
ORF 523 Lecture 6 Spring 2016, Princeton University

Instructor: A.A. Ahmadi

Scribe: G. Hall Thursday, February 25, 2016

When in doubt on the accuracy of these notes, please cross check with the instructor’s notes,

on aaa. princeton. edu/ orf523 . Any typos should be emailed to gh4@princeton.edu.

In this lecture, we will cover an application of LP strong duality to combinatorial optimiza-

tion:

• Bipartite matching

• Vertex covers

• König’s theorem

• Totally unimodular matrices and integral polytopes.

1 Bipartite matching and vertex covers

Recall that a bipartite graph G = (V,E) is a graph whose vertices can be divided into two

disjoint sets such that every edge connects one node in one set to a node in the other.

Definition 1 (Matching, vertex cover). A matching is a disjoint subset of edges, i.e., a

subset of edges that do not share a common vertex.

A vertex cover is a subset of the nodes that together touch all the edges.

(a) An example of a bipartite

graph

(b) An example of a matching

(dotted lines)

(c) An example of a vertex

cover (grey nodes)

Figure 1: Bipartite graphs, matchings, and vertex covers
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Lemma 1. The cardinality of any matching is less than or equal to the cardinality of any

vertex cover.

This is easy to see: consider any matching. Any vertex cover must have nodes that at least

touch the edges in the matching. Moreover, a single node can at most cover one edge in the

matching because the edges are disjoint.

As it will become clear shortly, this property can also be seen as an immediate consequence

of weak duality in linear programming.

Theorem 1 (König). If G is bipartite, the cardinality of the maximum matching is equal to

the cardinality of the minimum vertex cover.

Remark: The assumption of bipartedness is needed for the theorem to hold (consider, e.g.,

the triangle graph).

Proof: One can rewrite the cardinality M of the maximum matching as the optimal value of

the integer program

M := max

|E|∑
i=1

xi

s.t.
∑
i∼v

xi ≤ 1, ∀v ∈ V (1)

xi ∈ {0, 1}, i = 1, . . . , |E|,

where the second sum is over the edges adjacent to vertex v, as denoted by the notation

i ∼ v. This problem can be relaxed to a linear program, whose optimal value is denoted by

MLP

MLP := max

|E|∑
i=1

xi

s.t.
∑
i∼v

xi ≤ 1, ∀v ∈ V (2)

0 ≤ xi ≤ 1, i = 1, . . . , |E|.

Notice that M ≤ MLP . Indeed, any feasible solution to integer program (1) is feasible to

linear program (2). We now rewrite (2) in matrix notation. Let A be the incidence matrix

of G, i.e., an |V | × |E| zero-one matrix whose (i, j)th entry is a 1 if and only if node i is

adjacent to edge j. Note that each column of A has two 1’s (as any edge joins two nodes)
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and each row of A has as many 1’s as the degree of the corresponding node. Problem (2)

can then be written as1

MLP = max

|E|∑
i=1

xi

s.t. Ax ≤ 1 (3)

xi ≥ 0, i = 1 . . . , |E|.

We take the dual of this LP (we will soon observe that this coincides with the LP relaxation

of vertex cover):

min

|V |∑
i=1

yi

s.t. ATy ≥ 1 (4)

y ≥ 0.

Consider now an integer programming formulation of the minimum vertex cover problem:

V C := min

|V |∑
i=1

yi

s.t. yi + yj ≥ 1, if (i, j) ∈ E (5)

yi ∈ {0, 1}, i = 1, . . . , |V |.

This can be relaxed to the LP2

V CLP := min

|V |∑
i=1

yi

s.t. yi + yj ≥ 1, if (i, j) ∈ E
yi ≥ 0, i = 1, . . . , |V |,

which exactly corresponds to (4) once we rewrite it in matrix form using the incidence matrix.

An outline of the rest of the proof is given in Fig 2. We have shown that MLP = V CLP

using strong duality. It remains to be shown that V C = V CLP and M = MLP to conclude

the proof. This will be done by introducing the concept of totally unimodular matrices.

1Note that there is no harm in dropping the constraints xi ≤ 1, i = 1, . . . , |E| (why?).
2Note that again there is no harm in dropping the constraints yi ≤ 1, i = 1, . . . , |V | (why?).
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Figure 2: Outline of the proof of Theorem 1

2 Totally unimodular matrices

Definition 2. A matrix A is totally unimodular (TUM) if the determinant of any of its

square submatrices belongs to {0,−1,+1}.

Definition 3.

• Given a convex set P , a point x ∈ P is extreme if @y, z ∈ P, y 6= x, z 6= x, such that

x = λy + (1− λ)z for some λ ∈ [0, 1].

• Given a polyhedron P = {x | Ax ≤ b} where A ∈ Rm×n and b ∈ Rm, a point x is a

vertex of P if

(1) x ∈ P

(2) ∃ n linearly independent tight constraints at x. (Recall that a set of constraints is

said to be linearly independent if the corresponding rows of A are linearly inde-

pendent.)

Theorem 2 (see, e.g., Lecture 11 of ORF363 [1]). A point x is an extreme point of P =

{x | Ax ≤ b} if and only if it is a vertex.

Theorem 3 (see, e.g., Lecture 11 of ORF363 [1]). Consider the LP:

min
x∈P

cTx

where P = {x | Ax ≤ b}. Suppose P has at least one extreme point. Then, if there exists an

optimal solution, there also exists an optimal solution which is at a vertex.
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Definition 4. A polyhedron P = {x | Ax ≤ b} is integral if all of its extreme points are

integral points (i.e., have integer coordinates).

Theorem 4. Consider a polyhedron P = {x | Ax ≤ b} and assume that A is TUM. Then if

b is integral, the polyhedron P is integral.

Proof: Let x be an extreme point. By definition, n constraints out of the total m are tight

at x. Let Ã ∈ Rn×n (resp. b̃ ∈ Rn) be the matrix (resp. vector) constructed by taking the n

rows (resp. elements) corresponding to the tight constraints. As a consequence

Ãx = b̃.

By Cramer’s rule,

xi =
det(Ãi)

det(Ã)
,

where Ãi is the same as Ã except that its ith column is swapped for b̃. Since Ã is nonsingular,

total unimodularity of A implies that det(Ã) ∈ {−1, 1}. Moreover, det(Ãi) is some integer.

�

Theorem 5. The incidence matrix A of a bipartite graph is TUM.

Proof: Let B be a t × t square submatrix of A We prove that det(B) ∈ {−1, 0,+1} by

induction on t. If t = 1, the determinant is either 0 or 1 as any element of an incidence

matrix is either 0 or 1. Now, let t be any integer ≤ n. We consider three cases.

(1) Case 1: B has a column which is all zeros. In that case, det(B) = 0.

(2) Case 2: B has a column which has exactly one 1. In this case, the matrix B (after

possibly shuffling the columns) can be written as:

B =


1 b′

0
... B′

0

 .
Then, det(B) = det(B′) and det(B′) ∈ {−1, 0, 1} by induction hypothesis.

(3) Case 3: All columns of B have exactly two 1’s. Because our graph is bipartite, after

possibly shuffling the rows of B, we can write

B =

[
B′

B′′

]
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where each column of B′ has exactly one 1 and each column of B′′ also has exactly one

1. If we add up the rows of B′ or the rows of B′′ we get the all ones vector. Hence the

rows of B are linearly dependent and det(B) = 0. �

We now finish the proof of König’s theorem. Recall that the linear programming relaxation

of the matching problem is given by

MLP = max

|E|∑
i=1

xi

s.t. Ax ≤ 1

x ≥ 0.

The feasible set of this problem is the polyhedron

Q = {x | Ax ≤ 1, x ≥ 0}. (6)

We have just shown that the incidence matrix A of our graph G is TUM. Furthermore, b = 1

is integral. However, we are not quite able to apply Theorem 4 as Q is not exactly in the

form given by the theorem. The following theorem will fix this problem.

Theorem 6. If A ∈ Rm×n is TUM, then for any integral b ∈ Rm, the polyhedron P =

{x | Ax ≤ b, x ≥ 0} is integral3.

Proof: We rewrite the polyhedron P as

P = {x | Ãx ≤ b̃}, where Ã =

[
A

−I

]
and b̃ =

[
b

0

]
.

One can check that Ã is TUM (convince yourself that if we concatenate a TUM matrix with

a standard basis vector, the result is still TUM). As b̃ is integral, we can apply Theorem 4

and conclude that P is integral. �

We now know that the polyhedron Q in (6) is integral. This by definition means that all

extreme points of Q are integral. As there exists an optimal solution which is an extreme

point (from Theorem 3), we conclude that there exists an optimal solution to LP (3) which is

integral. This solution is also an optimal solution to integer program (1). Hence, MLP = M.

In a similar fashion, one can show that V CLP = V C. This follows from the fact that if a

matrix E is TUM, then ET is also TUM.

The equalities MLP = M and V CLP = V C combined with the fact that V CLP = MLP

enable us to conclude that M = V C, i.e., König’s theorem.

3It turns out that the converse of this result is also true.
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