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On Orthogonal Polyhedra

Jorge Urrutia
Instituto de Matemáticas

Universidad Nacional Autónoma de México

Joint work with I. Aldana-Galván, J.L. Álvarez-Rebollar,
J.C. Catana-Salazar, M. Jiménez-Salinas, N. Marín-Nevárez,

E. Solís Villarreal, and C. Velarde.

1 Introduction

An orthogonal polygon is a simple polygon all of whose sides are parallel to
the x- or the y-axis. Orthogonal polygons have been studied by many authors
in the Computational Geometry community mainly on problems related to
Art Galleries Problems [8]. A polyhedron in R3 is a compact connected
set bounded by a piecewise linear 2-manifold. An orthogonal polyhedron is
called orthogonal if all of its faces are all parallel to the xy-, xz- or yz-planes
of R3.

In this talk we will review some of the known results for orthogonal
polygons, and present some generalizations of them to orthogonal polyhedra.
We will focus on two problems: Minimizing the solid angle sum of orthogonal
polyhedra, and beacon coverage. Most of the results presented here, are
contained in [1, 2].

2 Angle Sum

Let P be a polyhedron in R3, and let v be a vertex of P. The solid angle of
P at v is defined as follows: Consider a small enough sphere C centered at
v. The size of the angle of P at v is the area of the portion of the boundary
of C that lies within P divided it by the square of the radius of C. Since
the area of a unit sphere is 4π, it follows that the maximum size of the solid
angles at vertices of a polyhedron is at most 4π.

In the plane we all know that the sum of the angles of a triangle is always
π. We note first that this result does not generalize to tetrahedra in R3, it is
a well-known result that for any α, 0 < α < 2π there is a tetrahedron such
that the sum of its solid angles is α, see [7]. In fact, it is not hard to see that
there are polyhedra with an arbitrarily large number of vertices such that
the sum of their solid angles is arbitrarily small.



Observe that for orthogonal polyhedra, the size of the solid angle at
each of their vertices is at least π/2, and at most 7π/2, each vertex of an
orthogonal polyhedron covers one, three, four, five, and seven octants, see
Figure 1. Thus a natural question that arises is the following: Can we
characterize orthogonal polyhedra with n vertices that minimize or maximize
the sum of their solid angles?

Let P be an orthogonal polyhedron in R3. We classify the vertices of P
according to the size of interior solid angles. A vertex x of P is classified
as 1-octant if its interior solid angle is π/2 (see Figure 1a), and 3-octant if
its interior solid angle is 3π/2 (see Figure 1b). The 4-octant, 5-octant and
7-octant vertices are defined in a similar way, as illustrated in Figures 1c,
1d, 1e and 1f respectively.

(a) 1-octant vertex (b) 3-octant vertex (c) 4-octant vertex

(d) 4-octant vertex (e) 5-octant vertex (f) 7-octant vertex

Figure 1: Vertex classification for orthogonal polyhedra.

We will prove the following result:

Theorem 1. The minimum interior solid angle sum of orthogonal polyhedra
with n vertices and genus g is (n − 4 + 4g)π and is achieved by polyhedra
having only 1-octant, 3-octant, and possibly 4-octant vertices.

To prove our previous result, we will prove the following results that
generalizes the well known result on orthogonal polygons.

Lemma 1. Let P be an orthogonal polygon with n vertices, and h holes.
Then the number of reflex and convex vertices is, respectively, r = (n+4h−
4)/2 and c = (n− 4h+ 4)/2.

Let k3 be the vertices of degree 3, k4 the vertices of degree 4, and k6 the
vertices of degree 6 in the 1-skeleton of a polyhedron. We prove:



Theorem 2. Let P be an orthogonal polyhedron in R3 with n = k3+k4+k6
vertices and arbitrary genus g. Then P has (n−3(k4+k6)+8g−8)/2 reflex
vertices and (n+ 3(k4 + k6)− 8g + 8)/2 convex vertices.

For g = 0, we have:

Theorem 3. Let P be an orthogonal polyhedron in R3 homeomorphic to
the sphere, with n = 2k vertices, and such that its 1-skeleton is a 3-regular
graph. Then P has (n+ 8)/2 convex vertices and (n− 8)/2 reflex vertices.

Observe that the bound given in Theorem 1 is minimized when g = 0.

(a) A family of lifting orthogonal polyhedra that minimize its solid angle sum.

(b) A family of orthogonal polyhedra with 4-octant vertices that minimize the
solid angle sum.

Figure 2: Family of polyhedra that minimize the solid angle sum.

3 Beacon Coverage

A beacon is a fixed point in a polyhedron P that can induce a magnetic pull
toward itself over all points in P . When a beacon b is activated, points in P
move greedily to decrease their euclidean distance to b. A point p can move
along any obstacles it hits on its way to a beacon b as long as its distance
to b keeps on decreasing. Thus, the path from the initial position of p to a



beacon b may alternate between moving in straight line segments contained
in the interior of P and line segments on the faces of P .

The piecewise linear path created by the movement of p under the attrac-
tion of b is called the attraction path of p with respect to b. If the attraction
path of p ends in b, we say that p is covered by b. If p is in a position where it
is unable to move in such a way that its distance to b decreases, we say that
it is stuck and it has reached a local minimum, or a dead end, see Figure 3.

(a) (b)

Figure 3: Two examples of points that reach a local minimum: (a) The
attraction path of a point with respect to a vertex beacon and an edge
beacon, both unreachable, and (b) the point gets stuck on its way to an edge
beacon.

Beacon attraction was introduced by Biro et al. [4, 5, 6]. This model
extends the classical notion of visibility; if an object p is visible from a beacon
q, then p moves towards q along the straight line segment joining p to q.

4 Covering orthogonal polyhedra

Bae et al. [3] proved that the interior of any orthogonal n-gon can be covered
with

⌊
n
6

⌋
vertex beacons. A natural question is to see if this result generalizes

to R3. We will prove now that not every orthogonal polyhedron can be
covered with vertex beacons by showing an orthogonal polyhedron P such
that if we place a vertex beacon on each vertex of P there is a point p not
covered by any of the vertex beacons, see Figure 4. We call it the notched
orthoplex. It consists of a cuboid with six channels, each one of them going
across a different face. We attach to each channel a cuboid of the same
length. Each attached cuboid is slightly narrower than its channel and is
placed at its center, thus creating a notch on that channel, as shown in
Figure 4.

Let p be the point at the center of P . It is easy to see that the attraction
path of p to any vertex beacon of the polyhedron leads to a local minimum
generated by a notch on the corresponding channel, as shown in Figure 5.

Since vertex beacons are not enough to cover orthogonal polyhedra, it is



Figure 4: The notched octoplex cannot be covered with vertex beacons.

Figure 5: The point in the center of the notched octoplex is unable to reach
a beacon placed in any vertex.

natural to study the edge beacon model. It is straightforward to see that if
we place an edge beacon at each edge of a polyhedron P (orthogonal or not)
these edge beacons always cover P .

We will prove:

Theorem 4. Let P be an orthogonal polyhedron with e edges. Then e
12 edge

beacons are always sufficient to cover P .

Theorem 5. Let P be an orthogonal polyhedron with e edges. Then b e6c edge
beacons are always sufficient to cover both the interior and exterior of P .

Finally we will prove:

Theorem 6. There exists a family of orthogonal polyhedra with e edges, such
that

⌊
e
21

⌋
edge beacons are necessary to cover their interior.
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Forbidden Configurations in Discrete Geometry

David Eppstein∗

Computer Science Department, Univ. of California, Irvine

We review and classify problems in discrete geometry that depend only on
the order-type or configuration of a set of points, and that can be character-
ized by a family of forbidden configurations. These include the happy ending
problem, no-three-in-line problem, and orchard-planting problem from classical
discrete geometry, as well as Harborth’s conjecture on integer edge lengths and
the construction of universal point sets in graph drawing. We investigate which
of these properties have characterizations involving a finite number of forbid-
den subconfigurations, and the implications of these characterizations for the
computational complexity of these problems.

∗Supported in part by the National Science Foundation under Grants CCF-1228639, CCF-
1618301, and CCF-1616248.



New crossing lemmas

János Pach∗

One of the most useful tools in topological graph theory is the so-called Crossing
Lemma of Ajtai, Chvátal, Newborn, Szemerédi (1982) and Leighton (1983). It states,
roughly speaking, that if a graph drawn in the plane has much more edges than vertices,
then the number of crossings between its edges is much larger than the number of
edges.[1]

Natan Rubin, Gábor Tardos and the speaker discovered a similar phenomenon for
families of curves in the plane. If two curves have precisely one point p in common, and
at this point they do not properly cross, then p is called a touching point. Any other
point that belongs to two curves is called an intersection point. Let X and T stand
for the number of intersection points and touching points, respectively, in a family of
n curves, no three of which pass through the same point. If T/n is larger than a fixed
constant, then X ≥ Ω(T (log log(T/n))1/336). In particular, if T/n → ∞, then the
number of intersection points is much larger than the number of touching points.[2]

What happens if, instead of the number X of crossing points, we want to estimate
the number x of crossing pairs of curves? Obviously, we have x ≤ X. In a joint paper
with Géza Tóth, it was shown that x ≥ Ω(T 2/n2). The order of magnitude of this
bound is best possible.[3]

References
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Characterizing minimal rigidity of
square-grid frameworks with holes

Naoki Katoh
Department of Computer Science, Kwansei Gakuin University

naoki.katoh@gmail.com.

1 Introduction

Bolker and Crapo gave a necessary and sufficient condition in their seminal paper [1] for an
m× n square grid framework with some diagonal braces of squares to be infinitesimally rigid.
They defined a bipartite graph corresponding to the square grid framework with some diagonal
braces such that the infinitesimal rigidity of the framework can be tested by checking the
connectivity of the graph.

(a)

1

A B C

A B C

1 2 3

2

3

(b)

Figure 1: A braced m× n square grid framework and the corresponding bipartite graph.

In particular, the minimum number of diagonal braces that are necessary and sufficient to
make the m× n square grid framework infinitesimally rigid is m+ n− 1 (see Figure 1).

Radics and Recski [5] studied the case with holes where the outer boundary of the square
grid framework is a simple rectilinear polygon, and long diagonal bars as well as cables can be
used. See Figure 2 for the square grid framework with holes.

Figure 2: A square grid framework with holes

They showed a lower bound for the number of diagonal bars and cables required to make
the framework rigid; this bound matches the one for the case where only short braces (diagonal

1
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edges of unit squares) are allowed. However, in this case, they noted that the characterization
based on a bipartite graph is no longer valid.

Gáspár, Radics and Recski [3] studied the case with holes where the outer boundary is
rectangular, and derived a necessary and sufficient condition in terms of the rank of a certain
matrix for an m × n square grid framework with some diagonal braces of squares to be in-
finitesimally rigid, The advantage of using the matrix introduced by [3] is that the matrix size
is much reduced compared with using an original rigidity matrix, which helps to substantially
reduce the running time of checking the rigidity. The paper [3] mentioned that the result can
be generalized to the case where the outer boundary is a rectilinear simple polygon. However,
the details are not given.

Ito, Kobayashi, Higashikawa, Katoh, Poon and Saumell [4] have recently proposed an al-
gorithm for the bracing problem: given a square-grid framework with holes in which there is
no brace, the objective is to add the minimum number of braces which makes the framework
infinitesimally rigid.

A square-grid framework is called minimally rigid if the framework is infinitesimally rigid
and removing any brace makes the framework infinitesimally flexible. Then the characterization
by [1] immediately provides a necessary and sufficient condition for the minimal rigidity of a
framework with no holes, however the results by [3, 5] do not provide such a condition for the
case with holes. Recently, we give the first necessary and sufficient condition for the minimal
rigidity of a square-grid framework with holes [2]. In this talk, we will review results related to
the rigidity of square-grid frameworks and will explain our recent result of [2]. This is a joint
work with Siu-Wing Cheng, Yuya Higashikawa and Adnan Sljoka.
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Oichan and I

Vašek Chvátal
Department of Computer Science & Software Engineering

Concordia University, Montreal

I have been blessed by having a number of wonderful people come into
my life. Jin Akiyama is one of them.

Jin and I met in 1979. It was a charmed decade, the nineteen seventies.
The Pill was used widely and AIDS lay dormant, patchouli disguised the scent
of marijuana, the Rolling Stones released Sticky Fingers in 1971 and Some
Girls in 1978. More to the point, Canadian travel grants were dispensed lib-
erally. “We award prize money”, said later a member of the NSERC Grants
Selection Committee and continued, “we don’t care if he uses it to take his
mistress to Rio de Janeiro, as long as he brings back a first-class theorem”.
Such was the atmosphere where David Avis and I sensed a license to travel
around the world and let NSERC pay.

The vehicle for our round-the-world junket was Pan Am Flight 1 from
New York to New York, westbound from beginning to end, with a number of
stopovers allowed along the way. To justify its expense, I picked my stopovers
in places to which I had some professional connection: first Honolulu, where
the Institute of Management Sciences held its 24th International Meeting
on June 18–22, 1979, then Tokyo, where the IEEE Circuits and Systems
Society held its International Symposium on Circuits and Systems on July
17–19, 1979, and further along the trajectory graph theorists in Singapore,
Bangkok, Bombay, and Paris. But the three-day meeting in Tokyo did not
seem to justify the stay of several weeks in Japan that David and I insisted
on. We insisted on staying in Japan for several weeks since our desire to get
to know this country was the motivation for the whole trip.

The idea of going to Japan crossed my mind first when I read Koestler’s
The Lotus and the Robot: his venomous sneers at Zen notwithstanding, his
portrayal of the 1950s Japan intrigued me. If, even having read it, I still imag-
ined Japanese life as revolving around tea ceremonies, listening to geishas
plucking shamisen strings, and watching cherry blossoms float gently to the
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ground, two films disabused me of such stereotypes. I was fascinated by the
cross between Chandler and Kafka in The Man Without a Map and I was
riveted by the refined perversion of Odd Obsession. Now I really wanted to
get to know Japan.

But my contacts in Japan were only tenuous, and so one day I phoned
Frank Harary in his Ann Arbor office and asked him if he could introduce
me to any Japanese graph theorists. He replied that one was sitting right
next to him and he handed the receiver to Jin. I am immensely grateful to
Frank Harary: He may have saved my life in the summer of 1971 and less
than eight years later he introduced me to Jin Akiyama.

And so it came to pass that one fine June evening Jin, his assistant Hi-
roshi Era, and Hiroshi’s wife Akiko waited at Narita to welcome us to Japan.
David (nonstop from New York) and I (via Hawaii) landed there twenty-four
hours later: oblivious of the International Date Line, I had misinformed Jin
about the date of our arrival. In spite of this setback, Jin and Hiroshi got us
to a happy reunion in Jin’s parents’ house in Eifukuchō and, after a reinvigo-
rating nap, the four boys were off to a hostess bar in Kichijōji. Where we met
the beautiful convivial Fumiko Yano. To whom we dedicated our joint paper
Balancing signed graphs nine months later. I still have her self-portrait. And
later that night, futons unrolled once more on the tatami floor in Eifukuchō,
we slept and slept and slept. And next day Jin took us to our new home
away from home, the Sun Route Hotel in Shibuya.

Our first impressions of Japan? Alice in Wonderland does not begin to
describe it. The sights and smells and sounds were intoxicating. The elegant
tall buildings with a number of bars on each floor and the floors stacked up
up up all the way to the indigo heaven flanked by beautiful brightly lit kanji
and kana, the occasional shout of rōmaji a reminder of how mysterious the
rest was in the aroma of yakitori, shioyaki, yakisoba floating through the din
of pachinko parlors and the incessant irasshaimase of greeters in the street.In
short, Shinjuku san-chōme.

Soon there were five of us carousing around the magic city: in addition to
the original team of Jin, Hiroshi, David, myself, there was also Dr. Umemori,
a recent medical graduate. Gaijins in Japan realize sooner or later that (with
the single exception of ‘n’) consonants in Japanese cannot stand on their own:
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not Vašek, but Basheku and not Chvátal, but Fubātaru. Which goes towards
my excuse for parsing our new friend’s name as dokutoru Memory when he
was first introduced to us. Umechan’s round face was beaming beatitude
and calm well-being. In his presence you felt reassured and safe. “It’s all
right: I will take knife”, he liked to say with a smile that hovered between
eerie and comforting when the slightest medical mishap seemed to threaten
any of us. His misheard name radiated mystical significance as our humid
summer Tōkyō nights were being recorded in eternity behind time warps and
black holes. Dr. Memory was looking after us then and is looking after us still.

From the first moment, Jin and I recognized kindred spirits in each other.
This intuitive revelation was confirmed by the following years and the con-
firmation was superfluous. We are brothers, our birthdays 84 days apart,
and I like to imagine how, if the circumstances of our births were reversed,
Jin could have been me and I could have been him. Speaking of kinship:
Jin liked to accost vagrants in the street and, in the manner of Japanese
children speaking to strangers, address them as uncle, oichan. Eventually he
extended the use of this sobriquet to me and I reciprocated, so now I am his
oichan and he is mine.

Playing tourist guide to acquaintances and friends is a delicate task. Shep-
herding them too much may suffocate them and its opposite may leave them
feeling neglected. The art is to strike the right balance and Jin Akiyama is
one of its undisputed masters. In the beginning, he took us to places and
introduced us to people. Then, having settled us in the new environment, he
let us run around on our own and luxuriate in unfettered adventures. Like
a rocket, he launched us into orbit. Keeping himself in the background, he
was ready to spring to our rescue in any emergency and we knew it. Thank
you, Jin.

We may have been intrepid in the early days, David and I, but our diges-
tive systems were less so. Fortunately, compassionate and brilliant mama-
sans understood our exotic dietary needs and supplied us with fatty foods as
a matter of course. One of these angels, the owner of an open-air snack bar,
was getting on in years and was nearly blind. One day, as she was prepar-
ing an omelet for us and stirring it with her long chopsticks while she tried
to peer at a small TV in the corner, a cockroach appeared on the wooden
counter and began marching toward the smell. This was not one of your
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dainty aburamushi, this was a big mother gokiburi. Fascinated, David and
I watched the animal’s progress to the spot directly above the frying pan,
where it waved its atennae voluptuosly in the intoxicating aroma, teetered
momentarily on the edge and then plunged straight into the pan. The sound
of sizzling eggs and vegetables differs from the sound of a sizzling cockroach.
David and I can attest to this and so could the mama. Unerringly, without
taking her eyes off the TV screen, she grasped the insect in her chopsticks
and neatly dropped it to the ground. Need I say that we were impressed?

There is an art to making people feel at home in a foreign country. You
belong here, you say to them, implicitly at least, you belong here and all this
is yours. Of course, you will come across people who disagree. Ignore such
idiots. They are beneath us. We know better, you and I. This is how Claude
Berge gave me France. This is how Jin Akiyama gave me Japan.

One evening during my first Japanese summer, Jin took me to a restau-
rant owned by a friend of his. Little by little, the customers thinned out until
there were none and the owner locked the door. Now only he, Jin, I, and
two beautiful waitresses remained. With the lights dimmed and sandalwood
wafting in gently, the two enchantresses sat me between them and sang to
me Ue o Muite Arukō, the song that, with Czech lyrics, had been one of
my favourites fifteen years earlier, four years before the Russian invasion of
Czechoslovakia. I knew then, quite rationally and quite lucidly, that I was
in paradise. I knew that I had come home.

I never knew where the powerful magic that Japan attracted me with was
coming from. When I was a child, a small tin statue of Buddha, painted black,
stood watch over my sleep night after night. My maternal grandfather had
brought it from Yokohama on his return from the First World War via the
long route —Siberia, Japan, North America. Growing up, I was hopelessly
inept at almost all sports. All except one, to which I took like fish to water
and at which I excelled. That sport was judo. At the age of eighteen, I
experienced a satori just hours before finding out from a literary magazine
that there was something called Zen Buddhism.

“You will die in Japan,” Jin said to me once and I was happy to see that
he understood the intensity of my love affair with our country. I did my best
to make his prophesy come true when I went on an alcoholic binge during the
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Kyōto conference celebrating our sixtieth birthdays, but that was accidental,
I did not do it on purpose, and it is a different story altogether. Except that
I am glad of the opportunity to say now what I meant to say then and to
add that I am sorry to have screwed up ten years ago.

There is an art to making people feel at home in a foreign country and
Jin Akiyama is one of its undisputed masters. For years I had on my key
ring, next to the key to my Montreal apartment and the key to my McGill
office, a slender key stamped with the Lion’s Mansion logo. It was the key
to Jin’s Nishi Eifuku apartment. Just looking at it back in Motreal warmed
my heart and made me feel safe. I would get off the plane at Narita and hop
on the train — Ueno, Shinjuku, Meidaimae — and the key fit, of course, and
here I was, back in the familar haven. After a thorough wash outside the
ofuro, with much hot water sloshed around on the floor (none of the Western
shower nonsense for me, thank you) and a slow sensuous soak up to my neck
in the ofuro, a restorative nap on the futon rolled out on the tatami and then
off to Golden Gai. With renewed thanks to Jin, silent ones if he happened
to be away from Tōkyō.

In Confucianism, Jin’s first name denotes the ethical constant of human
kindness. The name fits him. He is compassionate and he is kind-hearted.
What redeems him from appearing sanctimonious is his gift for laughing at
himself and his voracious pursuit of fun .

About to return to Japan after a five-year hiatus, I was apprehensive that
reality might not live up to my reminiscences. I could not have been more
mistaken: Tōkyō proved even better than my memories of it. It felt even
more exhilirating, even more welcoming, even more soothing. Blueprint for
Utopia.

On this first return to Japan, I made a survey of our old haunts and could
not find the snack bar where the cockroach incident had taken place. The
neighbourhood was rebuilt and none of the people I asked knew what hap-
pened to the owner. That night, soaking in Jin’s ofuro, I meditated wistfully
on what Japan teaches us. The transience of life and its ephemeral beauty.
Gokiburi mama gone the way of all flesh and cherry blossoms.

Jin Akiyama is an endearing figure. Rather than relying on help from rich
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relatives, he left home at the age of around 20 to earn his own livelihood,
including the university tuition fees. He worked as a tutor and as a computer
operator in IBM Japan at night during terms and he worked as a guard at a
mountain cottage near Japan Alps during long holidays. This was in keep-
ing with the principles of simplicity, fortitude, and self-reliance, by which
Jin’s relatives on his father’s side lived. Among these relatives, there were
scientists such as Dr. Shōten Oka, one of the pioneers of biorheology; Jin’s
father was a physicist and studied acoustics. They held academic achieve-
ments in high regard. On Jin’s mother’s side, there were many relatives who
succeeded in business. His grandfather was the president of Japan Victor Co.
Ltd and his uncle-in-law was the Vice Minister of Finance of Japan. With
their privileges and strong connections to high society, these relatives tended
to regard wealth and status as important. Such was the atmosphere where
Jin Akiyama came to disdain the snobbery of class distinctions and inherited
entitlements.

Jin Akiyama is a romantic figure. When he ventured to Ann Arbor in 1977
in order to study graph theory with Frank Harary, it was in the best tradi-
tion of Meiji scholars seeking knowledge throughout the world. In the best
tradition of Meiji scholars, he brought the knowledge back to Japan and then
he built on it. In the summer of 1979, on the heels of his two-year Ann Ar-
bor apprenticeship, he organized a week-long graph theory seminar in Nikkō
with a number of Japanese participants as well as the foreign contingent
of David Avis, Chung Laung (Dave) Liu, András Recski, and myself. (Its
strenuous mathematical program was lightened by Dr. Umemori’s folk dance
exhibition.) Afterward, Jin kept the interest of Japanese mathematicians in
graph theory alive by organizing a regular Saturday seminar in Tōkyō, to
which he invited many foreign speakers. At the same time, he served as an
editor of the Journal of Graph Theory and this experience helped him in his
next big step, the creation of Graphs & Combinatorics. Jin was the moving
force behind this project and, when the new journal was launched in Decem-
ber 1985, he became its first Managing Editor. Then he organized the First
Japan Conference on Graph Theory, which took place on June 1–5, 1986
in Hakone. With around a half of its 200 participants coming from foreign
countries (and including luminaries such as Paul Erdős and Ron Graham),
this event was unprecedented in the context of Japanese mathematics. In
less than a decade after meeting Frank Harary, Jin Akiyama made graph
theory flourish in Japan.
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Jin Akiyama is a glamourous figure. His meteoric rise to stardom is the
stuff legends are made of. In 1972, he joined the faculty of the prestigious
medical school Nippon Ika (the Japanese respect mathematics and insist that
all medical doctors be thoroughly trained in logical thinking) and he also took
on a part-time teaching job at the Sundai Preparatory School. At Sundai,
students could choose the teacher whose courses they wanted to attend and
teachers were paid by the number of students attending their courses. Jin’s
charisma, his infectious energy, and his penchant for the outrageous (he made
the risqué condom problem a standard part of his syllabus) quickly made
him the most popular mathematics teacher. Soon he was assigned Sundai’s
biggest lecture room, an auditorium that held 450 people (those sitting in the
back rows had to use binoculars) and his lectures in this room were simul-
taneously followed by students in Sundai’s satellite campuses all over Japan
via closed-circuit television. This alone would have been enough to make Jin
a wealthy man.

But there was more. Preparatory schools train students for university
entrance examinations, which are regarded as the most important hurdle in
the path of outstanding education. At Sundai Yobikō, one of the oldest and
the best of these schools, Jin taught some 5000 students every year. Most of
them were good students, who later formed the crème de la crème of Japanese
society. This alone would have been enough to make Jin famous.

But there was more still. In 1991, just before the end of his twenty-year
Sundai stint, Jin got affiliated with Japan’s national public broadcasting
organization NHK and in that single year produced for them 30 television
shows dealing with mathematics. Audience rating of this program was very
high, and so Jin’s career at NHK continued for the next twelve years. In
this program, he performed as a lecturer and edited its textbooks that were
sold all over Japan, (‘Turn to page 77’, says Jin and thousands of pages are
flipping from Hokkaidō to Okinawa.) So Jin became a TV star and his name
became a household word.

The summer of 1979. A gray misty Tōkyō morning and ravens cawing
overhead as we were returning home after yet another night of debauch-
ery, “I want Chinese noodles,” announced Jin and off we went in search of
a ramen stand. When I woke up later, I marvelled at his wisdom, full of
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gratitude for this cushion against hangover. “Look, Vašek, your father,” Jin
cried out one of these mornings and pointed to a homeless man sleeping in
a cardboard box. He must have liked this theme because, gradually, revel
by revel, he developed it into a comedian’s routine. “Come speak to your
father, Vašek. Why aren’t you speaking to him? Are you ashamed of your
father? You are making him so sad!” But once he suddenly changed his
monologue. “Look, here is my father,” he exclaimed when we saw another
homeless man sitting on the sidewalk. “He has no money, my father, and he
is worried. Don’t worry about money, my father! I will make much money,
because I am a great educationalist!” Later on, I wondered: did Jin have
his brilliant Sundai/NHK career all mapped out at that moment? James
Clavell’s Shōgun came out in 1975. Finding parallels between its archetype
of the sophisticated strategist Yoshi Toranaga and the real Jin Akiyama may
have been pardonable.

On the rare occasions when I feel a pang of jealousy over my brother’s
success, I like to reassure myself that I have not had the same opportunity:
where else would you find society that holds mathematics in high esteem and
the highly competitive system of university entrance examinations with its
attendant preparatory schools? Only in Japan, I say when I try to comfort
myself. But that excuse is flimsy: who knows what fireworks Jin would come
up with in a different environment.

Once Jin took me to the taping of a television game show. The two
teams — red against white, of course — were deployed in two buses and
the buses were suspended above water from large cranes. Penalty for incor-
rect answers consisted of lowering the bus below the water level and the TV
cameras faithfully recorded the contestants’ struggle till the last string of air
bubbles rising to the surface before reprieve was granted and the dripping
vehicle slowly cranked up again. Celebrities formed the panel of judges: Jin
Akiyama, a bantamweight boxing champion, a tanka poet, two charming
porn actresses. Only in Japan. Eat your heart out, NBC.

Having a celebrity oichan means having his face confront one from TV
commercials for Tokyo Gas and from posters advertising Suntory Premium
Malt’s. When I brought Jin to a Japanese restaurant in Montreal for the
first time, the waitress called out Akiyama sensei! in surprise. Several times
I answered a question in a Tōkyō bar and told the stranger that I was not
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staying in a hotel, I was staying in a friend’s apartment. This information
elicited no response to speak of, but the atmosphere changed dramatically
if I revealed the friend’s name. “What? Are you trying to tell me that you
know Akiyama? Who do you think you are kidding?” The Japanese, too,
can be quite direct when confronted with obvious delusions of grandeur.

Once a magnificient mamasan closed her shop for the night and, as is
the mamasans’ wont, took me to another drinking establishment. Which
was presided over by a vigorous granny dispensing wisdom to her clientele,
mainly young girls coming there for advice on their love lives. My memory
of faces is atrocious: as a child, I was often scolded by my parents for failing
to greet our neighbours, whom I simply did not recognize. My memory of
faces is atrocious, but something kept tugging at it after I returned to Jin’s
Nishi Eifuku that night. Something kept tugging at it until I gave in and
went back to observe the granny some more. “Excuse me, but didn’t you run
an open-air snack bar near Yasukuni dōri just behind Kabukichō?” I asked
eventually and she said yes, she did. “But,” I continued flabbergasted, Alice
in Wonderland once again, “your eyesight was very bad then, wasn’t it?”
and she confirmed this, too, and went on to tell me how, at the age of 70,
she got fed up with her current way of life, and so she divorced her husband,
got a cataract surgery, and moved her business here.

That night, soaking in Jin’s ofuro, I meditated on what Japan really
teaches us. Zest for life. Joyous energy. Not falling pompously for trite
clichés.

Jin Akiyama gave me Japan, that moveable feast, and he gave me his
friendship. Thank you, Oichan. Thank you, Jin. Thank you for these pre-
cious permanent presents.
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20 Years of JCDCGGG

Erik D. Demaine∗

Abstract. I will reminisce in the past 20
years of JCDCGGG, in particular reviewing
selected papers over the years, their remain-
ing open problems, and their influence on com-
putational geometry, graphs, and games. I
have been attending this conference for more
than half of my life — at my first JCDCG’98,
I was 17 years old, while the oldest partici-
pant, Gisaku Nakamura, was 71. This con-
ference has led to many amazing collabora-
tions, and defined its own research direction
that combines mathematics, computer science,
public outreach, and recreation. In particular,
it shaped my own career goals: solve problems
while having fun.

Figure 1: “Folding and Cutting Paper”
[JCDCG’98]
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Figure 2: “Flipturning Polygons” [JCDCG
2000]
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Figure 3: “Enumerating Foldings and Un-
foldings between Polygons and Polytopes”
[JCDCG 2000]

Figure 4: “Jigsaw Puzzles, Edge Matching, and
Polyomino Packing: Connections and Com-
plexity” [KyotoCGGT 2007]

Figure 5: “(Non)existence of Pleated Folds:
How Paper Folds Between Creases” [JCCGG
2009]
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Balanced subdivisions of three colored point
sets in the plane

Mikio Kano
Ibaraki University, Hitachi, Ibaraki, Japan

mikio.kano.math@vc.ibaraki.ac.jp
http://gorogoro.cis.ibaraki.ac.jp

This is a joint work with Toshinori Sakai and Jorge Urrutia.

1 Introduction

Let R, B and G be a set of red points, a set of blue points and a set of green
points in the plane, respectively, such that R ∪B ∪G is in general position.
A path of order n is denote by Pn, and a path drawn in the plane is called
an properly colored path if every edge is a straight line segment and any two
adjacent vertices have distinct colors. A Pn-covering of R∪B or R∪B∪G is
a set of disjoint non-crossing properly colored paths Pn that cover R ∪ B or
R ∪ B ∪ G. A generalization of the following two theorems to three colored
point sets is our motivation.

Theorem 1 (Kaneko, Kano and Suzuki [4]) Let g and h be non-negative
integers. If n is an even integer such that 2 ≤ n ≤ 14, then for any given
(n/2)g red points and (n/2)g blue points in the plane in general position,
there exists a Pn-covering. If n is an odd integer such that 3 ≤ n ≤ 11, then
for any given ⌊n/2⌋g + ⌈n/2⌉h red points and ⌈n/2⌉g + ⌊n/2⌋h blue points
in the plane in general position, there exists a Pn-covering.

Moreover, for any integer n such that n = 13 or n ≥ 15, there exists
a configuration with ⌊n/2⌋ red points and ⌈n/2⌉ blue points for which there
exists no Pn-covering.

In order to prove Theorem 1, the next theorem is essentially important.

Theorem 2 (Kaneko, Kano and Suzuki, [4]) Let g and h be non-negative
integers. If n is an even integer, then for any given (n/2)g red points and
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(n/2)g blue points in the plane in general position, there exists a subdivision
of the plane into g disjoint convex regions X1, X2, . . . , Xg such that every Xi

contains exactly n/2 red points and n/2 blue points. If n is an odd integer,
then for any given ⌊n/2⌋g + ⌈n/2⌉h red points and ⌈n/2⌉g + ⌊n/2⌋h blue
points in the plane in general position, there exists a subdivision of the plane
into g+ h disjoint convex regions X1, X2, . . . , Xg, Y1, Y2, . . . , Yh such that ev-
ery Xi contains exactly ⌊n/2⌋ red points and ⌈n/2⌉ blue points and every Yj

contains exactly ⌈n/2⌉ red points and ⌊n/2⌋ blue points.

We consider the following problems in general.

Problem 3 (Even case) Assume that |R|+ |B|+ |G| = 2kn, where k and n
are positive integers. If |R|, |B|, |G| ≤ kn, then the plane is subdivided into
disjoint n convex regions X1, X2, . . . , Xn so that every Xi contains precisely
2k points and contains at most k points with the same color.

Problem 1 with k = 1 holds, and hamburger theorem plays essential role
in this proof. If k = 2, then every convex region Xi contains 4 points, and
contain at most two points with the same color.

Problem 4 (Odd case) Assume that |R| + |B| + |G| = (2k + 1)n, where
k and n are positive integers. If |R|, |B|, |G| ≤ (k + 1)n, then the plane
is subdivided into disjoint n convex regions X1, X2, . . . , Xn so that every Xi

contains precisely 2k + 1 points and contains at most k + 1 points with the
same color.

Problem 2 with k = 1 holds as shown below (Theorem 6). On the other
hand, Problem 2 with k = 2 seems to be correct, and partial proof is obtained,
but not complete (Theorems 8 and 9).

2 Some results

Lemma 5 If |R| + |B| = 3n, |R| ≤ 2n and |B| ≤ 2n, then the plane can
be subdivided into n disjoint convex regions X1, X2, . . . , Xn so that every Xi

contains either two red points and one blue point or one red point and two
blue points.

Theorem 6 If |R| + |B| + |G| = 3n, |R| ≤ 2n, |B| ≤ 2n and |G| ≤ 2n,
then the plane can be subdivided into n convex regions X1, X2, . . . , Xn so that
every Xi contains precisely three points and contains at most two points with
the same color (see Figure 1).
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Figure 1: A P3-covering of R ∪B ∪G.

Lemma 7 If |R| + |B| = 5n, |R| ≤ 3n and |B| ≤ 3n, then the plane can
be subdivided into n disjoint convex regions X1, X2, . . . , Xn so that every Xi

contains either three red points and two blue points or two red points and
three blue points.

Theorem 8 If |R| + |B| + |G| = 3n, |R| ≤ 2n, |B| ≤ 2n and |G| ≤ 2n,
then the plane can be subdivided into n convex regions X1, X2, . . . , Xn so that
every Xi contains precisely three points and contains at most two points with
the same color.

Theorem 9 Let µ1, µ2, µ3 be three continuous measures on the plane R2.
Let a = µ1(R

2), b = µ2(R
2) and c = µ3(R

2). If

0 < a, b, c ≤ 2

5
(a+ b+ c), (1)

then there exists a line l such that each half plane H defined by l satisfies

µ1(H) + µ2(H) + µ3(H) ≥ 4

5
min{a, b, c}, (2)

and

0 ≤ µ1(H), µ2(H), µ3(H) ≤ 3

5

(
µ1(H) + µ2(H) + µ3(H)

)
. (3)

In order to prove our results, we need the following theorems.

Theorem 10 (Balanced subdivision Theorem, [1], [2], [7]) Assume that
|R| = rn and |B| = bn. Then the plane can be subdivided into disjoint convex
regions X1, X2, . . . ∪Xn so that every Xi contains exactly r red points and b
blue point

3
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Theorem 11 (Kaneko, Kano, and Suzuki [4]) Let s ≥ 1, g ≥ 0 and
h ≥ 0 be integers such that g + h ≥ 1. Assume that |R| = (s+ 1)g + sh and
|B| = sg+(s+1)h. Then, there exists a subdivision X1∪· · ·∪Xg∪Y1∪· · ·∪Yh

of the plane into g+h disjoint convex polygons such that every Xi (1 ≤ i ≤ g)
contains exactly s+ 1 red points and s blue points and every Yj (1 ≤ j ≤ h)
contains exactly s red points and s+ 1 blue points

Theorem 12 (Kano and Kynčl, [5]) Assume that |R| + |B| + |G| = 2n
and |R|, |B|, |G| ≤ n, where n ≥ 1 is an integer. Then there exists a line
ℓ passing through no point of R ∪ B ∪ G such that each open half-plane Hi

determined by ℓ satisfies (i) Hi contains 2ni points and (ii) |Hi∩R|, |Hi∩B|,
|Hi ∩G| ≤ ni, where ni ≥ 1 for i ∈ {1, 2} and n1 + n2 = n.

Theorem 13 (Borsuk-Ulam theorem, Theorem 2.1.1 of [6]) Let f :
Sn → Rn be a continuous mapping. If f(−u) = −f(u) for all u ∈ Sn

(i.e., f is antipodal), then there exists a point v ∈ Sn such that f(v) = 0 =
(0, . . . , 0).
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Many results on tessellability, reversibility and foldability of planar figures, in particular of 

polyhedral nets, have been obtained recently. In this talk, changes of techniques adopted for 

analyzing these properties of planar figures, such as superimposition method of tilings, lattice 

adjustment method and interchange method of trunks, are elaborated. Moreover, mutual relations 

among these results are also exposed. Most importantly, this presentation focuses on the relevant 

relations connecting these properties, which were studied independently at the beginning of the 

research. In addition, many research problems and conjectures are presented.  
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Mobile Robot Search: Problems and Results
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Abstract. We consider the problem of searching an underlying geomet-
ric domain for a treasure. There are n mobile communicating robots, of
which at most f are faulty, and the remaining n − f are reliable. The
treasure is placed on the geometric domain at a location unknown to the
robots. Reliable robots can find the treasure when they reach its location,
but faulty robots either cannot detect the treasure (crash faulty) or may
maliciously report a wrong location (Byzantine faulty). Our goal is to
design (collaborative) search algorithms minimizing the competitive ra-
tio, represented by the worst case ratio between the time of arrival of the
first reliable robot at the treasure, and the distance from the source to
the treasure. The faults considered are crash and Byzantine. We present
several recent results that illuminate tradeoffs on the impact of fault
tolerance and communication on search time and discuss related open
problems.
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Figure 1: Screenshot of Cookie Clicker.

Cookie Clicker1 is a popular online incre-
mental game where the goal of the game is to
generate as many cookies as possible. In the
game, you can click on a big cookie icon to bake
a cookie, which we model as an initial cookie
generation rate. You can also use the cookies
you have generated as currency to purchase var-
ious items that increase your cookie generation
rate. In this paper, we analyze strategies for
playing Cookie Clicker optimally. While simple
to state, the game gives rise to interesting anal-
ysis involving ideas from NP-hardness, approxi-
mation algorithms, and dynamic programming.

Each cookie-generating item in this game
can be purchased multiple times, but after each
item purchase, the item’s cost will increase at
an exponential rate, given by Cn = C1 · αn−1,
where C1 is the cost of the first item and Cn is
the cost of the nth item. In the actual game, α = 1.15. There is no real end condition in the
game, but in this paper we have two possible end conditions: reaching a certain number M of
cookies or reaching a certain cookie generation rate R.

Cookie Clicker falls into a broader class of popular online games called “incremental” games,
in which the primary mechanic of the game is acquiring income and spending that income on
income generators in order to acquire even more income. Some of the other well-known games
in this genre include Adventure Capitalist, Cow Clicker, Clicker Heros, Shark Souls, Kittens
Game, Egg Inc., and Sandcastle Builder (Based around the xkcd comic Time, number 1190).

Models. In most of this paper, we will assume that you start with 0 cookies and that
the initial cookie generation rate from clicking on the big cookie icon is 1. We will describe
each item by a tuple (x, y, α), where x denotes how much the item will increase your cookie
generation rate, y denotes the initial cost of the item, and α denotes the multiplicative increase
in item cost after each purchase. The case where α = 1 for every item is a special case called
the fixed-cost case. The goals of the game is to find the optimal sequence and timing of item
purchases that minimizes some objective function.

There are multiple possible objective functions that we could want to optimize for, but we
will focus on the following two:

1. Reaching M cookies in as little time as possible

∗CSAIL, Massachusetts Institute of Technology
†University of Electro-Communications
‡Directeur de Recherches du F.R.S.-FNRS, Université Libre de Bruxelles
§Google Inc. Work completed at MIT CSAIL.
1http://orteil.dashnet.org/cookieclicker/
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2. Reaching a generation rate of R in as little time as possible

Our analysis of various versions of Cookie Clicker gives rise to interesting and varied results;
refer to Table 1. First, we present some general results, such as the fact that the optimal
strategy involves a “Buying Phase” where items are purchased in some sequence as quickly as
possible, and then a “Waiting Phase” where no items are purchased.

We begin our version-by-version analysis by examining the case where exactly 1 item is
available for purchase, and we present formulas describing how many copies of the item should
be purchased in both the fixed-cost case and the increasing-cost case.

Next, we analyze cases involving 2 items. In the 2 item fixed-cost case, we prove that the
optimal solution always involves buying some number of copies of one item, followed by some
number of copies of the other item.

Then, we analyze the case involving k items. In the k items fixed-cost case, a weakly
polynomial time dynamic programming solution can be used to find the optimal sequence of
items to buy, and in the increasing-cost case, a strongly polynomial time dynamic programming
solution can be used. Additionally, a greedy algorithm can be devised with an approximation
ratio that approaches 1 for sufficiently large values of M .

Afterwards, we present negative results, including proofs of Weak NP-hardness of the de-
cision version of the problem of reaching a generation rate of R as quickly as possible, as well
as for a version of Cookie Clicker that allows you to start with a nonzero number of cookies.
Finally, we define a discretized version of Cookie Clicker where decisions regarding whether or
not to buy an item happen in discrete time steps and prove Strong NP-hardness for that version.

Table 1: Summary of Results

Problem Variant Result for M version Result for R version

1 Item Fixed-Cost with item
(x, y, 1)

Final answer is ≈ y
x ln M

y
O(1) to solve

Final answer is ≈ y
x ln R

x
O(1) to solve

1 Item Increasing-Cost with
item (x, y, α)

Stop “Buying Phase” after
logα

M
y items

O(1) to solve

Stop “Buying Phase” af-
ter R

x items
O(1) to solve

2 Items Fixed-Cost with
items (xi, yi, 1) where y2 > y1

Solutions of the form
[1, 1, . . . , 1, 2, . . . , 2] for large
enough M
u1 logφ u2 + O(u1) to solve,

where ui ≈ yi
xi

log M
yi

Solutions of the form
[1, 1, . . . , 1, 2, . . . , 2, 1, 1]
for a small number of
1’s at the end for large
enough R.

k Items Fixed-Cost with
items (xi, yi, 1)

Dynamic Program-
ming solution, runtime
O(maxi(

Mxik
yi

))

Dynamic Programming
solution, runtime O(kR)

k Items Increasing-Cost with
items (xi, yi, αi)

O(maxi(k logkαi

M
yi

)) using
Dynamic Programming
Greedy Algorithm has
Approximation Ratio of
1 +O( 1

logM ) for k = 2

O(maxi(k( Rxi )
k)) using

Dynamic Programming
Weakly NP-hard by
reduction from PARTI-
TION

k Items Increasing-Cost with
items (xi, yi, αi) with Initial
Cookies

Weakly NP-hard by reduc-
tion from PARTITION

Weakly NP-hard by re-
duction from M version

Discrete k Items Increasing-
Cost with items (xi, yi, αi)
with Initial Cookies

Strongly NP-hard by reduc-
tion from 3-PARTITION

Strongly NP-hard by re-
duction from M version
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Packing problems are an important aspect of crystallography. In particular, sphere packings have 

played an important role in improving our understanding of crystal structures. Although cylinder 

packings have not received as much research attention as sphere packings, they are also important for 

the same reason and have been investigated in the fields of both science and engineering. 

 

In the field of science, the complex structure of garnet has been explained on the basis of cylinder 

packing to be a periodic structure with a cubic four-way cylinder packing [1]. Since then, cylinder 

packings have been extensively applied in the field of crystal chemistry. In particular, homogeneous 

cubic cylinder packings have been thoroughly investigated. 

 

In the field of engineering as well, cylinder packings are important for determining the fiber packings 

of composite materials [2]. Apart from cylinders, bars with various cross-sectional shapes are used in 

composite materials to enhance the packing density. Some regular fiber packing structures have been 

designed.  

 

Motivated by structures of composite materials [2], periodic six-way cylinder packing structures have 

also been investigated [3] [4]. 

 

In this study, authors will focus on two structures of cylinder packing with five directions. One of them 

was described in the pioneering paper [2]. Other one is new and should be distinguished from the 

former one. The two structures are derived from two distinct structures of cylinder packing with four 

directions. 
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Abstract

We propose a model for generating tessellation patterns on the sphere using the spherical Laguerre Voronoi diagram
which satisfies the real world assumptions. The generator pushing model is presented to generate the tessellation
dynamically. The simulations were done for the different distribution of spherical circles on the sphere, and the results
show the tendency of the distribution of resulting spherical circles.

1 Introduction

There are many phenomena displayed as polygonal tessel-
lations. Voronoi diagram is one of the possible candidates
for modeling those phenomena. In the application view-
points, the Laguerre Voronoi diagram (or power diagram)
is widely used for analyzing and modeling the tessellation
phenomena in the real world as mentioned in [4, 5] since
it involves weights, but still Voronoi edges are straight
lines.

Recently, we were interested in analysis the tessellation
patterns of fruit skins which were regarded as spherical
tessellations. We used the spherical Laguerre Voronoi di-
agram (SLVD) which was defined in [6] by defining the
spherical circle on the unit sphere U , i.e.

c̃i = {p ∈ U |d̃(pi, p) = ri} (1.1)

where pi and ri are the center and radius of the circle
c̃i such that 0 ≤ ri < π/2, respectively. The Laguerre
proximity is defined by

d̃L(p, c̃i) = cos d̃(p, pi)/ cos ri. (1.2)

We solved the SLVD approximation problem which
finds the best fit SLVD of the given spherical tessellation
in the case of the spike-containing object [1] and object
without spikes [2] where tessellations were chosen from
fruit skins. The results of the previous studies showed
that it is promising to use the SLVD as a tool for model-
ing the pattern formation of tessellation patterns on the
fruit skins. Based on the biological viewpoint of the fruits
we used in experiments, we also found the common char-
acteristics of fruits which lead to the modeling rules of
the patterns formations.

In this study, we propose a framework for modeling the
tessellation patterns on the sphere using the SLVD. The
basic assumptions are modified from the Voronoi growth
model proposed by Okabe et al. in [3]. The energy model
is presented to control the dynamics of the tessellations.
We finally simulate the models and observe the resulting
tessellation in the distribution of spherical circles.

2 Modeling Assumptions

From the biological information, the patterns of fruit
skins are generated from the small particles whose shapes

are the tubed-like structures which are radially attached
to the large object. Based on the fact, we assume that
the attached structure is the unit sphere U whose center
is located at (0, 0, 0), and each particle is recognized as a
spherical circle c̃i on the sphere U . The set of spherical
circles on the sphere U is defined by G = {c̃1, ..., c̃N}. Re-
mark that the SLVD can be constructed from the set G
using the distance (1.2).

Let t be the time variable in the processes. We consider
the discrete version of the model. For each spherical circle
c̃i, we assume that the radius of spherical circle c̃i is spec-
ified by a function Ri(t) at the time t, i.e. the equation
(1.1) is rewritten as

c̃i(t) = {p ∈ U : d̃(pi(t), p(t)) = Ri(t)} (2.1)

such that 0 ≤ Ri(t) < π/2, and pi(t) is the spherical circle
center at time t. We also assume that each spherical circle
center pi is radially fixed for all i.

Note that the determination of function Ri(t) for all i is
based on the observation of the growth in the real world.
By the growth characteristics, we assume that Ri(t) are
nondecreasing bounded functions for all i.

The following assumptions are defined for modeling the
patterns using SLVD which are modified from [3].

(V1) The generating circles occur at the same time.
(V2) The position of the generating circles are allowed to

moved during the growth.
(V3) The functions of generating circle radii are not nec-

essarily the same.
(V4) The growth happens in all direction of the spherical

center.

3 Main Framework

We propose the model which allows the dynamical change
of the spherical circles called the generator pushing model.
Intuitively, we suppose that each spherical circle grows
with its radius function Ri(t), and each circle is consid-
ered as an elastic circle. When any two distinct circles
c̃i and c̃j touch each other, the energy from pushing of
two circles occurs. Therefore, we would like to minimize
the energies of all touched circles in each step of t. Based
on the biological information, the circle center at time s
should not move too much from the position of time s−1.
This means that the sum of the squared distance between



the center of spherical circle c̃i at time s and s− 1 for all
i is minimized.

In detail, let pi(t) = (1, θti , φ
t
i) be the center of the

spherical circle c̃i(t) in the form of spherical coordinates
such that θti , φ

t
i are angles measured from the north-pole,

and positive side of x-axis to the point pi(t), respectively.

Let (G(t))
K
t=0 be a sequence of set of spherical circles

G(t) = {c̃0(t), ..., c̃N (t)} at time t starting from t = 1
to t = K, and assume that G(0) is the set of spherical
circles at the initial time t = 0.

For any two spherical circles c̃i(t), c̃j(t), we denote
c̃i(t) ∼ c̃j(t) if and only if Ri(t − 1) + Rj(t − 1) ≥
d̃(pi(t−1), pj(t−1)). Otherwise, c̃i(t) � c̃j(t). Therefore,
the energy of the pair of circles is defined by

∆Ei,j =


0 if c̃i(t) � c̃j(t);

Ri(t) +Rj(t)− d̃(pi(t) , pj(t))
if c̃i(t) ∼ c̃j(t).

(3.1)
Therefore, the energy function E is defined with respect

to the variable set −→ϕ = (θt1, ..., θ
t
N , φ

t
1, ..., φ

t
N ) ∈ R2N as

E(θt1, φ
t
1, ..., θ

t
N , φ

t
N ) =

∑
i,j

(∆Ei,j)
2 (3.2)

such that ∆Ei,j is defined by (3.1).
Remark that we can compute the corresponding pairs of

spherical circles in a set G(t) by constructing the spherical
Laguerre Delaunay diagram of the set of spherical circles
G(t − 1) using algorithm in [6] to obtain the topological
structure of any two circles, i.e. if any pair of vertices of
the spherical Laguerre Delaunay diagram at time t − 1
has a connected edge, then those circles are adjacent.

In addition to the energy, the function of distance be-
tween the generators at time t− 1 and t, which is a func-
tion of variables θt1, φ

t
1, ..., θ

t
N , φ

t
N , can be denoted by

F (θt1, φ
t
1, ..., θ

t
N , φ

t
N ) =

N∑
i=1

d̃(pi(t− 1), pi(t))
2. (3.3)

Hence, we use multiobjective optimization for solv-
ing the minimization of function E(θt1, φ

t
1, ..., θ

t
N , φ

t
N ) and

F (θt1, φ
t
1, ..., θ

t
N , φ

t
N ). In this study, we use weighting

method, i.e. for ω ≥ 0, we define

F(θt1, φ
t
1, ..., θ

t
N , φ

t
N ) = ωE(θt1, φ

t
1, ..., θ

t
N , φ

t
N )

+ (1− ω)F (θt1, φ
t
1, ..., θ

t
N , φ

t
N )

(3.4)

then solve

minimize F(θt1, φ
t
1, ..., θ

t
N , φ

t
N )

subject to (θt1, φ
t
1, ..., θ

t
N , φ

t
N ) ∈ S ⊂ R2N .

Therefore, the framework can be concluded into the
following steps: for t = 1 to N , compute the SLVD at
time t − 1, computing the energies of all corresponding
spherical circles and sum of the squared distance between
point at time t − 1 and t, minimize {E,F}, and update
the spherical circle centers.

4 Experiments and Conclusion

We performed the experiments by generating N spherical
circles G(t) = {c̃1(t), ..., c̃N (t)} on the sphere. In this

study, the spherical radii are determined by the logistic
function

Ri(t) =
Li

1 + e−k(t−t0)
(4.1)

for chosen k, t0 such that Li is a pseudorandom number
for all i.

To terminate the procedure of the simulation, the
threshold ε is defined for determining the number K of
iteration. In the case of logistic function defined in (4.1),

K = maxi=1,...,N{dt0 − 1
k ln

(
Li

ε+Li

)
e}.

To observe the tessellation pattern after simulation, we
mainly focus on the distribution of generating circles on
the sphere after simulation. Therefore, we set the experi-
ments to two groups. The first group is the case that ini-
tial spherical circles are located uniformly, i.e. the centers
of generating circles are equidistributed on the sphere.
Another group is set in a way that generating circles are
randomly located on the sphere.

The simulation results showed the tendency that the
spherical circles were uniformly distributed after employ-
ing the generator pushing model to the set of spherical
circles. Figure 1 shows the example of the simulation re-
sults when the initial spherical circles are randomly dis-
tributed on the sphere implemented by Wolfram Mathe-
matica r11.1. We plan to interpret the resulting diagram
to describe the pattern formation of fruit skin patterns.

Figure 1: The results from the simulation when the spher-
ical circle were randomly distributed with N = 50, k =
0.2, t0 = 15, ε = 10−8, Li ∈ [arccos(1− 1

N )− π
36 , arccos(1−

1
N )+ π

36 ] (left) Initial tessellation; (right) final tessellation
at t = 112
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Pentagonal Subdivision and Double
Pentagonal Subdivision

Min Yan
Hong Kong University of Science and Technology

Pentagonal subdivision and double pentagonal subdivision are two con-
structions that convert any tiling of an oriented surface into tilings by pen-
tagons. When the constructions are applied to Platonic solids, we get tilings
of the sphere by congruent pentagons. Specifically, the pentagonal subdivi-
sion produces three 2-variable families of tilings of the sphere by 12, 24 and
60 congruent pentagons of edge length combination a2b2c, and the double
pentagonal subdivision produces three rigid tilings of the sphere by 24, 48
and 120 congruent pentagons of edge length combination a3bc.

We discuss some combinatorial problems related to the two constructions.
We also prove that, under the assumption that there is enough variation in
edge lengths, the two constructions are the only tilings of sphere by congruent
pentagons.

This is a joint work with Erxiao Wang of the Hong Kong University of
Science and Technology.

1

bit19
矩形



The Independence and Domination Numbers of the Hanoi Graphs

Agnes D. Garciano, Reginaldo M. Marcelo1,
Mari-Jo P. Ruiz & Mark Anthony C. Tolentino

Mathematics Department
Ateneo de Manila University, Quezon City, Philippines

A vertex subset S of a graph G = (V,E) is an independent set if no two vertices in S are adjacent, and
it is a dominating set if every vertex that is not in S is adjacent to a vertex in S. The independence number
of G, denoted by α (G) , is the maximum cardinality of an independent set; the domination number of G,
denoted by γ (G) , is the minimum cardinality of a dominating set; and the independent domination number
of G, denoted by i (G) , is the minimum cardinality of an independent dominating set.

Given any graph G, it follows from the definitions that γ (G) ≤ i (G) ≤ α (G) . The first inequality is
discussed in [1], and a sufficient condition for equality is given. A survey on recent results on independent
domination in graphs is given in [3].

In this paper, we study independent dominating sets in the Hanoi graphs. The Hanoi graphs are derived
from the states of the Tower of Hanoi problem [2, 4]. These graphs also belong to the family of Sierpinski-
like graphs [5]. They are derived in an iterative manner in much the same way as the process used in the
derivation of the Sierpinski triangle fractal [4].

Let Hk denote the kth Hanoi graph. Then Hk is constructed as shown below.

H1

H2 H3

Hk−1

Hk−1 Hk−1

Hk

In this paper we prove the following:

γ (Hk) = i (Hk) =

⌈
3k

4

⌉
and α (Hk) = 3k−1.

1Presenter
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Sigma Chromatic Number of the Sierpinski
Gasket Graphs and the Hanoi Graphs

Agnes D. Garciano, Reginaldo M. Marcelo,
Mari-Jo P. Ruiz, Mark Anthony C. Tolentino1

agarciano@ateneo.edu,rmarcelo@ateneo.edu

mruiz@ateneo.edu,mtolentino@ateneo.edu

Ateneo de Manila University

In [2], G. Chartrand, F. Okamoto, and P. Zhang defined the concept of the sigma chromatic
number of a graph as follows: For a non-trivial connected graph G, let c : V (G) → N be a
vertex coloring of G. For each v ∈ V (G), let N (v) denote the neighborhood of v, i.e., the set of
vertices adjacent to v. Moreover, the color sum of v, denoted by σ (v) , is defined to be the sum
of the colors of the vertices in N (v). If σ (u) 6= σ (v) for every two adjacent u, v ∈ V (G), then
c is called a sigma coloring of G. The minimum number of colors required in a sigma coloring
of G is called its sigma chromatic number and is denoted by σ(G).

In [6], Klavžar defines geometrically the Sierpiński gasket graphs Sn, n ≥ 1 as the graphs
whose vertices are the intersection points of the finite Sierpiński gasket σn and whose edges are
the line segments of the gasket. The following figure shows how the Sierpiński gasket graphs
are constructed.

Figure 1: Sierpiński gasket graphs

The Hanoi graphs are derived from the states of the Tower of Hanoi problem [1, 4, 6]. Like
the Sierpiński gasket graphs, the Hanoi graphs are also constructed in an interative manner.
These graphs also belong to the general class of Sierpiński-like graphs [5]. The following figure
shows how the Hanoi graphs are constructed.

Figure 2: Hanoi graphs

1speaker



In this work, we study the sigma coloring of the Sierpiński gasket graphs and the Hanoi
graphs. We prove the following results:

1. The sigma chromatic number of the Sierpiński gasket graph Sn is 2 for any n ≥ 2.

2. The sigma chromatic number of the Hanoi graph Hn is 3 for any n ≥ 3.
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Results on Additive Chromatic Numbers and
Additive Choice Numbers of Halin Graphs

Hsin-Hao Lai

Department of Mathematics, National Kaohsiung Normal University,
Kaohsiung, Taiwan

hsinhaolai@nknucc.nknu.edu.tw

The notation of additive coloring and additive chromatic number was first
introduced in [2]. An additive coloring of a graph G is a labeling from the vertex
set of G to the set of integers such that for every two adjacent vertices the sums
of integers assigned to their neighbors are different. The additive chromatic
number, denoted η(G), is the least integer k such that G has an additive coloring
from the vertex set of G to {1, 2, . . . , k}. The following conjecture was proposed
in [2], where χ(G) denotes the chromatic number of G.

Conjecture 1 For any graph G, η(G) 6 χ(G).

The notation of additive choice number was first introduced in [1]. A list L
of a graph G is a mapping that assigns a finite set of integers to each vertex of
G. A list is a k-list if |L(v)| > k for each vertex v. An additive coloring f of
G such that f(v) ∈ L(v) for each vertex v is called an additive L-coloring of G.
A graph G is said to be additive k-choosable if it has an additive L-coloring for
any k-list L. The additive choice number, denoted ηl(G), is the least integer k
such that G is additive k-choosable. Obviously, η(G) 6 ηl(G) for any graph G.

A Halin graph is a plane graph G = T ∪C constructed as follows. Let T be
a tree of order at least 4. All vertices of T are either of degree 1 or of degree at
least 3. Let C be a cycle connecting the leaves of T in such a way that C forms
the boundary of the unbounded face.

In this paper, I will apply mathematical induction and discharging method
to obtain the following result on planar graphs.

Theorem 2 If G is a planar graph, then η(G) 6 ηl(G) 6 2∆(G) + 25.

And I will apply mathematical induction and Combinatorial Nullstellensatz
to obtain the following result on Halin graphs.

Theorem 3 If G is a Halin graph, then η(G) 6 ηl(G) 6 5.

Keywords: additive coloring, lucky labeling, additive chromatic number, ad-
ditive choice number, Halin graph.
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New Developments on r-Equitable Coloring of Cross
Products of Graphs

Chao-Chun Chen, Zi-Yi Yang, and Chih-Hung Yen∗

Department of Applied Mathematics

National Chiayi University, Chiayi 60004, Taiwan

Abstract

A graph G consists of a nonempty vertex set V (G) and an edge set E(G).
All graphs considered in this paper are finite, loopless, and without multiple
edges. For a positive integer k, a (proper) k-coloring of a graph G is a mapping
φ : V (G) → {1, 2, . . . , k} such that adjacent vertices are mapped to distinct
numbers. The images 1, 2, . . . , k are called colors and all pre-images of a fixed
i, 1 ≤ i ≤ k, form a color class. Then a k-coloring of a graph G is said to
be equitable if the sizes of any two color classes differ by at most one. And a
graph G is equitably k-colorable if G has an equitable k-coloring. The smallest
integer k for which G is equitably k-colorable, denoted by χ=(G), is called the
equitable chromatic number of G. The notion of an equitable coloring was first
introduced in [9] by W. Meyer. So far, quite a few results on the equitable
coloring of graphs have been obtained. Please refer to the survey of Lih [7].

In 2011, Hertz and Ries [6] generalized the notion of equitable colorability.
They said that a k-coloring of a graph G is r-equitable for an integer r ≥ 0 if the
sizes of any two color classes differ by at most r. And a graph G is r-equitably
k-colorable if there exists an r-equitable k-coloring of G. Clearly, an equitably
k-colorable graph is 1-equitably k-colorable, and vice versa. Similarly, the
smallest integer k for which G is r-equitably k-colorable, denoted by χr=(G),
is called the r-equitable chromatic number of G. It is clear that an r-equitably
k-colorable graph is certainly (r + 1)-equitably k-colorable. However, unlike
proper colorings of graphs, an r-equitably k-colorable graph may not be r-
equitably (k + 1)-colorable. Hence, we also have an interest in finding the
smallest integer n such that a graph G is r-equitably k-colorable for all k ≥ n,
called the r-equitable chromatic threshold of G and denoted by χ∗r=(G). That
is, χ∗r=(G) may be greater than χr=(G).

The cross product G × H, also known as the Kronecker, direct, tensor,
weak tensor, or categorical product, of two graphs G and H is the graph with
vertex set {(x, y) : x ∈ V (G) and y ∈ V (H)} and edge set {(x, y)(x′, y′) : xx′ ∈

∗E-mail address: chyen@mail.ncyu.edu.tw



E(G) and yy′ ∈ E(H)}. By the way, cross product is so named because the
product of two single edges is a cross. In this paper, we introduce (new) results
obtained on r-equitable chromatic numbers and thresholds of cross products
of graphs, especially for r 6= 1.

Keywords: Equitable coloring; r-Equitable coloring; r-Equitable chromatic num-
ber; r-Equitable chromatic threshold.
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A result on balanced partitions of 3 colored point sets

Toshinori Sakai

Tokai University, Japan

sakai@tokai-u.jp

This is a joint work with Mikio Kano.

We show the following results concerning partitions of three colored point sets:

Theorem 1 Let n ≥ 2 be an integer, and let R, B, and G be disjoint sets of red points,
blue points, and green points in general position in the plane, respectively. If |R ∪ B ∪
G| = 4n and |R|, |B|, |G| ≤ 2n, then there exists a straight line l such that l passes
through no point of R ∪ B ∪ G, and such that each half plane H defined by l satisfies
(i) |(R ∪ B ∪ G) ∩H| = 4m and (ii) |R ∩H|, |B ∩H|, |G ∩H| ≤ 2m for some positive
integer m.

Applying this result repeatedly, we obtain the following corollary:

Corollary 1 Let n be an integer, and let R, B, and G be disjoint sets of red points, blue
points, and green points in general position in the plane, respectively. If |R∪B∪G| = 4n
and |R|, |B|, |G| ≤ 2n, then there exists a subdivision D1 ∪ D2 ∪ · · · ∪ Dn of the plane
into n disjoint convex regions such that (i) |(R∪B ∪G)∩Di| = 4 and (ii) |R∩Di|, |B ∩
Di|, |G ∩Di| ≤ 2 for 1 ≤ i ≤ n.

1

bit19
矩形



Planarity Preserving Augmentation of Plane Graphs to Meet

Parity Constraints∗

J.C. Catana-Salazar1, A. Garćıa2, J. Tejel2, and J. Urrutia3
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1 Introduction

Let G = (V,E) be a plane graph and let CG = {c1, c2, ..., cn} be a set of parity constraints, where the
vertex vi ∈ V has assigned the constraint ci. The augmentation problem to meet parity constraints
refers to find a graph H = (V,E′) such that (i) G′ = G∪H is a simple plane graph (H is compatible
with G), (ii) H and G are disjoint (E′ ∩ E = ∅) and (iii) the degree of the vertices in G′ meet
the parity constraint set CG. The well-known problem of transforming a graph into Eulerian is an
example of this type of problem.

Hereafter we denote by S(G,CG) the set of vertices in G do not satisfying its parity constraint
in CG. We call (and represent) a vertex vi ∈ S(G,CG) a red vertex of G, otherwise we call it a blue
vertex of G. Note that every red vertex of G must have odd degree in H and every blue vertex of
G must have even degree in H. We say that an edge is red, if it’s both endpoints are red vertices
(analogously for blue vertices). We say that an edge is red-blue, if its endpoints have different colors.

An outerplanar graph is a graph having a plane embedding in such a way that all the vertices
belong to the outer face of the drawing. An outerplanar graph is maximal (MOP for short) if it is
not possible to add an edge such that the resulting graph is still outerplanar.

It is know in [1] that every topological tree T = (V,E) with an arbitrary constrains set CT

is augmentable to meet CT (except for the star with its center being red) with at most k
2 + 1

edges, i.e., T admits a compatible and disjoint topological graph H = (V,E′) with |E′| ≤ k
2 + 1,

k = |S(T,CT )|. Nevertheless, it is NP-Complete to decide if a topological plane graph G admits a
topological matching H, such that G′ = G∪H meets a parity constraints set CG, where S(G,CG) ⊂
V .

We study two variants of the augmentation problem to meet parity constraints in outerplanar
graphs. In Section 2, we tackle the augmentation problem when the embedding of G is fixed, i.e., G
preserves its embedding as a subgraph of G′. The second variant of the problem, Section 3, arises
when it is allowed to change the embedding of G. In the last section we study this augmentation
problem for plane geometric graphs and, in particular, we show that it is NP-Complete to decide if
a plane geometric tree or path admits a compatible and disjoint perfect matching.

2 Augmentation of graphs fixing their embedding

First we characterize the family of MOP graphs that are non augmentable to meet parity constraints,
when its required to preserve the embedding of the input graph.

Theorem 2.1. Let G = (V,E) be a plane MOP graph and B the set of blue vertices adjacent to a
diagonal such that its opposite endpoint is a red vertex. Then, G is non-augmentable preserving its
embedding if (i) it is possible to draw a line that separates the ends of all red-blue diagonals such that
on one side are all the blue vertices (possibly with red vertices between them, all with degree greater
than or equals to 3) and on the other side all red vertices (see Figure 1 (a)), or (ii) G only has red
diagonals (see Figure 1 (b)).

∗This research has received funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement No 734922. Also supported by project MTM2015-63791-R.
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(a) (b) (c)

Figure 1: (a) A non-augmentable plane MOP graph that has blue-red diagonals. (b) A non-
augmentable plane MOP graph with only red diagonals. (c) A MOP graph non-augmentable even
when it its allowed to change its embedding.

Next we give two polynomial time algorithms: The first to compute a minimum edge set to
augment a MOP graph, and the second to augment an outerplanar graph.

Theorem 2.2. Let G = (V,E) be a plane MOP graph and CG a set of parity constraints. Then,
finding a compatible and disjoint graph H = (V,E′) with edge set E′ of minimum size, such that
G′ = G ∪H meets CG, can be computed in O(n3) time.

Theorem 2.3. Let G = (V,E) be a plane outerplanar graph and CG a set of parity constraints.
Then, deciding if there exists a compatible and disjoint graph H = (V,E′) such that G′ = G ∪ H
meets CG, can be done in O(n) time.

3 Augmentation of graphs with mobile embedding

When it is allowed to choose the embedding of the input MOP graph, we have the following theorem.

Theorem 3.1. Let G = (V,E) be a MOP graph and CG a set of parity constraints. Then, deciding
if G can be drawn in such a way that there exists a compatible and disjoint topological graph H, such
that G′ = G ∪H meets CG can be done in O(n2) time.

Figure 1 (c) shows an example of a MOP graph that cannot be augmented even changing the
embedding.

4 Geometric plane graphs

Finally we give some results about the hardness of the augmentation problem in geometric plane
graphs.

Theorem 4.1. Let G = (V,E) be a geometric plane graph and CG a parity constraints set. Then,
the problem of deciding if there exists a topological plane graph H disjoint and compatible with G
such that G′ = G ∪H meets CG is NP-Complete. The problem remains NP-Complete even when
S(G,CG) = V .

Theorem 4.2. Let T = (V,E) be a geometric plane tree. Then, the problem of deciding if T admits
a compatible and disjoint perfect matching is NP-Complete.

Theorem 4.3. Let P = (V,E) be a geometric plane path. Then, the problem of deciding if P admits
a compatible and disjoint perfect matching is NP-Complete.
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Acute triangulations of the sphere

SANG-HYUN KIM* AND G. S. WALSH

1. Statement of the result

A combinatorial triangulation of the unit two-sphere S2 means a simplicial
complex homeomorphic to S2. An acute triangulation of S2 is a triangulation
of S2 into geodesic triangles whose dihedral angles are all acute. We say a
combinatorial triangulation L of S2 is realized by an acute triangulation of S2
(or in short, acute) if there is an acute triangulation T of S2 and a simplicial
homeomorphism from T to L.

In this talk, we completely characterize combinatorial triangulations of S2
that can be realized by acute triangulations. A simplicial complex Y is flag
if every complete subgraph in Y (1) spans a simplex. We say Y is no-square
if every 4-cycle in Y (1) has a chord in Y (1).

Theorem 1. A combinatorial triangulation L of S2 is acute if and only if
L is flag no-square.

2. Brief History and Applications

J. Itoh pioneered the problem of finding acute triangulations on the
sphere. Itoh and Zamfirescu proved that a geodesic triangle contained in
one hemisphere of S2 can be triangulated into at most ten acute triangles
and this bound is sharp [2]. For triangulations of S2, Itoh proved the fol-
lowing theorem by explicit constructions.

Theorem 2 (J. Itoh [1]). (1) If there exists an acute triangulation of S2
with n faces, then n is even, n ≥ 20 and n 6= 22.

(2) If n is even, n ≥ 20 and n 6= 22, 28, 34, then there exists an acute
triangulation of S2 with n faces.

Itoh then asked whether or not there exists an acute triangulation of S2
with either 28 or 34 faces. We exhibit examples of flag no-square triangula-
tions with 28 and 34 faces; see Figure 1. Using Theorem 1, we have a full
answer to Itoh’s question:

Corollary 3. There exists an acute triangulation of S2 with n faces if and
only if n is even, n ≥ 20 and n 6= 22.

As for the theme of fixed combinatorics, Maehara determined exactly
when a given abstract triangulation of a polygon can be realized as an acute
triangulation in E2. Given a triangulation L of a disk, a cycle C in L(1) is
said to be enclosing if C bounds a disk with least one interior vertex. We
say that a cycle C is L is separating if each component of L \ C contains a
vertex of L. We say L is flag-no-separating-square if L is flag and has no
separating 4-cycle.
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(a) (b)

Figure 1. Acute spherical triangulations with 28 and 34 faces.

Theorem 4 (H. Maehara [3]). An abstract triangulation L of a disk is acute
in E2 if and only if L does not have an enclosing 3- or 4-cycle.

We prove a spherical version of Maehara’s theorem.

Theorem 5. Let L be an abstract triangulation of a compact planar surface
such that L is flag no-separating-square. Then:

(1) L is acute in S2.
(2) L is acute in E2 if and only if at least one boundary component of L is

not a square.

The hard part of Maehara’s theorem is the existence of acute triangula-
tions. Interestingly, the existence part of our main theorem is relatively sim-
ple after using Koebe–Andreev–Thurston theorem on hyperbolic polytopes.
The obstruction part is more sophisticated and for this, we use properties
of a metric space of singular negative curvature.
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Enumeration of binary matroids using degree sequences

Ken Sugimori∗, Sonoko Moriyama, Kunihiko Sadakane

Consider enumerating exhaustively non-isomorphic matroids of a certain size n and a certain rank r.
The database of matroids is useful as a test data for verifying mathematical conjectures or a benchmark for
numerical experiments. Matsumoto et al. enumerated matroids of n ≤ 10 and r ≤ 4 [2]. When enumerating
binary matroids, a subclass of matroids, n and r can be larger. Fripertinger and Wild enumerated binary
matroids of n ≤ 15 and r ≤ 7 [1]. In this paper, we enumerated binary matroids of n ≤ 17 and r ≤ 8 by
using a more efficient method.

A binary matroid is a matroid that can be representable over the finite field F2. A binary matroid of size
n and rank r can be represented by an r× n full rank matrix over F2. Conversely, a matroid represented by
an r× n full rank matrix over F2 is a binary matroid. The theorem below follows from Theorem 6.4.1 of [3].

Theorem 1. Let M1 and M2 be binary matroids of size n and rank r, and let A1 and A2 be r × n full rank
matrices over F2 that represent M1 and M2 respectively. Then, M1 and M2 are isomorphic if and only if A1

and A2 can be transformed into each other by a sequence of elementary row operations and column-swapping.

Therefore, enumerating non-isomorphic binary matroids of size n and rank r is equivalent to enumerating
r×n full rank matrices over F2 that cannot be transformed into each other by a sequence of elementary row
operations and column-swapping.

Fripertinger and Wild enumerated binary matroids by the orderly algorithm [4]. In the orderly algorithm,
we fix a rank r, and generate in order a list of matroids of size n and rank r from that of size n − 1 and
rank r. The definition of canonical forms is essential for removing duplicate matroids in each list. We need
to define canonical forms such that there is exactly one canonical form in each isomorphic class of matroids.
We check whether each matroid is a canonical form, and remove non-canonical forms. Fripertinger and Wild
defined canonical forms as below. An r×n full rank matrix over F2 can be transformed into a standard form
[Ir|D] (D ∈ F

r×(n−r)
2 ) by a sequence of elementary row operations and column-swapping. Thus, we define

a standard form [Ir|D] as a canonical form when the matrix D is lexicographically smallest. Note that a
matrix D = (di,j) is lexicography smallest if a sequence (d1,1, . . . , dr,1, d1,2, . . . , dr,2, . . . , d1,(n−r), . . . , dr,(n−r))
is lexicographically smallest.

In the method of Fripertinger and Wild, it is a bottleneck to check whether each matrix is a canonical
form. In this paper, we improve efficiency of this process and enumerate binary matroids of larger size n and
rank r. First, we explain an efficient method of checking a canonical form regarding the definition of canonical
forms by Fripertinger and Wild. Then, we propose a more efficient method by improving the definition of
canonical forms.

Consider checking whether an r×n full rank matrix over F2 is a canonical form. The most naive method
is trying all the possible sequences of elementary row operations and column-swapping on A to obtain a
standard form [Ir|D′], and checking whether D ⪯ D′ always holds. In order to improve efficiency of this
process, we divide a sequence of elementary row operations and column-swapping on A into the following
three steps. First, determine the arrangement of the leftmost r columns, i.e., choose r columns from the n
columns to be placed in the leftmost square submatrix. The leftmost r columns must be transformed into
Ir by a sequence of elementary row operations, so they must be independent. We need to try at most nPr

ways of arrangements. Second, apply a sequence of elementary row operations to A such that the leftmost r
columns are transformed into Ir. This transformation is unique. Finally, sort the rightmost n − r columns
in ascending order, and check D ⪯ D′.

Our contribution: In the above method, we need to try nPr ways of arrangements. We reduce the number
of ways by improving the definition of canonical forms. To be more precise, we define some invariant for each

∗The expected presenter.
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column under elementary row operations, and fix the values of the invariant for the leftmost r columns of the
canonical form. Let E = {e1, e2, . . . , en} be a set of columns of A. We define di, the degree of ei (1 ≤ i ≤ n)
as below.

di = #{X ⊆ E | ei ∈ X and X is independent.}

The degree di is invariant under elementary row operations. Further, the following theorem holds.

Theorem 2. The multiset of degrees {d1, d2, . . . , dn} is invariant under elementary row operations and
column-swapping.

Therefore, the multiset of degrees is common in each isomorphic class. By using this information, we
fix the degrees of the leftmost r columns of the canonical form. Formally, we define (d∗1, d

∗
2, ..., d

∗
r) for each

isomorphic class, so that the canonical form of the isomorphic class must hold the condition that d1 = d∗1,
d2 = d∗2, ..., dr = d∗r . Thereby, we make the number of ways of arrangements as small as possible. We run the
following algorithm. The input of the algorithm is A, an r×n full rank matrix over F2, and the output is some
(d∗1, d

∗
2, ..., d

∗
r). First, we calculate a multiset of degrees {d1, d2, . . . , dn} of A. Then, we iterate {d′1, d′2, ..., d′r},

which is a r-subset of {d1, d2, . . . , dn}, in ascending order of the number of ways of arrangements. For each
iteration, we check whether there exists an independent r-subset of columns of A such that the corresponding
r-subset of degrees is equal to {d′1, d′2, ..., d′r}. If exists, the algorithm outputs {d′1, d′2, ..., d′r} and terminates.
Otherwise, the algorithm proceeds to the next iteration.

Theorem 3. The above algorithm outputs the identical (d∗1, d
∗
2, ..., d

∗
r) for every matrix in an isomorphic

class.

Therefore, the canonical form is well-defined for each isomorphic class.
We enumerated (simple) binary matroids of n ≤ 17 and r ≤ 8 by using the above method (Table 1).

The numbers in bold indicate matroids enumerated for the first time. It took about two days on 32 cores to
enumerate matroids n = 17 and r = 8.

Table 1: The number of non-isomorphic simple binary matroids of size n and rank r

n \ r · · · 5 6 7 8

...
12 89 700 1285 821
13 112 1794 5632 5098
14 128 4579 26792 37191
15 144 11635 137493 320663
16 145 29091 745413 3186083
17 129 70600 4145064 34799393
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C4 � Pm− Supermagic Labeling and Super (a, d)− C4 � Pm−
Antimagic Labeling for a Gear Graph Corona with a Path

Graph
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Abstract

A simple graph G = (V,E) admits an H-covering if every edge in E belongs to a
subgraph of G isomorphic to H . A graph G is H-magic if there is a total labeling
f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|}, such that each subgraph H ′ =
(V ′, E′) of G isomorphic to H satisfies

f(H ′)
def
=

∑
v∈V ′

f(v) +
∑
e∈E′

f(e) = m(f),

where m(f) is a constant magic sum. Furthermore, f is a H−supermagic covering
if f(V ) = {1, 2, . . . , |V (G)|}. A simple graph G = (V,E) admits an (a, d) − H−
antimagic covering if every edge inE belongs to at least one subgraph ofG isomorphic
to H and there exists a bijective function f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| +
|E(G)|} such thatm(f) constitutes an arithmetic progression a, a+d, ..., a+(t−1)d,
where a and d are positive integers and t is the number of subgraphs of G isomorphic
to H . If f(V ) = {1, 2, . . . , |V (G)|}, then it is called a super (a, d) −H− antimagic
covering. This research aims to find H−supermagic covering and super (a, d)−H−
antimagic covering on Gn � Pm with H = C4 � Pm.

Keywords : H−supermagic covering, super (a, d)−H− antimagic covering, corona, gear
graph, Gn � Pm graph.

Maryati et al.[3] introduced a technique of partitioning a multiset. A multiset is a
set that allows the existence of the same elements in it. Let X be a set containing some
positive integers. We use the following notation [a, b] to mean {x ∈ N |a ≤ x ≤ b}, and∑
X to mean

∑
x∈X x. For any k ∈ N , the notation k + [a, b] means {k + x|x ∈ [a, b]}.

According to Gutiérrez and Lladó [1], the set X is equipartition if there exist k subsets of
X , say X1, X2, . . . , Xk such that

⋃k
i=1Xi = X and |Xi| = |X|

k for every i ∈ [1, k]
Let Y be a multiset containing positive integers. Y is said to be k− balanced if there
exists k subsets of Y , i.e. Y1, Y2, . . . , Yk such that for every i ∈ [1, k], |Yi| = |Y |

k ,∑
Yi =

∑
Y

k ∈ N , and ]ki=1Yi = Y . Inayah et al.[2] in 2013 introduced (k, δ)-anti
balanced as follows. The multiset Y is (k, δ)−anti balanced if there exist k subsets of Y ,
say Y1, Y2, . . . , Xk such that for every i ∈ [1, k], |Yi| = |Y |

k ,
⋃k

i=1 Yi = Y and for i ∈ [1, k],∑
Yi+1 −

∑
Yi = δ is satisfied.

We use some lemmas to prove theorems

Lemma 1 [5] Let x and y be nonegative integers. Let X = [x+ 1, x+ k] with |X|=k and
Y=[x+ k+1, x+2k] where |Y|=k. Then, the multiset K=X]Y is k-balanced for j ∈ [1, k].
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Lemma 2 [3] Let x,y, and z be positive integers. Then multiset Y = [x+ 1, x+ k] ] [y +
1, y + k] ] [z + 1, z + k] is k-balanced for k ≥ 3 odd.

Lemma 3 [4] Let x,y, and k be integers, such that 1 ≤ x ≤ y and k > 1. If X=[x, y] and
|X| is a multiple 2k, then X is k-balanced.

Then we have the following lemma and theorems

Lemma 4 Let x, y, and k be nonnegative integers. Let X=[x+ 1, x+ k] with |X| = k and
Y=[y + k + 1, y + 2k] with |Y | = k. Then, the multiset M = X ] Y is k-balanced if there
is k subsets from M where Mj =M1,M2, . . . ,Mk.

Theorem 1 A Gn � Pm graph is C4 � Pm-supermagic for n odd and m ≥ 3.

Furthermore, the constant supermagic sum of a subgraph C4 � Pm is

f(C4�Pm) =


18m2(2n+ 1) + 14m(2n+ 1)− n+ dn2 e+ 7, for m odd;
(8m2 + 40m)(2n+ 1) + 4m+ 107n+ dn2 e+ d

2n+1
2 e+ 43, for m = 4 ;

(18m2 + 12m)(2n+ 1) + n(4m− 5) + dn2 e+ 4d2n+1
2 e+ 11, for m even, m ≥ 6.

Theorem 2 Let n andm be positive integers. Then Gn�Pm is a super (a, d)−C4�Pm−
antimagic total labeling for d = 1
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A Characterization of (Cn, K1,n)-Supermagic of Trees
Corona Paths and Trees Join A Trivial Graph

Yeva Fadhilah Ashari 1, A.N.M. Salman 2, and Khreshna Imaduddin Ahmad Syuhada3
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Extended Abstract A simple graph G = (V (G), E(G)) admits an H-covering, where
H is a subgraph of G, if every edge in E belongs to a subgraph of G isomorphic to H. Graph
G is H-magic, if there exists a total labeling f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|},
such that

∑
v∈V (H′ ) f(v)+

∑
e∈E(H′ ) f(e) = k1 (constant) for every subgraph H ′ isomorphic to

H. Additionally, G admits H-supermagic if f(V (G)) → {1, 2, . . . , |V (G)|}. This concept was
introduced by Gutiérrez and Lladó [2]. They studied about star magic coverings in star graphs,
complete graphs, and complete bipartite graphs. There have been many results on cycle Cn-
supermagic and star K1,n-supermagic total labelings of graphs. Lladó and Moragas [4] proved
that some graphs such as wheels, windmills, and books are Cn-magic. Ngurah et al. [6] showed
that kCn-paths are Cn-supermagic for all integers k ≥ 2 and n ≥ 3; for all integers n ≥ 2, fans
K1 +Pn, triangle ladders T ln, and stars join a trivial graph K1,n +K1 are C3-supermagic; and
books Bn are C4-supermagic for all integers n ≥ 2. Some other results can be found in [3].
We use a k-balanced multiset method to prove the main theorems. Maryati et al. [5] introduced
this method in 2010. A multiset is a set that allows the existence of the same elements in it. In
this paper, we use the notation [a, b] for {x ∈ N|a ≤ x ≤ b} and the notation

∑
X for

∑
x∈X x.

Let k be a positive integer and Y be a multiset that contains positive integers. The multiset
Y is said to be a k-balanced multiset, if there exist k subsets of Y , namely Y1, Y2, . . . , Yk, such
that |Yi| = |Y |

k ,
∑

Yi =
∑

Y
k , and

⊎k
i=1 Yi = Y for every i ∈ [1, k].

In 2016, Salman and Ashari [7] generalized the idea of H-magic graph into (H1, H2)-magic
graph. A graph G admits an (H1, H2)-covering, where H1 and H2 are two connected sub-
graphs of G, if every edge in E(G) belongs to at least one subgraph of G isomorphic to H1 or
H2. The graph G is called (H1, H2)-magic, if there are two positive integers k1 and k2, and a
bijective function f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} such that

∑
v∈V (H′ ) f(v) +∑

e∈E(H′ ) f(e) = k1 and
∑

v∈V (H′′ ) f(v) +
∑

e∈E(H′′ ) f(e) = k2, for every subgraph H
′

=

(V (H
′
), E(H

′
)) of G isomorphic to H1 and for every subgraph H

′′
= (V (H

′′
), E(H

′′
)) of G

isomorphic to H2. Moreover, it is said (H1, H2)-supermagic, if f(V (G)) = {1, 2, . . . , |V (G)|}.
In [7], Salman and Ashari proved that some subgraph amalgamations of H1 and H2 are
(H1, H2)-magic. They also found a necessary condition of (Cn,K1,n)-magic graph for any
positive integer n ≥ 3. Besides that, they proved a characterization of path power graphs
being (C3,K1,3)-magic. In [1], Ashari and Salman showed that some shackles of H1 and H2

are (H1, H2)-supermagic.
In this paper, we prove that some classes of graphs are not (Cn,K1,n)-supermagic for any possi-
ble integers n such that the graphs admit (Cn,K1,n)-covering. We also prove a characterization
of trees corona a path Pm being (Cn,K1,n)-supermagic for n ∈ [3,m+1] and a characterization
of trees join a trivial graph being (Cn,K1,n)-supermagic for n = 3 or 4. We consider that a
complete graph Km admits (Cn,K1,n)-covering for any positive integer n ∈ [3,m − 1] and a
cocktail party graph CP (s) admits (Cn,K1,n) for any positive integer n ∈ [3, 2(s − 1)]. A
cocktail party CP (s) is a graph obtained from a complete graph K2s by deleting s disjoint
edges. We have the following two Theorems.
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Teorema 1. Let n and m be positive integers such that n ≥ 3 and m ≥ 4. A complete graph
Km is not a (Cn,K1,n)-supermagic for n ∈ [3,m− 1].

Teorema 2. Let n and s be positive integers such that n ≥ 3 and s ≥ 2. A cocktail party
graph CP (s) is not a (Cn,K1,n)-supermagic for n ∈ [3, 2(s− 1)].

Besides that, we investigate a characterization of (Cn,K1,n)-supermagic in some operation
graphs. A graph G corona with H, denoted by G �H, is a graph which is obtained from G
and |V (G)| copies of H, namely H1, H2, ...,H|V (G)| then joining every vi ∈ V (G) to all vertices
in V (Hi) for i ∈ [1, |V (G)|]. We consider that trees corona a path T � Pm admits (Cn,K1,n)-
covering for n ∈ [3,m + 1]. We have the following Theorem.

Teorema 3. Let k,m, and n be positive integers such that k ≥ 1 and n ∈ [3,m + 1].
Trees corona path T � Pm is (Cn,K1,n)-supermagic if and only if T is isomorphic to K1,k

and n = m + 1.

In the last part of this paper, we prove a characterization of (Cn,K1,n)-supermagic of trees
join a trivial graph T + K1 for n ∈ {3, 4}. The graph G join H, denoted by G + H, is a graph
that is obtained from G union H then joining every vertex in G to all vertices in H. Trees
join a trivial graph T + K1 admits (C3,K1,3)-covering and (C4,K1,4)-covering. We have the
following two Theorems.

Theorem 4. Let T be a tree of order at least three. A Tree join a trivial graph T + K1 is
(C3,K1,3)-supermagic if and only if T is isomorphic to K1,2.

Theorema 5. Let m be a positive integer such that m ≥ 4 and T be a tree of order at least
four. A tree join a trivial graph T +K1 is (C4,K1,4)-supermagic if and only if T is isomorphic
to K1,3 or path Pm.

Keywords: (Cn,K1,n)-covering, (Cn,K1,n)-supermagic, a trivial graph, corona, join, path, tree
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Extended Abstract

All graphs considered in this paper are simple, finite and undirected. We follow the terminology and notation
of Diestel [4]. Let G be a nontrivial, connected and edge-colored graph of order n, where adjacent edges may
be colored the same. A path P is a rainbow path, if no two edges of P receive the same color. The graph G
is rainbow connected, if G contains a u − v rainbow path for each pair u and v of distinct vertices of G. An
edge-coloring of G that results in a rainbow connected graph is a rainbow coloring of G. The minimum number
of colors needed in a rainbow coloring of G is the rainbow connection number rc(G) of G which was first
introduced by Chartrand et al. in 2008 [3].

In 2007, Ericksen [5] stated that the terrorist attacks on September 11, 2001 occured because intelligence
agencies were not able to communicate with each other through their regular channels from radio systems to
databases. Although such information needed to be protected because it is critical to national security, procedures
must be in place that permit access between appropriate parties. This issue can be addressed by assigning
information transfer paths between agencies which may have other agencies as intermediaries that require a
large enough number of passwords that are prohibitive to intruders, yet small enough that any path between
agencies has no password repeated. An immediate question arises: What is the minimum number of passwords
needed that allow a path between every two agencies so that the passwords along each path are distinct? The
minimum number of these passwords is represented by rainbow connection number. In [6], Fitriani and Salman
gave the rainbow connection number of amalgamation of some graphs.

Another generalization of rainbow connection number was introduced by Chartrand et al. in 2010 [2]. A tree
T in G is a rainbow tree, if no two edges of T receive the same color. Let k be an integer with 2 ≤ k ≤ n. A
k-rainbow coloring of G is an edge-coloring of G having property that for every set S of k vertices of G, there
exists a rainbow tree T such that S ⊆ V (T ). The minimum number of colors needed in a k-rainbow coloring
of G is the k-rainbow index of G, denoted by rxk(G). It is obvious that rx2(G) = rc(G). For every nontrivial
connected graph G of order n, it is easy to see that rx2(G) ≤ rx3(G) ≤ ... ≤ rxn(G).

The distance d(u, v) of two vertices u and v in G is the length of a shortest u − v path in G. The greatest
distance between any two vertices in G is the diameter of G, denoted by diam(G). The Steiner distance d(S)
of a set S of vertices in G is the minimum size of a tree in G containing S. Such a tree is called a Steiner
S-tree or simply a Steiner tree. The k-Steiner diameter of G, denoted by sdiamk(G), is the maximum Steiner
distance of S among all sets S with k vertices in G. Thus if k = 2 and S = {u, v}, then d(S) = d(u, v) and
sdiam2(G) = diam(G). In [2], they provided a simple upper bound and a lower bound for rxk(G) as follows.

Proposition 1 Let G be a nontrivial connected graph of order n ≥ 3. For each integer k with 3 ≤ k ≤ n− 1,
rxk(G) ≤ n− 1, whereas rxn(G) = n− 1.

Proposition 2 For every connected graph G of order n ≥ 3 and each integer k with 3 ≤ k ≤ n,

k − 1 ≤ sdiamk(G) ≤ rxk(G).

They showed that trees are composed of a class of graphs whose k-rainbow index attains the upper bound in
Proposition 1.

Proposition 3 Let T be a tree of order n ≥ 3. For each integer k with 3 ≤ k ≤ n, rxk(T ) = n− 1.

In this paper, we give a lower bound and an upper bound for the (strong) 3-rainbow index of amalgamation
of some graphs. Additionally, we determine the (strong) 3-rainbow index of amalgamation of trees, ladders, and
wheels. For simplifying, we define [a, b] = {x ∈ Z|a ≤ x ≤ b}.

A strong k-rainbow coloring of G is an edge-coloring of G having property that for every set S of k vertices
of G, there exists a rainbow Steiner S-tree T such that S ⊆ V (T ). The minimum number of colors needed in a
strong k-rainbow coloring of G is the strong k-rainbow index of G, denoted by srxk(G).

The following definition of amalgamation of graphs is taken from [1]. For t ∈ N with t ≥ 2, let {G1, G2, ...,
Gt} be a collection of finite, simple, and connected graphs and each Gi has a fixed vertex voi called a terminal.
The amalgamation Amal(Gi, voi) is a graph obtained by taking all the G′is and identifying their terminals. If
for each i ∈ [1, t], Gi

∼= G and voi = v, Amal(Gi, voi) denoted by Amal(G, v, t).
For n ≥ 3, a wheel Wn is a graph constructed by joining a vertex v to every vertex of a cycle Cn :

v1, v2, ..., vn, vn+1 = v1. The vertex v is called the center vertex of Wn. For each i ∈ [1, n], edge vvi is called
spokes of Wn.

In [3], Chartrand et al. gave a lower bound and an upper bound for strong rainbow connection number of G,
that is diam(G) ≤ rc(G) ≤ src(G) ≤ n− 1. It is easy to see that
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sdiamk(G) ≤ rxk(G) ≤ srxk(G) ≤ n− 1.

In the following theorem, we provide a lower bound and an upper bound for the (strong) 3-rainbow index of
amalgamation of arbitrary graphs.

Theorem 1 For t ∈ N with t ≥ 2, let {Gi|i ∈ [1, t]} be a collection of finite, simple, and connected graphs and
each Gi has a fixed vertex voi called a terminal. If G ∼= Amal(Gi, voi), then

sdiam3(G) ≤ srx3(G) ≤
∑t

i=1 srx3(Gi) and sdiam3(G) ≤ rx3(G) ≤
∑t

i=1 rx3(Gi).

The upper bound in Theorem 1 is tight. In the next theorem, we provide the existence of an amalgamation of
graph whose 3-rainbow index attains the upper bound in Theorem 1.

Theorem 2 Let t ∈ N with t ≥ 2, Tni is a tree of order ni, and v is an anbitrary vertex in Tni . If for each i ∈
[1, t], Gi

∼= Tni and voi = v, then srx3 (Amal(Tni , voi)) =
∑t

i=1 srx3(Tni) and rx3 (Amal(Tni , voi)) =∑t
i=1 rx3(Tni).

In the next theorems, we provide the (strong) 3-rainbow index of amalgamation of wheels.

Theorem 3 Let t ∈ N and n ∈ N with t ≥ 2 and n ≥ 4, Wn is a wheel of order n + 1, and v is the center
vertex of Wn. If for each i ∈ [1, t], Gi

∼= Wn and voi = v, then srx3 (Amal(Wn, v, t)) = dn2 et.

Theorem 4 Let t ∈ N and n ∈ N with t ≥ 2 and n ≥ 3, Wn is a wheel of order n + 1, and v is an arbitrary
vertex in Wn where v is not the center vertex. If for each i ∈ [1, t], Gi

∼= Wn and voi = v, then

srx3 (Amal(Wn, v, t)) =


t+ 2, for n = 3;

2t+ 1, for n ∈ {4, 5};(⌈
n−5
2

⌉
+ 1
)
t+ 2, for odd n with n ≥ 6;(⌈

n−5
2

⌉
+ 1
)
t+ 1, for even n with n ≥ 6.

Theorem 5 Let t ∈ N and n ∈ N with t = 2 and n ≥ 3, Wn is a wheel of order n + 1, and v is the center
vertex of Wn. If for each i ∈ [1, 2], Gi

∼= Wn and voi = v, then

rx3 (Amal(Wn, v, 2)) =


3, for n = 3;
4, for n ∈ [4, 8];
5, for n ≥ 9.

Theorem 6 Let t ∈ N and n ∈ N with t ≥ 3 and n ≥ 10, Wn is a wheel of order n + 1, and v is the center
vertex of Wn. If for each i ∈ [1, t], Gi

∼= Wn and voi = v, then rx3 (Amal(Wn, v, t)) = 5 for n = 5y and
y ≥ 2 or n = 6y and y ≥ 2.

Keywords : (strong) 3-rainbow index, amalgamation, rainbow steiner tree, rainbow tree
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Decompositions of the complete twisted graph Tn into

isomorphic plane spanning trees.

Eduardo Rivera-Campo
Universidad Autónoma Metropolitana-Iztapalapa

A collection of pairwise edge disjoint subgraphs G1, G2, . . . , Gm of a graph G is a de-
composition of G if E(G1) ∪ E(G2) ∪ · · · ∪ E(Gm) = E(G).

Let P be a set of points in the plane. A topological graph with vertex set P is a simple
graph drawn in the plane with edges as curves in such a way that any two edges have at
most one point in common.

A geometric graph G is a topological graph in which all edges are straight line seg-
ments. A geometric graph G is a convex graph the vertex set P is in convex position. In
[Computational Geometry: Theory and Applications 34 (2006), no. 2, 116 - 125], Bose et
al characterize all decompositions of the complete convex graph C2m into isomorphic plane
spanning trees.

A twisted graph Tn is a complete topological graph with n collinear vertices v1, v2, . . . , vn
in which two edges vivj (i < j) and vsvt (s < t) cross each other if and only if i < s < t < j
or s < i < j < t (T6 and a decomposition of T6 into plane spanning trees are depicted
in Fig 1). For this talk we characterize all decompositions of T2m into isomorphic plane
spanning trees.

Figure 1: A decomposition of T6 into three spanning trees.
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Continuous Flattening of the set of the square
faces in a hypercube
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Abstract: It is known that we can continuously flatten the surface of a 3-
dimensional cube onto any of its faces by moving creases to change the shapes of
some faces successively, following the bellow theorem. Let C be a n-dimensional
cube with n ≥ 4, and F be the set of its 2-dimansional faces, in other words,
the 2-dimensional skeleton of the square faces in C. We show that F can be
continuously flattened onto any face f of F such that the faces of F that are
parallel to f do not have any crease, that is, they are rigid during the motion.

There are several results on continuous flattening problems of three dimen-
sional polyhedra (see [1, 2, 3]). But it seems that there are no published results
on such problems for high dimensional polyhedra. In this talk, we study such
problems on high dimensional cubes (hypercubes) .

Definition 1. We denote by C the 4-dimensional cube described in the 4-
dimensional Euclidean space R4 with the vertex set V = {(x, y, z, w) : x =
±1, y = ±1, z = ±1, w = ±1}. An edge, a face, and a facet of C are a line
segment joining two vertices with distance two, a square with area four, and
a cube with volume eight, respectively. We denote by E and F the edge set
and the 2-dimensional face set, respectively. There are eight facets Cx=−1,
Cx=1, Cy=−1, Cy=1, Cz=−1, Cz=1, Cw=−1, and Cw=1 whose subscripts show
the hyperplanes including them.

Definition 2. Suppose a family {Ft : 0 ≤ t ≤ 1} of sets in R4 satisfies the
following three conditions;
(i) each Ft is composed of (folded) squares and is intrinsically isometric to F ,
where we allow some parts of Ft to touch each other,
(ii) Ft converges continuously to F1, and
(iii) F0 = F , and F1 is a multilayer 2-dimesional flat figure.
We say F is continuously flat-foldable to F1 (or, F is flat-folded to F1 by a
continuous motion).

Theorem 1. Let C, F , and f be the four-dimensional cube, the set of the
two-dimensional faces of C, and an element of F , respectively. The set F is
continuously flat-foldable onto the face f such that the four faces in F parallel
to f have no creases, that is, they are rigid during the motion.

Lemma 1. Let C and E be the four-dimensional cube and the edge set of C,
respectively. For any edge e in E and a facet Cs which does not include e,
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there is a continuous motion from the edge set E to Cs such that the eight edges
parallel to e are folded in half and that the other edges are rigid during the
motion.

Lemma 2. There is a continuous motion from the face set F onto the surface
of Cw=−1 such that all faces in F are folded continuously on Cw=−1 and that
all eight edges parallel to the w-axis are folded in half and the other edges are
rigid during the motion.

Figure 1: A four-dimensional cube, its facet, and its 2-dimensional flat folded
state.

By using the mathematical induction on n, we can prove that for any n-
dimensional hypercube with n ≥ 4, the set of the 2-dimensional faces in the
hypercube can be flattened continuously onto any of its 2-dimentional faces
f such that all 2-dimensional faces parallel to f have no creases during the
continuous motion.
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Internal continuous flattening of prisms
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We use the terminology polyhedron for a polyhedral surface in R3 which
is permitted to touch itself but not self-intersect. There are several ways of
continuous flattening of polyhedra in [1, 2, 4, 5, 6, 7]. We propose the open
question to find a continuous flattening motion that minimizes its sweeping
volume. There is value in investigating this problem because there does not
always exist enough area around a polyhedron. On the other hand, in any
flattening motion of a polyhedron, it is clear that the spatial area through which
the faces of the polyhedron pass must contain the internal area of the original
polyhedron. A flattening motion is said to be internal if every face does not
pass through the outside of the original polyhedron.

We show an example in Figure 1.

(a) (b) (c)

Figure 1: (a) A triangular prism, (b)(c) an internal folding motion, (d) a flat-
tening state.

In this talk, we provide the internal continuous flattening motion of prisms
so that there are no moving creases on every side face. Note that the methods
given in [2, 6] show the existence of a continuous flattening motion not only for
any prism, but also for more general polyhedra defined in [2, 3, 6]. However, the
continuous flattening motion provided in the literature is not always internal,
and many faces have moving creases. For an internal continuous flattening
motion, we focus on the number of faces with moving creases and the number
of creases on each face.

Now, an internal continuous flattening motion of a prism with one arbitrary
rigid side face can be obtained as follows.

Lemma 1. For any right triangular prism, there exists an internal continuous



flattening motion so that one arbitrary side face is rigid and each of other side
faces has at most a finite number of creases.

Theorem 1. For any right prism, there exists an internal continuous flattening
motion so that one arbitrary side face is rigid and each of other side faces has
at most a finite number of creases.

Moreover, an internal continuous flattening motion with two arbitrary rigid
side faces can also be obtained for a special class of prisms as follows.

Lemma 2. For any right triangular prism with bottom face having non-acute
angle, there exists an internal continuous flattening motion so that two arbitrary
side faces whose dihedral angle is acute are rigid and another side face has only
one crease.

Theorem 2. For any convex right prism whose bottom face does not have an
acute angle, there exists a continuous flattening motion so that two arbitrary
side faces are rigid and each of other side faces has at most a finite number of
creases.
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entific Research (C)(16K05258).
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Infinite All-Layers Simple Foldability
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A classic problem in computational origami is flat
foldability : given a crease pattern (planar straight-
line graph with n edges) on a polygonal piece of pa-
per P , can P be folded flat isometrically without self-
intersection while creasing at all creases (edges) in
the crease pattern? The problem can also be defined
for assigned crease patterns, in which every crease is
labeled mountain or valley depending on the direc-
tion it is allowed to fold. The decision problem (for
both assigned or unassigned) is NP-hard [5], even
when the paper is an axis-aligned rectangle and the
creases are at multiples of 45◦ [2]. But even when a
crease pattern does fold flat, the motion to achieve
that folding can be complicated [6], making the pro-
cess impractical in some physical settings.

Motivated by practical folding processes in man-
ufacturing such as sheet-metal bending, Arkin et
al. [3] introduced the idea of simple foldability—flat
foldability by a sequence of simple folds. Informally,
a simple fold is defined by a line segment and ro-
tates a portion of the paper around this segment by
±180◦, while avoiding self-intersection. The problem
generalizes to d-dimensions. In particular, for 1D
paper, P is a line segment and creases are defined
by points in P . In [3], they defined several mod-
els for simple folds and, for many models, showed
that deciding simple foldability is polynomial for 1D
paper, polynomial for rectangular paper with axis-
aligned creases, weakly NP-complete for rectangular
paper with creases at multiples of 45◦, and weakly
NP-complete for orthogonal paper with axis-aligned
creases. In particular, they provided an algorithm
to determine simple foldability of a 1D paper in
O(n log n) deterministic time and O(n) randomized
time in the all-layers model, requiring that a simple
fold through one crease, also folds through all layers
overlapping that crease. Akitaya et al. [1] extended
the list of simple folding models, and for many mod-
els showed simple foldability to be strongly NP-hard
for 2D paper. In particular, they introduced the
infinite all-layers model of simple folds for 2D pa-
per which is studied here, requiring that each simple
fold be defined by an infinite line, and that all layers
of paper intersecting this line must be folded. This
model is probably the most practical simple folding
model; for example, Balkcom’s robotic folding sys-
tem [4] is restricted to this model.

In this paper, we improve on [3] giving a deter-

∗Tufts University, hugo.alves akitaya@tufts.edu
†CSAIL, Massachusetts Institute of Technology, {cavery,

jbergero,edemaine,jkopin,jasonku}@mit.edu

ministic O(n)-time algorithm to decide simple fold-
ability of 1D crease patterns in the all-layers model.
Then, we prove two results concerning the complex-
ity of one of the few remaining open problems in
this area [1]: infinite all-layers simple foldability on
orthogonal crease patterns, axis-aligned orthogonal
2D paper with axis-aligned creases. First, we prove
that this problem can be solved in linear time when
creases are fully unassigned. On the other hand,
when the creases are partially assigned (some creases
must fold mountain, some creases must fold valley,
while others can freely fold mountain or valley), this
problem becomes strongly NP-complete, even for an
axis-aligned rectangle of paper.

Theorem 1 All-layers simple foldability of a 1D
crease pattern can be decided in deterministic linear
time.

Proof sketch: We reduce the problem to a “string
folding” problem as in [3], representing the input as
a string of the form `0d1`1d2 . . . dn−1`n−1dn`n where
each di ∈ {M,V } represents the assignment of the
i-th crease and `i ∈ R represents the length of the
i-th uncreased line segment in P . For an instance to
be simple foldable in this model, any fold must map
a crease onto another crease of opposite assignment.
After a fold is performed, we obtain a smaller crease
pattern by ignoring paper overlap. By [3] the smaller
crease pattern is simple foldable if and only if the
original one is. The size of a fold is defined by the
difference on the length of the strings representing
the crease patterns. We adapt the algorithm in [7]
to recognize the smallest possible fold in a crease
pattern that runs in linear time on the size of the
output fold, leading to an amortized linear time al-
gorithm overall. Unassigned crease patterns can also
be solved by a simple modification of this algorithm.

Theorem 2 Infinite all-layers simple foldability of
a fully unassigned orthogonal crease pattern can be
decided in deterministic linear time.

Proof sketch: We first provide a linear time reduc-
tion of infinite all-layers simple foldability of unas-
signed orthogonal crease patterns to instances on
rectangular paper. Such instances are equivalent in
the finite and infinite all-layers models [2]. We then
reduce the problem on a rectangle to two instances of
1D simple foldability which by Theorem 1 can each
be decided in deterministic linear time.
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Theorem 3 Deciding infinite all-layers simple
foldibility of partially assigned orthogonal crease
patterns is NP-Complete, even for creases on a
square grid on rectangular paper.

Proof sketch: The problem is in NP as a valid se-
quence of simple folds represents a certificate of at
most linear size that can be checked in polynomial
time. We show NP-hardness via a reduction from
3SAT. Given an instance of 3SAT on n variables
and m clauses, we build a partially assigned simple
foldability instance as illustrated in Figure 1. Infor-
mally, yellow dots on the same vertical line represent
a clause. The partial assignment forces any legal se-
quence of simple folds to fold through either t1 or
f1 but not both, forcing a yellow dot onto either a
green or red dot respectively, encoding the boolean
assignment of the variable x1. A vertical fold on the
right edge of the paper must occur next, followed by
folding along either t′1 or f ′1, consistent with whether
t1 or f1 was initially chosen. These folds force the
yellow dots directly below t1 and f1 to coincide with
the yellow dots directly above t1 and f1, and adds a
valley assignment to a crease incident to a yellow dot
if its corresponding clause contains a literal involving
x1 that evaluates to false. We apply induction on
the resulting crease pattern to bring all the yellow
dots to lie on top of the m upper-most yellow dots. A
crease pattern containing a vertex incident to only
valley creases is not flat foldable. After folding as
described for any given assignment of the variables,
we show that the each resulting yellow dot will be
incident to at least one non-valley crease if and only
if the SAT instance has a positive solution, and that
the resulting crease pattern can be folded by a se-
quence of infinite all-layers simple folds.
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Abstract. Which convex 3D polyhedra can be obtained
by gluing several regular hexagons edge-to-edge? It turns
out that there are only 15 possible types of shapes, 5 of
which are doubly-covered 2D polygons. We give exam-
ples for most of the them, including all simplicial and all
flat shapes, and give a characterization for the latter ones.
It is open whether the remaining can be realized.

1 Introduction

Given a 2D polygon P , which convex 3D polyhedra
can be obtained by folding it and gluing its boundary
to itself? Alexandrov’s theorem [1] states that for any
gluing pattern homeomorphic to a sphere that does
not yield the total facial angle more than 2π at any
point, there is a unique 3D convex polyhedron that
can be constructed in this manner. Nevertheless, an-
swering the above question requires checking expo-
nentially many possibilities [2]. There are two ways
to restrict the setting: to consider a particular polygon
(e.g., all regular polygons [4], and the Latin cross [3]
were studied), or to consider only edge-to-edge glu-
ing, where an edge of P needs to be glued to an en-
tire other edge of P [4]. We are interested in gluing
together several copies of a same regular polygon
edge-to-edge, thus fusing these two settings, while
at the same time extending and restricting each of
them. The case of regular k-gons for k > 6 is trivial.
Indeed, since gluing three k-gons in one point would
violate the above Alexandrov’s condition, the only
two possibilities are: two k-gons glued together and
forming a doubly covered k-gon, or one k-gon folded
in half (if k is even). Thus the first interesting case is
k = 6, and we study it here. Note that the problem
we are solving here for k = 6 is actually decidable
(in constant time) for any constant k by Tarski’s the-
orem, but the problem is probably too large even for
k = 6 to be handled by any existing computer.

2 Gluing regular hexagons

Let P be a convex 3D polyhedron. Gaussian curva-
ture at a vertex v of P equals 2π −

∑t
j=1 α

v
j , where

t is the number of faces of P incident to v, and αv
j

is the angle of the j-th face incident to v. Gaussian
curvature at each vertex of P is non-negative.

Theorem 1 (Gauss, Bonnet’1848). The total sum of
the Gaussian curvature at each vertex of a 3D poly-
hedron P equals 4π.

Let P be a convex polyhedron obtained by gluing
several regular hexagons edge-to-edge. Vertices of P
are vertices of the hexagons, and the sum of facial
angles around a vertex v of P equals 2π/3 (the inte-
rior angle of the regular hexagon) times the number
of hexagons glued together at v. Since the Gaussian
curvature at v is in (0, 2π), the number of hexagons
glued at v can be either one or two, implying the
Gaussian curvature of v to be respectively 4π/3 or
2π/3. If three hexagons are glued at a point p, p has
zero Gaussian curvature, and thus is a (flat) point on
the surface of P . Thus P has at most 6 vertices.

There are 10 distinct 3-connected simple planar
graphs of at most 6 vertices; these are all combinato-
rially different graph structures of convex polyhedra
of at most 6 vertices. There also are 4 combinato-
rially different doubly-covered plane polygons that
can be obtained by gluing hexagons. The quadrilat-
erals come in 2 variants depending on the sequence
of their angles. Thus we list 5 types of polygons.

Below we give examples for different polyhe-
dra obtained by gluing regular hexagons. Namely we
give an example for each doubly-covered flat poly-
gon, for each simplicial polyherdon, and for one non-
simplicial polyhedron. It remains open whether all
the non-simplicial polyhedra can be constructed as
well (five polyhedra are in question).

Doubly-covered flat polygons (see Figure 1):

(a) Equilateral triangle.
(b) Quadrilateral with angles π/3, π/3, 2π/3, 2π/3.

This is a parallelogram.
(c) Quadrilateral with angles π/3, 2π/3, π/3, 2π/3.

This is an isosceles trapezoid.
? E. K. was supported by F.R.S.-FNRS, and by the SNF Early PostDoc Mobility grant P2TIP2-168563. S. L. is directeur

de recherches du F.R.S.-FNRS.
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(d) Pentagon with 1 angle π/3, and 4 angles 2π/3.
(e) Regular hexagon.

We further characterize such shapes:

Proposition 1. Any polygon of type (a)–(e), that can
be drawn on the hexagonal grid, can be obtained by
gluing regular hexagons. (See Appendix.)

(Non-flat) Polyhedra (see Figure 2):

(i) Tetrahedron.
(ii) Hexahedron with 5 vertices (3 vertices of degree

4, and 2 vertices of degree 3), and 6 triangular
faces.

(iii) Octahedron with 6 vertices of degree 4 each, and
8 triangular faces. In our example, it is a regular
octahedron.

(iv) Octahedron with 6 vertices (two of which are of
degree 5, two of degree 4, and two of degree 3)
and 8 triangular faces.

(v) Pentahedron with 6 vertices of degree 3 each,
and 5 faces (2 triangles, and 3 quadrilaterals). In
our example, it is a triangular prism.

We do not characterize these polyhedra in terms
of side lengths, as opposed to the case of polygons.

Open question. Can the following polyhe-
dra be realized by gluing regular hexagons?
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Fig. 1. Doubly-covered polygons (a)-(e): Their nets and crease lines

crease lines, gluing of edges, gluing of vertices
a vertex, a vertex represented by 2 points

Fig. 2. Examples of polyhedra (i)–(v). Above: graphs of their skeletons. Below: their nets, crease lines, and gluing rules.



Some extension of reversing a polyhedral surface
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Recently H. Maehara considered the reversibility of several polyhedral surfaces in [1]. He defined an
origami-deformation of a polyhedral surface in R3 and he showed that if an orientable polyhedral surface
with boundary is reversible, then its genus is 0, and for every interior vertex, the sum of face angles
at the vertex is at least 2π. He showed that every rectangular tube and some polyhedra (obtained by
tube-attachment operation) can be subdivided so that it becomes reversible (it is called s-reversible).
Moreover he posed several open problems.

In this talk we continue his research and announce several results. Before that, we have to stand for
his main theorem.

Theorem. Every rectangular tube is s-reversible.

Now we will announce our new results. First we discuss a 3 times extended cube with 4 square holes
XC4 (see Figure 1). We define a semi-flattening operation and deform XC4 to a subset of square tube
and use Maehara’s result.

Figure 1: XC4

A semi-flattening operation is defined by the following way. We make creases as shown in Figure
2 on the three consecutive square faces which are perpendicular to the bottom plane and also stand
perpendicularly each other, and deform continuously as Figure 2. At last the middle face is flattened and
the other two side faces are folded along their diagonals.

Figure 2: applying a semi-flattening operation to XC4



Proposition 1. XC4 is s-reversible.

Next we discuss a surface of cube with 8 holes C8 (which is a surface of the unit cube removed 8
neighborhoods around each vertex, where each neighborhood is composed of 3 squares whose edge length
is equal to 1/3)(see Figure 3).

Figure 3: make a cube to C8

Proposition 2. C8 is s-reversible.

C8 can be deformed into XC4. The procedure is as follows (see Figure 4). Then we can get the result.

Figure 4: a procedure of folding C8 to XC4

Finally we define a cubical-tube-unit attachment operation and get the following theorem.

Theorem. Every polyhedral surface made of cubical-tube-unit-attachment operation is s-reversible.
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The bipartite cylindrical crossing number of Kn,m

B. M. Ábrego∗, S. Fernández-Merchant∗†, A. Sparks‡

Abstract

A bipartite cylindrical drawing of the complete bi-
partite graph Km,n is a drawing on the surface of
a cylinder, where the vertices are placed on the
top and bottom rims of the cylinder, one vertex-
partition per rim, and the edges do not cross the
rims of the cylinder. The bipartite cylindrical cross-
ing number cr}(Km,n) of Km,n is the minimum
number of crossings among all bipartite cylindrical
drawings of Km,n. We determine cr}(Km,n).

1 Introduction

The crossing number of a graph G, denoted by
cr(G), is the minimum number of edge-crossings
over all drawings of G on the plane. We con-
sider a subclass of drawings in the plane. A cylin-
drical drawing of a graph has the vertices placed
along the top and bottom rims of a cylinder and
the edges lie on the surface of the cylinder and do
not cross the rims. We look specifically at bipar-
tite cylindrical drawings of the complete bipartite
graph Km,n, where we impose the additional con-
dition that the m-set of vertices is placed on one
rim and the n-set of vertices on the other rim. (See
Figure 1, left.) The bipartite cylindrical crossing
number cr}(Km,n) of the complete bipartite graph
Km,n is the minimum number of crossings among
all bipartite cylindrical drawings of Km,n.

Cylindrical drawings can be represented in the
plane by placing the vertices on two concentric cir-
cles corresponding to the top and bottom rims of
the cylinder: the inner boundary Ci and the outer
boundary Co. Therefore, bipartite cylindrical draw-
ings of Km,n in the plane have the m-set of vertices
on Ci, the n-set of vertices on Co, and all edges
lie between Ci and Co. (See Figure 1, right.) We
determine cr}(Km,n) in this setting.

These type of drawings were first studied by
Harary and Hill [2], who constructed cylindrical

∗California State Univ., Northridge, [bernardo.abrego, sil-
via.fernandez]@csun.edu.
†Supported by the NSF grant DMS-1400653.
‡Univ. Colorado Boulder, athena.sparks@colorado.edu

drawings of the complete graph Kn with few cross-
ings. These drawings consist of a bipartite cylin-
drical drawing of Kbn/2c,dn/2e extended to a draw-
ing of Kn by adding straight line segments between
vertices in the same rim of the cylinder. They con-
jectured that their drawings achieve cr(Kn). This
conjecture was recently proved by Ábrego et al. [1]
for the class of cylindrical drawings of Kn. The
crossing number of a graph restricted to cylindrical
drawings whose edges completely remain in the re-
gion between the two rims/boundaries is also called
the annulus crossing number [4].

Figure 1: Left: A cylindrical drawing of K3,5 drawn on a
cylinder. Right: The same cylindrical drawing (up to iso-
morphism) represented in the plane.

2 Results

In 1997, Richter and Thomassen [3] proved that the
bipartite cylindrical crossing number of Kn,n is

cr}(Kn,n) = n

(
n

3

)
.

In this work, we extend this results to unbalanced
complete bipartite graphs.

Theorem 1. If m ≤ n, the bipartite cylindrical
crossing number of Km,n is

cr}(Km,n) =

(
n

2

)(
m

2

)
(1)

+
∑

1≤i<j≤m

(⌊ n
m

(j − 1)
⌋
−
⌊ n
m

(i− 1)
⌋)2

− n
∑

1≤i<j≤m

(⌊ n
m

(j − 1)
⌋
−
⌊ n
m

(i− 1)
⌋)

1
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When m divides n, this reduces to the following
result, which agrees with that in [3] when m = n.

Theorem 2. If m divides n, the bipartite cylindri-
cal crossing number of Km,n is

cr}(Km,n) =
1

12
n(m− 1)(2mn− 3m− n). (2)

3 Sketch of proofs

It is known that for any graph G the minimum
cr(G) can be restricted to good drawings of G, that
is, drawings where (a) no edge crosses itself, (b) two
edges that share a vertex do not cross, and (c) two
edges with no shared vertices cross each other at
most once. Any drawing with one of these cross-
ings is not optimal because for each of these three
types of crossings, the edges can be altered slightly
to produce a drawing of the same graph with fewer
crossings. These modifications preserve the prop-
erty of being a bipartite cylindrical drawing. Then
from now on, we only consider good bipartite cylin-
drical drawings of Km,n.

We use the notation in [3]. Given a good bi-
partite cylindrical drawing D of Km,n in the plane,
label the vertices on Ci clockwise 1 through m and
the vertices on Co clockwise 1 through n. For each
vertex i ∈ Ci, there is a unique vertex xi ∈ Co such
that the edges from i to xi and i to xi + 1 (mod n)
together with the segment of Co that connects xi

to xi + 1 (mod n) clockwise creates a simple closed
curve that contains Ci. (See Figure 2, left.) With
this labeling system, it was proved in [3] that the
number of crossings in D is given by∑

1≤i<j≤m

(
|xj − xi|

2

)
+

(
n− |xj − xi|

2

)
.

Assuming without loss of generality that x1 = 1, we
prove that 1 = x1 ≤ x2 ≤ · · · ≤ xm ≤ n and thus

cr(D) = F (x1, x2, . . . , xm) =

(
n

2

)(
m

2

)
+

∑
1≤i<j≤m

(xj − xi)
2 − n

∑
1≤i<j≤m

(xj − xi).

Moreover, given a sequence 1 = x1 ≤ x2 ≤ · · · ≤
xm, there is a unique good cylindrical drawing of
Km,n, up to isomorphism, and this drawing has
F (x1, x2, ..., xm) crossings. (See Figure 2,right.)

We minimize F over all integer m-tuples 1 =
x1 ≤ x2 ≤ . . . ≤ xm ≤ n. As in [3], we first de-
termine when the real-valued function F attains its
minimum. Setting the partial derivatives of F to 0,

∂F

∂xi
= 2mxi − 2

xj∑
1≤j≤m

+n(m− 2i + 1) = 0,

x
i

i

x
i
+1

2

x2 = 2

4

1

1 = x1

3

3 5 = x3

Figure 2: Left: The vertex xi ∈ Co assigned to the vertex
i ∈ Ci. Right: The unique good cylindrical drawing of K3,5

with x1 = 1, x2 = 2, x3 = 5 and F (1, 2, 5) = 16 crossings.

yields

xi =
1

m

∑
1≤j≤m

(xj − n(m− 2i + 1)) .

So F achieves its (real) minimum when xi+1−xi =
n
m . Setting x1 = 1, gives that the minimum of F
is attained when xi = n

m (i − 1) + 1 for all 1 ≤ i ≤
m. When m divides n, these values are integers
between 1 and n, which in turn proves Identity (2).

In the case when m does not necessarily divide
n, the previous argument suggests that the mini-
mum of F when restricted to m-tuples of integers
between 1 and n should be achieved when xi is close
to n

m (i − 1) + 1. In fact, we prove that this (dis-
crete) minimum of F is achieved when xi = fi for
1 ≤ i ≤ m, where fi =

⌊
n
m (i− 1) + 1

⌋
.

Using a partial variations argument, we first
prove that the discrete minimum is achieved when
each xi is either fi or fi + 1. Then, for I ⊂
{1, 2, · · · ,m}, we study the difference H(I) =
F (x1, x2, . . . , xm) − F (f1, f2, . . . , fm), where xi =
fi + 1 for i ∈ I and xi = fi for i /∈ I. Our goal is
then to prove that H(I) ≥ 0, which in turn proves
Identity (1). We use induction on |I| and several
number theory lemmas that focus on the residual
classes of {n(i− 1) : 1 ≤ i ≤ m} modulo m.
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Minimizing crossings of 2-page drawings of Kn with prescribed

number of edges in each page

B. M. Ábrego∗, S. Fernández-Merchant∗†, E. Lagoda‡, and P. Ramos§

Abstract

We consider the problem of determining the 2-page

book crossing number of the complete graph Kn when

the number of edges in each page is given. We find up-

per and lower bounds of the right order of magnitude

depending on the number of edges in the page with the

least number of edges.

1 Introduction

A k-page book is the union of k-half planes in the
space with common boundary and disjoint interi-
ors. The common boundary is a straight line called
the spine and the half planes are called pages. We
are concerned only with 2-page book drawings of
Kn, that is, drawings of Kn such that the vertices
are placed on the spine and each edge (except by its
endpoints) is completely contained in the interior of
a single page. Ábrego et al. [1] proved Harary-Hill’s
conjecture (see [3] and [2]) for 2-page drawings,
that is, they proved that a 2-page drawing of the
complete graph has at least 1

4
⌊n
2
⌋⌊n−1

2
⌋⌊n−2

2
⌋⌊n−3

2
⌋

crossings. This inequality is tight; in fact the au-
thors of [1] partially classified the drawings that
achieve equality and, as expected, these drawings
have essentially the same number of edges in each
page. In this paper we consider the problem of min-
imizing ν2(Kn, r), the number of crossings of the
complete graph Kn on n vertices where r edges
are drawn on one page (the red edges) and the
remaining

(

n
2

)

− r edges are drawn on the other
page (the blue edges). Given n and r, this problem
is equivalent to determining the minimum number
of monochromatic crossings (red-red or blue-blue)
over all different ways to color exactly r red and
(

n
2

)

− r blue diagonals of the regular n-gon.

∗California State Univ., Northridge, [bernardo.abrego, sil-
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2 Results

Let D be a 2-page drawing of the complete graph
on n vertices with exactly r edges in one page and
(

n
2

)

− r on the other page. We call R the set of r

red edges, and B the set of the remaining
(

n
2

)

− r
blue edges. In this paper we concentrate on the case
when r = o(n2). The full range of values of r will
be included in the full version. For simplicity, we
assume that n is even. Our main result follows.

Theorem 1. If r = o(n2), then

1

2
r2 − o(r2) ≤ ν2(Kn, r) −

(

n

4

)

+
1

4
r(n− 2)2

≤ 0.6109r2 + o(r2).

The proof of this theorem is outlined in what
follows. The proofs of the lemmas are omitted for
lack of space. Using the model of the regular n-
gon, we define cr(X,Y ) as the number of crossings
of edges in X with edges in Y . If X = {e}, we write
cr(e, Y ) instead of cr({e}, Y ). In addition, every
edge e separates (n − 2)/2 − i(e) points from the
remaining (n− 2)/2+ i(e) points, where 0 ≤ i(e) ≤
(n−2)/2 is twice the difference of the absolute value
of the difference of points in each side.

Theorem 2. If D is a 2-page drawing of the com-

plete graph on n vertices with exactly r edges in one

page, then

cr(D) =

(

n

4

)

− 1

4
r(n−2)2+

∑

e red

(

cr(e,R) + i(e)2
)

.

Proof. In the model of 2-colored edges in the reg-
ular n-gon, every red edge e has (n − 2)/2 − i(e)
vertices on one side and (n− 2)/2+ i(e) vertices on
the other, and any edge joining vertices on different
sides crosses e. Thus

1

4
(n− 2)2 − i(e)2 = cr(e,R) + cr(e,B).

Adding this equation over all red edges yields

1

4
r(n− 2)2 −

∑

e red

i(e)2 =
∑

e red

cr(e,R) + cr(R,B).



Because cr(D) =
(

n
4

)

− cr(R,B), it follows that

cr(D) =

(

n

4

)

− 1

4
r(n−2)2+

∑

e red

(

cr(e,R) + i(e)2
)

.

For the rest of the paper, we assume that D is a
2-page drawing of the complete graph on n vertices
with exactly r = |R| edges in one page and with
ν2(Kn, r) crossings.

We construct an upper triangular matrix M(D)
which corresponds to the coloring of the edges. We
call this the 2-page matrix of D. For i < j an entry
(i, j) (row,column) in the 2-page matrix M(D) is
a point with the same color as the edge ij in the
drawingD. In order to find a lower bound for cr(D),
in the model of the 2-page matrix, it is convenient
to have most of the r edges in the square submatrix
with entries (a, b) with 1 ≤ a ≤ n/2 and n/2 + 1 ≤
b ≤ n. The next lemma accomplishes this.

Lemma 3. For every 1 ≤ j ≤ n/2, let Sj be set of

the edges

{(a(modn), b(modn)) :

j ≤ a ≤ j + n/2− 1, j + n/2 ≤ b ≤ j + n− 1}.

There is 1 ≤ j ≤ n/2 such that

|Sj ∩R| ≥ r

(

1− 2

n

√

2(r − 1)

)

> r − (2r)3/2

n
.

By using a suitable rotation of the indices, we
can assume that the j from the previous lemma is
equal to 1. Note that if r < n2/3/2, then |S1 ∩R| =
r. Similarly, if r = o(n2), then |S1 ∩R| = r − o(r),
so in effect S1 contains asymptotically almost all of
the red edges.

Lemma 4. Let s = |R ∩ S1|. Then

∑

e red

(

cr(e,R) + i(e)2
)

≥ 1

2
s(s− 1)− 4

√
2

3
(s3/2 − 1).

By Lemma 3, we can assume s = r− o(r). Now
the proof of the lower bound of Theorem 1 follows
by using Theorem 2 and Lemma 4.

To prove the upper bound, we consider a draw-
ing induced by a 2-page matrix M(D) where the
red points are those in the interior of a centrally
symmetric octagon with the dimensions described
in Figure 1. The octagon is also mirror-symmetric
with respect to the diagonal of slope 1, and its
center coincides with a point e in M(D) with
i(e) = 0. The area of the octagon is r and so
t =

√

r/(4 − 2a). The optimal value of a is the

real solution of 2a3 − 12a2 + 43a − 18 = 0, which
is about a ≈ 0.477. The corresponding number of
crossings of the drawing is

cr(D) =

(

n

4

)

− 1

4
r(n − 2)2 + h(a)r2 + o(r2),

where

h(a) =
−2a3 + 21a2 − 41a+ 32

12(a− 2)2
≈ 0.6109.

Figure 1: M(D) of a drawing with few crossings
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A characterization of tree-tree quadrangulations

on closed surfaces

Raiji Mukae∗ & Terukazu Sano†

National Institute of Technology, Kisarazu College

A graph G is said to be tree-tree if there is a partition of V (G) = V1 ∪ V2 such that Vi induces a tree

for i = 1, 2. This terminology is first introduced as “tree-tree triangulation” in [2]. In that paper, the

results discussed the dual form of Barnette conjecture and the vertex arboricity for planar graphs. In [1],

they focus on constructing tree-tree triangulations on the plane.

A triangulation on a closed surface F 2 is a simple graph embedded on F 2 so that each face is triangular.

Theorem 1 (Z.Skupień [2]). A triangulation G on a sphere is tree-tree if and only if the dual G∗ is

hamiltonian.

It is easy to see that there is no tree-tree triangulations on non-spherical closed surfaces. However,

there are tree-tree graphs on closed surfaces in general. In this talk, we shall focus on “tree-tree quad-

rangulations”.

A quadrangulation on a closed surface F 2 is a simple graph embedded on F 2 so that each face is

quadrangular. First, we obtain an analogous theorem for tree-tree triangulations on a sphere.

Theorem 2. A quadrangulation G on a sphere is tree-tree if and only if the dual G∗ is hamiltonian.

For extending the result to other surfaces, we define some terminologies. An open 2-cell 2-face embed-

ding (open 2C2F embedding) of a multigraph G into a closed surface F 2 represents an embedding with

only two faces so that each face is homeomorphic to an open 2-cell. (See Figure 1.) For a closed surface

F 2, Euler genus is defined as ε(F 2) = 2 − χ(F 2), where χ(F 2) is Euler characteristic of F 2.

We have proved that tree-tree quadrangulations can be characterized with special 4-regular multi-

graphs in the dual.

Theorem 3. A quadrangulation G on a non-spherical closed surface F 2 is tree-tree if and only if the dual

G∗ has a spanning subgraph H∗ such that H∗ is homeomorphic to some ε(F 2)-vertex 4-regular connected

multigraph with open 2C2F embedding into F 2.

Moreover, we have determined the specific 4-regular multigraphs in Theorem 3 for a projective plane

and a torus, as follows.

Theorem 4. A quadrangulation G on a projective plane P 2 is tree-tree if and only if the dual G∗ has a

spanning subgraph H∗ such that H∗ is homeomorphic to a 2-bouquet with open 2C2F into P 2.
∗E-mail: mukae@cc.miyakonojo-nct.ac.jp
†E-mail: sano@nebula.n.kisarazu.ac.jp
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Theorem 5. A quadrangulation G on a torus is tree-tree if and only if the dual G∗ has a spanning

subgraph H∗ of G∗ such that H∗ is homeomorphic to a 4-dipole with open 2C2F into T 2.

Figure 1: Open 2C2F embeddings of a 2-bouquet on P 2 and a 4-dipole on T 2

In this talk, we will introduce a difference between triangular and quadrangular cases, and show an

outline of our main results.
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On Ramsey (P4, P4)-minimal graphs

H. Assiyatun1, E.T. Baskoro2, D. Rahmadani2, B. Rahajeng2, Y. Yoshie3
1Combinatorial Mathematics Research Group ITB Indonesia, email :hilda@math.itb.ac.id

2Combinatorial Mathematics Research Group ITB Indonesia
3Graduate School of Information Science, Tohoku University, Japan

Abstract
For any two given graphs G and H, the notation F → (G,H) means that any red-blue coloring
of all edges of F creates either a red subgraph isomorphic to G or a blue subgraph isomorphic
to H. A graph F is a Ramsey (G,H)−minimal graph if F → (G,H) but F−e 9 (G,H), for
every e ∈ E(F ). The class of all Ramsey (G,H)−minimal graphs is denoted byR(G,H). It
is known thatR(Pm, Pn), for n ≥ m ≥ 3 is infinite. We show thatR(Pm, Pn), for n ≥ m ≥ 2
contains no disconnected graphs, and R(Pm, Pn), for n ≥ m ≥ 4 contains no trees. We also
show that there is no unicyclic graph in R(Pm, Pn), for n > m ≥ 4. In particular we inves-
tigate some classes of graphs in R(P4, P4), and prove the uniqueness of unicyclic graphs in
R(P4, P4).

2010 Mathematics Subject Classification: 05C55, 05D10
Keywords: Ramsey minimal graph, coloring, Ramsey infinite, unicyclic graph



Unicyclic Ramsey (path,path)-minimal graphs

Desi Rahmadani∗, Hilda Assiyatun, Edy Tri Baskoro

Combinatorial Mathematics Research Group
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Institut Teknologi Bandung Jl. Ganesa 10 Bandung 40132, Indonesia

Email: desi.rahmadani33@students.itb.ac.id, {hilda,ebaskoro}@math.itb.ac.id

Abstract

For any given two graphs G and H , the notation F → (G,H) means that any red-blue
coloring of all the edges of F will create either a red subgraph isomorphic to G or
a blue subgraph isomorphic to H . A graph F is a Ramsey (G,H)-minimal graph if
F → (G,H) but F −e 9 (G,H), for every e ∈ E(F ). The set of all Ramsey (G,H)-
minimal graphs (up to isomorphism) is denoted by R(G,H). The pair (G,H) will
be called Ramsey-finite or Ramsey-infinite depending upon whetherR(G,H) is finite
or infinite, respectively. Several papers have discussed the problem of determining
whether for a pair (G,H) of graphs the classR(G,H) is finite or infinite. It is known
that the setR(Pm, Pn), for n ≥ m ≥ 3 is Ramsey-infinite.

Some partial results for R(P3, Pn), for odd n ≥ 7 have been obtained. However,
since the set R(P3, Pn), for n ≥ 7 is Ramsey-infinite then it is interesting to know
some infinite families in this set. In this paper, we construct an infinite set of unicyclic
graphs in R(P3, Pn), for each odd n ≥ 7. These unicyclic graphs are formed by
attaching a tree in each vertex of odd cycles. This process will be done recursively.

Keywords : edge coloring, Ramsey minimal graph, path, unicyclic graph.
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Polyhedral Characterization of Reversible Hinged Dissections

Jin Akiyama∗ Erik D. Demaine† Stefan Langerman‡

Abstract. We prove that two polygons A
and B have a reversible hinged dissection (a
chain hinged dissection that reverses inside and
outside boundaries when folding between A
and B) if and only if A and B are two non-
crossing nets of a common polyhedron. Fur-
thermore, monotone hinged dissections (where
all hinges rotate in the same direction when
changing from A to B) correspond exactly to
non-crossing nets of a common convex polyhe-
dron. By envelope/parcel magic, it becomes
easy to design many hinged dissections.

1 Introduction

Given two polygons A and B of equal area, a
dissection is a decomposition of A into pieces
that can be re-assembled (by translation and
rotation) to form B. In a (chain) hinged dis-
section, the pieces are hinged together at their
corners to form a chain, which can fold into
both A and B, while maintaining connectiv-
ity between pieces at the hinge points. Many
known hinged dissections are reversible (orig-
inally called Dudeney dissection [3]), meaning
that the outside boundary of A goes inside of
B after the reconfiguration, while the portion
of the boundaries of the dissection inside of A
become the exterior boundary of B. In partic-
ular, the hinges must all be on the boundary
of both A and B. Other papers [4, 2] call the
pair A,B of polygons reversible.

Without the reversibility restriction, Abbott
et al. [1] showed that any two polygons of same
area have a hinged dissection. Properties of
reversible pairs of polygons were studied by
Akiyama et al. [3, 4]. In a recent paper [2],
it was shown that reversible pairs of polygons
can be generated by unfolding a polyhedron us-
ing two non-crossing nets. The purpose of this
paper is to show that this characterization is
in some sense complete.

∗Tokyo University of Science
†CSAIL, Massachusetts Institute of Technology
‡Directeur de Recherches du F.R.S-FNRS, Univer-

sité Libre de Bruxelles

An unfolding of a polyhedron P cuts the sur-
face of P using a cut tree T ,1 spanning all ver-
tices of P , such that the cut surface P \ T can
be unfolded into the plane without overlap by
opening all dihedral angles between the (pos-
sibly cut) faces. The planar polygon that re-
sults from this unfolding is called a net of P .
Two trees T1 and T2 drawn on a surface are
non-crossing if pairs of edges of T1 and T2 in-
tersect only at common endpoints and, for any
vertex v of both T1 and T2, the edges of T1 (re-
spectively, T2) incident to v are contiguous in
clockwise order around v. Two nets are non-
crossing if their cut trees are non-crossing.

Lemma 1. Let T1, T2 be non-crossing trees
drawn on a polyhedron P , each of which spans
all vertices of P . Then there is a cycle C pass-
ing through all vertices of P such that C sepa-
rates the edges of T1 from edges of T2, i.e., the
(closed) interior (yellow region) of C includes
all edges of T1 and the (closed) exterior of C
includes all edges of T2.

We can now state our first characterization.

Theorem 2. Two polygons A and B have a re-
versible hinged dissection if and only if A and
B are two non-crossing nets of a common poly-
hedron.

Proof sketch. To prove one direction, it suffices
to glue both sides of the pieces of the dissection
as they are glued in both A and B to obtain a
polyhedral metric homeomorphic to a sphere,
and note that this metric corresponds to the
surface of some polyhedron [2]. In the other
direction, we use Lemma 1 to define the se-
quence of hinges. Now the cut tree TB of net
B is completely contained in the net A and
determines the dissection.

Often times, reversible hinged dissections are
also monotone, meaning that the turn angles at

1For simplicity we assume that the edges of T are
drawn using segments along the surface of P , and that
vertices of degree 2 can be used in T to draw any polyg-
onal path.
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Figure 1: Example of
Lemma 1. The edges of
T1, T2 are colored blue,
red, respectively.

Figure 2: Reversible
hinged dissection that is
not monotone (or simple).

3-relative 4-relative

1

2

1

2

Broken lines are drawn
on the reverse face

1

Dissect along blue line Dissect along red line

2

Figure 3: Two simple reversible hinged dissections found by our
technique. Left: two non-crossing nets of a doubly covered triangle.
Right: Lobster to fish.

all hinges in A increase to produce B. Figure 2
shows a hinged dissection that is reversible but
not monotone. Monotone reversible hinged
dissections also have a nice characterization:

Theorem 3. Two polygons A and B have a
monotone reversible hinged dissection if and
only if A and B are two non-crossing nets of a
common convex polyhedron.

An interesting special case of a monotone re-
versible hinged dissection is when every hinge
touches only its two adjacent pieces in both
its A and B configurations, and thus A and B
are only possible such configurations. We call
these simple reversible hinged dissections. (For
example, Figure 2 is not simple.)

Lemma 4. Every simple reversible hinged dis-
section is monotone.

Corollary 5. If two polygons A and B have
a simple reversible hinged dissection, then A
and B are two non-crossing nets of a common
convex polyhedron.

Figure 3 shows two examples of hinged dis-
sections resulting from these techniques. His-
torically, many hinged dissections (e.g., in [5])
have been designed by overlaying tessellations
of the plane by shapes A and B. This con-
nection to tiling is formalized by the results of
this paper, combined with the characterization

of shapes that tile the plane isohedrally as un-
foldings of certain convex polyhedra [6].
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Packing Developments of Cubes

Tatsuya Inoha∗† Yoshitaka Inoue∗‡ Takayuki Ozawa∗§ Yushi Uno∗¶
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1 Introduction

We study a problem of packing developments of cubes into a rectangle area. More specifically, given an m×n
rectangle board with grid lines, we pack arbitrary developments of a unit cube aligned with the grid lines, and
we are interested in the largest number of developments that can be packed in the board. Since the problem
setting is quite simple and could have potential practical applications, it has attracted a lot of interest and
attention since early times. However, it does not seem to have been studied systematically and very few results
can be seen formally. Among those, Odawara [1] shows records on boards of sizes from 4×4 to 12×12 without
proofs, and this is the best known records to the best of our knowledge.

In this research, we marshal and verify the existing results, and try to update the known records or obtain
new results for the aim of promoting further systematic research on this topic. Also we pose some conjectures
based on our newly obtained results.

2 Approach

There are eleven distinct developments of a cube (identifying mirror images and rotations), as shown in Fig. 1,
and they are parts of 35 hexominoes.

Figure 1: Eleven developments of a unit cube. We distinguish them by giving unique identifiers from A to K.

Our approach to this problem is to do exhaustive search by computer programs. However, a naive imple-
mentation of a brute-force search in our environment could only solve up to 7×7 board. We also use BurrTools
[2], which is a well-known free software designed by Röver for the purpose of solving these kinds of puzzles
efficiently, however, this is again not fast enough even for relatively small sizes of boards.

To accelerate our exhaustive search of using BurrTools, we incorporate the following two heuristics that we
obtained by observing large number of optimal solutions for several board sizes. This is especially effective for
obtaining the first feasible solution for each board size.

1. Frequently used developments first.
By statistic analyses, A, B, C and J are the most frequently used four developments in optimal solutions,
and H, I and K are not. Especially, I is rare to appear. Therefore, we try to use them preferentially.

2. Eliminate a pair of opposite corner cells from the board.
By observation, we found that a pair of opposite corner cells are not covered by most of optimal solutions.
Therefore, we set to avoid using those corner cells.

These two heuristic ideas could reduce the computational time approximately to 50%–30% to the original on
the average to obtain a feasible solution.
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3 Computational Results

Before we proceed, we recall the following fact.

Fact (folklore). Any rectangle cannot be exactly packed by developments of a cube.

This implies that if the number of remaining empty cells of a solution is less than 7, it is automatically optimal.
Furthermore, Odawara [1] conjectures that for boards of sizes 7× 7 or larger, the number of remaining empty
cells in an optimal solution is in the range of 6 to 11.

Now we present our new results as well as previously known ones in Fig. 2. We verified that all the known
results are correct.

Figure 2: [Left] the optimal (largest) number of developments that are packed, and [Right] the number of remaining
empty cells; yellow: newly obtained and optimal, beige: newly obtained but not verified to be optimal.

4 Discussion

By our computational experiments, we newly obtained optimal solutions for boards of sizes from 6 × 13 to
13 × 14 (with two exceptions). We show an optimal solution for 13 × 14 board in Fig. 3.

Figure 3: An optimum solution for 13 × 14 board. Developments of types A, B and C appear 11, 6 and 7 times,
respectively; 24 developments in total out of 29 pieces.

From the results, we can verify that the conjecture by Odawara about the number of remaining empty cells
holds for them, and we pose a slightly stronger conjecture.

Conjecture 1 For boards of sizes 7×7 or 6×13 or larger, the number of remaining cells ranges from 6 to 11.

Also by examining optimal solutions we have the following conjectures.

Conjecture 2 There is an optimal solution for any rectangle board where one pair of opposite corner cells
are not covered.

Conjecture 3 There is an optimal solution where none of developments H, I or K is used.

We are trying to prove these conjectures mathematically, and we hope that they could be useful for more
intelligent exhaustive search.
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Packing polyominoes into a rectangle is constant-time testable

ITO Hiro∗† TAKEDA Yoshihiro∗†
∗School of Informatics and Engineering,
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For a given shape of a polyomino S (typically, a rectangle) and a multiset of polyominoes
P = {P1, . . . , Pn}, where the sum of the area of every polyomino is equal to the area of S, a
problem to determining whether all polyominoes can be packed into S, i.e., to make S without
any overlap and gap by gathering P1, . . . , Pn arbitrarily. This problem is called Polyomino
and known to be NP-complete even if every polyominoes are restricted to rectangles with unit
width1. If S is not restricted to a rectangle and holes are allowed, it is known to be #P-hard
and ASP-Complete [2].

We consider constant-time testability of this problem. Researches on constant-time testers
have been developed rapidly, mainly in this century, and many problems have been shown to
be constant-time testable [1]. Even in the area of games and puzzles, it was shown that the
generalized shogi, chess, and xianqi are all constant-time testable [4]. From the view point of
packing problems, the knapsack problem also have been shown to be constant-time testable [3].

For discussing constant-time testability of Polyomino, we first give how to represent an
instance, definitions of distance between instances, and what kind of oracles can be used. For
treating in constant-time, we introduce an assumption that the size of every polyominoes in P
is bounded by a constant k (otherwise, it becomes hard to be treated in constant-time). Based
on them, we give a constant-time tester for this puzzle. Thus we prove the following theorem.

Theorem 1 Polyomino is constant-time testable.
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Spherical embeddings of symmetric association schemes in

3-dimensional Euclidean space

Eiichi Bannai and Da Zhao

1 Extended Abstract

Let X = (X, {Ri}0≤i≤d) be a symmetric association schemes, and let Ai be the adjacency matrix of the
relation Ri and let Ei (0 ≤ i ≤ d) be the primitive idempotents. The spherical embedding of a symmetric
association scheme X with respect to Ei is the mapping: X → Rmi de�ned by

x → x =

√
|X|
mi

Eiφx,

where φx is the characteristic vector of x (regarded as a column vector of size |X|) and mi = rankEi.
Then the x are all in the unit sphere Smi−1 ⊂ Rmi . In what follows, we identify X and X when the
embedding is faithful. The reader is referred to [3,4,2,1, etc.] for the basic concept of association schemes
and spherical embeddings of association schemes.

In [1], Bannai-Bannai studied the spherical embeddings of symmetric association schemes with m1 = 3,
i.e., in R3. and determined that there exist only one such faithful spherical embedding if we assume the
association scheme is primitive. Namely, it must be a regular tetrahedron, i.e., the association scheme
with d = 1 corresponding to the complete graph K4. On the other hand, in [1] it was known that the
method used there could be applied to study imprinitive association schemes as well, but it was left
unanswered. The proof in [1] is of completely elementary geometric nature, and it has close connections
with the classi�cation of regular polyhedrons and quasi-regular polyhedrons, etc.. We �rst remark that
the method in [1] essentially proves the following result.

Proposition 1. Let X be a faithful spherical embedding of X. Let A(X) = {〈x, y〉 | x, y ∈ X,x ̸= y}
and let α = max{〈x, y〉 | x, y ∈ X,x ̸= y}, where 〈x, y〉 is the usual inner product on Rn. Suppose m1 = 3
and that the spherical embedding of X is faithful (i.e., 1 ̸∈ A(X)), and moreover, we assume that the
relation Rα = {(x, y) | 〈x, y〉 = α} makes a single relation Rj of the association scheme for some j. Then
(1) k1 = 3, 4, or 5 where k1 is the valency of the graph (X,Rj) corresponding to the j (corresponding to
the inner product α). (We regard this old Rj as our new R1.)
(2) For each k1 = 3, 4, 5, we can show that X ⊂ S2 is as follows.
(a) If k1 = 5, then X is the regular icosahedron (|X| = 12).
(b) If k1 = 4, then X is the regular octahedron (|X| = 6), the quasi-regular polyhedron of type [3, 4, 3, 4]
(|X| = 12), or the quasi-regular polyhedron of type [3, 5, 3, 5] (|X| = 30).
(c) If k1 = 3, then X is the regular tetrahedron (|X| = 4), the cube (|X| = 8), or the regular dodecahedron
(|X| = 20).

Corollary 2. Let X be a Q-polynomial association scheme spherically embedded in R3, then such X are
classi�ed. (They are in a part of those in the list of Theorem 1 above.)
This is immediately obtained from Theorem 1, since if X is a Q-polynomial association scheme, then the
Q1(i) (0 ≤ i ≤ d) are all distinct, and so the assumption of Theorem 1 is satis�ed.
(We believe that the result obtained in Corollary 2 should be expected to be known, but it seems that

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
E-mail addresses: bannai@sjtu.edu.cn, bannai@math.kyushu-u.ac.jp (E. Bannai), jasonzd@sjtu.edu.cn (Da Zhao).
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this was not explicitly mentioned in the literature, as far as we could check.)

So, the di�culty of treating imprimitive association schemes (with m1 = 3) is in dealing with the cases
(1) k1 = 1 and k1 = 2, and (2) the cases where Rα is split into more than one relations.

To our great joy, we were able to deal with these two di�culties completely. Our main theorem is stated
as follows.

Theorem 3. Let X be a symmetric association scheme. If X has a faithful spherical embedding with
m1 = 3 in R3, then it must be one of those listed in Proposition 1.

The proof is done, �rst assuming either k1 = 1 or k1 = 2, then X cannot have a faithful spherical
embedding with m1 = 3 in R3. Then that technique can be generalized to deal with the case where Rα

is split into more than one relations, because if Rα is split, then some relation with valency 1 or 2 must
appear, and then a similar technique as in the previous step can be used. The proof is ingenious, but not
long, and can be clearly understood.

Concluding Remarks.

(1) This paper would be interesting as an interplay of the theory of association schemes and the elementary
geometric considerations in discrete geometry. Association schemes can be a more standard tool to study
good geometric structures such as regular polyhedron, quasi-regular polyhedrons, as well as similar or
more general objects in higher dimensions.
(2) There are some considerable di�erences between determining all symmetric association schemes with
m1 = 3 and determining all faithful spherical embeddings with m1 = 3 of symmetric association schemes.
For example, van Dam, Koolen, Park [5, Section 2.5, page 6] describes the di�culty of the former problem.
On the other hand, from the geometric point, the most crucial problem would be the latter one that is
answered in this paper.
(3) It would be very interesting to study spherical embeddings of symmetric association schemes with
m1 = 4, say. In particular, it would be interesting to try to classify (primitive) Q-polynomial association
schemes which are spherically embedded with m1 = 4. We hope that our method for m1 = 3 is somehow
useful for that. On the other hand, the complete classi�cation of faithful spherical embedding of symmetric
association schemes with m1 = 4 seems to be still somehow distant, as there are in�nitely many such
examples.
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CONSTRUCTION OF SPHERICAL t-DESIGNS FROM BALL DESIGNS

M. SAMY BALADRAM

A spherical t-design on the sphere Sn is a finite set of points X ⊆ Sn for which

1
σ(Sn)

∫
Sn

f (x)dσ(x) =
1
|X| ∑

x∈X
f (x)

holds for all polynomials f (x) = f (x0, x1, x2, . . . , xn) of degree at most t, where σ denotes the
surface measure on Sn.

A general and explicit construction was first given by Rabau and Bajnok in 1992 [2],
however no further generalization of this has been proven yet. We try to generalize their
result by defining the following:

Let Bd = {(a1, . . . , ad) ∈ Rd | ∑d
i=1 a2

i ≤ 1}. A finite subset V of Bd is called a ball t-design
with weight function w : Bd → R if

(1)
1∫

Bd w(x)dx

∫
Bd

f (x)w(x)dx =
1
|V| ∑

v∈V
f (v)

holds for all polynomials f (x) = f (x1, x2, . . . , xd) of degree at most t.
For positive integers n, d, with n > d, we can express an integral over Sn as a double

integral over Sn−d and Bd as follows

(2)
∫

Sn
f (x)dσ(x) =

∫
Bd

∫
Sn−d

f (
√

1− ‖v‖2y, v)(1− ‖v‖2)
n−d−1

2 dσ(y)dv

with v = (v1, v2, . . . , vd), ‖v‖ =
√

v2
1 + · · ·+ v2

d, dv = dv1dv2 · · ·dvd. By a similar way of
proving Rabau-Bajnok’s theorem, this implies the following:

Theorem 1. Let n, d be positive integers, n > d, Y ⊆ Sn−d be a spherical t-design, and let V ⊆
Bd be a ball t-design in Rd with respect to the weight function wn−d−1(x) = (1− ‖x‖2)

n−d−1
2 .

Then

X = {(
√

1− ‖v‖2y, v) | y ∈ Y, v ∈ V}
is a spherical t-design on Sn.

We will use this theorem by first constructing some ball t-design in Rd. The following
lemma is from [1]:

Lemma 2. Let d be a positive integer, and

F(x) = xα1
1 xα2

2 · · · x
αd
d (α1, . . . , αd ∈ Z≥0).

Then,

(i)
∫

Sd−1
F(x)dσ(x) =

d
∏
i=1

(1+(−1)αi )
2 · Γ( αi+1

2 )

1
2 Γ( 1

2 (
d
∑

i=1
αi + d))

, (ii)
∫

Bd
F(x) dx =

∫
Sd−1 F(x) dσ(x)

d
∑

i=1
αi + d

.

By this, we proved the following:

Theorem 3. Let t, d be positive integers and m be a non-negative integer. Also, let R be a finite
subset of the interval (0, 1], Zr ⊂ Sd−1 be a spherical (2t + 1)-design for all r ∈ R. Then
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2 M. SAMY BALADRAM

V :=
⋃

r∈R rZr ⊂ Bd is a ball (2t + 1)-design with weight function wm(x) = (1− ‖x‖2)
m
2 if and

only if the following equation holds for 1 ≤ k ≤ t:

(3)
1

∑
r∈R
|Zr| ∑

r∈R
|Zr|r2k =

Γ(k + d
2 )Γ(

m+d
2 + 1)

Γ( d
2 )Γ(k +

m+d
2 + 1)

.

Now, we can incorporate this result with Theorem 1 as follows.

Theorem 4. Let n, d be positive integers with n > d ≥ 2, and R be a finite subset of the interval
(0, 1]. Also, let Y ⊆ Sn−d, Zr ⊆ Sd−1 with r ∈ R, each be a spherical (2t + 1)-design in their
respective dimension. If

(4)
1

∑
r∈R
|Zr| ∑

r∈R
|Zr|r2k =

Γ( n
2 + k)Γ(n + 1−k

2 )

Γ( n
2 )Γ(n + 1+k

2 )

holds for 1 ≤ k ≤ t then X = {(
√

1− r2y, rz) | y ∈ Y, r ∈ R, z ∈ Zr} is a spherical (2t + 1)-
design on Sn.

We wish to construct some ball designs in R2 using a union of polygons, which is a spherical
design in S1. The regular n-gon is defined as Pn = {(cos( 2πi

n ), sin( 2πi
n )) | 1 ≤ i ≤ n}. In

Theorem 3, setting t = 2, d = 2, R = {r1, r2}, and Zr to be Pni for some integers ni with
ni ≥ 2t + 2, i = {1, 2}, we have the following theorem.

Lemma 5. For non negative integers m and n1, n2 ≥ 6 with
m + 2
m + 6

<
n1

n2
≤ 1

4
(m + 2)(m + 6),

the set V = r1Pn1 ∪ r2Pn2 ⊂ B2 with

r1 =

√
2(n1
√

m + 6−
√
(m + 2)n1n2)

n1(m + 4)
√

m + 6
, r2 =

√
2(n2
√

m + 6 +
√
(m + 2)n1n2)

n2(m + 4)
√

m + 6

is a disk 5-design with weight function w(x) = (1− ‖x‖2)
m
2 .

It is well known that a regular 6-gon and 12 points of an icosahedron are spherical 5-
designs in S1 and S2, respectively. By this fact, Theorem 1 can be used to produce the
following spherical designs.

Theorem 6. Let m be a non negative integer and Vm = r+(m)P6 ∪ r−(m)P6 with

r±(m) =

√
2((m + 6)±

√
(m + 2)(m + 6))

(m + 4)(m + 6)
.

Also, let Y1 be the 6-gon, Y2 be the 12 points of an icosahedron, and define Yn recursively as

Yn = {(
√

1− ‖v‖2y, v) | y ∈ Yn−2, v ∈ Vn−3}, n ≥ 3.

Then, Yn is a spherical 5-design in Sn.

Computing the size of Yn in this theorem, we get |Yn| = 6 · 12
n−1

2 if n is odd, and |Yn| = 12
n
2

if n is even.
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The Orbits of Folded Crossed Cubes∗

Jia-Jie Liu1,†
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Abstract

An automorphism of a graph G = (V,E) is a mapping φ: V (G) → V (G)
such that there is an edge uv ∈ E(G) if and only if φ(u)φ(v) is also an edge in
E(G). A graph is vertex-transitive if, for any two vertices u and v of G, there
is an automorphism φ such that φ(u) = v. Clearly, every vertex-transitive
graph is regular, e.g., hypercubes. However, not all regular graphs are vertex-
transitive, e.g., the crossed cubes [1, 2]. Two vertices u and v in a graph
G = (V,E) are in the same orbit if there exists an automorphism φ of G
such that φ(u) = v. The orbit number of a graph G, denoted by Orb(G),
is the smallest number of orbits, which form a partition of V (G), in G. All
vertex-transitive graphs G are with Orb(G) = 1. Since the n-dimensional
hypercube (n-cube for short), denoted by Qn, is vertex-transitive, it follows
that Orb(Qn) = 1 for n ≥ 1. The crossed cubes which are a variant of
hypercubes. In [3], Kulasinghe and Bettayeb showed that Orb(CQn) > 1
when n ≥ 5. Shiau, Wang, and Pai showed that Orb(CQn) = 2d

n
2
e−2 for

n ≥ 3 in [4], where CQn are the n-dimensional crossed cubes.
We investigate the orbit number of the folded crossed cubes. The folded

crossed cubes which are a variation of crossed cubes. The n-dimensional
folded crossed cube, denoted FCQn, is constructed from CQn by adding a
set of complement edges. In [5], K. J. Pai, J. M. Chang, and J. S. Yang
proved that FCQn is vertex-transitive if and only if n ∈ {1, 2, 4}, namely,
Orb(FCQ1) = Orb(FCQ2) = Orb(FCQ4) = 1. In this paper, we prove that
Orb(FCQn) = 2d

n
2
e−1 if n is odd and Orb(FCQn) = 2d

n
2
e−2 if n is even, for

n ≥ 3.

Keywords: Crossed cubes, Folded crossed cubes, Automorphism, Vertex-

transitive, Orbits.
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Some Stabbing Problems of Line Segments Solved with Linear

Programming

Gerardo González Mart́ınez ∗ Mazay O. Jiménez-Salinas∗ Carlos Seara†

Jorge Urrutia ‡

1 Introduction

In this paper we introduce a class of stabbing prob-
lems that can be solved using linear programming
in O(n) time. We start addressing the following:

Problem 1. Let P = {p1, . . . , pn} be a set of
n points in the plane. Suppose that the elements
of P start moving vertically at time t = 0 and at
the same speed v. As pi moves up, at time t the
point pi has traversed a line segment lit of length
t ·v, starting at pi, let us denote as pi(t) = pi + t ·v.
Our problem is to find the smallest t such that there
exist a line ` that stabs l1t , l

2
t , · · · , lnt , see Figure 1a.

We prove that this problem can be solved in O(n)
time.

We also address the following variations to our
problem:

Problem 2. Each point pi moves vertically at its
own speed vi.

Problem 3. Each point pi moves at its own direc-
tion si and at its own speed vi.

Problem 4. Same problems as above for pi ∈ Rd

where d is fixed.

We will show that all of the above problems can
be solved using linear programming in 2d− 1, and
thus can be solved in f(d)×n time, which is linear
time for constant d.

∗Posgrado en Ciencia e Ingenieŕıa de la Com-
putación, Universidad Nacional Autónoma de
México, Ciudad de México, México, {gmg 17,
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Spain, carlos.seara@upc.edu. Supported by projects Gen.
Cat. DGR 2014SGR46, MINECO MTM2015-63791-R and
H2020-MSCA-RISE project 734922 - CONNECT.
‡Instituto de Matemáticas, Universidad Nacional

Autónoma de México, Ciudad de México, México,
urrutia@matem.unam.mx.

In Section 2, we define some concepts of linear
programming and point to line transformations. In
Section 3, we demonstrate that all the described
problems can be solved in O(n) time, when d is
fixed.

2 Preliminaries

The problem of geometric separability of two sets
of points R and B in Rd is to decide if there is a
hyperplane that leaves all of the elements of B in
one of the open semiplanes determined by the hy-
perplane, and all of the elements of R in the other.
It is well known that a linear programming prob-
lem with d dimension and n variables can be solved
in O(n) time when d is fixed [2].

The dual of a point p = (a, b) of the plane, de-
noted by `p, is the non-vertical line with equation
y = ax + b. The dual of `p is p. Recall that in
the dual plane the lower envelope is the boundary
of the intersection of the halfplanes lying below the
lines. Similarly, the upper envelope is formed by
considering the intersection of the halfplanes lying
above the lines.

y

x

`

(a) (b)

Figure 1: a) Set of n points in the plane moving vertically at
the same speed. b) Dual plane showing the intersection of the
upper and lower envelopes.
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3 Stabbing line segments

In this section we describe our algorithm to ob-
tain the smallest time t, if it exists, such that
at time t there is a line ` that stabs all of the
line segments lit. Let Pr be the set of red points
(resp. lines) containing P = {p1, . . . , pn}, and
Pb(t) = {p1(t), . . . , pn(t)}. A transformation to the
dual plane considering the time is given as follows:
every point pi = (ai, bi + t) is mapped to the line
y = aix + bi + t. The elements of Pr are mapped
to the lines Lr = {aix + bi | i = 1, . . . , n}. Sim-
ilarly, the elements of Pb are mapped to the lines
Lb = {y = aix+bi + t | i = 1, . . . , n}. We note that
while points start moving in the primal plane their
corresponding lines in the dual plane move upward.
After sometime if a feasible region exists the upper
envelope of Lb will intersect the lower envelope of
Lr and that point would be the solution, see Fig-
ure 1b. Lr and Lb represent the below and above
constraints, respectively. So Lr can be represented
as aix−y+ bi + t ≤ 0 and Lb can be represented as
aix−y+ bi ≥ 0. Finally our problem can be stated
as a linear programming problem in R3 as follows:

minimize t

subject to aix− y + bi ≥ 0

aix− y + bi + t ≤ 0

Thus using Meggido’s partition algorithm [1], the
linear programming problem is solved in O(n) time.

Thus we have the following result:

Theorem 1. The smallest time t such that a line `
stabs the line segments lit can be calculated in O(n)
time.

Let us consider now Problem 2. The set of lines
Lr does not change and their upper envelope re-
mains the same, however now the set of lines Lb

move upwards at different speeds and the lower en-
velope changes over the time. To solve these new
constraints we asociate the speeds as follows: for
every pi = (ai, bi +vi · t), the line y = aix+bi +vi · t
is mapped. Then Lb = {y = aix + bi + vi · t | i =
1, . . . , n}. Problem 2 can be stated as the following
linear programming problem in R3:

minimize t

subject to aix− y + bi ≥ 0

aix− y + bi + vi · t ≤ 0

For Problem 3. The set of lines Lr remains the
same, for the case of Lb we associate the inclination
of every point as follows: every pi = (ai + si, bi +
vi · t) is mapped to the line y = (ai +si)x+bi +vi · t
then Lb = {y = (ai +si)x+bi +vi · t | i = 1, . . . , n}.
Finally Problem 3 can be stated as the following
linear programming problem in R3:

minimize t

subject to aix− y + bi ≥ 0

(ai + si)x− y + bi + vi · t ≤ 0

Consider the Problem 4 for points in R3. The
points move vertically at different speeds, now the
transformation to the dual space is defined as fol-
lows: every point pi = (a, b, c + vi · t) is mapped to
the plane z = aix+ biy + ci + vi · t. The below con-
straints are defined as aix + biy − z + ci ≥ 0 while
the above constraints aix+ biy− z + ci + vi · t ≤ 0.
Problem 4 can be defined as the following linear
programming problem in R4:

minimize t

subject to aix + biy − z + ci ≥ 0

aix + biy − z + ci + vi · t ≤ 0

The d-dimensional case can be solved in linear
time, for lake of space we do not give more details
but we enunciate the following theorem.

Theorem 2. For any fixed dimension d, Problems
2, 3, and 4 can be solved in O(n) time.
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Routing in Polygonal Domains∗

Bahareh Banyassady† Matias Korman‡ Wolfgang Mulzer† André van Renssen§, ¶

Marcel Roeloffzen§, ¶ Paul Seiferth† Yannik Stein† Birgit Vogtenhuber‖ Max Willert†

1 Introduction

Routing is a crucial problem in distributed graph al-
gorithms [1, 2]. We would like to preprocess a given
graph G in order to support the following task: given
a data packet that lies at some source node p of G,
route the packet to a given target node q in G that
is identified by its label. We expect three properties
from our routing scheme: first, it should be local, i.e.,
in order to determine the next step for the packet,
it should use only information stored with the cur-
rent node of G or with the packet itself. Second, the
routing scheme should be efficient, meaning that the
packet should not travel much more than the short-
est path distance between p and q. Third, it should
be compact : the total space requirement should be
as small as possible.

There is an obvious solution: for each node v of
G, we store at v the complete shortest path tree for
v. Thus, given the label of a target node w, we can
send the packet for one more step along the shortest
path from v to w. Then, the routing scheme will
have perfect efficiency, sending each packet along a
shortest path. However, this method requires that
each node stores the entire topology of G, making
it not compact. Thus, the challenge lies in finding
the right balance between the conflicting goals of
compactness and efficiency.

Thorup and Zwick introduced the notion of a dis-
tance oracle [4]. Given a graph G, the goal is to
construct a compact data structure to quickly an-
swer distance queries for any two nodes in G. A
routing scheme gives a distributed implementation
of a distance oracle [3].

The problem of constructing a compact routing
scheme for a general graph has been studied for a
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by DFG project MU/3501-2. MK was supported in part by
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long time. Recently, Roditty and Tov [3] developed a
routing scheme for a general graph G with n vertices
and m edges. Their scheme needs to store a poly-
logarithmic number of bits with the packet, and it
routes a message from s to t on a path with length
O(k∆ + m1/k), where ∆ is the shortest path dis-
tance between s and t and k > 2 is any fixed integer.
The routing tables use mnO(1/

√
logn) total space. In

general graphs, any efficient routing scheme needs
to store Ω(nc) bits per node, for some constant
c > 0 [2]. Thus, it is natural to ask whether there
are better algorithms for specialized graph classes.

Here, we consider the class of visibility graphs of
a polygonal domain P with h holes and n vertices.
Two vertices p and q in P are connected by an edge
if and only if they can see each other, i.e., if and only
if the line segment between p and q is contained in
the (closed) region P . The problem of computing
a shortest path between two vertices in a polygo-
nal domain has been well-studied in computational
geometry. Nevertheless, to the best of our knowl-
edge, prior to our work there have been no routing
schemes for visibility graphs of polygonal domains
that fall into our model. For any ε > 0, our routing
scheme needs O((ε−1 +h) log n) bits in each routing
table, and for any two vertices s and t, it produces
a routing path within a factor of 1 + ε of the opti-
mal which constitutes a dramatic improvement over
the traditional geometric routing approach. Thus,
we believe that it makes sense to look for compact
routing schemes for geometrically defined graphs.

2 Cones in Polygonal Domains

Let P be a polygonal domain with n vertices and
h holes. Furthermore, let t > 2 be a parameter, to
be determined later. Following Yao [5], we subdivide
the visibility polygon of each vertex in P into t cones
with a small enough apex angle. This will allow us
to achieve small stretch and compact routing tables.

Let p be a vertex in P and p′ the clockwise neigh-
bor of p if p is on the outer boundary, or the counter-
clockwise neighbor of p if p lies on a hole boundary.
We denote with r the ray from p through p′. To
obtain our cones, we rotate r by certain angles. Let
α be the inner angle at p. For j = 0, . . . , t, we write
rj(p) for the ray r rotated clockwise by angle j ·α/t.

Now, for j = 1, . . . , t, the cone Cj(p) has apex
p, boundary rj−1(p)∪ rj(p), and opening angle α/t;
see Figure 1. For technical reasons, we define rj(p)
not to be part of Cj(p), for 0 ≤ j < t, whereas we
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p

p′

α

r0(p)

r2(p)r3(p)

rt(p)

r1(p)

C2(p)

α/t

Figure 1: The cones and rays of a vertex p with apex
angle α.

consider rt(p) to be part of Ct(p). Furthermore, we
write C(p) = {Cj(p) | 1 ≤ j ≤ t} for the set of all
cones with apex p. Since the opening angle of each
cone is α/t < 2π/t and since t > 2, each cone is
convex.

3 The Routing Scheme

Let ε > 0, let P be a polygonal domain with n ver-
tices and h holes, and let VG(P ) denote the visibil-
ity graph of P . We describe a routing scheme for
VG(P ) with stretch factor 1+ε. The idea is to com-
pute for each vertex p the corresponding set of cones
C(p) and to store a certain interval of indices for each
cone Cj(p) in the routing table of p. If an interval of
a cone Cj(p) contains the target vertex t, we proceed
to the nearest neighbor of p in Cj(p).

In the preprocessing phase, we first compute the
label of each vertex pi,k. The label of pi,k is the
binary representation of i, concatenated with the bi-
nary representation of k, that is, `(pi,k) = (i, k).
Thus, all labels are distinct binary strings of length
dlog he+ dlog ne.

Let p be a vertex in P . The routing table of p is
constructed as follows: first, we compute a shortest
path tree T for p. For a vertex s of P , let Ts be
the subtree of T with root s, and denote the set
of all vertices on the i-th hole in Ts by Is(i). The
following well-known observation lies at the heart of
our routing scheme.

Observation 1 Let q1 and q2 be two vertices of P .
Let π1 be the shortest path in T from p to q1, and
π2 the shortest path in T from p to q2. Let l be the
lowest common ancestor of q1 and q2 in T . Then,
π1 and π2 do not cross or touch in a point x with
d(p, x) > d(p, l).

Lemma 2 Let e = (p, s) be an edge in T . Then,
the indices of the vertices in Is(i) form an interval.
Furthermore, let f = (p, s′) be another edge in T ,
such that e and f are consecutive in the cyclic order
around p in T . Then, the indices of the vertices in
Is(i) ∪ Is′(i) are again an interval.

Lemma 2 indicates how to construct the routing
table ρ(p) for p. We set

t = π/ arcsin

(
1

2 (1 + ε−1)

)
, (1)

and we construct a set C(p) of cones for p as in Sec-
tion 2. Let Cj(p) ∈ C(p) be a cone, and let Πi be
a hole boundary or the outer boundary. We define
Cj(p)uΠi as the set of all vertices q on Πi for which
the first edge of the shortest path from p to q lies
in Cj(p). By Lemma 2, the indices of the vertices
in Cj(p)uΠi form a (possibly empty) cyclic interval
[k1, k2]. If Cj(p)uΠi = ∅, we do nothing. Otherwise,
if Cj(p) uΠi 6= ∅, there is a vertex r ∈ Cj(p) closest
to p, and we add the entry (i, k1, k2, r) to ρ(p). This
entry needs dlog he+ 3 · dlog ne bits.

Now, the routing function f : V × `(V ) → V is
quite simple. Given a current vertex p and a target
label `(t) = (i, k), we search the routing table ρ(p)
for an entry (i, k1, k2, r) with k ∈ [k1, k2]. By con-
struction, this entry is unique. We then forward the
packet from p to the neighbor r.

Theorem 3 Let P be a polygonal domain with n
vertices and h holes. For any ε > 0 we can construct
a routing scheme for VG(P ) with labels of O(log n)
bits and routing tables of O((ε−1+h) log n) bits. For
any two sites p, q ∈ P , the scheme produces a routing
path with stretch factor at most 1 + ε. The prepro-
cessing time is O(n2 log n+ hn2 + ε−1hn).

For simple polygons, this result can be improved
to the following.

Theorem 4 Let P be a simple polygon with n ver-
tices. For any ε > 0, we can construct a routing
scheme for VG(P ) with labels of dlog ne bits and
routing tables of O(ε−1 log n) bits. For any two
vertices p, q ∈ P , the scheme produces a routing
path with stretch 1 + ε. The preprocessing time is
O(n2 + ε−1n).
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1 Introduction

In this paper, we study the problem of gossiping with interference constraint in radio ring networks.
Gossiping (or total exchange information) is a protocol where each node in the network has a
message and wants to distribute its own message to every other node in the network. The gossiping
problem consists in finding the minimum running time (makespan) of a gossiping protocol and
efficient algorithms that attain this makespan.

Transmission model A radio network consists of communication devices equipped with an half
duplex interface. The network is assumed to be synchronous and the time is slotted into rounds.
The half-duplex hypothesis implies that a node can transmit or receive at most one message during
a round. The network is modeled as a digraph, where the vertices represent the nodes and the arcs
represent the possible communications. The messages are transmitted through the communication
over the arcs and we will denote a call such a transmission.

Interference model We use a binary asymmetric model of interference based on the distance
in the communication digraph like the ones used in [1, 2, 5]. Let d(u, v) denote the distance,
that is the length of a shortest directed path, from u to v in G and dI be a non negative integer.
We assume that when a node u transmits, all nodes v such that d(u, v) ≤ dI are subject to the
interference from u’s transmission. So two calls (u, v) and (u′, v′) do not interfere if d(u, v′) > dI
and d(u′, v) > dI .

This problem has been studied in [4] where approximation results are given (see also the survey [3]).
Here we focus on the case where the transmisson network is a ring network Cn on n nodes with
the interference distance dI = 1. We presented some partial results at JCDCG^G 2013, and we have
now solved completely the gossiping problem by giving the minimum running time (makespan).
We show lower bounds and then give gossiping algorithms which meet these lower bounds and so
are optimal.
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2 Main Result

It appears that the determination of the minimum gossiping time needs various tools. The optimal
time depends on the congruence of n modulo 12. Our results are summarized in the following
theorem.

Theorem 1 The minimum number of rounds R needed to achieve a gossiping in a ring network
Cn (n ≥ 3), with the interference model dI = 1 is :

2n− 3 if n ≡ 0(mod 12)
2n− 2 if n ≡ 4, 8(mod 12)
2n− 1 if n is odd, except when n = 3 for which R = 3, and n = 5 for which R = 10
2n + 1 if n ≡ 2, 6, 10(mod 12) except for n = 6 for which R = 12
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Edge Patrolling Beacon

Bahram Kouhestani David Rappaport ∗

1 Introduction

Consider the following scenario where a powerful magnet, which for historical reasons we call a beacon, moves on a
rail located along the walls of a bounded interior space. Inside the same space is an iron ball, that due to magnetic
attraction will move freely within the space. The ultimate goal in this scenario is to devise a strategy for the beacon
to move on its rail so that eventually it and the ball are touching. The interior space is modelled by a simple polygon,
and the beacon and ball are each modelled by points, labelled b and p respectively.

This work extends results that were introduced by Biro et al. [1], where beacons using magnetic pull generalize
classic art gallery problems. A beacon b as defined in [1] is a point inside simple polygon P , and uses an attractive
force to pull a point p. The point p moves directly towards b and either reaches it, or hits an edge of P . Then p may
continue its movement towards b by sliding on an edge as long as its trajectory takes it closer to b. The motion of
point p alternates between moving directly towards b or by sliding closer to b on an edge, until p either reaches b or
becomes stuck on an edge at a point where it cannot get closer to b. If p reaches b we say that b attracts p, otherwise
p is left stranded on an edge at a dead point.

We formally define the edge patrolling beacon problem as follows. Given a simple polygon P , an initial position
for beacon b on the boundary of P and a point p ∈ P find a moving strategy for b, if one exists, along the boundary
of P , such that b attracts p. We assume that p moves arbitrarily faster than b thus precluding the possibility of
the beacon using speed as a capture tactic. In this paper we give an efficient algorithm to solve the edge patrolling
problem. We know of examples that show that some simple strategies do not always work. However, we have yet to
find an example where no moving strategy exists.

2 An algorithm for edge patrolling beacon

We begin with some preliminary definitions.
Given a polygon P containing fixed beacon b, the attraction region of b is defined as the set of points in P that

b attracts. As shown in [2] the attraction region is a simply connected subset of the interior of P . The set of points
that are left stranded on a dead point d forms a simply connected subset of P that is called the dead region of b with
respect to d. The boundary between two distinct dead regions or between a dead region and the attraction region of
b is called a split edge (Fig. 1). The attraction decomposition of polygon P with respect to beacon b is defined as the
decomposition of P by split edges of b. In a static case where the beacon is fixed, we can easily determine whether
a point p is attracted to the beacon, or to a dead point and which one, by simply determining which region of the
decomposition contains p. As beacon b moves on the boundary of P the attraction decomposition of P changes. We
exploit the fact that there are a polynomial number of critical points on the boundary of P that can be used to
partition these different attraction decompositions into equivalence classes.

Let v be a reflex vertex of P incident to edges e1 and e2. Let H1 be the open half-plane perpendicular to e1
at v that contains e1, and similarly let H2 be the open half-plane perpendicular to e2 at v that contains e2. The
deadwedge of v is defined as the intersection of H1 and H2 (Fig. 1). Biro et al. [2] prove that a split edge s is a line

segment inside P starting from some reflex vertex v along the ray
−→
br to the next boundary point of P if and only if b

is in the deadwedge of v (Fig. 1). We say v is a split vertex with respect to b to describe this occurrence. We define
two attraction decompositions with respective beacons b1 and b2 (both on the boundary of P ) to be equivalent if
and only if b1 and b2 and all beacons on the boundary of P between them (either in clock-wise or counter clock-wise
direction) have the same set of split vertices. As a result two attraction decompositions in the same equivalence class
have the same number of split edges and regions. A set of critical points on the boundary of P consists of reflex
vertices with an internal angle greater than π/2, and intersections of rays bounding deadwedges, and the boundary
of P (Fig. 2). Note that the attraction decomposition of a beacon b on a reflex vertex r with an internal angle greater
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Figure 1: Split edges is shown in red. The deadwedge
of v is shown by the green angle.

Figure 2: Critical points are shown in red.

than π/2 belongs to an equivalence class with a single element as b is not in the deadwedge of r and any other beacon
on the adjacent edges of r with an infinitesimal distance to b is in the deadwedge of P .

We can now model the attractive ability of a moving beacon with a directed graph G = (N,A). We begin
by defining the nodes of G, and then follow that with specifying the directed edges. First we choose an arbitrary
“test” attraction decomposition for each equivalence classes. Each node in G represents a region in a test attraction
decomposition. Let m denote the number of different equivalence classes of attraction decompositions. We can obtain
a cyclic order of these classes as they occur in a traversal of the boundary of P , numbered from 0 . . .m − 1, such
that two attraction decompositions classes are adjacent if their cyclic order number differ by 1 (modulo m). We can
model the regions of test attraction decomposition i by a set of nodes Si such that there is a bijection between the
nodes in Si and the regions in attraction decomposition i. The set of nodes of G are precisely N =

⋃m−1
i=0 Si.

The directed edges of G are exclusively between nodes representing regions in adjacent classes. Therefore, consider
the nodes in Si and Si+1 with subscript addition modulo m. We first observe that the number of nodes in Si and
Si+1 differs by exactly one, reflecting the fact that the beacon either left a dead wedge or entered a new one. The
nodes in Si and Si+1 are related if one of the following conditions holds:

• Consider node x in Si and node y in Si+1 such that the regions represented by x and y contain points that are
attracted to the same dead point, or attracted to the beacon. In this case we have the directed edges (x, y)
and (y, x).

• Consider node x and y in Si and node z in Si+1 such that the split edge between regions associated to x and
y disappears because the beacon moved out of a dead wedge. If either x or y represent an attraction region
then z also represents an attraction region and from the previous case we already have directed edges (x, z),
(z, x) or (y, z), (z, y). Otherwise, both x and y and therefore z represent dead regions. Furthermore, we assume
without loss of generality that the dead point associated with region z is contained in region x. In this case we
use directed edges (x, z), (y, z) and (z, x).

Next we mark a node in G as the starting node as follows. Consider the given initial position of b and p. We construct
the attraction decomposition of P with respect to b and determine the region that contains p. We mark the node
that represents this region in the corresponding attraction decomposition class as the starting node. Now we use
Dijkstra’s algorithm to find a path from the starting node to the first node that represents an attraction region in an
attraction decomposition class. Note that such a node represents a configuration where p is in a attraction region.
There are O(n3) nodes and edges in G and therefore the running time of the algorithm is O(n3 log n).
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Constructions of Ramanujan Cayley graphs

SHOHEI SATAKE (Kobe University)

1 Introduction

Ramanujan graph was introduced by Lubotzky-Phillips-Sarnak [4]. Let k > 0. Let G be a k-regular graph

and λ(G) = max{|λ| | λ ∈ Spec(G), |λ| ̸= k}. Here, Spec(G) is the set of all eigenvalues of the adjacency matrix

of G. A k-regular graph G is a Ramanujan graph if λ(G) ≤ 2
√
k − 1. It is well known that Ramanujan graphs

have wide applications in coding theory, computer science and so on (see [2]). In graph theory, to give explicit

constructions of Ramanujan graphs is recognized as an interesting problem. In these two decades, many explicit

constructions of Ramanujan graphs were given (for example [1], [3]).

2 Our results

Our main purpose is to give explicit constructions of Ramanujan graphs. In this talk, we focus on Cayley

graphs over finite abelian groups. Let A be a finite abelian group with identity 0 and S ⊂ A\{0} which satisfies

that s ∈ S implies −s ∈ S. Then, the Cayley graph X(A,S) over A with respect to S is defined as follows.

V (X(A,S)) = A, E(X(A,S)) = {{x, y} | x− y ∈ S}.

Clearly, X(A,S) is well-defined and |S|-regular. As remarked by Li-Feng [3],

λ(X(A,S)) = max

{∣∣∣∑
s∈S

ψ(s)
∣∣∣ ∣∣∣∣ψ is non-trivial character of A

}
.

Here, a non-trivial character ψ of A is a homomorphism from A to the complex multiplicative group C∗ such

that there exists a ∈ A with ψ(a) ̸= 1. Thus, we shall find a suitable subset S ⊂ A \ {0} such that

max

{∣∣∣∑
s∈S

ψ(s)
∣∣∣ ∣∣∣∣ψ is non-trivial character of A

}
≤ 2

√
|S| − 1.

In this talk, following this idea, we construct some infinite families of Ramanujan Cayley graphs over finite

fields and finite commutative rings.

　 If time permits, we also discuss some graph-theoretic properties like existentially closedness of our graphs.
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Subgroups as Total Perfect Codes in Cayley Graphs
of Abelian and Dihedral Groups
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Let G be a group and S ⊂ G such that S = S−1 and 1 /∈ S. The Cayley graph Γ =
Cay(G,S) on G with respect to S is a graph with vertex set V (Γ) = G and edge set E(Γ) =
{xy : x, y ∈ G, xy−1 ∈ S}. S is referred to as the connection set of the Cayley graph Γ. We
say that a subset C of G is a total perfect code (TPC) in the Cayley graph Γ if every vertex in
V (Γ) has exactly one neighbor in C. A consequence of G admitting a total perfect code is that
the order of G must be even.

In [4], total perfect codes were referred to as efficient dominating sets. In [1] and [3],
characterizations of grid graphs which contain total perfect codes were studied. In [2], total
perfect codes in the lattice graph of Z × Z were investigated. Zhou [5] used pseudocovers and
gave criteria under which a Cayley graph of a group will admit a total perfect code.

In this study, we consider abelian and dihedral groups and determine when a subgroup will
be a total perfect code in some Cayley graph of the group. If G is the cyclic group Zn where
n is even and g ∈ G, we will show that the subgroup 〈g〉 generated by g is a total perfect

code in Cay(G,S) for some S ⊂ G if and only if g is odd. In general, if A =

w∏
i=1

Z2ki × G is

an abelian group, where ki ≥ 1 for 1 ≤ i ≤ w and G is an odd ordered abelian group, then
the cyclic subgroup C = 〈(r1, r2, . . . , rj , . . . , rw, g)〉 of A where (r1, r2, . . . , rj , . . . , rw, g) ∈ A is
a total perfect code in some Cayley graph of A if and only if there exists j, 1 ≤ j ≤ w such

that rj is odd. Moreover, we will show that a non cyclic subgroup C =
w∏
i=1

Ci × C ′ of A where

Ci ≤ Z2ki for 1 ≤ i ≤ w and C ′ ≤ G is a total perfect code in some Cayley graph of A if and
only if Ci = {0} or Ci

∼= Z2ki for every i, 1 ≤ i ≤ w, and Ci 6= {0} for at least one i, 1 ≤ i ≤ w.

In the dihedral group D2n = 〈r, s : rn = s2 = 1, rs = sr−1〉, subgroups are either of the form
〈rd〉 or 〈rd, sre〉 for some divisor d of n and 0 ≤ e < d. We will show the following results:

i. If n is odd, then a proper subgroup C of D2n is a total perfect code in some Cayley graph
of D2n if and only if C = 〈rd, sre〉 for some divisor d of n, d > 1 and 0 ≤ e < d.

ii. If n is even, then a proper subgroup C of D2n is a total perfect code in some Cayley graph
of D2n if and only if C is one of the following:

• C = 〈rd〉 for some odd divisor d of n

• C = 〈rd, sre〉 for some divisor d > 1 of n and 0 ≤ e < d.

Keywords: Cayley graphs, total perfect codes, abelian group, dihedral group
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Public key cryptosystems using magic cubes

Tomoko Adachi
Department of Information Sciences, Toho University

2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
E-mail: adachi@is.sci.toho-u.ac.jp

Xiao-Nan Lu ?

Department of Industrial Administration, Tokyo University of Science
2641 Yamazaki, Noda, Chiba, 278-8510, Japan

E-mail: lu@rs.tus.ac.jp

Keywords: Cryptography, Latin cube, Magic cube.

A cryptosystem is developed for secure message transmission, which converts plain
texts (messages) to coded texts, called cipher texts, and back. The cryptosystems can be
categorized into two types, private key cryptosystems and public key cryptosystems. The
first public key cryptosystem was presented by Diffie and Hellman in 1976. Since then,
public key cryptosystems have been variously studied. For example, the most widely
used RSA and ElGamal are both public key cryptosystems, whose algorithms are based
on the integer factorization problem and the discrete logarithm problem, respectively. In
recent years, the public key cryptosystems using magic squares were introduced in the
literature (see [1], [2], and [5]).

Magic squares can be traced back to ancient times in China and India, and have been
popular puzzles for hundreds of years. A magic square of order n is an arrangement of n2

integers from {1, 2, · · · , n2} into an n×n square array with the property that the sums of
each row, each column, and each of the main diagonals are the same. The study of magic
squares is deeply related to Latin squares, which have been intensively investigated in
combinatorial design theory (see [3] and [4]).

A magic cube is a 3-dimensional generalization of a magic square (see Trenkler [6],
[7], and [8]). Let Mn be an n × n × n cubical array with different entries mn(i, j, k) ∈
{1, 2, · · · , n3} for 1 ≤ i, j, k ≤ n such that the sums of the numbers along every row and
every diagonal are the same. Note that each row in a cube is n-tuple of elements having
the same coordinates in two dimensions. It can be easily checked that each row sum is
n(n3 + 1)/2. For example, the following gives a magic cube of order 3.

M3(i, j, 1) =

 10 26 6
24 1 17
8 15 19

,M3(i, j, 2) =

 23 3 16
7 14 21
12 25 5

,M3(i, j, 3) =

 9 13 20
11 27 4
22 2 18

.
Here, the element m3(1, 1, 1) = 10 is contained in three rows (triples) {10, 26, 6}, {10, 24, 8},
and {10, 23, 9}, and a diagonal {10, 14, 18}.

In this talk, we will investigate a public key cryptosystem using magic cubes, and the
corresponding algorithm.
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COMPLETE k-ZERO-DIVISOR HYPERGRAPHS OF

SOME COMMUTATIVE RINGS

Ratinan Boonklurb*, Sajee Pianskool, and Pinkaew Siriwong

Abstract

Let R be a commutative ring with nonzero identity and k > 1 be a fixed
integer. The k-zero-divisor hypergraph Hk(R) of R consists of the vertex set
Z(R, k), the set of all k-zero-divisors of R, and the (hyper)edges of the form
{a1, a2, a3, ..., ak} where a1, a2, a3, ..., ak are k distinct elements in Z(R, k), which
means (i) a1a2a3 · · · ak = 0 and (ii) the products of all elements of any (k − 1)-
subsets of {a1, a2, a3, ..., ak} are nonzero. This talk provides a necessary condition
of commutative rings that implies the completeness of their k-zero-divisor hyper-
graphs. Moreover, the diameter and the minimum length of all cycles of those
hypergraphs are determined.

Throughout this paper, we consider a commutative ring R/I where R is a PID
and I is the appropriate ideal of R instead of considering directly a commutative
ring R. The existence of a prime element p of R and the finiteness of R/Rpk

together with |(Rp/Rpk) − (Rp2/Rpk)| ≥ k enable us to construct a complete
hypergraph Hk(R/Rpk). By the completeness, the diameter of Hk(R/Rpk) is
1 and the minimum length of all cycles of Hk(R/Rpk) can be either 3; 2 or 0
depends on k and |Z(R/Rpk, k)|. As for the minimum length of all cycles, 2 is
not a general case for complete graphs because each edge can be formed by more
than two vertices and then some cycles can be constructed by at least two edges.

Keywords: k-zero-divisor; k-zero-divisor hypergraph; complete k-uniform hyper-
graph; k-partite σ-uniform hypergraph.
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MazezaM Levels with Exponentially Long Solutions (Extended Abstract)

Aster Greenblatt∗ Justin Kopinsky† Ben North‡ Malcolm Tyrrell§ Aaron Williams¶

Abstract

MazezaM is a sliding block tour puzzle and popular
video game. It has similar mechanics to Sokoban ex-
cept that boxes only move horizontally, and every box
in a row moves simultaneously. It was previously known
that deciding if a given level can be solved is NP-hard
(North 2008). In this paper we provide a family of levels
whose shortest solutions are exponentially long with re-
spect to their size, which suggests that MazezaM could
be PSPACE-complete. Interestingly, the levels are con-
structed to simulate the binary reflected Gray code.

1 Introduction

Sliding block puzzles were among the first puzzles to
be studied by computational complexity. For example,
the hit Japanese video game Sokoban was shown to be
PSPACE-complete by Culbertson [1] in 1998. Sliding
block puzzles have also been very influential in the lit-
erature. For example, the ThinkFun puzzle Rush Hour
was shown to be PSPACE-complete by Flake and Baum
[2] using a form of dual-rail logic. This technique was re-
fined by Hearn and Demaine into constraint logic which
is the basis for their well-known and influential textbook
Games, Puzzles, and Computation [4].

When a decision problem is suspected to be PSPACE-
hard it is prudent to show that the problem is not obvi-
ously in NP. For sliding block puzzles this corresponds
to finding puzzles whose shortest solutions are exponen-
tial in the size of the puzzle.

We consider MazezaM, a sliding block tour puzzle in-
vented by Malcolm Tyrrell and released as a free and
open source video game. Each level is played on a rect-
angular grid surrounded by walls. The player’s goal is
to move the token from the entrance corridor to the
exit corridor. The obstacles are 1-by-1 boxes that can
be pushed horizontally by the token. However, every
box in a row moves simultaneously when any box in the
row is pushed. Boxes do not move vertically, and they
cannot move into the corridors. A level and solution are
shown in Figure 1. A free playable version is available
at www.puzzlescript.net/play.html?p=7718522.

∗Bard College Simon’s Rock mgreenblatt15@simons-rock.edu
†Massachusetts Institute of Technology jkopin@mit.edu
‡ben@redfrontdoor.org
§malcoh0l@yahoo.ie
¶Bard College at Simon’s Rock, awilliams@simons-rock.edu

Figure 1: MazezaM level “Humble Origins”. The wiggle
room for the top row is 2 and for the bottom row is 3.

Determining if a MazezaM level is solvable is NP-hard
by an unpublished manuscript by North [6]. We provide
a family of ‘Gray code’ levels whose shortest solutions
are exponentially long with respect to the size of level.

2 Binary Reflected Gray Code

Let B(n) be the set of n-bit binary strings. The weight
of b1b2 · · · bn ∈ B(n) is its bitwise sum

∑n
i=1 bi. We use

exponents to denote bitwise concatenation. For exam-
ple, 14 = 1111 is the only string of weight four in B(4).

The binary reflected Gray code (BRGC) is an ordering
of B(n) in which each pair of consecutive strings have
Hamming distance one (i.e. they differ in exactly one
bit) [3]. The order starts with 0n and ends with 0n−11.
The BRGC for n = 4 is below with overlines showing
the bit that changes to create the next string:

0000, 1000, 1100, 0100, 0110, 1110, 1010, 0010,

0011, 1011, 1111, 0111, 0101, 1101, 1001, 0001.

Now we explain how to create each successive string
in the BRGC starting from the initial string 0n.

Definition 1 Each b1b2 · · · bn ∈ B(n) has up to two ac-
tive bits: (a) its leftmost bit b1, and (b) its bit immedi-
ately to the right of its leftmost 1.

For example, the leftmost 1 in b1b2b3b4b5b6 = 000111
is b4 = 1; therefore, its active bits are b1 and b5. Every
binary string has two active bits except 0n and 0n−11.

The following theorem is well-known (see Knuth [5]).

www.puzzlescript.net/play.html?p=7718522
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Figure 2: Gray(6) with bi row labels (left), bj columns
(bottom), in initial state 000000 (right).

Theorem 1 If b1b2 · · · bn has even weight, then com-
plementing active bit (a) gives the next string in the
BRGC. Otherwise, if b1b2 · · · bn has odd weight, then
complementing active bit (b) gives the next string.

On the other hand, complementing the ‘other’ active
bit of b1b2 · · · bn gives the previous string in the BRGC.

For example, 000111 has odd weight, so 000101 is the
next string in the BRGC and 100111 is the previous.

3 Exponentially Long Levels

Now we construct a MazezaM level Gray(n) that sim-
ulates the BRGC. The key features of Gray(n) are:
• There are n rows that simulate each of the n bits.

The overall ‘state’ is a binary string b1b2 · · · bn.
• There are n sets of columns to ensure only ‘active’

bit rows (as per Definition 1) can be modified.
• The initial state is 0n and the exit state is 10n−1.
Each bi row has two positions: If its boxes are shifted

left/right, then its state is 0/1. The state of Gray(n)
(excluding the token) is then b1b2 · · · bn ∈ B(n). The
boxes in other rows cannot move and are drawn in black.

Each pair of bj columns has a 0-column and 1-column
as do the exit columns. The column pairs have barrier
columns to the left/right to prevent horizontal moves.
The column structure is described further in Lemma 2.

The bottom row is empty and is called the home row.
The level starts in state 0n with the player in the home
row, as illustrated for Gray(6) in Figure 2.

The player modifies bi when they leave the home row,
change row bi, and return to the home row. Lemma 2
proves that modifications can only be done to rows and
columns whose bit is active. For example, see Figure 3.
A similar proof establishes the exit criteria in Lemma 3.

Lemma 2 The player can modify bi via the bj columns
if and only if i = j and bi is active in Gray(n)’s state.

Figure 3: When Gray(6) is in state b1b2b3b4b5b6 =
000111 the player can modify the active bits b1 or b5.

Proof Sketch: Consider the b3 columns (and barriers)
in state b1b2b3 = 010 (left) and b1b2b3 = 011 (right).

In both cases b3 can be modified (which involves chang-
ing b1 twice). This isn’t true if b1b2 6= 01 (i.e. when b3
is not active). The remaining bj columns are similar. �

Lemma 3 The player can pass through the exit
columns if and only if Gray(n)’s state is 0n−11.

Theorem 4 The level MazezaM level Gray(n) can be
solved in no fewer than 2n − 1 moves.

Proof. The player must change the state of Gray(n)
from 0n to 0n−11 by Lemma 3. Modifications can only
be done to active bits by Lemma 2. Therefore, 2n − 1
moves are required by Theorem 1. �
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Path Puzzles: Discrete Tomography with a Path Constraint is Hard

Jeffrey Bosboom∗ Erik D. Demaine∗ Martin L. Demaine∗ Adam Hesterberg∗

Roderick Kimball† Justin Kopinsky∗

Path Puzzles are a type of logic puzzle intro-
duced in Roderick Kimball’s 2013 book [5]. A
puzzle consists of a (rectangular) grid of cells
with two exits (or “doors”) on the boundary and
numerical constraints on some subset of the rows
and columns. A solution consists of a single
non-intersecting path which starts and ends at
two boundary doors and which passes through
a number of cells in each constrained row and
column equal to the given numerical clue. Fig-
ure 1 shows some example path puzzles and Fig-
ure 4 shows their (unique) solutions. Many vari-
ations of path puzzles are given in [5] and else-
where, for example using non-rectangular grids,
grid-internal constraints, and additional candi-
date doors, but these generalizations make the
problem only harder.

A path puzzle can be seen as 2-dimensional
discrete tomography [3] problem with partial in-
formation (not all row and column sums) and an
additional Hamiltonicity constraint on the out-
put image. Vanilla 2-dimensional discrete to-
mography is known to have efficient (polynomial-
time) algorithms [3], though it becomes hard un-
der certain connectivity constraints on the out-
put image [2].

Our results. Unlike 2-dimensional dis-
crete tomography, we show that path puzzles
(with partial information and the added Hamil-
tonicity constraint) are in fact NP-complete.
In fact, we prove the stronger results that
path puzzles are Another Solution Prob-
lem (ASP) hard and (to count solutions) #P-

∗Massachusetts Institute of Technology, {jbosboom,
edemaine,mdemaine,achester,jkopin}@mit.edu
†Enigami Puzzles & Games
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Figure 1: Four path puzzles. Solutions in Fig-
ure 4 on the next page.

complete. Figure 2 shows the chain of reduc-
tions we prove. To preserve hardness for the
ASP and #P classes, our reductions are parsi-
monious, that is, they preserve the number of
solutions between the source and target prob-
lem instances, generally by showing a one-to-
one correspondence thereof. We start from the
source problem of Positive Exactly-1-In-3-
SAT which is known to be ASP-hard [6] and
(to count solutions) #P-complete [4]. We newly
establish ASP-hardness and #P-completeness
for 3-Dimensional Matching, Numerical
4-Dimensional Matching, Numerical 3-
Dimensional Matching, and a new problem
Length Offsets, in addition to Path Puz-
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Figure 2: The chain of reductions used in our proof.
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Figure 3: The reduction Numerical 3-
Dimensional Matching → Length Offsets
→ Path Puzzles (with intended solution) rep-
resenting Numerical 3-Dimensional Match-
ing instance X = {5, 6, 7}, Y = {4, 5, 5}, Z =
{4, 4, 5}, and target sum t = 15. Ellipses elide
sections of 6n = 18 columns each labeled 1.

zles. Figure 3 gives a flavor of our reductions.

We also present a path puzzles font—a set of
26 path puzzles whose (unique) solutions depict
the alphabet. Figures 1 and 4 show the J, C, D,
and G puzzles.
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Elmsley’s Problem Revisited

Rudolf Fleischer

GUtech, Muscat, Oman
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Abstract. In this paper we revisit the perfect shuffling problem. We pro-
pose a slightly different mathematical description of the problem which gives
rise to a simple solution for Elmsley’s problem, which is the problem of find-
ing the shortest perfect shuffle sequence that brings a particular card to the
top of the deck, or more general to any fixed position in the deck. We also
give a negative answer to the open problem whether it is always possible to
bring two particular cards to the two top positions of the deck, at least if
the number of cards is a power of 2.

1 Introduction

A perfect shuffle (or riffle shuffle) of a deck of 2n cards first cuts the deck in half and
then perfectly interlaces the two halves. This can be done in one of two ways. An
out shuffle (O) leaves the top card on top, while an in shuffle (I) moves the top card
into the second position. Perfect shuffles are popular among magicians who usually
refer to it as the Faro shuffle since it was first described as a method of cheating at
the game of Faro nearly 200 years ago [5, p. 195]. For a more comprehensive review
of the history of the Faro shuffle and its applications in magic and mathematics we
refer to [3, 8].

The combinatorial structure of Faro shuffles has been extensively studied [3, 2,
7, 8, 11], including generalizations to k-shuffles [4, 9, 10] and other variants of the
problem [1]. While most of the literature has been concerned with the structure of
the group generated by in and out shuffles and the problem of moving the top card
of the deck to an arbitrary position by a sequence of in and out shuffles, much less
is known about the problem of moving an arbitrary card to the top of the deck,
or more general to any fixed position in the deck. This problem is also known as
Elmsley’s problem.

Ramnath and Scully [11] proposed a brute-force search among all possible shuffle
sequences, ordered by increasing length, to find the shortest solution to Elmsley’s
problem. Diaconis and Graham [2] proposed an algorithm that avoids the tedious
enumeration of all shuffle sequences by computing the solution directly using a
formula that becomes complicated if 2n is not a power of 2. However, contrary
to what they claim (but not prove), this direct approach does not always yield a
shortest shuffle sequence. For example, if we want to move the card in position 39
to the top in a deck of 52 cards (we assume cards are numbered 0, 1, 2, . . . from the
top), their algorithm computes a shuffle of length six, OOOIOI, while there exist a
shuffle of length two, II. This can easily be verified by playing with the Faro shuffle
simulator by Kiewel [6], for example. They also raised the question whether any two
cards can be moved to the two top positions by a sequence of Faro shuffles.

We propose a different mathematical description of Faro shuffles which yields an
easy algorithm for Elmsley’s problem and gives more insight into the combinatorial
structure of the problem. For example, we can show that not every pair of cards
can be simultaneously moved to the two top positions of the deck if 2n is a power
of 2. Although it is known that Faro shuffles cannot always generate all possible
permutations, this is a new result and answers the open question raised in [2].

Let k denote the number of bits of bin(2n), where bin(z) is the binary represen-
tation of integer z, and p, q, x, y card positions.

1
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Theorem 1.

(a) If c is the smallest non-negative integer such that the first k bits of bin(2cn+ q)
(we may add abitrarily many 0’s at the left) are identical to bin(p), then the
remaining z = k − size(bin(2cn + q)) bits (from left to right) determine the
shortest shuffle sequence that moves a card from position p to q, where a digit
0 (1) denotes an out shuffle if the current position of the card is in the upper
(lower) half of the deck, otherwise it indicates an in shuffle.

(b) There also exist shuffle sequences of length z + 1, z + 2, . . . that move the card
from position p to q.

(c) If 2n = 2k, then the shortest shuffle sequence is determined by x ⊕ y (bitwise
XOR), where p = x ◦ t and q = t ◦ y (◦ denotes the concatenation of two bit
strings) and t is the longest bit string that is a suffix of p and a prefix of q.

Part (c) has been known in the special case that either p or q is 0 [1, 3, 11]. We
now assume that 2n = 2k. Let rot(s, t) denote the shortest left rotation distance
from bit string s to t, where one rotation step removes the leftmost digit of s and
puts it back at the right end of s. It is easy to see that for positions p and q the
string bit(p⊕ q) is an invariant up to rotation that does not change when we apply
Faro shuffles. This implies, for example, that any pair of cards at positions with
complementary bit strings (e.g., the top and bottom cards of the stack) will always
be in complementary positions after Faro shuffles [1].

Theorem 2. If 2n = 2k, then we can move the card at position p to q and at the
same time the card at position x to y if and only if p⊕q and x⊕y are identical up to
rotation. In this case, the shortest shuffle sequence has length ck+ rot(p⊕ q, x⊕ y),
where c is minimal such that this value is at least the length of the shortest shuffle
sequence from position p to q.

For example, we can only move two cards to the two top positions if their bit
strings differ in exactly one bit, i.e., in a deck of 64 cards we can move the cards at
positions 22 and 23 to the top via OIOIIO, but not the cards at positions 22 and
21. We can easily find the shortest Faro shuffle by Theorem 1.
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An efficient algorithm for judicious partition of
hypergraphs
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Let H = (V,H) be a hypergraph and S ⊆ V . A hyperedge h is contained
in the part S if all the vertices of h is in the set of S and a hyperedge h is
incident to the part S if at least one vertex of h is in the set of S. We write
e(S) := |{h ∈ H,h ∩ (V/S) = ∅}| and L(S) := |{h ∈ H,h ∩ S 6= ∅}|, where
e(S) is the number of hyperedges contained S and L(S) is the number of hy-
peredges incident to S. The hyperdegree of a vertex equals the number of hy-
peredges incident to it and an r-uniform hypergraph has r vertices in each of
its hyperedges. The hypergraph partitioning problem is to partition a hyper-
graph into smaller components satisfying specified constraints so as to minimize
(or maximize) some objective functions. A judicious partitioning problem on a
hypergraph is a problem in which one seeks a partition that optimizes several
quantities simultaneously [1], such as minimizing max{e(V1), e(V2), . . . , e(VK)}
or max{L(V1), L(V2), . . . , L(VK)}. The judicious partition of hypergraphs aim-
ing at minimizing max{ L(V1), L(V2), . . . , L(VK)} is a NP-hard problem [1]. The
paper interprets judicious partition of hypergraphs as an integer nonlinear pro-
gramming problem and some connections between the maximal hyperdegree and
the optimal solution have been analyzed.

Algorithm 1 Minimum k & d algorithm

Require: E = {e1, e2, . . . , eN} where ei ⊆ {H1, H2, . . . , HM} standing for the
hyperedges where the vertex vi is in and all the possible (CM+d)-sets of
{H1, H2, . . . , HM}: T = {t1, t2, . . . , t( M

CM+d)
}.

Ensure: k
1: Generate S = {S1, S2, . . . , SQ}, where Sj = {ei|ei ⊆ tj , i ∈ {1, 2, . . . , N}}, j =

1, 2, . . . , Q
2: Find the minimum set covering of E in S.
3: Output the minimum number of the covering sets: k .

We analyze a sub-problem of judicious partition of hypergraphs and a gen-
eral algorithm (Algorithm 1) for solving the problem has been proposed. Given
a hypergraph H=(V,H) with maximum hyperdegree CM , where 0 < C ≤ 1 and
M is the number of hyperedges, find the minimum k for the partition, so that



2

the objective function value of judicious partition of H is at most CM+d, where
0 ≤ d ≤ (1−C)M and d is a given integer. In the step 2 of the “Minimum k & d
algorithm”, minimum set covering of E should be found in S. A greedy algorithm
have been applied to solve this problem, which is an LN factor approximation
algorithm for the minimum set cover problem, where LN = 1 + 1

2 + · · ·+ 1
N [2].

The judicious partition of hypergraphs can be regarded as several sub-problems
mentioned above. Each time an objective value CM +d is given, where d ranges
from 0 to M−CM , k is generated by the “Minimum k & d algorithm”. The first
time the constraint: k ≤ K is meet, the CM + d is the objective value we found
for the problem. In the Minimum k & d algorithm, Q can be as large as

(
M
CM

)
,

Algorithm 2 Judicious partition of hypergraphs

Require: K, the correlation between (CM + d)-sets and (CM + d+ 1)-sets, 0 ≤ d ≤
(M − CM).

1: Initial minmaxL← CM , E = {e1, e2, . . . , eN}.
2: for d← 0 to (1− C) ∗M do
3: Run the minimum k & d algorithm with E and T = {t1, t2, . . . , t( M

CM+d)
}, then

k, {V1, V2, . . . , Vk} and S∗ = {S∗
1 , S

∗
2 , . . . , S

∗
k} are generated.

4: if k > K then
5: E = S∗.
6: break
7: else
8: minmaxL=CM + d.
9: return
10: end if
11: end for
12: Output: minmaxL, {V1, V2, . . . , Vk}.

but Q will not be
(

M
CM+d

)
in the Minimum k & d algorithm, 1 ≤ d ≤ (M−CM).

Since the correlation between (CM + d)-sets and (CM + d + 1)-sets is given,
0 ≤ d ≤ (M − CM), and E is replaced by the k (CM + d)-sets in the step 5
of Algorithm 3 if an optimal value is not found, less than k(M − (CM + d))
(CM + d + 1)-sets will be chosen as S in the next stage. From k ≤ N , we can
obtain that Q ≤ N(M − (CM + d)), 1 ≤ d ≤ (M − CM).

Theorem 1. If the Algorithm 3 is a factor-α approximation algorithm, the α
is at least 1

M
logK−logLN

1−logC .
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Tangle and Ultrafilter: Game Theoretic Interpretation

Takaaki Fujita (Gunma University) Koichi Yamazaki (Gunma University)

Abstract: Tangle is a dual notion of a well studied graph (matroid) parameter branch-width. Ultrafilter is an important
notion which plays a foundational role in set, model, and topology theories. In this paper, we give a game-theoretic
interpretation of relation between tangle and ultrafilter.

1 Preliminary

Branch-width is a well-studied graph parameter, and it can
be generalized to connectivity systems [1].

Definition 1 Let X be an underlying set, f a symmetric sub-
modular function on 2X → N. A pair (T, µ) is a branch de-
composition tree of (X, f) if T is a ternary tree such that
|L(T )| = |X| and µ is a bijection from X to L(T ), where
L(T ) denotes the leaves in T . For each e ∈ E(T ), we denote
f(
∪

v∈L(T1)
µ−1(v)) by bw(T, µ, e), where T1 is a tree obtained

by deleting e from T , note here the symmetry property of f .
The width of (T, µ) is defined by maxe∈E(T ) bw(T, µ, e). The
branch-width of (X, f), denoted by bw(X, f), is defined as the
minimum width over all possible branch decomposition trees
of (X, f).

Tangle was first introduced in [3] as a dual notion of branch-
width and it was extended to connectivity systems [1].

Definition 2 Let X be an underlying set, f a symmetric sub-
modular function on 2X → N, and an integer k. A family
T ⊆ 2X is a tangle of order k + 1 on (X, f) if T satisfies
the following axioms.

(TB) ∀A ∈ T , f(A) ≤ k,
(TE) A ⊆ X, f(A) ≤ k ⇒ either (A ∈ T ) or (X \A ∈ T ),
(TC) A,B,C ∈ T ⇒ A ∪B ∪ C ̸= X,
(TL) ∀e ∈ X, X\{e} ̸∈ T .

Theorem 1 ([3]) There is no tangle order k + 1 on (X, f)
if and only if the branch-width of (X, f) is at most k.

In this paper, we generalise an ultrafilter on a set X into a
connectivity system (X, f).

Definition 3 Let X be an underlying set, f a symmetric sub-
modular function on 2X → N, and an integer k. A family
U ⊆ 2X is a ultrafilter of order k+ 1 on (X, f) if U satisfies
the following axioms.

(FB) A ∈ U =⇒ f(A) ≤ k,
(FI) A,B ∈ U , f(A ∩B) ≤ k =⇒ A ∩B ∈ U ,
(FH) A ∈ U , A ⊆ B ⊆ X, f(B) ≤ k =⇒ B ∈ U ,
(FW) ∅ ̸∈ U .
(TE) A ⊆ X, f(A) ≤ k ⇒ either (A ∈ U ) or (X \A ∈ U ).

Additionally, we will consider the following an extra axiom.

(FN’) [(e ∈ X) ∧ (f({e}) ≤ k)] =⇒ X \ {e} ∈ U .

Then, we have the following cryptomorphism between ultra-
filter on (X, f) and co-tangle on (X, f), where co-tangle is a
complementary concept of tangle.

Theorem 2 Let X be a finite underlying set and f a sym-
metric submodular function on 2X . Then, U is a co-tangle
with order k of (X, f) if and only if U is an ultrafilter of
order k on (X, f) satisfying the additional axiom (FN’).

1.1 Trivial case: Principal filter

In this study, we are interested in the existence of ultrafilter
on (X, f) of order k for given X, f , and k. Consider a case
in which there exists an element e ∈ X such that f({e}) > k.
Then, UP := {A ⊆ X : e ∈ A, f(A) ≤ k} is an ultrafilter
of order k + 1. Such UP is called principal (ultra)filter. The
trivial case is not of interest in this study. In order to avoid
the trivial case, we assume the following assumption (AS):

(AS) ∀e ∈ X, f({e}) ≤ k.

1.2 Non-trivial case: Non-principal filter

As mentioned above, we are not interested in principal ultra-
filter, namely we are interested in non-principal ultrafilter,
especially free ultrafilter. An ultrafilter U (on both X and
(X, f)) satisfying the following axiom (FF) is called free ul-
trafilter.

(FF)
∩

A∈U A = ∅.

Notice that UP in Subsection 1.1 is not free. A well-known
example of free ultrafilter on X is Fréchet filter : For an infi-
nite set X, UF := {X\Y : Y ⊆ X is a finite set}. It is known
that no free ultrafilter on X can exist when X is finite. How-
ever, quite interestingly, there does exist a free ultrafilter on
(X, f) even when X is finite, which we will explain in this
paper.

1.3 Construction scheme for free filter

The construction method of Fréchet filter can be formalized
as follows.

• S := {A ⊆ X : A is a finite set},
∪

A∈S A = X,
• ∀A ∈ S , X \A ∈ S .

With this in mind, let us consider the following scheme, which
we will refer to as the construction scheme for free filter (CS-
FF). Intuitively, CS-FF makes a filter free.

Construction scheme for free filter (CS-FF):

• S := {A : A is a small set },
∪

A∈S A = X,
• ∀A ∈ S , X \A ∈ S .

It is significant to set S to be consisting of small sets. Be-
cause, in doing so, we can naturally derive the pairwise inter-
section property as shown below. As we will see later, for a fi-
nite underlying set X, we will apply the scheme to a ultrafilter
on (X, f) rather than on X. There is an interesting relation
between the pairwise intersection property and CS-FF. We
explain the relation through an example. It is obvious that
if a family F satisfies the finite intersection property, then
F also satisfies the pairwise intersection property. However,
the converse is not true in general. Indeed, the following is a
counter-example to this.

1



Example 1 (Cf., Linkedness in [2]) Let X be a finite set
and let S := {A : |A| < |X|/2}. Then, F := {A : X \ A ∈
S } satisfies the pairwise intersection property, and it does
not satisfy the finite intersection property. (Hence F is not
a filter.)

It is worth mentioning that the linkedness is deeply related
to branch-width. It should be emphasized that F in the
example is constructed in accordance with CS-FF, although
F is not a filter.

1.4 Ultrafilter interpretation of (FN’)

Let us now consider the meaning of the extra axiom (FN’).
Essentially, (FN’) corresponds to CS-FF. In fact, (FN’) is con-
formed with the CS-FF by setting S := {{e} : e ∈ X}. Thus,
intuitively, (FN’) makes an ultrafilter free as well as CS-FF.
By combining the assumption (AS) in Subsection 1.1 and the
extra axiom (FN’), we have the following axiom (FN):

(FN) ∀e ∈ X, X \ {e} ∈ U .

Since an ultrafilter on (X, f) is a co-tangle, (FN) is essentially
the same as the axiom (TL) in the definition of tangle.

1.5 Compass mechanism

The following theorem is known as a folklore.

Theorem 3 Given an ultrafilter U on a finite underlying set
X and a partition P = {A1, . . . , An} of X, exactly one of the
blocks in P belongs to U .

We will refer to the property stated in Theorem 3 as compass
mechanism. A known application of the compass mechanism
is the Ramsey’s theorem for infinite graphs. The theorem can
be generalized as follows.

Lemma 1 Given a partition P := {A1, . . . , An} (n ≥ 3) of
X such that f(Ai) ≤ k for each 1 ≤ i ≤ n, and an ultrafilter
U with order k+ 1 on (X, f), exactly one of the blocks in P
belongs to U unless there exists a partial branch decomposi-
tion tree (T, µ) of width at most k such that each block in P
is associated with a leaf of T .

Corollary 1 Given a partition P := {A1, A2, A3} of three
blocks and an ultrafilter U of order k+1 on (X, f), if f(Ai) ≤
k holds for each 1 ≤ i ≤ 3, then exactly one of blocks in P
belongs to U .

2 Game-theoretic interpretations

In this section, we introduce a game on (X, f), which we call
monotone search game. The game is described in terms of
robber and cops. By using the game, we demonstrate how
(FN’) works in the game. Then, we show that a branch de-
composition tree of (X, f) is essentially the same as a cops’
winning strategy (see Lemma 2). On the other hand, we also
show that an ultrafilter on (X, f) corresponds to a robber’s
winning strategy for the game (see Lemma 3). Hence, the
ultrafilter essentially the same as the robber’s haven. We also
explain how the compass mechanism works in a robber’s win-
ning strategy.

Monotone search game on (X, f) with k cops:

1. i := 1, Ui := X

2. If |Ui| = 1 and f(Ui) ≤ k, then the cops win the game.

3. In order to corner the robber, the cops choose a set Mi

such that ∅ ̸= Mi ⊂ Ui, f(Mi) ≤ k, and f(Ui\Mi) ≤ k.
If the cops cannot choose such a set, then the cops lose
the game.

4. The robber must flee into Mi or Ui\Mi. The set into
which the robber flees is referred to as Ui+1.

5. i := i+ 1 and go to Step 2.

We demonstrate how (FN’) works under the assumption (AS).
If there is an element e ∈ X such that f({e}) > k, then there
is a winning strategy for the robber: The robber just chooses
the set containing the element e. This trivial case corresponds
to the case of principal filter. In the game, we assume (AS)
in order to avoid the trivial case. Then, from (AS), we have
(FN) by the axioms (TE) and (FN’), that is, {e} ̸∈ U holds
for each e ∈ X. This can be interpreted that every {e} is not
safe place for the robber. As a result, the Step 2 in the game
can be replaced with the following:

2. If |Ui| = 1, then the cops win the game.

Lemma 2 Let X be a finite underlying set and f a sym-
metric submodular function on X. For the monotone search
game on (X, f) with k cops, there is a branch decomposition
tree (T, µ) of width at most k on (X, f) if and only if there is
a cops’ winning strategy for the game.

Lemma 3 Let X be a finite underlying set and f a sym-
metric submodular function on 2X . For the monotone search
game on (X, f) with k cops, suppose that there is an ultrafilter
U of order k + 1 on (X, f), then there is a robber’s winning
strategy for the game.

Now, we explain how the compass mechanism works in a
robber’s winning strategy. As we have seen, in the robber’s
winning strategy, an ultrafilter indicates which set the robber
flees into. Namely, an ultrafilter works like a compass which
is pointing the robber’s haven {Ui,Mi, Ui\Mi}∩U for a given
partition {Ui,Mi, Ui\Mi} by the cops. Corollary 1 indicates
that the condition “f(Mi) ≤ k and f(Ui\Mi) ≤ k” described
in Step 3 plays a key role in the game.
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Linear-width and Single ideal
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Abstract: Branch-width is a well studied graph parameter, and it was extended into parameter on a connectivity
system. Linear-width is also a parameter on a connectivity system, which can be thought of as path version of branch-width.
In this paper, we define a sort of ideal on a connectivity system which we call single ideal and show a duality between single
ideal and linear-width. We also give a characterization of maximal single ideal.

1 Preliminary

In this paper, we introduce a new concept of ideal, which
is strongly related to linear-width on a connectivity system
(X, f), where X is an underlying set and f is a symmet-
ric submodular function on X. The linear-width was origi-
nally introduced as a graph parameter related to well studied
graph parameter branch-width [8]. Intuitively, linear-width
is a path version of branch-width, i.e., the relation between
linear-width and branch-width is like the relationship between
path-width and tree-width. Branch-width was generalized
into a parameter on connectivity systems [2, 4], so linear-
width as well.

The notion of ideal can be found in several fields, such as
ring theory (ring), set theory (boolean algebra), order theory
(lattice, poset), and is defined in their different contexts. Ide-
als discussed in this paper are ones appeared in the context
of set theory (see cf. [7]).

There is a dual notion of branch-width, which is called tan-
gle. The notion of tangle was first introduced by Robertson
and Seymour in [6] for (hyper)graphs and was then extended
to matroids (connectivity systems) [2, 4], and it was shown
that there is no tangle of (X, f) with order k + 1 if and only
if the branch-width of (X, f) is at most k. In addition, in
[5], Oum and Seymour introduced a relaxed notion of tangle,
which is called loose tangle, and showed that there is a tangle
of order k if and only if there is a loose tangle of order k.

It has been shown recently that a loose tangle and a tangle
can be considered as an ideal and a maximal ideal on a con-
nectivity system, respectively [9]. Hence, it is natural to ask
whether or not similar results can be obtained not for branch-
width but for linear-width. In this paper, we introduce a new
concept of ideal, which we call single ideal, then we show that
there is no single ideal of (X, f) with order k + 1 if and only
if the linear-width of (X, f) is at most k. Similar results to
ours can be found in [1, 3]. The difference from them is that
our approach is based on the concept of ideal.

2 Definitions and known results

In this section, we give definitions and known results related
to tangle and ideal which we will need in this paper.

A function f : 2X → N is symmetric submodular if f sat-
isfies (1) symmetry property: ∀A ⊆ X, f(A) = f(A), and
(2) submodularity property: ∀A,B ⊆ X, f(A) + f(B) ≥
f(A ∩ B) + f(A ∪ B). We call the pair (X, f) connectivity
system. For an integer k > 0, a set A ⊂ X is k small (or
simply small) if f(A) ≤ k holds.

Definition 1 (see cf., [7]) Let X be an underlying set. A
collection I ⊆ 2X is an ideal on boolean algebra (2X ,∩,∪)
(or we simply write X) if I satisfies the following axioms:

(IH) B ∈ I , A ⊆ B =⇒ A ∈ I .

(IU) A,B ∈ I =⇒ A ∪B ∈ I .
(IW) X ̸∈ I .

An ideal I on boolean algebra is maximal if there is no
I ′ properly containing I . It is known that an ideal I with
an underlying set X is maximal iff I satisfies the following
additional axiom:

(IE) ∀A ⊆ X, either (A ∈ I ) or (A ∈ I ).

In Definition 1, we give the definition of ideal on boolean
algebra. In Definition 2, we introduce a new concept which
is modeled on the ideal on boolean algebra but is based on
connectivity system rather than on boolean algebra.

Definition 2 Let (X, f) be a connectivity system and k > 0
an integer. A collection S ⊆ 2X is a single ideal on (X, f)
of order k + 1 if S satisfies the following axioms:

(SIB) ∀A ∈ S , f(A) ≤ k.
(SIH) A,B ⊆ X, A ⊂ B, B ∈ S , and f(A) ≤ k =⇒

A ∈ S .
(SIS) A ∈ S , f({e}) ≤ k, f(A∪{e}) ≤ k =⇒ A∪{e} ∈ S .
(SIN) ∀e ∈ X, f({e}) ≤ k =⇒ {e} ∈ S .
(IW) X ̸∈ S .

We will refer to the family S as single ideal on the connec-
tivity system (X, f) of order k + 1.

There are two main differences between the definition of
ideal on boolean algebra and that of single ideal on connec-
tivity system. One is the restriction by the function f and
the other is that B in (IU) is replaced with a singleton set {e}
of f({e}) ≤ k in (SIS). To avoid a trivial case (in which the
single ideal is essentially the same as a principal ideal), we
include the axiom (SIN) in the definition. As is the case with
the ideal on boolean algebra, a single ideal I is maximal (on
connectivity system) if there is no I ′ properly containing I .

2.1 Linear branch-decomposition

The following definition of linear-width is slightly different
from the original definition. In our definition, we use ternary
caterpillar to define the linear-width, because we want to
adapt the linear-width to the axiom (SIS) (i.e., the check
f({e}) ≤ k). In the study, we are not interested in the case
that there is an element e such that f({e}) > k. Thus, in this
paper, we may assume that f({e}) ≤ k holds for every e ∈ X.
The assumption makes the difference between the definitions
not substantial.

A tree C is ternary caterpillar if C consists of a path
(ℓ1, b2, b3, . . . , bn−1, ℓn) and vertices ℓ2, ℓ3, . . . , ℓn−1 such that
ℓi is only adjacent to bi for each 2 ≤ i ≤ n − 1. The path
(b2, . . . , bn−1) is called backbone and the vertices ℓ1 and ℓn
are called start vertex and end vertex, respectively.

1



Definition 3 A linear branch-decomposition of a connectiv-
ity system (X, f) is a ternary caterpillar C whose leaves
are associated one-to-one with the elements of X. This
can be generalized as follows: A partial linear branch-
decomposition of (X, f) is a ternary caterpillar C in which
the leaves are associated one-to-one with the blocks in a
partition (P, {e2}, . . . , {en−1}, Q) of X such that the start
and end vertices are associated with the blocks the sub-
sets P and Q, respectively, and each vertex bi in the back-
bone (b2, . . . , bn−1) of C is associated with the singleton
set {ei}. Hence, if P and Q are singleton sets, then
we have a linear branch-decomposition. For a partition
(P, P ) of X, a decomposition consisting of just start and
end vertices associated with P and P can be also consid-
ered as a partial linear branch-decomposition. Moreover,
the width of the partial linear branch-decomposition of C is
defined by max

{
f(P ), f(Q),maxn−1

i=2 f({ei}),maxn−1
i=2 f(P ∪

{e2, · · · , ei})
}
. The linear-width of (X, f) is the minimum

width overall linear branch-decompositions of (X, f).

Definition 4 Let C be a partial linear branch-decomposition
of a connectivity system (X, f), P and Q the sets associated
with the start and end vertices of C, respectively, and F a
family of subsets of X. We say that C conforms to F if there
are sets P ′, Q′ ∈ F such that P ⊆ P ′ and Q ⊆ Q′. A family
F is called k-non-conforming (to (X, f)) if there is no partial
linear branch-decomposition of width at most k that conforms
to F .

3 Results

In this section, we first show, in Lemma 2, that there does
exist a family which satisfies the axioms in the definition of
single ideal. Each set in the family corresponds to k-branched
set in terms of tangle (see for details [5]). In the proof of
Lemma 2, we heavily use techniques developed in [5]. From
the lemma (and Lemma 1), we have a duality between single
ideal and linear-width (i.e., Theorem 1). On the basis of the
existence of single ideal, we next show a characterization of a
maximal single ideal in Theorem 2.

Let (X, f) be a connectivity system and let B(X,f) := {A ⊆
X : ∃(e1, e2, . . . , eℓ) s.t.

∪ℓ
i=1{ei} = A and f({e1, . . . , ej}) ≤

k for ∀1 ≤ j ≤ ℓ}, and let B ↓(X,f):= {A : A ⊆ B, f(A) ≤
k,B ∈ B(X,f)}. We write simply B and B ↓ instead of B(X,f)

and B ↓(X,f), when it is clear from context. Unfortunately,
B(X,f) is not closed under taking subsets. Thus, it is not
obvious whether B ↓(X,f) satisfies the axiom (SIH).

We now give a relation between B ↓(X,f) and single ideal
on a connectivity system (X, f).

Lemma 1 Let (X, f) be a connectivity system. If the linear-
width of (X, f) is at most k, then (X, f) does not allow any
single ideal on (X, f) with order k + 1.

Lemma 2 Let (X, f) be a connectivity system. If the linear-
width of (X, f) is at least k+1, then B ↓(X,f) is a single ideal
on (X, f) with order k+ 1. (Recall that we are assuming that
f({e}) ≤ k holds for every e ∈ X.)

The following theorem can be obtained directly from the
above two lemmas.

Theorem 1 For a connectivity system (X, f), there is no
single ideal on (X, f) with order k + 1 if and only if the
linear-width of (X, f) is at most k. (Recall again that we
are assuming that f({e}) ≤ k holds for every e ∈ X.)

As mentioned above, an ideal I on a boolean algebra is
maximal if and only if I satisfies the axiom (IE). It would be
natural to ask whether or not a similar characterization holds
for a maximal single ideal on a connectivity system. We show
below that a similar characterization holds. To show this, we
need the following Lemma 3. In the proof of Lemma 3, the
techniques developed in [6] are heavily used.

Lemma 3 Let (X, f) be a connectivity system such that
f({e}) ≤ k holds for each e ∈ X and the linear-width is
more than k. Let M be a maximal family with respect to:

(C1) satisfying the axioms (SIB) and (SIN), and
(C2) being k-non-conforming to (X, f).

Then, M is a single ideal on (X, f) with order k + 1.

From Lemmas 1 and 3, we have the following theorem.

Theorem 2 For a connectivity system (X, f), the linear-
width of (X, f) is at least k+ 1 if and only if there is a single
ideal on (X, f) with order k + 1 which satisfies the following
additional axiom (SIE):

(SIE) A ⊆ X, f(A) ≤ k =⇒ either (A ∈ S ) or (A ∈ S ).

Acknowledgements This work was supported by JSPS
KAKENHI Grant Number 15K00007．

References

[1] D. Bienstock, N. Robertson, P. Seymour, and R. Thomas.
Quickly excluding a forest. Journal of Combinatorial The-
ory, Series B, 52(2):274–283, 1991.

[2] J. Dharmatilake. A min-max theorem using matroid sep-
arations. Matroid Theory, Contemporary Mathematics,
197:333–342, 1996.

[3] F. V. Fomin and D. M. Thilikos. On the monotonicity
of games generated by symmetric submodular functions.
Discrete Applied Mathematics, 131(2):323–335, 2003.

[4] J. Geelen, B. Gerards, N. Robertson, and G. Whittle. Ob-
structions to branch-decomposition of matroids. Journal
of Combinatorial Theory, Series B, 96(4):560–570, 2006.

[5] S.-i. Oum and P. Seymour. Testing branch-width. Journal
of Combinatorial Theory, Series B, 97(3):385–393, 2007.

[6] N. Robertson and P. D. Seymour. Graph minors. X. Ob-
structions to tree-decomposition. Journal of Combinato-
rial Theory, Series B, 52(2):153–190, 1991.

[7] R. Sikorski. Boolean algebras. Springer, Third edition,
1969.

[8] R. Thomas. Tree-decompositions of graphs (lecture
notes). School of Mathematics. Georgia Institute of Tech-
nology, Atlanta, Georgia.

[9] K. Yamazaki. Tangle and maximal ideal. In International
Workshop on Algorithms and Computation, pages 81–92.
Springer, 2017.

2



Pascal-Like Triangles and Fibonacci-Like Sequences
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1. Pascal-Like Triangles and Fibonacci-Like Sequences

In [1], one of the authors demonstrated how Pascal-like triangles (triangles that look like Pascal’s triangle)
and Fibonacci-like sequences (sequences that look like Fibonacci sequences) arise from the probabilities
associated with the various outcomes of a game of Definition 1 when s = 1 and demonstrated the existence of
simple relationships between these Fibonacci-like sequences and the Fibonacci sequence itself. The following
Definition 1 is the same as Definition 1 in [1] when s = 1. Originally, we studied this game as a form of a
Russian roulette.

Definition 1. Let p, n,m and s be fixed positive integers with m ≤ n. There are p players Θ1,Θ2, ...,Θp

seated around a circular table, and the game starts with player Θ1. Proceeding in order, a box containing n
identically sized cards is passed from hand to hand. All of these cards are white except for m of them, which
are red. When a player receives the box, he or she draws out a card at random (i.e., the player cannot see
inside the box) s times, and these cards are not returned to the box. Therefore, the number of cards in the
box decreases in each round. In this way, Player Θ1 picks up a card in the first,...,s-th rounds, and Player
Θ2 picks up a card in the s+ 1-th,...,2s-th rounds where by ’in the y-th rounds’ we mean ’upon the selection
of the y-th card from the box.’ The first player to draw a red card loses the game, and the game then ends.

This game is mathematically the same as a Russian roulette game in which p players take turns and shoot
themselves. To calculate the probability of the game of Definition 1, it is easier to use the data structure of
Russian roulette. We suppose that cards are arranged in a cylinder-like component into which n cards are
placed. First, the card on the far left is to be picked up, and the last card to be picked up is on the far right.
Then we calculate probability by calculating the number of combinations of red cards.

Definition 2. Let f(p, n,m, s, v) be the probability that the v-th player loses in the game of Definition 1.

In [1], it was shown that the set {f(p, n,m, s, v) : m ≤ n, n = 1, 2, ...} has a pattern similar to Pas-
cal’s triangle for fixed positive integers p, v and s = 1. As an illustrative example, the Pascal-like triangle
formed from {f(4, n,m, 1, 1) : 1 ≤ m ≤ n, n = 1, 2, ..., 6, 7} is shown in Figure 1. For example, note that
f(4, 6, 2, 1, 1) = 6

15 , f(4, 6, 3, 1, 1) = 10
20 , f(4, 7, 3, 1, 1) = 16

35 . Observe that 6 + 10 = 16 and 15 + 20 = 35. As
shown in Figure 1, the denominators and numerators of the fractions form Pascal-like triangles.

Figure 1.
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2,4,6,4,1

2,6,10,10,5,1
2,8,16,20,15,6,1

Numbers in Figure 2 are the numerators of the fractions in Figure 1. It is well-known that the numbers
on the diagonals of Pascal’s triangle add to the Fibonacci sequence, but the numbers on the diagonals of
the triangle in Figure 2 add to Fibonacci-like sequences. Let bn be the sequence made in this way. Then,
b1 = 1, b2 = 1, b3 = 1+1 = 2, b4 = 1+2 = 3, b5 = 2+3+1 = 6, b6 = 2+4+3 = 9, b7 = 2+6+6+1 = 15, .... It
is clear that the rule of this sequence is bn = bn−1 +bn−2 +1 when n = 1 (mod 4), and bn = bn−1 +bn−2 when
n ̸= 1 (mod 4). The relation of this sequence to the Fibonacci sequence is also clear. b4n = F (2n)F (2n+2) =
F (2n + 1)2 − 1, b4n+1 = F (2n + 1)F (2n + 2),b4n+2 = F (2n + 2)2 and b4n+3 = F (2n + 2)F (2n + 3) where
F (n) is the Fibonacci sequence.

Next, we generalize these results.



Definition 3. We denote by U(p, n,m, s, v) the number of combinations of positions of cards for which the
v−th player loses the game of Definition 1.

We generalize the game of Definition 1 and obtain the following game of Definition 4.

Definition 4. Let p, n and m be fixed positive integers with m ≤ n. There are p players Θ1,Θ2, ...,Θp.
All of these cards are white except for m of them, which are red. Player Θ1 picks up in the θ1,1th, θ1,2th,
θ1,3th,..., and θ1,s1th rounds where θ1,1 < θ1,2 < θ1,3 < · · · < θ1,s1 . Θ2 picks up in the θ2,1th, θ2,2th,
θ2,3th,..., and θ2,s2th rounds where θ2,1 < θ2,2 < θ2,3, ..., < θ2,s2 . Finally, Player Θp picks up in the θp,1th,
θp,2th, θp,3th,..., and θp,spth rounds where θp,1 < θp,2 < θp,3, ..., < θp,sp . The first player to draw a red card
loses the game, and the game then ends. Here, we assume that

∪p
v=1{θv,t, t = 1, 2, ..., sv} = {1, 2, 3, ..., n}

and {θv,t, t = 1, 2, ..., sv} ∩ {θw,t, t = 1, 2, ..., sw} = ∅ for any natural numbers v, w such that v ̸= w. This
condition guarantees that only one player plays in each round.

Definition 5. We denote by Ug(p, n,m, v) and fg(p, n,m, v) the number of combinations of positions of
cards and the probability that Player Θv loses the game of Definition 4. Since Definition 4 does not contain
a variable s, Ug(p, n,m, v) and f(p, n,m, v) do not contain s.

Theorem 1. For natural numbers p, n,m, s, v such that n ≤ m and v ≤ s, Ug(p, n,m, v) = Ug(p, n −
1,m, v) + Ug(p, n− 1,m− 1, v).

Theorem 2. {fg(p, n,m, s, v) : m ≤ n, n = 1, 2, ...} has a pattern similar to Pascal’s triangle.

Proof. Since fg(p, n,m, s, v) = Ug(p, n,m, v)/
(
n
m

)
, this arises directly from Theorem 1 and the properties of

nCm.

We generalize the sequence bn and define Bp,s(n), n = 1, 2, 3, ... in Definition 6.

Definition 6. Let Bp,s(n) =
∑⌊n−1

2 ⌋
k=0 U(p, n− k, k + 1, s, 1).

Theorem 3.

Bp,s(n) = Bp,s(n− 1) +Bp,s(n− 2) +

{
1 (1 ≤ n ≤ s (mod ps))

0 (n = 0 or n ≥ s+ 1 (mod ps)) .
(1.1)

Here we compare the Fibonacci sequence F (n) and Bp,s(n).
(1) F (n) is {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610}.
(2) B3,1(n) is {1, 1, 2, 4, 6, 10, 17, 27, 44, 72, 116, 188, 305, 493, 798}.
(3) B4,1(n) is {1, 1, 2, 3, 6, 9, 15, 24, 40, 64, 104, 168, 273, 441, 714}.
(4) B2,2(n) is {1, 2, 3, 5, 9, 15, 24, 39, 64, 104, 168, 272, 441, 714, 1155 }.
(5) B3,2(n) is {1, 2, 3, 5, 8, 13, 22, 36, 58, 94, 152, 246, 399, 646, 1045 }.

B3,1(n) = ⌊(F (n + 2)/2)⌋. (See A052952 of [2].) B2,2(n) = ⌊((1 +
√

5)/2)
n+3

)/5⌋. (See A097083 of [2].) It

seems that B2,2(n) + (1 + in + (−1)n + (−i)n)/4 = B4,1(n+ 1). B3,2(n) is ⌊F (n+4)
4 ⌋. (See A097083 of [2].)

Here, we study a further generalization of the previous games. For simplicity, we assume that the number
of players p who participate in the game is 2.

Definition 7. Here, the rules of the game are the same as the rules of Definition 1 except that p = 2 and
the first player to collect two red cards loses the game.
We denote by U2(n,m) the number of combinations of positions of cards for which the first player loses this
game.

Theorem 4. U2(n,m) =
∑⌊n−m+1

2 ⌋
k=1 k(n−2k−1Cm−2) +

∑⌊n−m+2
2 ⌋

k=1 k2(n−2k−1Cm−3).

Theorem 5.
U2(n,m) + U2(n,m+ 1) = U2(n+ 1,m+ 1). (1.2)
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1. Corner the Two Rooks 1: a Two-Dimensional Maya Game

Here, we introduce the impartial game of “Corner the Two Rooks”, a variant of the classical game of “Corner
the Queen” which was studied in [1]. Instead of the queen used in Wythoff ’s game of nim, we use the two
rooks of chess. This game can be considered as a two-dimensional Maya game. The set of P positions and the
set of N positions can be described using a nim sum, but the mathematical structure of this game is different
from that of traditional nim. The nim sum of some P positions are positive, and the nim sum of some N
positions are zero. Next, we introduce a variant of “Corner the Two Rooks” that can be considered as a
two-dimensional silver dollar game. Although the authors could not find a formula for P positions, they prove
that this two-dimensional silver dollar game is mathematically the same as a variant of a two-dimensional
Maya game. Let Z≥0 be the set of non-negative integers. Let us break with chess traditions here and denote
fields on the chessboard by pairs of numbers. The field in the upper left corner is denoted by (0, 0) and the
others are denoted according to a Cartesian scheme: field (x, y) denotes x fields to the right followed by y
fields downward (see Figure 1).

Definition 1. (i) We define “Corner the Two Rooks”. Two rooks are placed on a chessboard of unbounded
size, and two players take turns choosing one of the rooks and moving it. Rooks are to be moved to the left
or upward vertically as far as desired. A rook may jump over another rook but not onto another. The first
player who cannot make a valid move loses.
(ii) By (x, y, z, w) we denote the positions of the two rooks, where (x, y) is the position of one rook and (z, w)
is the position of the other rook.
(iii) Let E = {(0, 0, 1, 0), (0, 0, 0, 1), (1, 0, 0, 0), (0, 1, 0, 0)}, which consists of the end positions from which a
rook cannot move to another position.

Remark 1. (i) By Definition 1, there is no difference between the two rooks, and hence the position (a, b, c, d)
is the same as (c, d, a, b).
(ii) By Definition 1, any rule of the game is symmetric with respect to x and y for any position (x, y) of a
rook. Therefore, a proof for the position (x, y, z, w) is sufficient proof of the same for (y, x, w, z).
(iii) By Definition 1, two rooks should not be at the same position, i.e., (x, y) ̸= (z, w) for any position
(x, y, z, w).

Figure 1: Definition
of coordinates Figure 2: P1

Figure 3: N0 Figure 4: N0

Definition 2. We define move((x, y, z, w)) of “Corner the Two Rooks”. move((x, y, z, w)) is the set of all
positions that can be reached from (x, y, z, w). For any (x, y, z, w) ̸∈ E , let move((x, y, z, w)) = {(s, y, z, w) :



0 ≤ s < x and s ∈ Z≥0} ∪ {(x, t, z, w) : 0 ≤ t < y and t ∈ Z≥0} ∪ {(x, y, u, w) : 0 ≤ u < z and u ∈
Z≥0} ∪ {(x, y, z, v) : 0 ≤ v < w and v ∈ Z≥0} − {(x, y, x, y), (z, w, z, w)}.

Remark 2. In Definition 2, move((x, y, z, w)) does not contain {(x, y, x, y), (z, w, z, w)} since a rook should
not jump onto another rook.

As “Corner the Two Rooks” is an impartial game without draws, there are only two outcome classes:

Definition 3. (a) N positions, from which the next player can force a win as long as he plays correctly at
every stage.
(b) P positions, from which the previous player (the player who will play after the next player) can force a
win as long as he plays correctly at every stage.

For the detailed theory of combinatorial games, see [2].

Definition 4. For x, y, z ∈ Z≥0, we let

P1 = {(2n,m, 2n+ 1,m) : n,m ∈ Z≥0} ∪ {(2n+ 1,m, 2n,m) : n,m ∈ Z≥0}
∪ {(n, 2m+ 1, n, 2m) : n,m ∈ Z≥0} ∪ {(n, 2m,n, 2m+ 1) : n,m ∈ Z≥0}, (1.1)

N0 = {(2n, 2m, 2n+ 1, 2m+ 1) : n,m ∈ Z≥0} ∪ {(2n+ 1, 2m+ 1, 2n, 2m) : n,m ∈ Z≥0}
∪ {(2n+ 1, 2m, 2n, 2m+ 1) : n,m ∈ Z≥0} ∪ {(2n, 2m+ 1, 2n+ 1, 2m) : n,m ∈ Z≥0}, (1.2)

P = ({(x, y, z, w) : x⊕ y ⊕ z ⊕ w = 0 and x, y, z, w ∈ Z≥0} ∪ P1) −N0 (1.3)

and

N = {(x, y, z, w) : x⊕ y ⊕ z ⊕ w ̸= 0 and x, y, z, w ∈ Z≥0} ∪ N0 − P1. (1.4)

Example 1. For the example of elements belonging to the set P1, see Figure 2. Figures 3 and 4 present
examples of elements of the set N0.

Theorem 1. P and N are the sets of P positions and N positions, respectively.

Remark 3. By Theorem 1, a two-dimensional Maya game has a simple formula for P positions when two
rooks are used. If we use three rooks, there seems to be no simple formula for P positions.

2. Corner the Two Rooks 2: a Two-Dimensional Silver Dollar Game

Here we introduce the impartial game of “Corner the Two Rooks 2”, which is considered to be a two-
dimensional silver dollar game.

Definition 5. We define “Corner the Two Rooks 2”. The rules are the same as the rules of the game of
Definition 1 except that a rook cannot jump over another rook.

Next, we introduce a new game that is a variant of the game in Definition 1.

Definition 6. We define “Corner the Two Rooks 3”. The rules are the same as in Definition 1 except for
the following rules (i) and (ii):
(i) If Rook A is in the position (x, y) and Rook B is in the position (x, y + 1), then Rook B cannot move to
the position (x, y − 1).
(ii) If Rook A is in the position (x, y) and Rook B is in the position (x+ 1, y), then Rook B cannot move to
the position (x− 1, y).

Lemma 1. The set of P positions of the game of Definition 5 is the same as the set of P positions of the
game of Definition 6.

Remark 4. The authors have not discovered any formula for P positions of the game of Definition 5.
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Extended Abstract  

To find out space-fillers of arbitrary n-dimensional hyperspace, there exist two approaches; (a) 

polytope first and (b) lattice first. The latter provides us broad and profound geometrical problems 

more than the former. Here, we will follow the latter. Among infinite reflection groups of Euclidean 

n-space An, Bn, Cn, Dn, E6, E7, E8, F4 and G2, their fundamental regions are orthogonal simplices 

except An. In contrast, the fundamental region for An is isohedral simplex. For examples, the 

quadri-rectangular tetrahedron of Hill belongs to C3 (Table 1-1), the isosceles tetrahedron of 

Sommerville to A3 and equilateral triangle to A2 (Table 1-2). 

 

Sommerville tetrahedron, a 3-dimensional example of An, is composed of 4 congruent faces whose 

edge length are 2, √3 𝑎𝑛𝑑 √3. In 3-space, it splits into 4 equal Hill tetrahedra (Figure 1-1). But, 

generally, such a split-property is not held in hyperspaces. Sommerville tetrahedron is a 

self-replicative space-filler, i.e., reptile, and is well-known to embed into the prism with equilateral 

triangular base 3-periodically. Simultaneously its faces and edges embed respectively into the lateral 

surface of the prism 2-periodically and the ridge of the prism 1-periodically (Figure 1-2). Such 

multiple-duty properties are held in infinite An hyperspace partition. 

 

Following [1, chapter 21, p. 462], we constructed space-filling isohedral n-simplex (n-Sommerville 

simplex abbreviated to Δ n). Its facet, (n-2)-face, (n-3)-face and regular n-simplex are also 

abbreviated to Fn, Gn, Hn and αn. Fn, Gn and Hn are not isohedral simplices but space-fillers. In Table 

2 and 3, notice that the shortest edge length is √𝑛 , not a unit. After laborious calculation of their 

metric without computers, we can derive new embedding-properties of Δn as follows; At least in 

some direction, it is possible to 

(1) embed Δn into Δn-1 prism, 

(2) embed Fn into Fn-1 prism, 

(3) embed Gn into Gn-1 prism. 

(4) embed Hn into Hn-1 prism, and, 

(5) k-face of Δn is asymptotically close to the fundamental simplex for Ck, when n→ ∞. 

 

By applying these properties to 3-space, we can construct infinite family of tetrahedral space-fillers, 

embedding by different 2 ways into the prisms with equilateral or isosceles triangular bases (Figure 

2). Nowadays, the determination of finite and infinite reflection groups has been completed [2-4].  

However, even for the mathematicians、it is not easy to imagine its results and conclusions 

concretely.  For such reasons, to visualize the above-mentioned models is worthful. In this talk, not 

only the infinite An hyperspace partition is shown but its available applications for the 3D-puzzles 

are presented. 
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Table 1-1: crystallographic Cn infinite reflection groups  Figure 1-1: Hill and Sommerville  

 

 

 

 

 

 

 

 

 

 

 

 

Table 1-2: crystallographic An infinite reflection groups 

 

Figure 1-2: 3-periodic Δ3 embedding into Δ2-prism 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: scaling of fundamental simplex for An 

Figure 2:  

two-way F4 embedding into F3-prism (left) 

 and Δ2-prism (right) 

 

 

 

 

 

 

 

 

 

Table 3: metric of Δn and 𝛂n 



The Stable Roommates Problem with Unranked Entries

Hiroaki Suto1,∗ Aleksandar Shurbevski2 Hiroshi Nagamochi2

The stable roommates problem (SR) and its exten-
sions are one of the most well-studied problems of the
area of matching under preferences [4]. Given a set of
an even number N of participants, each of which has
ranked all of the others in a strict order of preference,
the SR asks to determine pairs of participants such that
each participant is matched in a pair, and there do not
exist two participants that are not matched with each
other, yet prefer each other to their assigned partners.
Given a matching M , a pair of unmatched participants
that prefer each other to their partners matched by M
is said to be a blocking pair of M , and a matching that
has no blocking pair is said to be stable.

Among the various extensions of the SR the most
common ones are the SR with incomplete preference
lists (SRI), where “acceptable” pairs are limited by
only allowing participants that have included each
other in their preference lists to be matched together;
and the SR with partially ordered preference lists
(SRP), which introduces “indifference” in participants’
preferences. In the context of indifference, more than
one definition of stability are possible [3]:
- A matching is called weakly stable if there is no pair of
unmatched participants that strictly prefer each other
to their matched partners,
- A matching is called super-stable if no two unmatched
participants prefer each other to their matched part-
ners, or are indifferent between each other and their
respective matched partners.

There exist linear time algorithms for the SR and
the SRI which give a stable matching or correctly de-
termine that none exists [2]. While the problem of
finding a super-stable matching for an instance of the
SRP (or determining that none exists) is solvable in
polynomial time, the equivalent problem is NP-hard
under weak stability [3]. Henceforth, we focus on weak
stability and omit the quantifier “weak”.

In light of the NP-hardness results from introducing
indifference in the preference lists of the SR, we restrict
the notion of indifference and introduce unranked en-
tries, such that a participant is indifferent between an
unranked and any other entry in her preference list. A
pair of participants u and v such that u is unranked
in v’s preference list will never become a blocking pair
since v is indifferent between u and any other partic-
ipant in v’s preference list. Likewise, if u and v are
matched in a matching M , then no pair including v
can become a blocking pair to M . We call this prob-
lem SRU, for stable roommates problem with unranked

1Toyota Motor Corporation, suto.hiroaki@gmail.com
2Kyoto University, {shurbevski,nag}@amp.i.kyoto-u.ac.jp
∗This work was done while the author was a graduate student

at Kyoto University

entries.

Theorem 1. The SRU is NP-complete, even when
- all pairs are acceptable,
- each participant has two unranked entries in her pref-
erence list, or is an unranked entry of three other par-
ticipants, and
- each participant does not have unranked entries, or is
herself not unranked for any of the other participants.

Proof sketch. We model an instance of the SRU by
a bidirected graph G = (V,E) where the vertex set V
represents the set of participants, and the edge set E
represents the set of acceptable pairs such that for a
participant v ∈ V the set of edges E+(v) with v as a
tail gives the preference list of v. Edges are weighted
by a function ω : E → {1, 2, . . . , |V |} ∪ {∗} such that
for an unranked entry u on v’s preference list, for the
directed edge e = (v, u) it holds that ω(e) = ∗, and for
two edges e1 = (v, u1) and e2 = (v, u2), ω(e1) < ω(e2)
means that v prefers u1 to u2. Note that according
to our model of the SRU, for a participant v and two
edges e1, e2 ∈ E+(v), ω(e1) = ω(e2) holds if and only if
ω(e1) = ω(e2) = ∗. It should be obvious how to relate
the notions of matching and stability in terms of finding
a “stable” matching as a set of pairwise non-incident
edges in the graph G under the weight function ω. Let
E∗ ⊆ E denote the set of unranked directed edges. A
base triangle is defined to be a set {a1, a2, a3} of three
vertices such that
- {ω(e) | e ∈ E+(a2)} = {ω(e) | e ∈ E+(a3)} =
{1, 2, . . . , N − 1},
- E+

∗ (a1) = {(a1, bi) | i = 2, 3, . . . , k} for some positive
integer k,
- {ω(e) | e ∈ E+(a1) − E∗} = {4, 5, . . . , N − k − 1},
- ω(a1, a2) = ω(a2, a1) = ω(a3, a2) = 2,
- ω(a1, b1) = ω(a2, a3) = ω(a3, a1) = 1, and
- ω(a1, a3) = 3,
as illustarted in Fig. 1. We call the vertex a1 the at-
taching vertex of the base triangle {a2, a2, a3}. Any
stable matching in (G,ω) must contain the edge a2a3
and one of the edges a1bi, i = 1, 2, . . . , k.

1

1

1

3,4,...,N-1

*

2
2

2
. 
. 
.

*

}. . .}3,4,...,N-1

4,5,...,N-k-1. 
. 
.
}

a1

a2 a3

bkb1 b2

1,2,...,N-1
. 
. 
. }. . .

3

Figure 1: A base triangle {a1, a2, a3}, where the weight
ω is indicated by a number next to each edge, and
dashed lines indicate unranked edges.
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Figure 2: Illustration of an instance (GI , ω) reduced from a 3SAT instance I = (X = {xi | i = 1, 2, . . . , n}, C =
{cj = {ℓj,1, ℓj,2, ℓj,3} | j = 1, 2, . . . ,m}), where N = |V (GI)| is equal to 8n+12m, dashed lines indicate unranked
edges, and for a literal ℓ, f(ℓ) stands for the number of clauses in C containing this literal.

As the SRU is trivially in NP, we show its NP-
hardness by a reduction from the well-known 3SAT [1]:
Instance: A set C of m clauses over a set X of n
boolean variables such that each clause c ∈ C has ex-
actly three literals.
Question: Is there a truth assignment for X that sat-
isfies all the clauses in C?

Given an instance I = (X = {xi | i =
1, 2, . . . , n}, C = {cj = {ℓj,1, ℓj,2, ℓj,3} | j =
1, 2, . . . ,m}) of 3SAT, we will construct an SRU in-
stance (GI , ω) with a complete digraph on N = 8n +
12m vertices which consists of
- n variable gadgets, that is, 8-vertex graphs
g(x1), g(x2), . . . , g(xn);
- m clause gadgets, that is, 12-vertex graphs
g(c1), g(c2), . . . , g(cm); and
- the set of edges between these gadgets,
as illustrated in Fig. 2. The gadgets and edges between
them are defined as follows.
• For each variable xi ∈ X, define g(xi) to be a graph
with eight vertices that consists of two base triangles
s1i and s2i and two vertices, named xi and xi such that,
for h = 1 (resp., h = 2), the attaching vertex uhi of the
base triangle shi has exactly one unranked edge (u1i , xi)
(resp., (u2i , xi)) in E+(uhi ).
• For each clause cj = {ℓj,1, ℓj,2, ℓj,3} ∈ C, define g(ci)
to be a graph with 12 vertices that consisits of three
base triangles, t1j , t2j , and t3j , and three vertices, named
ℓj,1, ℓj,2, and ℓj,3, such that, for each h = 1, 2, 3, the
attaching vertex vhj of the base triangle thj has exactly

two unranked edges, (vhj , ℓj,2) and (vhj , ℓj,3) in E+(vhj ).

It can be shown that with a proper choice of the
edge weight function ω, the graph (GI , ω) has a stable
matching if and only if the 3SAT instance I = (X,C)
has a satisfiable assignment.

On the other hand, given an SRU instance with m
acceptable pairs and k unranked entries in total, we
can devise an O(2km)-time algorithm to find a stable
matching or determine that none exists. This algo-
rithm is based on an enumeration procedure which for
each of the O(2k) subsets of pairs including an un-
ranked entry checks if there exists a stable matching
containing that subset by applying the O(m)-time al-
gorithm due to Gusfield and Irving [2] for the SRI.

It is an interesting future research direction to inves-
tigate the nature of SR instances where indifference in
participants’ preferences are further restricted, and in
particular, determine if there exists a particular class
of SRU instances that are solvable in polynomial time.
It seems possible that the SRU where unranked entries
form a matching in the corresponding graph can be
solved in polynomial time.
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An efficient algorithm for the stable marriage problem
with short incomplete lists under social stability

KENT KOIDE ∗ TAKAHITO KUNO † YOSHIO SANO ‡

1 Introduction
The stable marriage problem was first considered by Gale and Shapley [5] in 1962, and several
variants and extensions of the stable marriage problem have been studied (see [10]). The problem of
finding the maximum size of a socially stable matching in an instance of the stable marriage problem
with incomplete lists under social stability is called MAX SMISS, which is an NP-hard problem.
The problem MAX SMISS with the condition that the length of the preference list of each man is
at most two is called (2,∞)-MAX SMISS. Askalidis et al. [2] gave an algorithm for solving (2,∞)-
MAX SMISS with time complexity O(n

3
2 logn). In this paper, we improve the time complexity and

give an algorithm for solving (2,∞)-MAX SMISS with time complexity O(n
3
2 ).

2 Preliminaries
In this section, we give some definitions and terminologies used in this paper. An instance of SMI
(Stable Marriage with Incomplete lists) is a tuple I = (U,W,{≻p}p∈U∪W ) consisting of a set U of
men, a set W of women, and each person’s preference list which is a linear order on a subset of the
opposite set representing his/her preference, i.e., ≻m is an ordering of women in a subset Wm of W
for each man m ∈ M and ≻w is an ordering of men in a subset Mw of M for each woman w ∈ W .
We assume that U and W are disjoint and that U and W have the same cardinality n. The length of
a preference list is the number of persons on it. For m ∈U and w ∈W , we say that m is acceptable
to w if m ∈Uw and that w is acceptable to m if w ∈Wm. A pair (m,w) is said to be acceptable if m
and w are acceptable to each other. Let A denote the set of all acceptable pairs in an instance I, i.e.,
A = {(m,w) ∈U ×W | m ∈Uw,w ∈Wm}. We assume that w ∈W is acceptable to m ∈U if and only
if m is acceptable to w since, otherwise, (m,w) can be neither matched nor a blocking pair for any
stable matching. Let M(⊆ A) be a matching on the bipartite graph (U,W ;A). Let M(p) denote the
partner of a person p in a matching M. Note that M(m) = w if and only if M(w) = m, (m,w) ∈ M.
A single person in a matching M is a person who have no partner in M. Let S ⊆ U ∪W denote
the set of single persons in M. A blocking pair for a matching M in an instance I of SMI is a pair
(m,w) ∈ A\M which satisfies one of the following four conditions: (i) w ≻m M(m) and m ≻w M(w);
(ii) w ≻m M(m) and w ∈ S; (iii) m ∈ S and m ≻w M(w); (iv) m ∈ S and w ∈ S. A matching M is called
a stable matching if there is no blocking pair for M.

An instance of SMISS (Stable Marriage with Incomplete lists under Social Stability) is a pair
(I,G) of an instance I of SMI and a social network graph G = (U ∪W,E). A social blocking pair for
a matching M in an instance (I,G) of SMISS is a pair (m,w) such that (m,w) is a blocking pair for
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M in I and that {m,w} ∈ E. A matching M is called a socially stable matching if there is no social
blocking pair for M. (Note that socially stable matchings are also called locally stable matchings
in [4] and [9].) Given an instance (I,G) of SMISS, the problem of maximizing the cardinality of a
socially stable matching M is called MAX SMISS. The problem MAX SMISS is known to be an
NP-hard problem. The problem MAX SMISS with the condition that the length of the preference
list of each man is at most two is called (2,∞)-MAX SMISS, and is solved in polynomial time.

Theorem 1 ([2]). The problem (2,∞)-MAX SMISS is solvable in O(n
3
2 logn).

3 Main Result
In this section, we give an algorithm for solving (2,∞)-MAX SMISS with time complexity O(n

3
2 ).

The time complexity of the algorithm given by Askalidis et al. [2] is dominated by a step of
finding a minimum weight maximum matching in a weighted bipartite graph. The idea for improving
the time complexity is as follows. Instead of finding a minimum weight maximum matching, we
find a maximum matching on an unweighted bipartite graph in our algorithm. Then we make the
obtained matching into a socially stable matching by using a method proposed in Iwama et al. [8].
The following is our main result.

Theorem 2. The problem (2,∞)-MAX SMISS is solvable in O(n
3
2 ).
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Multi-agent Cooperative Patrolling
of Designated Points on Graphs

Akitoshi Kawamura Hideaki Noshiro

1 The problem
In patrolling problems, one or more agents move around a given terrain to
defend or supervise it by visiting designated places in the terrain with sufficient
frequency [2].

Here we consider the problem where the terrain is represented by an undi-
rected graph with specified edge lengths, on which agents move with speed 1 or
less. Each vertex has an idle time, and is said to be guarded by a set of moving
agents if it is visited at least once in every time period of that length. We are
interested in deciding whether there is a schedule for a given number of agents
to guard all vertices.

Since the problem for general graphs is NP-hard even for a single agent,
we consider the following special graphs: lines (paths), stars and unit-length
cliques. A star is a graph where there is a special vertex called the centre, which
does not need to be guarded, and all other vertices are adjacent only to the
centre. A unit-length clique is a complete graph with all edges equal in length.
Since all that matters for patrolling is the time it takes to travel between each
pair of nodes, a unit-length clique can be regarded as a special case of a star
with all edges equal in length.

2 Previous work with no cooperation
Coene et al. [1] studied a slightly different version of the problem which require
that each vertex be guarded already by one agent alone. In this setting, they
showed polynomial time algorithms and NP-hardness results for some graph
classes. We remove this requirement and study the problem where a vertex can
be guarded by several agents in cooperation.

The two versions of the problem come to the same thing when there is only
one agent. For this setting, Coene et al. [1] gave polynomial time algorithms
for trees with uniform idle times and for lines, and proved that the problem is
NP-hard for stars with arbitrary idle times. Thus, our study of the cooperating
agents will focus on the cases where the problem is not already known to be
NP-hard for single agent, that is, for (1) lines, (2) unit-length cliques, (3) stars
with uniform idle times.

1
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Figure 1: Classes of graphs and the complexity of the patrolling problem. The
left figure is for a single agent and the right figure is for multiple agents in
cooperation. The left side of the slash represents the case of uniform idle times,
and the right side represents the case of arbitrary idle times.

3 Uniform idle time
We first considered the case where all vertices have the same idle time. We
proved that our problem can be solved in polynomial time both for lines and for
stars, because in these cases the situation is simplified in the following way: For
lines, we showed that if patrolling is possible at all, then there is a patrolling
schedule where each vertex is guarded by one agent alone. For stars, there is a
schedule where the only form of cooperation is for several agents to periodically
visit a subset of vertices in the same order at a certain time interval.

For these graphs, we can also efficiently solve the optimization problem where
each vertex has a profit and we want to maximize the sum of the profit of the
guarded vertices.

4 Arbitrary idle times
On the other hand, because it was difficult to determine the complexity for
distinct idle times, we considered another variant of the problem where, instead
of idle times, the exact times at which each point must be visited is specified.

For this setting, we found an algorithm that greedily determines the motions
of the agents in lines (Figure 1-*2). Furthermore, we showed the NP-hardness
of the optimization problem mentioned at the end of section 3 for unit-length
cliques (Figure 1-*1) by a reduction from the maximum independent set prob-
lem.
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K3 edge cover in a wide sense
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In this study, we consider a problem for finding the minimum number of 3-cliques (K3s)
that covers all edges of a given G = (V,E). Covering one edge by more than one 3-cliques is
allowed. Moreover, in this problem, we allow “spilling-out,” i.e., a set of three vertices {x, y, z}
can be covered by a 3-clique even if the induced subgraph of them is not a clique. We call this
problem K3 edge cover problem in a wide sense. This problem is an extension of the schoolgirl
problem, finite projective planes, and experimental designs. Allowing spilling-out is useful for
some applications: E.g., when we want to compare n items through some tries of experiments,
in which at most three items can be compared simultaneously, and pairs of items that must
be compared are given by a graph, finding the minimum number of tries is formalized as this
problem. In the known researches, there are many results that considered problems for covering
vertices or edges by minimum number of cliques [1, 2]. However, there is no theoretical result
that considers spilling-out.

We obtain the following results:

1. The problem is NP-hard even if graphs are restricted to planar, cubic, and {C4, C5, bowtie}-
free in a sense of subgraphs (i.e., not restricted to induced ones), where a bowtie is a graph
isomorphic to a graph consisting of two 3-cliques sharing one vertex.

2. For the problem with a parameter k, which is the number of 3-cliques in G, there is an
O(2km)-time algorithm.

3. For the problem, if the maximum degree is bounded by an integer d and a tree decompo-
sition with the tree-width t is given, there is an O(2t

2+td2t+2t2n)-time algorithm.
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On the Complexity of Finding a Largest

Common Subtree of Trees (Extended Abstract)
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The largest common subgraph problem (LCSG) is defined as follows.

LCSG (Largest Common Subgraph of Graphs)� �
Instance: Graphs G1, G2, . . . , GN .
Question: Find a connected graph with the maximum number of edges
that is a subgraph of all the Gis.� �

It has been known that LCSG has applications in various areas such as pattern
recognition, bioinformatics, and cheminformatics [2, 5, 9]. LCSG is NP-hard
even if N = 2, since it is a natural generalization of the subgraph isomorphism
problem, which is well-known to be NP-hard [3].

We denote the vertex set and the edge set of a graph G by V (G) and E(G),
respectively. Let X = (X1, X2, . . . , Xr) be a sequence of subsets of V (G). The
width of X is max1≤i≤r |Xi| − 1. X is called a path-decomposition of G if the
following conditions are satisfied:

(i)
∪

1≤i≤rXi = V (G);

(ii) for any edge (u, v) ∈ E(G), there exists an i such that u, v ∈ Xi;

(iii) for all l, m, and n with 1 ≤ l ≤ m ≤ n ≤ r, Xl ∩Xn ⊆ Xm.

The pathwidth of G, denoted by pw(G), is the minimum width over all path-
decompositions of G [8].

Since the subgraph isomorphism problem is NP-hard for graphs of path-
width two [6], LCSG is NP-hard even if N = 2 and pw(G1) = pw(G2) = 2. We
first show the following.

Theorem 1. LCSG can be solved in polynomial time if N = O(1) and pw(Gi) =
1 for 1 ≤ i ≤ N .

The largest common subtree problem (LCST) is a subproblem of LCSG,
and defined as follows.

LCST (Largest Common Subtree of Trees)� �
Instance: Trees T1, T2, . . . , TN .
Question: Find a tree with the maximum number of edges that is a
subtree of all the Tis.� �
LCST can be solved in polynomial time if N = 2, pioneered by Edmonds

and Matula in the 1960s [7], and faster algorithms have been proposed in the
literature [1, 4]. Akutsu showed that LCST is NP-hard if N = 3 [1]. It is
implicit in his proof that LCST is NP-hard even if N = 3 and the pathwidth
of every input tree is three. We next show the following.

∗Presenter
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Theorem 2. LCST is NP-hard even if N = 3 and pw(Ti) = 2 for 1 ≤ i ≤
3.

We also show the following.

Theorem 3. LCST is NP-hard even if pw(Ti) = 1 for 1 ≤ i ≤ N .

It should be noted that Theorems 2 and 3 complement Theorem 1.
It is shown in [1] that LCST can be solved in polynomial time if N = O(1)

and ∆(Ti) = O(1) for 1 ≤ i ≤ N , where ∆(G) is the maximum degree of a
vertex of a graph G. We finally show the following.

Theorem 4. LCST is NP-hard even if pw(Ti) = 1 and ∆(Ti) = 3 for 1 ≤ i ≤
N .
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Abstract

Spanning tree is a fundamental combinatorial object in many research areas, and its variants with
some constraints also have been well studied. This paper studies a variant having a parity condition.
The odd depth tree problem is a problem to decide whether a given undirected graph has a spanning
tree such that every leaf has an odd distance from a prescribed root vertex. For bipartite graphs, we
give a Hall-type characterization of graphs having an odd depth tree, and based on the characterization
we give a polynomial time algorithm to construct an odd depth tree. We also extend the algorithm to
a weighted version. On the other hand, we show the problem is NP-complete for non-bipartite graphs.
We also deal with directed graphs, for which we give some results similar to undirected case.

1 Introduction

A spanning tree of a graph G is a spanning connected subgraph of G having no cycles. Spanning tree has
been one of the topics that is payed most attentions in various research areas such as graph theory, matroid
theory, and game theory for the theoretical point of view, or network designs, distributed algorithms, and
data structures as application areas.

While it is easy to find a spanning tree (of minimum weight) in a graph, there are many cases it becomes
intractable when some constraints are given. For example, finding a spanning tree having minimum or
maximum number of leaves, bounded degrees, and bounded diameter, are all known to be NP-hard.

Meanwhile, there are plenty of graph problems with parity constraints studied; realizing plane graphs with
prescribed parity of degrees of vertices [1], subset feedback set problem with parity condition [2], multi-way
cut with parity constraint [3], etc. Signed graph is an example of a large topic concerning parity.

In this paper, we study the spanning tree problem with a parity condition. An odd depth tree is a spanning
tree such that every leaf has an odd distance from a specified root vertex. The Odd depth tree problem is
the problem to find an odd depth tree with respect to the root vertex in a given undirected graph.

Our results are as follows. For bipartite graphs, we show a Hall-type characterization of graphs having an
odd depth tree. We also give a polynomial time algorithm to construct an odd depth tree which is based on
the characterization, which is applicable for minimization version of the problem as well. For non-bipartite
graphs, we show the problem is NP-complete. We also deal with directed graphs, for which we obtain similar
results to the undirected case.

2 Main Results

Let G = (V,E) be an undirected graph and r ∈ V . A spanning tree T of G is an odd depth tree with respect
to r if every leaf of T (except r if it is a leaf) has an odd distance from r. The Odd depth tree problem is the
problem to find an odd depth tree with respect to r in a given undirected graph and a root vertex r. We
first consider bipartite graphs.
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Lemma 1. Let G = (U, V ;E) be a bipartite graph. Suppose r ∈ U . Then G has an odd depth tree with
respect to r if and only if

|N(X)| ≥ |X| + 1 (1)

holds for every X ⊆ U \ {r}, X ̸= ∅, where N(X) denotes the set of neighbors of vertices in X.

By Lemma 1, we obtain the following tractability result.

Theorem 2. The odd depth tree problem is solved in polynomial time for bipartite graphs.

For weighted version of the problem, we obtain the following result.

Theorem 3. Let G = (U, V ;E) be a bipartite graph and let r ∈ U and w : E → R≥0 be a nonnegative weight
on edges. An odd depth tree with respect to r of minimum weight is found in polynomial time.

For non-bipartite graphs, we obtain the following hardness result. The reduction is from CNF-SAT.

Theorem 4. Odd depth tree problem is NP-complete for two-connected non-bipartite graphs.

We also consider the problem for directed graphs (digraph for short). Let D = (V,A) be a digraph and
r ∈ V . An in-tree with root r is a directed tree such that every vertex except r has out-degree one, and r
has no outgoing arc. An in-tree T of D is an odd depth in-tree with respect to r if every leaf of T has an odd
distance from r. The odd depth in-tree problem is the problem to find an odd depth in-tree with respect to
r in a given digraph and a root vertex r.

Similar to the undirected case, we first consider bipartite graphs. The following lemma gives a charac-
terization of bipartite digraphs which contain odd depth in-trees.

Lemma 5. Let D = (U, V ;A) be a bipartite digraph which contains an in-tree with root r. Suppose r ∈ U .
Then D has an odd depth in-tree with respect to r if and only if there is a perfect matching M with respect
to U \ {r} consisting of arcs from V to U \ {r}, which satisfies the following:

(A) For every non-empty X ⊆ U \ {r}, there exists a vertex v ∈ N+(X) \M(X) such that N+(v) \X ̸= ∅,

where N+(X) denotes the set of vertices having incoming arcs from some member of X, and M(X) denotes
the set of vertices mated to some vertex in X in M .

For bipartite DAGs (digraphs having no directed cycles), we obtain a much simpler characterization.

Lemma 6. Let D = (U, V ;A) be a bipartite DAG which has an in-tree with root r. Suppose r ∈ U . Then
D has an odd depth tree with respect to r if and only if

|N−(X)| ≥ |X| (2)

holds for any X ⊆ U \ {r}, where N−(X) denotes the set of vertices having outgoing arcs to some member
of X.

The characterization of Lemma 6 implies the following tractability result.

Theorem 7. The odd depth in-tree problem is solved in polynomial time for bipartite DAGs.

For non-bipartite digraphs, we obtain the following hardness result.

Theorem 8. Odd depth in-tree problem is NP-complete for non-bipartite DAGs.
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Abstract. We show that counting Hamiltonian cycles on quartic 4-
vertex-connected planar graphs is #P -complete under many-one count-
ing (“weakly-parsimonious”) reductions, and that no Fully Polynomial-
time Randomized Approximation Scheme (FPRAS) can exist for this
integer counting problem unless NP = RP .

Discussion. Motivated by Tait’s observation that the Hamiltonicity of cubic
3-connected planar graphs (polyhedral graphs by Steinitz’s Theorem) would im-
ply the 4-color theorem [1], in 1931 Hassler Whitney proved that every pla-
nar triangulation having no separating triangles is Hamiltonian [2]. While a
non-Hamiltonian cubic 3-connected planar graph on 46 vertices was eventually
found by Tutte [3], Whitney’s proof nevertheless initiated a search for minimum
set of constraints necessary to ensure the Hamiltonicity of a class of graphs.
Tutte’s 1956 proof of the Hamiltonicity of 4-vertex-connected planar graphs
[4] was arguably a consequence of this program, and within a few decades, it
was established by Thomassen that 4-vertex-connected planar graphs were also
“Hamiltonian connected” [5] (i.e. that there will always exist some embedding of
a Hamiltonian path in an arbitrary 4-vertex-connected planar graph such that
the path’s endpoints lie on any specified pair of vertices), and that Hamilto-
nian circuits could be found in 4-vertex-connected planar graphs in linear time
[6]. From Garey, Johnson, and Tarjan’s proof of the NP -completeness of the
Hamiltonian cycle problem on cubic 3-connected planar graphs [7], and from
Meredith’s construction of a non-Hamiltonian quartic 4-vertex-connected graph
[8], it was moreover established that both 4-vertex-connectivity and planarity
were “near-minimal” criterion for ensuring Hamiltonicity and the algorithmi-
cally efficient discovery of Hamiltonian cycles.

With the hope of using Valiant’s class #P of integer counting problems [9] as a
means of obtaining a complexity theoretic metric beyond NP -completeness for
determining when vertex degree, connectivity, and planarity restrictions conspire
to allow efficient access to the set of Hamiltonian cycles in a graph, and noting
the 2003 proof by Lískiewicz, Ogihara, and Toda that counting Hamiltonian cy-
cles on cubic 2-connected planar graphs is #P -complete [10], we investigate the
complexity of counting Hamiltonian cycles on 4-vertex-connected planar graphs.
Here, we discovered that not only was the problem of counting Hamiltonian



2 Robert D. Barish and Akira Suyama

Out[522]= ⟹

P
er
fe
ct
M
a
tc
h
in
g
E
d
g
e

Single Block⟹

(z-4) Add. Blocks

Fig. 1. Let G be an arbitrary cubic 3-connected essentially-4-(edge,vertex)-connected
planar graph with n vertices. By Petersen’s Theorem we have that G contains an edge
set (e1, e2, ...) ∈ P corresponding to a perfect matching for the graph. If we substitute
all of the perfect matching edges in the manner shown, setting the number of “blocks” z
equal to n2, and call the resultant 4-vertex-connected planar graph H, then the number
of Hamiltonian cycles in G will be exactly equal to b (# Hamiltonian Cycles in H)

(16×(3∗2n2
+5n

2−1))
n/2 c.

cycles on 4-vertex-connected planar graphs #P -complete, but moreover, that
no Fully Polynomial-time Randomized Approximation Scheme (FPRAS) could
exist for the problem unless NP = RP . Our method of proof involves first
establishing NP -completeness and #P -completeness for the problems of de-
ciding the existence of and counting Hamiltonian cycles, respectively, on cubic
3-connected essentially-4-(edge,vertex)-connected planar graphs. We then pro-
ceed via a many-one counting (“weakly-parsimonious”) reduction from counting
Hamiltonian cycles in cubic 3-connected essentially-4-(edge,vertex)-connected
planar graphs to 4-vertex-connected planar graphs (see Fig. 1).
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Complexity of Benndorf’s “The Game”

Jason S. Ku∗ Mikhail Rudoy∗

“The Game” is the title of a neat cooperative card
game designed by Steffen Benndorf and published by
Nürnberger-Spielkarten-Verlag [1]. In this paper, we
describe The Game, provide a number of generaliza-
tions, and discuss the computational complexity of
winning them, provided a given input card distribu-
tion.

The Game requires players to cooperatively dis-
card all cards in a deck of 100 uniquely numbered
cards into a set of piles that follows certain rules. In
the original, cards placed on a given pile must be
either monotonically increasing or decreasing, with
the exception that any card exactly 10 away from the
top card in the pile may also be played. These rules
define a valid placement graph for each pile which
we call a transition graph. The players win if they
can place all the cards in turn onto piles in a way
that is consistent with each pile’s transition graph.

We consider a one-player version of The Game
that is offline, i.e., the order of the cards in the deck
is known. We will generalize this game for variable
deck size n, variable hand size h, variable play num-
ber p, with a variable number of discard piles k, each
having a transition graph that may be any general
directed graph. We show that if either the hand size
or the number of piles is non-constant, then deciding
whether one can win The Game is NP-Complete.

We begin with some definitions. A Card is a num-
ber in [1..n]; cards are unique. A Deck is a permuta-
tion on the cards from which we draw. The Hand is
a temporary storage in which we place cards drawn
from the Deck. Hand Size is the max number of
cards in the Hand. The Play Number is the min
number of cards that can leave the Hand per turn.
A Pile is a container into which we can place cards
from the Hand. A Pile Transition Graph is a graph
on vertices [0..n], with 0 referencing no card, and
vertex i corresponding to card i. Edge (i, j) says
that card j may be placed on top of card i.

Every turn, we remove at least or exactly the
Play Number of cards from the Hand and place
these cards one at a time onto piles on which they
can legally be placed. Then we replenish the Hand
to the Hand Size from the Deck. The Game ends
if no more actions can be made. The player wins if
every card is in a pile and the decision problem for
The Game is then: can the player win for a given
input? This decision problem is in NP, certified by
a play order.

∗MIT, {jasonku,mrudoy}@mit.edu

Theorem 1 The Game can be decided in polyno-
mial time if the hand size and the number of piles
are constant.

Proof. For a constant number of Piles and a con-
stant Hand Size, the game state graph is polyno-
mial in size O(nh+k+1), so we can easily determine
whether a path exists from the starting state to any
win state. Here state encodes the hand contents, the
top card of each pile, and the progress through the
deck. �

When either hand size or number of piles is not
constant, and Pile Transition Graphs are allowed to
encode general graphs provided as input, the prob-
lem becomes hard.

Theorem 2 The Game is NP-Complete when hand
size is a constant fraction of deck size, allowing gen-
eral transition graphs for one discard pile.

Proof. For one pile with a general directed transi-
tion graph and hand size that is a constant fraction
r of deck size (or part of the input), we can reduce
from Hamiltonian Path. We construct a transi-
tion graph as follows. Let the Hand Size be the size
n of the input graph, and fix the Deck size to n/r.
Let the transition graph on vertices [1..n/r] be our
Hamiltonian Path instance with vertex 1 the start
vertex and vertex n the end vertex. Add edge (0, 1)
and edge (i, i+ 1) for n ≤ i < n/r. Set the Deck to
be [1..n] in that order. Analysis is straightforward
and not detailed here. �

Theorem 3 The Game is NP-Complete for con-
stant hand size and play number, allowing general
transition graphs for many piles.

This can be proved via a chain of reductions
starting from the following NP-Complete problem
(from [2]):

[Swap or Not Reachability] Given permuta-
tions σ1, σ2, . . ., σk, and T on n elements such that
σi is a swap of some two elements and T is an arbi-
trary permutation, decide whether there exists a bit-

string b1b2 . . . bk such that σbk
k ◦σ

bk−1

k−1 ◦. . .◦σ
b2
2 ◦σ

b1
1 =

T .
We reduce this problem to the following more gen-

eral problem:
[DAG Path Cover] Given a DAG and a list of

pairs of vertices (si, ti), decide whether there exists
disjoint paths from each si to its corresponding ti
such that each vertex of the DAG exists in one of
the paths.
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Lemma 4 DAG Path Cover is NP-Complete.

Proof of this Lemma is omitted for brevity. We
then use this lemma to prove the preceding theorem:

Proof. Given a DAG Path Cover instance D,
with DAG G on m vertices requiring k paths, we
construct an instance I of The Game with hand size
h, play number p, k piles, and n = (h − p) + m + k
cards.

The deck is given in order from 1 to n. We call
cards {1, . . . , h−p} trash, cards {h−p+1, . . . ,m−k}
cool, and cards {m − k + 1, . . . ,m} sentinel. Our
strategy will be to construct a transition graph for
each pile, each containing G as a subgraph such that
the play order on pile i contains a path in G from si
to ti.

We construct a correspondence between cool cards
and vertices of G, such that if (u, v) is an edge, then
corresponding cards cu and cv satisfy cu < cv. This
is possible using any topological sort on G. In the
transition graph for every pile, we add an edge from
card cu to cv if (u, v) is an edge of G. For pile i, we
add an edge from the empty state 0 to the card cor-
responding to vertex si, and an edge from the card
corresponding to vertex ti to sentinal card m−k+ i.
Lastly, we form a directed chain through the trash
cards starting at sentinal card m in the transition
graph of pile k. By this construction, the trash cards
can only be played after the last card in the deck.

Given a solution to D consisting of paths Sp, we
construct a solution to I. We will play all non-trash
cards in order and then all the trash cards. Assuming
there are piles that can accept this order of cards,
this play order is possible given the deck and play
number. We now show that there always exists a
pile on to which we can place these cards. We place
cards on to piles as follows:

C1 For each cool card c corresponding to start ver-
tex si, we will place that card onto pile i. Pro-
vided the pile is empty, we will be able to place
this card.

C2 For each cool card c corresponding to non-start
vertex v, we will place c on to the card corre-
sponding to the previous vertex u along the path
containing v. Provided the card corresponding
to u is on the top of some pile, we will be able
to play c.

C3 For every sentinel card m− k + i, we will place
it onto the card corresponding to ti. Provided
the card corresponding to ti is on the top of pile
i.

C4 For every trash card c, we will place it on pile k
on top of the parent of c in the transition graph
of pile k.

Now we argue that the above placements are pos-
sible.

C1 No card in [C2], [C3], [C4] is placed on an empty
pile and no two cards in [C1] are placed onto the
same pile, so we can place cards in [C1].

C2 Because the cards corresponding to path Sj are
played in path order based on the topological
sort, no card in [C2] will be played before the
card it should be played on. Further, no two
cards are placed onto the same card, so we can
place cards in [C2]. Note that all cards corre-
sponding to vertices in path Sp are placed in
pile p by induction.

C3 Because cool cards are placed before sentinel
cards, no card in [C3] will be played before the
card it is played on. Since the card correspond-
ing to ti will be placed in pile i, we will place
the sentinel card m − k + i in the correct pile,
so we can place cards in [C3].

C4 Since card m is in [C3] and can be played, we
can play the trash cards in the order in which
they appear in the transition graph of pile k.

Thus we can play all cards, solving I. Given a
solution to I, we construct a solution to D. Consider
pile i. Card m−k+i can only be played on this pile,
and only immediately after the card corresponding
to ti. The card corresponding to si is the only card
that can be played onto pile i when it is empty. The
sequence of cards played on pile i starting with the
card corresponding to si and ending with the card
corresponding to ti will be a path in the transition
graph of pile i. The only transition in the transition
graph of pile i between cool cards and non-cool cards
is from ti, so this path is in G. No card can be placed
in two piles, so the paths are disjoint, and every card
must be placed, so the paths cover the vertices of G.
These paths comprise a solution to D.

Specifying play order and location can be de-
scribed in polynomial time, so the problem is in
NP. �

In our generalized models, we allow for transition
graphs to be general graphs, but the original game
uses only very particular transition graphs. If transi-
tion graphs are not part of the input and only depend
on the size of the deck, is The Game still NP-Hard?
We leave this question to future work.
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1. Introduction
In this paper, we treat a Japanese picking stone game called “Goishi Hiroi.” This game has a long history

so that we can find it in “Wakoku Chie Kurabe” written by Kanchusen Tagaya in 1727 [1]. Fig.1 is the page

introducing “Goishi Hiroi” in [1]. While [1] is a rare book, we scaned this figure from [2]. “Goishi Hiroi”

is a game to pick up all stones arranged on a lattice board in the following way: (1) pick up one stone and

choose a direction from four directions (up, down, left or right); (2) trace the lattice board from the previous

stone for the current direction until there is a stone, then you pick up the stone, and choose a new direction

from three directions (same, right or left of the current direction); and (3) continue (2) until there are no

stones. Note that once you picking up the stone, there are no stone any more, therefore if you come back

again there, you cannot change the direction at there.

In this paper, we consider the deterministic problem of “Goishi Hiroi,” say Goishi Hiroi. In the Goishi

Hiroi we are given an arrangement of stones. Then we determine whether there exists a way to pick up all

stones or not. For a stone arrangement S, we denote Goishi Hiroi for S as the instance of this problem

whose given arrangement of stones is S. While this problem permits multiple passes through vertex, this

problem is a variant of Hamilton path problem in a sense. In other words, this problem is a specific example

of Hamilton path problem. There is a related work about the Goishi Hiroi. Miyadera and Fukui give a

solution of Goishi Hiroi for Yatsuhashi Type (see Figs. 2 and 3) for each x = 4 and y ≥ 1 [4]. Note that

“Wakoku Chie Kurabe” [1] showed the solution only for Yatsuhashi Type with x = 4 and y = 5.

Fig. 1: The page introducing
“Goishi Hiroi” in [1].

y

x

Fig. 2: The stone arrangement of
Yatsuhashi Type.

Fig. 3: A solution of Yatsuhashi
Type with x = 4 and y = 6.

In this paper, we give both negative and positive results for the Goishi Hiroi. In Section 2, we show the

computational hardness of the Goishi Hiroi. In Section 3, we show that we can solve the Goishi Hiroi for

specific types of arrangements called Stairs Type and Yatsuhashi Type.

Due to page limitation, we omit proofs of some theorems.

2. Computational hardness
In this section, we prove that the Goishi Hiroi is NP-complete. We will construct a polynomial-time

reduction from well known NP-complete problem, Hamiltonian Path [3] to our problem. We emphasize

that our reduction is carefully designed so that each solution of the corresponding instance have the one-to-

one correspondence with each solution of a given instance of Hamiltonian Path. Therefore, our reduction

also proves that the counting variants and the another-solution-problem variants of the Goishi Hiroi are

#P-complete and ASP-complete, respectively. Note that the another-solution-problem variant of a problem

is defined as follows [5]: Given an instance of the problem and its solution s, then find a solution s′ of the

instance other than s if exists.



Theorem 1. The Goishi Hiroi and its counting and another-solution-problem variants are NP-complete,

#P-complete and ASP-complete, respectively.

3. Solvable cases
In the previous section, we show the computational hardness of the Goishi Hiroi. On the other hand, we

show that in some special cases, we can solve the Goishi Hiroi. We treat the case where given arrangements

are Stairs Type and Yatsuhashi Type.

First, we focus on the Goishi Hiroi for Stairs Type (See Fig. 4). We can immediately solve the small

cases; the Goishi Hiroi is Yes-instance for Stairs Type with n = 1 or n = 2; on the other hand, it is

No-instance solution for n = 3. In the following Theorem, we show that there is a solution for Yes-instance

for each n ≥ 4:

n

n

Fig. 4: The stone ar-
rangement of Stairs
Type.

Fig. 5: Stairs Type
with n = 4.

Fig. 6: Stairs Type
with n = 5.

k

Fig. 7: The solution
for the induction step
in Theorem 3.

Theorem 2. The Goishi Hiroi is Yes-instance if a given arrangement is Stairs Type with n ≥ 4.

Proof. We can show that the Goishi Hiroi is Yes-instance for Stairs Type with n = 4 and n = 5 as Figs. 5

and 6, respectively. In the other cases, we prove by induction. If there is a solution for n = k, then we can

construct the solution for n = k + 2, by extending the solution for n = k as Fig. 7. Since there are solutions

for n = 4 and n = 5, we have solution for each n ≥ 4.

Next we focus on the Goishi Hiroi for Yatsuhashi Type (see Fig. 2).

Theorem 3. The Goishi Hiroi for Yatsuhashi Type is solvable for each x, y ≥ 1.

Using this theorem, we can obtain the result of analysis for Yatsuhashi Type. The Goishi Hiroi for Yat-

suhashi Type has a solution as Table 1.

Table 1: The results of analysis for Yatsuhashi Type (Y: Yes-instance, N: No-instance).
y \ x 1 2 3 4 5 6 7+ odd 7+ even

1 Y
2 N Y N Y N Y N Y

3+ N Y N Y
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On the complexity of lattice puzzles

Yasuaki Kobayashi∗ Koki Suetsugu† Hideki Tsuiki†

1 Introduction

Lattice puzzle (Koshi puzzle, in Japanese) is a kind of assembly puzzles which is usually played on wooden
pieces (as in Figure 1-(a)), and the goal is to combine them into a lattice pattern as in Figure 1-(b). The
name of this puzzle may be originated from a woodwork, called chidori-koshi, which can be found in an old
book written in the 18th century [2]1, for example. Although the puzzle itself is not particularly complicated,
it is quite difficult to solve even when the number of pieces is small. Given this, it is natural to ask whether
the puzzle is difficult for computers. In this research, we consider simplified versions of this puzzle and clarify
the computational complexity of those.

(a) (b)

(c)

Figure 1: (a) Two pieces are combined at their slots. (b) An assembled lattice puzzle of eight pieces. (c)
Each piece has two types of slots, and the slots are on one side of the piece.

The puzzle considered in this extended abstract is as follows. We have a set of n pieces, called vertical
pieces, that are placed parallel to each other and another set of n pieces, called horizontal pieces, that are
placed perpendicular to vertical pieces. Each piece has n evenly spaced slots on one side, and each slot
is either a deep slot or a shallow slot as in Figure 1-(c). To combine them, we need to consider (1) the
arrangements of vertical/horizontal pieces and (2) the direction of each piece. The vertical (resp. horizontal)
arrangement is determined by a permutation on the set of vertical pieces (resp. the set of horizontal pieces)
and the direction is determined by rotating 180 degrees for each piece. Let us note that since slots are only on
one side of each piece, the direction of the rotation is uniquely determined. Therefore, there are n! ·n! ·2n ·2n
possibilities on the configurations of the pieces. Suppose we are given a configuration of the pieces. We say
that the lattice puzzle is solved in this configuration if for every 1 ≤ i, j ≤ n, the j-th slot of the i-th vertical
piece is matched to the i-th slot of the j-th horizontal piece, where two slots are matched to each other if
and only if one slot is deep and the other is shallow. The problem is, given n vertical pieces and n horizontal
pieces, deciding whether the puzzle can be solved or not. We study the computational complexity on three
variants of this puzzle.

∗Graduate School of Informatics, Kyoto University
†Graduate School of Human and Environmental Studies, Kyoto University
1The book can be found in http://www.wul.waseda.ac.jp/kotenseki/html/i16/i16_00875/index.html.
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2 Computational complexity

2.1 An easy case

Suppose here that we are given an arrangement of vertical pieces and that of horizontal pieces. The task is
to solve the puzzle by only rotating each piece.

Theorem 1. The problem of solving the lattice puzzle can be solved in polynomial time when we are only
allowed to rotate pieces.

The theorem is proved by showing that the instance can be reduced to an instance of the 2-SAT problem
with O(n2) variables. It is well-known that the 2-SAT problem can be solved in linear time.

2.2 A not-so-easy case

Suppose here that we are not allowed to rotate any pieces. The task is to solve the puzzle by only arranging
vertical pieces and horizontal pieces.

Theorem 2. The problem of solving the lattice puzzle is equivalent to the graph isomorphism problem on
bipartite graphs when we are only allowed to arrange pieces.

The proof goes as follows. We construct two bipartite graphs that have n vertices for one color class and
n vertices for the other color class. The construction can be done in polynomial time and reflects the relation
between pieces and the position of slots. We can show that our puzzle is solved if and only if the resulting
bipartite graphs are isomorphic to each other. Conversely, we can reduce the graph isomorphism problem on
bipartite graphs with 2n vertices, which is known to be GI-complete [3], to the problem of solving a lattice
puzzle of 2n pieces in polynomial time.

2.3 A hard case

In the original rule, two slots are matched to each other if exactly one of those is deep. Here, we relax the
rule of our puzzle: two slots are matched to each other if at least one of those is deep. We call this a relaxed
lattice puzzle.

Theorem 3. The problem of solving the relaxed lattice puzzle is NP-complete.

The theorem is given by showing a polynomial time reduction from the 3 SAT problem [1].

3 Conclusion

We have considered three variants of the lattice puzzle and clarified their computational complexities. How-
ever, it is still open for the original lattice puzzle.

Acknowledgements

We would like to thank Prof. Shuji Yamada for drawing the authors’ attention to the lattice puzzle and Prof.
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Matchstick Puzzles on a Grid

extended abstract
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1 Introduction

Matchstick puzzles are played worldwide by many
people from children to adults. Though they in-
clude so many variations of puzzles, most of the
matchstick puzzles take the form to move the in-
dicated number of matchsticks in the initial place-
ment so as to satisfy the given condition.

In this paper, we consider two kinds of match-
stick puzzles of this form. In the puzzles, we assume
that matchsticks can be placed only on the edges
of a square grid. The first puzzle is a simple one
whose objective is to make a given final placement
of matchsticks. We show an algorithm to solve this
problem faster than exhaustive search. It runs in
O(n2(k log k)1/2) time, where the size of the grid
is n × n and k is the number of matchsticks to be
moved. In the second puzzle, the objective is to
make the indicated number of squares. It is one of
the most typical style of matchstick puzzles. We
show that the problem to decide if the puzzle has a
solution is NP-complete. In such puzzles, there ex-
ists a tacit understanding that all the matchsticks
must be included in at least one square. We also
adopt this rule in this paper. In the following of
this paper, we call a matchstick simply a stick.

2 Puzzles to Make the Final
Placement

In this section, we consider the puzzles to make the
given final placement of sticks by moving k sticks.
An example of the puzzle is shown in Fig.1. We as-
sume that both the initial and the final placements
can be represented within a n × n grid. Note that
the sticks can be moved outside of the n × n grid
of the initial placement. That is, the final place-
ment can be made using the region outside the ini-
tial placement. We assume that the initial and final
placements include the same number of sticks and
that the number of sticks is larger than k. We do
not allow that the placement obtained by moving
sticks is a one obtained by rotating the final place-
ment. Even without the restriction, we have only
to solve this problem four times. This problem can
be solved by exhaustive search in O(n4) time.

The algorithm we propose is based on string
matching with mismatches. This is the problem
to decide, given two strings called the text and the
pattern and a positive integer k, find the positions
where the pattern matches the text within k er-
rors. It is known that the problem can be solved
in O(n(k log k)1/2) time, where n is the size of the
text [1, 2].

In the proposed algorithm, we represent the ini-
tial and final placements as sequences T and P , re-
spectively, by representing an edge by a character.
If P matches T with 2k errors in legal positions,
it means that the final placement can be obtained
from the initial placement by moving k sticks.

Now we show how to construct T and P . In
T and P , each edge is encoded by 0, 1 or 2. It is
encoded by 0 if no stick is placed, by 1 if a stick
exists on a vertical edge and by 2 if a stick exists
on a horizontal edge. In a grid, let a column be the
series of vertical or horizontal edges arranged ver-
tically. We encode a column by ordering the codes
for edges from the top edge to the bottom edge.
The sequences encoding columns are ordered from
the leftmost column to the rightmost one. Both in
T and P , place n 0’s between the columns. In ad-
dition, add 8n2 + 4n− 2 0’s at the head and tail of
T and add 4n2 + 2n− 1 0’s at the head and tail of
P . The sequences T and P for Fig.1 are as follows.
T: 038 10 00 200 00 11 00 020 00 10 038

P: 019 11 00 000 00 01 00 002 00 11 019

Legal positions of P in T are r(4n + 1) ≤ m ≤
r(4n+ 1) + 2n (0 ≤ r ≤ 2n), except 0 and 2n(4n+
1) + 2n. Each legal position corresponds to a posi-
tion of the final placement on the initial placement.
As no mismatch of 0 and 1 occurs in the positions,
the number of mismatches is two times the number
of sticks to be moved. As the size of T is O(n2) and
the number of mismatches is 2k, the algorithm runs
in O(n2(k log k)1/2) time.

     initial 
placement

      final 
placement

move 2 sticks

Figure 1: An example of the puzzle.



3 Puzzles to Make Squares

In this section, we consider the puzzles to make the
designated number of squares by moving sticks and
show that the puzzle is NP-complete. We call the
following problem to decide if the problem has a
solution STICK SQUARES.
Input: An initial placement of sticks on an n × n
grid and positive integers k and l.
Question: Is it possible to make l squares by moving
k sticks in the initial placement?
Note that we consider squares of any size and a stick
may be included in more than one square. Also, as
noted before, all the sticks must be included in at
least one square after moving sticks.

Theorem 1. STICK SQUARES is NP-complete.

Sketch of proof. We prove NP-hardness by reduc-
tion from CircuitSAT. We construct the gadgets
that correspond to the parts of a Boolean circuit.
In addition, k vertical sticks are arranged horizon-
tally outside the gadgets to simulate the Boolean
circuit. There are three cells of the grid between
these sticks. In our construction, all the sticks can
be included in at least one square by moving these
k sticks into the gadgets. In the following figures,
sticks that are not included in any square are rep-
resented by bold lines.

(a) 

(b) x=0 (c) x=1

Figure 2: Input and wire gadgets.

Figure 3: An output gadget.

Fig.2 (a) represents an input gadget and a wire
gadget. The left part of the figure is an input gad-
get, in which the value of a variable is determined.
By moving sticks into the gadgets, Fig.2 (b) and (c)
represent the values 0 and 1 respectively. Fig.3 is
an output gadget. All the sticks in the gadget can

be included in squares by placing two sticks on the
gadget if and only if the value from the left is 1.

Figure 4: A bend gadget.

Figure 5: An AND gadget.

Bend gadgets (Fig.4) and adjustment gadgets
are also used to represent wires. The former changes
the direction of a wire and the latter adjusts the
length of wires so that the wires can be connected
to other gadgets. Logic elements are represented
using NOT gadgets and AND gadgets. In an AND
gadget (Fig.5) two values are given from the top and
the bottom of the gadget and their logical product
is output to the right.

The values of k and l are computed from the
placement of the sticks simulating the Boolean cir-
cuit. It is impossible to make all the sticks included
in squares if the sticks inside the gadgets are moved.
It is because, if m sticks inside the gadgets are
moved, at least 3m sticks must be moved to the
outside of the gadgets. 2
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Abstract—We present a simple O(n log n) time algo-
rithm for finding a p-center in cycle networks. We also
present an O(n log2 n) (resp. O(n log4 n)) time algorithm
for locating a k-sink in dynamic flow cycle networks with
uniform (resp. non-uniform) edge capacities.

I. Introduction
In a minmax-cost p-facility location problem, we want

to place p facilities (e.g., centers, sinks) in such a way
that each vertex can be serviced within the minimized cost
(e.g., weighted distance, evacuation time). Recently, Wang
and Zhang [10] presented an O(n logn) time algorithm
for the p-center problem in tree networks, where n is
the number of vertices, improving upon all the previous
results, although an O(n) time algorithm is known [2], [9],
which is exponential in p. The fastest p-center algorithm
for path networks known to date, due to Megiddo and
Tamir [8], also takes O(n logn) time. This paper shows
that the cycle networks also belong to this family of
networks for which the p-center problem can be solved in
O(n logn) time. Our simple algorithm applies the sorted
matrix method of Frederickson [5], together with results by
Chen et al. [4] and Hsu and Tsai [6].

Due to many recent disasters such as earthquakes,
volcanic eruptions, typhoons, and nuclear accidents, evac-
uation planning is getting increasing attention. The k-
sink problem is an attempt to model evacuation in such
an emergency situation. Bhattacharya et al. [3] showed
recently that the k-sink problem on dynamic flow path net-
works can be solved in O(min{n log3 n, n logn+ k2 log4 n}
time. When all edges have the same capacity, they show
that it can be solved in O(min{n logn, n+k2 log2 n} time.
In this paper we present an O(n log2 n) (resp. O(n log4 n))
time algorithm for locating a k-sink in dynamic flow cycle
networks with uniform (resp. non-uniform) edge capacities.

This paper shows that two similar approaches can
be used to solve the center and sink problems in cycle
networks.

II. Preliminaries
Let C(V,E) be a cycle graph consisting of n vertices.

Each vertex v ∈ V has a nonnegative weight w(v) and
any portion of each edge has a nonnegative length. The
clockwise (cw) path from point a to b on C(V,E) is denoted
by C[a, b], and its distance is denoted by d(a, b).

In the p-center problem, the cost (=weighted distance)
of vertex v, at point x can be represented by a function
fv(x) = d(v, x)w(v). Given a cost value λ, there is a
maximal interval I(v) containing v such that if a center
is placed within it, v is covered with cost ≤ λ. For point
x, the cost function fv(x) thus consists of two linear half
lines, if the path is represented as the horizontal axis, and
the cost is represented by the vertical axis.

In the k-sink problem each edge e ∈ E has transit time
and capacity. Let λ∗ denote the minimum cost to cover all
vertices by a set of k facilities.

Lemma 1: (Kariv and Hakimi [7]) There exist two ver-
tices va, vb, and a facility q in an optimal facility allocation
such that fva

(q) = fvb
(q) = λ∗.

Lemma 2: (Hsu and Tsai [6]) Let A be a set of circular
arcs along a cycle C. A minimum set of piecing points for
A can be found in time linear in |A|.

Let H = {H1, H2, . . . ,Hm} be a set of m upper half-
planes. Given two indices i and j with 1 ≤ i ≤ j ≤ m,
a 2D sublist LP query [4] asks for the lowest point in the
common intersection of H[i, j] = {Hi, Hi+1, . . . ,Hj}.

Lemma 3: (Chen et al. [4]) Assume that the intersec-
tions between the x-axis and the bounding lines of the
half-planes in H are ordered from left to right according to
the half-plane indices. Then, after O(n logn) preprocesing
time, a 2D sublist LP query can be answered in O(logn)
time.

III. Feasibility tests
Given a cost value λ, a λ-feasibility test decides if a

given number of facilities can be located in such a way
that each vertex v can be serviced by a facility within cost
λ.

Given a cycle C, we remove an edge of C and construct
a path PC of length 2n − 1 by concatenating two copies
of the resulting path, and name the vertices on PC as
v1, . . . , v2n from left to right, where vn+i is a copy of vi.
Let λ be a value provided by a 2D sublist LP query on PC .
In solving the p-center problem, for each vertex v ∈ V , we
create a demand interval of length 2λ/w(v) centered at v
on C. We then invoke Lemma 2 to test if all the demand
intervals can be pierced by p piercing points (=centers). If
so, the λ-feasibility test succeeds, otherwise it fails. Using
Lemma 2, we can prove

Lemma 4: Given any value λ, we can test λ-feasibility
for the p-center problem in O(n) time.
Ben-Moshe et al. [1] have a more complicated feasibility
test for weighted cactus networks that runs in O(n) time.

In solving the k-sink problem, given cost λ, for each
vertex v ∈ V , we need to find the farthest point pcw(v)
(resp. pccw(v)) on the cw (resp. counter-cw (ccw)) side
of v such that the evacuees from all vertices between v
and pcw(v) (resp. pccw(v)) can evacuate to pcw(v) (resp.
pccw(v)) within cost (=time) λ. To keep the cost within
λ, we clearly need to place a sink in the demand inter-
val C[pccw(v), pcw(v)], and Lemma 2 is applicable. If the
edge capacities are uniform (resp. non-uniform), we can
compute pcw(v) and pccw(v) in O(logn) (resp. O(log3 n))
time using the method employed in [3], with O(n) (resp.
O(n logn)) preprocessing time.

Lemma 5: Given any value λ, we can test λ-feasibility
for the k-sink problem with uniform (resp. non-uniform)
edge capacities in O(n logn) (resp. O(n log3 n)) time.

IV. Optimization algorithms
In the optimization phase, we generate candidate costs

(λ-values). We look for the smallest λ, λ∗, for which the



problem instance is λ-feasible. In a sorted matrix [5], the
elements in each row and each column are sorted in the
non-decreasing order. Frederickson proved

Lemma 6: [5] Given an n × n sorted matrix Mn×n,
suppose that M [i, j], for any 1 ≤ i, j ≤ n, can be computed
in g(n) time, and M [i, j]-feasibility can be tested in f(n)
time. Then we can solve the optimal k-facility problem
in O(h(n) + ng(n) + f(n) logn) time, where h(n) is the
preprocessing time.

Let M [i, j], 1 ≤ i ≤ j ≤ 2n, be the minimum cost
of a facility that services the vertices from vi to vj on
PC . If we set M [i, j] = 0 for i ≥ j and M [i, j] = λ∞
(where λ∞ is larger than any actual cost) for j ≥ i + n,
then M2n×2n is a sorted matrix. We apply Lemma 3 to
generate candidate λ values. Note that PC gives rise to λ
values that do not exist in cycle C, but it does no harm. For
the p-center problem, we have h(n) = O(n logn), g(n) =
O(logn) by Lemma 3, and f(n) = O(n) by Lemma 4,
hence h(n) + f(n) logn+ ng(n) = O(n logn).

Theorem 7: We can solve the p-center problem on cycle
networks in O(n logn) time.

Regarding the k-sink problem, we introduce the upper
envelopes tree (or UE tree), T , with root ρ, whose leaves
are the vertices of PC , arranged from left to right. It is a
balanced tree with height O(logn). For a node u of T , let
vL(u) (resp. vR(u)) denote the leftmost (resp. rightmost)
vertex on PC that belongs to T (u) (the subtree rooted at
u). We say that node u spans subpath PC [vL(u), vR(u)].
At node u we store vL(u), vR(u) and four other pieces of
data, as explained in the next paragraph.

For an arbitrary index pair i ≤ j, there are O(logn)
nodes which together span PC [vi, vj ]. Let P[vi, vj ] de-
note the set of maximal subpaths spanned by such
nodes, which can be found in O(logn) time from T . Let
PC [vL(u), vR(u)] ∈ P[vi, vj ] for some node u. Assume
that all the evacuees from PC [vL(u), vR(u)] move cw past
vR(u). Let vk be the vertex lying between vL(u) and vR(u),
inclusive, such that there is a break in the flow of evacuees
out of vR(u) just before the first evacuee from vk is seen,
after which a stream of all the evacuees from PC [vL(u), vk]
are observed without any break. Similarly, assume that all
the evacuees from PC [vL(u), vR(u)] move ccw past vL(u).
Define vl symmetrically to vk. At u we store vk, vl, and
the total weights of the vertices on PC [vL(u), vk] and those
on PC [vl, vR(u)].

Let vk1 (resp. vk2) be the vk-vertex stored in the left
(resp. right) child of a non-leaf node of T . Then it is known
in the uniform edge capacity case that either vk = vk1 or
vk = vk2 [3]. Similarly, the vl-vertex is either vl1 or vl2 of
the child nodes.

Lemma 8: [3] If the edge capacities are uniform, we can
construct UE tree T , together with the four pieces of data
(vk, vl, and two weights) at each node, in O(n) time.

For each node vi ∈ V , climb T from vi along path
π(vi, ρ) from vi to ρ, and let u be the current node being
visited. Based on the data stored at u and all the nodes
visited so far, compute the current cost of the vertices at
point x just on the cw side of vR(u) and compare it with
λ. If λ is larger, we continue the ascent, otherwise we start
a descent. We will eventually find the edge containing a

point at which the cost equals λ and compute the exact
position where they are the same. This point is the cw
endpoint of the demand interval associated with vertex vi,
and it can be found in O(logn) time. The ccw endpoint
of the λ-demand interval associated with vi can be found
similarly in O(logn) time. Thus the time needed to find
the λ-demand intervals for all the vertices is O(n logn).
We now resort to Lemma 2 to test if k piercing points can
pierce all the intervals, which takes O(n) time. If “Yes,”
then the λ-feasibility test succeeds, otherwise it fails.

We have shown that h(n) = O(n) and f(n) =
O(n logn) for cycle networks with uniform edge capacities.
We can show g(n) = O(logn), as in [3]. If the edge
capacities are non-uniform, we can show that h(n) =
O(n logn) and g(n) = O(log3 n), as in [3], and we have
f(n) = O(n log3 n), since its major component is the
time required to find the O(n) demand intervals, spending
O(log3 n) time per vertex. The test itself takes only O(n)
time by Lemma 2. Lemma 6 thus implies

Theorem 9: We can solve the k-sink problem in dy-
namic flow cycle networks with uniform (resp. non-
uniform) edge capacities in O(n log2 n) (resp. O(n log4 n))
time.

Concluding remarks
The currently most efficient p-center algorithm for

cactus networks runs in O(n2) time [1]. A unicycle graph
is a special cactus graph, which contains just one cycle.
We can combine our p-center algorithm for cycle networks
presented here with that for tree networks in [10] to find
a p-center in unicycle networks in O(n logn) time.

References
[1] Ben-Moshe, B., Bhattacharya, B., Shi, Q., Tamir, A.: Efficient

algorithms for center problems in cactus networks. Theoretical
Compter Science 378(3), 237–252 (2007)

[2] Bhattacharya, B., Shi, Q.: Optimal algorithms for the weighted
p-center problems on the real line for small p. In: Proc. Work-
shop on Algorithms and Data Structures (WADS), Springer-
Verlag. vol. LNCS 7434, pp. 529–540 (2007)

[3] Bhattacharya, B., Golin, M., Higashikawa, Y., Kameda, T., Ka-
toh, N.: Improved algorithms for computing k-sink on dynamic
flow path networks. In: Proc. Algorithms and Data Structures
Symp., Springer-Verlag, LNCS 10389. pp. 133–144 (2017)

[4] Chen, D.Z., Li, J., Wang, H.: Efficient algorithms for the one-
dimensional k-center problem. Theor. Comp. Sci. 592, 135–142
(August 2015)

[5] Frederickson, G.: Optimal algorithms for tree partitioning. In:
Proc. 2nd ACM-SIAM Symp. Discrete Algorithms. pp. 168–177
(1991)

[6] Hsu, W.L., Tsai, K.H.: Linear time algorithms on circular-arc
graphs. Information Processing Letters 40, 123–129 (1991)

[7] Kariv, O., Hakimi, S.: An algorithmic approach to network
location problems, Part I: The p-centers. SIAM J. Appl. Math.
37, 513–538 (1979)

[8] Megiddo, N., Tamir, A.: New results on the complexity of p-
center problems. SIAM J. Comput. 12, 751–758 (1983)

[9] Shi, Q.: Efficient algorithms for network center/covering loca-
tion optimization problems. Ph.D. thesis, School of Computing
Science, Simon Fraser University, Canada (2008)

[10] Wang, H., Zhang, J.: An O(n log n)-time algorithm for the k-
center problems in trees (2017), arXiv:1705.02752v1 [cs.DS]



The partial sum dispersion problem on the line

Toshihiro Akagi1,a) Tetsuya Araki2,b) Shin-ichi Nakano1,c)

Hiroshi Ishikawa2,d)

Abstract:
The dispersion problem is a variant of the facility location problem. In this paper we design some algorithms
for some dispersion problems.
Given a set P of n points on the horizontal line and an integer k we wish to find a subset S of P such that
|S| = k and maximizing the cost minx∈S{cost(x)}, where cost(x) is the sum of the distances from x to the
nearest c points in S. The problem is the dispersion problem with pertial c sum cost and we write it as PcS-
dispersion problem. In this paper we give a simple O(kn2 logn) time algorithm to solve the P2S-dispersion
problem and O(knc+1) time algorithm to solve the PcS-dispersion problem.

1. Introduction

The facility location problem and many of its variants

have been studied [4], [5]. A typical problem is to find a set

of locations to place facilities with the designated cost min-

imized. By contrast, in this paper we consider the disper-

sion problem (or obnoxious facility location problem) ,which

finds a set of locations with a certain objective function max-

imized.

Given a set P of n possible locations, and the dis-

tance d for each pair of locations, and an integer k with

k ≤ n, we wish to find a subset S ⊂ P with |S| =

k such that some designated objective function is maxi-

mized [1], [2], [3], [7], [8], [9], [10], [11], [12].

The intuition of the problem is as follows. Assume that

we are planning to open several chain stores in a city. We

wish to locate the stores mutually far away from each other

to avoid self-competition. So we wish to find k locations

so that some objective function based on the distance is

maximized. See more applications, including result diversi-

fication, in [8], [9], [10].

In one of basic cases the objective function to be max-

imized is the minimum distance between two points in

S. Then papers [9], [11] show if P is a set of points

on the plane then the problem is NP-hard, and if P is a

set of points on the line then the problem can be solved

in O(max{n logn, kn}) time [9] by dynamic programming

approach, and in O(n) time by the sorted matrix search

method [6].

In this paper we consider the following problem [8]. Given

a set P of n points on the horizontal line and an integer k
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we wish to find a subset S of P such that |S| = k and maxi-

mizing the cost minx∈S{cost(x)}, where cost(x) is the sum

of the distances from x to the nearest c points in S. The

problem is the dispersion problem with pertial c sum cost

and we write it as PcS-dispersion problem. Intuitively this

cost models competition to the nearest c stores. Then the

cost cost(S) of S is the minimum cost among the costs of the

points in S, which is minx∈S{cost(x)}. In the case of c = 2,

some experimental results (for more general problems) are

known. See [8].

In this paper we design an algorithm to solve the P2S-

dispersion problem by dynamic programming approach if

all points of P are on a line. The running time of the algo-

rithm is O(kn2 logn). Similarly, we design an algorithm to

solve the PcS-dispersion problem if all points of P are on a

line. The running time of the algorithm is O(knc+1).

2. P2S-dispersion problem

In this section we design an algorithm to solve the P2S-

dispersion problem, based on dynamic programming ap-

proach, if all points of P are on the horizontal line. We

define the subproblem P2S(h, i; k) as follows.

Let Pi be the subset of the points in P locating on the left

of pi ∈ P including pi, where pi is the i-th point from left

in P . Given ph ∈ Pi and an integer k ≥ 3, we wish to find

a subset S ⊂ Pi such that (1) |S| = k and (2) the rightmost

two points in S are ph and pi, with h < i, (3) maximizing

cost(S). This is the subproblem P2S(h, i; k). We denote by

cost(h, i; k) the optimal cost of a solution of P2S(h, i; k).

This is the P2S-dispersion problem with the rightmost two

points in S are designated.

We can observe that P2S(h, i; k) has a solution S con-

taining the leftmost and rightmost points in Pi. Thus we

can assume p1, pi ∈ S.

We have the following lemma.

Lemma 1. Let S be a solution of P2S(h, i; k), and ph, pi

the rightmost two points in S. Then the following (a)–(c)

holds. (a) The two nearest points of pi ∈ S are located on

1
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the left of pi, (b) The two nearest points of ph ∈ S are

located either on the left of ph, or one on the left and one

on the right (it is pi), (c) cost(ph) < cost(pi).

Proof. (a)(b) Immediately. (c) Let ph′ be the 3rd right-

most point in S. Then cost(ph) ≤ d(ph′ , ph) + d(ph, pi) <

d(ph′ , pi) + d(ph, pi) = cost(pi). Note that d(p, q) is the

distance between points p and q in P .

Thus when we compute cost(h, i; k) which is the min-

imum over cost(x) for x ∈ S, we can ignore pi

since cost(pi) > cost(ph). The cost cost(h, i; k) is

maxh′=1,2,···,h−1 min{cost(h′, h; k − 1), d(ph′ , pi)} and we

can compute it in O(n) time. The number of the subprob-

lems is at most kn2 and we can solve each subproblem in

O(n) time.

The entire algorithm find-P2S-dispersion(P, n, k) is

shown below.

Algorithm 1 find-P2S-dispersion(P, n, k)

% Compute P (h, i; 3) (Case k = 3)

for i = 3, 4, · · · , n do

for h = 2, 3, · · · , i− 1 do

cost(h, i; 3) = d(p1, pi)

end for

end for

% Compute P (h, i; k) (Case k > 4)

for k′ = 4, 5, · · · , k do

for i = k′, k′ + 1, · · · , n do

for h = k′ − 1, k′, · · · , i− 1 do

cost(h, i; k′) = 0

% Compute the maximum cost

for h′ = k′ − 2, k′ − 1, · · · , h− 1 do

cost(h, i; k′) = max{cost(h, i; k′),min{cost(h′, h; k′ −
1), d(ph′ , pi)}}

end for

end for

end for

end for

% Compute the optimal cost

cost = 0

for h = k − 1, k, · · · , n− 1 do

if cost(h, n; k) > cost then

cost = cost(h, n; k)

end if

end for

Output cost

Theorem 1. One can solve the P2S-dispersion problem

in O(kn3) time.

We can prove that cost(h′, h; k − 1) is a non-decreasing

function with respect to h′. Then min{cost(h′, h; k −
1), d(h′, i)} is a non-decreasing function with respect to h′

up to some points, then it is a decreasing linear function with

respect to h′, so we can find the maximum one by binary

search in O(logn) time.

We have the following thorem.

Theorem 2. One can solve the P2S-dispersion problem

in O(kn2 logn) time.

3. PcS-dispersion problem

In this section we design an algorithm to solve the PcS-

dispersion problem, based on dynamic programming ap-

proach, if all points of P are on the horizontal line. We

define the subproblem PcS(hc−1, hc−2, · · · , h1, i; k) as fol-

lows.

Let Pi be the subset of the points in P locating on the

left of pi ∈ P including pi, where pi is the i-th point from

left in P . Given phc−1
, phc−2

, · · · , ph1
∈ Pi and an integer

k ≥ c, we wish to find a subset S ⊂ Pi such that (1) |S| = k

and (2) the rightmost c points in S are phc−1
, phc−2

, · · · , ph1

and pi, with hc−1 < hc−2 < · · · < h1 < i, (3) maximizing

cost(S). This is the subproblem PcS(hc−1, hc−2, · · · , h1,

i; k).

The number of the subproblems is at most knc and we

can solve each subproblem in O(n) time. Thus we can solve

the PcS-dispersion problem in O(knc+1) time.

Theorem 3. One can solve the PcS-dispersion problem in

O(knc+1) time.

4. Conclusion

In this paper we gave an algorithm for the P2S-dispersion

problem. The running time of the algorithm is O(kn2 logn).

Also we gave an algorithm to solve the PcS-dispersion prob-

lem. The running time of the algorithm is O(knc+1).
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On Equivalence of de Bruijn Graphs and State-minimized Finite Automata 
 

Yoshiaki TAKAHASHI†   Akira ITO‡ 
 

†Solar, Hofu Science Museum  6-41 Kotobukichou, Hofu-shi, Yamaguchi, 747-0809 Japan 

‡Faculty of Engineering, Yamaguchi University   2-16-1 Tokiwadai, Ube-shi, Yamaguchi, 755-8611 Japan 

E-mail:  †solar4@minos.ocn.ne.jp,  ‡akito@yamaguchi-u.ac.jp 

Abstract  A de Bruijn sequence of order n on the alphabet {0,1} is a cyclic sequence in which every possible string of 

length n over {0,1} occurs exactly once. In order to enumerate all possible de Bruijn sequences, de Bruijn graphs were 

introduced. 

This study investigates the relationship between de Bruijn graphs and finite automata and proves the structural equality of de 

Bruijn graph of order n and the state transition diagram for minimum state deterministic finite automaton which accepts regular 

language 1* )10(1)10(  n . We also extend this result naturally to the k-ary de Bruijn graphs for arbitrary k’s by introducing 

coloring finite automata whose accepting states are refined with two or more colors.   

Keywords  de Bruijn sequence, de Bruijn graphs, finite automata, state-minimization

 

1. de Bruijn graph and de Bruijn sequence  

Definition.1 A directed graphs defined as follows  

is called a k-ary order n de Bruijn graph and 

abbreviated nkDB , .  
 

}1,,1,0{}}1,,1,0{{  nn kkV   

),{( 2121 nn bbbbbbE    |  

},,,,,,1},1,0{, 12312 
 nnii bbbbbbnibb   

)mod)(,{( nkikxx  | }1,,1,0,  kiVx   

 

 

 

 

 

 

 

 

 

Fig.1  The de Bruijn graph 4,2DB . 
 

An example 4,2DB  is shown in Fig.1. 
 

2. Finite automaton which accepts regular language
1* )10(1)10(  n
.  

We consider the language nL ={ |}1,0{ *x the nth 

symbol from the end of x is 1}, i.e., the set of strings 

over {0,1} whose nth symbols from their right ends 

are 1’s. Nondeterministic and deterministic finite 

automaton (NFA and DFA) accepting nL  are 

abbreviated nN , nD , respectively. 4N  is illustrated 

in Fig.2.  

 

 

 

 
 

Fig.2 NFA 4N  accepting 4L . 
 

By using the subset construction method, 4N  is  

 

converted to 4D  as depicted in Fig.3. One can tell 

that 4D  and 4,2DB  are structurally equivalent. 

 

 

 

 

 

 

 

 

 

Fig.3  DFA 4D  accepting 4L . 
  

3. Equivalence of nDB ,2  and nD  

Theorem.1  The graph structure of nD  is 

isomorphic to nDB ,2 .  

It is known that any DFA accepting nL  requires 

more than or equal to 
n2  states. 

 

Example.1  Fig.5 shows the final stage of 2N - 2D  

conversion by using the subset construction method.  
 

 

 

 
 

     Fig.4 NFA 2N  accepting 2L . 
 
 

 

 

 

 

 

 

 
 
 
 

Fig.5 The final stage of 2N - 2D  conversion. 
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In the following, ],,[ 210 bbb  denotes 0-1 sequence 

(characteristic function) which represents a subset of 

},,{ 210 rrr . 

From Fig.4, the destinations from ]110[},{ 10 rr  

can be decided as follows: One is ]101[},{ 20 rr  if 

input 0, because there are edges from 0r  to 0r  and 

from 1r to 2r . The other is ]111[},,{ 210 rrr  if input is 

1, because there are edges from 0r  to 0r  and 1r  

and 1r  to 2r . Doing these kinds of work for  all 

subset of 2N , we can get the following 2D . 
 

]}),111[],101{[],100[,},1,0{]},111[],110[],101[],100({[2 D  

For }1,0{},1,0{, 21  abb ，  
 

           ]10[ 1b , if 0a , 

           ]11[ 1b , if 1a . 

 

By the left/right inversion of ],[ 21 bb  parts of states, 

the above description of 2D  can be rewritten to the 

following.  
 

 })11,01{,00,},1,0{},11,01,10,00({2 D , 

For }1,0{},1,0{, 21  abb  
 
 
            01b , if 0a , 

 ),( 12 abb  
            11b , if 1a . 
 
 

The above description of 2D  is identical to the 

description of 2,2DB  in Definition.1: 
  

   }11,10,01,00{V  

   ),11,01(),10,01(),01,00(),00,00{(E  

)}11,11(),10,11(),01,10(),00,10(  
 

As shown above, the state transitions of 2D  

correspond to those of  two-stage shift register 

provided with 0 or 1 sequential input (the value of 

register ir =1   the state of 2D  contains ir ) 
 

 
 
 
 
 
 

Fig.6 The two-stage shift register correspondent  

to 2N - 2D  conversion. 

 

4.  Generalization to k-ary 

In this section,  we investigate finite automata  

accepting the language over }1,,1,0{ k  nkL , x{ ,0{   

|}1,,1 *k  the nth symbol of x from its right end is 

2,1 , or 1k }. 

  Fig.7 is the state transition diagram of NFA 2,3N  

accepting 2,3L . Fig.8 shows DFA 2,3D  converted 

from 2,3N  by using the subset construction method. 

One can tell that the de Bruijn graph 2,3DB  defined 

in Section.1 is identical to 2,3D  excluding its labels.  

 

 

 

 

 

 

Fig.7  NFA 2,3N  accepting 2,3L . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8  DFA 2,3D  accepting 2,3L . 

  However, the number of states of this DFA is not 

minimal: 2,3D  is simplified to the shape of Fig.5 by 

using the well-known minimization algorithm for 

DFAs. In order to extend the equivalence of k=2 case 

naturally to higher radix k, we take automata have 

classifying function of the features of input strings in 

addition to the conventional function of either 

accepting or non-accepting. 

  We call such a automaton a coloring automaton. 

Regarding nkN ,  depicted in Fig.7 as a 

nondeterministic coloring finite automaton nkN ,
  

whose accepting states have two different colors 

(k=3) and applying the subset construction method to 

it, we get the deterministic coloring finite automaton 

nkD ,
  of Fig.8 whose two colors are depicted in the 

figure. Then, we can conclude that nkDB ,  and nkD ,
  

are isomorphic for 3k . We can also assert the 

minimality of nkD ,
 . 

 

Primary references 
 

[1] D.Dn, F.Cao,and.F.Hsu, “De Bruijn digraphs,kautz 
digraphs, and their generalizations, in combinatorial 
network theory, ed.  Du and D.F. Hsu, pp.65-96, 
Kluwer Academic , the Netherlands, 1996.  

[2]  G.Castinglione,     A.Restivo,      M.Sciortino,  

“Nondeterministic Moore automata and 
Brozozowski’s minimization”, Theoretical Computer 
Science 450 81-91, 2012. 

 )],1([ 21 abb  

 

0  

 

 

1  

 

 

input 

 

 

2r  

0r  

1r  

2r  

3r  

4r  2  

1  

2,1,0  2,1,0  

2,1,0  

1r  

6q  

 

8q  

 

0q  

 

1q  

 

2q  

 

3q  

 

7q  

 

5q  

 

4q  

 

0  

0  

0  

0  

0  

0  

0  

0  

0  

1  

1  

1  

1  

1  

1  

1  

1  

2  

2  

2  

2  2  2  

2  

2  

2  

1  

bit19
矩形



On the Total Vertex Irregularity Strength for
Trees with Many Vertices of Degree 2

Susilawati 1,2, E. T. Baskoro and Rinovia Simanjuntak3

1,2,3Combinatorial Mathematics Research Group,
Faculty of Mathematics and Natural Sciences,

Institut Teknologi Bandung
Bandung, Indonesia

Abstract

For a simple graph G = (V,E), we define an injection φ : V (G) ∪ E(G) →
{1, 2, 3, . . . , k} to be a vertex irregular total k-labeling of G if for every two dif-
ferent vertices x and y of G,wt(x) 6= wt(y), where wt(x) = φ(x) +

∑
xy∈E(G)

φ(xy).

The minimum k for which the graph G has a vertex irregular total k-labeling is
called the total vertex irregularity strength of G, denoted by tvs(G).

Let T be a tree. Nurdin, Baskoro, Salman and Gaos (2010) conjectured that
tvs(T ) = max{t1, t2, t3}, where ti = d(1 +

∑i
j=1 ni)/(i + 1)e and ni is the number

of vertices of degree i ∈ [1, 3]. In this paper, we determine the exact value of the
total vertex rregularity strength for trees with many vertices of degree two. We
provide three possible values of total vertex irregularity strength of these trees. We
give sufficient conditions for such trees to have the above mentioned total vertex
irregularity strength. This paper adds further support to Conjecture Nurdin et.al
(2010) by showing that such tree has total vertex irregularity strength equal to
t1, t2, t3.

Keywords: Irregularity strength, total vertex irregularity strength, subdivision,
degree, tree.
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Cordial sets of Honeycomb networks

Suhadi Wido Saputro

Institut Teknologi Bandung, Indonesia

Let G be a graph. A binary labeling f : V (G) → Z2 is called a friendly labeling if the
absolute difference between the number of vertices labeled 0 and 1 is at most one. The
friendly vertex labeling induces an edge labeling f∗ : E(G) → Z2 defined by f∗(xy) =
|f(x)− f(y)|, ∀xy ∈ E(G). Let ef (i) be the number of edges of G labeled i. The cordial
set of the graph G, denoted by C(G), is defined by

C(G) = {|ef (1)− ef (0)| | f is a friendly vertex labeling of G}.

If 0 or 1 is belong to C(G), then the graph G is called a cordial graph. In this paper,
we show that honeycomb network graphs are cordial graph. We also determine all values
in the cordial set of a honeycomb network. (This talk is based on a joint work with
Abdurrahman Shofy Adianto.)
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