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Conditional independence is a fundamental relation in probability
theory, statistics, Bayesian inference, ...

Conditional indep. between random variables can be construed as a
relation between maps in a category of probability spaces.

We axiomatize local independence structure and local independent
products on a category, capturing general properties of conditional
independence.

Other examples of local independence structure and products on
categories occur in, e.g., computability theory, nominal sets,
separation logic, ...

So local independence structure and local independent products
are common to diverse notions of conditional independence arising
in different contexts.



Conditional independence is a fundamental relation in probability
theory, statistics, Bayesian inference, ...

Conditional indep. between random variables can be construed as a
relation between maps in a category of probability spaces.

We axiomatize local independence structure and local independent
products on a category, capturing general properties of conditional
independence.

Other examples of local independence structure and products on
categories occur in, e.g., computability theory, nominal sets,
separation logic, ...

So local independence structure and local independent products
are common to diverse notions of conditional independence arising
in different contexts.

(Similar general motivation to Dawid's “separoids”, but using
categories rather than preorders, and with new examples.)
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Part |: Independence



Independence of random variables (recap)

Given random variables:

Xi
{Q—— Riticicn
define
JL()<l7 s 7Xn)
to hold if, for all events Ay € Ry,..., A, S R,

P(XL€AL A ... A Xp€Ay) = P(X1EAL) ... P(X, € A,)

Joint independence implies pairwise independence:
A (X1,...,Xp) implies X; 1L X;, whenever i # ;.

But pairwise independence does not imply joint independence.



The categories Prob and Probg

Objects: probability spaces (S, Fs, Ps)
» Fs a o-algebra over a set S; and
» Ps a probability measure on Fs.
Morphisms: measure-preserving functions X : S — T; i.e.,
» X is measurable (that is X~(B) € Fs, for all B € Fr),
» Ps(X~Y(B)) = Pr(B), for all B € Fr.

In Probg morphisms are identified mod 0.



The categories Prob and Probg

Objects: probability spaces (S, Fs, Ps)
» Fs a o-algebra over a set S; and
» Ps a probability measure on Fs.
Morphisms: measure-preserving functions X : S — T; i.e.,
» X is measurable (that is X~(B) € Fs, for all B € Fr),
» Ps(X~Y(B)) = Pr(B), for all B € Fr.

In Probg morphisms are identified mod 0.

The notion of joint independence defines independence as a
property of families of maps with common domain. We write

L{si T,-}

i€l

to say that a family is independent. (/ finite in this talk.)



Independence structure

An independence structure on a category C
is a specified collection of finite-set-indexed families

i€l

{x v}
of morphisms with common domain. Families in the collection are
called independent, notation L {f;};c/.

Independent families are required to satisfy:
» Every singleton family {X LA Y} is independent.
s 1F 1L {X —"+ Vi}ies and IL{Y; —57+ Z;} ey for all i € I then

jofi
1 A{X & Zij}iel, je;-
»If J.L{fj-}_,e_/ and m: | — J is injective then J.L{fm(,-)},'e[.



Independence structure

An independence structure on a category C with terminal object 1
is a specified collection of finite-set-indexed families

X

i€l

of morphisms with common domain. Families in the collection are
called independent, notation L {f;}c/.

Independent families are required to satisfy:
» Every singleton family {X LA Y} is independent.
s 1F 1L {X —"+ Yi}ies and IL{Y; 57+ Z;} ey for all i € I then
L{X fel Zij}iel, jes;-
» If AL {fj}jes and m: | — J is injective then 1L {f,i\}ie -
P IF L (X — Vidie then L {X —v V)i 0{X —— 1}.



Independent products

A category C with terminal object and independence structure has
(finite) independent products if, for every pair of objects Y1, Y2,
there there exist an object Y1 ® Y2 and an independent pair

YIQY: —= Y, 1L Yi1®Y, /= Y,

satisfying:
f £ . .
» whenever X — -~ Y, 1L X 2. Y5, there exists a unique
morphism
fi.f;
X < 1 2> Y]_ ® Y2

such that m; o (f1, ) = f;, for i € {1,2}; and

Fif X~ Yiiepo) U{X —Zs Z}jes then also
LiX -2 Vi@ vl oiX —Ee Z}e.



Independent product in Prob and Probg

(Slaﬁ) F>1)®(S27~57 P2) = (Sl X 527 ]:1®-53 P1®F>2)

where:
» 51 x S, is product set,
» F1 ® F is product o-algebra, and

» PL® P, is product measure.
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Can one view the Independent Product in Probability categorially?

y N One can construct a category of probability spaces, but this category has no products. Now probability
theory relies strongly on the ability to build independent products, the product measure. In a sense, the
8 notion of independence is what distinguishes probablity theory from the theory of finite measures.

Is there a categorial way to make sense of and enlighten the notion of independent products in
category theory?

It is possible to formulate independence in Lawvere's category of probabilistic mappings (Borel spaces
as objects and Markov kernels as morphisms) in terms of constant morphisms, but I think this is not very
enlightening, conditional independence is built into the morphisms. Maybe, this is what one has to do
when putting probability center stage?

| do know the rudiments of categry theory, but | would prefer an answer that does not require too much
immersion in category thory, provided that is possible.

ct.category-theory pr.probability measure-theory
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Very nice question! ;) | wrote a short paper about this question about ten years ago, see
http://arxiv.org/abs/math/0206017 (My apologies for advertising my own work, but this is exactly the
question | asked myself at that time).

The product of probability spaces is tensor product in the sense of category, as Martin Brandeburg also
pointed out in a comment. But it has an additional structure, you have natural morphisms onto the
factors in the tensor product. This is because the projections onto the two factors that you have for the
Cartesian product (of sets) preserve the measures, so they are also morphisms in the category of
probability spaces. | called this structure a tensor product with projections: for two objects

Q; = (%, F,P),i=1,2,youget 4 ® Y = (4 x Y, F; ® F, P, ® B,) and random variables
X: e —-Q,1=1,2.

You can use this "tensor product with projections" to characterise independence of random variables:
tworv. Y, : Q — €, 4 = 1,2, defined on the same probability space £2, are independent iff they
factorise, i.e., if there exists arv. Z: Q2 — Q; ® Yy such thatY; = X;0 Z,4 =1,2.

The notion dualises to the algebras of functions on a probablity space, where it becomes a tensor
product with inclusions. Generalising to not necessarily commutative algebras, it includes notions of
independence used in noncommutative (or quantum) probability, like the freeness.

share edit flag edited Feb 6 at 9:16 answered Feb 6 at 9:07
Uwe Franz
1233 » 5 20



Proposition The following are equivalent on a category C.
» An independence structure with independent products.

» A symmetric monoidal structure with jointly monic
projections.
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projections.

A monoidal structure has projections [Jacobs 1995] if the unit / is a
terminal object. Writing 1 for such a unit, define projection maps:

1 ! ~

m = Y1I®Y2 ey Y1l — Y1
! 1 ~

Ty = Y1®Y2&1®Y2;> Y2 .



Proposition The following are equivalent on a category C.
» An independence structure with independent products.

» A symmetric monoidal structure with jointly monic
projections.

A monoidal structure has projections [Jacobs 1995] if the unit / is a
terminal object. Writing 1 for such a unit, define projection maps:

1 ! ~

m = Y1I®Y2 ey Y1l — Y1
! 1 ~

Ty = Y1®Y2&1®Y2;> Y2 .

_ . . i
The projections are jointly monic if, for all X —— Y; and
f: ) h
X 2~ Y5, there is at most one X —— Y7 ® Y% such that both
m o h=Ff and m o h = f.



Proof outline for Proposition

An independence structure endows the objects of C with the
structure of a (dual) multicategory (whose multimorphisms have
the very specific form of being given as families of morphisms in C).

The definition of independent products in C implies that the
multicategory is representable in the sense of [Hermida 2000],
where it is shown that representable multicategories determine a
derived monoidal structure. In the case at hand, this monoidal
structure has jointly monic projections.

Conversely, given symmetric monoidal structure with jointly monic

projections on C, define the associated independence structure by:

L{X—ﬁ» Yihi<icn <= HX—h> YI® - ®Y,s.t.

moh="fand...and myoh="f,



Nominal sets

Independence structure

Given:

i€l

(xtev)
define:

LI A{fi}ties & Vi#jel.Vxe X supp(fi(x)) nsupp(fj(x)) = & .
Independent product

X®Y = {(x,y) € X x Y | supp(x) n supp(y) = &}

This is the well-known separated product in the category of
nominal sets.



Category of V-valued heaps (separation logic)

Objects: (L, s), where L is a finite set and s: L — V is a function.

Morphisms (L, s) — (L', s’): injective functions f: L' — L such
that sof = ¢

Independence structure

Given:

{(Ls) = (Li.s)}

iel

define:
1 A{fi}ier & Vi#jel. img(fi) nimg(f;)) = & .

Independent product

(L1,51) ® (L2,52) = (L1 + L2, [s1,52])



Part Il: Conditional Independence



Conditional independence of random variables

Consider a family {Q X Ti}ies of random variables and a

L . Y
conditioning variable 2 — U, as below

Xi
Q .y

U

Informally, {Xi};es is said to be conditionally independent given Y
(notation L {Xi};es | Y) if the conditional probability distributions
of X; given Y are independent.

We omit the technical definition, which, for arbitrary probability
spaces, uses Kolmogorov's conditional expectation operator.



Consider the associated commuting diagram:

Q (X,‘, Y)

Img(X;, Y)

Then it holds that

L{Xitier | Y = 1L{(XY)}ier | Y



Consider the associated commuting diagram:

(X,', Y)

Q Img (X, Y)

Then it holds that
L{Xi}ier | Y < L{X,Y)}ier | Y

Thus, given image tuples, general conditional independence can be
reduced to local independence in slice categories.

We axiomatize the latter as the primary notion.



Local independence structure

Local independence structure on a category C is given by
independence structures L;, on every slice category C//, related by
the following property.

» For every commuting diagram

f
X .y & 7
h i

W oy . J

inC,if fl,;hand gl ithen gof . h.

The property asserts that independent squares compose.



General conditional independence via image tuples

. . . fi f; .
Given a pair of morphisms X —— Y; and X —— Y5, in a
category C, we call a structure

Y1

a1

X

qz
a pairing of fi, f> if:
» quop="f,
> goop = f, and

» g1, qo are jointly monic.



An image pairing of a span X A, Y1 and X B, Y>, is a pairing

Y1

fi.f:
x fh) Img(f, H) — Yo
T2

that is initial w.r.t. all pairings.
l.e., given any pairing p, g1, g2 (as on previous slide), there exists
. . h
(a necessarily unique) Img(f1, ) — P such that ho (f1, ) = p,

qloh:ﬁ'land q20h=7~T2.

We say that C has image tuples if image pairings exist for all spans.



Let C be a category with local independent structure and with
image tuples.

. fi .
Given a maps {X —— Y} and X —£, 7, we obtain
commuting triangles:

f.’
(fi,g) - Tmg(f, g)

N

We define the general relation of conditional independence by

I{fitier | &8 = Lz{(fi,8)}iel



Let C be a category with local independent structure and with
image tuples.

. fi .
Given a maps {X —— Y} and X €. 7, we obtain
commuting triangles:

f.’
(fi,g) - Tmg(f, g)

N

We define the general relation of conditional independence by

I{fitier | &8 = Lz{(fi,8)}iel

This axiomatics can be used to derive general laws of conditional
independence.



Local independent products

Let C be a category with local independence structure.

We say that C has local independent products if the independence
structure on each slice C/I has independent products.

. f . .
Given X ——~ Z and Y —%+ Z we use the following convenient
notation for f Q7 g.

2

X®zY Y
1 g
X Z

f

We call such squares independent product squares. Every such
square is a fortiori independent.



Nominal sets

Local independence

Given {X —"+ Vi}ies from X —%+ Z to {Y; —~ Z}jes in slice
over Z, define:

ALz {fitier =
Vi#je l.Vx e X.supp(fi(x)) nsupp(fj(x)) < supp(g(x)) .

Local independent product

Given objects X SN Z and Y —%+ Z in slice over Z, define:

X®zY = {(x,y) € X xz Y | supp(x) nsupp(y) S supp(f(x)) }



Nominal sets

Local independence

Given {X —"+ Vi}ies from X —%+ Z to {Y; —~ Z}jes in slice
over Z, define:

ALz {fitier =
Vi#je l.Vx e X.supp(fi(x)) nsupp(fj(x)) < supp(g(x)) .

Local independent product

Given objects X SN Z and Y —%+ Z in slice over Z, define:

X®zY = {(x,y) € X xz Y | supp(x) nsupp(y) S supp(f(x)) }

Name sharing is conditioning!



Category of V-heaps

Local independence

Given {(L,s) — f (L, si)}ies from (L,s) —5» (L',s) to
{(L;,s;) — (L', s")}ies in slice over (L', s"), define:

Loy ifitier & Vi#j€e l img(f) nimg(f;) < img(g) -

Local independent product

Given objects (L1, s1) L (L, ") and (La, ) —+ (L', s') in slice
over (L', s"), define:

(L1,51) sy (L2,52) = (L1 41 Lo, [51,52])



Category of V-heaps

Local independence

Given {(L,s) — f (L, si)}ies from (L,s) —5» (L',s) to
{(L;,s;) — (L', s")}ies in slice over (L', s"), define:

Loy ifitier & Vi#j€e l img(f) nimg(f;) < img(g) -

Local independent product

Given objects (L1, s1) L (L, ") and (La, ) —+ (L', s') in slice
over (L', s"), define:

(L1,51) sy (L2,52) = (L1 41 Lo, [51,52])

Shared memory is conditioning!
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The standard probabilistic notion of conditional independence
defines local independence structure on Prob and Probyg.

Apparently, local independent products don't exist in general.
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We restrict to standard probability spaces (a.k.a. Lebesgue-Rokhlin
spaces).

Trivially, the local independence structure on Prob (resp. Probyg)
restricts to the full subcategory StdProb (resp. StdProbg) on
standard probability spaces.



Categories of probability spaces

The standard probabilistic notion of conditional independence
defines local independence structure on Prob and Probyg.

Apparently, local independent products don't exist in general.

We restrict to standard probability spaces (a.k.a. Lebesgue-Rokhlin
spaces).

Trivially, the local independence structure on Prob (resp. Probyg)
restricts to the full subcategory StdProb (resp. StdProbg) on
standard probability spaces.

StdProbg has local independent products.



Standard probability spaces and disintegrations

A key feature of standard probability spaces is that every map
(S, Fs,Ps) — (U, Fy, Py) has a disintegration:

» For almost all u € U the fibre S, := Y ~1(u) carries the
structure of a standard probability space (S,, Fs,, Ps,)-

» For every Ae Fs, we have: An S, € Fs,, for almost all
u € U; the function u+— Ps,(An S,) is measurable; and

Ps(A) = LTPS(A| Y = u) dPr

where we write Ps(A | Y = u) for Ps,(An S,).



Standard probability spaces and disintegrations

A key feature of standard probability spaces is that every map
(S, Fs,Ps) — (U, Fy, Py) has a disintegration:

» For almost all u € U the fibre S, := Y ~1(u) carries the
structure of a standard probability space (S,, Fs,, Ps,)-

» For every Ae Fs, we have: An S, € Fs,, for almost all
u € U; the function u+— Ps,(An S,) is measurable; and

Ps(A) = JETPS(A |'Y =u)dPr

where we write Ps(A | Y = u) for Ps,(An S,).

We first use disintegrations to give a conceptually straightforward
definition of the local independent structure on StdProbyg, then to
define local independent products.



Given a commuting triangle in (w.l.o.g.) StdProbyg,

X
S - T

U

for almost all u € U, the function X|s,: S, — T, (where
Sy =Y Y(u) and T, := Z7%(u)) is measure preserving:

XTs,
(SU?J_TSU7PTU) 2 (TU"FTU7PTL/) :



Local independence structure on StdProbg

Given a family {Y N Z;}ier of maps in the slice category
StdProbg/U, i.e.

Define {Xi}ies to be conditionally independent given Y, notation
L {Xi}ier | Y

if {Xils,}ies is an independent family for almost all v € U.



Local independence structure on StdProbg

Given a family {Y N Z;}ier of maps in the slice category
StdProbg/U, i.e.

Define {Xi};es to be conditionally independent given U, notation
Ay {Xi}ier

if {Xils,}ies is an independent family for almost all v € U.



Proposition A commuting square, in StdProby,

X
S T
Y Z
U vV
w

is independent if and only, for almost all u e U, the function
XT1s,: Su— Tw(u) is measure preserving.

XFU
(Su» Fs,r Ps,) ——> (Twi(u) Frue PTwi)



Proposition A commuting square, in StdProby,

X
S T
Y Z
U vV
w

is independent if and only, for almost all u e U, the function
XT1s,: Su— Tw(u) is measure preserving.

XFU
(Su» Fs,r Ps,) ——> (Twi(u) Frue PTwi)

Corollary Independent squares compose.



Local independent products in StdProbg

Given S —— U and S —— U in StdProby.
Define S®y S’ —— U by taking S®y S’ to be:

(5,.7, P) ®U (SI,.FI, P,) = (5 Xy 5’, .7:®U .;E/, P®U PI)

where:
» S xy S is set-theoretic pullback,
» (F®u F')y is Fs, ®]:,L
» (P®y P')yis Ps, ® sz

using the disintegrations for S —— U and S’ —— U to specify a
disintegration for S ®y S’ —— U, determining the map mod 0.



Local independent products in StdProbg

Given S —— U and S —— U in StdProby.
Define S®y S’ —— U by taking S®y S’ to be:

(5,.7, P) ®U (SI,.FI, P,) = (5 Xy 5’, .F@U .7:/, P®U PI)

where:
» S xy S is set-theoretic pullback,
» (F®u F')y is Fs, ®]:I{,
» (P®y P')yis Ps, ® Pfsz

using the disintegrations for S —— U and S’ —— U to specify a
disintegration for S®y S’ — U, determining the map mod 0.

(Strictly, the measure ((F ®u F')u, (P ®u P’),) on each fibre
(S xy S’), needs to be completed to a standard probability space.)



The independent-square fibration

Let C be a category with local independence structure.

Let C™"d be the category with as objects: morphisms in C; and with
as morphisms from X —— | to Y —— J: independent squares

X Y

| ——J

(C'™ is a full-on-objects subcategory of the arrow category C™.)

Proposition C has local independent products if and only if the
codomain functor C'"® — C is a fibration.



Properties of the fibration

» A morphism in ¢4

| ———J
is cartesian if and only if the square is an independent product
diagram in C/J.

» The fibre category over [ is isomorphic to C/I.

» For | —— J in C, the reindexing functor u*: C/J — C/I is
strong monoidal.



The atomic topology

Proposition Suppose C has local independent products. Then the
following are equivalent for a presheaf F: C°P — Set.

» F is a sheaf for the atomic topology.

» F maps independent squares in C to pullbacks in Set.



Further directions

1. Other examples of local indepedence struture and products
related to: computability theory, group theory, ...

2. Derivation of laws of conditional independence from
categorical structure.

3. Relationship to Dawid's separoids.

4. Applications to randomness. (Tentative!)



