAM_VIDEOFASTUPDATETYPE is defined as follows.

4.3.7.1 Parameters
The parameters for OMX_VIDEO_PARAM_VIDEOFASTUPDATETYPE are defined
as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bEnableVFU is a Boolean value that enables or disables video fast update.

• nFirstGOB contains the number of the first row of macroblocks

• nFirstMB is the location of the first macroblock row relative to the first group of
blocks (GOB).

• nNumMBs The number of macroblocks to be refreshed from the nFirstGOB and
nFirstMB.

4.3.7.2 Dependencies
The parameter may be queried at any time that the component is not in the NULL state.
The parameter may only be set using OMX_SetParameter when the component is in
the OMX_StateLoaded state after OMX_VIDEO_PORTDEFINITIONTYPE has been set
for the port. This parameter is only applicable to certain video encoders, such as H.261
and H.263.

typedef struct OMX_VIDEO_PARAM_VIDEOFASTUPDATETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnableVFU;
 OMX_U32 nFirstGOB;
 OMX_U32 nFirstMB;
 OMX_U32 nNumMBs;
} OMX_VIDEO_PARAM_VIDEOFASTUPDATETYPE;

 264

4.3.7.3 Error Conditions
On processing the OMX_VIDEO_PARAM_VIDEOFASTUPDATETYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorNotImplemented when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

4.3.7.4 Post-processing Conditions
The fast update characteristics for a video encoder on the port specified by
nPortIndex are configured explicitly when set using OMX_SetParameter.

4.3.8 OMX_VIDEO_PARAM_BITRATETYPE
Video encode bit rate control for variable bit rate video encoders is shared between
multiple video encode standards, and is specified before starting video encoding.

OMX_VIDEO_PARAM_BITRATETYPE is defined as follows.

4.3.8.1 Parameters
The parameters for OMX_VIDEO_PARAM_BITRATETYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eControlRate is an enumerated value that sets the bit rate control. If enabled, the
type of bit rate control is specified as constant, variable, constant with frame skipping,
or variable with frame skipping. Table 4-38 enumerates the possible video bit rate control
types for OMX_VIDEO_CONTROLRATETYPE.

typedef struct OMX_VIDEO_PARAM_BITRATETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_VIDEO_CONTROLRATETYPE eControlRate;
 OMX_U32 nTargetBitrate;
} OMX_VIDEO_PARAM_BITRATETYPE;

 265

Field Name Value

Bit Rate
Control
Descriptions

OMX_Video_ControlRateDisable 0x0 Disable
OMX_Video_ControlRateVariable 0x1 Variable bit rate

OMX_Video_ControlRateConstant
0x2

Constant bit
rate

OMX_Video_ControlRateVariableSkipFrames

0x3

Variable bit rate
with frame
skipping

OMX_Video_ControlRateConstantSkipFrames

0x4

Constant bit
rate with frame
skipping

OMX_Video_ControlRateMax 0x7FFFFFFF Maximum value
Table 4-38. Supported Video Bit Rate Control Types

• nTargetBitrate is the target bit rate for video encoding in units of bits per
second. For certain video encoding standards, this field is not applicable.

4.3.8.2 Dependencies
The parameter may be queried at any time that the component is not in the NULL state.
The parameter may only be set using OMX_SetParameter when the component is in
the OMX_StateLoaded state after OMX_VIDEO_PORTDEFINITIONTYPE has been set
for the port; this parameter is only applicable to certain video encoders. For some video
encode standards, the bit rate is specified as part of the standard and is not programmable
(i.e., value can only be queried).

4.3.8.3 Error Conditions
On processing the OMX_VIDEO_PARAM_BITRATETYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorNotImplemented when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

4.3.8.4 Post-processing Conditions
The bit rate control characteristics for the video encoder on the port specified by
nPortIndex are configured explicitly when set using OMX_SetParameter.

 266

4.3.9 OMX_VIDEO_PARAM_MOTIONVECTORTYPE
The motion vector parameters used during video encoding are programmable for certain
video standards. These parameters can be shared between multiple video standards
algorithms, although certain fields only pertain to particular video standards.

OMX_VIDEO_PARAM_MOTIONVECTORTYPE is defined as follows.

4.3.9.1 Parameters
The parameters for OMX_VIDEO_PARAM_MOTIONVECTORTYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eAccuracy is an enumerated value that specifies the pixel accuracy of the motion
vector search during video encode. Accuracy is 1, 1/2, 1/4, or 1/8 pixel. The
eAccuracy setting indicates that all larger value motion vector search ranges are
also used (i.e., a value of 1/4 indicates motion vectors are also searched on 1 and 1/2
intervals). Table 4-39 enumerates the possible video motion vector types for
OMX_VIDEO_MOTIONVECTORTYPE.

Field Name Value
Motion Vector
Descriptions

OMX_Video_MotionVectorPixel 0x0
Full pixel motion
vectors

OMX_Video_MotionVectorHalfPel 0x1
Half pixel motion
vectors

OMX_Video_MotionVectorQuarterPel 0x2
Quarter pixel
motion vectors

OMX_Video_MotionVectorEighthPel 0x3
Eighth pixel
motion vectors

OMX_Video_MotionVectorMax 0x7FFFFFFF Maximum value
Table 4-39. Supported Video Motion Vector Types

• bUnrestrictedMVs is a Boolean value that enables unrestricted motion vectors.

typedef struct OMX_VIDEO_PARAM_MOTIONVECTORTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_VIDEO_MOTIONVECTORTYPE eAccuracy;
 OMX_BOOL bUnrestrictedMVs;
 OMX_BOOL bFourMV;
 OMX_S32 sXSearchRange;
 OMX_S32 sYSearchRange;
} OMX_VIDEO_PARAM_MOTIONVECTORTYPE;

 267

• bFourMV is a Boolean value enables using four motion vectors.

• sXSearchRange is the search range of the X motion vector in pixels for video
encoders where this is programmable. For example, a search range of 4 indicates a ±4
search area both horizontally and vertically.

• sYSearchRange is the search range of the Y motion vector in pixels for video
encoders where this is programmable. For example, a search range of 4 indicates a ±4
search area both horizontally and vertically.

4.3.9.2 Dependencies
The parameter may be queried at any time that the component is not in the NULL state.
The parameter may only be set using OMX_SetParameter when the component is in
the OMX_StateLoaded state after OMX_VIDEO_PORTDEFINITIONTYPE has been set
for the port. This parameter is only applicable to certain video encoders, which include
MPEG2 and MPEG4.

4.3.9.3 Error Conditions
On processing the OMX_VIDEO_PARAM_MOTIONVECTORTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorNotImplemented when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

4.3.9.4 Post-processing Conditions
The motion vector search range for a video encoder on the port specified by
nPortIndex is configured explicitly when set using OMX_SetParameter.

4.3.10 OMX_VIDEO_PARAM_INTRAREFRESHTYPE
OMX_VIDEO_PARAM_INTRAREFRESHTYPE contains common parameters for
controlling the intra-refresh rate for macroblocks during video encoding. Refresh causes
macroblocks of a video stream to be regularly encoded as reference macroblocks. This
enables a video decoder to eventually reconstruct a good video image from multiple
frames when data is lost or corrupted without receiving a new intra-coded frame.

OMX_VIDEO_PARAM_INTRAREFRESHTYPE is defined as follows.

 268

4.3.10.1 Parameters
The parameters for OMX_VIDEO_PARAM_INTRAREFRESHTYPE are defined as
follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eRefreshMode is the enumeration for the type of intra-refresh mode. Table 4-40
shows the possible values for OMX_VIDEO_INTRAREFRESHTYPE.

Field Name Value
Intra-Refresh
Descriptions

OMX_VIDEO_IntraRefreshCyclic 0 Cyclic intra-refresh

OMX_VIDEO_IntraRefreshAdaptive 1
Adaptive intra-
refresh

OMX_VIDEO_IntraRefreshBoth
2

Cyclic and
Adaptive intra-
refresh

OMX_VIDEO_IntraRefreshMax 0x7FFFFFFF Maximum value
Table 4-40. Supported Video Intra-Refresh Types

• nAirMBs is the minimum number of macroblocks to refresh in a frame when
adaptive intra-refresh (AIR) is enabled.

• nAirRef is the number of times a motion marked macroblock has to be intra-coded.

• nCirMBs is the number of consecutive macroblocks to be coded as intra when cyclic
intra-refresh (CIR) is enabled.

4.3.10.2 Dependencies
The parameter may be queried at any time that the component is not in the NULL state.
The parameter may only be set using OMX_SetParameter when the component is in
the OMX_StateLoaded state after OMX_VIDEO_PORTDEFINITIONTYPE has been set
for the port. This parameter is only applicable to certain video encoders, which includes
MPEG4.

typedef struct OMX_VIDEO_PARAM_INTRAREFRESHTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_VIDEO_INTRAREFRESHTYPE eRefreshMode;
 OMX_U32 nAirMBs;
 OMX_U32 nAirRef;
 OMX_U32 nCirMBs;
} OMX_VIDEO_PARAM_INTRAREFRESHTYPE;

 269

4.3.10.3 Error Conditions
On processing the OMX_VIDEO_PARAM_INTRAREFRESHTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorNotImplemented when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

4.3.10.4 Post-processing Conditions
The intra refresh for video encoding on the port specified by nPortIndex is configured
explicitly when set using OMX_SetParameter.

4.3.11 OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE
OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE contains common video
encoding standard parameters for handling error correction during video encoding.

OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE is defined as follows.

4.3.11.1 Parameters
The parameters for OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE are defined
as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• bEnableHEC is a Boolean value that enables or disables header extension codes.

typedef struct OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL bEnableHEC;
 OMX_BOOL bEnableResync;
 OMX_U32 nResynchMarkerSpacing;
 OMX_BOOL bEnableDataPartitioning;
 OMX_BOOL bEnableRVLC;
} OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE;

 270

• bEnableResync is a Boolean value that enables or disables resynchronization
markers.

• nResynchMarkerSpacing is the resynchronization marker interval in bits
applied to the stream.

• bEnableDataPartitioning is a Boolean value that enables or disables data
portioning.

• bEnableRVLC is a Boolean value that enables or disables reversible variable-length
coding.

4.3.11.2 Dependencies
The parameter may be queried at any time that the component is not in the NULL state.
The parameter may only be set using OMX_SetParameter when the component is in
the OMX_StateLoaded state after OMX_VIDEO_PORTDEFINITIONTYPE has been set
for the port. This parameter is only applicable to certain video encoders, which include
MPEG4.

4.3.11.3 Error Conditions
On processing the OMX_VIDEO_PARAM_ERRORCORRECTIONTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.•

• OMX_ErrorNotImplemented when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

4.3.11.4 Post-processing Conditions
The error correction used for video encoding on the port specified by nPortIndex is
configured explicitly when set using OMX_SetParameter.

4.3.12 OMX_VIDEO_PARAM_VBSMCTYPE
OMX_VIDEO_PARAM_VBSMCTYPE contains common video encoding standard
parameters for selecting variable block size motion compensation during video encoding.

OMX_VIDEO_PARAM_VBSMCTYPE is defined as follows.

 271

4.3.12.1 Parameters
The parameters for OMX_VIDEO_PARAM_VBSMCTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• b16x16 is a Boolean value that enables or disables inter-block search in a 16 by
16.region of pixels

• b16x8 is a Boolean value that enables or disables inter-block search in a 16 by 8.
region of pixels

• b8x16 is a Boolean value that enables or disables inter-block search in a 8 by 16.
region of pixels

• b8x8 is a Boolean value that enables or disables inter-block search in a 8 by 8.
region of pixels

• b8x4 is a Boolean value that enables or disables inter-block search in a 8 by 4.
region of pixels

• b4x8 is a Boolean value that enables or disables inter-block search in a 4 by 8.
region of pixels

• b4x4 is a Boolean value that enables or disables inter-block search in a 4 by 4.
region of pixels

4.3.12.2 Dependencies
The parameter may be queried at any time that the component is not in the NULL state.
The parameter may only be set using OMX_SetParameter when the component is in
the OMX_StateLoaded state after OMX_VIDEO_PORTDEFINITIONTYPE has been set
for the port. This parameter is only applicable to certain video encoders, which include
MPEG4 and other derivations of MPEG4.

typedef struct OMX_VIDEO_PARAM_VBSMCTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_BOOL b16x16;
 OMX_BOOL b16x8;
 OMX_BOOL b8x16;
 OMX_BOOL b8x8;
 OMX_BOOL b8x4;
 OMX_BOOL b4x8;
 OMX_BOOL b4x4;
} OMX_VIDEO_PARAM_VBSMCTYPE;

 272

4.3.12.3 Error Conditions
On processing the OMX_VIDEO_PARAM_VBSMCTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorNotImplemented when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

4.3.12.4 Post-processing Conditions
The variable size blocks used for motion compensation during video encoding on the port
specified in nPortIndex are configured explicitly when set using
OMX_SetParameter.

4.3.13 OMX_VIDEO_PARAM_H263TYPE
H.263 is a video standard defined by the ITU. Parameters for this video standard are
controlled using the OMX_VIDEO_PARAM_H263TYPE structure.

OMX_VIDEO_PARAM_H263TYPE is defined as follows.

4.3.13.1 Parameters
The parameters for OMX_VIDEO_PARAM_H263TYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

typedef struct OMX_VIDEO_PARAM_H263TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nPFrames;
 OMX_U32 nBFrames;
 OMX_VIDEO_H263PROFILETYPE eProfile;
 OMX_VIDEO_H263LEVELTYPE eLevel;
 OMX_BOOL bPLUSPTYPEAllowed;
 OMX_U32 nAllowedPictureTypes;
 OMX_BOOL bForceRoundingTypeToZero;
 OMX_U32 nPictureHeaderRepetition;
 OMX_U32 nGOBHeaderInterval;
} OMX_VIDEO_PARAM_H263TYPE;

 273

• nPortIndex is the read-only value containing the index of the port.

• nPFrames is the number of P frames between I frames.

• nBFrames is the number of B frames between I frames.

• eProfile is the profile type supported for encoding and decoding H.263 content.
Table 4-41 shows the possible H.263 video profile types for
OMX_VIDEO_H263PROFILETYPE.

Field Name Value H.263 Profile Descriptions
OMX_VIDEO_H263Profile
Baseline 0x01 H.263 Baseline Profile: H.263

(V1), no optional modes

OMX_VIDEO_H263Profile
H320Coding 0x02

H.263 Coding Efficiency
(H.320) Backward Compatibility
Profile: H.263+ (V2), includes
annexes I, J, L.4, and T

OMX_VIDEO_H263Profile
BackwardCompatible 0x04

H.263 BackwardCompatible:
Backward Compatibility Profile:
H.263 (V1), includes annex F

OMX_VIDEO_H263Profile
ISWV2 0x08

H.263 Interactive Streaming
Wireless Profile: H.263+ (V2),
includes annexes I, J, K, and T

OMX_VIDEO_H263Profile
ISWV3 0x10

H.263 Interactive Streaming
Wireless Profile: H.263++ (V3),
includes profile 3 and annexes V
and W.6.3.8

OMX_VIDEO_H263Profile
HighCompression 0x20

H.263 Conversational High
Compression Profile: H.263++
(V3), includes profiles 1 and 2
and annexes D and U

OMX_VIDEO_H263Profile
Internet 0x40

H.263 Conversational Internet
Profile: H.263++ (V3), includes
profile 5 and annex K

OMX_VIDEO_H263Profile
Interlace 0x80

H.263 Conversational Interlace
Profile: H.263++ (V3), includes
profile 5 and annex W.6.3.11

OMX_VIDEO_H263Profile
HighLatency 0x100

H.263 High Latency Profile:
H.263++ (V3), includes profile 6
and annexes O.1 and P.5

OMX_VIDEO_H263Profile
Max 0x7FFFFFFF Maximum value

Table 4-41. Supported H.263 Profile Types

• eLevel is the maximum processing level that an encoder or decoder supports for a
particular profile. Table 4-42 shows the possible H.263 video level types.

 274

Field Name Value H.263 Level Descriptions
OMX_VIDEO_H263Level10 0x01 H.263 level 10
OMX_VIDEO_H263Level20 0x02 H.263 level 20
OMX_VIDEO_H263Level30 0x04 H.263 level 30
OMX_VIDEO_H263Level40 0x08 H.263 level 40
OMX_VIDEO_H263Level50 0x10 H.263 level 50
OMX_VIDEO_H263Level60 0x20 H.263 level 60
OMX_VIDEO_H263Level70 0x40 H.263 level 70
OMX_VIDEO_H263LevelMax 0x7FFFFFFF Maximum value

Table 4-42. Supported H.263 Level Types

• bPLUSPTYPEAllowed is a Boolean value that enables or disables indication of
whether PLUSPTYPE (specified in the 1998 version of H.263) is allowed. This
applies to custom picture sizes or clock frequencies.

• nAllowedPictureTypes determines whether picture types are allowed in the bit
stream. For more information on picture types, see Table 4-36.

• bForceRoundingTypeToZero determines whether the value of the RTYPE bit
(bit 6 of MPPTYPE) is not constrained. Change the value of the RTYPE bit for each
reference picture in error-free communication.

• nPictureHeaderRepetition is the frequency of picture header repetition.

• nGOBHeaderInterval is the interval of non-empty GOB headers in units of
GOBs.

4.3.13.2 Dependencies
The parameter may be queried at any time that the component is not in the NULL state.
The parameter may only be set using OMX_SetParameter when the component is in
the OMX_StateLoaded state after OMX_VIDEO_PORTDEFINITIONTYPE has been set
for the port. This parameter is only applicable when the port is configured for H.263.

4.3.13.3 Error Conditions
On processing the OMX_VIDEO_PARAM_H263TYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorNotImplemented when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

 275

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

4.3.13.4 Post-processing Conditions
The video encode or decode parameters for H.263 on the port specified by nPortIndex
are configured explicitly when set using OMX_SetParameter.

4.3.14 OMX_VIDEO_PARAM_MPEG2TYPE
OMX_VIDEO_PARAM_MPEG2TYPE contains MPEG2 video parameters for
controlling MPEG2 video encode.

OMX_VIDEO_PARAM_MPEG2TYPE is defined as follows.

4.3.14.1 Parameters
The parameters for OMX_VIDEO_PARAM_MPEG2TYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nPFrames is the number of P frames between I frames.

• nBFrames is the number of B frames between I frames.

• eProfileLevel is the maximum processing level that an encoder or decoder
supports for a particular profile. Table 4-43 shows the possible MPEG-2 video profile
types in OMX_VIDEO_MPEG2PROFILETYPE.

typedef struct OMX_VIDEO_PARAM_MPEG2TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nPFrames;
 OMX_U32 nBFrames;
 OMX_VIDEO_MPEG2PROFILETYPE eProfile;
 OMX_VIDEO_MPEG2LEVELTYPE eLevel;
} OMX_VIDEO_PARAM_MPEG2TYPE;

 276

Field Name Value
MPEG-2 Profile
Descriptions

OMX_VIDEO_MPEG2ProfileSimple 0x01 Simple profile
OMX_VIDEO_MPEG2ProfileMain 0x02 Main profile
OMX_VIDEO_MPEG2Profile422 0x04 4:2:2 profile
OMX_VIDEO_MPEG2ProfileSNR 0x08 SNR profile
OMX_VIDEO_MPEG2ProfileSpatial 0x10 Spatial profile
OMX_VIDEO_MPEG2ProfileHigh 0x20 High profile
OMX_VIDEO_MPEG2ProfileMax 0x7FFFFFFF Maximum value
Table 4-43. Supported MPEG-2 Profile Types

• eLevel is the maximum processing level that an MPEG-2 encoder or decoder
supports for a particular profile. Table 4-44 shows the possible MPEG-2 video level
types in OMX_VIDEO_MPEG2LEVELTYPE.

Field Name Value MPEG-2 Level Descriptions
OMX_VIDEO_MPEG2LevelLL 0x01 Low level
OMX_VIDEO_MPEG2LevelML 0x02 Main level
OMX_VIDEO_MPEG2LevelH14 0x04 High 1440 level
OMX_VIDEO_MPEG2LevelHL 0x08 High level
OMX_VIDEO_MPEG2LevelMax 0x7FFFFFFF Maximum level
Table 4-44. Supported MPEG-2 Level Types

4.3.14.2 Dependencies
The parameter may be queried at any time that the component is not in the NULL state.
The parameter may only be set using OMX_SetParameter when the component is in
the OMX_StateLoaded state after OMX_VIDEO_PORTDEFINITIONTYPE has been set
for the port. This parameter is only applicable when the port is configured for MPEG-2.

4.3.14.3 Error Conditions
On processing the OMX_VIDEO_PARAM_MPEG2TYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorNotImplemented when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

 277

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

4.3.14.4 Post-processing Conditions
The video encoding or decoding parameters for MPEG-2 on the port specified by
nPortIndex are configured explicitly when set using OMX_SetParameter.

4.3.15 OMX_VIDEO_PARAM_MPEG4TYPE
OMX_VIDEO_PARAM_MPEG4TYPE contains the MPEG-4 video parameters for
controlling MPEG-4 video encoding and decoding.

OMX_VIDEO_PARAM_MPEG4TYPE is defined as follows.

4.3.15.1 Parameters
The parameters for OMX_VIDEO_PARAM_MPEG4TYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nSliceHeaderSpacing is the number of macroblocks in a slice (H263+ Annex
K). Make this value zero if not used.

• bSVH is a Boolean value that enables or disables short header mode.

• bGov is a Boolean value that enables or disables group of VOP (GOV), where VOP
is the abbreviation for video object planes.

• nPFrames is the number of P frames between I frames.

typedef struct OMX_VIDEO_PARAM_MPEG4TYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nSliceHeaderSpacing;
 OMX_BOOL bSVH;
 OMX_BOOL bGov;
 OMX_U32 nPFrames;
 OMX_U32 nBFrames;
 OMX_U32 nIDCVLCThreshold;
 OMX_BOOL bACPred;
 OMX_U32 nMaxPacketSize;
 OMX_U32 nTimeIncRes;
 OMX_VIDEO_MPEG4PROFILETYPE eProfile;
 OMX_VIDEO_MPEG4LEVELTYPE eLevel;
 OMX_U32 nAllowedPictureTypes;
 OMX_U32 nHeaderExtension;
 OMX_BOOL bReversibleVLC;
} OMX_VIDEO_PARAM_MPEG4TYPE;

 278

• nBFrames is the number of B frames between I frames.

• nIDCVLCThreshold is the value of the intra-DC variable-length coding (VLC)
threshold.

• bACPred is the Boolean value that enables or disables AC prediction.

• nMaxPacketSize is the maximum size of the packet in bytes.

• nTimeIncRes is the VOP time increment resolution for MPEG-4. This value is
interpreted as described in the MPEG-4 standard.

• eProfile is the profile used for MPEG-4 encoding or decoding. Table 4-45 shows
the possible MPEG-4 video profile types in OMX_VIDEO_MPEG4PROFILETYPE.

Field Name Value
MPEG-4 Profile
Descriptions

OMX_VIDEO_MPEG4ProfileSimple 0x01
MPEG-4 Simple
Profile, Levels 1-
3

OMX_VIDEO_MPEG4ProfileSimpleScalable 0x02
MPEG-4 Simple
Scalable Profile,
Levels 1-2

OMX_VIDEO_MPEG4ProfileCore 0x04
MPEG-4 Core
Profile, Levels 1-
2

OMX_VIDEO_MPEG4ProfileMain 0x08
MPEG-4 Main
Profile, Levels 2-
4

OMX_VIDEO_MPEG4ProfileNbit 0x10 MPEG-4 N-bit
Profile, Level 2

OMX_VIDEO_MPEG4ProfileScalableTexture 0x20
MPEG-4 Scalable
Texture Profile,
Level 1

OMX_VIDEO_MPEG4ProfileSimpleFace 0x40

MPEG-4 Simple
Face Animation
Profile, Levels 1-
2

OMX_VIDEO_MPEG4ProfileSimpleFBA 0x80

MPEG-4 Simple
Face and Body
Animation (FBA)
Profile, , Levels
1-2

OMX_VIDEO_MPEG4ProfileBasicAnimated 0x100

MPEG-4 Basic
Animated Texture
Profile, Levels 1-
2

 279

OMX_VIDEO_MPEG4ProfileHybrid 0x200
MPEG-4 Hybrid
Profile, Levels 1-
2

OMX_VIDEO_MPEG4ProfileAdvancedRealTime 0x400

MPEG-4
Advanced Real
Time Simple
Profiles, Levels
1-4

OMX_VIDEO_MPEG4ProfileCoreScalable 0x800
MPEG-4 Core
Scalable Profile,
Levels 1-3

OMX_VIDEO_MPEG4ProfileAdvancedCoding 0x1000

MPEG-4
Advanced Coding
Efficiency
Profile, Levels 1-
4

OMX_VIDEO_MPEG4ProfileAdvancedCore 0x2000

MPEG-4
Advanced Core
Profile, Levels 1-
2

OMX_VIDEO_MPEG4ProfileAdvancedScalable 0x4000

MPEG-4
Advanced
Scalable Texture,
Levels 2-3

OMX_VIDEO_MPEG4ProfileMax 0x7FFFFFFF Maximum value
Table 4-45. Supported MPEG-4 Profile Types

• eLevel is the maximum processing level that an encoder or decoder supports for a
particular MPEG-4 profile. Table 4-46 shows the possible MPEG-4 video level types
in OMX_VIDEO_MPEG4LEVELTYPE.

Field Name Value
MPEG-4 Level
Descriptions

OMX_VIDEO_MPEG4Levell 0x01 Level 1
OMX_VIDEO_MPEG4Level2 0x02 Level 2
OMX_VIDEO_MPEG4Level3 0x04 Level 3
OMX_VIDEO_MPEG4Level4 0x08 Level 4
OMX_VIDEO_MPEG4LevelMax 0x7FFFFFFF Max level
Table 4-46. Supported MPEG-4 Level Types

• nAllowedPictureTypes identifies the picture types allowed in the bit stream.
For more information on picture types, see Table 4-36.

• nHeaderExtension specifies the number of consecutive video packet headers
within a VOP.

• bReversibleVLC is a Boolean value that enables or disables the use of reversible
variable-length coding

 280

4.3.15.2 Dependencies
The parameter may be queried at any time that the component is not in the NULL state.
The parameter may only be set using OMX_SetParameter when the component is in
the OMX_StateLoaded state after OMX_VIDEO_PORTDEFINITIONTYPE has been set
for the port. This parameter is only applicable when the port is configured for MPEG-4.

4.3.15.3 Error Conditions
On processing the OMX_VIDEO_PARAM_MPEG4TYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorNotImplemented when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

4.3.15.4 Post-processing Conditions
The video encoding or decoding parameters for MPEG-4 on the port specified by
nPortIndex are configured explicitly when set using OMX_SetParameter.

4.3.16 OMX_VIDEO_PARAM_WMVTYPE
OMX_VIDEO_PARAM_WMVTYPE contains common standard video decoder
parameters that control Windows Media formats, including WMV7, WMV8, and WMV9.

OMX_VIDEO_PARAM_WMVTYPE is defined as follows.

4.3.16.1 Parameters
The parameters for OMX_VIDEO_PARAM_WMVTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

typedef struct OMX_VIDEO_PARAM_WMVTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_VIDEO_WMVFORMATTYPE eFormat;
} OMX_VIDEO_PARAM_WMVTYPE;

 281

• nPortIndex is the read-only value containing the index of the port.

• eFormat is the enumerated format of the data stream. Table 4-47 shows the possible
Windows Media video format types for OMX_VIDEO_WMVFORMATTYPE.

Field Name Value

Windows Media
Video Format
Descriptions

OMX_VIDEO_WMVFormatUnused 0x01 Format unused or
unknown

OMX_VIDEO_WMVFormat7 0x02 Windows Media video
format 7

OMX_VIDEO_WMVFormat8 0x04 Windows Media video
format 8

OMX_VIDEO_WMVFormat9 0x08 Windows Media video
format 9

OMX_VIDEO_WMVFormatMax 0x7FFFFFFF Maximum level
Table 4-47. Supported Windows Media Video Format Types

4.3.16.2 Dependencies
The parameter may be queried at any time that the component is not in the NULL state.
The parameter may only be set using OMX_SetParameter when the component is in
the OMX_StateLoaded state after OMX_VIDEO_PORTDEFINITIONTYPE has been set
for the port. This parameter is only applicable when the port is configured for Windows
Media video.

4.3.16.3 Error Conditions
On processing the OMX_VIDEO_PARAM_WMVTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorNotImplemented when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

4.3.16.4 Post-processing Conditions
The video encoding or decoding parameters for Windows Media video on the port
specified by nPortIndex are configured explicitly when set using
OMX_SetParameter.

 282

4.3.17 OMX_VIDEO_PARAM_RVTYPE
OMX_VIDEO_PARAM_RVTYPE contains common standard video decoder parameters
that control RealVideo formats, including RealVideo 8 and RealVideo 9.

OMX_VIDEO_PARAM_RVTYPE is defined as follows.

4.3.17.1 Parameters
The parameters for OMX_VIDEO_PARAM_RVTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eFormat is the video format. Table 4-48 shows the possible RealVideo video format
types in OMX_VIDEO_RVFORMATTYPE.

Field Name Value
RV Format
Descriptions

OMX_VIDEO_RVFormatUnused 0x01 Format unused or
unknown

OMX_VIDEO_RVFormat8 0x02 RealVideo 8 format
OMX_VIDEO_RVFormat9 0x04 RealVideo 9 format
OMX_VIDEO_RVFormatMax 0x7FFFFFFF Maximum level
Table 4-48. Supported RealVideo Format Types

• bEnablePostFilter is a Boolean value that enables or disables the post filter.

• bEnableLatencyMode is a Boolean value that enables or disables the decoder
from displaying a decoded frame until it has detected that no enhancement layer
frames or dependent B frames will be coming. This detection usually occurs when a
subsequent non-B frame is encountered.

4.3.17.2 Dependencies
The parameter may be queried at any time that the component is not in the NULL state.
The parameter may only be set using OMX_SetParameter when the component is in
the OMX_StateLoaded state after OMX_VIDEO_PORTDEFINITIONTYPE has been set
for the port. This parameter is only applicable when the port is configured for RealVideo.

typedef struct OMX_VIDEO_PARAM_RVTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_VIDEO_RVFORMATTYPE eFormat;
 OMX_BOOL bEnablePostFilter;
 OMX_BOOL bEnableLatencyMode;
} OMX_VIDEO_PARAM_RVTYPE;

 283

4.3.17.3 Error Conditions
On processing the OMX_VIDEO_PARAM_RVTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorNotImplemented when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

4.3.17.4 Post-processing Conditions
The video encoding or decoding parameters for RealVideo on the port specified by
nPortIndex are configured explicitly when set using OMX_SetParameter.

4.3.18 OMX_VIDEO_PARAM_AVCTYPE
Advanced Video Coding (AVC) is commonly referred to as H.264, which is a video
standard defined by the Joint Video Team (JVT). Parameters for this video standard are
controlled using the OMX_VIDEO_PARAM_AVCTYPE structure.

OMX_VIDEO_PARAM_AVCTYPE is defined as follows.

 284

4.3.18.1 Parameters
The parameters for OMX_VIDEO_PARAM_AVCTYPE are defined as follows.

• nSize is the size of the structure in bytes. This value shall be specified when this
structure is used as either an input to or output from a function.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nSliceHeaderSpacing is the number of macroblocks in a slice. This value is set
to 0x0 when not used.

• nPFrames is the number of P frames between I frames.

• nBFrames is the number of B frames between I frames.

• bUseHadamard is a Boolean value that enables or disables the Hadamard transform.

• nRefFrames is the number of reference frames in the range 1 to 16 that are used for
inter-motion search.

typedef struct OMX_VIDEO_PARAM_AVCTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nSliceHeaderSpacing;
 OMX_U32 nPFrames;
 OMX_U32 nBFrames;
 OMX_BOOL bUseHadamard;
 OMX_U32 nRefFrames;
 OMX_U32 nRefIdx10ActiveMinus1;
 OMX_U32 nRefIdx11ActiveMinus1;
 OMX_BOOL bEnableUEP;
 OMX_BOOL bEnableFMO;
 OMX_BOOL bEnableASO;
 OMX_BOOL bEnableRS;
 OMX_VIDEO_AVCPROFILETYPE eProfile;
 OMX_VIDEO_AVCLEVELTYPE eLevel;
 OMX_U32 nAllowedPictureTypes;
 OMX_BOOL bFrameMBsOnly;
 OMX_BOOL bMBAFF;
 OMX_BOOL bEntropyCodingCABAC;
 OMX_BOOL bWeightedPPrediction;
 OMX_U32 nWeightedBipredicitonMode;
 OMX_BOOL bconstIpred ;
 OMX_BOOL bDirect8x8Inference;
 OMX_BOOL bDirectSpatialTemporal;
 OMX_U32 nCabacInitIdc;
 OMX_VIDEO_AVCLOOPFILTERTYPE eLoopFilterMode;
} OMX_VIDEO_PARAM_AVCTYPE;

 285

• nRefIdxTrailing is the picture parameter set reference frame index, which is the
index into the reference frame buffer of the trailing frames list. This value supports B
frames.

• nRefIdxForward is the picture parameter set reference frame index, which is the
index into the reference frame buffer of the forward frames list. This value supports B
frames.

• bEnableUEP is a Boolean value that enables or disables unequal error protection.
This parameter is only applicable if data partitioning is enabled.

• bEnableFMO is a Boolean value that enables or disables flexible macroblock
ordering.

• bEnableASO is a Boolean value that enables or disables for arbitrary slice ordering.

• bEnableRS is a Boolean value enables or disables sending redundant slices.

• eProfileLevel is the profile used for the types of AVC encoding or decoding
that are supported. Table 4-49 shows the possible AVC video profile types in
OMX_VIDEO_AVCPROFILETYPE.

Field Name Value
AVC Profile
Descriptions

OMX_VIDEO_AVCProfileBaseline 0x01 Baseline profile
OMX_VIDEO_AVCProfileMain 0x02 Main profile
OMX_VIDEO_AVCProfileExtended 0x04 Extended profile
OMX_VIDEO_AVCProfileHigh 0x08 High profile
OMX_VIDEO_AVCProfileHigh10 0x10 High 10 profile
OMX_VIDEO_AVCProfileHigh422 0x20 High 4:2:2 profile
OMX_VIDEO_AVCProfileHigh444 0x40 High 4:4:4 profile
OMX_VIDEO_AVCProfileMax 0x7FFFFFFF Maximum value
Table 4-49. Supported AVC Profile Types

• eLevel is the maximum processing level that an AVC encoder or decoder supports
for a particular profile. Table 4-50 shows the possible AVC video level types in
OMX_VIDEO_AVCLEVELTYPE.

Field Name Value AVC Level Descriptions
OMX_VIDEO_AVCLevel1 0x01 AVC level 1
OMX_VIDEO_AVCLevel1b 0x02 AVC level 1b
OMX_VIDEO_AVCLevel11 0x04 AVC level 1.1
OMX_VIDEO_AVCLevel12 0x08 AVC level 1.2
OMX_VIDEO_AVCLevel13 0x10 AVC level 1.3
OMX_VIDEO_AVCLevel2 0x20 AVC level 2
OMX_VIDEO_AVCLevel21 0x40 AVC level 2.1
OMX_VIDEO_AVCLevel22 0x80 AVC level 2.2

 286

OMX_VIDEO_AVCLevel3 0x100 AVC level 3
OMX_VIDEO_AVCLevel31 0x200 AVC level 3.1
OMX_VIDEO_AVCLevel32 0x400 AVC level 3.2
OMX_VIDEO_AVCLevel4 0x800 AVC level 4
OMX_VIDEO_AVCLevel41 0x1000 AVC level 14.1
OMX_VIDEO_AVCLevel42 0x2000 AVC level 4.2
OMX_VIDEO_AVCLevel5 0x4000 AVC level 5
OMX_VIDEO_AVCLevel51 0x8000 AVC level 5.1
OMX_VIDEO_AVCLevelMax 0x7FFFFFFF Maximum value
Table 4-50. Supported AVC Level Types

• nAllowedPictureTypes identifies the allowed picture types in the bit stream.

• bFrameMBsOnly is a Boolean value indicating that every coded picture of the
coded video sequence is a coded frame containing only frame macroblocks.

• bMBAFF is a Boolean value that enables or disables macroblock adaptive frame and
field (MBAFF) support within a picture.

• bEntropyCodingCABAC is a Boolean value that enables or disables the entropy
decoding method.

• bWeightedPPrediction is a Boolean value that enables or disables weighted
prediction applied to P and SP slices.

• nWeightedBipredicitonMode is the default weighted prediction applied to B
slices.

• bConstIpred is a Boolean value that enables or disables intra-prediction.

• bDirect8x8Inference is a Boolean value that enables or disables specification
of the method used in the derivation process for luma motion vectors for B_Skip,
B_Direct_16x16, and B_Direct_8x8 as specified in sub-clause 8.4.1.2 of the
AVC specification.

• bDirect8x8Inference specifies the method used in the derivation process for
luma motion vectors for B_Skip, B_Direct_16x16, and B_Direct_8x8 as
specified in subclause 8.4.1.2 of the AVC spec.

• bDirectSpatialTemporal is a flag that indicates the spatial or temporal direct
mode used in B-slice coding, which is related to bDirect8x8Inference . Spatial
direct mode is the default.

• nCabacInitIdx is the index used to initialize Context-based Adaptive Binary
Arithmetic Coding (CABAC) contexts.

• eLoopFilterMode enables or disables the AVC loop filter. Table 4-51 shows the
possible AVC video coding loop filter types in
OMX_VIDEO_AVCLOOPFILTERTYPE.

 287

Field Name Value
AVC Loop Filter
Level Descriptions

OMX_VIDEO_AVCLoopFilterEnable 0x01 Enables AVC loop
filter

OMX_VIDEO_AVCLoopFilterDisable 0x02 Disables AVC loop
filter

OMX_VIDEO_AVCLoopFilterDisableSlice
Boundary 0x04

Disables AVC loop
filter on slice
boundary

OMX_VIDEO_AVCLevelMax 0x7FFFFFFF Maximum level
Table 4-51. Supported AVC Loop Filter Types

4.3.18.2 Dependencies
The parameter may be queried at any time that the component is not in the NULL state.
The parameter may only be set using OMX_SetParameter when the component is in
the OMX_StateLoaded state after OMX_VIDEO_PORTDEFINITIONTYPE has been set
for the port. This parameter is only applicable when the port is configured for AVC.

4.3.18.3 Error Conditions
On processing the OMX_VIDEO_PARAM_AVCTYPE structure, the following error
conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorNotImplemented when the feature is unsupported.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

4.3.18.4 Post-processing Conditions
The video encoding or decoding parameters for AVC on the port specified by
nPortIndex are configured explicitly when set using OMX_SetParameter.

4.4 Image
This section describes the parameter and configuration details for components and ports
in the image domain. These parameter and configuration details are specified in the
OMX_Image.h header file.

 288

4.4.1 Parameter and Configuration Indices
The header OMX_Index.h contains the enumeration OMX_INDEXTYPE, which contains
all standard index values used with the OpenMAX IL version 1.0 core functions
OMX_GetParameter, OMX_SetParameter, OMX_GetConfig, and
OMX_SetConfig. Table 4-52 shows the index values that relate to imaging.

OpenMAX IL Indices (OMX_Index.h)
Corresponding OpenMAX IL Image
Structures (OMX_Image.h)

OMX_IndexParamImagePortFormat OMX_IMAGE_PARAM_PORTFORMATYPE
OMX_IndexParamImagePort OMX_IMAGE_PORTDEFINITIONTYPE
OMX_IndexParamImageInit OMX_IMAGE_PARAM_TYPE
OMX_IndexParamFlashControl OMX_IMAGE_PARAM_FLASHCONTROLTYPE
OMX_IndexConfigFocusControl OMX_IMAGE_CONFIG_FOCUSCONTROLTYPE
OMX_IndexParamQFactor OMX_IMAGE_PARAM_QFACTORTYPE
OMX_IndexParamQuantizationTable OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE
OMX_IndexParamHuffmanTable OMX_IMAGE_PARAM_HUFFMANTTABLETYPE

Table 4-52. Image Indices

For example, OMX_IndexParamImagePortFormat index is used with
OMX_GetParameter and OMX_SetParameter to access
OMX_IMAGE_PARAM_PORTFORMATYPE.

4.4.2 Image Use Case Example
Figure 4-5 depicts one possible set of tunneled components and associated ports to
implement a JPEG encoder with pre- and post-processing. This use case encodes an
image to a file while allowing a preview of the captured image via a display.

Figure 4-5. Image Filtering and JPEG Encoding Use Case

Figure 4-5 shows six components, namely the camera, the image filter, the splitter, the
JPEG encoder, the file writer, and the image sink.

4.4.3 OMX_IMAGE_PORTDEFINITIONTYPE
OMX_IMAGE_PORTDEFINITIONTYPE is the data structure that is used to define an
image path. The number of image paths for input and output will vary by the type of the
image component:

 289

• Input (also known as source) has zero inputs and one output.

• Splitter has one input and two or more outputs.

• Processing element has one input and one output.

• Mixer has two or more inputs and one output.

• Output (also known as sink) has one input and zero outputs.

The PortDefinition structure defines all of the parameters necessary for the compliant
component to set up an input or an output image path. If additional vendor specific data
is required, it should be transmitted to the component using the CustomCommand
function. Compliant components will pre-populate this structure with optimal values
during the OMX_GetParameter() command.

OMX_IMAGE_PORTDEFINITIONTYPE is defined as follows.

4.4.3.1 Parameters
The parameters for OMX_IMAGE_PORTDEFINITIONTYPE are defined as follows.

• cMIMEType is the multipurpose Internet mail extensions (MIME) type of data on
the port.

• pNativeRender is the read-only platform specific reference for a display
synchronization; otherwise this field is 0. This parameter is ignored on
OMX_SetParameter calls.

• nFrameWidth is the width of frame to be used on the port if uncompressed format
is used. Use 0 for unknown, no preference, or variable.

• nFrameHeight is the height of the frame to be used on the port if uncompressed
format is used. Use 0 for unknown, no preference, or variable.

• nStride is a read-only field containing the number of bytes per span of an image,
which indicates the number of bytes to get from span N to span N+1. A negative
value for nStride indicates the data is stored bottom-to-top instead of top-to-
bottom.

• nSliceHeight is a read-only field containing the slice height parameter used when
processing uncompressed image data. Buffers received on the port shall contain

typedef struct OMX_IMAGE_PORTDEFINITIONTYPE {
 OMX_STRING cMIMEType;
 OMX_NATIVE_DEVICETYPE pNativeRender;
 OMX_U32 nFrameWidth;
 OMX_U32 nFrameHeight;
 OMX_S32 nStride;
 OMX_U32 nSliceHeight;
 OMX_BOOL bFlagErrorConcealment;
 OMX_IMAGE_CODINGTYPE eCompressionFormat;
 OMX_COLOR_FORMATTYPE eColorFormat;
} OMX_IMAGE_PORTDEFINITIONTYPE;

 290

integer multiples of slices. For more information on minimum buffer payload for
uncompressed data, see section 4.2.2.

• bFlagErrorConcealment is a flag indicating that the OpenMAX component
supports error concealment. This flag is returned by a component upon invoking
OMX_GetParameters; it is ignored on OMX_SetParameter calls.

• bFlagErrorConcealment enables error concealment if it is supported for the
port.

• eCompressionFormat is the enumeration describing the compression format
used on the port. When OMX_IMAGE_CodingUnused is specified, the
eColorFormat field is valid. Table 4-53 shows the supported image compression
formats.

Field Name Value

Compression
Format
Description

Reference
to
Standard

OMX_IMAGE_CodingUnused 0x0

No coding
applied, use
eColorForm
at

Not
available

OMX_IMAGE_CodingAutoDetect 0x1

Auto detection
by the
OpenMAX
component

Not
available

OMX_IMAGE_CodingJPEG 0x2 JPEG/JFIF
image format

JPEG

OMX_IMAGE_CodingJPEG2K 0x3 JPEG 2000
image format

JPEG2K

OMX_IMAGE_CodingEXIF 0x4 EXIF image
format

EXIF

OMX_IMAGE_CodingTIFF 0x5 TIFF image
format

TIFF

OMX_IMAGE_CodingGIF 0x6 Graphics
image format

GIF

OMX_IMAGE_CodingPNG 0x7 PNG image
format

PNG

OMX_IMAGE_CodingLZW 0x8 LZW image
format

LZW

OMX_IMAGE_CodingBMP 0x9 Windows
Bitmap format

BMP

OMX_IMAGE_CodingMax 0x7FFFFFFF Maximum
value

Not
available

Table 4-53. Supported Image Compression Formats

 291

• eColorFormat is the decompressed color format used for the port. This field is
valid only when the eCompressionFormat field is set to
OMX_IMAGE_CodingUnused.

4.4.3.2 Dependencies
The structure may be queried at any time that the component is not in the NULL state.
The structure may only be set using OMX_SetParameter when the component is in
the OMX_StateLoaded state.

4.4.3.3 Error Conditions
On processing the OMX_IMAGE_PORTDEFINITIONTYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when OMX_GetParameter function is called and the value
of nPortIndex exceeds the number of ports for the component.

4.4.4 OMX_IMAGE_PARAM_PORTFORMATTYPE
OMX_IMAGE_PARAM_PORTFORMATTYPE is used to enumerate the various data
input/output format supported by the port.

OMX_IMAGE_PARAM_PORTFORMATTYPE is defined as follows.

4.4.4.1 Parameters
The parameters for OMX_IMAGE_PARAM_PORTFORMATTYPE are defined as
follows.

• nSize is the size of the structure in bytes.

• nVersion is the version of the structure.

typedef struct OMX_IMAGE_PARAM_PORTFORMATTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nIndex;
 OMX_IMAGE_CODINGTYPE eCompressionFormat;
 OMX_COLOR_FORMATTYPE eColorFormat;
} OMX_IMAGE_PARAM_PORTFORMATTYPE;

 292

• nPortIndex is the read-only value containing the index of the port.

• eCompressionFormat is an enumeration describing the compression format used
on the port. When OMX_IMAGE_CodingUnused is specified, the
eColorFormat field is valid. For enumerations regarding
OMX_IMAGE_CODINGTYPE, see Table 4-35.

• eColorFormat is the decompressed color format used for the port. This field is
valid only when the eCompressionFormat field is set to
OMX_IMAGE_CodingUnused. For enumerations on OMX_COLOR_FORMATTYPE,
see section 4.2.

4.4.4.2 Dependencies
The structure may be queried at any time that the component is not in the NULL state.
The structure may be set using OMX_SetParameter when the component is in the
OMX_StateLoaded state.

4.4.4.3 Error Conditions
On processing the OMX_IMAGE_PARAM_PORTFORMATTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when OMX_GetParameter function is called and the value of
nPortIndex exceeds the number of ports for the component.

4.4.4.4 Post-processing Conditions
The OMX_IMAGE_PARAM_PORTFORMATTYPE structure has no post-processing
conditions.

4.4.5 OMX_IMAGE_PARAM_FLASHCONTROLTYPE
The OMX_IMAGE_PARAM_FLASHCONTROLTYPE structure defines the mode of
operation for flash control and configuration.

OMX_IMAGE_PARAM_FLASHCONTROLTYPE is defined as follows.

 293

4.4.5.1 Parameters
The parameters for OMX_IMAGE_PARAM_FLASHCONTROLTYPE are defined as
follows.

• nSize is the size of the structure in bytes.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eFlashControl is an enumeration for the flash control modes. Table 4-54 shows
the supported image flash controls.

Field Name Value

Flash
Control
Description

OMX_IMAGE_FlashControlOn 0x0 Strobe at
every shot

OMX_IMAGE_FlashControlOff 0x1 Strobe off

OMX_IMAGE_FlashControlAuto 0x2

Strobe
according to
environment
light

OMX_IMAGE_FlashControlRedEyeReduction 0x3 Pre-shot
strobes

OMX_IMAGE_FlashControlFillin 0x4

Flash for
background/
foreground
effect

OMX_IMAGE_FlashControlTorch 0x5 Flash is
always on

OMX_IMAGE_FlashControlMax 0x7FFFFFFF Maximum
value

Table 4-54. Supported Image Flash Controls

4.4.5.2 Dependencies
The OMX_IMAGE_PARAM_FLASHCONTROLTYPE structure may be queried at any
time that the component is not in the NULL state. The structure may only be set using
OMX_SetParameter when the component is in the OMX_StateLoaded state.

typedef struct OMX_IMAGE_PARAM_FLASHCONTROLTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_IMAGE_FLASHCONTROLTYPE eFlashControl;
} OMX_IMAGE_PARAM_FLASHCONTROLTYPE;

 294

4.4.5.3 Error Conditions
On processing the OMX_IMAGE_PARAM_FLASHCONTROLTYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when OMX_GetParameter function is called and the value of
nPortIndex exceeds the number of ports for the component.

4.4.5.4 Post-processing Conditions
The OMX_IMAGE_PARAM_FLASHCONTROLTYPE structure has no post-processing
conditions.

4.4.6 OMX_IMAGE_PARAM_FOCUSCONTROLTYPE
OMX_IMAGE_PARAM_FOCUSCONTROLTYPE controls the focus mode and range.

OMX_IMAGE_PARAM_FOCUSCONTROLTYPE is defined as follows.

4.4.6.1 Parameters
The parameters for OMX_IMAGE_PARAM_FOCUSCONTROLTYPE are defined as
follows.

• nSize is the size of the structure in bytes.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eFocusControl is an enumeration that specifies the image focus controls. Table
4-55 shows the supported image focus controls.

typedef struct OMX_IMAGE_PARAM_FOCUSCONTROLTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_IMAGE_FOCUSCONTROLTYPE eFocusControl;
 OMX_U32 nFocusSteps;
 OMX_U32 nFocusStepIndex;
} OMX_IMAGE_PARAM_FOCUSCONTROLTYPE;

 295

•

Field Name Value
Focus Control
Description

OMX_IMAGE_FocusControlOn 0x0 Manual focus on
OMX_IMAGE_FocusControlOff 0x1 Manual focus off
OMX_IMAGE_FocusControlAuto 0x2 Auto focus on
OMX_IMAGE_FocusControlAutoLock 0x3 Auto focus lock
OMX_IMAGE_FocusControlCentroid 0x4 Focus on region
OMX_IMAGE_FocusControlMax 0x7FFFFFFF Maximum value
Table 4-55. Supported Image Focus Controls

• nFocusSteps is a value that specifies the number of steps that the focus can take
on. The range is 0 mm to infinity.

• nFocusStepIndex defines the current position of the focus.

4.4.6.2 Dependencies
The OMX_IMAGE_PARAM_FOCUSCONTROLTYPE structure may be queried at any
time that the component is not in the NULL state. The structure may be set using
OMX_SetParameter when the component is in the OMX_StateLoaded state.

4.4.6.3 Error conditions
On processing the OMX_IMAGE_PARAM_FOCUSCONTROLTYPE structure, the
following error conditions can occur:

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when OMX_GetParameter function is called and the value of
nPortIndex exceeds the number of ports for the component.

4.4.6.4 Post-processing Conditions
The OMX_IMAGE_PARAM_FOCUSCONTROLTYPE structure has no post-
processing conditions.

4.4.7 OMX_IMAGE_PARAM_QFACTORTYPE
OMX_IMAGE_PARAM_QFACTORTYPE determines the quality factor for JPEG
compression, which controls the tradeoff between image quality and size. Q Factor
provides a simpler means of controlling the JPEG compression quality than directly
programming quantization tables for chroma and luma.

 296

OMX_IMAGE_PARAM_QFACTORTYPE is defined as follows.

4.4.7.1 Parameters
The parameters for OMX_IMAGE_PARAM_QFACTORTYPE are defined as follows.

• nSize is the size of the structure in bytes.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• nQFactor is a compression quality factor value in the range 1-100. A factor of 1
produces the smallest, worst quality images, and a factor of 100 produces the largest,
best quality images. A typical default is 75 for small, good quality images.

4.4.7.2 Dependencies
The OMX_IMAGE_PARAM_QFACTORTYPE structure may be queried at any time
that the component is not in the NULL state. The structure may only be set using
OMX_SetParameter when the component is in the OMX_StateLoaded state.

4.4.7.3 Error Conditions
On processing the OMX_IMAGE_PARAM_QFACTORTYPE structure, the following
error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when OMX_GetParameter function is called and the value of
nPortIndex exceeds the number of ports for the component.

4.4.7.4 Post-processing Conditions
The OMX_IMAGE_PARAM_QFACTORTYPE structure has no post-processing
conditions.

typedef struct OMX_IMAGE_PARAM_QFACTORTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_U32 nQFactor;
} OMX_IMAGE_PARAM_QFACTORTYPE;

 297

4.4.8 OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE
OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE provides JPEG quantization
tables, which are used to determine DCT compression for YUV data.
OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE is an alternative to specifying
Q factor, providing exact control of compression.

OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE is defined as follows.

4.4.8.1 Parameters
The parameters for OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE are
defined as follows.

• nSize is the size of the structure in bytes.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eQuantizationTable is an enumeration for the quantization table type, which
defines luma or chroma table types. Table 4-56 shows the supported image
quantization table types.

Field Name Value

Quantization
Table
Description

OMX_IMAGE_QuantizationTableLuma 0x0 Quantize luma
coefficients

OMX_IMAGE_QuantizationTableChroma 0x1 Quantize chroma
coefficients

OMX_IMAGE_QuantizationTableMax 0x7FFFFFFF Max value
Table 4-56. Supported Image Quantization Table Types

• nQuantizationMatrix is the JPEG quantization table of coefficients stored in
increasing columns and then by rows of data (i.e., row 1,… row 8). Quantization
values are in the range 0-255 and are stored in linear order (i.e., the component will
zigzag the quantization table data internally if required).

4.4.8.2 Dependencies
The OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE structure may be queried
at any time that the component is not in the NULL state. The structure may only be set
using OMX_SetParameter when the component is in the OMX_StateLoaded state.

typedef struct OMX_IMAGE_PARAM_QUANTIZATIONTABLETTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_IMAGE_QUANTIZATIONTABLETYPE eQuantizationTable;
 OMX_U8 nQuantizationMatrix[64];
} OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE;

 298

4.4.8.3 Error Conditions
On processing the OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE structure,
the following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when OMX_GetParameter function is called and the value of
nPortIndex exceeds the number of ports for the component.

4.4.8.4 Post-processing Conditions
The OMX_IMAGE_PARAM_QUANTIZATIONTABLETYPE structure has no post-
processing conditions.

4.4.9 OMX_IMAGE_PARAM_HUFFMANTABLETYPE
The OMX_IMAGE_PARAM_HUFFMANTABLETYPE structure is used to set the
Huffman variable code length type used for JPEG.

OMX_IMAGE_PARAM_HUFFMANTABLETYPE is defined as follows.

4.4.9.1 Parameters
The parameters for OMX_IMAGE_PARAM_HUFFMANTABLETYPE are defined as
follows.

• nSize is the size of the structure in bytes.

• nVersion is the version of the structure.

• nPortIndex is the read-only value containing the index of the port.

• eHuffmanTable is an enumeration for the Huffman table types. The same
Huffman table is applied for chroma and luma components. Table 4-57 shows the
supported Huffman table types.

typedef struct OMX_IMAGE_PARAM_HUFFMANTTABLETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_IMAGE_HUFFMANTABLETYPE eHuffmanTable;
 OMX_U8 nNumberOfHuffmanCodeOfLength[16];
 OMX_U8 nHuffmanTable[256];
}OMX_IMAGE_PARAM_HUFFMANTTABLETYPE;

 299

Field Name Value Huffman Table Description

OMX_IMAGE_HuffmanTableAC 0x0 Huffman encode AC
coefficients

OMX_IMAGE_HuffmanTableDC 0x1 Huffman encode DC
coefficients

OMX_IMAGE_HuffmanTableMax 0x7FFFFFFF Maximum value
Table 4-57. Supported Huffman Table Types

• nNumberOfHuffmanCodeOfLength is a value in the range of 0-16 that
represents the number of Huffman codes of each possible length.

• nHuffmanTable is a value in the range of 0-255. The table sizes used for AC and
DC Huffman tables are 16 and 162.

4.4.9.2 Dependencies
The OMX_IMAGE_PARAM_HUFFMANTABLETYPE structure may be queried at any
time that the component is not in the NULL state. The structure may only be set using
OMX_SetParameter when the component is in the OMX_StateLoaded state.

4.4.9.3 Error Conditions
On processing the OMX_IMAGE_PARAM_HUFFMANTABLETYPE structure, the
following error conditions can occur:

• OMX_ErrorBadParameter if one or more fields of the structure are incorrect.

• OMX_ErrorInvalidState when the OMX_SetParameter function is called
and the component is in the OMX_StateInvalid state.

• OMX_ErrorIncorrectStateOperation when the OMX_SetParameter
function is called and the component is not in the OMX_StateLoaded state, or the
port is not disabled.

• OMX_ErrorVersionMismatch when the nVersion field of the structure does
not match the expected version for the component.

• OMX_ErrorNoMore when OMX_GetParameter function is called and the value of
nPortIndex exceeds the number of ports for the component.

4.4.9.4 Post-processing Conditions
The OMX_IMAGE_PARAM_HUFFMANTABLETYPE structure has no post-
processing conditions.

 300

5 OpenMAX Component Extension APIs

5.1 Description of the Extension Process
An OpenMAX component may support any setting defined in the OpenMAX
specification. Vendors can add to the list of parameters and configurations not included in
the official header files. These additions are referred to as extensions.

Any extensions approved by OpenMAX are considered OpenMAX extensions. Any
extensions not approved by OpenMAX are vendor-defined extensions.

Any vendor that develops OpenMAX components may add to the list of standard indexes
a collection of one or more custom parameters or configuration indexes. Each index shall
have a value greater than the value of OMX_IndexIndexVendorStartUnused and
less than the value of OMX_IndexMax - 1.

Each custom parameter or configuration index may apply to one of the four existing
domains, namely audio, video, image, and “other”. It may also apply a parameter or
configuration that does not belong to any known domain. For example, file access could
be a domain, where parameter and configuration index values operate on a file port.

A vendor-specific index to a parameter or configuration may be defined by a string and
be reported in the component description documentation. The IL client may obtain the
index related to this property using the component function
OMX_GetExtensionIndex. This function provides a numeric index from a string
that names the custom index. The function is specific to a component, so a component
handle shall be passed to the function. The function is described in section 3.

The numeric index can be used with the functions OMX_GetParameter and
OMX_SetParameter if the index regards a parameter, or with the functions
OMX_GetConfig and OMX_SetConfig if the index is a configuration index. The
nature of the parameter or configuration value should be documented in the vendor
extension section of the component documentation.

5.1.1 GetExtensionIndex
The OMX_GetExtensionIndex method will translate a vendor-specific configuration
or parameter string into an OpenMAX structure index. There is no requirement for the
component to support this command for the indexes already found in the
OMX_INDEXTYPE enumeration, thus reducing a component’s memory footprint. The
component may support all vendor-supplied extension indexes not found in the master
OMX_INDEXTYPE enumeration that it supports. This is a blocking call. The component
should return from this call within five msec.

The parameters for the OMX_GetExtensionIndex method are defined as follows.

Parameter Description
hComponent
[in]

The handle of the component to be accessed. This component handle
is returned by the call to the GetHandle function.

cParameterName The string that the component will translate into a 32-bit index.

 301

[in] OMX_STRING shall be less than 128 characters long including the
trailing null byte.

pIndexType
[out] A pointer to OMX_INDEXTYPE that receives the index value.

5.1.1.1 Prerequisites for This Method

5.1.1.2 Method Implementation
The following code defines the method implementation.

 OMX_ERRORTYPE (*GetExtensionIndex)(
 OMX_IN OMX_HANDLETYPE hComponent,
 OMX_IN OMX_STRING cParameterName,
 OMX_OUT OMX_INDEXTYPE* pIndexType);

5.1.2 Custom Data Structures
Each index refers to a structure or a memory area that stores the data for the parameter or
configuration. The vendor shall provide a data container that is a vendor-specific
structure within a custom header file. The header file is to be used with the component
that implements the vendor-specific feature.

If the data container is simply a pointer to a memory area, the IL client shall know how to
manage the data. A use guide for vendor-specific parameters shall be published in the
component description document.

Each custom feature shall be documented in the component specifications, which
describe the relationship between the string that defines a property, which is used with
the GetExtensionIndex function, and the related data structure that corresponds to
the index returned from GetExtensionIndex for the string.

5.2 Examples of Using Extension Querying API
This section shows sample code for extension APIs.

5.2.1 Sample Code Showing Calling Sequence
The following sample code shows an example of calling an extension API.

 /* Set the vendor-specific filename parameter
 on a reader */
 OMX_U32 eIndexParamFilename;
 OMX_PTR oFileName;

 OMX_GetExtensionIndex(

 hFileReaderComp,
 "OMX.CompanyXYZ.index.param.filename",
 &eIndexParamFilename);

 OMX_SetParameter(hComp, eIndexParamFilename, &oFileName);

 302

This following code sample shows how to use a vendor-specific parameter. The code
passes a file name to a component. The file name string does not belong to any
OpenMAX domain; it used only for this example.

 /* Get the vendor-specific mp3 faster
 decoding feature settings */
 OMX_U32 eIndexParamFasterDecomp;
 OMX_CUSTOM_AUDIO_STRUCTURE oFasterDecompParams;

 OMX_GetExtensionIndex(

 hMp3DecoderComp,
 "OMX.CompanyXYZ.index.param.fasterdecomp",
 &eIndexParamFasterDecomp);

 OMX_GetParameter(hMp3DecoderComp, eIndexParamFasterDecomp,
 &oFasterDecompParams);

In this second example, a special parameter of an MP3 decoder is presented. The index
eIndexParamFasterDecomp is retrieved, and the related data structure is stored in
the oFasterDecompParams structure by the GetParameter function.

 303

6 OpenMAX Generic Components
This section specifies a set of components, including features, names, and operations, that
is standardized by the group for increased cross-platform application and codec
portability.

6.1 Seeking Component
A component may be designated as a seeking component if it can change and report on its
position in the data stream that it is processing. For instance, an IL client may command a
seeking source component that retrieves an audio/video stream from a repository (for
example, a local or remote file) to begin emitting data from a different location in the
audio/video stream. Furthermore, an IL client may query the position that the source is
currently emitting.

6.1.1 Seeking Configurations
A seeking component shall support the following configurations:

• OMX_IndexConfigTimePosition, which passes
OMX_TIME_CONFIG_TIMESTAMPTYPE as a parameter. OMX_GetConfig
returns the timestamp of the data that the component is currently emitting.
OMX_SetConfig commands the component to seek the given timestamp.

• OMX_IndexConfigTimeSeekMode, which defines the manner in which the seek
component performs the seek. Table 6-1 shows the seek modes.

Seek Mode Interpretation
OMX_TIME_SeekModeFast Prefers seeking an approximation of the

requested seek position over the actual
seek position if it results in a faster seek.

OMX_TIME_SeekModeAccurate Prefers seeking to the requested seek
position over an approximation of the
requested seek position even if it results in
a slower seek.

Table 6-1. Seek Modes

An arbitrary seek in a stream may request a target position whose data depends on data
that precedes it. For example, consider the case where an IL client requests seeking an
interframe in a video stream. Some amount of data prior to the target interframe shall be
decoded to reconstruct the target frame starting with the first intraframe preceding the
target. If fast mode is set, the seeking component may use the intraframe as an
approximation of the target and start displaying frames immediately at that intraframe. If
accurate mode is set, the seeking component decodes frames starting with the intraframe
but does not display frames until the target position.

 304

6.1.2 Seeking Buffer Flags
A seeking component communicates the role of certain buffers in the context of seeking
to its downstream components via special buffer flags. A buffer flag corresponds to the
first new logical data unit in a buffer, which is the first unit with its starting boundary
occurring in the buffer.

 The special buffer flags of note are as follows.

• OMX_BUFFERFLAG_DECODEONLY: The seeking component sets this flag on a
buffer if the buffer shall be decoded but not displayed. In the example above, if the
seeking component is in accurate mode, it would set this flag on all frames preceding
the target interframe. A decoder component decodes but does not propagate
downstream a buffer marked decode only. A component that renders data shall ignore
any buffer with this flag set.

• OMX_BUFFERFLAG_STARTTIME: The seeking component sets this flag on the
buffer that carries the starting timestamp of the data stream. In the example above, the
seeking component would set this flag on the intraframe (i.e., the approximation)
when in fast seek mode and on the interframe (i.e., the original target) when in
accurate seek mode. When a clock component client receives a buffer with this flag
set, it performs an OMX_SetConfig call with
OMX_IndexConfigTimeClientStartTime on the clock component that is
sending the buffer’s timestamp. The transmission of the start time informs the clock
component that the client’s stream is ready for presentation and the timestamp of the
first data to be presented.

6.1.3 Seek Event Sequence
To implement a seek on a chain of components, an IL client shall perform the following
operations in order:

1. Stop the clock component’s media clock through the use of OMX_SetConfig on
OMX_TIME_CONFIG_CLOCKSTATETYPE requesting a transition to
OMX_TIME_ClockStateStopped.

2. Seek to the desired location through the use of OMX_SetConfig on
OMX_IndexConfigTimePosition requesting the desired timestamp.

3. Flush all components.

4. Start the clock component’s media clock through the use of OMX_SetConfig on
OMX_TIME_CONFIG_CLOCKSTATETYPE requesting a transition to either
OMX_TIME_ClockStateRunning or OMX_TIME_ClockStateWaitingForStartTime.

If the IL client requests a transition to OMX_TIME_ClockStateRunning, the clock
component immediately starts the media clock using the designated start time. This is a
simpler transition than going to OMX_TIME_ClockStateWaitingForStartTime but may
compromise synchronization at the start of playback after a seek operation since it
ignores the start times of the individual media streams.

If the IL client requests a transition to OMX_TIME_ClockStateWaitingForStartTime, it
designates which clock component clients to wait for. The clock component then waits

 305

for these clients to send their start times via the OMX_IndexConfigTimeClientStartTime
configuration. Once all required clients have responded, the clock component starts the
media clock using the earliest client start time. This approach ensures the following:

• All clients are ready to render data, eliminating any initial drift between streams.

• The media clock start time reflects the clocks of all clients and any adjustment made
by the seeking component.

6.2 Clock Component
OpenMAX defines a special component denoted the clock component to facilitate the
smooth and synchronized delivery or capture of audio and video streams as well as rate
control. The clock component takes one audio and one video reference clock as input,
from which it derives a media clock. The clock component shares the media time with the
clients with whom it is connected via clock ports (one clock port per client). The clock
component also exposes a mechanism for controlling the media clock and makes clients
aware of the rate control events via their clock ports.

6.2.1 Timestamps
All timestamps and durations are expressed as OMX_TICKS values as shown in the
following structure.

typedef struct OMX_TICKS

 {
 OMX_U32 nLowPart;
 OMX_U32 nHighPart;

} OMX_TICKS;

This structure shall be interpreted as a signed 64-bit value representing microseconds.
This representation accommodates the following:

• Positive and negative time values. Examples of negative time values include pre-roll
timestamp and time deltas.

• High-resolution timestamps (e.g., MPEG2 presentation timestamps based on a 90
kHz clock) and allow more accurate and synchronized delivery (e.g., individual audio
samples delivered at 192 kHz).

• A large dynamic range of approximately plus or minus 26 million days; 32-bit
resolution provides a range of only about plus or minus 35 minutes.

Implementations with limited precision may convert the signed 64-bit value to a signed
32-bit value internally but risk loss of precision.

6.2.2 Media Clock
The clock component maintains a media clock that tracks the current position in the
media stream. The instantaneous media time is represented as the timestamp, relative to
the start of the stream, of the data being delivered or captured at that instant (e.g., the
current audio sample). Consequently, media time increases (corresponding to playing or

 306

fast forwarding), decreases (corresponding to rewinding), or holds at some constant
(corresponding to pausing) according to the rate control applied to the media clock.

6.2.2.1 Media Clock Scale
The clock component maintains the media time’s current scale factor, which corresponds
directly to the rate control applied on it. The scale is a Q16 value relative to a 1X forward
advancement of the media clock. Thus, scale ranges map to modes of playback, as shown
in Figure 6-1.

Figure 6-1. Mapping Time Scale Factors to Trick Modes

The IL client queries and sets the media clock’s scale via the
OMX_IndexConfigTimeScale configuration, passing the following structure:
typedef struct OMX_TIME_CONFIG_SCALETYPE {

OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 xScale;

} OMX_TIME_CONFIG_SCALETYPE;

The clock component’s client components are notified of changes in scale via their clock
ports (see Clock Ports section for details).

6.2.2.2 Client Start Time
When a client is sent a start time (i.e., the timestamp of a buffer marked with the
OMX_BUFFERFLAG_STARTTIME flag), it sends the start time to the clock component
via OMX_SetConfig on OMX_IndexConfigTimeClientStartTime. This
action communicates to the clock component the following information about the client’s
data stream:

• The stream is ready.

• The starting timestamp of the stream, either at startup or after a seek.

The clock component maintains a start time for every client component via a set of
OMX_TIME_CONFIG_TIMESTAMPTYPE structures. When transitioned to
OMX_TIME_WaitingOnStartTime, the clock component waits on all start times
prescribed by the transition. This ensures proper synchronization at the beginning of
playback.

0.0 -1.0 1.0

Paused Normal
Playback

Fast
Forward

Fast
Rewind

Slow
Forward

Slow
Rewind

Reverse
Playback

 307

6.2.2.3 Media Clock State
The following structure represents the state of the clock component’s media clock:

typedef struct OMX_TIME_CONFIG_CLOCKSTATETYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_TIME_CLOCKSTATE eState;
 OMX_TICKS nStartTime;
 OMX_TICKS nOffset;

OMX_U32 nWaitMask;
} OMX_TIME_CONFIG_CLOCKSTATETYPE;

The nStartTime field specifies the media time when the clock was started or will be
started.

The nWaitMask field is a bit mask specifying the client components that the clock
component will wait on in the OMX_TIME_ClockStateWaitingForStartTime state.

The nOffset field specifies the time by which to offset the media time. The clock
component factors this value into the calculation of media time, effectively adding the
offset to the media time reported to its clients. For example, a nOffset value of –x
implies a pre-roll of duration x.

The eState field contains one of the possible clock state values shown in Table 6-2:

OMX_TIME_CLOCKSTATE Value Interpretation
OMX_TIME_ClockStateRunning The media clock is running.
OMX_TIME_ClockStateWaitingForStartTime The media clock is waiting to

run until all designated
clients emit their start time.

OMX_TIME_ClockStateStopped The media clock is stopped.
Table 6-2. Clock State Values

An OMX_GetConfig execution on OMX_TIME_CONFIG_CLOCKSTATETYPE
queries the current clock state.

An OMX_SetConfig execution on OMX_TIME_CONFIG_CLOCKSTATETYPE
commands the clock component to transition to the given state, effectively providing the
IL client a mechanism for starting and stopping the media clock. Figure 6-2 shows the
clock state transitions.

 308

Figure 6-2. Clock State Transitions

Upon receiving OMX_SetConfig from the IL client that requests a transition to the
given state, the clock component will do the following:

• OMX_TIME_ClockStateStopped: Immediately stop the media clock, clear all
pending media time requests, clear and all client start times, and transition to the
stopped state. This transition is valid from all other states.

• OMX_TIME_ClockRunning: Immediately start the media clock using the given start
time and offset, and transition to the running state. This transition is valid from all
other states.

• OMX_TIME_WaitingOnStartTime: Transition immediately to the waiting state, wait
for all clients specified in nWaitMask to report their start time, start the media clock
using the minimum of all client start times and transition to
OMX_TIME_ClockRunning. This transition is only valid from the
OMX_TIME_ClockStateStopped state.

6.2.3 Wall Clock
The clock component maintains its own free running wall clock. It uses the wall clock to
extrapolate media time values from the periodic updates from the reference clock. An IL
client may query the current wall time via the OMX_IndexConfigTimeCurrentWallTime
configuration.

6.2.4 Reference Clocks
The clock component can accept both a video and an audio reference clock, supplied
respectively by a video component and an audio component. Each reference clock tracks
the media time at its associated component (i.e., the timestamp of the data currently being
processed at that component) and provides periodic references to the clock component
via OMX_SetConfig using OMX_IndexConfigTimeCurrentAudioReference and
OMX_IndexConfigTimeCurrentVideoReference and passing the following structure:

Running

WaitingForStartTime

Stopped

 309

typedef struct OMX_TIME_CONFIG_TIMESTAMPTYPE {
 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_TICKS nReferenceTimestamp;

} OMX_TIME_CONFIG_TIMESTAMPTYPE;

When the clock component receives a reference, it updates its internally maintained
media time with the reference. This action synchronizes the clock component with the
component that is providing the reference clock.

The IL client controls which reference clock the clock component uses (if any) via the
OMX_IndexConfigTimeActiveRefClock configuration and the following structure:
typedef struct OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE {

 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_TIME_REFCLOCKTYPE eClock;

} OMX_TIME_CONFIG_ACTIVEREFCLOCKTYPE;

 Possible eClock values include those shown in Table 6-3:

OMX_TIME_REFCLOCKTYPE
Value Interpretation
OMX_TIME_RefClockNone Not using a reference clock
OMX_TIME_RefClockAudio Using audio reference clock.
OMX_TIME_RefClockVideo Using video reference clock

Table 6-3. Reference Clock Values

In general, any time audio is rendered or captured, the IL client should prefer the audio
reference clock. Otherwise, the IL client should prefer the video reference.

6.2.4.1 Media Time Updates
A clock component sends a client a media time update, as either the fulfillment of a
request or a scale change notification, over its clock port via the following structure:
typedef struct OMX_TIME_MEDIATIMETYPE {

 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nClientPrivate;
 OMX_TIME_UPDATETYPE eUpdateType;
 OMX_TICKS nMediaTimestamp;
 OMX_TICKS nOffset;
 OMX_TICKS nWallTimeAtMediaTime;
 OMX_S32 xScale;

OMX_TIME_CLOCKSTATE eState;
} OMX_TIME_MEDIATIMETYPE;

eUpdateType indicates the reason for the update and as one of the values shown in
Table 6-4:

 310

OMX_TIME_UPDATETYPE Value Interpretation
OMX_TIME_UpdateRequestFulfillment Fulfillment of a media time request.
OMX_TIME_UpdateScaleChanged Notification of a scale change.
OMX_TIME_UpdateClockStateChanged Notification of a clock state change.
Table 6-4. Update Type

The nClientPrivate field contains the client private pointer specified by the request
that generated this media time update if this update is a request fulfillment, or NULL
otherwise.

The xScale field contains the scale of the media clock when the structure was
completed.

The eState field contains the clock state of the media clock when the structure was
completed.

6.2.4.2 Media Time Request
A client requests the transmission of a particular timestamp via OMX_SetConfig on its
clock port using the OMX_IndexConfigTimeMediaTimeRequest configuration.
The following structure encapsulates a request:
typedef struct OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE {

 OMX_U32 nSize;
 OMX_VERSIONTYPE nVersion;
 OMX_U32 nPortIndex;
 OMX_PTR pClientPrivate;
 OMX_TICKS nMediaTimestamp;
 OMX_TICKS nOffset;

} OMX_TIME_CONFIG_MEDIATIMEREQUESTTYPE;

The client’s request includes a timestamp, which is usually associated with some
operation (e.g., the presentation of a frame) that the client shall execute at that time.
Conceptually, the clock component fulfills the request when the media time matches the
timestamp specified.

In practice, the client component may need the request fulfilled slightly earlier than the
timestamp specified. In this case, the client specifies the earlier time need of the
fulfillment via the nOffset field. nOffset specifies the desired difference between
the wall time when the timestamp actually occurs and the wall time when the request is to
be fulfilled. (The nOffset value should represent a relatively small interval, on the
order of a few milliseconds.) Note that, due to the way scale modifies the progression of
media time, a client cannot simply subtract the offset from the timestamp requested.

The request also includes a pointer to any private data that the client wants to associate
with it (e.g., a pointer to the frame to deliver at the given timestamp).

 311

6.2.4.3 Media Time Request Fulfillment
When fulfilling a request, the OMX_TIME_MEDIATIMETYPE structure contains the
requested media time, the wall time that corresponds to that media time, and the offset in
wall time between when the media time will actually occur and when the request was
actually fulfilled.

Since some clock component implementations may have difficulty fulfilling the request
at exactly the time specified, the fulfillment may occur slightly earlier, leading to a
fulfillment offset larger than the one requested. The clock component shall fulfill the
request as close to the requested time as possible without being late. Figure 6-3 shows the
timeline for the request and fulfillment of a media time update.

Figure 6-3. Timeline for Request and Fulfillment of Media Time Update

When a client receives the fulfillment of a request, it may time any associated operation
(e.g., frame delivery) more precisely by waiting any of the remaining interval until the
timestamp itself. The client may estimate the interval until the timestamp actually occurs
by using nOffset directly, although this does not account for any delay between when
the clock component fulfilled the request and when the client began processing the
fulfillment. A client may obtain a more accurate estimate for this interval by taking the
difference between nWallTimeAtMediaTime and the clock component’s current wall
time, which is obtained via OMX_GetConfig on
OMX_IndexConfigTimeCurrentWallTime.

This interval should be small enough for the client to use its own wall clock to implement
the wait. The effect of any scale change during the interval or any drift between the clock

Clock component
fulfills request

Client component
processes fulfillment

Requested
fulfillment

Client component makes
request

nOffset in request

nOffset in fulfillment

Client’s actual offset
(nWallTimeAtMediaTime –
current_wall_time)

WALL TIME

Target Timestamp
(nWallTimeAtMediaTime)

 312

component’s wall clock and the client’s wall clocks should be negligible for so short a
duration.

6.2.4.4 Scale Change Notifications
A eUpdateType value of OMX_TIME_UpdateScaleChanged identifies a media time
update as a scale change notification.

The clock component alerts its clients to scale changes via media time updates for
optimization and data correction. For instance, during fast forward, a video component
might skip intra frames and an audio component might scale and pitch correct its samples
or drop them entirely. Nevertheless, components should never alter the presentation
timestamp associated with a media sample. Time scaling is always applied to the media
time, not the media samples.

A component that provides a reference clock shall watch for scale changes and behave
accordingly. In particular, it shall:

• Cease all data delivery and its reference clock when the scale is zero (i.e., paused).

• Resume data delivery and its reference clock when the scale changes to non-zero (i.e.,
unpaused).

The xScale field contains the new scale. The nMediaTimestamp and
nWallTimeAtMediaTime fields contain the media and wall time, respectively, when
the scale change occurred. nOffset should reflect the difference, if any, between the
wall time of the scale change and the wall time of the transmission of the corresponding
media time update.

6.2.4.5 Clock State Change Notifications
A eUpdateType value of OMX_TIME_UpdateClockStateChanged identifies a media
time update as a scale change notification.

The clock component alerts its clients to clock state transitions via media time updates so
that they may take any action appropriate in that clock state. In particular:

• Any rendering component shall cease data delivery when the media clock transitions
into the stopped state.

• Any client providing a reference clock shall use a media time request to time the
resumption of data delivery and, hence, its reference clock when the media clock
transitions into the running state

The eState field contains the new clock state. The nMediaTimestamp and
nWallTimeAtMediaTime fields contain the media and wall time, respectively, when
the clock change occurred. nOffset should reflect the difference, if any, between the
wall time of the state change and the wall time of the transmission of the corresponding
media time update.

 313

6.2.5 Clock Component Implementation
The clock component is responsible for implementing the semantics described in this
section. Specifically the clock component should implement the following:

• Queries of its wall or media clock

• Queries of or changes to its media clock’s state or scale

• Queries of or changes to its active reference clock

• Client notification of scale changes

• Fulfillment of media time requests

• Updates from the reference clocks

This following discussion describes aspects of these obligations that are not implicit in
the preceding description of clock component semantics.

6.2.5.1 Deriving Media Time
The clock component derives the media time from the reference clock and the wall clock.
When the reference clock sends the clock component a time reference, Rnow, the clock
component queries the wall clock for its current value, Wnow. If an IL client specified an
offset when it started the clock component (e.g., to implement a pre-roll), then the clock
component adds this offset as Wnow + Offset. The clock component stores the ultimate
reference/wall time pair, representing the base of extrapolation, for later use as <Rbase,
Wbase> where:

Rbase = Rnow

Wbase = Wnow + Offset

The clock component calculates the instantaneous media time, Mnow, by querying the wall
clock, Wnow, and extrapolating from the last reference, modulated by the current scale,
Scale, as follows:

Mnow = Rbase + Scale * (Wnow – Wbase)

6.2.5.2 Scale Changes
Upon invocation of a scale factor, Scale, the clock component first establishes a new base
of extrapolation by querying the current media time, Mnow, and the current wall time,
Wnow:

Rbase = Mnow

Wbase = Wnow

The clock component then notifies all client components of the new scale via a media
time update. It fills in the fields of the corresponding OMX_TIME_MEDIATIMETYPE
structure as follows:

nClientPrivate = NULL

nMediaTimestamp = Mnow

 314

nWallTimeAtMediaTime = Wnow

xScale = Scale

6.2.5.3 Fulfilling Media Time Requests
A clock component’s approach to servicing media time requests is implementation
specific. Certain operating system constructs (e.g., timers) may be useful in avoiding the
expense of the spin locks associated with comparing requested times with the current
media time. Nevertheless, clock component implementers should be wary of any skew
between the clock component and the clock used by the operating system constructs that
compromise the timely, accurate fulfillment of requests.

The clock component shall account for any offset specified by the request. Assume a
requested timestamp of Mrequest, an offset Offsetrequest, and a scale factor of Scale. Instead
of comparing against Mrequest, the clock component should compare against the following:

Mrequest – (Offsetrequest * Scale)

Furthermore, the comparison between requested times and media time differ between
forward playback, backward, and paused playback. Specifically, the comparisons shown
in Table 6-5 should be used according to scale:

Scale Fulfill request when
> 0.0 (forward playback) Mnow >= (Mrequest – (Offsetrequest * Scale))
< 0.0 (backward playback) Mnow <= (Mrequest – (Offsetrequest * Scale))
0.0 (paused) Never
Table 6-5. Media Time Request Scale

 315

6.2.6 Audio-Video File Playback Example Use Case
As an example, examine the playback of a file containing synchronized audio and video
as illustrated in Figure 6-4. This example assumes that each audio or video frame has a
presentation timestamp associated with it. In this construction, a file reader/de-
multiplexing component feeds compressed audio and video streams to a pair of decoders.
The decoders send uncompressed data to a pair of renderers, which deliver the data to
hardware.

The renderers coordinate with the clock component to implement smooth synchronized
audio-video delivery. The renderers and audio decoder are clients of the clock component
(connected on their respective clock ports) so they may watch for scale changes. The
video renderer also uses the clock component to time delivery of video frames via media
time requests.

Figure 6-4. Example Use Case of Audio-Video File Playback

The audio and video renderers act as the audio and video reference clocks, each sending
their reference times to the clock component as they deliver data.

In this example, the IL client uses the audio renderer as the reference clock at any time
audio data is being delivered during normal playback. Thus, the IL client does not need
to use the clock component to coordinate the delivery of audio data. It simply feeds new
data to the audio device whenever it can, provided that the current scale allows it. When
the audio device is presenting an audio buffer, the audio renderer emits the timestamp of
that buffer as a reference.

The video renderer, however, shall coordinate with the clock component when delivering
video frames. For each frame that the renderer shall deliver at a particular timestamp, the
following occurs:

1. The renderer submits a media time request, referencing the frame data in the private
pointer and specifying fulfillment slightly earlier that the timestamp.

2. The clock component fulfills the request when it becomes current via a media time
update to the renderer that references the original timestamp and includes the private
pointer.

mt

uncomp.
audio

uncomp.
video

comp.
video

comp.
audio

File
Reader/
Demux

Audio
Decoder

Video
Renderer

Clock
Component

Video
Decoder

Audio
Renderer mt

mt

 316

3. The renderer receives the media time update, de-references the private pointer to
obtain the frame data, and delivers the frame. The renderer uses an implementation-
specific mechanism to wait the remainder of the time until the timestamp before
delivery (e.g., schedules a hardware flip with the video driver).

The IL client controls the clock component via specialized configurations to start and
stop the media clock. To implement trick modes, the IL client sets the scale factor
configuration. When the clock component applies the scale to the calculation of media
time, it sends a media time update with the scale change to all of its clients.

The client components react to that scale change appropriately. When the scale is 0 (i.e.,
the media clock is paused), the audio renderer silences audio and ceases sending data.
Furthermore, in this example, the audio decoder might elect to ignore input during non-
1X playback.

If audio is effectively silenced during trick modes, the IL client may switch the active
reference clock from the audio reference to the video reference.

Finally, the IL client may query the current media time from the clock component to, for
instance, update the user interface such as through a progress bar.

 317

7 Appendix A – References
This appendix identifies provides references to documentation on standards and formats
presented in this document. The hyperlinks provide access to documents stored on
various websites. The references are organized according to the applicable type of media.

7.1 SPEECH

7.1.1 3GPP

AMR-NB 3G TS 26.071 "AMR speech Codec; General Description", Generation
Partnership Project (3GPP). And references therein.

AMR-WB 3G TS 26.171 "AMR Wideband Speech Codec; General Description",
Generation Partnership Project (3GPP). And references therein.

GSM-EFR
3G TS 46.051 "Enhanced Full Rate (EFR) speech processing functions;
General description", Generation Partnership Project (3GPP). And references
therein.

GSM-FR 3G TS 46.001 "Full rate speech; Processing functions", Generation
Partnership Project (3GPP). And references therein.

GSM-HR 3G TS 46.002 "Half rate speech; Processing functions", Generation
Partnership Project (3GPP). And references therein.

7.1.2 3GPP2

SMV 3GPP2-SMV, “Selectable Mode Vocoder (SMV) Service Option for Wideband
Spread Spectrum Communication Systems”, 3GPP2 C.S0030-0, 2004.

7.1.3 ARIB

PDC-EFR RCR-27 EFR, “RCR-27-1: Personal Digital Cellular Telecommunication
System,” sec. 5.4, 2003.

PDC-FR RCR-27 FR, “RCR-27-1: Personal Digital Cellular Telecommunication
System,” sec. 5.1, 2003.

PDC-HR RCR-27 HR, “RCR-27-1: Personal Digital Cellular Telecommunication
System,” sec. 5.2, 2003.

7.1.4 ITU

G.711 ITU-G.723.1, “Dual rate speech coder for multimedia communications
transmitting at 5.3 and 6.3 kbit/s”, 1996.

G.723.1 ITU-G.726, “40, 32, 24, 16 kbit/s adaptive differential pulse code modulation
(ADPCM)”, 1990.

http://www.3gpp.org/ftp/Specs/html-info/26071.htm
http://www.3gpp.org/ftp/Specs/html-info/26171.htm
http://www.3gpp.org/ftp/Specs/html-info/46051.htm
http://www.3gpp.org/ftp/Specs/html-info/46001.htm
http://www.3gpp.org/ftp/Specs/html-info/46002.htm
http://www.3gpp2.org/Public_html/specs/C.S0030-0_v3.0_040325.pdf
http://www.arib.or.jp/english/html/overview/img/rcr_std-27_e.pdf
http://www.arib.or.jp/english/html/overview/img/rcr_std-27_e.pdf
http://www.arib.or.jp/english/html/overview/img/rcr_std-27_e.pdf
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-G.723.1
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-G.726

 318

G.726 ITU-G.729, “Coding of speech at 8 kbit/s using conjugate-structure algebraic-
code-excited linear-prediction (CS-ACELP)”’, 1996.

G.729 ITU-G711, “Pulse code modulation (PCM) of voice frequencies “, 1988.

7.1.5 IETF

RFC3267
RFC3267: Real-Time Transport Protocol (RTP) Payload Format and File
Storage Format for the Adaptive Multi-Rate (AMR) and Adaptive Multirate
Wideband (AMR WB) Audio Codecs.

7.1.6 TIA

EVRC ANSI/TIA-127-A-2004, “Enhanced Variable Rate Codec Speech Service
Option 3 for Wideband Spread Spectrum Digital Systems,” 2004.

QCELP8 ANSI/TIA/EIA-96-C-98, “Speech Service Option Standard for Wideband
Spread Spectrum Systems,” 1998.

QCELP13 ANSI/TIA-733-A-2004, “High Rate Speech Service Option 17 for Wideband
Spread Spectrum Communications Systems,” 2004.

TDMA-EFR ANSI/TIA/EIA-136-410-1-2001, “TDMA Cellular PCS - Radio Interface -
Enhanced Full-Rate Voice Codec, Addendum 1,” 2001.

TDMA-FR ANSI/TIA/EIA-136-420-99, “TDMA Cellular PCS, VSELP,” 1999.

7.2 AUDIO

7.2.1 ISO

HE-AAC v1
ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 14496-3
“Coding of Audio-Visual Objects—Part 3: Audio, Amendment 1: Bandwidth
extension”, November 2003.

HE-AAC v2
ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 14496-3
“Coding of Audio-Visual Objects—Part 3: Audio, Amendment 2: Parametric
coding for high-quality audio”, August 2004.

 MPEG-1
Audio

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 11172-3
"Coding of moving pictures and associated audio for digital storage media at
up to about 1.5 Mbit/s, Part 3: Audio", 1993.

 MPEG-2
Audio

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 13818-3
“Information Technology - Generic Coding of Moving Pictures and Associated
Audio, Part 3: Audio", 1998.

MPEG-2 AAC
ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 13818-7
"Information Technology - Generic Coding of Moving Pictures and Associated
Audio, Part 7: MPEG-2 AAC", 2004.

http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-G.729
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-G.711
http://www.rfc-editor.org/rfc/rfc3267.txt
http://www.tiaonline.org/standards/search.cfm?keyword=ANSI%2FTIA-127-A-2004
http://www.tiaonline.org/standards/search.cfm?keyword=ANSI%2FTIA%2FEIA-96-C-98
http://www.tiaonline.org/standards/search.cfm?keyword=ANSI%2FTIA-733-A-2004
http://www.tiaonline.org/standards/search.cfm?keyword=TIA%2FEIA-136-410-1-2001
http://www.tiaonline.org/standards/search.cfm?keyword=TIA%2FEIA-136-420-99
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38148&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38148&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38148&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39382&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39382&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39382&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22412&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22412&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22412&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26797&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26797&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=26797&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40886&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40886&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40886&ICS1=35&ICS2=40&ICS3=

 319

MPEG-4 AAC ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 14496-3
“Coding of Audio-Visual Objects—Part 3: Audio”, 2d Edition, December 2001.

7.2.2 MISC

I3DL2 Interactive 3-D Audio Rendering Guidelines - Level 2.0, Revision 1.0a.
Interactive Audio Special Interest Group, September 20, 1999.

 SBC de Bont, F., Groenewegen, M., and Oomen, W., “A High Quality Audio Coding
System at 128 kb/s”, 98th AES Convention, Feb. 25-28, 1995.

 WMA Windows Media Audio

 VORBIS Vorbis codec

 RA Real Audio 10 Codec

 PCM Pulse-code Modulation

 ADPCM Adaptive Differential PCM

7.3 SYNTHETIC AUDIO

7.3.1 MIDI

DLS 1 Downloadable Sounds Level 1 Specification, Version 1.1a, RP-016. MIDI
Manufacturers Association, Los Angeles, CA, USA, January 1999.

DLS 2

Downloadable Sounds Level 2 Specification, Version 1.0c, RP-025. MIDI
Manufacturers Association, Los Angeles, CA, USA, July 14 1999.

Downloadable Sounds Level 2.1 Specification (RP-025/Amd1), MIDI
Manufacturers Association, Los Angeles, CA, USA, January 2001.

General MIDI

The Complete MIDI 1.0 Detailed Specification, Document version 96.1, MIDI
Manufacturers Association, Los Angeles, CA, USA, 1996 (Contains MIDI 1.0
Detailed Specification, MIDI Time Code, Standard MIDI Files 1.0, General
MIDI System Level 1, MIDI Show Control 1.1, and MIDI Machine Control)

General MIDI 2
General MIDI Level 2 Specification (Recommended Practice), v 1.1 (updated),
RP-024. MIDI Manufacturers Association, Los Angeles, CA, USA, September
2003.

GM Lite
General MIDI Lite Specification and Guidelines for Use in Mobile Applications,
Version 1.0, RP-033. MIDI Manufacturers Association, Los Angeles, CA, USA,
October 5, 2001.

Mobile DLS Mobile DLS Specification, RP-041, MIDI Manufacturers Association, Los
Angeles, CA, USA, 2003.

http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=36083&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=36083&ICS1=35&ICS2=40&ICS3=
http://www.iasig.org/pubs/3dl2v1a.pdf
http://www.aes.org/publications/preprints/lists/98.html
http://www.aes.org/publications/preprints/lists/98.html
http://www.aes.org/publications/preprints/lists/98.html
http://www.microsoft.com/windows/windowsmedia/9series/codecs/audio.aspx
http://www.vorbis.com/faq
http://www.realnetworks.com/products/codecs/realaudio.html
http://en.wikipedia.org/wiki/Pulse-code_modulation
http://en.wikipedia.org/w/index.php?title=ADPCM&redirect=no
http://www.midi.org/about-midi/dls/abtdls.shtml
http://www.midi.org/about-midi/dls/dls2spec.shtml
http://www.midi.org/about-midi/gm/gm1_spec.shtml
http://www.midi.org/about-midi/specinfo.shtml#Document%20Ordering%20Instructions
http://www.midi.org/about-midi/gm/gm2_spec.shtml
http://www.midi.org/about-midi/gm/gml_spec.shtml
http://www.midi.org/about-midi/dls/abtmdls.shtml

 320

Mobile XMF
(XMF type 2)

Mobile XMF Content Format Specification, RP-042. MIDI Manufacturers
Association, Los Angeles, CA, USA, September 2004.

XMF Meta File Format 2.0, RP-043. MIDI Manufacturers Association, Los
Angeles, CA, USA, September 2004.

SP-MIDI

Scalable Polyphony MIDI Specification, Version 1.0, RP-034. MIDI
Manufacturers Association, Los Angeles, CA, USA, February 2002

Scalable Polyphony MIDI Device 5-24 Voice Profile for 3GPP, Version 1.0,
RP-035. MIDI Manufacturers Association, Los Angeles, CA, USA, February
2002.

XMF type 0
and 1

Type 0 and 1 XMF Files, RP-031. MIDI Manufacturers Association, Los
Angeles, CA, USA, 2001.

XMF Meta File Format, Version 1.00b, RP-030. MIDI Manufacturers
Association, Los Angeles, CA, USA, October 2001.

XMF Meta File Format Updates v1.01, RP-039. MIDI Manufacturers
Association, Los Angeles, CA, USA, July 2003.

7.4 IMAGE

7.4.1 IETF
RFC804 IETF/RFC 804, "ITU Group 3 encoding: Modified Huffman and Modified Read

compression algorithms."

RFC1314 IETF/RFC 1314, "A File Format for the Exchange of Images in the Internet,"
1992.

RFC2035 IETF/RFC 2305, "RTP Payload Format for JPEG-compressed Video," 1996.

RFC2083 IETF/RFC 2083, "PNG (Portable Network Graphics) Specification Version
1.0," 1997.

RFC2160 IETF/RFC 2160, "Carrying PostScript in X.400 and MIME," 1998.

RFC2302 IETF/RFC 2302, "Tag Image File Format (TIFF), image/tiff MIME Sub-type
Registration," 1998.

RFC2306 IETF/RFC 2306, "Tag Image File Format (TIFF), F Profile for Facsimile,"
1998.

RFC3250 IETF/RFC 3250, "Tag Image File Format Fax Extended (TIFF-FX), image/tiff-
fx MIME Sub-type Registration," 2002.

RFC3302 IETF/RFC 3302, "Tag Image File Format (TIFF) - image/tiff MIME Sub-type
Registration," 2002.

RFC3362 IETF/RFC 3362, "Real-time Facsimile (T.38), image/t38 MIME Sub-type
Registration," 2002.

http://www.midi.org/about-midi/dls/abtmdls.shtml
http://www.midi.org/about-midi/xmf/rp43spec(xmf2).pdf
http://www.midi.org/about-midi/abtspmidi.shtml
http://www.midi.org/about-midi/abtspmidi.shtml
http://www.midi.org/about-midi/abtspmidi.shtml
http://www.midi.org/about-midi/dls/abtmdls.shtml
http://www.midi.org/about-midi/xmf/index.shtml
ftp://ftp.rfc-editor.org/in-notes/rfc804.txt
ftp://ftp.rfc-editor.org/in-notes/rfc804.txt
ftp://ftp.rfc-editor.org/in-notes/rfc1314.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2035.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2083.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2083.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2160.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2302.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2302.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2306.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3250.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3250.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3302.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3302.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3362.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3362.txt

 321

RFC3745 IETF/RFC 3745, "MIME Type Registrations for JPEG 2000 (ISO/IEC 15444),"
2004.

RFC3950 IETF/RFC 3950, "Tag Image File Format Fax Extended (TIFF-FX), image/tiff-
fx MIME Sub-type Registration," 2005.

7.4.2 ISO
JPEG v1 ISO/IEC JTC1/SC29/WG1 JPEG, International Standard IS 10918-1, "Digital

compression and coding of continuous-tone still images: Requirements and
guidelines," 1994.

JPEG v2 ISO/IEC JTC1/SC29/WG1 JPEG, International Standard IS 10918-1/Cor 1,
"JPEG patent information update," 2005.

JPEG v3 ISO/IEC JTC1/SC29/WG1 JPEG, International Standard IS 10918-3, "Digital
compression and coding of continuous-tone still images: Extensions," 1997.

JPEG v4 ISO/IEC JTC1/SC29/WG1 JPEG, International Standard IS 10918-3/Amd 1,
"Provisions to allow registration of new compression types and versions in the
SPIFF header," 1999.

JPEG v5 ISO/IEC JTC1/SC29/WG1 JPEG, International Standard IS 10918-4, "Digital
compression and coding of continuous-tone still images: Registration of JPEG
profiles, SPIFF profiles, SPIFF tags, SPIFF colour spaces, APPnmarkers,
SPIFF compression types and Registration Authorities (REGAUT)," 1999.

JPEG v6 ISO/IEC JTC1/SC29/WG1 JPEG, International Standard IS 11544, "Coded
representation of picture and audio information, Progressive bi-level image
compression," 1993.

JPEG LS v1 ISO/IEC JTC1/SC29/WG1 JPEG LS, International Standard IS 14495-1,
"Lossless and near-lossless compression of continuous-tone still images:
Baseline," 1999.

JPEG LS v2 ISO/IEC JTC1/SC29/WG1 JPEG LS, International Standard IS 14495-2,
"Lossless and near-lossless compression of continuous-tone still images:
Extensions," 2003.

JPEG 2000 v1 ISO/IEC JTC1/SC29/WG1 JPEG 2000, International Standard IS 15444-1,
"JPEG 2000 image coding system: Core coding system," Ed. 2, 2004.

JPEG 2000 v2 ISO/IEC JTC1/SC29/WG1 JPEG 2000, International Standard IS 15444-2,
"JPEG 2000 image coding system: Extensions," Ed. 1, 2004.

JPEG 2000 v3 ISO/IEC JTC1/SC29/WG1 JPEG 2000, International Standard IS 15444-6,
"JPEG 2000 image coding system, Part 6: Compound image file format," Ed.
1, 2003.

JPEG 2000 v4 ISO/IEC JTC1/SC29/WG1 JPEG 2000, International Standard IS 15444-12,
"JPEG 2000 image coding system, Part 12: ISO base media file format," Ed.
2, 2005.

ftp://ftp.rfc-editor.org/in-notes/rfc3745.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3950.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3950.txt
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=18902&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=18902&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=18902&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=41504&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=25037&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=25037&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=30961&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=30961&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=25431&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=25431&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=25431&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=25431&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=19498&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=19498&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=19498&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22397&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22397&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=37700&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=37700&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=37674&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=33160&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=35458&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=41827&ICS1=35&ICS2=40&ICS3=

 322

7.4.3 ITU
T81 ITU-T T.81, "Digital compression and coding of continuous-tone still images,

Requirements and guidelines," 1992.

T82 ITU-T T.82, "Coded representation of picture and audio information,
Progressive bi-level image compression," 1993.

T84 v1 ITU-T T.84, "Digital compression and coding of continuous-tone still images:
Extensions," 1996.

T84 v2 ITU-T T.84/Amd 1, "Provisions to allow registration of new compression types
and versions in the SPIFF header," 1999.

T85 ITU-T T.85, "Application profile for Recommendation T.82, Progressive bi-
level image compression (JBIG coding scheme) for facsimile apparatus,"
1995.

T86 ITU-T T.86, "Digital compression and coding of continuous-tone still images:
Registration of JPEG Profiles, SPIFF Profiles, SPIFF Tags, SPIFF colour
Spaces, APPn Markers, SPIFF Compression types and Registration
Authorities (REGAUT)," 1998.

T87 ITU-T T.87, "Lossless and near-lossless compression of continuous-tone still
images, Baseline," 1998.

T88 v1 ITU-T T.88, "Coded representation of picture and audio information,
Lossy/lossless coding of bi-level images," 2000.

T88 v2 ITU-T T.88/Amd 1, "Encoder," 2003.

T88 v3 ITU-T T.88/Amd 2, "Extension of adaptive templates for halftone coding,"
2003.

T89 ITU-T T.89, "Application profiles for Recommendation T.88, Lossy/lossless
coding of bi-level images (JBIG2) for facsimile," 2001.

7.4.4 JEITA
EXIF JEITA, Japanese Electronics and Information Technology Industries

Association, “EXIF (Exchangeable Image File Format) 2.2”, 2002.

7.4.5 MIPI
CSI MIPI Camera WG, "CSI 2.0 Protocol Specification v.0.41", 2005.

DSI MIPI Display WG, "DSI Specification v.0.45", 2005.

7.4.6 Miscellaneous
BMP Microsoft Windows Bitmap (BMP) Format.

GIF87A GIF 87a, “Graphics Interchange Format, Version 87a,” 1987.

http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.81-199209-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.81-199209-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.82-199303-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.82-199303-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.84-199607-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.84-199607-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.84-199904-I!Amd1
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.84-199904-I!Amd1
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.85-199508-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.85-199508-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.86-199806-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.86-199806-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.86-199806-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.86-199806-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.87-199806-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.87-199806-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.88-200002-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.88-200002-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.88-200306-I!Amd1
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.88-200306-I!Amd2
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.89-200109-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-T.89-200109-I
http://www.exif.org/Exif2-2.PDF
https://www.mipi.org/members/memberhome.asp?section_id=&parent_id=82
https://www.mipi.org/members/memberhome.asp?section_id=&parent_id=412
http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/BMP.txt
http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF87a.txt

 323

GIF89A GIF 89a, “Graphics Interchange Format, Version 89a,” 1989.

TIFF TIFF V.6.0, “Tagged Image File Format (TIFF) Specification, Version 6.0”.

7.4.7 SMIA
SMIA CCP2 SMIA CCP2, “Compact Camera Port 2 (CCP2) Specification 1.0.”

SMIA
CCP2/ER1

SMIA 1.0 CCP2/ER1, “Errata, Part 2 CCP2 Specification.”

SMIA FUNC SMIA Functional, “Functional specification 1.0.”

SMIA
FUNC/ER1

SMIA Functional 1.0/ER1, “Errata for Part 1 Functional Specification.”

SMIA CHAR SMIA Characterisation 1.0/V.A, “Characterisation Specification 1.0, Rev A.”

SMIA SW/AP SMIA Software And Application 1.0, “Software And Application Specification
1.0.”

7.4.8 W3C
PNG Portable Network Graphics (PNG) Specification (Second Edition), “Computer

graphics and image processing, Portable Network Graphics (PNG): Functional
specification,” 2003.

7.5 VIDEO

7.5.1 3GPP
MBMS v1 3GPP TS 26.346 "MBMS Protocols and Codecs," v.1.5.0.

MBMS v2 3GPP TS 22.146 "Technical Specification Group Services and System
Aspects; Multimedia Broadcast/Multicast Service." v.6.6.0.

7.5.2 AVS
AVS-M v1 AVS-M: Part 6 Video-Mobility, Stage 1: MMS service

AVS-M v2 AVS-M: Part 6 Video-Mobility, Stage 2: Streaming and conversational services

7.5.3 DLNA
HNv1.0 DLNA HNv1.0, "Home Networked Device Interoperability Guidelines v1.0,"

2004.

http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/GIF89a.txt
https://partners.adobe.com/asn/developer/PDFS/TN/TIFF6.pdf
http://www.smia-forum.org/members/documents/SMIA_CCP2_specification_1.0.pdf
http://www.smia-forum.org/members/documents/ecr0002_v1.pdf
http://www.smia-forum.org/members/documents/SMIA_Functional_specification_1.0.pdf
http://www.smia-forum.org/members/documents/ecr0001_v1.pdf
http://www.smia-forum.org/members/documents/SMIA_Characterisation_Specification_1.0_revA.pdf
http://www.smia-forum.org/members/documents/SMIA_Software_and_application_specification_1.0.pdf
http://www.smia-forum.org/members/documents/SMIA_Software_and_application_specification_1.0.pdf
http://www.w3.org/TR/PNG/
http://www.w3.org/TR/PNG/
http://www.w3.org/TR/PNG/

 324

7.5.4 ETSI
DVB-H v1 ETSI EN 302 304 V.1.1.1, DEN/JTC-DVB-155, "Digital Video Broadcasting

(DVB), Transmission System for Handheld Terminals (DVB-H)," 2004.

DVB-H v2 ETSI ETS 300 468, RE/JTC-DVB-18, "Digital Video Broadcasting (DVB),
Specification for Service Information (SI) in DVB systems," 1997.

DVB-H v3 ETSI EN 301 192 V.1.4.1, REN/JTC-DVB-157, "Digital Video Broadcasting
(DVB), DVB specification for data broadcasting," 2004.

DVB-H v4 ETSI TS 101 154 V.1.7.1, RTS/JTC-DVB-170, "Digital Video Broadcasting
(DVB), Implementation guidelines for the use of Video and Audio Coding in
Broadcasting Applications based on the MPEG-2 Transport Stream," 2005.

DVB-H v5 ETSI TS 101 154 V.1.5.1, RTS/JTC-DVB-122, "Digital Video Broadcasting
(DVB), Implementation guidelines for the use of Video and Audio Coding in
Broadcasting Applications based on the MPEG-2 Transport Stream," 2004.

DVB-H v6 ETSI TS 102 005 V.1.1.1, DTS/JTC-DVB-124, "Digital Video Broadcasting
(DVB), Specification for the use of video and audio coding in DVB services
delivered directly over IP," 2005.

DVB-H v7 ETSI TS 102 154 V.1.2.1, RTS/JTC-DVB-123, "Digital Video Broadcasting
(DVB), Implementation guidelines for the use of Video and Audio Coding in
Contribution and Primary Distribution Applications based on the MPEG-2
Transport Stream," 2004.

7.5.5 IETF
RFC1889 IETF RFC 1889, "RTP: A Transport Protocol for Real-Time Applications,"

1996.

RFC2032 IETF RFC 2032, "RTP Payload Format for H.261 Video Streams," 1996.

RFC2038 IETF RFC 2038, "RTP Payload Format for MPEG1/MPEG2 Video," 1996.

RFC2190 IETF RFC 2190, "RTP Payload Format for H.263 Video Streams," 1997.

RFC2250 IETF RFC 2250, "RTP Payload Format for MPEG1/MPEG2 Video," 1998.

RFC2429 IETF RFC 2429, "RTP Payload Format for the 1998 Version of ITU-T Rec.
H.263 Video (H.263+)," 1998.

RFC2431 IETF RFC 2431, "RTP Payload Format for BT.656 Video Encoding," 1998.

RFC2435 IETF/RFC 2435, "RTP Payload Format for JPEG-compressed Video," 1998.

RFC3189 IETF RFC 3189, "RTP Payload Format for DV (IEC 61834) Video," 2002.

RFC3497 IETF RFC 3497, "RTP Payload Format for Society of Motion Picture and
Television Engineers (SMPTE) 292M Video", 2003.

ftp://ftp.rfc-editor.org/in-notes/rfc1889.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2032.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2038.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2190.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2250.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2429.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2429.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2431.txt
ftp://ftp.rfc-editor.org/in-notes/rfc2435.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3189.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3497.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3497.txt

 325

RFC3551 IETF RFC 3551, "RTP Profile for Audio and Video Conferences with Minimal
Control," 2003.

RFC3984 IETF RFC 3984, "RTP Payload Format for H.264 Video", 2005.

7.5.6 ISO
MPEG-1 Visual ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 11172-2,

"Coding of moving pictures and associated audio for digital storage media at
up to about 1,5 Mbit/s, Part 2: Video," Ed. 1, 1993.

MPEG-2 Visual ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 13818-2,
"Generic coding of moving pictures and associated audio information, Part 2:
Video," Ed. 2, 2000.

MPEG-4 Visual
v1

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 14496-1/Amd 7,
“Use of AVC (Advanced Video Coding) in MPEG-4 systems," Ed. 1, 2004.

MPEG-4 Visual
v2

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 14496-2,
"Coding of audio-visual objects, Part 2: Visual," Ed. 3, 2004.

MPEG-4 Visual
v3

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 14496-10,
"Coding of audio-visual objects, Part 10: Advanced Video Coding," Ed. 2,
2004.

MPEG-4 Visual
v4

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS 14496-15,
"Coding of audio-visual objects, Part 15: Advanced Video Coding (AVC) file
format," Ed. 1, 2004.

MPEG-21
Visual

ISO/IEC JTC1/SC29/WG11 MPEG, International Standard IS TR 21000-1,
"Vision, Technologies and Strategy, Part 1," 2001.

MJPEG-2000
v1

ISO/IEC JTC1/SC29/WG1 MJPEG, International Standard IS 15444-3, "JPEG
2000 image coding system, Part 3: Motion JPEG 2000," Ed. 1, 2002.

MJPEG-2000
v2

ISO/IEC JTC1/SC29/WG1 MJPEG, International Standard IS 15444-3/Amd 2,
"Motion JPEG 2000 derived from ISO base media file format," Ed. 1, 2003.

7.5.7 ITU
H.261 ITU-T H.261, "Video codec for audiovisual services at p x 64 kbit/s," 1993.

H.262 ITU-T H.262, "Generic coding of moving pictures and associated audio
information: Video," 2000.

H.263 ITU-T H.263, "Video coding for low bit rate communication," 2005.

H.264 ITU-T H.264, "Advanced video coding for generic audiovisual services," 2005.

7.5.8 MISC
 RV Real Video 10 Codec

ftp://ftp.rfc-editor.org/in-notes/rfc3551.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3551.txt
ftp://ftp.rfc-editor.org/in-notes/rfc3984.txt
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22411&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22411&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31539&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=31539&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38572&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=39259&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40890&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38573&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=38573&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=40611&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=33875&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=33875&ICS1=35&ICS2=40&ICS3=
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=36927&ICS1=35&ICS2=40&ICS3=
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-H.261-199303-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-H.262-200002-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-H.262-200002-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-H.263-200501-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-H.264-200503-P
http://www.realnetworks.com/products/codecs/realaudio.html

 326

WMV Windows Media Video

7.6 JAVA

7.6.1 Multimedia
JSR-135 JCP/JSR-135: Mobile Media API 1.0, 2003

JSR-234 JCP/JSR-234: Advanced Multimedia Supplements, 2005

7.6.2 Broadcast
JSR-272 JCP/JSR-272: Mobile Broadcast Service API for Handheld Terminals, 2005

http://www.microsoft.com/windows/windowsmedia/9series/codecs/audio.aspx
http://www.jcp.org/aboutJava/communityprocess/final/jsr135
http://jcp.org/aboutJava/communityprocess/final/jsr234
http://www.jcp.org/en/jsr/detail?id=272

	1 Overview
	1.1 Introduction
	1.2 The OpenMAX Integration Layer
	1.2.4.1 Silicon Vendors
	1.2.4.2 Independent Software Vendors
	1.2.4.3 Operating System Vendors
	1.2.4.4 Original Equipment Manufacturers
	1.2.5.1 Core
	1.2.5.2 Components

	1.3 Definitions
	1.4 Authors
	1
	2 OpenMAX IL Introduction and Architecture
	2.1 OpenMAX IL Description
	2.1.2.1 Acronyms
	2.1.2.2 Key Definitions
	2.1.3.1 Component Profiles
	2.1.7.1 Relevant Terms
	2.1.7.2 IL Client Component Setup
	2.1.7.3 Component Transition from Loaded to Idle State with Sharing
	2.1.7.4 Protocol for Using a Shared Buffer
	2.1.7.5 Component Transition from Loaded to Idle State without Sharing
	2.1.17.1 Need for Resource Management
	2.1.17.2 Architectural Assumptions
	2.1.17.3 Component Priorities
	2.1.17.4 Behavioral Rules
	2.1.17.5 Hardware Vendor-Specific Resource Manager

	3 OpenMAX Integration Layer Control API
	3.1 OpenMAX Types
	3.1.1.1 OMX_COMMANDTYPE
	3.1.1.2 OMX_STATETYPE
	3.1.1.2.1 OMX_StateLoaded
	3.1.1.2.1.1 OMX_StateLoaded to OMX_StateIdle

	3.1.1.2.2 OMX_StateIdle
	3.1.1.2.2.1 OMX_StateIdle to OMX_StateLoaded
	3.1.1.2.2.2 OMX_StateIdle to OMX_StateExecuting

	3.1.1.2.3 OMX_StateExecuting
	3.1.1.2.3.1 OMX_StateExecuting to OMX_StateIdle

	3.1.1.2.4 OMX_StatePause
	3.1.1.2.5 OMX_StateWaitForResources
	3.1.1.2.5.1 OMX_StateWaitForResources to OMX_StateIdle

	3.1.1.2.6 OMX_StateInvalid

	3.1.1.3 OMX_ERRORTYPE
	3.1.1.4 OMX_EVENTTYPE
	3.1.1.4.1 OMX_EventCmdComplete
	3.1.1.4.2 OMX_EventError
	3.1.1.4.3 OMX_EventMark
	3.1.1.4.4 OMX_EventPortSettingsChanged
	3.1.1.4.5 OMX_EventBufferFlag
	3.1.1.4.6 OMX_EventResourcesAcquired

	3.1.1.5 OMX_BUFFERSUPPLIERTYPE
	3.1.2.1 OMX_COMPONENTREGISTERTYPE
	3.1.2.2 OMX_COMPONENTINITTYPE Type Definition
	3.1.2.2.1 pName
	3.1.2.2.2 pInitialize

	3.1.2.3 OMX_ComponentRegistered[]
	3.1.2.4 OMX_VERSIONTYPE
	3.1.2.4.1 nVersionMajor
	3.1.2.4.2 nVersionMinor
	3.1.2.4.3 nRevision
	3.1.2.4.4 nStep

	3.1.2.5 OMX_PRIORITYMGMTTYPE
	3.1.2.5.1 nGroupPriority
	3.1.2.5.2 nGroupID

	3.1.2.6 OMX_BUFFERHEADERTYPE
	3.1.2.6.1 pBuffer
	3.1.2.6.2 nAllocLen
	3.1.2.6.3 nFilledLen
	3.1.2.6.4 nOffset
	3.1.2.6.5 pAppPrivate
	3.1.2.6.6 pPlatformPrivate
	3.1.2.6.7 pOutputPortPrivate
	3.1.2.6.8 pInputPortPrivate
	3.1.2.6.9 hMarkTargetComponent
	3.1.2.6.10 pMarkData
	3.1.2.6.11 nTickCount
	3.1.2.6.12 nTimeStamp
	3.1.2.6.13 nFlags
	3.1.2.6.13.1 OMX_BUFFERFLAG_EOS
	3.1.2.6.13.2 OMX_BUFFERFLAG_STARTTIME
	3.1.2.6.13.3 OMX_BUFFERFLAG_DECODEONLY
	3.1.2.6.13.4 OMX_BUFFERFLAG_DATACORRUPT
	3.1.2.6.13.5 OMX_BUFFERFLAG_ENDOFFRAME

	3.1.2.6.14 nOutputPortIndex
	3.1.2.6.15 nInputPortIndex

	3.1.2.7 OMX_PORT_PARAM_TYPE
	3.1.2.7.1 nPorts
	3.1.2.7.2 nStartPortNumber

	3.1.2.8 OMX_CALLBACKTYPE
	3.1.2.8.1 EventHandler
	3.1.2.8.2 EmptyBufferDone
	3.1.2.8.3 FillBufferDone

	3.1.2.9 OMX_PARAM_BUFFERSUPPLIERTYPE
	3.1.2.9.1 nPortIndex
	3.1.2.9.2 eBufferSupplier

	3.1.2.10 OMX_TUNNELSETUPTYPE
	3.1.2.10.1 nTunnelFlags
	3.1.2.10.2 eSupplier

	3.1.2.11 OMX_PARAM_PORTDEFINITIONTYPE
	3.1.2.11.1 nPortIndex
	3.1.2.11.2 eDir
	3.1.2.11.3 nBufferCountActual
	3.1.2.11.4 nBufferCountMin
	3.1.2.11.5 nBufferSize
	3.1.2.11.6 bEnabled
	3.1.2.11.7 bPopulated
	3.1.2.11.8 eDomain
	3.1.2.11.9 format

	3.2 OpenMAX Core Methods/Macros
	3.2.2.1 OMX_GetComponentVersion
	3.2.2.1.1 Prerequisites for This Method
	3.2.2.1.2 Sample Code Showing Calling Sequence

	3.2.2.2 OMX_SendCommand
	3.2.2.3 OMX_CommandStateSet
	3.2.2.4 OMX_CommandFlush
	3.2.2.5 OMX_CommandPortDisable
	3.2.2.6 OMX_CommandPortEnable
	3.2.2.7 OMX_CommandMarkBuffer
	3.2.2.7.1 Prerequisites for This Method
	3.2.2.7.2 Sample Code Showing Calling Sequence

	3.2.2.8 OMX_GetParameter
	3.2.2.8.1 Prerequisites for This Method
	3.2.2.8.2 Sample Code Showing Calling Sequence

	3.2.2.9 OMX_SetParameter
	3.2.2.9.1 Prerequisites for This Method
	3.2.2.9.2 Sample Code Showing Calling Sequence

	3.2.2.10 OMX_GetConfig
	3.2.2.10.1 Prerequisites for This Method
	3.2.2.10.2 Sample Code Showing Calling Sequence

	3.2.2.11 OMX_SetConfig
	3.2.2.11.1 Prerequisites for This Method
	3.2.2.11.2 Sample Code Showing Calling Sequence

	3.2.2.12 OMX_GetExtensionIndex
	3.2.2.12.1 Prerequisites for This Method
	3.2.2.12.2 Sample Code Showing Calling Sequence

	3.2.2.13 OMX_GetState
	3.2.2.13.1 Prerequisites for This Method
	3.2.2.13.2 Sample Code Showing Calling Sequence

	3.2.2.14 OMX_UseBuffer
	3.2.2.14.1 Prerequisites for This Method
	3.2.2.14.2 Sample Code Showing Calling Sequence

	3.2.2.15 OMX_AllocateBuffer
	3.2.2.15.1 Prerequisites for This Method
	3.2.2.15.2 Sample Code Showing Calling Sequence

	3.2.2.16 OMX_FreeBuffer
	3.2.2.16.1 Prerequisites for This Method
	3.2.2.16.2 Sample Code Showing Calling Sequence

	3.2.2.17 OMX_EmptyThisBuffer
	3.2.2.17.1 Prerequisites for This Method
	3.2.2.17.2 Sample Code Showing Calling Sequence

	3.2.2.18 OMX_FillThisBuffer
	3.2.2.18.1 Prerequisites for This Method
	3.2.2.18.2 Sample Code Showing Calling Sequence

	3.2.3.1 OMX_Init
	3.2.3.1.1 Prerequisites for This Method
	3.2.3.1.2 Results/Outputs for This Method
	3.2.3.1.3 Sample Code Showing Calling Sequence

	3.2.3.2 OMX_Deinit
	3.2.3.2.1 Prerequisites for This Method
	3.2.3.2.2 Results/Outputs for This Method
	3.2.3.2.3 Sample Code Showing Calling Sequence

	3.2.3.3 OMX_ComponentNameEnum
	3.2.3.3.1 Prerequisites for This Method
	3.2.3.3.2 Results/Outputs for This Method
	3.2.3.3.3 Sample Code Showing Calling Sequence

	3.2.3.4 OMX_GetHandle
	3.2.3.4.1 Prerequisites for This Method
	3.2.3.4.2 Results/Outputs for This Method
	3.2.3.4.3 Sample Code Showing Calling Sequence

	3.2.3.5 OMX_FreeHandle
	3.2.3.5.1 Prerequisites for This Method
	3.2.3.5.2 Results/Outputs for This Method
	3.2.3.5.3 Sample Code Showing Calling Sequence

	3.2.3.6 OMX_SetupTunnel
	3.2.3.6.1 Prerequisites for This Method
	3.2.3.6.2 Results/Outputs for This Method
	3.2.3.6.3 Sample Code Showing Calling Sequence

	3.3 OpenMAX Component Methods and Structures
	3.3.13.1 Prerequisites for This Method
	3.3.13.2 Sample Code Showing Calling Sequence
	3.3.19.1 Prerequisites for This Method
	3.3.19.2 Sample Code Showing Calling Sequence
	3.3.20.1 Prerequisites for This Method
	3.3.20.2 Sample Code Showing Calling Sequence

	3.4 Calling Sequences
	3.4.1.1 Non-tunneled Initialization
	3.4.1.2 Tunneled Initialization
	3.4.2.1 Non-tunneled Data Flow
	3.4.2.2 Tunneled Data Flow
	3.4.2.3 Proprietary Communication
	3.4.3.1 Non-tunneled De-initialization
	3.4.3.2 Tunneled De-Initialization
	3.4.4.1 Tunneled Ports Disablement and Enablement
	3.4.4.2 Non-tunneled Port Disablement and Enablement

	4 OpenMAX IL Data API
	4.1 Audio
	4.1.2.1 Minimum Buffer Payload Size for Uncompressed Data
	4.1.2.2 Whole-file Buffering for MIDI Formats
	4.1.6.1 Parameter Definitions
	4.1.6.2 Dependencies
	4.1.6.3 Functionality
	4.1.6.4 Error Conditions
	4.1.6.5 Post-processing Conditions
	4.1.7.1 Parameter Definitions
	4.1.7.2 Dependencies
	4.1.7.3 Functionality
	4.1.7.4 Error Conditions
	4.1.7.5 Post-processing Conditions
	4.1.8.1 Parameter Definitions
	4.1.8.2 Dependencies
	4.1.8.3 Functionality
	4.1.8.4 Error Conditions
	4.1.8.5 Post-processing Conditions
	4.1.9.1 Parameter Definitions
	4.1.9.2 Dependencies
	4.1.9.3 Functionality
	4.1.9.4 Error Conditions
	4.1.9.5 Post-processing Conditions
	4.1.10.1 Parameter Definitions
	4.1.10.2 Dependencies
	4.1.10.3 Error Conditions
	4.1.10.4 Post-processing Conditions
	4.1.11.1 Parameter Definitions
	4.1.11.2 Dependencies
	4.1.11.3 Functionality
	4.1.11.4 Error Conditions
	4.1.11.5 Post-processing Conditions
	4.1.12.1 Parameter Definitions
	4.1.12.2 Dependencies
	4.1.12.3 Functionality
	4.1.12.4 Error Conditions
	4.1.12.5 Post-processing Conditions
	4.1.13.1 Parameter Definitions
	4.1.13.2 Dependencies
	4.1.13.3 Functionality
	4.1.13.4 Error Conditions
	4.1.13.5 Post-processing Conditions
	4.1.14.1 Parameter Definitions
	4.1.14.2 Dependencies
	4.1.14.3 Functionality
	4.1.14.4 Error Conditions
	4.1.14.5 Post-processing Conditions
	4.1.15.1 Parameter Definitions
	4.1.15.2 Dependencies
	4.1.15.3 Functionality
	4.1.15.4 Error Conditions
	4.1.15.5 Post-processing Conditions
	4.1.16.1 Parameter Definitions
	4.1.16.2 Dependencies
	4.1.16.3 Functionality
	4.1.16.4 Error Conditions
	4.1.16.5 Post-processing Conditions
	4.1.17.1 Parameter Definitions
	4.1.17.2 Dependencies
	4.1.17.3 Functionality
	4.1.17.4 Error Conditions
	4.1.17.5 Post-processing Conditions
	4.1.18.1 Parameter Definitions
	4.1.18.2 Dependencies
	4.1.18.3 Functionality
	4.1.18.4 Error Conditions
	4.1.18.5 Post-processing Conditions
	4.1.19.1 Parameter Definitions
	4.1.19.2 Dependencies
	4.1.19.3 Functionality
	4.1.19.4 Error Conditions
	4.1.19.5 Post-processing Conditions
	4.1.20.1 Parameter Definitions
	4.1.20.2 Dependencies
	4.1.20.3 Functionality
	4.1.20.4 Error Conditions
	4.1.20.5 Post-processing Conditions
	4.1.21.1 Parameter Definitions
	4.1.21.2 Dependencies
	4.1.21.3 Functionality
	4.1.21.4 Error Conditions
	4.1.21.5 Post-processing Conditions
	4.1.22.1 Parameter Definitions
	4.1.22.2 Dependencies
	4.1.22.3 Functionality
	4.1.22.4 Error Conditions
	4.1.22.5 Post-processing Conditions
	4.1.23.1 Parameter Definitions
	4.1.23.2 Dependencies
	4.1.23.3 Functionality
	4.1.23.4 Error Conditions
	4.1.23.5 Post-processing Conditions
	4.1.24.1 Parameter Definitions
	4.1.24.2 Dependencies
	4.1.24.3 Functionality
	4.1.24.4 Error Conditions
	4.1.24.5 Post-processing Conditions
	4.1.25.1 Parameter Definitions
	4.1.25.2 Dependencies
	4.1.25.3 Functionality
	4.1.25.4 Error Conditions
	4.1.25.5 Post-processing Conditions
	4.1.26.1 Parameter Definitions
	4.1.26.2 Dependencies
	4.1.26.3 Functionality
	4.1.26.4 Error Conditions
	4.1.26.5 Post-processing Conditions
	4.1.27.1 Parameter Definitions
	4.1.27.2 Dependencies
	4.1.27.3 Functionality
	4.1.27.4 Error Conditions
	4.1.27.5 Post-processing Conditions
	4.1.28.1 Parameter Definitions
	4.1.28.2 Dependencies
	4.1.28.3 Functionality
	4.1.28.4 Error Conditions
	4.1.28.5 Post-processing Conditions
	4.1.29.1 Parameter Definitions
	4.1.29.2 Dependencies
	4.1.29.3 Functionality
	4.1.29.4 Error Conditions
	4.1.29.5 Post-processing Conditions
	4.1.30.1 Parameter Definitions
	4.1.30.2 Dependencies
	4.1.30.3 Error Conditions
	4.1.30.4 Post-processing Conditions
	4.1.31.1 Parameter Definitions
	4.1.31.2 Dependencies
	4.1.31.3 Error Conditions
	4.1.31.4 Post-processing Conditions
	4.1.32.1 Parameter Definitions
	4.1.32.2 Dependencies
	4.1.32.3 Error Conditions
	4.1.32.4 Post-processing Conditions
	4.1.33.1 Parameter Definitions
	4.1.33.2 Dependencies
	4.1.33.3 Error Conditions
	4.1.33.4 Post-processing Conditions
	4.1.34.1 Parameter Definitions
	4.1.34.2 Dependencies
	4.1.34.3 Error Conditions
	4.1.34.4 Post-processing Conditions
	4.1.35.1 Parameter Definitions
	4.1.35.2 Dependencies
	4.1.35.3 Error Conditions
	4.1.35.4 Post-processing Conditions
	4.1.36.1 Parameter Definitions
	4.1.36.2 Dependencies
	4.1.36.3 Error Conditions
	4.1.36.4 Post-processing Conditions
	4.1.37.1 Parameter Definitions
	4.1.37.2 Dependencies
	4.1.37.3 Error Conditions
	4.1.37.4 Post-processing Conditions
	4.1.38.1 Parameter Definitions
	4.1.38.2 Dependencies
	4.1.38.3 Error Conditions
	4.1.38.4 Post-processing Conditions
	4.1.39.1 Parameter Definitions
	4.1.39.2 Dependencies
	4.1.39.3 Error Conditions
	4.1.39.4 Post-processing Conditions
	4.1.40.1 Parameter Definitions
	4.1.40.2 Dependencies
	4.1.40.3 Error Conditions
	4.1.40.4 Post-processing Conditions
	4.1.41.1 Parameter Definitions
	4.1.41.2 Dependencies
	4.1.41.3 Error Conditions
	4.1.41.4 Post-processing Conditions
	4.1.42.1 Parameter Definitions
	4.1.42.2 Dependencies
	4.1.42.3 Error Conditions
	4.1.42.4 Post-processing Conditions
	4.1.43.1 Parameter Definitions
	4.1.43.2 Dependencies
	4.1.43.3 Error Conditions
	4.1.43.4 Post-processing Conditions
	4.1.44.1 Parameter Definitions
	4.1.44.2 Dependencies
	4.1.44.3 Error Conditions
	4.1.44.4 Post-processing Conditions
	4.1.45.1 Parameter Definitions
	4.1.45.2 Dependencies
	4.1.45.3 Error Conditions
	4.1.45.4 Post-processing Conditions
	4.1.46.1 Parameter Definitions
	4.1.46.2 Dependencies
	4.1.46.3 Error Conditions
	4.1.46.4 Post-processing Conditions
	4.1.47.1 Parameter Definitions
	4.1.47.2 Dependencies
	4.1.47.3 Error Conditions
	4.1.47.4 Post-processing Conditions
	4.1.48.1 Parameter Definitions
	4.1.48.2 Dependencies
	4.1.48.3 Error Conditions
	4.1.48.4 Post-processing Conditions
	4.1.49.1 Parameter Definitions
	4.1.49.2 Dependencies
	4.1.49.3 Error Conditions
	4.1.49.4 Post-processing Conditions
	4.1.50.1 Parameter Definitions
	4.1.50.2 Dependencies
	4.1.50.3 Error Conditions
	4.1.50.4 Post-processing Conditions
	4.1.51.1 Parameter Definitions
	4.1.51.2 Dependencies
	4.1.51.3 Error Conditions
	4.1.51.4 Post-processing Conditions

	4.2 Image and Video Common
	4.2.5.1 Parameters
	4.2.5.2 Dependencies
	4.2.5.3 Error Conditions
	4.2.5.4 Post-processing Conditions
	4.2.6.1 Parameters
	4.2.6.2 Dependencies
	4.2.6.3 Error Conditions
	4.2.6.4 Post-processing Conditions
	4.2.7.1 Parameters
	4.2.7.2 Dependencies
	4.2.7.3 Error Conditions
	4.2.7.4 Post-processing Conditions
	4.2.8.1 Parameters
	4.2.8.2 Dependencies
	4.2.8.3 Error Conditions
	4.2.8.4 Post-processing Conditions
	4.2.9.1 Parameters
	4.2.9.2 Dependencies
	4.2.9.3 Error Conditions
	4.2.9.4 Post-processing Conditions
	4.2.10.1 Parameters
	4.2.10.2 Dependencies
	4.2.10.3 Error Conditions
	4.2.10.4 Post-processing Conditions
	4.2.11.1 Parameters
	4.2.11.2 Dependencies
	4.2.11.3 Error Conditions
	4.2.11.4 Post-processing Conditions
	4.2.12.1 Parameters
	4.2.12.2 Dependencies
	4.2.12.3 Error Conditions
	4.2.12.4 Post-processing Conditions
	4.2.13.1 Parameters
	4.2.13.2 Dependencies
	4.2.13.3 Error Conditions
	4.2.13.4 Post-processing Conditions
	4.2.14.1 Parameters
	4.2.14.2 Dependencies
	4.2.14.3 Error Conditions
	4.2.14.4 Post-processing Conditions
	4.2.15.1 Parameters
	4.2.15.2 Dependencies
	4.2.15.3 Error Conditions
	4.2.15.4 Post-processing Conditions
	4.2.16.1 Parameters
	4.2.16.2 Dependencies
	4.2.16.3 Error Conditions
	4.2.16.4 Post-processing Conditions
	4.2.17.1 Parameters
	4.2.17.2 Dependencies
	4.2.17.3 Error Conditions
	4.2.17.4 Post-processing Conditions
	4.2.18.1 Parameters
	4.2.18.2 Dependencies
	4.2.18.3 Error Conditions
	4.2.18.4 Post-processing Conditions
	4.2.19.1 Parameters
	4.2.19.2 Dependencies
	4.2.19.3 Error Conditions
	4.2.19.4 Post-processing Conditions
	4.2.20.1 Parameters
	4.2.20.2 Dependencies
	4.2.20.3 Error Conditions
	4.2.20.4 Post-processing Conditions
	4.2.21.1 Parameters
	4.2.21.2 Dependencies
	4.2.21.3 Error Conditions
	4.2.21.4 Post-processing Conditions
	4.2.22.1 Parameters
	4.2.22.2 Dependencies
	4.2.22.3 Error Conditions
	4.2.22.4 Post-processing Conditions
	4.2.23.1 Parameters
	4.2.23.2 Dependencies
	4.2.23.3 Error Conditions
	4.2.23.4 Post-processing Conditions
	4.2.24.1 Parameters
	4.2.24.2 Dependencies
	4.2.24.3 Error Conditions
	4.2.24.4 Post-processing Conditions
	4.2.25.1 Parameters
	4.2.25.2 Dependencies
	4.2.25.3 Error Conditions
	4.2.25.4 Post-processing Conditions
	4.2.26.1 Parameters
	4.2.26.2 Dependencies
	4.2.26.3 Error Conditions
	4.2.26.4 Post-processing Conditions
	4.2.27.1 Parameters
	4.2.27.2 Dependencies
	4.2.27.3 Error Conditions
	4.2.27.4 Post-processing Conditions
	4.2.28.1 Parameters
	4.2.28.2 Dependencies
	4.2.28.3 Error Conditions
	4.2.28.4 Post-processing Conditions
	4.2.29.1 Parameters
	4.2.29.2 Dependencies
	4.2.29.3 Error Conditions
	4.2.29.4 Post-processing Conditions

	4.3 Video
	4.3.4.1 Parameters
	4.3.4.2 Dependencies
	4.3.4.3 Error Conditions
	4.3.4.4 Post-processing Conditions
	4.3.5.1 Parameters
	4.3.5.2 Dependencies
	4.3.5.3 Error Conditions
	4.3.5.4 Post-processing Conditions
	4.3.6.1 Parameters
	4.3.6.2 Dependencies
	4.3.6.3 Error Conditions
	4.3.6.4 Post-processing Conditions
	4.3.7.1 Parameters
	4.3.7.2 Dependencies
	4.3.7.3 Error Conditions
	4.3.7.4 Post-processing Conditions
	4.3.8.1 Parameters
	4.3.8.2 Dependencies
	4.3.8.3 Error Conditions
	4.3.8.4 Post-processing Conditions
	4.3.9.1 Parameters
	4.3.9.2 Dependencies
	4.3.9.3 Error Conditions
	4.3.9.4 Post-processing Conditions
	4.3.10.1 Parameters
	4.3.10.2 Dependencies
	4.3.10.3 Error Conditions
	4.3.10.4 Post-processing Conditions
	4.3.11.1 Parameters
	4.3.11.2 Dependencies
	4.3.11.3 Error Conditions
	4.3.11.4 Post-processing Conditions
	4.3.12.1 Parameters
	4.3.12.2 Dependencies
	4.3.12.3 Error Conditions
	4.3.12.4 Post-processing Conditions
	4.3.13.1 Parameters
	4.3.13.2 Dependencies
	4.3.13.3 Error Conditions
	4.3.13.4 Post-processing Conditions
	4.3.14.1 Parameters
	4.3.14.2 Dependencies
	4.3.14.3 Error Conditions
	4.3.14.4 Post-processing Conditions
	4.3.15.1 Parameters
	4.3.15.2 Dependencies
	4.3.15.3 Error Conditions
	4.3.15.4 Post-processing Conditions
	4.3.16.1 Parameters
	4.3.16.2 Dependencies
	4.3.16.3 Error Conditions
	4.3.16.4 Post-processing Conditions
	4.3.17.1 Parameters
	4.3.17.2 Dependencies
	4.3.17.3 Error Conditions
	4.3.17.4 Post-processing Conditions
	4.3.18.1 Parameters
	4.3.18.2 Dependencies
	4.3.18.3 Error Conditions
	4.3.18.4 Post-processing Conditions

	4.4 Image
	4.4.3.1 Parameters
	4.4.3.2 Dependencies
	4.4.3.3 Error Conditions
	4.4.4.1 Parameters
	4.4.4.2 Dependencies
	4.4.4.3 Error Conditions
	4.4.4.4 Post-processing Conditions
	4.4.5.1 Parameters
	4.4.5.2 Dependencies
	4.4.5.3 Error Conditions
	4.4.5.4 Post-processing Conditions
	4.4.6.1 Parameters
	4.4.6.2 Dependencies
	4.4.6.3 Error conditions
	4.4.6.4 Post-processing Conditions
	4.4.7.1 Parameters
	4.4.7.2 Dependencies
	4.4.7.3 Error Conditions
	4.4.7.4 Post-processing Conditions
	4.4.8.1 Parameters
	4.4.8.2 Dependencies
	4.4.8.3 Error Conditions
	4.4.8.4 Post-processing Conditions
	4.4.9.1 Parameters
	4.4.9.2 Dependencies
	4.4.9.3 Error Conditions
	4.4.9.4 Post-processing Conditions

	5 OpenMAX Component Extension APIs
	5.1 Description of the Extension Process
	5.1.1.1 Prerequisites for This Method
	5.1.1.2 Method Implementation

	5.2 Examples of Using Extension Querying API

	6 OpenMAX Generic Components
	6.1 Seeking Component
	6.2 Clock Component
	6.2.2.1 Media Clock Scale
	6.2.2.2 Client Start Time
	6.2.2.3 Media Clock State
	6.2.4.1 Media Time Updates
	6.2.4.2 Media Time Request
	6.2.4.3 Media Time Request Fulfillment
	6.2.4.4 Scale Change Notifications
	6.2.4.5 Clock State Change Notifications
	6.2.5.1 Deriving Media Time
	6.2.5.2 Scale Changes
	6.2.5.3 Fulfilling Media Time Requests

	7 Appendix A – References
	7.1 SPEECH
	7.2 AUDIO
	7.3 SYNTHETIC AUDIO
	7.4 IMAGE
	7.5 VIDEO
	7.6 JAVA

