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Abstract

The discovery of high-Tc superconductivity in the cuprates, and the observation
that strong correlations are important in connection with these compounds has
led to a tremendous interest in understanding the physics of strongly correlated
electronic models. In particular the two simplest models for strongly correlated
electrons, namely the Hubbard and t−J models, have been the subject of in-
tensive studies. In a milestone paper of 1987, P.W. Anderson proposed that a
resonating valence bond (RVB) wave-function, which consists of a superposition
of valence-bond states, contains the ingredients to account for a consistent theory
of the Hubbard and t−J models. Motivated by the success of variational Monte-
Carlo to describe some of the peculiar properties of the cuprates, we propose in
this dissertation, on one hand, to extend the method to further strongly corre-
lated models to describe other compounds such as graphene, carbon nanotube
or the cobaltite compounds, and on the other hand we propose to focus on the
pseudo-gap phase of the cuprates, which is still prompting for a consistent the-
ory. In particular, the issue of checkerboard spatial modulations in the density
of states in the low temperature regime of the cuprates is addressed. Finally, we
have studied the possibility for spontaneous orbital currents in the cuprates, that
might play a key role in the theory of high Tc superconductors.

Keywords : Superconductivity, Electronic correlation, Cuprates, Lattice The-
ories, Variational Methods, Low Energy Physics, Monte-Carlo simulations.
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Version abrégée

La découverte de la superconductivité à haute température dans les cuprates,
et l’observation que les corrélations électroniques pourraient jouer un rôle crucial
dans ces composés, a généré un intérêt et une activité intense dans la communauté
de la physique théorique. En particulier, les deux modèles les plus élémentaires
pour étudier les fortes corrélations (les modèles dits t−J et Hubbard) ont été
étudiés par de nombreux théoriciens. Notamment, dans un papier remarquable
de 1987, P.W. Anderson a proposé qu’une fonction du type liens de valence
rśonnants (RVB), qui consiste en une superpositions des pavages du réseau en
termes de dimères, contient les ingrédients cruciaux pour décrire la physique de
ces modèles. Motivé par le succès des méthodes variationelles Monte-Carlo pour
décrire quelques unes des plus interpellantes propriétés des cuprates, nous pro-
posons dans cette dissertation d’une part d’étendre cette méthode aux théories
décrivant d’autres matériaux, comme le graphène, les nanotubes de carbone et
les composés cobaltites; d’autre part nous proposons d’étudier plus en détail la
phase pseudo-gap des cuprates, qui interpelle encore actuellement les scientifiques
par la richesse de sa physique. En particulier, nous nous intéressons à la ques-
tion des modulations spatiales à géometrie en damier observées dans la densité
d’état à basse température dans les cuprates. Finalement, nous discutons la pos-
sibilité de la présence de courants orbitaux générés spontanément dans la phase
pseudo-gap des cuprates, qui pourrait être étroitement lié à la présence de la
superconductivité dans ces matériaux.

Mots clefs : Superconductivité, Corrélation Electronique, Cuprates, Théories
sur Réseaux, Méthodes Variationelles, Physique des Basses Energies, Simulations
Monte-Carlo.
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Chapter 1

Introduction

1.1 History of high temperature superconduc-

tivity

In 1986 superconductivity was found in a range of temperature which was well
above all previous signature: Bednorz and Müller found a transition temperature
of about 30K [1] in the layered copper-oxide material La2−xBaxCuO4 , for which
they won the Nobel Prize in Physics. The psychological barrier of the liquid
Nitrogen condensation temperature was crossed shortly after with YBaCu3O7

and the hope was growing that one might find an increasing number of every-day
life applications.

Since then, copper-oxide superconductors, which are structural derivatives of
the class of perovskites, have been at the center of a tremendous scientific activity.
A number of high-temperature superconducting compounds has been reported.
Starting out at Tc = 30K for La2−xBaxCuO4 in 1986 the transition temperatures
have climbed to Tc = 156K in members of the HgBa2CuO4+x family which are
among the recently discovered compounds. Moreover, new materials found more
recently like the mercury-type copper-oxides still increased accessible transition
temperatures without any obvious upper bound, and a critical temperature as
high as 164K was reported [2], though it was obtained for a compound under
pressure. In the meantime, progress in the preparation of high-quality single
crystals has allowed to remove many of the uncertainties in the interpretation of
experimental data obtained from polycrystals. In Fig. 1.1 we show the lattice
structure of an YBCO perovskite structure. Despite the apparent complexity of
the structures of the different cuprates compounds, they all have two dimensional
CuO2 planes. In essence all the high-temperature superconductors (HTCS) con-
sist of two-dimensional CuO2 planes which are sandwiched between intervening
atomic layers. These layers are composed mostly out of alkaline-earths, rare-
earths, oxygen and halogenides. Depending on the number of CuO2 planes per
unit cell the materials have a single , a double-, or a triple-plane form as in

15



16 CHAPTER 1. INTRODUCTION

a
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Figure 1.1: A single unit cell of YBa2Cu3O6 (YBCO) is illustrated. The dimen-
sions of the cell are a = 3.8227, b = 3.8872, and c = 11.6802. The lattice is
composed of double perovskite layers, separated by CuO chains.
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La2CuO4 , in YBa2Cu3O6 , or in Bi2Sr2YCu3O8 , respectively.
It is widely accepted that the CuO2 planes host electronic excitations which

are most relevant to the superconductivity. The intervening layers are viewed as
inert charge reservoirs. However, there is still some controversy about the role of
the co-called apical oxygen atoms, which are located above and below the CuO2

plane.
Moreover, it is experimentally well established that the parent compounds 1

La2CuO4 and YBa2Cu3O6 are charge transfer insulators and ordered antiferro-
magnetically below a Néel temperature TN . Below the Néel temperature TN ,
the unpaired holes of the Cu2+ ions are antiferromagnetically coupled via super-
exchange through the oxygen O2−. The maximum Néel temperature is of the
order of several hundred Kelvin (in YBa2Cu3O6 TN ≈ 420K).

The picture of a magnetic insulator contradicts the simple band-structure
point of view. In fact, the formal valencies of lanthanum, oxygen, and copper in
La2CuO4 are La+

3 , O−
2 , and Cu+

2 , respectively. Hence the planar copper consti-
tutes the only open shell atomic configuration. It is in a 3d9 state which contains
a single d-hole. This hole is expected to be mainly located in a planar dx2−y2

orbital. Therefore, a naive argument would suggest that the parent compounds
are simple metals with the charge carriers moving in the planes. But the lo-
calized copper spins provide the magnetic moments for the antiferromagnetic
order. The in-plane antiferromagnetic exchange coupling J is generated by a
copper spin super-exchange and the undoped CuO2 plane is well described by a
two-dimensional spin−1/2 antiferromagnetic Heisenberg model.

Typically, J is of the order of a few hundred meV and depends on the parent
compound. Let us note that long-range AFM order at finite temperature requires
an inter-plane coupling J⊥, since a pure two dimensional long-range magnetic or-
der is ruled out by the Mermin-Wagner theorem [3], which forbids any continuous
symmetry breaking at a finite temperature in one and two dimensions.

1.2 The phase diagram

Besides the question of the nature of the parent compound, one of the early ques-
tions was whether there are Cooper pairs in these materials or some new exotic
form of superconductivity that takes place when the system is doped with elec-
trons or holes. In this regards, it is quite remarkable that the cuprate perovskites
allow for a continuous variation of the in-plane carrier concentration by doping
which leads to a complex phase diagram. The parent compounds can be doped
by adding or removing holes, which eventually leads to metallic behavior and
superconductivity. Doping is achieved either by hetero-valent substitution as in
La2−xSrxCuO4 and in Bi2Sr2Cy1−xYxCu2O8 or by a variation of the total oxygen
content as in YBa2Cu3O6+x . Doping introduces additional charge carriers into

1Undoped materials are for historical reasons usually referred to as parent compounds.
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the CuO2 planes. Since none of this is accompanied by any major structural
change of the materials, it is quite natural to expect electronic correlations to
play a significant role in these systems. The notion of overdoped or underdoped
cuprates is frequently used to define the region of doping above, or below the
so-called optimal doping concentration at which the superconducting transition
temperature Tc is highest. Obviously, holes and electrons doped into the anti-
ferromagnetic insulators are very efficient in destroying the magnetic order. In
La2−xSrxCuO4 only 2% of holes are sufficient to achieve this. Therefore, the
charge carriers seem to couple strongly to the spin systems. However, there is an
apparent asymmetry between the electron and the hole-doped systems regarding
the stability of antiferromagnetism as well as that of superconductivity, since
the magnetic order is stable up to 30% in the electron doped side of the phase
diagram.

1.3 Theoretical approaches to superconductiv-

ity

Regarding theory, despite the huge research efforts and tremendous scientific
activity, the current understanding of both the normal state properties of the
cuprates as well as the nature of the superconducting phase remains incomplete.

Early on, it has been argued that many of the unusual properties of the
cuprates are related to the electronic structure of the CuO2 planes. It is widely
believed that this structural unit supplies the carriers which form the supercon-
ducting condensate. At present time, it is commonly accepted that the relevant
degrees of freedom in the perovskites are confined to the two dimension plans,
though the role of the out-of-plane oxygens, the so called apical oxygens, remains
unclear. Therefore, low dimensionality is one of the challenging aspects of the
carrier dynamics in the cuprates which is directly related to their layered crystal
structure.

Another challenging aspect from the theoretical point of view is that the elec-
tron correlations constitute the key issue in the description of the elementary
excitations in the cuprates. Ab initio LDA calculations (Local Density Approx-
imations) corroborate the picture of strong local Coulomb correlations and give
an onsite electronic repulsion of about 10eV in the dx2−y2 orbitals [4], which are
located in the copper-oxide planes.

More importantly, the Fermi level in La2CuO4 is located such that at half-
filling we get one hole per unit cell, which would exactly satisfy the valencies
of La+

2 , O−
2 , and Cu+

2 . Therefore, any picture within a simple band structure
theory would predict that at half-filling the cuprates have a metallic ground
state and fail to reproduce the insulating behavior of undoped La2CuO4 . The
inconsistency of LDA is a direct consequence of an improper treatment of strong
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Figure 1.2: Simple Sketch of the phase diagram of the copper oxide superconduc-
tors. The system is a Mott insulator at half-filling (x = 0) and the ground-state
is antiferromagnetic. The antiferromagnetism is progressively destroyed when
additional holes are put in the two dimensional planes (x > 0) or when holes
are removed from the planes (x < 0). In La2−xBaxCuO4 , the system becomes
superconducting at low temperature for hole doping x ≈ 0.1. On top of the
superconducting phase, the compounds show many peculiar behaviors and do
not behave like a normal metal. This phase is called the pseudo-gap phase. In
the high doping limit, the ground sate is again a normal metal. Wether T ∗ falls
inside the superconducting dome or not is an interesting question : it was pro-
posed that the pseudo-gap phase would be still present if the superconducting
instability would not exist. On the other hand, it was also proposed that the
pseudo-gap phase is strongly connected to the SC instability and would not exit
alone. The possibility for a quantum critical point (QCP) is also a controversial
open question.
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local Coulomb correlations. To incorporate electronic correlations, one has to
map the complicated band structure onto effective microscopic models which
treat in a better way the electron-electron interactions.

The importance of the strong correlations in these materials is corroborated
by the vicinity of the metal-insulator transitions, of the antiferromagnetism insta-
bility, and also by the presence of superconductivity in this phase diagram. These
phases are frequently attributed to electron interaction effects in the context of
doped Mott insulators.

Indeed, the low-energy charge and spin dynamics of the cuprates displays
many features which defy an interpretation in terms of normal Fermi-liquid the-
ory. In the compounds, most noteworthy are the unconventional temperature
and frequency dependencies of various scattering rates and cross sections, which
allow to think that strong correlation might be responsible for these unconven-
tional electronic behaviors. Various theoretical scenari have been proposed which
speculate on the complete breakdown of Fermi-liquid theory including new and
exotic quantum ground states of the spin and charge carriers.

Nevertheless, despite many unexpected features and unconventional behaviors
in the high Tc compounds, a number of electronic properties remain which are
quite conventional and thereby constrain possible theories. In particular, the
angular resolved photo-emission (ARPES) reveals the presence of a normal Fermi
surface in the metallic compounds [5]. Moreover, photoemission data identifies
dispersive single-particle states which seem related to the predictions of the LDA
although they exhibit significant mass enhancement [6].

In conclusion, the compounds are expected to be highly correlated, with an
effective bandwidth roughly equal to the effective local Coulomb interaction. The
undoped materials are antiferromagnetic charge transfer insulators at half-filling,
and upon doping the antiferromagnetism is destroyed and the system becomes
superconducting. At small doping, in the proximity of the antiferromagnetic
phase, the normal state physics cannot be described in terms of Fermi liquid
theory and is characterized by the presence of a pseudo-gap.

An essential requirement of any successful theory is to capture all these fun-
damental features at the same time.

1.4 Microscopic models for the cuprates

1.4.1 Three band Hubbard model

The electronic properties of oxide high-Tc superconductors have been extensively
investigated over the last decade. The mechanism of superconductivity (SC) has
been studied using various two-dimensional (2D) models of electronic interactions.
One of the models proposed to describe the physics of high Tc materials was the
so-called three-band Hubbard model introduced by Varma et al. [7] and Emery
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et al [8]. This Hamiltonian considers only the in-plane oxygen pσ and dx2−y2

orbitals, and is defined in hole notations:

H =
∑
〈i,j〉σ

(
Si,jti,jd

†
iσpjσ + c.c.

)
+

∑
〈i,j〉σ

(
Si,jti,jp

†
iσpjσ + c.c.

)
+

Up

∑
p

n̂p↑n̂p↓ + Ud

∑
d

n̂d↑n̂d↓ + ∆p

∑
p,σ

n̂pσ + Vdp

∑
d,p

n̂dn̂p (1.1)

where ti,j is the hopping matrix, and contains copper-oxygen (oxygen-oxygen)
transfer integrals tdp (tpp). The parameters of the three-band Hubbard model are
given by the energy of the atomic level of the p electrons ∆p, by Ud and Up the
respective on-site repulsion at the dx2−y2 and pσ orbitals, and Vdp is the nearest
neighbor repulsion between the d and p orbitals. Realistic sets of parameters
were found by LDA calculations [8, 9, 10], though it is generally argued that the
parameters should not be taken too seriously, that is within 30%. The cuprate
compounds have one hole per Cu site at half-filling, and usually it is easier to
work in hole notations, hence d† (p†) creates one hole on a copper (oxygen) site.
The matrix Si,j contains the phase factor that comes from the hybridization of
the p-d orbitals 2.

In the limit tdp � Ud − ∆p, tdp � ∆p and ∆p < Ud, the dp model can be
mapped onto the t−J model with [11]:

J = 4t2eff

(
1

Ud
+

2

2∆p + Up

)
, (1.2)

where teff ≈ t2dp/∆p and JK = 4teff is the antiferromagnetic exchange coupling
between the d and p holes. Since ∆p/tpd is not so large in real materials, the map-
ping to the t−J model is not necessarily justified in this simple limit, though the
mapping would still be relevant by considering the full canonical transformation.

Zhang and Rice [12] argued that the low-energy physics of the hole-doped
three-band model can be described by a simpler one-band t−J model. Starting
from the three-band model and neglecting the oxygen dispersion, Zhang and
Rice showed in perturbation theory that an additional hole put into the oxygen
band binds strongly with a hole on the Copper atom, forming an on-site singlet.
This singlet state can be thought of as moving through the lattice like a hole
in an antiferromagnetic background. Therefore the physics can be described by
a one-band t−J model, which contains a kinetic part which describes in the
three-band language the hopping of the singlet state. Pertinent criticism to this
simplified model were raised by different authors. For instance, it was stressed

2In hole notations the bonding orbitals enter the Hamiltonian with a positive transfer integral
sign, and the anti-bonding orbitals with a negative sign. In electron notations, the signs are
reversed.
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that the other d and p orbitals might be important and should be considered in
the theory. Nevertheless, the Zhang-Rice theory is widely accepted nowadays,
probably the most serious critique to it is the neglect of the tpp transfer integral.

1.4.2 Hubbard and t-J models

One of the most studied one band model which takes into account the strong
correlations is the Hubbard model :

HHubbard = −t
∑
〈i,j〉,σ

(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓ (1.3)

where c†i σ creates an electron at site i and 〈i, j〉 are nearest neighbors site of
the lattice. The first term is a kinetic energy term, that takes into account the
hopping of the electrons and the second term is an on-site Coulomb repulsion
term. This model leads to the free-particle tight-binding case when U = 0, and
we get in this limit the usual band structure theory, whereas when t = 0 the
model is fully localized and the ground state is an insulator. At half-filling,
the model has one electron per site of the lattice, and by increasing the on-site
Coulomb repulsion U the ground state moves from a metal to a Mott insulator
(Metal-Insulator transition).

Starting from the Hubbard model, which contains doubly occupied sites, and
performing a canonical transformation, it is straightforward to get an effective
t−J model within the subspace of the Hilbert space that contains no doubly
occupied site :

Ht−J = −t
∑
〈i,j〉,σ

(
c†iσcjσ + h.c.

)
+ J

∑
〈i,j〉

(
Si · Sj −

1

4
ninj

)
+

J3

⎛
⎝ ∑

〈i,j,k〉σ
tijc

†
iσcjσc

†
j−σck−σ + tijnkc

†
iσcjσ + c.c.

⎞
⎠ (1.4)

The t−J model describes, like the Hubbard model, electrons hopping with
an amplitude t and interacting with an antiferromagnetic exchange term J . The
first term describes the nearest neighbor hopping between sites of the lattice
allowing the electrons to delocalize. The second term represents the nearest
neighbor exchange interaction between the spins of the electrons. The exchange
interaction is considered for electrons lying on nearest neighbor sites (denoted
〈i, j〉). Si denotes the spin at site i, Si = 1

2
c†i,α�σα,βci,β, and �σ is the vector of Pauli

matrices. The J3 term in the t−J model is usually dropped out for simplicity,
though its amplitude is not expected to be negligible. When t = 0, the t−J
model is equivalent to the Heisenberg model. Ht−J is restricted to the subspace
where there are no doubly occupied sites.
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The mapping of the Hubbard model on the t−J model is done by using
a unitary transformation eiS that decouples the Hilbert space of the Hubbard
Hamiltonian so that there are no connections between the subspaces with different
numbers of doubly occupied sites. This transformation is an expansion in (t/U),
so that the subspaces are decoupled at each order. At first order, the operator
Ŝ is given by Ŝ = − 1

iU
(F+1 − F−1), where F1 (F−1) is the part of the kinetic

operator that increases (decreases) the number of doubly occupied sites by unity.
The spin operator in the fermionic language can be more easily understood

by its effect on single-particle fermionic states. We consider first the dot product
of the spin operators :

Si · Sj =
1

2

(
S+

i S
−
j + S−

i S
+
j

)
+ Sz

i S
z
j (1.5)

S+
i , when applied a fermion with spin down, is equivalent to a spin-flip process :

S+
i

(
c+i↓ |0〉

)
= c+i↑ |0〉 (1.6)

On the other hand, the up fermion state is contained in the Kernel of the S+
i

operator:
S+

i

(
c+i↑ |0〉

)
= 0 (1.7)

And finally Sz
i is diagonal and gives the spin of the fermion state:

Sz
i

(
c+iσ |0〉

)
= σ

(
c+iσ |0〉

)
(1.8)

Finally, the exchange coupling J is obtained from the canonical transformation
of the Hubbard model and is given by J = 4t2/U . When the on-site repulsion
is very large the exchange process of two neighbors up and down spins vanishes.
This is intuitive, since the exchange of two fermions is a second order process
that makes an up fermion hop on the same site than a down fermion. In the
limit when U is small, the canonical transformation is no longer valid, since the
Hilbert sector containing the single occupied site is no longer decoupled from
the highest energy states. Finally, let us note that the exchange coupling J is
antiferromagnetic.

To illustrate the physics of the t−J model, we consider first a simple toy
model of two Heisenberg spin coupled through an antiferromagnetic coupling
J : H = J

∑
〈i,j〉

Si · Sj . The ground-state for this model is a singlet with energy

E = −3J/4, and the higher energy state is a triplet with energy E = J/4. A
naive expectation, when dealing with antiferromagnetic quantum spin systems,
is that the ground state in one or two dimensions might be therefore a singlet as
well. It is worth looking at the energy of the singlet state in the one dimensional
spin-1/2 case, since in this limit the exact solution is known (Bethe Ansatz).
The spin-1/2 system is gapless, in contrary with the spin-1 chain that is gapped
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(Haldane gap). In the one dimensional spin chain, a pure valence-bond 3 wave-
function is clearly not the ground state but it gives indeed an energy that is even
better than the classical antiferromagnetic state:

• Classical antiferromagnetic state : E = −0.25J

• valence-bond of singlet states : E = −0.375J

• Exact ground state energy (Bethe Ansatz) : E = −
√

2 log 2J ≈ −0.43J

Clearly the valence-bond state made of dimers is not close to the ground state of
the one-dimensional chain, though it were the case if we introduce the coupling
of the spin degrees of freedom to the lattice (there is an energy gain due to the
elastic energy that is reduced by forming singlets, this is the so called Spin-Peierls
instability). Nevertheless, it can still be expected, although the pure valence-
bond state is not a good approximation of the ground-state, that a superposition
of many valence-bond state (resonating valence-bond) will give a good Ansatz
that keeps the key ingredient of the low energy physics. The valence-bonds are
expected to give a good variational basis to describe the low energy physics of
the model. This later argument is at the basis of the ideas of Anderson, and such
a proposal was made for the triangular lattice in 1975 [13].

1.4.3 Anderson’s Resonating valence-bond theory

The discovery of high-Tc superconductivity, and the observation [14] that strong
correlations are important in connection with these compounds has led to a
tremendous interest in understanding strongly correlated electron physics. In
particular the two simplest models for strongly correlated electrons, namely the
Hubbard and t−J models, have been the subject of intensive studies. In a mile-
stone paper of 1987, Anderson proposed [14] that a resonating valence-bond
(RVB) wave function, which consists of a superposition of valence-bond states
(see Fig. 1.3), contains the ingredient to account for a consistent theory of the
Hubbard and t−J models. The t−J model on the square lattice has been dis-
cussed extensively in the context of high-Tc superconductivity, especially as a
framework for the implementation of the resonating valence bond (RVB) sce-
nario proposed by P.W. Anderson [15]. The t−J model can be viewed as the
large on-site repulsion limit of the Hubbard model, and therefore at half-filling
it describes an antiferromagnetic insulator. An RVB theory for the insulating
state predicts that the preexisting singlet pairs become superconducting when
the insulator is doped sufficiently. In that case the superconductivity would be
driven exclusively by strong electron correlations.

3A valence-bond state is a paving of the chain with nearest neighbors singlets.
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To illustrate our future strategy, let us recall in more details the simple basis
of the RVB theory. Anderson propose to write the exchange part of the t−J
model in terms of singlet creation operators:

b+i,j |0〉 =
c+i↓c

+
j↑ − c+i↑c

+
j↓√

2
|0〉 =

1√
2

(|↓i↑j〉 − |↑i↓j〉) (1.9)

This leads to the following equivalent Hamiltonian :

Ht−J = −t
∑
〈i,j〉σ

c†iσcjσ − J
∑
〈i,j〉

b†i,jbi,j (1.10)

In this language, the exchange term of the t−J model can be seen as a term
that condenses singlets. A simple mean-field decoupling of the singlet creation
operator was proposed by P.W. Anderson:

∆i,j = 〈bi,j〉0 (1.11)

The mean-field hamiltonian is:

HMF = −t′
∑
〈i,j〉σ

c†iσcjσ − J

⎛
⎝∑

〈i,j〉
〈b†i,j〉bi,j + b†i,j〈bi,j〉 + 〈b†i,j〉〈bi,j〉

⎞
⎠ (1.12)

And if the quantum fluctuations around the mean-field value are small, the final
mean-field Hamiltonian reads:

HMF =
∑

k

εk

(
c†kσckσ + c.c.

)
+

(
∆kc

†
k↑c

†
−k↓ + c.c.

)
(1.13)

Therefore the BCS mean-field theory is recovered as a mean-field theory of the
t−J model. The pairing order parameter assumed above is defined in real
space. For example, when ∆ is isotropic the Fourier transform of the pair-
ing leads to the so called s-wave symmetry, and for the square lattice we get
∆k = ∆ (cos(kx) + cos(ky)). In the case when ∆ij has alternating sign on the
square lattice (+1 on the horizontal bonds and −1 on the vertical bonds) the
Fourier transform gives the d-wave pairing symmetry ∆k = ∆ (cos(kx) − cos(ky)).
The BCS wave-function has the peculiar property that it is a superposition of
different numbers of particle states. Even more relevant, the full projection that
forbids doubly occupied sites in the t−J model is not taken into account by the
simple mean-field decoupling. Therefore, we have to remove the doubly occupied
site of the wave-function. As a first step, the wave-function is written in real
space :

|ψ〉 =
∏

k∈BZ

(
uk + vkc

+
k↑c

+
−k↓

)
|0〉 ∝

∏
k∈BZ

(
1 +

vk

uk

c+k↑c
+
−k↓

)
|0〉 (1.14)
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This can be expanded in power of c+k↑c
+
−k↓, and we get:

|ψ〉 =
∏

k∈BZ

(
1 +

vk

uk
c†k↑c

†
−k↓ +

(
vk

uk
c†k↑c

†
−k↓

)2

+ ..

)
= exp

(∑
k

vk

uk
c†k↑c

†
−k↓

)
(1.15)

In this representation, we can project the wave-function on a state with fixed
number of particles. The variance of the number of particles in the BCS wave-
function behaves like 1/

√
N , and the projection of the wave-function on a state

with a fixed number of particle is not inducing drastic changes when the system
is large. Hence, the wave-function that we consider is:

|ψ′〉 = PN exp

{∑
i,j

(∑
k

vk

uk
eik(Ri↑−Rj↓)

)
c†i↑c

†
j↓

}
|0〉 (1.16)

And uk and vk are respectively the particle and the hole densities :

uk =
1√
2

√√√√1 − γk√
γk + |∆k|2

(1.17)

vk =
1√
2

√√√√1 +
γk√

γk + |∆k|2
(1.18)

υk/uk = ∆k/
(
ξk + ξ2

k + ∆2
k

)
1/2

)
(1.19)

Very interestingly, the obtained projected BCS wavefunction can be written as a
superposition of dimer paving of the lattice:

|ψ′〉 = PN |ψBCS〉 =

(∑
i,j

f(i, j)c+i↑c
+
j↓

)N/2

|0〉 (1.20)

where fij depends on the choice of the order parameters. In the case of BCS
projected wave-function, we have:

fBCS(i, j) =
∑

k

vk

uk

eik(Ri↑−Rj↓) (1.21)

The fij plays the role of a pairing amplitude between a pair of electrons. The
wave-function (1.20) is actually a superposition of many valence-bond configu-
rations (see Fig.1.3), and was named resonating valence-bond state (RVB). To
summarize, at zero temperature, the RVB theory can be formulated in terms of a
variational wavefunction obtained by applying the so called Gutzwiller projector,
that removes the doubly occupied site of the BCS wavefunction. The projected



1.4. MICROSCOPIC MODELS FOR THE CUPRATES 27

Figure 1.3: The projected BCS wave-function is a superposition of valence-bond
states (resonating valence-bond state). A valence-bond state consist of a paving
of the lattice with short-range dimers.

BCS wave-function is expected to be a good starting point to describe a doped
Mott insulator. However, at half-filling the t−J model reduces to the Heisenberg
model, and it was pointed out that the magnetic order is not destroyed by the
quantum fluctuations, though it is renormalized down to 60% of the classical
value on the square lattice [16]. Therefore, we have to take into account an ad-
ditional mean-field decoupling that allows to put back the long-range magnetic
correlation in the wave-function. This can be done by considering additionally a
spin decoupling of the exchange term in the t−J model:

Ht−J ≈ −t
∑
〈i,j〉σ

(
c†iσcjσ + c.c.

)
+
J

2

⎛
⎝∑

〈i,j〉
〈Sj〉Si + Sj〈Si〉

⎞
⎠

− J

2

⎛
⎝∑

〈i,j〉
〈b†i,j〉bi,j + b†i,j〈bi,j〉

⎞
⎠ (1.22)

As a matter of fact, the more general quadratic mean-field hamiltonian can be
obtained after a mean-field decoupling of the t−J model, where the decoupled
exchange energy leads to the χij, ∆i,j and hi order parameters:

HMF = −t
∑
〈i,j〉σ

(
χi,jc

†
iσcjσ + h.c.

)
+

∑
〈i,j〉σiσj

(
∆

σiσj

i,j c+iσi
c†jσj

+ h.c.
)

+
∑

i

hiSi − µ
∑
iσ

niσ (1.23)

The first term in Hamiltonian (1.23) is a renormalized hopping term, that is al-
lowed to take a complex phase. The phases are associated with a vector potential
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A(r) by the usual relation:

χij = |χij | exp

[
i
π

φ0

∫ rj

ri

A(r) · dr
]
, (1.24)

and it describes an electron moving in an external magnetic field given by the
gauge field A(r). Consequently, the θij order parameter breaks the time-reversal
symmetry of the original t−J model. The second term in HMF is the usual
BCS pairing order parameter, it can be singlet or triplet pairing. The pairing
parameter breaks the one dimensional U(1) symmetry. For the d-wave RVB
phase, ∆i,j is a nearest neighbor d-wave pairing with opposite signs on the vertical
and horizontal bonds. Finally, the last term of the hamiltonian couples the
spin operator to a classical external magnetic field. This latter term breaks
the SU(2) symmetry. When this latter order parameter is present, the ground
state of Hamiltonian (1.23) is no longer a singlet. Finally, µ plays the role of
a chemical potential and allows to control the number of particles in the non-
projected wavefunction. We can expect that each of these instabilities could be
stabilized in doped Mott-insulator, since the order parameter are obtained by
natural decoupling of the exchange term of the t−J Hamiltonian.

Although the t−J is formulated in a very simple form, the nature of the
quantum correlations makes its physics very rich. One question of crucial interest
is the interplay between superconductivity and antiferromagnetism close to the
insulating phase in the t−J model. The ground state of this model on the square
lattice is known to be antiferromagnetic at half-filling and one of the important
questions is what happens upon doping. Although all the approaches to these
strong coupling problems involve approximations, and it is sometimes difficult to
distinguish the artefact due to approximations from the true features of the model,
for the case of the square lattice, both the variational Monte Carlo method (VMC)
[17, 18, 19] and mean-field theories [20] have found a d-wave superconducting
phase in the the t−J model and a phase diagram which accounts for most of the
experimental features of the high-Tc cuprates [21, 22].

In the limit of vanishing doping (half-filling), the d-wave RVB state can be
viewed as an (insulating) resonating valence bond (RVB) or spin liquid state. In
fact, such a state can also be written (after a simple gauge transformation) as
a staggered flux state (SFP) [20, 23], i.e. can be mapped to a problem of free
fermions hopping on a square lattice thread by a staggered magnetic field.

Upon finite doping, although such a degeneracy breaks down, the SFP remains
a competitive (non-superconducting) candidate with respect to the d-wave RVB
superconductor [24]. In fact, it was proposed by P.A. Lee and collaborators
[25, 26, 27] that such a state bears many of the unconventional properties of the
pseudo-gap normal phase of the cuprate superconductors. This simple mapping
connecting a free fermion problem on a square lattice under magnetic field [28]
to a correlated wave-function (see later for details) also enabled to construct
more exotic flux states (named commensurate flux states) where the fictitious
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flux could be uniform and commensurate with the particle density [29, 30]. In
this particular case, the unit-cell of the tight-binding problem is directly related
to the rational value of the commensurate flux.

Eventually, we expect that the wave-function given by (1.23) is a good starting
point to approximate the ground state of the t−J model. However, such a wave-
function obviously does not fulfill the constraint of no-doubly occupied site (as
in the t−J model). This can be easily achieved, at least at the formal level,
by applying the full Gutzwiller operator [31] PG =

∏
i(1 − ni↑ni↓) to the BCS

wave-function |ψBCS〉:
|ψRVB〉 = PG |ψBCS〉 . (1.25)

The main difficulty to deal with projected wave-functions is to treat correctly
the Gutzwiller projection PG. Indeed, the full Gutzwiller projection cannot be
treated exactly analytically and none of the observables can be easily calculated.
Actually, the properties of the projected wavefunction can be evaluated in several
ways, e.g. by using a Gutzwiller approximation to replace the projector by a
numerical renormalization factor. Alternatively the properties of the projected
wavefunctions can be obtained numerically using the Variational Monte Carlo
method. The numerics, using the variational Monte Carlo (VMC) technique [32,
18,19,21] on large clusters, allow to treat exactly the Gutzwiller projection within
the residual statistical error bars of the sampling. It has been shown that the
magnetic energy of the variational RVB state at half-filling is very close to the best
exact estimate for the Heisenberg model. Such a scheme also provides, at finite
doping, a semi-quantitative understanding of the phase diagram of the cuprate
superconductors and of their experimental properties.

Finally, a projected wavefunction combining antiferromagnetism and super-
conductivity was proposed for the Hubbard and t−J models [33,32], allowing to
reconcile the variational results between these two models. This wavefunction
allowed for an excellent variational energy and order parameter and a range of
coexistence between superconductivity and anti-ferromagnetism was found. Fur-
ther investigations of this class of wavefunctions has been very fruitful for the
square lattice. This allowed to successfully compare to some of the experimen-
tal features with the high-Tc cuprates [21, 34], even if of course many questions
remain regarding the nature of the true ground state of the system.

1.5 Scope of the Dissertation

Motivated by the success of variational Monte Carlo to describe some of the
peculiar properties of the cuprates, we propose, on one hand to extend the method
to other strongly correlated models for other compounds, and on the other hand
we will focus on the pseudo-gap phase of the cuprates. The thesis is organized as
follows:
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• In Chapter 2 the variational method and its extension are described.

• Chapter 3 is devoted to the study of superconductivity and magnetism in
the context of the cobaltites.

• In Chapter 4 we study strongly correlated properties of graphene and carbon
nanotubes.

• Chapter 5 is devoted to the study of possible checkerboard patterns in the
pseudo-gap phase of the cuprates, which is showing very peculiar properties
and is a very challenging phase to understand at the theoretical level.

• Chapter 6 is devoted to the investigation of the possibility for spontaneous
orbital currents in the cuprates, that might be candidates to describe the
pseudo-gap phase of the cuprates.

• Finally, in Chapter 7, a summary of the work is given and the outlooks and
extensions related to the present work are discussed.



Chapter 2

Numerical Methods

2.1 Variational Monte Carlo

In order to propose a good variational Ansatz for strongly correlated models, the
starting point consists the considering a rich enough mean-field Hamiltonian that
contains the main physical ingredients of the original model. The most general
quadratic fermionic Hamiltonian is given in equation (1.23). The ground-state of
this simple Hamiltonian is given by the usual Bogoliubov canonical transforma-
tion: ∑

j

(
K↑,i,j ∆i,j

∆†
i,j −K∗

↓,i,j

)(
uα(rj)
υα(rj)

)
= Eα

(
uα(ri)
υα(ri)

)
(2.1)

where Kij is the tight-binding part of the mean-field Hamiltonian and ∆ij is the
pairing. Here we have considered for clarity only the case of singlet pairing. The
ui

n and vi
n are in this language the particle and hole densities and are coupled

together by the above equations. This system of equation can be diagonalize
numerically and the un and vn coefficients can be extracted. The pairing, the
current and the densities can be easily obtained from these coefficients by using
the usual mean-field equations [35, 36, 37, 38, 39, 40]:

∆ij = 〈cj,↓ci,↑〉 =
∑

n

(
uniυ

†
nj + unjυ

†
ni

)
(1 − 2f(En)) (2.2)

ni,↑ =
〈
c†i,↑ci,↑

〉
=

∑
α

|uα(ri)|2f (Eα) (2.3)

ni,↓ =
〈
c†i,↓ci,↓

〉
=

∑
α

|υα(ri)|2 (1 − f (Eα)) (2.4)

f(E) is the usual Fermi-Dirac distribution. The wavefunction can straightfor-
wardly be built from the Bogoliubov quasi-particle operators (bogolons) that are
defined by :

αλ =
∑

i

(
uλ

i ci↑ + υλ
i c

†
i↓
) (
Eλ < 0

)
(2.5)

31
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The ground state is obtained by the application of the bogolons on the vacuum
of these operators :

|ψ〉 = PNe Π
λ
α†

λ |0bcs〉 (2.6)

PNe projects the wavefunction on a state with Ne particles. The brute-force cal-
culation of the latter equation is a generally non-trivial task, since the bogolons
(the quasi-particle operator that are obtained after diagonalization of HMF ) con-
tains both creation and destruction fermionic operators, and the product of the
bogolons generates a series of terms with different number of fermions. The num-
ber of bogolon states increases with the size of the unit cell of the lattice and
the brute force calculation can be done up to unit cell with size about 10 sites.
Indeed, it was shown that the wavefunction can be obtained by [41]:

|ψ〉 = PNe exp

(
−

∑
ij

(
U−1V

)
ij
c†i↑c

†
j↓

)
|0〉 (2.7)

where U and V are matrices defined by (Vλ)j = vλ
j and (Uλ)j = uλ

j . In or-
der to prove this result, let us assume that the ground state of the mean-field
Hamiltonian has the following form:

|ψ〉 = PNe exp

(∑
ij

φijc
†
i↑c

†
j↓

)
|0〉 (2.8)

Since the superconducting state satisfies aλ|ψ〉 = 0, we find :∑
i

(
uλ

i ci↑ + υλ
i c

†
i↓
)
|ψ〉 = 0 (2.9)

Operating U−1 to this equation, the ground state |ψ〉 satisfies:[
cj↑ +

∑
i

∑
λ

(
U−1

)
jλ
Vλic

†
i↓

]
|ψ〉 = 0 (2.10)

On the other hand, using the anti-commutation relation of the bogolon operators,
we derive from equation (2.8) :(

cj↑ −
∑

i

φjic
†
i↓

)
|ψ〉 = 0 (2.11)

which proves the identity (2.7). In conclusion, the ground-sate of the supercon-
ducting mean-field Hamiltonian is given by,

|ψ〉 ≈
[∑

ij

(
U−1V

)
ij
c†i↑c

†
j↓

]Ne/2

|0〉 (2.12)
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and additionally:

φij = −
∑

λ

(
U−1

)
iλ
Vλj = −

(
U−1V

)
ij

(2.13)

The Monte Carlo algorithm by Ceperley [42] is applicable to wavefunction of
the form (2.7). These functions were extensively studied by variational Monte
Carlo [43, 44, 18, 19, 21, 32].

To handle these functions, we have first to write them in terms of the real
space fermionic configurations. A real space configuration of a fix number of
fermions is defined as :

|α〉 = c+R1↑...c
+
RNe/2↑c

+
R′

1↓.....c
+
R′

Ne/2
↓ (2.14)

and we project the wavefunction in this basis:

|ψ〉 =
∑

α

〈α|ψ〉|α〉 (2.15)

The projection of the wavefunction on a configuration state |α〉 is a sum of all
the permutations of the fermions in this configuration:

|ψ〉 =

(∑
i,j

a(i, j)c+i↑c
+
j↓

)Ne/2

|0〉 =

∑
i1...iNe/2j1...jNe/2

{
a(i1, j1)...a(iNe/2, jNe/2)

}
c+i1↑c

+
j1↓......c

+
iNe↑c

+
jNe↓ |0〉 (2.16)

It is straightforward to prove that the coefficient is indeed a determinant (see
Appendix A):

〈α|ψ〉 = det {Q = {ai,j}} (2.17)

Now that the wavefunction is written in the real-space representation, the ob-
servables can be easily computed using Monte Carlo calculations. For instance,
the variational energy is calculated as follows:

〈ψ|H|ψ〉
〈ψ|ψ〉 =

∑
α,β

〈ψ|α〉
〈ψ|ψ〉〈α|H|β〉〈β|ψ〉 (2.18)

We can separate the sum in terms of a positive probability P (α) and of the local
energy e(α):

〈ψ|H|ψ〉
〈ψ|ψ〉 =

∑
α

|〈α|ψ〉|2

〈ψ|ψ〉︸ ︷︷ ︸
P (α)

⎛
⎜⎜⎜⎜⎜⎝
∑

β

〈α|H|β〉〈β|ψ〉〈α|ψ〉︸ ︷︷ ︸
e(α)

⎞
⎟⎟⎟⎟⎟⎠ (2.19)
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Since P (α) is a positive function, the sum can be sampled by Monte Carlo cal-
culations and no spurious sign problem occurs. The probability of a transition
from state X to a new state X ′ is given by:

P (X → X ′) = min

(
1,

|det(A(X ′))|2

|det(A(X))|2

)
(2.20)

Therefore, during a simulation the main task consists in calculating ratios of
determinants. Although the brute force calculation of a determinant scales like
N3 numerical operations, we can reduce it to N operations [42] by considering
optimized formulae that allow to compute directly ratios of determinants of two
matrices A′/A, where the two matrices A and A′ differ only the column j:

wj =
det(A′)
det(A)

=
∑

k

A−1
j,kvk (2.21)

where v is the column j of the new matrix A′. Similar formula can be obtained
when several lines and columns are updated at the same time in the new matrix
A′ (for further details see ref. [45]). However, the formula (2.21) involves the
inverse of the matrix A. The matrix A−1 can be updated when a set of rows
and/or columns are changed in the matrix A 1 each time that a Monte Carlo
move is accepted, and the update can be done in N2 numerical operation [42].
In the simple implementation of the Metropolis algorithm, the moves are often
rejected and therefore the formula 2.21 is the bottleneck of the simulation. A
even much improved algorithm, that updates directly the weights wj and does
not compute the inverse of the matrix A, is currently used by Sandro Sorella and
collaborators. This latter algorithm computes the weight wj in a single operation.
However, the implementation of such an algorithm is much more involved and is
beyond the scope of this dissertation.

2.1.1 Degenerate open shell

As discussed in the previous section, the variational wavefunction is built by
piling the quasi-particle states up to the Fermi energy, in the case of a tight-
binding wavefunction, or up to the chemical potential µ when the BCS pairing
is considered. When the energy of the single-particle state is non-degenerate
the resulting wavefunction is well defined. However, the wavefunction becomes
ambiguous when the energies are degenerate. This happens in finite size clusters,
due to the symmetry of the lattice: The k points are lying on shells of same energy.
This gives artificial degeneracies related to the different filling possibilities.

1 The hopping of one particle involves a change of row or a column in A, and the swap of
an up and down particles involves the change of both a row and a column in A.
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Figure 2.1: Number of particle in the non-projected RVB wavefunction versus
the chemical potential when the pairing is ∆ = 0, and for finite pairing in a
three band hubbard model. When ∆ = 0+, some of the numbers of particle are
forbidden due to the degenarate shells. In contrast, when ∆ > 0 the number of
particles evolves smoothly with the chemical potential.

In the language of the non-projected RVB wavefunction this will give plateaus
in the number of particles versus the chemical potential (see Fig. 2.1) when
the pairing parameters vanish. Indeed, when the chemical potential reaches the
energy of a degenerate shell, all the particles in the plateau are filled and the
number of particles changes discontinuously. These spurious degeneracies can be
left out for the case of one band theories by considering rotated lattices : for
these lattices the k-vectors move out of the degenerate shells. This cannot be
done for more complicated multi-band theories, like for the three-band Hubbard
model discussed in Chapter 6. Nevertheless, when the pairing parameters are
finite, the number of particles is moving continuously with the chemical potential
and it is always possible to impose a fixed number of particles in the variational
wavefunction. It is therefore often more efficient to consider a small residual
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pairing also when tight-binding wavefunctions are considered. Therefore, for open
shells, we take fi,j with a small pairing in order to split the bare degeneracy, the
resulting wavefunction being still a singlet. Finally, to avoid spurious and peculiar
effects in the calculations, we impose that the non-projected wavefunction has
the same number of particle than the projected wavefunction.

2.1.2 Pfaffian variational Monte Carlo

In this section we address the issue of collinear magnetism or triplet pairing in
the mean-field Hamiltonian (1.23). In both cases, the exponent in (2.8) becomes
spin dependant:

|ψMF 〉 = exp

⎛
⎝1

2

∑
i,j,σi,σj

f
σi,σj

i,j c†i,σi
c†j,σj

⎞
⎠ |0〉 (2.22)

We emphasize that |ψMF 〉 has neither a fixed number of particles due to the
presence of the pairing, nor a fixed total Sz due to the non-collinear magnetic
order. Thus in order to use it for the VMC study we apply to it the following
projectors: PN which projects the wavefunction on a state with fixed number
of electrons, and PSz , which projects the wavefunction on the sector with total
Sz = 0.

Expanding (2.22) we get:

|ψ〉 = PN |ψMF 〉 (2.23)

=

{∑
i,j

λ(i, j)c+i↓c
+
j↓ + ω(i, j)c+i↑c

+
j↑ + θ(i, j)c+i↓c

+
j↑ + χ(i, j)c+i↑c

+
j↓

}N/2

(2.24)

=

{ ∑
i,j,σi,σj

D(i,j,σi,σj)c
+
iσi
c+jσj

}N/2

(2.25)

|ψ〉 =
∑

(R1..,RN/2)
(
R′

1..R′
N/2

)
{
D(R1,R′

1)
..D(RN/2,R′

N/2
)

}
c†R1

c†R′
1
..c†RN/2

c†R′
N/2

(2.26)

where we used the notations Ri = (xi, σi). Then the projection on the real basis
state 〈α| = 〈0| cR1 ..cRN

is given by :

〈α|ψ〉 =
∑
P

{
D(PR1

,PR2
)...D(PRN−1

,PRN
)

}
(−1)Signature(P) (2.27)

We introduced the notation P(Ri) = Rk, k = P(i).∑
P

{
D(PR1

,PR2
)...D(PRN−1

,PRN
)

}
(−1)Signature(P) = Pf(A) (2.28)
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where we have defined : Aij = (Di,j −Dj,i). The Pfaffian of a skew matrix is
related to the determinant [46]:

Pf(A)2 = det(A) (2.29)

However, the sign of the Pfaffian is not given by this relation and further algo-
rithms to compute the Pfaffian of a squew matrix must be used. In conclusion, we
find that the wavefunction projected on a real basis state when collinear/triplet
pairing are present is the Pfaffian of the real-space configuration anti-symmetrized
matrix A:

〈α | ψvar〉 = Pf (A)

Ai,j = f(ki,kj ,σi,σj) − f(kj ,ki,σj ,σi)

(2.30)

where Pf(A) denotes the Pfaffian of the matrix A. Using this last relation, the
wavefunction can now be evaluated numerically using a Monte Carlo procedure
with Pfaffian updates, as introduced in Ref. [47]. In the particular case where
fk,l,↑,↑ = fk,l,↓,↓ = 0 and at Sz = 0 (this happens if the BCS pairing is of singlet
type and the magnetic order is collinear), the Pfaffian reduces to a simple deter-
minant, and the methods becomes equivalent to the standard Variational Monte
Carlo [42] technique.

However, in the simulation we have to calculate the ratio of the two Pfaffians
of matrices Q and R that correspond to two different real-space configurations.
One of the main problem is that the sign of the Pfaffian is not given by the
general formula Pf(Q)2 = det(Q). However, it was shown by the mathematician
Arthur Cayley in 1849 that the ratio of the Pfaffian of two skew matrices, that
differ only by the column and the line i, is given by [48]:

Pf(Q)

Pf(R)
=

det(S)

det(R)
(2.31)

Where the matrix R is distinct from the matrix Q only by the line and the column
i, and the matrix S is distinct from the matrix R only by the column i. When
moving the particle labeled by index i from one site to another site, the line and
the column of the matrix A in equation (2.30) must be changed, and thus formula
(2.31) can be used. The ratio of the determinants can still be calculated with the
method of Ceperley [42]:

det(S)

det(Q)
=

∑
j=1,2N

cj
(
Q−1

)
j,i

(2.32)

where c is the updated column of matrix Q. Finally, we note that in the case
when fij↑↑ = fij↓↓ = 0, the matrix Q reduces to diagonal blocks:

A =

(
0 B

−BT 0

)
⇒ Pf(A) = detB (2.33)
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Where the matrix elements of B are the fij matrix of equation (2.8), and we get
back the usual determinantal variational Monte Carlo calculations. We emphasize
that the matrix that we need to update in the Pfaffian Monte Carlo simulations
has linear sizes twice larger than in the calculations with determinants. In conclu-
sion, the Pfaffian Monte Carlo procedure is nothing else but an extension of the
usual variational wavefunction method. This procedure allows to treat generally
every order parameter contained in the mean-field Hamiltonian (1.23). However,
we considered up to now only the uncorrelated part of the wavefunction. It will
likely contain many doubly occupied sites that will cost a lot of energy within
the Hubbard model. To treat correctly the correlations, we need to introduce an
additional projection that takes care of the doubly occupied site contained in the
wavefunction.

2.2 Jastrow factors, Gutzwiller projection

In the simplest approximation of the ground-state of the Hubbard model, a simple
Fermi sea can be considered, and a simple so-called Gutzwiller projection can be
used to treat the on-site repulsion of the Hubbard model. This gives one of the
simplest possible variational Ansatz :

|ψ〉 = PG|ψ〉 (2.34)

where ψ is the one-body wavefunction and the Gutzwiller projection PG is defined
as [49]:

PG = Π
i

(1 − (1 − g) n̂i↑n̂i↓) (2.35)

The variational parameter g is running from 0 to unity and i labels the sites of the
lattice in real space. The Gutzwiller projection is very well suited by the varia-
tional Ansatz described in the last section, since the numerical variational Monte
Carlo samples the wavefunction in the real-space fermionic configurations, and
therefore the Gutzwiller projector is a diagonal operator in this representation.
The Gutzwiller projection can be extended by the incorporation of a Jastrow
factor [50] which provides an additional powerful way to tune more precisely the
correlations of the wavefunction. Some of the possible choices of the Jastrow
term are the long-range charge Jastrow :

Jd = exp

(
1

2

∑
i,j

uijn̂in̂j

)
(2.36)

Another long-range spin Jastrow can also be considered :

Js = exp

(
1

2

∑
i,j

vijŜ
z
i Ŝ

z
j

)
(2.37)
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The full variational wavefunction is, when all these projections are considered:

|ψV MC〉 = JsJdPNPSz=0|ψMF 〉 (2.38)

Where PN projects the wavefunction on a state with fixed number of particles
N , and PSz=0 projects the wavefunction on the Sz

tot = 0 sector. We expect
that the projections allow to improve significantly the wavefunction. Let us
note that in the t−J model the situation is somehow simplified, since the full
projection contained in the model forbids any doubly occupied site. Therefore,
the local Gutzwiller projection is not needed. Nevertheless, the Jastrow term
between different site of the lattice might still play an important role. Finally,
we emphasize that the Jastrow parameters change the wavefunction’s energy on
much larger scales than the variations of the parameters in the one-body part.

2.3 Stochastic minimization

Quantum Monte Carlo methods are some of the most accurate and efficient meth-
ods for treating many-body systems. The success of these methods is in large
part due to the flexibility in the form of the trial wavefunctions, discussed in the
previous section, that results from doing integrals by Monte Carlo calculations.

Since the capability to efficiently optimize the parameters in trial wavefunc-
tions is crucial to the success of the variational Monte Carlo (VMC), a lot of
effort has been put into inventing better optimization methods. Two recent
works [51, 52] have put the limitations in the minimization procedure to even
further grounds.

In our work, we are mainly interested in the energy minimization, instead of
the possible variance minimization. Both minimization are not identical. The
variance of the wavefunction measures basically its distance to a true eigenstate
of the Hamiltonian, that might be an excited state and not the ground-state.

Therefore, one typically seeks the lowest energy by minimizing either the one-
body uncorrelated part of the variational wavefunction, that consist mainly of a
determinant or a Pfaffian of a matrix, or by minimizing the Jastrow variational
parameter, that consists of the strongly correlated part of the wavefunction.

To carry out the minimization, we start therefore by expanding in quadratic
order the wavefunction in a neighborhood of the parameters.

|ψα+γ〉 �
[
1 +

∑
k

γk (Ok − 〈Ok〉) +
β

2

∑
k,k′

γkγk′ (Ok − 〈Ok′〉)
]
|ψα〉 (2.39)

where ψα(x) is the variational wavefunction, with set of variational parameters
α = (α1...αm), projected on the real space fermionic configuration x. The Ok

operators are the logarithmic derivative of the wavefunction with respect to the
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variational parameters αk, and γk are the finite variations of the variational pa-
rameters. The Ok operators are defined by:

Ok (x) =
∂αk

ψα (x)

ψα (x)
(2.40)

We measure the energy difference between the expanded wavefunction and the
original function :

∆E = −
∑

k

γkfk +
1

2

∑
k,k′

γkγk′ [Sh + βG]k,k′
(2.41)

where we find, for complex evaluated functions 2:

Sk,k′
h = 〈O†

kH,Ok′〉 (2.42)

Gk,k′
= 2Re (〈H (Ok − 〈Ok〉) (Ok′ − 〈Ok′〉)〉) (2.43)

fk = −Re (∂αk
Eα) = −2Re (〈(H − Eα)Ok〉) (2.44)

On one hand, the linear term fk plays the role of a force on the variational param-
eters, on the other hand, the Sh matrix represent the excitation matrix elements
corresponding to the operators Ok and the G matrix helps the wavefunction to
converge when it is far from the ground-state. The minimum energy is obtained
for:

γ = B−1f (2.45)

B is given by:
B = Sh + (1 + β)G (2.46)

If B is not positive definite, the procedure does not converge. This typically
happens when the wavefunction is very far from the ground state and can be
repaired by adding a positive definite matrix Sk,k′

= 〈(Ok − 〈Ok〉) (Ok′ − 〈Ok′〉)〉
to the matrix B. We choose µ such that the energy variation in equation (2.41)
is optimal. The additional µS term allows also to control how much the wave-
function is changing at each iteration.

2.3.1 Implementation details of the stochastic minimiza-
tion

The remaining task for minimizing the wavefunction is the measurement of the
Ok operators. When Jastrow-like parameters are considered, Ok is diagonal in
the real space representation, and it is therefore straightforward to have a precise
estimation of the mean value of this operator. However, when the parameters

2Here the results are given for complex wavefunctions. In Ref. [51] the results are shown in
a more elegant way, but limited to the case of real functions.



2.3. STOCHASTIC MINIMIZATION 41

that vary are contained in the mean-field Hamiltonian (1.23), they enter in a non
trivial way into the one-body part of the wavefunction :

Ok =
δαk

ψα(x)

ψα(x)
=
δαk

det(Q(x, αk)))

det(Q(x, αk))
(2.47)

where Q is the matrix of equation (2.17). The derivative of a determinant is given
by the well known formula

δαk
det(Q(x, αk))

det(Q(x, αk))
= Trace

[
Q−1 δQ

δαk

]
(2.48)

Moreover, the derivative of the Q matrix with respect to the variational param-
eters is still unknown, and prompts for further calculations. Indeed, we should
recall that the matrix Q is obtained by the φij coefficient of equation (2.8), and
using equation (2.13)) we get :

δφij(x, αk)

δαk
=

δ

δαk

(
U−1V

)
ij

=
(
−U−1U ′U−1V + U−1V ′)

ij
(2.49)

where the U and V matrices are composed by the quasi-particle states that di-
agonalize the mean-field Hamiltonian (1.23). The final step consists in obtaining
the derivative of the eigenstate of HMF that enters in the U ′ and V ′ matrices.

2.3.2 Derivative of degenerate eigenvectors

The problem for computing eigenvector derivatives has occupied many researchers
in the past several decades. The reason why so many people are interested in
this problem is that derivatives of eigenvectors play a very important role in
optimal analysis and control system design, and may also be an expensive and
time-consuming task.

However, when all the eigenvectors are non-degenerate, the derivative of the
eigenvectors and eigenvalues is given by a very simple perturbation theory. Let
us consider the following eigenproblem :

|K0(p)|x0i = λ0ix0i (2.50)

The unperturbated Hamiltonian matrix K0(p) depends on some control param-
eter (or variational parameter) p that makes the system evolve. When the eigen
problem is perturbed with a linear perturbation in p:

[K] = [K0] + [δK] (2.51)

And we define the matrix D as the derivative of the Hamiltonian matrix K with
respect to p :

D =
δK0

δp
(2.52)
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The following change in the eigenvalues are obtained with first order perturbation
theory:

λi = λ0i + xT
0i ([δK])x0i, (2.53)

and the eigenvectors are given by:

xi = x0i +
∑
j 	=i

xT
0i ([δK])x0j

λ0i − λ0j
x0j (2.54)

The derivatives are easily obtained from these formulae. In the case of degen-
erate eigenvectors, the above formulae are no longer valid, and a more general
degenerate perturbation theory should be considered.

Research on the derivative of degenerate eigenvectors has been an area of sig-
nificant interest in recent years. Engineer have focused on the study of the so
called sensitivities, that are simply the derivatives of eigenvalues and eigenvectors
with respect to design parameters that make the matrix evolve. Degenerate eigen-
values are unavoidable in practice, and, for instance, appear in the calculation of
the derivatives of the eigenvectors of the BCS Hamiltonian.

We sketch only here the main results obtained for the derivate of a degenerate
eigenvector (for more details the reader is referred to Ref. [53,54,55,56]). Let us
assume without loss of generality that the first eigenvalue λ1 is degenerate with
multiplicity r. We define Φ as the matrix containing all the eigenvectors, Φ1 as
the matrix of the degenerate eigenvectors, and Φ2 as the matrix containing the
other vectors. With this definitions we have the trivial identity:

ΦTK0 (p)Φ = Λ =

[
λ11r 0

0 Λ2

]
, (2.55)

It can be proved that the derivative of the degenerate eigenvectors φ1 is :

Φ′
1 = Φ2 (λ1I − Λ2)

−1 ΦT
2DjΦ1 (2.56)

Knowing the derivative of the U and V matrices allows to measure the Ok ob-
servables of equation (2.40) and the stochastic minimization procedure is now
well defined.

2.3.3 Correlated measurement minimization

One limitation of the stochastic minimization method, in our present implemen-
tation, is that the formulae obtained for the derivation of a determinant are not
valid for the more general Pfaffian wavefunction, since there is no simple for-
mula for the derivative of a Pfaffian (see equation (2.48)). Therefore, in the case
of a Pfaffian Monte Carlo simulations, the gradients of the energy with respect
to the variational parameters have to computed numerically. This task is very
heavy and limits the minimization to a few parameters (about 10 parameters at
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most). Nonetheless, it is very difficult to get a precise estimation of a derivative
of a curve obtained by a set of points that have error bars due to the Monte
Carlo sampling. To overcome this problem, Umrigar has proposed [52] a corre-
lated measurement method to extrapolate the energy, starting from a given set
of variational parameters α, to the other parameters α′ lying in the vicinity of
α. The method is very simple, and consists in running a long simulation for the
α parameters, book-keeping in the memory every accepted and rejected Monte
Carlo moves. The mean-value of the energy of this simulation is given by:

〈ψ|H|ψ〉
〈ψ|ψ〉 =

∑
x,y

|〈ψ|x〉|2
〈ψ|ψ〉 〈x|H|y〉 〈y|ψ〉〈x|ψ〉 (2.57)

The energy for a another set of parameter (and another wavefunction ψ′) can be
obtained by using the same run, if the statistics is large enough, by 3:

〈ψ′|H|ψ′〉 =
∑
x,y

|〈ψ|x〉|2
(
〈x|H|y〉 〈y|ψ

′〉
〈x|ψ′〉

|〈ψ′|x〉|2
|〈ψ|x〉|2

)
(2.58)

The normalization 〈ψ′|ψ′〉 also needs to be calculated:

〈ψ′|ψ′〉 =
∑

x

|〈ψ|x〉|2
(
|〈ψ′|x〉|2
|〈ψ|x〉|2

)
(2.59)

This procedure was found to be very efficient when done on multiple computer
nodes within parallel simulations. In these simulations, each of the computer
node gives a value for the derivative that can be averaged to obtain a good
approximation of the gradients.

2.3.4 Multi - Determinant/Pfaffian wavefunctions

The single determinant or Pfaffian wavefunction described previously breaks ex-
plicitly the original symmetries of the Hubbard or t−J Hamiltonian. However,
the true ground-states of the later Hamiltonian never breaks the corresponding
symmetries when finite clusters are considered. The symmetry can be restored
in the wavefunction by considering a superposition of variational functions that
carry the order parameters:

|ψ〉 =
∑

i

λi|φi〉 (2.60)

where {|φi〉} is a variational basis of determinants or pfaffians. The Hamiltonian
matrix Hij and the overlap matrix Sij are defined as:

Hij = 〈ψi|Ĥ|ψj〉 (2.61)

Sij = 〈ψi|ψj〉 (2.62)

3The method is however not applicable, for a reasonable statistics, when the parameters α′

are too far from the initial parameter α.
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The variational energy is given by the lowest eigenvalue of the eigen-system:∑
j

Hijcj = E
∑

j

Sijcj (2.63)

The expectation value of other observables is given by:

〈Ô〉 =

∑
ij

c†icjOij∑
ij

c†icjSij

(2.64)

where Oij = 〈φi|Ô|φj〉. Moreover, we can follow similar steps as in section 2.3.3
to calculate the overlap matrix Sij and the matrix element Oij :

〈ψ2|Ô|ψ1〉 =
∑

x

|〈ψ1|x〉|2
(∑

y

〈x|O|y〉 〈y|ψ1〉
〈x|ψ1〉

)
〈x|ψ2〉
〈x|ψ1〉

(2.65)

By running a simulation for ψ1, we can generate the configurations {x} obtained
by a Metropolis algorithm with the probability p = min(1, |〈x|ψ1〉|2), and the
matrix element 〈ψ2|Ô|ψ1〉 are then easily obtained through the above equation.

2.4 Optimization of the wavefunction : Lanczos

Step

Once the energy of the wavefunction is satisfactorily optimized, we can system-
atically [57] improve the quality of the energy and of the variance by considering

the extended wavefunction |ψ′〉 =
(
1 + λĤ

)
|ψ〉. This procedure is similar to

what is done in a Lanczos calculation, though we apply here only one step of
the full Lanczos calculation. The wavefunction ψ′ can be sampled by using the
following relations:

ψ′
α (x′)
ψ′

α (x)
=

〈x′ |(1 + αH)|ψ〉
〈x |(1 + αH)|ψ〉 =

ψ (x′)
ψ (x)

(
1 + αEx′

1 + αEx

)
(2.66)

ψα(x′)/ψα(x) is the only necessary quantity that we need to perform the varia-
tional calculations. These calculations are however relatively heavy, and the cpu
time for further Lanczos steps increases very fast, such that a two-Lanczos step
calculation can only be done on small ≈ 20 site clusters. The parameter α is
an additional variational parameter, and a very powerful method was proposed
in Ref. [58] to find the optimal α for one Lanczos step calculations. The one
lanczos step applied on the optimized variational function is a further test for
the reliability of the method. Indeed, the variational results will certainly not
be well converged if the energy changes significantly after applying one Lanczos
iteration onto the optimized wavefunction.
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2.5 Physical observables

The strength of variational calculations is certainly that it is straightforward to
measure any correlations or observable with a given wavefunction. In particular,
we can sample wavefunction on very large system sizes and measure therefore
long-range correlations. Therefore, once the wavefunction is converged and the
variational energy is minimized, we measure every physical observable Ô sand-
wiched by the variational wavefunction. We give here some order parameter
example that we might be interested in:

• The magnetization of a coplanar magnetic order:

M =
1

N

∑
i

∥∥∥∥〈ψvar|Si|ψvar〉
〈ψvar | ψvar〉

∥∥∥∥ (2.67)

• A vectorial spin chirality on nearest neighbor bonds:

χ =
1

3N

∑
i,α

∣∣∣∣〈ψvar| (Si×Si+aα
)z |ψvar〉

〈ψvar | ψvar〉

∣∣∣∣ (2.68)

• The amplitude of the singlet superconducting order parameter:

∆ =

√√√√√ 1

4N

∣∣∣∣∣∣ lim
r→∞

∑
i

〈
ψvar|∆†

i,α∆i+r,β|ψvar

〉
〈ψvar | ψvar〉

∣∣∣∣∣∣, (2.69)

where
∆†

i,α = c†i,↑c
†
i+aα,↓ − c†i,↓c

†
i+aα,↑. (2.70)

The angular dependence of the real-space correlations can be extracted from
the correlations.

2.6 Auxiliary-field Quantum Monte Carlo

Although the variational Monte Carlo procedure described above allows to im-
plement in the wavefunction the long-range properties that might be relevant in
the low-energy phase diagram, the short range physics cannot be tuned and con-
trolled in the variational wavefunctions. Unfortunately, the short range physics
will undoubtly play an important role in the variational energy, since the Hub-
bard and t−J Hamiltonians are local theories. Therefore, some improvements of
the wavefunction might still be prompted for. One further variational technique
is the so-called Auxiliary-field Quantum Monte Carlo Method [59, 60, 61, 62, 63,
64, 65, 66, 67], which however suffers in the limit of large system sizes of the well
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known quantum sign problem. Moreover, this method is only valid for Hubbard
theories, and cannot be applied to the t−J models. This method will only be
considered in Chapter 6, where the three band Hubbard model is considered.

Nevertheless, AFQMC is certainly a powerful technique. The main advantage
of the techniques is first that it can deal with both real and complex wavefunc-
tions, and second it can deal with non-collinear magnetism and twisted spin
boundary conditions [59]. Finally, there is no special difficulty in AFQMC to
measure the physical observables. We discuss here shortly some of the outcomes
of this technique. In AFQMC, the following variational wavefunctions are con-
sidered:

ψ
(1)
S = e−λKe−αV ψMF (2.71)

ψ
(2)
S = e−λ′Ke−α′V e−λKe−αV ψMF (2.72)

ψ
(3)
S = e−λ′′Ke−α′′V e−λ′Ke−α′V e−λKe−αV ψMF (2.73)

ψ
(m)
S = e−λ1Ke−α1V ...e−λmKe−αmV ψMF (2.74)

|ψMF 〉 is the non-interacting wavefunction, and it is given by the slater determi-
nant of the matrix ψMF , its columns being the single particle states. The matrix
ψMF is a square matrix with size Ne × Ne when |ψMF 〉 is a tight-binding slater
determinant, and the matrix is rectangular with size 2N × Ne when |ψMF 〉 is
a BCS state, where N is the number of sites of the lattice and Ne the num-
ber of particles. Moreover, K denotes the kinetic part of the Hamiltonian, and
V denotes the on-site Hubbard interaction part. The parameters {λi}i=1,m and
{αi}i=1,m are variational parameters. For large m, we recover the Suzuki-Trotter
decomposition of the full Hamiltonian, and thus we expect the wavefunction ψm

S

to converge to the true ground-state when m is sufficiently large. Unfortunately,
the quantum sign problem becomes more severe when the number of iterations
is increased.

The AFQMC method is based on the decoupling of the interacting V part,
that maps the system to a free electronic problem coupled to fluctuating Ising
fields. More formally, we apply the Hubbard-Stratanovitch transformation, and
the Gutzwiller factor can be written in the possible following forms:

e−∆τUni↑ni↓ = e−∆τU(ni↑+ni↓)/2
∑

xi=±1

1
2
eγxi(ni↑−ni↓) (2.75)

e−∆τUni↑ni↓ = e−∆τU(ni↑+ni↓−1)/2
∑

xi=±1

1
2
eγxi(ni↑+ni↓−1) (2.76)

The former decoupling is real when U > 0 and the latter is real when U < 0.
Therefore, it is possible to work with real matrices for both the repulsive (U > 0)
or attractive (U < 0) Gutzwiller factor. Indeed, the Gutzwiller factor becomes at-
tractive when a particle-hole transformation is applied for the down spin species.
Such a transformation will be used to consider the BCS pairing wavefunction
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as one-body part in the AFQMC simulations. For clarity we describe below
the method when the former decoupling is used. Moreover, γ is defined by :
cosh(γ) = exp(∆τ |U |/2) ; si is a classical auxiliary Ising field configuration that
takes the value si = ±1. These identities come from the more general identity
that transforms any quadratic operator to a superposition of linear operators:

e−
∆τ
2

λυ̂2

=

∫ ∞

−∞
dx
e−x2/2

√
2π

ex
√−∆τλυ̂ (2.77)

We emphasize that the mapping (2.75) is not unique, as seen in equation (2.75),
and the sign problem that can occur in AFQMC depends strongly on the choice
of this mapping. The weight of the wavefunction ψm is therefore given by:

〈ψm|ψm〉 =
∑

(si1
)..(si2m

)

〈ψMF |eV (si1)eλ1K ...eV (sim)eλmKeλmKeV (sim+1
)...eV (si2m

)|ψMF 〉

(2.78)
where si1 is an Ising spin configuration on the lattice and the potential V (u) is
given by :

V1(u) = exp

(
2γσ

∑
i

uiniσ

)
(2.79)

V2(u) = exp

(
−γ

∑
i

ui

)
exp

(
2γ

∑
i

uiniσ

)
(2.80)

depending on whether the attractive (V1(u)) or repulsive (V2(u)) Gutzwiller pro-
jection is used. In the former case, the Hubbard-Stratanovitch transformation
maps the correlated problem on uncorrelated fermions with the spin degrees of
freedom coupled to a fluctuating field, and in the latter case the charge degrees of
the fermions are coupled to the field. The V1(u) and V2(u) operators are diagonal
matrices. For instance V1(u) is given by:

V1 (u, γ) = diag (2γu1, · · · , 2γuN ,−2γuN+1, · · · ,−2γu2N) (2.81)

Several properties of the Slater determinants are worth mentioning. For any pair
of real non-orthogonal Slater determinants, |φ〉 and |φ′〉, it can be shown that
their overlap integral is:

〈φ|φ′〉 = det
(
ΦT Φ′) (2.82)

The operation on any Slater determinants by any operator B̂ of the form:

B̂ = exp

(∑
ij

c†iUijcj

)
(2.83)

simply leads to another Slater determinant [68, 69, 70, 71, 64] :

B̂|φ〉 = φ†
1
′φ†

2
′...φ†

M
′|0〉 = |φ′〉 (2.84)
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with φ†
m =

∑
j

c†jm and Φ′ = eUΦ, where U is a square matrix whose elements

are given by Uij and B = eU is therefore an N × N square matrix as well. In

conclusion, the operation of B̂ on |φ〉 simply involves multiplying an N × N
matrix by an N ×M matrix. This allows to apply the exponential of the kinetic
term eλK on the Salter determinant |ψMF 〉. Furthermore, for two states |L〉 and
|R〉 represented by Slater determinants L and R respectively, the single-particle
right and left Green functions are written as :

GL
ij ≡

〈
L
∣∣∣c†icj∣∣∣R〉
〈L |R〉 =

[
R

(
LTR

)−1
LT

]
ij

(2.85)

GR
ij ≡

〈
L
∣∣∣cic†j∣∣∣R〉
〈L |R〉 = δij −

[
R

(
LTR

)−1
LT

]
ij

(2.86)

In order to evaluate all the expectation values of the observables, we generate a
Monte Carlo sample by using the importance sampling with the following weight
function :

ω = det
(
ψT

MF e
V (u1)eλ1KeV (u2)eλ2K ...eλ2KeV (u2m−1)eλ1KeV (u2m)ψMF

)
(2.87)

where {ui} are the Ising spins of the different species i = 1, .., 2m lying on the
lattice. The Monte Carlo algorithm consists to update the Ising variables, from
the old si to the new one s′i, the and the ratio r = ω′/ω is calculated to determine
whether to accept or reject the new configuration. In the process updating the
spin, the Green function can be used to calculate very fast the ratio of the the
weights r:

r = det (1 +GL∆) (2.88)

where ∆ =
(
eV ′−V − 1

)
and the two states L and R (in the notations of equation

(2.85)) that define GL are :

L = ψT
MF e

V (u1)eλ1KeV (u2)eλ2K ...eV (ui) (2.89)

R = eλiK ...eV (u2m−1)eλ1KeV (u2m)ψMF (2.90)

ui is the spin species that is changed during the move. When a change of the
spin of the corresponding species is accepted, the Green function is updated like
:

G′
L = GL − GL∆ (1 −GL)

1 + (1 −GL)∆
(2.91)

Moreover, Steve White and collaborators have proposed a very efficient way to
carry on the simulations [62] by proposing moves successively for each of the
species of spin, that allows for a fast sweep over all the site of the lattice and over
all the species of spin. Finally, since the AFQMC is a non-interacting theory,
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Wick’s theorem holds for one spin configuration, and the observables can be
extracted from the Green function. Any expectation value of an observable Ô =∑
ijkl

Oijklc
†
ic

†
jckcl taken in a spin state s = (s1, ..., s2m) is given by :

〈〈Ô〉〉s =
∑
ijkl

Oijkl(G
′
jkG

′
il −G′

ikG
′
jl) (2.92)

The average is then obtained by sampling the spin configurations :

〈Ô〉 =

∑
s

〈〈Ô〉〉sω(s)∑
s

ωs

(2.93)

The sign problem occurs when ωs is not positive, or even worse when ωs is com-
plex. However, the phase of ωs can be put in the observable:

〈Ô〉 =

∑
s

(
〈〈Ô〉〉ssign(ωs)

)
|ω(s)|∑

s

sign(ωs)|ωs|
(2.94)

The sign problem is nevertheless not entirely solved, since when the lattice be-
comes large the denominator is strongly fluctuating and

∑
s

sign(ωs) ≈ 0. In this

case the error bars become very large, and the simulation cannot lead to any
converged observables.

One further outcome of AFQMC is that the Ising spin configuration gener-
ated during one simulation can also play the role of a good variational basis [72].
Therefore, for a given set of Ising configuration S = {σi}, and once the corre-
sponding Hamiltonian matrix elements Hλ,σ are known, we can find the varia-
tional energy by solving the eigenvalue problem

∑
τ∈S

Hστ cτ = E
∑
τ∈S

Rστ cτ , where

cτ are the eigenvectors, E is the variational energy, and Rστ is the overlap matrix
of the states τ and σ.

2.6.1 Particle-hole transformation

To allow the possibility of a BCS slater determinant for ψMF , it is more convenient
within the AFQMC frame to do a particle-hole transformation of the down spin
species:

di = c†−i↓
d†i = c−i↓

After the transformation, the number of particles is written:

Ne = N +
∑

i

〈
c†ici − d†idi

〉
(2.95)
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The Hubbard on-site repulsion also changes sign after the particle-hole transfor-
mation, and therefore the Gutzwiller operator applied on ψMF is written after

the particle-hole transformation: e
+

∑
i

Uni↑ni↓
. Finally, the particle-hole transfor-

mation also changes the hopping K matrix, which is now given by Kij↑↑ = tij
when i and j are nearest neighbors, and Kij↓↓ = −tij .



Chapter 3

t-J Model on the triangular
lattice

3.1 Outline

We investigate the phase diagram of the t − J Model on a triangular lattice
using a Variational Monte Carlo approach. We use an extended set of Gutzwiller
projected fermionic trial wavefunctions allowing for simultaneous magnetic and
superconducting order parameters. We obtain energies at zero doping for the
spin-1/2 Heisenberg model in very good agreement with the best estimates. Upon
electron doping (with a hopping integral t < 0) this phase is surprisingly stable
variationally up to n ≈ 1.4, while the dx2−y2 +idxy order parameter is rather weak
and disappears at n ≈ 1.1. For hole doping however the coplanar magnetic state is
almost immediately destroyed and dx2−y2 + idxy superconductivity survives down
to n ≈ 0.8. For lower n, between 0.2 and 0.8, we find saturated ferromagnetism.
Moreover, there is evidence for a narrow spin-density wave phase around n ≈ 0.8.
Commensurate flux phases were also considered, but these turned out not to be
competitive at finite doping. This work was published in PRB 73, 014519 (2006).

3.2 Superconductivity in the Cobaltites

After the RVB (Resonating Valence Bond) theory proposed by Anderson in 1987
[13] to explain the superconductivity of high Tc cuprates, the field of frustrated
magnetism has seen a number of very exciting developments. Frustrated magnets
are systems in which the competition between the exchange integrals leads to a
degeneracy for the corresponding classical model 1, and the original expectation
was that quantum fluctuations might lead to a spin-liquid behavior, in analogy

1Imagine that you are hosting a dinner with an odd number of people in the party.You quickly
realize that it is impossible to seat every guest between two members of the opposite sex. This
is hardly a calamity, of course., Schaak et al. [73]

51
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with the Haldane gap of S=1 chains or S=1/2 two-leg ladders. The theoretical
understanding of these properties is at best very primitive, and reliable numerical
results are called for.

The recent discovery of superconductivity at low temperatures in the trian-
gular NaxCoO2.yH2O layered compounds [74] is a very interesting event, since it
may be the long sought low-temperature resonating valence bond superconduc-
tor, on a lattice which was at the basis of Anderson’s original ideas on a possible
quantum spin liquid state. NaxCoO2.yH2O consists of two dimensional CoO2

layers separated by thick insulating layers of Na+
2 ions and H2O molecules. It is

a triangular net of edge sharing oxygen octahedra; Co atoms are at the center of
the octahedra forming a 2D triangular lattice.

Many interesting behaviors occur in NaxCoO2.yH2O . In the high doping limit
where charge conduction is present, the magnetic susceptibility shows a strange
behavior. In a usual metal, the fraction of spins that can be field-aligned is small
and shrinks to zero with decreasing temperature. In contrast, in NaxCoO2, the
spin population that contributes to the susceptibility just equals the population
of holes and stays the same when temperature falls. The susceptibility is therefore
like the one of a Mott insulator. This ambivalence between the metallic behavior
in the charge conduction and the insulator behavior in the spin susceptibility has
led to call the high-doping phase a spin-density wave metal.

Equally puzzling at high doping is the fact that NaxCoO2 has a large thermo-
power. In metals, an electrical (or charge) current involves the flow of electrons
and is usually accompanied by an electronic heat current. The thermo-power
measures the ratio of the heat to the charge current. In most metals the thermo-
power is very small. A clue to understand the large thermo-power is that at
low temperature T = 2K, the thermo-power is suppressed by a magnetic field.
Measurements confirm that the vanishing of the thermo-power coincides with the
complete alignment of the spins by the field. Consequently, this implies that the
thermo-power is mostly coming from the spin entropy carried by the holes in the
spin-density wave metallic phase.

Very interestingly, it was also observed that when the compound is cooled
below T = 4K [74], it becomes a superconductor when the doping is lying between
1/4 < x < 1/3. Since then, there has been a tremendous activity in the scientific
community to understand the mechanism of superconductivity in this compound,
and in particular the role of the water molecules in the superconducting phase.
An important point might be the fact that water molecules are screening the
strongly fluctuating electrostatic potential of the Na ions from the charge carriers
in the CoO2 layers. Finally, a second question is related to the pairing symmetry
in the superconducting phase and is still open. Takada et al. [74] speculated
that NaxCoO2.yH2O might be viewed as a doped spin-1/2 Mott insulator. Based
on LDA calculations [75], a simplified single band t−J picture with negative t
and electron doping was put forward [76, 77, 78]. Such systems might thus be
the long-sought low-temperature resonating valence bond superconductor, on a
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Figure 3.1: The figure was reproduced from Ref. [73]. Phase diagram of
NaxCoO2.yH2O . The compound is electronically doped. At half-filling (x = 0)
the compound is unfortunately not stable and could consequently not be studied.
The compound becomes superconducting for x = 1

4
− 1

3
. At high doping, the

compound is a spin-density wave metal.
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lattice which was at the basis of Anderson’s original ideas on a possible quantum
spin liquid state [13, 79].

For electrons lying on a triangular lattice, we expect that the interaction be-
tween the magnetic frustration and the charge degrees of freedom will be crucial.
Indeed, in an insulating material, the on-site repulsion (U term of the Hubbard
model) is relieved if each electron can point its spin antiparallel to that of its
nearest neighbors. On most lattices (bipartite lattices), this can be done and
leads to a state in which spins alternate up and down along each bond direction
(the Néel state).

On a triangular lattice, however, the geometric arrangement frustrates such
ideal regularity and the question regarding if magnetic order is stabilized at half-
filling. Hence, at half-filling the lattice is a frustrated magnet: the competition
between the exchange integrals leads to unsatisfied bonds. The resonating va-
lence bond (RVB) scenario proposed by Anderson [14], which was found to be
fruitful for describing the cuprates, was argued to be even more relevant in the
geometry of the triangular lattice. The original expectation is that quantum
fluctuations might lead to a spin-liquid behavior. However, at half-filling, it ap-
pears by now that the spin-1/2 triangular lattice has a three sublattice coplanar
magnetic order [80,81,82,83]. Quantum fluctuations are nevertheless strong, and
the sublattice magnetization is strongly reduced due to these fluctuations. It is
therefore expected that the magnetism is fragile and quickly destroyed by doping
and that a strong RVB instability is present.

By introducing doping, the problem is even much greater: the electrons/holes
are free to hop between nearest neighbor sites and carry an electrical current.
Does this itinerancy relieve the geometrical frustration? Does the doped quantum
spin state have some particular conductivity? Can these electrons form Cooper
pairs to produce superconductivity? These theoretical questions are relevant to
understand experiments.

Indeed, RVB mean field theories [76,77,78] were used for the t−J model, and
dx2−y2 + idxy pairing was found over a significant range of doping. The same
approach and questions that arise in the framework of the t−J model on the
square lattice are thus very relevant in the present frustrated lattice. The success
of the variational approach for the square lattice suggests to investigate the same
class of variational wavefunctions for the triangular one.

We propose in this chapter to study the t−J model within the framework of
the Variational Monte Carlo (VMC) method, which provides a variational upper
bounds for the ground state energy. In contrast to mean-field theory, it has the
advantage of exactly treating the no double-occupancy constraint. VMC using
simple RVB wavefunctions has been used for the triangular lattice [84] and it
was found that dx2−y2 + idxy superconductivity is stable over a large range of
doping. However, in the previous study the fact that the t−J is magnetically
ordered at half-filling was not taken into account. We expect that the frustration
in the triangular lattice may lead to a richer phase diagram and to many different
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instabilities. We thus propose here to study extended wavefunctions containing
at the same time magnetism, flux phase and RVB instabilities, in a similar spirit
as for the square lattice [33,32], in order to study in detail the interplay between
frustrated magnetism and superconductivity. Given the non-collinear nature of
the magnetic order parameter compared to the case of the square lattice, the
task is however much more complicated. We thus present in this work a general
mean-field Hamiltonian which takes into account the interplay between magnetic,
RVB and flux-phase instabilities. The resulting variational wavefunction is sam-
pled with an extended VMC, which uses Pfaffian updates rather than the usual
determinant updates. We show that the interplay between the different instabil-
ities leads to a faithful representation of the ground-state at half-filling, and we
also find good variational energies upon doping. To benchmark our wavefunction,
we carry out exact diagonalizations on a small 12 sites cluster and compare the
variational energies and the exact ones. Finally, a commensurate spin-density
wave is considered, and is shown to be relevant for the case of hole doping.

The outline of the chapter is as follows: in Sec. 3.3 we present the model and
the numerical technique. In Sec. 3.4 we show the variational results both for the
case of hole and electron doping. Finally Sec. 3.5 is devoted to the summary and
conclusions.

3.3 Variational Monte Carlo

We study in this chapter the t−J model on the triangular lattice defined by the
Hamiltonian (1.4). In order to simplify the connection to the Cobaltates we set
t = −1 in the following and present the results as a function of the electron
density n ∈ [0, 2], half-filling corresponding to n = 1. n > 1 corresponds to a
t−J model at ñ = 2 − n for t = 1, by virtue of a particle-hole transformation.

In the first part of this section, we emphasize on the method to construct
a variational wavefunction containing both superconductivity and non-collinear
magnetism. The wavefunction allows to consider 3-sublattice magnetism, how-
ever, since the latter wavefunction is restricted to a 3 site supercell, we briefly
comment on a second simpler variational wavefunction type, which allows to
describe commensurate spin order.

In the second part of the section, we define the relevant instabilities and the
corresponding order parameters.

3.3.1 Variational wavefunction

In order to study this model we use a variational wavefunction built out of the
ground state of the mean-field like Hamiltonian (1.23). HMF contains at the same
time BCS pairing (∆i,j = {∆σ,σ′}i,j), an arbitrary external magnetic field (hi),
and arbitrary hopping phases (θσ

i,j), possibly spin dependent. These variational
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Figure 3.2: 3-site supercell of the triangular lattice. The onsite magnetic varia-
tional parameters can vary independently on each of the site A,B and C of the
supercell. The BCS pairing as well as the flux vary independently on each of the
different dashed bonds.

parameters are unrestricted on the A,B,C sites and the corresponding bonds
of a 3-site supercell, as shown in Fig. 3.2. We allow both singlet (∆

(S=0)
i,j ) and

general triplet (∆
(S=1)
i,j ) pairing symmetries to be present. They correspond to

choosing:

∆
(S=0)
i,j =

(
0 ψi,j

−ψi,j 0

)

∆
(S=1)
i,j =

(
ψ2

i,j ψ1
i,j

ψ1
i,j ψ3

i,j

) (3.1)

Since HMF is quadratic in fermion operators it can be solved by a Bogoliubov
transformation. In the most general case considered here, this gives rise to a
12×12 eigenvalue problem, which we solve numerically. We then find the ground
state of HMF

|ψMF 〉 = exp

⎧⎨
⎩ ∑

i,j,σi,σj

a(i,j,σi,σj)c
†
iσi
c†jσj

⎫⎬
⎭ |0〉 (3.2)

Here a(i,j,σi,σj) are numerical coefficients. Note that |ψMF 〉 has neither a fixed
number of particles due to the presence of pairing, nor a fixed total Sz due to the
non-collinear magnetic order. Thus in order to use it for the VMC study we apply
to it the following projectors: PN which projects the wavefunction on a state with
fixed number of electrons and PSz which projects the wavefunction on the sector
with total Sz = 0. Finally we discard all configurations with doubly occupied
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sites by applying the complete Gutzwiller projector PG . The wavefunction we
use as an Ansatz for our variational study is thus:

|ψvar〉 = PGPSzPN |ψMF 〉 = PGPSz

⎧⎨
⎩ ∑

i,j,σi,σj

a(i,j,σi,σj)c
†
iσi
c†jσj

⎫⎬
⎭

N/2

|0〉 (3.3)

Although the wavefunction (5.8) looks formidable, it can be reduced to a form
suitable for VMC calculations. Using

〈α| = 〈0| ck1,σ1 ...ckN ,σN
, (3.4)

we find that

〈α | ψvar〉 = Pf (Q)

Qi,j = a(ki,kj ,σi,σj) − a(kj ,ki,σj ,σi)

(3.5)

where Pf(Q) denotes the Pfaffian of the matrix Q. Using this last relation, the
function (5.8) can now be evaluated numerically using a Monte Carlo procedure
with Pfaffian updates, as introduced in Ref. [47]. In the particular case where
ak,l,↑,↑ = ak,l,↓,↓ = 0 and at Sz = 0 (this happens if the BCS pairing is of singlet
type and the magnetic order is collinear), the Pfaffian reduces to a simple deter-
minant, and the method becomes equivalent to the standard Variational Monte
Carlo [42] technique.

The above mean field Hamiltonian and wavefunction contain the main physi-
cal ingredients and broken symmetries we want to implement in the wavefunction.
In order to further improve the energy and allow for out of plane fluctuations of
the magnetic order we also add a nearest-neighbor spin-dependent Jastrow [85]
term to the wavefunction:

PJ = exp

⎛
⎝α∑

〈i,j〉
Sz

i S
z
j

⎞
⎠, (3.6)

where α is an additional variational parameter. Our final wavefunction is thus:

|ψvar〉 = PJPSzPNPG |ψMF 〉 (3.7)

When α < 0 the Jastrow factor favors all configurations which belong to the
ground state manifold of a classical Ising antiferromagnet on the triangular lattice.
Such a manifold is exponentially large [86], and this Jastrow factor thus provides
a complementary source of spin fluctuations.

In what follows we use the wavefunction (3.7) directly for the VMC, but we
also examine improved wavefunctions with respect to (3.7) that can be obtained
by applying one or more Lanczos steps [57, 45, 58]:

|1Ls〉 = (1 + λHt−J) |ψvar〉 (3.8)
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with optimized [87] λ. Since the calculation of Lanczos step wave functions
beyond the first step is very time consuming, most of the results we will present
here were obtained using a single Lanczos step.

In the following, to clearly indicate which wavefunction we use, we will denote
them in the following way: MF / J / nLs, where MF denotes the fields present
in the mean-field like Hamiltonian HMF , J is present if we use the Jastrow factor,
n Ls denotes the presence and the number of Lanczos steps applied on top of the
bare wave function.

As usual with the VMC procedure, these general wave functions are now used
to minimize the expectation value of the total energy 〈Ht−J〉 by changing the
variational parameters. We used a correlated measurement technique [52, 33, 32]
combined with parallel processing to smoothen the energy landscape and use a
steepest-descent type routine to locate the minimum of energy. We then define
the condensation energy ec of the optimal wave function as

ec = evar. − eGutzwiller, (3.9)

where eGutzwiller is the energy of the Gutzwiller wave function, i.e. the fully
projected Fermi sea at zero magnetization. In some cases we had to keep a small
BCS pairing field to avoid numerical instabilities. Let us note that the linear size
of the Q matrix is twice as large as in the simpler case of determinantal update
VMC. Therefore our largest 108 sites cluster with Pfaffian updates corresponds
roughly to a 200 sites cluster using standard updates.

3.3.2 Commensurate order

Since the mean-field Hamiltonian (1.23) is restricted to a 3 site supercell, we
investigated also a second class of mean-field Hamiltonians based on collinear
commensurate structures, which are not contained in the previous Hamiltonian.
For this type of phase, we used a simpler mean-field ansatz along the lines of
Ref. [32]. The mean-field Hamiltonian written in k-space is

HSDW =
∑
k,σ

(
(εk − µ) c†kσckσ + f(Q, σ)c†k+Qσckσ

)
+

∑
k

(
∆kc

†
k↑c

†
−k↓ + h.c.

)
,

(3.10)
where k does run over the Brillouin zone of the original triangular lattice, εk
is the dispersion of the free electron Hamiltonian, and ∆k is the Fourier trans-
form of ∆i,j . Depending on f(Q, σ), the ground state of the Hamiltonian is
a commensurate charge density wave (f(Q, σ) = f(Q)) or a spin-density wave
(f(Q, σ) = σf(Q)).

At half-filling, we considered also several commensurate flux phases with 2π× q
p

flux per plaquette, using the Landau gauge 2 with p ∈ {2, . . . , 10} and q < p.

2HMF is gauge invariant, however the gauge plays a non trivial role in the projected wave-
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Figure 3.3: The variational parameters hi for the coplanar 120◦ antiferromagnetic
order. The spins lie in the x− y plane. The z-component of the vector chirality
(±1) on each triangular plaquette forms a staggered pattern.

The one with the lowest energy was found to be the q = 1, p = 4, as predicted
theoretically [88], giving an energy close to the simple dx2−y2 + idxy wavefunction.
Upon doping however the energy of such commensurate flux phases are rapidly
much worse than the energies of our best wave functions. The main reason for
this poor performance upon doping is the rather bad kinetic energy of these wave
functions.

3.3.3 Characterization of the encountered instabilities

By minimizing all the variational parameters of the mean-field Hamiltonians
(1.23) and (3.10) on a 12 and a 48 site lattice, we find that the relevant in-
stabilities present at the mean field level consists of:

• a 120◦ coplanar antiferromagnetic order (AF ), represented in Fig. 3.3.

• a staggered spin flux phase instability (SFL) with:

θi,i+a1,σ = θσ

θi,i+a2,σ = −θσ
θi,i+a3,σ = θσ.

These bond phase factors correspond to a spin current in the z direction
which is staggered on elementary triangles of the triangular lattice. This

function. Indeed, the kinetic energy of the projected wavefunction depends on the chosen gauge.
One cannot exclude that another choice of gauge could lead to a better wavefunction.
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instability follows rather naturally, since the 120◦ antiferromagnetic state
itself already displays the same staggered spin currents (Si×Sj)

z on the
nearest neighbor bonds (see Fig. 3.3). The effect of this instability was
rather small and visible only at half-filling.

• a translationally invariant superconducting phase with dx2−y2 + idxy singlet
pairing symmetry (d+), as well as the dx2−y2 − idxy (d−). We have also
looked extensively for triplet pairing for both electron and hole dopings
and low J/|t| ≤ 0.4 on a 48 site cluster, but with no success. The minimum
energy was always found for singlet pairing symmetry.

• a ferromagnetic state with partial or full polarization (F ),

• a commensurate collinear spin-density wave [89] (SDW ) instability with
wavevector QN = (π,−π/

√
3) .

3.3.4 Short-Range RVB wavefunction

Short-range RVB wave-functions were also shown to be good Ansatz for the
triangular lattice [90]. Such wave-functions are written in terms of dimers:

|ψRV B〉 =
∏
{C}

N∏
k,l=1

|[k, l]〉 (3.11)

where the product is done over all possible paving C of the lattice with nearest-
neighbor dimers [i, j]:

|[k, l]〉 =
1√
2

(|↑k↓l〉 − |↓k↑l〉) (3.12)

As a matter of fact, such wavefunctions, although they were successful to describe
the triangular lattice at half-filling [90], are rather difficult to handle in the present
representation and it is not convenient to improve the variational subspace by
including long-range valence bonds. Moreover, such wavefunction in the present
form cannot be doped easily with additional holes or electrons.

Indeed, when introducing doping, it is more convenient to represent a spin
state like the wavefunction (3.11) by a projected BCS wavefunction. As an ex-
ample, let us consider a nearest-neighbor pairing function that connects nearest
neighbor sites in the lattice. It is clear that the more general projected BCS state
is written as the sum of all possible partitions of the N-site lattice into singlets
[Ri, Rj] and the amplitude of a given partition is provided by the Pfaffian of the
matrix aij = fij − fji, where fij was defined in equation (2.22):

|p−BCS〉 =
∑

R1,...,RN

∑
P (1,..,N)

(−1)(P )
(
f(Rp(1), Rp(2)) − f(Rp(2), Rp(1))

)
...

(
f(Rp(N−1), Rp(N)) − f(Rp(N), Rp(N−1))

)
c†R1

...c†RN
|0〉 (3.13)
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Figure 3.4: The symmetry of the nearest-neighbor gap function ∆ij of the
|p−BCS〉 wavefunction that corresponds to the short-range RVB |ψRV B〉. Blue
(red) bonds indicate a negative (positive) ∆ij . The unit-cell of the |p − BCS〉
wavefunction is 2 × 1, and the white (blue) circles show the A (B) sublattice.
When the |p − BCS〉 wave-function is combined with the Néel magnetic state,
the unit-cell contains 6 sites.

.

The sum is running over all the permutation P of the indices (1...N). Remarkably,
as proved by Kasteleyn [91], in planar lattices, namely the triangular lattice, the
square lattice, and the Kagomé lattice, it is possible to choose the phase of the
function fij so that the terms in the sum have all the same sign. In such a case,
the projected BCS wavefunction exactly reproduces the short-range RVB state,
since the amplitude of each nearest-neighbor singlets is the same.

A recent progress has been made in this direction recently by S.Sorella and
collaborators [92], where an explicit mapping of the short-range RVB wavefunc-
tion on a simple projected BCS wavefunction |p − ψBCS〉 has been done for the
limit −µ/2 � |∆ij|. Indeed, it was shown that the short range RVB state |ψRV B〉
is equivalently described by the projected BCS wave function |p−ψBCS〉, with a
special choice of the variational parameters ∆ij (see Fig. 3.4), for the special case
of planar lattices [91]. In the present work, we propose to consider the simple
projected BCS wavefunction with the symmetry of ∆ij given in Fig. 3.4. We will
denote such a wavefunction by RV B when considered alone, or by RV B/J when
the nearest-neighbor Jastrow is also taken into account.
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3.3.5 Order parameters

In order to characterize the phases described by the optimal wave functions after
projection, we have calculated the the planar magnetism 2.67, the spin chirality
operator 2.68 and the long-range pairing correlations 2.69.

3.4 Results and discussion

3.4.1 Half-filling

We consider in this section the Heisenberg model (which is the limit of the t−J
model at half-filling, up to a constant). The comparison with the large body of
existing results for the Heisenberg model allows us to benchmark the quality of
our wavefunction.

Let us first briefly discuss the symmetry of the variational parameters at half-
filling. The variational magnetic field minimizes the energy for the two degenerate
120◦ configurations. We found that the BCS pairing symmetry in the presence of
AF order is of d+ type, whereas the d−, the dx2−y2 and the dxy pairings have close
but higher energies. Finally, a staggered spin flux variational order improves a
little bit the energy. Interestingly, this latter variational order is present in the
ground state of the classical Heisenberg model. However, this instability was
only relevant at half-filling, and the energy gain when δ > 0 is not significant.
Finally, we find that the two-sublattice RVB pairing accommodates very well
with the Néel wavefunction and leads to the best variational wavefunction at half-
filling. The various energies for these wavefunctions are shown in Fig. 3.5. The
AF+RV B/J wavefunction is thus the best approximation, within our variational
space, of the ground state of the Heisenberg model. We compare its energy with
other estimates of the ground state energy in the literature (see Fig. 3.5 and
Table 3.1). The mixture of AF and d+ or RV B instabilities is improving a lot
the energy, and our wavefunction has significantly lower energies than the simple
d+ wavefunction, and has energies very close to the best ones available. More
precisely, we find in the thermodynamic limit an energy per site of e = −0.54J
for our variational wavefunction. A summary of the energies and of the 120◦

magnetization for the Heisenberg model are given in Table 3.1 and in Fig. 3.5.
Inspection of these results shows that our wavefunction has in the thermo-

dynamic limit an energy only 0.005J higher than the estimates of more sophis-
ticated, but restricted to the undoped case, methods [82]. Indeed, these latter
methods use pure spin variational wavefunction as a starting point, restoring
quantum fluctuations with the so-called fixe node approximation within the Green
function’s Monte Carlo algorithm.

Since our variational wavefunction already gives an excellent energy it would
be interesting to check how the fixe node methods used to improve the energy
starting with a much cruder variational starting point would work with our vari-
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Figure 3.5: Energy per site e = 3〈Si · Sj〉 of the different variational wave
functions for the Heisenberg model versus the system size N−3/2, with N =
36, 48, 108 sites. Ordered by increasing condensation energy we find: d+ (open
squares), AF + d+/J (open triangles), AF + d+ + SFL/J (open diamonds),
AF + d+/J/Ls (full triangles) and the AF + d+ + SFL/J/Ls (full diamonds),
and finally our best variational Ansatz AF+RV B/J (yellow triangles). The stars
are the best estimates of the ground state energy available in the literature [90,82].
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Table 3.1: Comparison of the average energy 3〈Si ·Sj〉 and the average magnetiza-
tion MAF for the Heisenberg model (t−J model at half-filling) in different recent
works for the 36 site cluster and the extrapolation to the thermodynamic limit.
The energy and the sublattice magnetization are measured for our wavefunctions
at half-filling on a 36 cluster with Periodic/Antiperiodic boundary conditions.
Data extrapolated to the thermodynamic limit are also shown.

〈3Si · Sj〉 MAF

36 site lattice
AF + d+ + SFL/J/1Ls -0.543(1) 0.38

Capriotti et al. [82] -0.5581 0.406
exact diag [93, 81] -0.5604 0.400

∞×∞
AF + d+ + SFL/J -0.532(1) 0.36

RV B [92] −0.5357(1)
RV B/FN [92] −0.53989(3) 0.162(3)

spin-wave results [82] -0.538(2) 0.2387
AF +RV B/J −0.540(1) 0.27(1)

Capriotti et al. [82] -0.545(2) 0.205(10)

ational wavefunction and which energy it would give. We leave this point for
future investigation however 3.

Our wavefunction shows a reduced but finite magnetic order that survives in
the triangular Heisenberg antiferromagnet (THA). The 120◦ magnetization of our
wavefunction is reduced by the BCS pairing down to 54% of the classical value (see
Fig. 3.11) which is somewhat larger than the spin-wave result. Thus in addition
to having an excellent energy, our wavefunction seems to capture the physics of
the ground state of the Heisenberg system correctly. Let us note that the BCS
order of the wavefunction is destroyed by the full Gutzwiller projector at half-
filling. So, despite the presence of a variational superconducting order parameter,
the system is of course not superconducting at half filling. Somehow the BCS
variational parameter helps to form singlets, which reduces the amplitude of the
AF order. This is very similar to what happens for the t−J model on the square
lattice: the inclusion of a superconducting gap decreases the energy and decreases
also the magnetization from M ≈ 0.9 down to M ≈ 0.7, which is slightly larger
than the best QMC estimates (M ≈ 0.6, see Refs. [32,16]). Thus the wavefunction
mixing magnetism and a RVB gap seem to be interesting variationally, both in

3It is worth noting that our wavefunction, which supports Néel magnetism, is a complex
function. Since the fixe node approximation deals only with real functions, the so-called fixe
phase approximation should be used.
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the square and triangular lattice, to restore spin fluctuations that were frozen in
the pure classical magnetic wavefunction. For the triangular lattice, the present
work is the first attempt to reproduce the magnetic order in the THA in terms
of a fermionic representation, which gives results in good agreement with other
methods. The great advantage of this approach is of course that the fermionic
language allows to directly consider the case of hole and electron doping in the
AF background, which is the case we consider in the following sections.

3.4.2 Electron doping: n ∈ [1, 2]

Very few results exist away from half-filling, so in order to have a point of compar-
ison for our variational approach we will compare it with exact diagonalizations
on very small clusters. Having ascertained that our wavefunction is indeed in
good agreement with the exact results on a small cluster, we can then use it
with confidence to describe much larger systems and extract the physics of the
thermodynamic limit.

Therefore, we start by comparing on a 12 site cluster different wavefunctions
with the exact-diagonalization results for the case of electron doping (see Fig. 3.6),
since larger lattices are not readily available. Interestingly, it was found that even
with only 2 Lanczos steps on our best wavefunction (AF + d+/J) the energy has
almost converged to the exact ground state energy at half-filling. We find that
at half-filling, the 2-Lanczos step applied on the AF + d+/J/2Ls wavefunction
for a small 12-site cluster gives an energy per site e = −0.6051(5), which is close
to the exact result obtained by Lanczos e = −0.6103.

Note that small system size is the worst possible case for a VMC method
since the simple variational wavefunction is not expected to reproduce well the
short distance correlations, as we fix the long-range magnetic correlations in our
variational ansatz by imposing an on-site magnetic field, but we do not intro-
duce short range corrections. Variational Monte Carlo instead focus on the long
distance properties, which will become dominant in the energy as the lattice size
increases. Nevertheless, the short range correlations contributes significantly to
the energy on small lattices. One can thus expect on general grounds the en-
ergies to become increasingly good as the system size increases, provided that
the correct long range order has been implemented in the wavefunction. The
Lanczos iterations allow to correct this local structure of the wavefunction. Here
we see that by changing this local structure our wavefunction is converging very
fast to the ground state. This is a good indication that even away from half
filling our wavefunction is quite efficient in capturing the physics of the system.
Actually, the variance of the energy per site σ2 reaches its maximum value for
doping x = 1

3
(σ2 = 0.006), but applying one Lanczos step reduces drastically

the variance: σ2 = 0.0004. Let us now use our wavefunction to describe large
systems away from half filling. We now focus on a 108 site cluster, which is the
largest cluster we can treat with a reasonable effort. We have first measured
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Figure 3.6: Condensation energy per site versus the electron doping for a 12 site
cluster for the different variational wavefunctions. We have done exact diago-
nalization (ED) for a 12 sites cluster with same periodic boundary conditions.
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Figure 3.7: Condensation energy per site ec versus electron doping for the 108
site lattice. We show different wavefunctions and also the best estimate in the
literature [82] at half-filling (open diamond).

the condensation energy per site (see Fig. 3.7) for different types of instabilities.
Very interestingly, the AF/J is even better than a simple dx2−y2 + idxy RVB

state. Moreover, the RVB order only weakly increases the condensation energy in
presence of the antiferromagnetic background (AF + d+/J). This suggests that
superconductivity is only weakly present in the t−J model when n > 1 which
is also confirmed by the measurement of the superconducting gap (see Fig. 3.9).
The RV B/J wavefunction, although it allows to recover a very good variational
energy at half-filling, is not stabilized in the electron doping side of the phase
diagram (see Fig. 3.8). The superconducting order of our best wavefunction is
approximately 4 times smaller in amplitude and in range of stability than the
d-wave pairing in a 10 × 10 square lattice with the same boundary conditions.
For electron doping δ > 0.04 we find that the d+ BCS pairing symmetry has the
same energies as the d− one, and also as the wavefunctions with dx2−y2 and dxy

pairings.
Very strikingly, the 120◦ magnetic order parameter is surviving up to high

doping δ = 0.4, see Fig. 3.11. Long-range magnetic order at finite doping is
potentially caused by a limitation of the VMC method, since it is not possible in
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Figure 3.8: Condensation energy per site ec versus electron doping for the 96 site
lattice. We compare the energy of the RV B wavefunction to the energy of the
magnetic AF/J wavefunction.

our calculation to model wavefunction with a finite correlation length, i.e. short
range 120◦ magnetic order. In our calculation, we can either totally suppress
the long-range 120◦ and get back to the Gutzwiller wavefunction, or use the
long-range 120◦ magnetic order that is highly stabilized by the potential energy.
No intermediate scenario, such as incommensurate structures, is yet available
in our calculations, but one can only expect the optimization of the magnetic
structure to increase the region of stability for magnetism. We interpret this
finding as an indication that the hole motion is not drastically modified by the
presence of the non-collinear magnetic structure, so that short range magnetic
correlations will survive up to high electron doping. For the t−Jz model on
the square lattice, it is commonly understood that the Ising Néel order is not
surviving high doping because of its costs in kinetic energy: whenever a hole wants
to move in an antiferromagnetic spin background, it generates a ferromagnetic
cloud. Therefore, good kinetic energies and Néel Ising order are not compatible.
In our case, the 3-sublattice order imposes no such constraint on the kinetic
energy of the holes, because of the 120◦ structure. This can be seen in our
wavefunction energies: the potential energy is improved when starting from the
Gutzwiller wavefunction and adding 120◦ correlations, but the kinetic energy
is unchanged. Our best wavefunction has a better potential energy than the
Gutzwiller wavefunction (and also than the different CFP wavefunction), but it
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Figure 3.9: Superconducting order parameter ∆, obtained by the long-range
correlations of the pairing operator (see equation (2.69)), for a 108 site triangular
cluster in our best wavefunction (full triangles), in the d+ wavefunction (open
squares). For comparison we show the amplitude of the d-wave gap in a 10× 10
square lattice (dashed line).
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d+/J for a 108 site cluster. Inset: the amplitude of the staggered spin-current χ
in the same wavefunction.
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also keeps the same kinetic energy. Therefore, this qualitatively explains why one
can stabilize the 3-sublattice magnetic phase for a large set of J values. Finally, we
note that the staggered spin-current pattern is also present for doping δ = [0, 0.3]
(see Fig. 3.11).

Interestingly, the Jastrow variational parameter α (5.7) changes sign at δ = 0.4
when MAF ≈ 0 : for δ < 0.4 (δ > 0.4) the Jastrow factor favors classical Ising
(ferro-) anti-ferromagnetic states. The VMC results show that the competition
between the classical Ising configuration on the triangular lattice and the 120◦

order improves the energy. We argue that the classical Jastrow simulates with
a good approximation quantum fluctuations around the 120◦ order. Note that
the Jastrow does not play the same role as the BCS pairing: the BCS pairing
forms configurations of resonating singlets, and the Jastrow factor forms classical
Ising configurations. It is also worth noting that at higher doping the Jastrow
parameter leads to a small condensation energy of 0.01t for a large range of doping
(δ = [0.4, 0.8]). It was checked that this gain in energy does not decrease with the
size of the lattice and is also present for a square lattice geometry. We found also
that for the small clusters (12 and 48 sites) the system was gaining a significant
amount of energy when having a weak ferromagnetic polarization. Therefore, this
suggests that the Gutzwiller wavefunction is not the best approximation of the
ground state of the t−J model in the high doping limit. Nevertheless, the Jastrow
factor does not introduce long-range correlation and the variational wavefunction
we introduce here is still a Fermi liquid. Note that the variance of the energy per
site σ2 reaches its maximum value for doping δ = 0.4 for the AF + d+/J with
σ2 = 0.0008, and applying one Lanczos step leads to σ2 = 0.0004.

3.4.3 Hole doping: n ∈ [0, 1]

For hole doping the scenario is strikingly different. The 120◦ order is weakened
in a strong d+ RVB background and disappears at doping δ = 0.08 (see Fig. 3.13
and Fig. 3.15). Moreover, although the AF+RV B/J wavefunction is stabilized
at half-filling, the RV B/J wavefunction is not stabilized for the hole doping part
of the phase diagram (see Fig. 3.14). When superconductivity disappears, there
is a first order transition to a commensurate spin-density wave. No coexistence
between superconductivity and the spin-density wave was found. Then, a fer-
romagnetic phases emerges with a strong gain of condensation energy. Indeed
the polarized states are leading to a strong gain in kinetic energy. This can be
understood in the simple picture of the Stoner model, which gives a critical on-
site repulsion related to the density of states: UF

cr = 1/ρ(εF ). Ferromagnetism
becomes favorable if εF is sitting at a sharp peak of ρ(ε). In the triangular lattice
the tight binding (TB) density of states is strongly asymmetric and has a sharp
peak at the n = 0.5 electronic density lying at the Van Hove singularity. Note
also that the simple t−J model of a 3 site cluster with 2 electrons shows that
in the t > 0 the ground state is a singlet, whereas the ground state is a triplet
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Figure 3.12: Kinetic (eKinetic) and exchange energy (epot.) per site for the
Gutzwiller wavefunction (bold line), the commensurate flux phase with 2π/3
flux per plaquette (open circles) and with π/2 flux per plaquette (dashed line),
the d+/AF/J wavefunction (open squares).



3.4. RESULTS AND DISCUSSION 73

0 0.2 0.4 0.6 0.8 1

Electron density n

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

e c d
+

AF+d
+
 / J

Ferro
SDW

N=108

Figure 3.13: Condensation energy per site ec for different wavefunctions in a 108
site cluster.
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Figure 3.14: Condensation energy per site ec versus hole doping for the 96 site
lattice. We compare the energy of the RV B wavefunction to the energy of the
magnetic AF/J wavefunction and to the energy of the BCS d+ wavefunction.

in the t < 0 case. This shows that the negative sign of t with hole doping is in-
ducing ferromagnetic correlations on a very small cluster. We find again trace of
these correlations and ferromagnetic tendencies in the range of electronic density
n ∈ [0.2, 0.8] in our 108 site lattice. Such a ferromagnetic instability was also
predicted in Ref. [84] by comparing the energy of the RVB wavefunction with
an analytical calculation of the energy of the fully polarized state. We see that
minimizing the energy by changing the variational onsite magnetic field leads to
similar results.

Moreover, at δ = 0.5 doping, there is a nesting of the Fermi surface, with
three possible Q vectors. Thus, it is reasonable to expect that a particle-hole
instability of corresponding pitch vector Q is stabilized close to this doping. We
have investigated the following instabilities : a commensurate charge density
wave, and a spin-density wave. Interestingly, the commensurate spin-density
wave was stabilized. Indeed, we have found that the scattering between the
k and k + Q vectors introduced in the Hamiltonian HSDW (particle-hole chan-
nel) allows to gain kinetic energy in the range of doping δ = [0.15, 0.6]. For
sake of simplicity, we have only considered the mean-field Hamiltonian contain-
ing one of the three possible nesting vectors : QN = (π,−π/

√
3) . Finally, the

phase is stabilized, when compared to the RVB and ferromagnetic phases, in
the window δ = [0.16, 0.24]. Nonetheless, no coexistence between superconduc-
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Figure 3.15: Amplitude of the 120◦ magnetic order measured in our best wave-
function for the 108 site cluster (left scale, full triangles) and the ratio of the
polarization MF on the saturated polarization Msat in our best wavefunction
(right scale, full circles). We show also the absolute magnetization MSDW for the
spin-density wave wavefunction (left scale, see also Fig. 3.16).



76 CHAPTER 3. T-J MODEL ON THE TRIANGULAR LATTICE

Figure 3.16: On-site magnetization for each site of a 108 site lattice for the
spin-density wave wavefunction. Open (filled) circles denotes down (up) spins.
The size of each circle is proportional to the respective amplitude of the on-site
magnetization. We find that the spins forms a stripe-like pattern, alternating
ferromagnetic bonds in the a2 direction, and antiferromagnetic bond in the two
other directions. The average on the lattice sites of the absolute value of the local
magnetization is shown in Fig. 3.15.
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Figure 3.17: Kinetic (ekinetic) and exchange energy (epot) per site for the
Gutzwiller (bold line), the commensurate flux phase with 2π/3 flux per pla-
quette (open circles), with π/2 flux per plaquette (dashed line), the d+/AF/J
wavefunctions (filled squares), and the polarized wavefunctions (lines) with
Sz = 11, 18, 21, 24, 28. The polarized wavefunction are shown from top to bottom
with increasing (decreasing) polarizations in the left (right) figure. the left figure
and decreasing polarization.

tivity and the spin-density wave was found: the energy is minimized either for
(∆k = 0, f(Q) �= 0), or (∆k �= 0, f(Q) = 0) depending on the doping, with ∆k of
dx2−y2 + idxy symmetry type in the latter case. Measuring the on-site magne-
tization value, we found that the spin-density wave forms a collinear stripe-like
pattern in the spin degrees of freedom, whereas the charge is found to be uniformly
distributed among the lattice sites, as expected (see Fig. 3.16). The amplitude
of the on-site magnetization is shown in Fig. 3.15 as a function of doping.

3.4.4 Phase diagram of the model

Based on our wavefunction we can now give the phase diagram for the doped
system on the triangular lattice. The phase diagram, summarizing the various
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Figure 3.18: Cartoon picture of the phase diagram of the t−J model we get
with t < 0. Here we sketch on an arbitrary scale the order parameter amplitude
of the 120◦ magnetic phase, the ferromagnetic phase (F ), the superconducting
dx2−y2 + idxy phase (SC), the commensurate spin-density wave (SDW ). Note
that for electron density n > 1.04 and n < 0.96, the energy is degenerated,
within the error bars due to the Monte Carlo sampling, with the pairings dx2−y2 ,
dxy and dx2−y2 − idxy. The pitch vector of the commensurate spin-density wave
is QN = (π,−π/

√
3) , and this phase is depicted more in details in Fig. 3.16.

instabilities discussed in the previous sections, is shown in Fig. 3.18. This phase
diagram prompts for several comments. First one notices immediately that the
competition between magnetism and superconductivity in this model depends
crucially on the sign of the hopping integral (see Fig. 3.18).

For both hole and electron doping, the triangular lattice has a very different
phase diagram from the square lattice one 4. In the square lattice, the AF order
disappears at δ = 0.1 and the d-wave RVB vanishes at δ = 0.4 for the same
value of J . In the triangular lattice, a similar stability of superconductivity
exists on the hole side, but the electronically doped side is resolutely dominated
by antiferromagnetic instabilities. Our results, based on an improved class of
wavefunctions, present marked differences with previous approximate results for

4 In the square lattice the sign of t plays no role because of the particle-hole symmetry of a
bipartite lattice.
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the doped system. On the electron side, mean-field theories would have suggested
that the long-range magnetic order state undergoes a first order phase transition
[78] into a uniform d+ superconducting state at δ ≈ 3% for values of J similar
to those considered here. A rationalization of these results would be that the
frustration of the lattice, which was from the start the motivation of RVB as
a competing state, disfavors magnetic order. Our results, where the Gutzwiller
projection is treated exactly within the residual error bars due to the statistics,
are in clear disagreement with this mean-field theory. In contrast with the mean-
field result, magnetism is dominant and the superconducting order is not favored
on the electronic side. In addition, the t−J model on the triangular lattice
was expected to have a strong and large RVB instability, since the coordination
number is higher than on most of the other lattices, and naively we would expect
this to provide an easy way to form singlets. In this chapter we show that it is
not the case: for electron doping the system is magnetic, and for hole doping the
system is superconducting, but the range of superconductivity is not very large
(δ < 0.16), and in any case smaller than on the square lattice.

Previous variational approaches [84] were restricted to pure superconducting
wavefunctions dx2−y2 + idxy on a t− t′ square lattice with t = t′. In our work it
was found that superconductivity is stabilized up to electron doping δ ≈ 0.24 and
hole doping δ ≈ 0.2 for similar albeit slightly different values of J/t (J/t = 0.3).
In our calculations, for the case of electron doping, which corresponds to the
doping in the cobaltite experiments, our phase diagram, using the larger class of
wavefunctions, is clearly completely different from this previous result, and the
stabilization of the superconductivity in that case was clearly an artefact of the
too restricted variational subspace. As shown in Fig. 3.18, superconductivity is
strongly weakened by the presence of 3-sublattice magnetization and is present
only in the range of electron doping δ = [0, 0.12]. On the contrary, for the case of
hole doping, superconductivity had higher energy than ferromagnetic and spin-
density wave phases for δ > 0.16. We thus confirm that the previous results are
not an artefact of their restricted variational subspace, and find an acceptable
agreement for the phase diagram. However we emphasize the presence of the
spin-density wave wavefunction that was not considered in the mentioned work
and implies a small reduction of the superconductivity range.

Our calculation thus clearly prompts for a reexaminations of the arguments on
the nature of superconductivity in a frustrated lattice. Clearly the non-collinear
nature of the order parameter helps making the AF order much more stable to
electron doping than initially anticipated. Understanding such issues is of course
a very crucial and challenging question. Moreover, on the triangular lattice, no
significant enhanced cooperative effect between magnetism and superconductivity
seems to be observed: the electron doped side has a magnetic signature, and the
hole doped side a superconducting one, but the two orders seem to exclude each
other as much as they can, in contrast to what happens for the square lattice.
Even in the parts of the phase diagram where coexistence is observed, coexistence
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between magnetism and superconductivity in the electron doped case shows again
that superconductivity is decreased in the presence of strong long range magnetic
correlations.

3.5 Conclusion

In this chapter we have presented a variational Monte Carlo study of the t−J
(J/t = 0.4 and t < 0) model on the triangular lattice, using extended wavefunc-
tions containing both superconductivity and non-collinear magnetism, as well as
flux phase instabilities. The method we used to construct and sample the wave-
function is quite general and applicable to other lattices (honeycomb, kagome,
ladders...) as well as other symmetries (e.g. triplet superconductivity). It thus
provides a general framework to tackle the competition between antiferromag-
netism and superconductivity in frustrated systems. We obtained very good
variational energies at half-filling when comparing with other more sophisticated
methods, specialized to the half-filled case. The fermionic representation of our
wavefunction allows to consider hole and electron doping. The most stable pair-
ing corresponds to singlet pairing. We find that dx2−y2 + idxy superconductivity is
only weakly stabilized for electron doping in a very small window (δ = [0, 0.12])
and is much stronger and also appears in a wider range (δ = [0, 0.16]) in the case
of hole doping. A commensurate spin-density wave phase is leading to a gain in
kinetic energy and is stabilized in the small window δ = [0.16, 0.24] hole doping.
Finally, ferromagnetism emerges in a wide range for hole doping δ = [0.24, 0.8].
Very surprisingly, the 3-sublattice magnetism which is present at half-filling ex-
tends to a very wide range of electron doping δ = [0, 0.4] and is suppressed very
fast in the case of hole doping δ = [0, 0.08]. The large extent of 120◦ order for elec-
tron doping is responsible for the suppression of superconductivity. This feature
was neither observed in previous VMC calculations, nor predicted by the mean
field theories, and prompts for a reexamination of the question of the stability of
magnetic order on a triangular system.

Our results show that, for electron doping, the square and triangular lattices
behave in a very different way. For the square lattice, the t−J Hamiltonian finds
a domain of stability of superconductivity and a pairing symmetry that is very
consistent with other methods. It is thus a natural candidate to investigate su-
perconducting phases in systems like the cuprates. For the case of the triangular
lattice, the predicted phase diagram is dominated by antiferromagnetic instabil-
ities, and superconductivity, albeit slightly present, is strongly suppressed. This
clearly indicates that, contrarily to what was suggested by mean-field and previ-
ous variational calculations, the t−J model itself is not a good starting point to
tackle the superconductivity of the cobaltite compounds, where superconductiv-
ity is observed in the range of electron density n =

[
1 + 1

4
, 1 + 1

3

]
. This model

must be completed by additional ingredients to obtain a faithful description of
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the experimental system. Two missing ingredients in the simple t−J model could
solve this discrepancy and perhaps allow to obtain a superconducting instability.
On one hand, a strong Coulomb repulsion is expected in this type of compound.
Such a long-range interaction is not taken into account in the t−J model. Thus
a coulomb V term should be added to get a t−J−V model. On the other hand,
in this chapter, we have used a single-band model as a first step to study the
Co-based oxides. However, it is quite possible that the multi-band effect plays
an essential role for superconductivity [94]. The interaction between the three
bands of the compound could play a non trivial role in the physics of the t−J
model. Therefore, a study of the 3-band model could also be of interest. Such an
analysis can be done by extending the methods exposed in this chapter to these
more complicated models.
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Chapter 4

Correlated electrons on the
honeycomb lattice

4.1 Outline

We investigate the ground state of the t–J model on the honeycomb lattice as
a function of doping by variational Monte Carlo calculations. dx2−y2 + idxy su-
perconductivity is observed in the range of doping δ =]0, 1

8
[, disappearing at the

doping which corresponds to the van Hove singularity of the free electron density
of states. Néel order and superconductivity coexist in the range [0, 0.07]. The van
Hove singularity stabilizes a spin density wave for δ = [1

8
, 0.22]. When the spin

density wave phase disappears, the system is polarized progressively, reaching full
ferromagnetic polarization at δ = 0.5. The work done in this chapter is resulting
from a collaboration with Thomas Gloor and Andreas Martin Läuchli. In par-
ticular, the mean-field calculations and the Quantum Monte-Carlo calculations
in this chapter were done by Thomas Gloor (a former PhD student of Professor
Frederic Mila) and by Andreas Martin Läuchli.

4.2 Introduction

The observation of superconductivity in alkali-metal graphite intercalation com-
pounds (GIC’s) was reported years ago by Hannay et al. [95]. They are formed
by inserting foreign atoms or molecules between the hexagonal two-dimensional
sheets of graphite, forming a honeycomb layer geometry, leading to ordered struc-
tures. Since graphite is a semi-metal, the electrons accepted or donated by the
intercalant (i.e. there is a charge transfer from the intercalate layer to the host
carbon layer) modify the electronic properties of graphite, resulting in a metallic
behavior in the final material.

Intensive research work in this area was ensued and many GIC’s were sub-
sequently found to exhibit superconductivity. An interesting property of the

83
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superconducting alkali-metal GIC’s is that they are formed from constituents
which are not superconducting, yet upon intercalation they undergo normal-to-
superconducting transitions. There exists a few materials which have honeycomb
lattice geometry and display superconductivity. One of these is the phonon medi-
ated BCS superconductor MgB2 with the unusually high transition temperature
of 39 K [96]. Another example are the intercalated graphite compounds, e.g. the
recent discovery of superconductivity in C6Ca with transition temperature 11.5
K [97]. A detailed microscopic understanding of the superconducting mechanism
is not known yet for these compounds but interlayer states seem to play an im-
portant role suggesting a more 3D behavior [98, 99]. There is also experimental
indication for intrinsic superconductivity in ropes of carbon nanotubes [100]. It is
worth noting that observation has been made of superconductivity in alkali-metal
doped C60 [101] and this work has attracted a good deal of attention because of
the relatively high Tc in K3C60.

The honeycomb lattice, like the square lattice, is bipartite and we would
expect that it would fit very well with the Néel state (one variety of each of the
spin lying respectively on each of the sublattice). However, in the square lattice,
the Néel magnetism is also associated with a perfect nesting of the fermi surface
(the nesting vector is the Q = (π, π) vector, which leads to a spin density wave
of vector Q). However, what is somewhat different in the honeycomb lattice
is that the Fermi surface at half-filling consists only of two points (see Fig.4.1).
Moreover, it is worth noting that the free electron density of states vanishes at the
Fermi surface. Therefore, the question regarding of the presence of magnetism at
half-filling remains an interesting one that we propose to address in this chapter.

This behavior of the free electron density of states is responsible for a Mott
metal-insulator transition in the half-filled Hubbard model on the honeycomb
lattice at a finite critical on-site repulsion of about Ucr ≈ 3.6 t [102,103,104,105].
Therefore the system is a paramagnetic metal below Ucr, and above Ucr an antifer-
romagnetic insulator. In contrast the square lattice has a van Hove singularity in
the density of states at half–filling which leads to an antiferromagnetic insulator
already for an infinitesimal on–site repulsion.

As mentioned before, the t−J model is the effective model of the Hubbard
model in the limit of large on-site repulsion, and at half-filling it coincides with
the Heisenberg model. For both the square and the honeycomb lattices, the
Heisenberg model has an antiferromagnetic ground state. However the quantum
fluctuations are larger in the honeycomb lattice [106] due to the lower connec-
tivity. Upon doping, quite different properties are expected for the honeycomb
lattice as compared to the square lattice, since it has a van Hove singularity in
the free electron density of states at fillings 3/8 and 5/8. At these fillings the
system is expected to undergo spin density wave (SDW) instabilities, whereas in
the square lattice d-wave superconductivity can extend without disturbance up
to fillings of 1.4.

In that respect, the honeycomb lattice has more similarities with the hole
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Figure 4.1: Free particle dispersion of the honeycomb lattice. The lower band is
shown, and the upper bound is perfectly symmetric. At half-filling, the Fermi-
surface is shown by the bold lines. Only six points are filled, and only two of
the points are independent, since the other one are identical. zone. The Fermi
surface is nevertheless nested, although it consist only of two points. The inner
hexagon of the bottom figure (dotted lines) correspond to the Fermi surface at a
hole doping of x = 1/8. There is an another nesting of the Fermi surface, and of
the three nesting vector is QN = (π,−π/

√
3) . In this case the Fermi surface is

not reduced to a finite number of points.



86 CHAPTER 4. HONEYCOMB LATTICE

a1
A

B

a2

a3

B

B B

BA

A

A

A

A

B

b1

b2

Figure 4.2: The unit-cell of the honeycomb lattice contains two sites. The hon-
eycomb lattice is bipartite and thus it can be separated into two sublattices A
and B. For the basis vectors we chose b1 and b2, and ai, i = 1, 2, 3, are the unit
vectors defining the nearest neighbor directions.

doped (t < 0) triangular lattice which has a van Hove singularity at 1/4 filling,
a finite U Mott metal–insulator transition [107], and the same lattice symmetry.
However the triangular lattice is not bipartite. Therefore the honeycomb lattice
can be viewed to be intermediate between the square and the triangular lattice,
and a comparison of their magnetic and superconducting properties can give
further insight concerning the geometrical influences.

The t−J model on the honeycomb lattice has not yet been studied, neither by
MF calculation nor VMC simulations. It will be the subject of the present work
to investigate the competition between magnetic and superconducting phases in
this model at zero temperature. The different phases upon doping are determined
by VMC simulations. We present also a MF calculations of the superconducting
phase.

4.3 Model and methods

4.3.1 t-J model on the honeycomb lattice

In the following we focus on the ground state properties of the t − J model on
the honeycomb lattice 1.4. In the following we set |t| = 1 and we adopt a generic
value of J = 0.4|t| throughout the chapter. Because of the particle-hole symmetry
in the honeycomb lattice the sign of t does not play any role.

In the numerical simulations we have considered finite clusters of the honey-
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comb lattice with N = 72 and N = 144 sites. The N = 72 cluster is defined
by the translation vector T1 = nb1 + nb2 (bi are defined in Fig. 5.2) and the
vector T2 = nb1 +mb2 orthogonal to T1. We have used anti-periodic boundary
conditions along T1 and periodic ones along T2. This allows to reduce the finite
size effect. The N = 144 cluster uses 2T1 and 2T2.

4.3.2 Variational wavefunctions

Next we introduce the variational subspace that we use to study the ground state
of the t−J model. Our variational wavefunctions are built from the ground-states
|ψMF〉 of the mean-field like Hamiltonian 1.23. The set of variational parameters
is given by χij allowing anisotropic nearest neighbor hopping, when χij = |χij|eiθij

is complex, it is breaking time-reversal symmetry leading to a so-called flux phase,
∆ij the singlet BCS pairing, and hi responsible for SDW instabilities. In general
|ψMF〉 is not a state of fixed number of particles due to the presence of the BCS
pairing. In VMC simulations it is however necessary to work with states of fixed
particle number and we therefore apply the projector PN which projects on the
subspace of N electrons. Further, since the t − J model allows at most one
fermion per site, we discard also all configurations with doubly occupied sites by
applying the complete Gutzwiller projector PG =

∏
i(1− ni↑ni↓). To summarize,

our variational wavefunction is written as

|ψvar〉 = PGPN |ψMF〉 . (4.1)

Now we give a list of all the variational states which we found to be relevant in
the honeycomb lattice.

• FS: The Gutzwiller projected Fermi sea is our reference state, i.e. tij ≡ 1,
all other parameters equal zero, and thus no minimization is necessary.

• AF: A staggered antiferromagnetic order, i.e. ∆ij ≡ 0 and hi ≡ (−1)ih.

• RVB: A singlet superconducting phase 1, i.e. hi ≡ 0, and

∆ij ≡ ∆eiφα (4.2)

where the singlet order parameter has a uniform amplitude but each nearest
neighbor bond α = 1, 2, 3 is allowed to have its own phase.

• RVB/AF: A state mixing superconductivity and antiferromagnetism.

• F: A ferromagnetic state with partial or full polarization, i.e. ∆ij ≡ 0 and
hi ≡ h.

1We have also checked the possibility of triplet pairing, however the minimum of the energy
was always found for singlet pairing trial functions.
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• SDW: We consider only SDW states of a single wave vector Q = 1/2(b∗
1 − b∗

2)
where b∗

1 and b∗
2 are the two reciprocal basis vectors (cf figure 4.1). This

vector is chosen because at hole doping of 1/8, one has not only a van
Hove singularity but also the Fermi surface is a perfectly nested hexagon
with nesting vectors 1/2(b∗

1 − b∗
2), b∗

1 + 1/2b∗
2, and −1/2b∗

1 −b∗
2

2. In real
space these vectors correspond to alternating rows of up and down spins,
as shown in figure 4.8.
The SDW instability is most easily implemented in reciprocal space, where
the MF Hamiltonian (1.23) reads (with ∆ij ≡ 0)

HMF =
∑
k,σ,n

εn(k)γ†n,kσγn,kσ + 2σf(Q)γ†n,k+Qσγn,kσ (4.3)

and n = 1, 2 is the band index of the tight-binding Hamiltonian, εn(k) and
γn,kσ are the corresponding dispersions and eigenstates.

4.3.3 Observables

To measure the order parameters and correlations of the optimal wave functions
after projection, we have calculated the following observables:

• The staggered magnetization of the antiferromagnetic order:

MAF =
1

L

∑
i

(−1)i 〈ψvar|Sz
i |ψvar〉

〈ψvar | ψvar〉
(4.4)

where L is the total number of lattice sites.

• The amplitude of the singlet superconducting order parameter [108, 21]:

S2
α,β =

1

4L
lim
r→∞

∑
i

〈
ψvar|B†

i,αBi+r,β|ψvar

〉
〈ψvar | ψvar〉

, (4.5)

where

B†
i,α = c†i,↑c

†
i+α,↓ − c†i,↓c

†
i+α,↑, (4.6)

and α and β are chosen from the three nearest neighbor links. Actually we
found that this quantity is always of the form

S2
α,β =

∣∣S2
α,β

∣∣ ei(φα+φβ) (4.7)

2We have not considered the more general case of a superposition of the three different
possible nesting vectors because of technical difficulties to construct the corresponding wave-
function.
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and that
∣∣S2

α,β

∣∣ is independent of the choice of α and β. Therefore it is
meaningful to define the following quantity

S =
√∣∣S2

α,β

∣∣ (4.8)

which we will use for the evaluation of the superconducting order parameter.

4.3.4 RVB mean-field theory of superconductivity

The most systematic approach up to date to formulate an RVB mean field theory
is based on the slave boson representation which factorizes the electron operators
into charge and spin parts c†iσ = f †

iσbi called holons and spinons. The charged
boson operator bi destroys an empty site (hole) and f †

iσ is a fermionic creation
operator which carries the spin of the physical electron. The constraint of no
doubly occupied site can now be implemented by requiring

∑
σ f

†
iσfiσ + b†ibi = 1

at each site. In the slave boson formalism the t–J model becomes [20]

H = −t
∑
〈i,j〉σ

(
f †

iσfjσb
†
jbi + h.c.

)
+ J

∑
〈i,j〉

(
Si · Sj −

ninj

4

)

− µ0

∑
i

ni +
∑

i

λi

(∑
σ

f †
iσfiσ + b†ibi − 1

)
(4.9)

where Si = 1/2
∑

σσ′ f
†
iσσσσ′fiσ′ and ni =

∑
σ f

†
iσfjσ. This Hamiltonian is gauge

invariant by simultaneous local transformation of the holon and spinon operators
fiσ → fiσe

iϕi and biσ → biσe
iϕi. Now one can make a mean field approximation

by a decoupling in a series of expectation values χij =
∑

σ

〈
f †

iσfjσ

〉
, ∆ij =∑

σ 〈fi↑fj↓ − fi↓fj↑〉 and Bi =
〈
b†i
〉
. To have a superconducting state in the slave

boson representation it is not sufficient that the fermions form Cooper pairs but
also the bosons need to be in a coherent state of a Bose condensate. On the square
lattice one finds [20] that the particle–particle expectation values have d–wave
symmetry, i.e. ∆x = −∆y. The mean field phase diagram suggests some phase
transitions, however χij , ∆ij , and Bi cannot be true order parameters since they
are not gauge invariant. In fact Ubbens and Lee [109] have shown that gauge
fluctuations destroy completely these phases and only a d–wave superconducting
dome is left over. Moreover these fluctuations diminish also the tendency for
superconductivity and seem to destroy it completely near half–filling where they
believe that it is unstable towards more complicated phases such as a staggered
flux phase.

In this section we will use a simplified version of the previously mentioned
RVB theory. Despite of its simplicity this theory should nevertheless predict
the correct symmetry of the superconducting order parameter and be able to
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make some predictions about the spinon excitations. In fact this simplified RVB
theory predicts d–wave superconductivity on the square lattice [20] and was also
applied to the Shastry–Sutherland [110] and triangular lattice [77]. It is based on
a decoupling of the superexchange term in singlet operators. Given the identity

Si · Si+α − nini+α

4
= −1

2
B†

i,αBi,α (4.10)

a decoupling in ∆ij ≡ 〈Bi,α〉 is a natural choice. To handle the bosons one assumes
that all the Lagrange multipliers λi are equal to a single value λ which plays the
role of the boson chemical potential. We replace the boson operators by a static

value which is chosen such that
〈
b†ibj

〉
= δ for all i, j [109, 20, 110, 77]. Thus in

this approximation the effect of the slave bosons (or equivalently of the Gutzwiller
projection) is included in a very simplified way which effectively multiplies the
kinetic energy of the spinons by the hole concentration δ and redefines their
chemical potential µ → µ0 + λ:

HMF
tJ = −tδ

∑
〈i,j〉σ

(
f †

iσfjσ + h.c.
)
− µ

∑
i

ni

− J

2

∑
〈i,j〉

(〈
B†

i,α

〉
Bi,α +B†

i,α 〈Bi,α〉

−
〈
B†

i,α

〉
〈Bi,α〉

)
(4.11)

In addition we use the simple ansatz of equation (4.2) for the RVB order param-
eter ∆ij. The mean field solution is obtained by minimizing the corresponding
free energy density

φ = −µ +
3

4
J∆2 − 1

L

∑
kj

(
εj(k) +

2

β
ln [1 + exp(−βεj(k))]

)

with respect to ∆, φij and under the conservation of particle number constraint

∂φ

∂µ
= −N

L
⇒ δ = − 1

L

∑
kj

∂εj(k)

∂µ
tanh

(
βεj(k)

2

)
.

εj=±(k) are the dispersions of the single particle spinon excitations above the
ground-state. They are given by

ε±(k) =
(
µ2 + J2|B(k)|2 + δ2|ξ(k)|2

± 2δ

√
J2|B(k)|2 (Im ξ(k))2 + µ2|ξ(k)|2

)1/2

(4.12)
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where

ξ(k) = t
(
ei(α2−α1) + eiα2 + 1

)
,

B(k) = ∆/2
(
e−iφ3 cos(α2 − α1) + e−iφ2 cosα2 + e−iφ1

)
.

α1 and α2 are the projections on the reciprocal vectors: k = α1/2π b1+α2/2π b2.
We emphasize that ∆ is not the superconducting order parameter which is

actually given in our approximation by
〈
c†i↑c

†
j↓
〉

=
〈
bif

†
i↑bjf

†
j↓
〉
� 〈bibj〉

〈
f †

i↑f
†
j↓
〉
.

At zero temperature we have
〈
c†i↑c

†
j↓
〉
� δ∆.

4.4 Results and discussion

4.4.1 VMC approach

The VMC approach allows the exact evaluation (up to statistical error bars) of
the energy expectation value of the Gutzwiller projected trial functions defined
previously. The goal is now to find the lowest energy state at each doping level.
To compare the energy expectation values of the different states we define the
condensation energy ec

ec = evar − eFS, (4.13)

which is the energy gain per site with respect to the FS state, the Gutzwiller
projected Fermi sea. The results for the 72 and the 144 sites cluster are shown
in figures 4.3 and 4.4. We have checked that our variational subspace is large
enough by minimizing the trial function (4.1) on the 72 sites cluster with respect
to all parameters of the Hamiltonian (1.23) simultaneously, not allowing however
the breaking of translational symmetry. By comparing the results for the two
clusters we see that our results are rebust with respect to size effects.

For all filling factors we have found that the isotropic hopping term tij ≡ 1
and θij ≡ 0 always give the minimal energy. Moreover for the symmetry of the
RVB state we found dx2−y2+idxy symmetry in the minimal energy configuration at
all dopings, i.e. the phases in equation (4.2) are given by φ1 = 2π/3, φ2 = 4π/3,
and φ3 = 0. Of course one can interchange these phases and also add or subtract
2π to each of them and still the same energy.

In the reminder of this section we will describe in detail the different phases
appearing in the honeycomb lattice from our VMC simulations.

4.4.2 Half-filling

At half-filling we found that the optimal energy wavefunction is the RVB/AF
mixed state. This state has a considerable fraction (66%) of the classical Néel
magnetism. However, our variational ansatz seems to overestimate the tendency



92 CHAPTER 4. HONEYCOMB LATTICE

0 0.2 0.4 0.6 0.8 1

Hole doping δ

-0.012

-0.008

-0.004

0

e c
d

+

d
+
/AF

F
SDW

N=72

Figure 4.3: Condensation energy versus doping for the 72 site lattice of the various
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various proposed wavefunctions. Inset: polarization of the ferromagnetic wave-
function divided by the saturation value.
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lattice FS best VMC QMC
triangular −0.3547(2) −0.5330(5) [112] −0.5450(1) [82]

square −0.4270(2) −0.6640(1) [32] −0.6692(1) [113]
honeycomb −0.5275(2) −0.5430(2) −0.5440(10) [114]

Table 4.1: We compare the Heisenberg energy per site in the thermodynamic
limit (in units of J) from VMC (Gutzwiller projected FS, the best available trial
state) and from exact quantum Monte Carlo simulations.

towards antiferromagnetism: QMC calculations give a lower value for the mag-
netic order (53% of the classical value [106]). The magnetic order is slightly more
renormalized in the honeycomb lattice than in the square lattice, where QMC
gives a magnetic order of 60% of the classical value [111]). This is expected as
the fluctuations should be larger in the honeycomb lattice due to a lower coor-
dinance number. The over estimation of magnetism at half-filling seems to be a
general feature of this type of wavefunction, since the same discrepancy occurs
also for the triangular and square lattice [32, 112].

As can be seen from table 4.1, the Gutzwiller projected Fermi sea state gives
a value surprisingly close to the exact value in the honeycomb lattice. This is
not the case for the square and the triangular lattices. However from figure
4.5 it becomes clear that there is no fundamental difference in the projected FS
state on different lattices. The spin-spin correlations decrease with distance very
rapidly to zero for all lattices with the only difference that the nearest neighbor
correlations are substantially larger on the honeycomb lattice.

4.4.3 Magnetism and Superconductivity

We find that superconductivity is observed in the small range of doping δ =]0, 1
8
[.

The BCS pairing is suppressed at the doping which corresponds to the van Hove
singularity in the free electron density of states. We note also that a coexistence of
a Néel phase and superconductivity is present in the range [0, 0.07] (see figure 4.6).
The VMC simulations and the self-consistent MF calculations predict dx2−y2+idxy

symmetry for the superconducting order parameter. Also the amplitude of the
mean-field pairing order parameter is in good agreement with the variational
calculations in the relevant range of doping ]0, 1/8[. There is a strong reduction
of the order parameter close to 1/8 doping, and the MF solutions show a long
tail falling down at δ = 0.4. The long MF tail for dopings larger than 1/8 has no
relevance since we have shown in our VMC calculations that superconductivity
is completely suppressed by SDW and ferromagnetic instabilities in this region.

Interestingly, the excitations of the quasi-particles in the MF scheme are gap-
less at half-filling, but the excitation gap rises up to a maximum value of approx-
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Figure 4.7: Superconducting order parameter of our best wavefunction versus
doping in the 144 site cluster (filled squares). For the same value of J , we show the
slave-boson mean-field results (small open squares) the d-wave superconducting
order parameter (open squares) with periodic boundary conditions along ex and
anti-periodic conditions along ey in a 100 site cluster.

imatively 0.15 t (this rise and the maximal value seem to be independent of the
J value) and decreases to zero again. For comparison, the gap is always zero in
the square lattice, and in the triangular lattice it is finite at any doping except
at half-filling.

The range and amplitude of the superconducting phase suggests that only
weak superconductivity is observed in the honeycomb lattice (see figure 4.7): the
maximal amplitude and the range of existence are four times smaller than the
ones of the d–wave pairing in the square lattice. The amplitudes in the triangular
lattice are twice as large in the hole doped (t < 0) case and similar in the electron
doped case [112]. This is argued to be an effect of the van Hove singularity at
hole doping 1/8 which lies relatively close to half-filling.

4.4.4 Spin Density Wave and Ferromagnetism

At the van Hove singularity a spin density wave is emerging which is stable in
the range δ = [1

8
, 0.22]. The wavevector of this phase corresponds to one of the

Fermi surface nesting vectors at 1/8 doping (see figure 4.1). To characterize this
state after Gutzwiller projection we measured the on-site magnetization for every
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Spin Charge

Figure 4.8: On the left: mean on-site magnetization for the spin density wave
wavefunction at doping δ = 0.18 on the 144 sites cluster. Size of the symbols are
the absolute value of the on-site spin, black filled circles are denoting down spin,
and open circles are for up spins. The absolute value for the big (small) circles
is Sz

i = 0.20(1) (Sz
i = 0.10(1)). On the right: mean value of the on-site charge.

We find that the charge is uniformly distributed among the lattice.

site of the lattice at doping δ = 0.18 (see figure 4.8). We found that the charge
is uniformly distributed among the lattice, but the spins are forming stripe like
patterns. Incommensurate phases were not investigated in the present work, but
could be variationally stabilized as well.

An optimization of the kinetic energy can be obtained for doping δ > 0.22
by a small polarization of the system. Indeed, the spin density wave phase is
replaced by a weakly polarized ferromagnetic phase at doping δ = 0.22. Then
the system is polarized progressively, reaching a 100% polarization at δ = 0.5,
and zero polarization occurs again at δ = 0.6 (see inset of figure 4.4). This ferro-
magnetic phase is still very different from the Nagakoa ferromagnetism observed
in the triangular lattice. In the triangular lattice the system reaches a 100%
polarization very quickly, and the range of existence is centered around the van
Hove singularity, leading to the strongest energy gain exactly at this singularity;
here the polarization is done progressively when going away from the van Hove
singularity.

This result is in agreement with reference [115] where it was shown that a fully
polarized state is unstable in the intervalls δ =]0.379, 0.481[ and above δ = 0.643.
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b) c)

Figure 4.9: Reciprocal space of a) the (2,1) tube , b) the armchair (2,2) tube,
and c) the zig-zag (3,0) tube. The armchair and zig-zag tubes have a metallic
dispersion.

4.5 Variational Monte-Carlo applied to the Car-

bon nanotubes

The study of carbon nanotubes is also an interesting event, since their discovery
by Iijima in 1991 [116], has become a full research field with significant contri-
butions from all areas of research in solid-state. Single-walled carbon nanotube
(SWCNT) are constituted by a single graphene plane wrapped into a cylinder.
The Fermi surface of graphene is very particular: it is reduced to six discrete
points at the corners of the 2D lattice Brillouin zone [117] as shown in Fig.4.1.
As a result, depending on their diameter and their chirality which determine
the boundary conditions of the electronic wave functions around the tube, the
nanotube can be either semiconducting or metallic, depending on the lines of k
points in the Brillouin Zone crosses the 6 points of the Fermi surface (see Fig.
4.9). It has been shown that only the zero-chirality armchair nanotubes have zero
electronic band gap, the others having a small charge gap and being therefore
semi-conductors or insulators depending on their radius and chirality. Let us note
that the special zig-zag geometry has also a zero charge gap in the free electronic
band theory.

While superconductivity is well established in graphene, this phenomenon was
only recently investigated for the nanotubes : intrinsic superconductivity was
experimentally observed in ropes of nanotubes [118]. Data show the existence of
intrinsic superconductivity in ropes of carbon nanotubes in which the number of
tubes varies between 30 and 400. The question of the existence of superconducting
correlations in the limit of the individual tube cannot however be answered yet.

Whereas graphene is doped with alkali-dopants, there are no chemical dopants
in the ropes of carbon nanotubes. As shown in previous works there is some
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possibility of hole doping of the tubes by the gold metallic contacts [119].

Very interestingly, the nanotubes allow the investigation of superconductivity
in the 1D limit which was never explored before. We propose in this section to
study the t− J model on wrapped honeycomb sheet in order to investigate how
our variational wavefunction behaves in this limit. The variational wavefunction
supports, as in the previous section, both antiferromagnetism and superconduc-
tivity order parameters.

Nevertheless, in 1D systems it is known that no continuous symmetry can be
broken and therefore we do not expect to stabilize real long-range order in the true
quantum ground state. The continuous symmetry breaking is indeed necessary
for superconductivity (broken U(1) symmetry) and also for antiferromagnetism
(broken SU(2) symmetry). Although these phases cannot form the true ground-
state of the t− J model, the fluctuations around them can still be important for
determining its physics. For example, one could imagine that such fluctuations
stabilize a superconducting state in ropes of nanotubes. In view of this argument,
we believe that it is pertinent to study the tendency toward superconductivity in
nanotubes with our wavefunctions.

We therefore use the variational approximation for different chiralities T1 =
(l1, l2) (the notation was introduced in section 4.3). The vector T1 fixes the
chirality of the nanotube, and T2 is chosen to be orthogonal to T1. We have
considered one armchair nanotube of chirality (2, 2), zig-zag nanotubes (3, 0) and
(4, 0), and the other tubes (2, 1), (3, 1) and (3, 2). We used periodic boundary
along T1, such that the tube is wrapped. The geometry of a carbon nanotube
imposes that the tube is open along T2. However, to minimize the finite size
effect, we have also used periodic boundary conditions in this direction. The
tube was studied in the limit when ‖T2‖ � ‖T1‖. Let us emphasize that in
experiments the nanotubes have bigger diameter than the one considered here:
the size in experiments would rather correspond to (10, 10) wrapping for the
armchair nanotube. Besides, the size of the nanotubes in experiments is not the
same for all of the tubes, and a distribution of sizes is expected.

Eventually, the t−J model describes the physics of a doped Mott insulator.
When we consider this model for nanotubes, the question whether the undoped
compounds are still close to the Mott-insulating phase is relevant. However,
the spin-gap obtained by QMC calculation for the different nanotubes is finite,
although its value decreases when the diameter of the tube is larger. Therefore,
it is expected that close to half-filling the ground state of the nanotubes is not a
Fermi liquid. Superconductivity, if present in nanotube, might therefore be driven
by strong correlation in these compounds, as opposed to a BCS phonon-mediated
mechanism.
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4.5.1 Néel-like fluctuations in carbon nanotubes at half-

filling

When minimizing the energy of our wavefunction on different nanotubes, we find
that antiferromagnetism is still stabilized. The stabilization of finite long-range
AF order in our quasi-1D system is obviously an artefact of our calculations,
since the Mermin-Wagner theorem [120] implies that no continuous symmetry
of the hamiltonian can be broken at T = 0K in a 1D system. Nevertheless,
we expect that our results give a qualitative answer on the strength of the Néel
correlations. For instance, we expect that when the variational magnetic order is
strong, then the true ground will certainly have strong Néel like fluctuations as
well. Furthermore, our variational results might hold for experiments done on a
finite set of neighboring nanotubes, where the inter-tube coupling might restore
the possibility for true long-range magnetic order.

We show a benchmark the variational calculations at half-filling in Table 4.2.
We have first carried on calculations at half-filling, to be able to compare with
the exact results obtained with the Quantum Monte-Carlo method.

Because the carbon nanotubes break the 120◦ symmetry which was present in
the 2D honeycomb lattice, we expect that the exchange energy is also anisotropic.
In Table 4.2 we depict the nearest-neighbor exchange energy in the three different
directions of the lattice ai.

Interestingly, the variational approximation reproduces remarkably well the
Quantum Monte-Carlo results. The comparison of the different wavefunction
shows, on one hand, that the Gutzwiller wavefunction catches already approxi-
matively the good symmetry in some of the nanotubes, on another hand, in ad-
dition the introduction of the AF variational parameter allows to correct slightly
the exchange energy so that we get similar results to the QMC. The anisotropy
of the exchange energy which is already present in the Gutzwiller wavefunction
sheds light on the fact that the projection of the t−J model plays a subtle role,
that allows to already catch some of the features of the true ground state.
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Figure 4.10: Scaling of the Heisenberg energy per site (t−J model at half-filling)
for our best variational wavefunction.

In order to compare further with the QMC, we have calculated the energy
per site and staggered magnetization per site for different nanotube lengths, such
that we could extrapolate the result in the thermodynamic limit (see Fig. 4.10,
4.11, and Table 4.3). Unexpectedly, we find that the AF/RV B wavefunction is
still a good Ansatz for the nanotubes at half-filling.
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Nanotube 〈Si · Si+a1〉 〈Si · Si+a2〉 〈Si · Si+a3〉
(2, 2)
QMC −0.376(1) −0.360(1) −0.360(1)

VMC ∆/AF −0.372(1) −0.360(1) −0.356(1)
VMC ∆ −0.379(1) −0.350(1) −0.349(1)

VMC Gutzwiller −0.316(1) −0.360(1) −0.368(1)
(3, 0)
QMC −0.374(1) −0.354(1) −0.374(1)

VMC ∆/AF −0.369(1) −0.348(1) −0.373(1)
VMC ∆ −0.374(1) −0.336(1) −0.377(1)

VMC Gutzwiller −0.360(1) −0.330(1) −0.362(1)
(4, 0)
QMC −0.367(1) −0.356(1) −0.369(1)

VMC ∆/AF −0.364(1) −0.351(1) −0.370(1)
VMC ∆ −0.372(1) −0.313(1) −0.386(1)

VMC Gutzwiller −0.370(1) −0.310(1) −0.376(1)
(2, 1)
QMC −0.392(1) −0.339(1) −0.373(1)

VMC ∆/AF −0.410(1) −0.330(1) −0.363(1)
VMC ∆ −0.430(1) −0.308(1) −0.353(1)

VMC Gutzwiller −0.434(1) −0.264(1) −0.355(1)
(3, 1)
QMC −0.366(1) −0.359(1) −0.371(1)

VMC ∆/AF −0.363(1) −0.352(1) −0.371(1)
VMC ∆ −0.354(1) −0.312(1) −0.407(1)

VMC Gutzwiller −0.351(1) −0.380(1) −0.322(1)
(3, 2)
QMC −0.369(1) −0.362(1) −0.360(1)

VMC ∆/AF −0.373(1) −0.355(1) −0.362(1)
VMC ∆ −0.390(1) −0.319(1) −0.360(1)

VMC Gutzwiller −0.380(1) −0.313(1) −0.361(1)

Table 4.2: Nearest-neighbor exchange energy in the three directions for a 144 site
clusters for various wavefunctions are depicted. Data obtained with the Quantum
Monte-Carlo method are also shown.
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Figure 4.11: Scaling of the staggered magnetization per site in the Heisenberg
model (t− J model at half-filling) for our best variational wavefunction.

The antiferromagnetic order depends also on the wrapping of the tube. The
amplitude of the spin-spin correlations versus the diameter of the tube is shown
in Fig.4.12. We find that it decreases very fast when the diameter reaches the
diameter of the 2-leg ladder case. In this limit, the variational magnetism is
totally suppressed.

4.5.2 Doping Carbon nanotubes

Our variational wavefunction has the advantage to allow hole doping. Therefore,
since it reproduces well the Quantum Monte-Carlo results at half-filling, we have
studied the effect of hole doping.

We observe that not only the amplitude of superconductivity, but the phase
of the pairing on each nearest neighbors link depends on the wrapping of the
tube (see Fig.4.13). We have measured the phase after projection of the BCS
pairing in the different tubes (see also Table 4.3). We observe that the phases of
the pairing observable is moving from the dx2−y2 + idxy symmetry in the case of
the 2 dimensional lattice towards intermediate value and converge to the d-wave
symmetry in the case of the 2-leg ladder, which is also the smallest nanotube
that can be wrapped with a 2-site unit-cell. In conclusion, we find both the
suppression of the magnetism when the diameter is small (see Fig. 4.12) and
reaches the limit of the 2-leg ladder, and we find an enhancement of the pairing
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Figure 4.12: Spin-spin correlations at half-filling obtained by VMC in our best
variational wavefunction. The values were extrapolated to the thermodynamic
limit of the nanotubes. The value obtained for the 2D honeycomb lattice is also
shown.
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Figure 4.14: Top: Pairing amplitude obtained from the pairing operator corre-
lations in the projected variational wavefunction. When the pairing amplitude
is anisotropic, the maximum value of the pairing along the different directions is
shown. Inset: the symmetry of the pairing in the 2-leg ladder is shown. The pair-
ing is stronger along the arms of the ladder, and is with opposite sign and weaker
amplitude in the vertical direction. The pairing amplitude obtained in the two
dimensional square lattice (open circles) and honeycomb lattice (blue circles) are
shown for comparison. Bottom: the ratio ∆x/∆y is shown for the 2-leg ladder.
S.C. Zhang predict that ∆x = −2∆y in the limit of zero doping [121]. We find
within the variational results a ratio ≈ 2.2, which is not very far from the theory.
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order parameter in the same limit (see Fig.4.13). This can be interpreted as the
signature that quantum fluctuations become much larger when the tube reaches
the one dimensional limit, and our variational (but non-physical) magnetic pa-
rameter is no longer stabilized when these fluctuations become too strong. At
the same time, it is interesting to note that the pairing survives very well in the
1D limit, though we do not expect any real pairing in a quasi-1D model. Indeed,
in this limit the ground state will be a Luttinger liquid. The fact that the pairing
is large in our variational approach might be a signature that the true Luttinger
liquid ground state is not a Fermi liquid and does not have magnetic order.

4.6 Conclusion

We have determined the ground state phase diagram of the t−J model (with a
generic value of J = 0.4) on the 2D honeycomb lattice using VMC calculations.
Our results are summarized in Fig. 4.15. At half-filling, we have found anti-
ferromagnetism and superconducting variational parameters that coexist in the
variational wavefunction. The alternating magnetization is 66% of the classical
value, which is slightly higher than the 50% obtained with exact quantum Monte
Carlo. However, the energy obtained is very close to the exact value: we find
an Heisenberg energy per site with VMC of 0.5430(1) which is only 0.3% higher
than the QMC value. A phase of coexistence of the two order parameters is found
in the range δ = [0, 0.07], and superconductivity is suppressed at the van Hove
singularity. Therefore the range of superconducting order is δ =]0, 1

8
[. The am-

plitude and range of existence of the superconducting parameter are four times
smaller than in the square lattice. We found good agreement between the VMC
calculations and an the RVB MF theory in the superconducting phase, namely
the same dx2−y2 + idxy symmetry and a similar amplitude of the pairing order
parameter. Moreover the spinon excitation spectrum is gapped for 0 < δ � 1/8.

For hole dopings larger than 1/8, we find that a spin density wave (SDW) of
wavevector Q = 1/2(b∗

1 − b∗
2) is stabilized in the range δ = [1

8
, 0.22]. The SDW

phase leads to an optimization of the kinetic energy. However, a stronger gain in
kinetic energy, and also a lower variational energy, is obtained at δ = 0.22 with a
weak ferromagnetic polarized phase, which is polarized linearly and reaches full
polarization at doping δ = 0.5. Ferromagnetism disappears again at δ = 0.6.

The variational results discussed in this work might be relevant for the sym-
metry of the pairing measured in the superconducting phase in graphene. More-
over, it was found in the present work that the nanotubes have a finite spin-gap,
and therefore the nanotubes close to half-filling can be argued to be close to
the Mott-insulating phase. The VMC calculations show that the phase of the
complex pairing is different in the nanotubes than in the 2D honeycomb lattice,
provided the superconducting phase is not an artefact of the calculations. This
observation is relevant for the experiments, where superconductivity is found in
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Figure 4.15: Cartoon picture of the phase diagram: the superconducting phase
(SC), the Néel phase (AF), the spin density wave phase with pitch vector QN =
(π,−π/

√
3) (SDW), and the partially polarized ferromagnetic phase (F).
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ropes of nanotubes.



110 CHAPTER 4. HONEYCOMB LATTICE



Chapter 5

Bond-order-wave staggered flux
phase for the t−J model on the
square lattice

5.1 Outline

Motivated by the observation of inhomogeneous patterns in some high-Tc cuprate
compounds, several variational Gutzwiller-projected wave-functions with built-in
charge and bond order parameters are proposed for the extended t−J−V model
on the square lattice at low doping. First, following a recent Gutzwiller-projected
mean-field approach (Phys. Rev. B. 72, 060508(R) (2005)), we investigate, as
a function of doping and Coulomb repulsion, the stability of the staggered flux
phase with respect to small spontaneous modulations of squared unit cells ranging
from 2 × 2 to

√
32 ×

√
32. It is found that a 4 × 4 bond-order (BO) modulation

appears spontaneously on top of the staggered flux pattern for hole doping around
1/8. A related wave-function is then constructed and optimized accurately and
its properties studied extensively using an approximation-free variational Monte
Carlo scheme. Finally, the competition of the BO-modulated staggered flux wave-
function with respect to the d-wave RVB wave-function or the commensurate
flux state is investigated. It is found that a short range Coulomb repulsion
penalizes the d-wave superconductor and that a moderate Coulomb repulsion
brings them very close in energy. Our results are discussed in connection to the
STM observations in the under-doped regime of some cuprates. This work was
done in collaboration with the group of Didier Poilblanc (IRSAMC, Toulouse,
France). The very nice work related to the renormalized mean-field calculations
within this chapter were done by Sylvain Capponi and Didier Poilblanc. The
work was published in PRB 74, 104506 (2006).
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5.2 Checkerboard Pattern in the cuprates

The phase diagram of the hole-doped cuprates shows mainly four different elec-
tronic phases existing at low temperature. Among them are the Mott insulator
phase, the superconducting phase, and the more usual Landau Fermi liquid phase
(or metallic phase). A fourth phase, of controversial nature, occurs at light dop-
ing, located above the superconducting phase and was named the pseudogap
regime. This later regime shows peculiar electronic phenomena, prompting for
proposals that it might contain a hidden charge or spin order.

With an increasing number of materials and novel experimental techniques
of constantly improving resolution, novel features in the global phase diagram of
high-Tc cuprate superconductors have emerged. One of the most striking is the
observation, in some systems, of a form of local electronic ordering, especially
around 1/8 hole doping.

The recent scanning tunneling microscopy/spectroscopy (STM/STS) exper-
iments of underdoped Bi2Sr2CaCu2O8+δ (BSCO) in the pseudogap state have
shown evidence of energy-independent real-space modulations of the low-energy
density of states (DOS) [122,123,124] with a spatial period close to four lattice
spacings. A similar spatial variation of the electronic states has also been observed
in the pseudogap phase of Ca2−xNaxCuO2Cl2 single crystals (x = 0.08 ∼ 0.12)
by similar STM/STS techniques [125].

Low-temperature (T = 100mK) electronic structure imaging studies of a
lightly hole-doped copper oxide Ca2−xNaxCuO2Cl2 using Tunneling spectroscopy
were carried on (see Fig.5.1). The doping was fixed in these studies by using sam-
ples with Na concentrations x = 0.08, 0.10, 0.12, which leads to superconducting
Tc = 0, 15, 20K respectively.

Indeed, for the considered samples, the spectrum exhibits a V shaped energy
gap centered at the Fermi energy. It was mainly found that the states within this
gap undergo spatial modulations with a checkerboard structure, and has 4 × 4
CuO2 in the unit-cell. The structure changes only weakly inside the V-shaped
energy gap 1 2.

Although it is not clear yet whether such phenomena are either generic fea-
tures or really happening in the bulk of the system, they nevertheless raise impor-
tant theoretical questions about the stability of such structures in the framework
of microscopic strongly correlated models.

Moreover, intricate atomic-scale electronic structure variations also exist within
the checkerboard larger structure. Therefore, the experimental results would be in

1Note that the first observation was made around a vortex core in J.E. Hoffman, E.W. Hud-
son, K.M. Lang, V. Madhavan, H. Eisaki, S. Uchida, and J.C. Davis, Science 295, 466 (2002).

2Note that the energy-dependent spatial modulations of the tunneling conductance of op-
timally doped BSCO can be understood in terms of elastic scattering of quasiparticles. See
J.E. Hoffman, K. McElroy, D.H. Lee, K.M. Lang, H. Eisaki, S. Uchida, and J.C. Davis Science
297 1148 (2002).
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agreement with an unanticipated electronic state order, possibly the hidden elec-
tronic order existing in the low-temperature pseudo-gap regime of Ca2−xNaxCuO2Cl2
. Since the cuprates were argued to be well described by strongly correlated mod-
els, like the t−J and Hubbard model, and since these theories were successful to
explain many of the experimental data, we propose in this chapter to study the
t−J Hamiltonian (1.4) on a square lattice, in order to study the possibility for
checkerboard like modulations. In this chapter, we consider the model without
the n̂in̂j term of the original model:

Ht−J = −t
∑
〈i,j〉,σ

(
c†i,σcj,σ + h.c.

)
+ J

∑
〈i,j〉

Si · Sj

Ht−J operates only in the subspace where there are no doubly occupied sites,
which can be formally implemented by a Gutzwiller projector (see later). In the
following we set |t| = 1 (unless specified otherwise) and we adopt a generic value
of t/J = 3 throughout the chapter. Because of the particle-hole symmetry in the
square lattice the sign of t does not play any role.

In this chapter, we analyze the stability and the properties of new inhomo-
geneous phases (which may compete in certain conditions with the d-wave su-
perconducting RVB state) by extending the previous mean-field and variational
treatments of the RVB theory. In addition, we shall also consider an extension
of the simple t−J model, the t − J − V model, containing a Coulomb repulsion
term written as,

V =
1

2

∑
i	=j

V (|i− j|) (ni − n) (nj − n) , (5.1)

where n is the electron density (Ne/N , Ne electrons on a N -site cluster). Gener-
ically, we assume a screened Coulomb potential :

V (r) = V0
exp−r/l0

r
, (5.2)

where we will consider two typical values l0 = 2, 4 and V0 ∈ [0, 5] and where the
distance r is defined (to minimize finite size effects) as the periodized distance on
the torus 3. The influence of this extra repulsive term in the competition between
the d-wave RVB state and some inhomogeneous phases is quite subtle and will
be discussed in the following.

One route to deal with the Gutzwiller projection is to use a renormalized
mean-field (MF) theory [127] in which the kinetic and superexchange energies
are renormalized by different doping-dependent factors gt and gJ respectively.
Further mean-field treatments of the interaction term can then be accomplished
in the particle-particle (superconducting) channel. Crucial, now well established,

3The Manhattan distance of Ref. [126] is used.
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Figure 5.1: The figure was reproduced from Ref. [125]. Left column : conductance
map at fixed energies, lying within the V-shape gap (see text) of the energy
spectrum, EF + 8meV , EF + 24meV , EF + 48meV from top to bottom. The
local density of state is showing real space modulations consistent with a 4 × 4
CuO2 checkerboard structure. Right: the Fourier transform map of the real space
modulations. The modulations in the conductance map contains mainly three
reciprocal q-vector q = (1, 0)× 2π/a0, q = (1/4, 0)× 2π/a0, q = (3/4, 0)× 2π/a0.
The fourier transform of the conductance map does not break the 90◦ rotational
symmetry. The temperature was fixed to T = 100mK and the doping is x = 0.10;
the bulk critical tempature Tc is for these condition Tc = 150mK.
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experimental observations such as the existence of a pseudo-gap and nodal quasi-
particles and the large renormalization of the Drude weight are remarkably well
explained by this early MF RVB theory [22].

An extension of this approach [128,126] will be followed in Section 5.3 to inves-
tigate inhomogeneous structures with checkerboard patterns involving a decou-
pling in the particle-hole channel. As (re-) emphasized recently by Anderson and
coworkers [22], this general procedure, via the effective MF Hamiltonian, leads
to a Slater determinant |ΨMF〉 from which a correlated wave-function PG |ΨMF〉
can be constructed and investigated by VMC.

Since the MF approach offers a reliable guide to construct translational symmetry-
breaking projected variational wave-functions, we will present first the MF ap-
proach in section 5.3 before the more involved VMC calculations in Section 5.4.
Novel results using a VMC technique associated to inhomogeneous wave-functions
will be presented in Section 5.4.

5.3 Gutzwiller-projected mean-field theory

5.3.1 Gutzwiller approximation and mean-field equations

We start first with the simplest approach where the action of the Gutzwiller
projector PG is approximately taken care of using a Gutzwiller approximation
scheme [31]. We generalize the MF approach of Ref. [128, 129], to allow for
non-uniform site and bond densities. Recently, such a procedure was followed
in Ref. [126] to determine under which conditions a 4 × 4 superstructure might
be stable for hole doping close to 1/8. We extend this investigation to arbitrary
small doping and other kinds of supercells. In particular, we shall also consider
45-degree tilted supercells such as

√
2 ×

√
2,

√
8 ×

√
8 and

√
32 ×

√
32.

The weakly doped antiferromagnet is described here by the renormalized t−J
model Hamiltonian,

Hren
t−J = −tgt

∑
〈ij〉σ

(c†i,σcj,σ + h.c.) + JgJ

∑
〈ij〉

Si · Sj (5.3)

where the local constraints of no doubly occupied sites are replaced by statistical
Gutzwiller weights gt = 2x/(1 + x) and gJ = 4/(1 + x)2, where x is the hole
doping. A typical value of t/J = 3 is assumed hereafter.

Decoupling in both particle-hole and (singlet) particle-particle channels can
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be considered simultaneously leading to the following MF hamiltonian,

HMF = −t
∑
〈ij〉σ

gt
ij(c

†
i,σcj,σ + h.c.) +

∑
iσ

εini,σ

−3

4
J
∑
〈ij〉σ

gJ
i,j(χjic

†
i,σcj,σ + h.c.− |χij|2) (5.4)

−3

4
J
∑
〈ij〉σ

gJ
i,j(∆jic

†
i,σc

†
j,−σ + h.c.− |∆ij|2),

where the previous Gutzwiller weights have been expressed in terms of local
fugacities zi = 2xi/(1+xi) (xi is the local hole density 1−〈ni〉), gt

i,j =
√
zizj and

gJ
i,j = (2 − zi)(2 − zj), to allow for small non-uniform charge modulations [130].

The Bogoliubov-de Gennes self-consistency conditions are implemented as χji =

〈c†j,σci,σ〉 and ∆ji = 〈cj,−σci,σ〉 = 〈ci,−σcj,σ〉.
In principle, this MF treatment allows for a description of modulated phases

with coexisting superconducting order, namely supersolid phases. Previous inves-
tigations [126] failed to stabilize such phases in the case of the pure 2D square
lattice (i.e. defect-free). Moreover, in this Section, we will restrict ourselves to
∆ij = 0. The case where both ∆ij and χij are non-zero is left for a future work,
where the effect of a defect, such as for instance a vortex, will be studied.

In the case of finite V0 , the on-site terms εi may vary spatially as −µ+ei, where
µ is the chemical potential and ei are on-site energies which are self-consistently
given by,

ei =
∑
j 	=i

Vi,j

〈
nj

〉
. (5.5)

In that case, a constant
∑

i	=j Vi,j(〈ni〉〈nj〉 + n2) has to be added to the MF
energy. Note that we assume here a fixed chemical potential µ. In a recent work
[131], additional degrees of freedom where assumed (for V0 = 0) implementing an
unconstrained minimization with respect to the on-site fugacities. However, we
believe that the energy gain is too small to be really conclusive (certainly below
the accuracy one can expect from such a simple MF approach). We argue that we
can safely neglect the spatial variation of µ in first approximation, and this will
be confirmed by the more accurate VMC calculations in Section 5.4. Incidently,
Ref. [131] emphasizes a deep connection between the stability of checkerboard
structures [126] and the instability of the SFP due to nesting properties4 of some
parts of its Fermi surface [132].

4Note that the Fermi surface of the SFP is made of four small elliptic-like pockets centered
around (±π/2,±π/2)
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Figure 5.2: 4 × 4 unit-cell used in both the MF approach and the variational
wave-function. Note the existence of 6 independent bonds (bold bonds), that
for convenience are labelled from 1 − 6, and of 3 a priori non-equivalent sites.
The center of the dashed plaquette is the center of the (assumed) C4V symme-
try. Other sizes of the same type of structure are considered in the MF case,
respectively : 2 × 2,

√
8 ×

√
8, and

√
32 ×

√
32 unit cells.

5.3.2 Mean-field phase diagrams

In principle, the mean-field equations could be solved in real space on large clus-
ters allowing for arbitrary modulations of the self-consistent parameters. In prac-
tice, such a procedure is not feasible since the number of degrees of freedom in-
volved is too large. We therefore follow a different strategy. First, we assume
fixed (square shaped) supercells and a given symmetry within the super-cell (typ-
ically invariance under 90-degrees rotations) to reduce substantially the number
of parameters to optimize. Incidently, the assumed periodicity allows us to conve-
niently rewrite the meanfield equations in Fourier space using a reduced Brillouin
zone with a very small mesh. In this way, we can converge to either an absolute
or a local minimum. Therefore, in a second step, the MF energies of the various
solutions are compared in order to draw an overall phase diagram.

In previous MF calculations [126], stability of an inhomogeneous solution with
the 4 × 4 unit-cell shown in Fig. 5.2 was found around x = 1/8. Here, we in-
vestigate its stability for arbitrary doping and extend the calculation to another
possible competing solution with a twice-larger (square) unit-cell containing 32
sites. The general solutions with different phases and/or amplitudes on the in-
dependent links will be referred to as bond-order (BO) phases. Motivated by
experiments [122, 125], a C4V symmetry of the inhomogeneous patterns around
a central plaquette will again be assumed for both cases. Note that such a fea-
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ture greatly reduces the number of variational parameters and hence speeds up
the convergence of the MF equations. Starting from a central plaquette, like in
Fig. 5.2, a larger

√
32×

√
32 unit-cell (not shown) can easily be constructed with

10 non-equivalent bonds (with both independent real and imaginary parts) and
a priori 6 non-equivalent sites. Note that this new unit-cell is now tilted by 45
degrees.

At this point, it is important to realize that patterns with a smaller number of
non-equivalent bonds or sites are in fact subsets of the more general modulated
structures described above. For example, the SFP is obviously a special case of
such patterns, where all the χi,j are equal in magnitude with a phase oriented
to form staggered currents, and where all the sites are equivalent. This example
clearly indicates that the actual structure obtained after full convergence of the
MF equations could have higher symmetry than the one postulated in the initial
configuration which assumes a random choice for all independent parameters. In
particular, the equilibrium unit-cell could be smaller than the original one and
contain a fraction (1/2 or 1/4) of it. This fact is illustrated in Fig. 5.3 showing
two phase diagrams produced by using different initial conditions, namely 4 × 4
(top) and

√
32 ×

√
32 (bottom) unit-cells. Both diagrams show consistently the

emergence of the SFP at dopings around 6% and a plaquette phase (2×2 unit-cell
with two types of bonds) at very small doping 5 6. In addition, a phase with a√

8×
√

8 super-cell is obtained for a specific range of doping and V0 (see Fig. 5.3
on the top). Interestingly enough, all these BO phases can be seen as bond-
modulated SFP with 2, 4, 8 and up to 16 non-equivalent (staggered) plaquettes of
slightly different amplitudes. This would be consistent with the SFP instability
scenario [132] which suggests that the wavevector of the modulation should vary
continuously with the doping. Although this picture might hold when V0 = 0,
our results show that the system prefers some peculiar spatial periodicities (like
the ones investigated here) that definitely take place at moderate V0.

Let us now compare the two phase diagrams. We find that, except in some
doping regions, the various solutions obtained with the 4×4 unit-cell are recovered
starting from a twice larger unit-cell. Note that, due to the larger number of
parameters, the minimization procedure starting from a larger unit-cell explores
a larger phase space and it is expected to be more likely to converge to the
absolute minimum. This is particularly clear (although not always realized) at
large doping x = 0.14, where we expect an homogeneous Fermi Liquid (FL) phase
(all bonds are real and equal), as indeed seen in Fig. 5.3 on the bottom. On the
contrary, Fig. 5.3 on the top reveals, for V0/J ∈ [1.5, 3], a modulated

√
8 ×

√
8

structure, which is an artefact due to the presence of a local minimum (see next).
Since the MF procedure could accidentally give rise to local minima, it is of

5Note that, in this regime, antiferromagnetism is expected. Such a competition is not
considered here.

6Also found in SU(2N) mean-field theory; see M. Vojta, Y. Zhang and S. Sachdev,
Phys. Rev. B. 62, 6721 (2000) and references therein.
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Figure 5.3: Mean-field phase diagrams obtained by solving self-consistently the
mean-field equations on a 128 × 128 lattice (for l0 = 4) vs hole doping x and
repulsion V0 (in units of J). Top: results obtained assuming a 4 × 4 unit cell;
Bottom: same with a

√
32×

√
32 tilted unit cell. In both cases, a C4v symmetry

is assumed (see text).
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Figure 5.4: (a) Energy per site (in units of J and for t = 3J) obtained by solving
the mean-field equations using the initial 4×4 unit-cell (see text) for a moderate
value of V0. The SFP energy is also shown for comparison. The FL energy has
been substracted from all data for clarity. (b) Comparison of the energies (for
V0 = 0) using different initial conditions (see text), a 4× 4 or a

√
32×

√
32 unit-

cell; due to very small energy differences, the SFP energy is used as a reference for
an easier comparison. The different phases specified by arrows and characterized
by the number of sites NSC of their actual supercells refer to the ones in Fig. 5.3.
For doping x = 0.14, the minimization leads to a solution with small imaginary
parts (of order 10−4) very similar to a FL phase, which we call FL∗.
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interest to compare the MF energies obtained by starting with random values of
all independent parameters within the two previously discussed unit-cells. For
convenience, we have substracted from all data either the FL (in Fig. 5.4(a)) or
the SFP (in Fig. 5.4(b)) reference energy. From Figs. 5.4(a,b) we see that we can
converge towards a local energy minimum, often modulated in space, which is not
the absolute minimum. Indeed, over a large doping range, the lowest energy of
the all solutions we have found is obtained for homogeneous densities and bond
magnitudes. Nevertheless, we see that the 4 × 4 modulated phase is (i) locally
stable and (ii) is very close in energy to the homogeneous (SFP) phase which,
often, has a slightly lower energy. Note that, around x � 1/8, the states with√

8 ×
√

8 and
√

32 ×
√

32 supercells are clearly metastable solutions (and using
a larger initial unit-cell is not favorable in the latter case). In contrast, in this
range of doping, the 4× 4 checkerboard state is very competitive w.r.t. the SFP.
Therefore, it makes it a strong candidate to be realized either in the true ground
state of the model, or present as very low excited state7. In fact, considering such
small energy differences, it is clear that an accurate comparison is beyond the
accuracy of the MF approach. We therefore move to the approximation-free way
of implementing the Gutzwiller projection with the VMC technique, that allows a
detailed comparison between these variational homogeneous and inhomogeneous
states.

5.4 Variational Monte Carlo simulations of 4×4

superstructures

Motivated by the previous mean-field results we have carried out extensive Vari-
ational Monte Carlo simulations. In this approach, the action of the Gutzwiller
projection operator is taken care of exactly, although one has to deal with finite
clusters. In order to get rid of discontinuities in the d-wave RVB wave-function,
we consider (anti-)periodic boundary conditions along ey (ex). As a matter of
fact, it is also found that the energy is lower for twisted boundary conditions,
hence confirming the relevance of this choice of boundaries. We have considered
a 16 × 16 square cluster of N = 256 sites. We also focus on the 1/8 doping case
which corresponds here to Ne = 224 electrons on the 256 site cluster. Following
the previous MF approach, we consider the same generic mean-field hamiltonian,

HMF =
∑
〈i,j〉,σ

(
− t̃i,jc

†
iσcjσ + h.c.

)
+

∑
iσ

εic
†
iσciσ , (5.6)

where the complex bond amplitudes t̃i,j can be written as
∣∣t̃i,j∣∣ eiθi,j , and θi,j is

a phase oriented on the bond i → j. The on-site terms εi allow to control the

7Our 4 × 4 solution bears some similarities with those obtained within SU(2N)/Sp(2N)
mean field theories; see M. Vojta, Phys. Rev. B. 66, 104505 (2002). Note however that the
large-N Sp(2N) scheme implies a superconducting state.
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magnitude of the charge density wave. However, the energy was found to be
minimized for all the εi equal to the same value in the range V0 = [0, 5] and
for the two parameters l0 = 2, 4. In fact, we find that strong charge ordered
wave-functions are not stabilized in this model 8.

In this Section, we shall restrict ourselves to the 4×4 unit-cell where all inde-
pendent variational parameters are to be determined from an energy minimiza-
tion. This is motivated both by experiments [122, 125] and by the previous MF
results showing the particular stability of such a structure (see also Ref. [126]).
As mentioned in the previous Section, we also impose that the phases and ampli-
tudes respect the C4V symmetry within the unit-cell (with respect to the center
of the middle plaquette, see Fig. 5.2), reducing the numbers of independent links
to 6. To avoid spurious degeneracies of the MF wave-functions related to multiple
choices of the filling of the discrete k-vectors in the Brillouin Zone (at the Fermi
surface), we add very small random phases and amplitudes (10−6) on all the links
in the 4 × 4 unit cell.

Let us note that commensurate flux phase (CFP) are also candidate for this
special 1/8 doping. In a previous study, a subtle choice of the phases θi,j (cor-
responding to a gauge choice in the corresponding Hofstadter problem [28]) was
proposed [30], which allows to write the φ = p/16 (p < 16) flux per plaquette
wave-function within the same proposed unit-cell [30] and is also expected to
lead to a better kinetic energy than the Landau gauge (in the Landau gauge the
unit-cell would be a line of 16 sites). However, we have found that the CFP
wave-functions turned out not to be competitive for our set of parameters V0,
due to their quite poor kinetic energy, although they have very good Coulomb
and exchange energies. We argue that such CFP wave-functions would become
relevant in the large Coulomb and/or J regimes (see table 5.1).

In order to further improve the energy, we also add a nearest-neighbor spin-
independent Jastrow [50] term to the wave-function,

PJ = exp

⎛
⎝α∑

〈i,j〉
ninj

⎞
⎠, (5.7)

where α is an additional variational parameter. Finally, since the t − J model
allows at most one fermion per site, we discard all configurations with doubly
occupied sites by applying the complete Gutzwiller projector PG. The wave-
function we use as an input to our variational study is therefore given by,

|ψvar〉 = PGPJ |ψMF〉 (5.8)

In the following, we shall introduce simple notations for denoting the various
variational wave-functions, BO for the bond-order wave function, SFP for the

8Note that the bond modulation itself leads to non-equivalent sites which, strictly speaking,
should have slightly different electron densities (although the εi might be constant).
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Table 5.1: Set of energies per lattice site for V0 = 1 and l0 = 4 for different
wave-functions. The best commensurate flux phase in the Landau gauge with
flux per plaquette p/16 was found for p = 7. We also show the energy of the CFP
with flux 7/16 written with another choice of gauge. We show the total energy
per site (Etot), the kinetic energy per site (ET), the exchange energy per site (EJ)
and the Coulomb energy per site (EV).

wave-function Etot ET EJ EV

FS -0.4486(1) -0.3193(1) -0.1149(1) -0.0144(1)
CFP 7/161 -0.3500(1) -0.1856(1) -0.1429(1) -0.0216(1)
CFP 7/162 -0.4007(1) -0.2369(1) -0.1430(1) -0.0208(1)

SFP -0.4581(1) -0.3106(1) -0.1320(1) -0.0155(1)
BO -0.4490(1) -0.3047(1) -0.1302(1) -0.0141(1)
RV B -0.4564(1) -0.3080(1) -0.1439(1) -0.0043(1)
SFP/J -0.4601(1) -0.3116(1) -0.1315(1) -0.0169(1)
BO/J -0.4608(1) -0.3096(1) -0.1334(1) -0.0177(1)
RV B/J -0.4644(1) -0.3107(1) -0.1440(1) -0.0086(1)

1 Landau gauge
2 Gauge of Ref. [30]

staggered flux phase, RV B for the d-wave RVB superconducting phase, FS for
the simple projected Fermi sea, and we will use the notation MF/J (MF =
BO, SFP,RVB, FS) when the Jastrow factor is applied on the mean-field wave-
function. Finally, it is also convenient to compare the energy of the different
wave-functions with respect to the energy of the simple projected Fermi sea (i.e.
the correlated wave-function corresponding to the previous FL mean-field phase),
therefore we define a condensation energy as ec = evar − eFS.

In Fig. 5.5 we present the energies of the three wave-functions BO/J , SFP/J
and RV B/J for Coulomb potential V0 ∈ [0, 5]. We find that for both l0 = 2 and
l0 = 4 theRV B phase is not the best variational wave-function when the Coulomb
repulsion is strong. The bond-order wave-function has a lower energy for V0 > 2
and l0 = 2 (V0 > 1.5 and l0 = 4). Note that the (short range) Coulomb repulsion
in the cuprates is expected to be comparable to the Hubbard U , and therefore
V0 ≈ 5 or 10 seems realistic. Independently of the relative stability of both wave-
functions, the superconducting d-wave wave-function itself is strongly destabilized
by the Coulomb repulsion as indicated by the decrease of the variational gap
parameter for increasing V0 and the suppression of superconductivity at V0 � 7
(see Fig. 5.6).

Nevertheless, we observe that the difference in energy between the bond-
order wave-function and the staggered flux phase remains very small. We show
in table 5.2 the order parameters measured after the projection for the RV B/J ,
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Table 5.2: Order parameters for the different wave-functions for V0 = 1.5 and
l0 = 4. We depict the following order parameters: ti,j × eiφi,j , where ti,j (φi,j)
is the amplitude (phase) of 〈c+i cj〉, and the exchange energy 〈Si.Sj〉, for the 6
independent bonds labelled for convenience according to Fig. 5.2. The sign of
φi,j is according to the staggered flux pattern (see arrows in Fig. 5.10). We note
that the RV B/J is uniform by construction. The variational superconducting
order parameter is ∆RV B = 0.3 for the RV B/J wave-function and ∆RV B = 0
for the SFP/J and BO/J wave-functions.

bond 1 bond 2 bond 3 bond 4 bond 5 bond 6
ti,j

RV B/J 0.077(1) 0.077(1) 0.077(1) 0.077(1) 0.077(1) 0.077(1)
SFP/J 0.085(1) 0.085(1) 0.085(1) 0.085(1) 0.085(1) 0.085(1)
BO/J 0.082(1) 0.083(1) 0.093(1) 0.088(1) 0.086(1) 0.084(1)

|φi,j|
RV B/J 0 0 0 0 0 0
SFP/J 0.438(1) 0.438(1) 0.438(1) 0.438(1) 0.438(1) 0.438(1)
BO/J 0.527(1) 0.502(1) 0.473(1) 0.390(1) 0.338(1) 0.384(1)

−〈Si.Sj〉
RV B/J 0.215(1) 0.215(1) 0.215(1) 0.215(1) 0.215(1) 0.215(1)
SFP/J 0.197(1) 0.197(1) 0.197(1) 0.197(1) 0.197(1) 0.197(1)
BO/J 0.215(1) 0.207(1) 0.215(1) 0.187(1) 0.186(1) 0.170(1)
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Figure 5.5: Energy per lattice site of the RV B/J , SFP/J and BO/J wave-
functions minus the energy of the projected Fermi sea wave-function.
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Figure 5.6: Kinetic and exchange energy per site of the RV B/J wave-function
minus the respective exchange and kinetic energy of the simple projected Fermi
sea. Inset: value of the variational d-wave gap.
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Figure 5.7: Total energy per site of the BO/J minus the energy of the SFP/J
wave-functions.

SFP/J and BO/J wave-functions. As expected the RV B/J and the SFP/J
wave-functions are homogenous within the unit-cell. In contrast, the BO/J
wave-function shows significant modulations (expected to be measurable exper-
imentally) of the various bond variables w.r.t their values in the homogeneous
SFP. In Fig. 5.7 we show the small energy difference (see scale) between the two
wave-functions. Interestingly, the difference is increasing with the strength of
the potential. We notice that the two wave-functions correspond to two nearby
local minima of the energy functional at zero Coulomb potential (see Fig. 5.8),
which are very close in energy (the BO/J wave-function is slightly lower in en-
ergy than the SFP/J ) and are separated by a quite small energy barrier. Note
that in Fig. 5.8 we consider the variational bond order parameters and not the
projected quantities.

When the repulsion is switched on, the height of the energy barrier increases
and the SFP/J wave-function does not correspond anymore to the second local
minima. Indeed, when V0 > 0 the second local energy minima shifts continu-
ously from the point corresponding to the simple SFP/J wave-function. The
metastable wave-function lying at this second local minima is a weak bond-order
(SFP-like) wave-function that preserves better the large kinetic energy while still
being able to optimize better the Coulomb energy than the homogeneous SFP.
Moreover, to understand better the stabilization of the BO-modulated staggered
flux wave-functions w.r.t the homogeneous one, we have plotted in Fig. 5.9 the
difference in the respective kinetic energy, the exchange energy and the Coulomb
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Figure 5.8: Total energy per site of the BO/J variational wave-function with vari-
ational parameters Im

(
t̃i,j

)
= ±φ on the bonds 1, 2, 3, and Im

(
t̃i,j

)
= ±0.149

on the bonds 4, 5, 6. The sign of Im
(
t̃i,j

)
is oriented according to the staggered

flux pattern. We have chosen for all the links Re
(
t̃i,j

)
= 0.988. Results for

V0 = 0 and V0 = 5 with l0 = 4 are shown.
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Figure 5.9: Kinetic, exchange and Coulomb energy per site of the BO/J wave-
function minus the respective associated energy of the SFP/J wave-function.

energy of the SFP/J and BO/J wave-functions. We conclude that the two
wave-functions, although qualitatively similar (they both exhibit an underly-
ing staggered flux pattern), bear quantitative differences: the staggered flux
phase (slightly) better optimizes the kinetic energy whereas the bond-order wave-
function (slightly) better optimizes the Coulomb and exchange energies so that
a small overall energy gain is in favor of the modulated phase. Therefore, we
unambiguously conclude that, generically, bond-order modulations should spon-
taneously appear on top of the staggered flux pattern for moderate doping.

Finally, we emphasize that the bond-order wave-function is not stabilized by
the Coulomb repulsion alone (like for a usual electronic Wigner cristal) exhibiting
coexisting bond order and (small) charge density wave. Moreover, the variational
parameters εi in Eq. (5.6) are found after minimizing the projected energy to be
set to equal values on every site of the unit-cell. Let us also emphasize that
the bond-order wave-function is not superconducting as proposed in some sce-
narios [130]. In the actual variational framework, we do not consider bond-order
wave-function embedded in a sea of d-wave spin singlet pairs.

In fact, we do not expect a bulk d-wave RVB state to be stable at large
Coulomb repulsion (because of its very poor Coulomb energy) nor a bulk static
checkerboard SFP at too small Coulomb energy. However, for moderate Coulomb
repulsion for which the d-wave RVB remains globally stable, sizeable regions of
checkerboard SFP could be easily nucleated e.g. by defects. This issue will be
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(a) (b)

(c) (d)

Figure 5.10: Local expectation values (a,b,c) of the kinetic and exchange energies
of the projected BO/J wave-functions on each of the bonds within the unit-cell.
Width of filled square symbols is proportional to the (a) real and (b) imaginary
part of 〈c+i cj〉, and (c) to the local exchange energy 〈Si · Sj〉. The sign of the
imaginary part of the hopping bonds is according to the staggered flux pattern
(arrows). The wave-function has small charge density variations (d), therefore
we subtract the mean value n to the local density: size of circles are proportional
to 〈ni − n〉, and circles are open (filled) for negative (positive) sign. The biggest
circle corresponds to an on-site charge deviation of 2%. All the above results are
for l0 = 4 and V0 = 5.
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addressed using renormalized MF theory in a future work. An extension of our
VMC study with simultaneous inhomogeneous bond-order and singlet pair order
parameters (as required to treat such a problem) is difficult and also left for a
future work. Note also that low-energy dynamic fluctuations of checkerboard
(and SFP) characters could also exist within the d-wave RVB state but this is
beyond the scope of our present work.

The properties of the BO/J staggered flux wave-function are summarized
in Fig. 5.10 showing the real and imaginary parts of the measured hopping
term 〈c+i cj〉 between every nearest neighbor sites of our candidate BO/J wave-
function. We also present the exchange term on each bonds of the lattice, and
the local on-site charge density. We find that the bond-order wave-function has
both (spin-spin) bond density wave and (small) charge density wave components.
Nonetheless, the charge modulations are very small (the maximum charge devia-
tion from the mean on-site charge is of the order of 2%) , and the charge density
is a little bit larger in the center of the unit-cell. As expected, the SFP/J has
homogeneous hopping and exchange bonds within the unit-cell. Therefore, we
conclude that after projection the modulated variational wave-function differs
quantitatively from the uniform one: the BO/J staggered flux wave-function
is quite inhomogeneous (although with a very small charge modulation) leading
to an increased magnetic energy gain while still preserving a competitive kinetic
energy, a characteristic of the homogeneous SFP/J wave-function.

5.5 Conclusion

In conclusion, in this chapter we have investigated the t−J−V model using both
mean-field calculations as well as more involved variational Monte-Carlo calcu-
lations. Both approaches have provided strong evidence that bond-order wave-
functions (of underlying staggered flux character) are stabilized at zero and finite
Coulomb repulsion for doping close to 1/8. In particular, variational Monte-
Carlo calculations show that a bond modulation appears spontaneously on top
of the staggered flux phase. This is in agreement with the work of Wang et
al. [132] predicting an instability of staggered flux type. We have also shown
that the modulated and homogeneous SFP, although nearby in parameter space,
are nevertheless separated from each other by a small energy barrier. While
both staggered flux wave-functions provide an optimal kinetic energy, the bond-
modulated one exhibits a small extra gain of the exchange energy. On the other
hand, a short range Coulomb repulsion favors both staggered flux wave-function
w.r.t the d-wave RVB superconductors and brings them close in energy.

Finally, it would be interesting to study if the checkerboard pattern could
spontaneously appear in the vicinity of a vortex in the mixed phase of the
cuprates. Such an issue could be addressed by studying the t−J−V model on a
square lattice extending our variational scheme to include simultaneously nearest
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neighbor pairing and bond modulated staggered currents. It is expected that,
while the pairing is suppressed in the vicinity of the vortex, the checkerboard
pattern might be variationally stabilized in this region.
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Chapter 6

Spontaneous time reversal
symmetry breaking in the
cuprates

6.1 Outline

The three-band Hubbard model on the square lattice is believed to be relevant
for the copper oxide high-Tc compounds. We used the projected wavefunction
variational approach for this model. It has been repeatedly suggested that or-
bital currents might appear in this model, and we propose to use an extended
variational scheme to look at such an instability. In this chapter we perform vari-
ational Monte Carlo calculations for an orbital current wavefunction. It is found
that local Gutzwiller projection is not efficient enough for this Hamiltonian, and
a long-range Jastrow projector helps to treat correctly the doubly occupied site
in the three-band Hubbard model. The orbital currents wavefunction is found
to be variationally stable for realistic Hamiltonian parameters in the hole doping
range x = 0. − 0.15%. Energies and correlations are compared to exact results
obtained on a small cluster.

6.2 Experimental evidence of spontaneous cir-

culating currents in YBCO

Since the discovery of the high temperature superconductors, one of the leading
issues is the origin of the pseudo-gap phase which exists in the the low hole doping
part (underdoped region) of the copper oxide superconductor phase diagram.

A strong activity has emerged on the circulating current phases in correlated
electron systems. One example is provided by the so-called staggered flux (SF)
phases [133,134,135]. Many of their properties were discussed, but not considered

133
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Figure 6.1: Reproduced from Ref. [136]. a) The colors indicate the magnetic mo-
ments intensity versus the hole doping concentration nh. The white dots indicates
the pseudo-gap critical temperature T* obtained from resistivity measurements.
b) the θ2 phase proposed by Chandra Varma that characterize the pseudo-gap
phase of the cuprates, c) on-site spins lying on the oxygen atoms.

further in the absence of experimental evidence. The discovery of an unusual and
robust regime called the pseudo-gap in superconductors has changed the picture
once more. The pseudo-gap has a density of states looking like a superconducting
gap, but the state itself is not superconducting. This phase is remarkable as
physical properties show anomalies with respect to the behavior expected for a
standard metal and at the same time there is no evidence of broken symmetry
so far. One of the accepted scenarii is that the pseudo-gap state represents
a precursor of the superconducting state. Another scenario would be that an
order parameter associated with the pseudo-gap phase is competing with the
superconducting one. In this context a proposal has been made recently that a
true broken symmetry is the origin of the pseudo-gap [137]. This state would
lead to a breakdown of time reversal symmetry in which the circulating currents
obey translational symmetry.

One of the recent proposal is that the anomalous properties of the cuprates
may be due to quantum critical fluctuations of current patterns formed sponta-
neously in the CuO2 planes. Related to this assumption, a break-through was
realized recently by Bourges et al. [136]: by using polarized elastic neutron diffrac-
tion, they report the signature of an unusual magnetic order in the underdoped
phase of YBa2Cu3O6 + x (YBCO). They argue that this hidden order param-
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a) b)

Figure 6.2: The phase θ1 (a) and θ2 (b) proposed by Chandra Varma as candi-
dates for the pseudo-gap phase of the cuprates. The arrows indicate the currents
orientation.

eter defines the pseudo-gap phase of cuprates. They found that the magnetic
intensity occurs on top of nuclear Bragg peaks with no additional Bragg peaks:
this indicates that no translational symmetry breaking of the lattice is associated
with this order parameter.

Moreover, the pattern of the observed magnetic scattering corresponds to
the one expected in the circulating current theory of the pseudo-gap state with
current loops inside the CuO2 unit-cell developed by Chandra Varma [138], es-
pecially with the θ2 phase proposed recently by Chandra Varma, which has two
current loops per copper unit-cell. Nevertheless, an alternative scenario consid-
ering a decoration of the unit cell with staggered moments on the oxygen sites
could also account for the measurements. Combining all measurements done in
different samples, it was found that the magnetic moments had also an in-plane
component: the mean angle between the direction of the moments with the axis
perpendicular to the planes was estimated to be φ = 45◦. The intensity of the
observed moments, which develops well above Tc (close to room temperature), is
reported to be about M = 0.05 − 0.1µB.

Finally, this phenomenology suggests a quantum critical point close to optimal
doping. Critical fluctuations around this point would then be responsible for the
anomalous properties of the pseudo-gap phase.

6.3 three-band Hubbard model

In order to investigate the mechanism of circulating currents (CC), superconduc-
tivity (SC) and antiferromagnetism (AF) in cuprate high-Tc superconductors,
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we examine the ground state of the two-dimensional three-band Hubbard model
for CuO2 planes. Indeed, we cannot use the simpler one-band Hubbard or t-J
model since we want to include the possibility for circulating currents around
the CuO2 plaquettes. We neglect, in the first part of this work, the out-of-plane
oxygens (apical oxygens), since it is commonly believed that the CuO2 plane
contains the essential features of high-Tc cuprates. It is not an easy task to
clarify the ground state properties of the 2D three-band Hubbard model because
of the strong correlations among d and p electrons. We must treat the strong
correlations properly to understand the phase diagram of the high-Tc cuprates.
The quantum variational Monte Carlo (VMC) method is a tool to investigate the
overall structure of the phase diagram from weak to strong correlation regions.
A purpose of this work is to investigate the property of the orbital current phase,
the antiferromagnetic state and the competition between antiferromagnetism and
superconductivity for finite Ud, following the ansatz of Gutzwiller-projected wave
functions.

In this work, we propose to study the physics of correlated electrons in the
following 3-band Hamiltonian 1.1. The compound has one hole per Cu site at
half-filling, and we find it more convenient to work in hole notations: we consider
therefore that p† (d†d) creates one hole on a oxygen (copper) site. The matrix Si,j

contains the phase factor that comes from the hybridization of the p-d orbitals.
In hole notation, it is possible to perform a gauge transformation that transforms
the matrix Sij so that all the final hopping integrals are negative (see Fig. 6.3). In
what follows, we use the gauge transformation only for the exact diagonalization
calculations, since it allows to keep the rotational symmetries, which would be
broken by the usual sign convention. Nevertheless, all the physical observables are
gauge invariant and the results will not depend on the gauge choice. Furthermore,
the doping is defined as the number of additional holes per copper unit cell. At
half-filling (0 doping) the system has one hole per copper. We can therefore dope
in holes by adding additional particles, or dope in electrons by removing particles.
It is important to notice that, even when tpp = 0, the model has no particle/hole
symmetry. Since we propose to study the stability of orbital flux current, we
do not use anti-periodic boundary conditions which would generate an artificial
additional flux through the lattice. We consider throughout this paper realistic
values for the Hamiltonian parameters [9, 10, 8]:

• Ud = 10.5eV and Up = 4eV

• tdp = 1.3eV and tpp = 0.65eV

• ∆p = 3.5eV

• Vdp = 1.2eV

This model was investigated by means of variational Monte Carlo [139, 140],
however the authors were not looking for the orbital current instability. On the
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Figure 6.3: The gauge choice in the Lanczos calculations. the dx2−y2 and pσ

orbitals are shown. The phases due to the hybridization in this gauge are Sdp =
−1 for the copper-oxygen links, and Spp = −1 for the oxygen-oxygen links. In
this gauge choice, the signs of the transfer integrals do not anymore break the 90◦

rotational symmetry. This latter symmetry is used in the Lanczos calculations
as an additional quantum number, that allows to diagonalize the Hamiltonian
matrix in smaller blocks of the Hilbert space.

+
- +
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+
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Figure 6.4: A single CuO2 layer, the copper are indicated as large sphere, and
the oxygens as small one. The system has one hole per copper site at half-filling.
Both the transfer integral tdp between the dx2−y2 and the px,y orbitals and the
transfer integral tpp between the px and the py orbitals are considered. In hole
notations the bonding orbitals enter the Hamiltonian with a positive transfer
integral sign, and the anti-bonding orbitals with a negative sign. The signs of
the tpp and tdp transfer integrals are shown.
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Figure 6.5: Free particle dispersion in hole notation of the Fermi sea (left) and
of the θ2 orbital current phase with mean-field flux flowing though one of the
circulating plaquette φmf = 0.9 (middle) and φmf = 2.1 (right). The minimum
of the dispersion is shifted along the diagonal of the Brillouin Zone.

other hand, a recent exact diagonalization was carried out by M. Greiter and
collaborators [141]. They found no evidence for spontaneous orbital currents
in finite-size studies of an effective t−J model for the three-band model of the
CuO2 planes. The mapping of the three-band Hubbard model on this t−J model
is however expected to be valid only in the limit εp/tpd � 1, that is however
not satisfied for realistic parameters obtained for the cuprates [9]. Therefore,
additional exact diagonalization calculations of the three-band Hubbard model
are still called for. Moreover, they used exact diagonalizations on a small 8
copper site lattice, which leads to large finite-size effect, although the size of the
Hilbert space is already very large. Finally, in the calculations of M. Greiter and
collaborators, the Hilbert space was truncated by keeping the lowest energy levels,
which though it was argued to be under control, is not giving exact results which
can directly be compared to variational results. Therefore, further variational
Monte Carlo calculations are certainly needed to study larger systems.
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6.4 A pair of particles in a three-site ring

Let us first consider a simple model describing a pair of up and down spin particles
on a simple three-site ring. The sites are connected by a hopping integral t, and
we consider an on-site repulsion U > 0 and a nearest neighbor Coulomb repulsion
V :

H3 = t
∑
〈i,j〉σ

c+iσcjσ + U
∑

i

ni↑ni↓ + V
∑
〈i,j〉

ninj (6.1)

The Hilbert space contains 9 states, and when we consider translational symme-
tries, it is reduced to 3 states :

P1 = |↑↓ ◦〉 + eik |◦ ↑↓〉 − e−ik |↓ ◦ ↑〉
P2 = |↓↑ ◦〉 + eik |◦ ↓↑〉 − e−ik |↑ ◦ ↓〉
P3 = |d ◦ ◦〉 + eik |◦d◦〉 + e−ik |◦ ◦ d〉

where d is a doubly occupied site, and k takes the value k = 0, 2π/3, 4π/3. The
ground state of free particles (U = V = 0) |ψ0〉 is in the sector k = 0 for t < 0, and
the state is degenerate in the sectors k = 0,±2π/3 for t > 0. The ground-state
energy for t < 0 is given by E = −4|t| and is non-degenerate, while we get a four-
fold degeneracy for t > 0 with energy E = −2|t|. In the latter case, two of the
eigenvectors lie in the sector k = 0 and the two other eigenvectors lie respectively
in the sectors k = 2π/3 and k = −2π/3. This is a trivial result understood in
terms of the free dispersion of a one dimensional chain with periodic boundary
conditions. However, it is worth noting that the circulation of the current around
the ring is finite for the ground state component lying in the k = ±2π/3 sectors
when t > 0. In the latter case we get, in each of the k = ±2π/3 sectors of the
Hilbert space, the circulation of the current: F = 1.1547|t|, where :

F = 〈J12〉 + 〈J23〉 + 〈J32〉 (6.2)

and the definition of the current is obtained by the conservation of the density:

δni

δt
= 0 =

�e

c
[H, ni] =

∑
〈i,j〉

Ji,j (6.3)

which leads to the definition of the current operator on a link 1:

Jij =
∑

σ

(
itijc

†
iσcjσ + c.c.

)
(6.4)

We emphasize that this definition of the current-operator is gauge invariant.
When U, V > 0, the states k = ±2π/3 have higher energies, but the degeneracy

1This leads to the same definition as the derivative of the Hamiltonian with respect to the
gauge field Aij : δH

δAij
= Jij .
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is restored when U = V . Following this simple argument, we could expect that
circulating currents will occur in the plaquettes of the lattice that have the sign
t > 0 2, provided they are stabilized by the electronic correlations.

This trivial argument can be tested by looking at the correlations of the
current operator of the three-band Hubbard model in a small 12 site lattice in
the free-electron case (Ud = Up = Vdp = 0). Therefore, we consider two choices
of the hopping signs, none of them being the one of the cuprates compound, but
which have respectively two and four circulating triangles around each copper
atom, i.e. the former having two triangle plaquette with t > 0 and the latter
having four triangle plaquettes with t > 0 (see Fig. 6.6). The current-current
correlations on a very short-range scale are consistent with the above argument:
we get a strong circulation of the current around the triangle plaquette that have
positive hopping integrals or gauge equivalent hopping integrals. The correlations
of the current operator are defined as follows:

Ckl = 〈Ĵ12Ĵkl〉 (6.5)

where (1, 2) denotes a fixed reference link. If the distance between (1, 2) and (k, l)
is large enough, the quantity will decorrelate and therefore we can estimate the
current value jkl =

√
Ckl.

Actually we find that for the sign of the hoppings that have respectively two
and four circulating plaquette around each copper, short range current patterns
are present in the Fermi sea, that have the symmetry of the phases θ2 and θ1
(see Fig. 6.6), that were proposed as candidates for the underlying order in
the pseudo-gap phase of the cuprates by Chandra Varma. However, for the
physical Hamiltonian which correspond to the cuprates, the choice of the sign is
equivalent to negative hopping integrals on all the bonds. Therefore, following
the above simple argument, only a weak circulation of the current along the
triangle plaquette is expected at first sight. Nevertheless, this is only a trivial
argument based on the physics of a three-site ring, and to have further insights
in the physics of the three-band Hubbard model, we propose as a first step to
perform mean-field calculations on a large lattice.

6.5 Bogoliubov-De Gennes mean-field theory

Our starting point is the non-local Hubbard model, which is described by the
following Hamiltonian :

H = −
∑
ijσ

tijc
†
iσcjσ +

∑
iσ

εic
†
iσciσ − µ

∑
iσ

c†iσciσ +
1

2

∑
ijσσ′

Uijc
†
iσciσc

†
jσ′cjσ′ (6.6)

2We note that the system with hopping integrals t12 > 0, t23 < 0 and t31 < 0 is equivalent
to the system with t12 > 0, t23 > 0 and t31 > 0 by a simple gauge transformation.
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Figure 6.6: Free particle calculations. Top left : sign of the hopping integrals
that are considered in the calculations. In this CuO4 cell all the hopping sign
can be transformed by a gauge transformation to a positive hopping sign. There-
fore, according to the simple three-site ring argument, the current is expected to
circulate in the 4 triangles around the copper atom. Top right : current-current
correlations in the corresponding free (Ud=Up=Vdp=0) Hubbard electron model
that have the sign defined in the top-left picture. The lattice is filled with 6
holes (50% doping) and the current pattern is θ1 like. Bottom left : choice of
the hopping sign where the unit-cell has 2 circulating plaquette. Bottom right :
current-current correlations that show a θ2 like current pattern.
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Figure 6.7: Circulation of the orbitals current around one triangle plaquette
within the mean-field calculations. We show the circulation for different values of
the Coulomb repulsion. The current has same amplitude on the oxygen-oxygen
links and on copper-oxygen links. The symmetry of the circulating phases at
V = 2. and V = 2.5 is θ2 like.

Where the creation and annihilation operators c†i and ci create and annihilate
holes with spin σ in the orbital centered at the lattice point labeled by i, tij is
the amplitude for hopping from site j to site i, εi is the energy level of the orbital
at site i, µ is the chemical potential and Uij is the interaction energy of two holes
with opposite spin on the same site i = j, and of two holes on neighboring sites
i �= j. To obtain the generalized, non-local, Bogoliubov De Gennes equations we
first make a mean field approximation for the pairing field [142]:

∆ij = −Uij 〈ciσcj−σ〉 (6.7)

The tight-binding lattice has nearest neighbor hopping interactions (tij), as well
as a coupling between particle and hole space, via a superconducting order pa-
rameter (∆ij). If the interactions are purely on-site (Uii) repulsions then the
pairing potential will be purely local (∆ii). On the other hand when the inter-
action is non-local (Uij , i �= j) the pairing potential ∆ij will also be non-local.
Another mean field decoupling that takes into account the effect of the U inter-
actions by having a hopping renormalization is also considered (decoupling in the
particle-hole channel) :

χij = Uij

〈
c†iσcjσ

〉
(6.8)
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Assuming that the fluctuations about the mean values are small we can write the
self-consistent mean-field equations :

Hij =

(
Hij ∆ij

∆∗
ij −H∗

ij

)
(6.9)

In the fully self-consistent Bogoliubov De Gennes equation the normal state
Hamiltonian Hij is given by :

Hij = (tij +
1

2
Ujiχji) + (εi − µ) δij (6.10)

And : ∑
j

Hij

(
un

j

υn
j

)
= En

(
un

i

υn
i

)
(6.11)

We then perform the Bogoliubov canononical transformation enabling us to ob-
tain uni and vni, the particle and hole amplitudes at site i, associated with an
eigen-energy En and where ∆ij is the possibly non-local pairing potential or
gap function. This allows us to find the self-consistent equations to be satis-
fied [35, 36, 37, 38, 39, 40]:

∆ij = −UijFij (6.12)

with :

Fij = 〈ciσcj−σ〉 =
∑

n

(
un

i

(
υn

j

)∗
(1 − f (En)) − (υn

i )∗
(
un

j

)
f (En) (6.13)

and:

χij =
∑

σ

〈
c†iσcjσ

〉
= 2

∑
n

(
(un

i )∗ un
j f (En) + υn

i

(
υn

j

)∗
(1 − f (En )

)
(6.14)

f(En) is the usual Fermi-Dirac distribution. A solution to the above system of
equations will be fully self-consistent provided that both the χij and ∆ij poten-
tials are determined consistently. We turn now to the results for the three-band
Hubbard model. We have carried out mean-field calculations by solving the self-
consistent Bogololiubov equations. It was argued that this mean-field consistent
frame [142] insures current conservation. We assume a 2-copper unit-cell (6 sites)
and solve the equations on a 12× 12 copper lattice (496 sites). We have iterated
the equations until the observables were converged up to 10−4, which is basically
achieved in a few hundred of steps. We checked that minimizing all the param-
eters on smaller lattices was leading to the same result. We did not consider
a further spin decoupling that would lead to antiferromagnetism, since we are
mostly interested in time-reversal symmetry breaking.
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Figure 6.8: Amplitude of the mean-field RVB parameter ∆ij , where (i, j) are
copper-oxygen links. The symmetry of the mean-field order parameter consist of
real phases +1 for the dx2−y2 -px and dx2−y2 -py copper-oxygen links, and −1 for
the dx2−y2 -p−x and for the dx2−y2 -p−y links.
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Once the self-consistency is achieved, we measure the order parameter 〈c†kσclσ〉 =

|〈c†kσclσ〉|eiθkl in the mean-field wavefunction. The current operator is then defined
by:

〈jMF
kl 〉 =

∑
σ

itMF
kl 〈c†kσclσ〉 + c.c. (6.15)

When the self-consistency condition is satisfied, tMF
kl is given by:

tMF
kl = tkl − Vdp〈c†lσck〉 (6.16)

In terms of the phase θkl, this finally gives:

〈jMF
kl 〉 =

∑
σ

i
(
tkl|〈c†kσclσ〉|eiθkl − Vdp|〈c†kσclσ〉||〈c

†
lσckσ〉|

)
(6.17)

and we get:

〈jMF
kl 〉 = 2

∑
σ

tkl|〈c†kσclσ〉| sin iθkl (6.18)

Eventually we find that the expectation value of the mean-field current oper-
ator jMF

kl , when measured in the mean-field ground-state, is also equal to the
expectation value of the true current operator defined for the Hubbard model :

jkl =
∑

σ

itkl〈c†kσclσ〉 + c.c. (6.19)

We emphasize that the relation 〈jMF
kl 〉 = 〈jkl〉 breaks down when the calculations

are not self-consistent.
We find that for large nearest-neighbors Coulomb repulsion Vdp ≈ 2 (see Fig.

6.7) the orbital currents start to develop for the hole doping part of the phase
diagram. The orbital current phase is however stable for unrealistic large hole
doping range. A more sophisticated treatment of the Coulomb repulsion terms
is certainly called for to avoid the artefact of the mean-field calculations.

6.6 Variational wavefunction

The wavefunction that we consider throughout this chapter is defined by the
usual BCS like mean-field hamiltonian (1.23):

HMF =
∑
〈i,j〉

χijc
†
iσcj,σ + ∆var

p

∑
p,σ

n̂pσ + µ
∑

i

n̂i

+
∑
〈i,j〉

(
∆i,jc

†
i,↑c

†
j,↓ + c.c.

)
+

∑
i

hi.Si (6.20)

Where χij , ∆var
p and ∆ij are complex variational parameters. The order param-

eter hi allow to consider Néel magnetism. Finally, µ is the chemical potential
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and ∆v
par is the renormalized energy difference between the d and p atomic levels

in the variational wavefunction. The parameters χij are independent within one
copper unit-cell (this represents 8 complex parameters) with both an amplitude
and a phase. When χij is complex, the order parameter is associated with an

external flux which leads to the circulation of the holes. The operator c†iσ creates
a hole in the orbitals dx2−y2 , px and py.

Moreover, we consider pairing parameters between nearest oxygen neighbors
but also a pairing between oxygen sites with |i− j| < 3 (this gives 106 complex
parameters). This allows to have a first approximation of the pairing between
Zhang-Rice singlets, which is expected to lead to the d-wave superconducting
instability in the t−J model [12].

The chemical potential in the mean-field Hamiltonian is fixed such that the
non-projected wavefunction has a mean-number of holes that is consistent with
the hole doping which is considered. To simplify the calculation, we will consider
independently each of the instabilities, and denote by FLUX/SDW/RVB the part
of the wavefunction that was considered.

Furthermore, we introduce a correlated part with a spin and charge Jastrow
factor:

J = exp

( ∑
i,j=1,N

vc
ijninj

)
exp

( ∑
i,j=1,N

vS
ijS

z
i S

z
j

)
(6.21)

where all vc
ij and vS

ij are considered as free variational parameters. We impose
however the symmetry of the lattice T ×P, where P is the point-group symmetry
of the lattice, and T are the translations which are consistent which the unit-
cell of the wavefunction (we assume in our case a 2-copper unit-cell to allow
Néel magnetism). In what follows, we will denote by Ja/{Flux/RVB/SDW} a
wavefunction that contains the Jastrow.

6.6.1 Jastrow factor obtained after optimization

Interestingly enough, we find after calculations that the charge Jastrow factor
is slowly decreasing with the distance (see Fig. 6.9), and the nearest-neighbor
charge repulsion is not negligible. We find this result even when the true nearest
neighbor repulsion is zero : Vdp = 0. This certainly means that the on-site
repulsion Ud generates via second-order process a first neighbor repulsion that
is captured by the Jastrow factor. This is in agreement with the fact that our
results are generally only weakly dependent on Vdp.

6.7 Minimization of the Energy

The minimization of the variational parameters for a three-band model is not a
simple task, and a difficult problem to overcome is the fact that the minimization
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Figure 6.9: Jastrow factor versus distance for the charge parameters (red) and the
spin (blue) parameters versus the distance. Top : the reference site is a copper
site, bottom : the reference site is an oxygen site.
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process falls most of the time in local minima. For example, using the simple
Fermi sea projected with a local Gutzwiller factor, we find mainly two local
minima by minimizing the variational parameters : (i) a minimum where the
gutzwiller projection is very strong, which will lead to a very bad kinetic energy,
and once the kinetic energy is very poor, the system will finally minimize the
charge transfer energy by using a larger ∆var

p , (ii) a local minimum where the
wavefunction optimizes its kinetic energy by using a small ∆var

p , and a weak
Gutzwiller projection. These local minima are likely to be found if the long-
range Jastrow factor is not used.

Moreover, we use in this chapter a stochastic minimization procedure [52,51]
to minimize both the parameters of the uncorrelated part of the wavefunction
and the Jastrow parameters at the same time. This method allows one to deal
with a large number of parameters, since the gradients are calculated all at the
same time during a simulation. The new parameters are then calculated using
the obtained gradients, and the procedure is iterated until the parameters are
converged.

Once the final wavefunction is optimized, we can apply finally one further
Lanczos step on the wavefunction. If the energy changes qualitatively, this means
that the parameters are either not converged, or more generally that the wave-
function is not good enough to catch the low energy physics of the ground state.
Moreover, the wavefunction can be used as a guiding function for the Green
function Monte Carlo (GFMC) procedure which allow to correct the correlations
of the observable, or it can also be used as an input for further Auxiliary-Field
Quantum Monte Carlo (AFQMC) calculations. Starting the simulation by as-
suming random variational parameters, we find after usually a hundred iterations
a convergence of both the variational energy and the variance. However, since the
calculation is variational, we cannot rule out the possibility that this minimum
is only local. A typical Variance/Energy profile is shown in Fig. 6.10. Once our
wavefunction is minimized, we measure every observable, and we normalize every
quantity by the number of copper atoms in the lattice.

6.8 Current-current correlations in a small clus-

ter : Lanczos

Before doing the variational calculation, we have first considered the current-
current correlations in small 8 copper lattice (24 sites) with respectively 9 and
10 holes (the corresponding doping are x = 0.125% and x = 0.25%). We consid-
ered periodic boundary conditions. Such small clusters can be studied by exact
diagonalization (Lanczos). We found that the ground state is in the sector of the
Hilbert space Sz = 0. By considering rotational (3 rotations), translational (7
translations) and the mirror symmetries, we can reduce the Hilbert space of 10
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Figure 6.10: Energy and Variance versus the number of minimization iterations.
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holes in the 24-site cluster down to the reasonable size of 28′231′558 states. For
both 9 and 10 holes, the ground state was found in the sectors χM = 1 (mirror)
and χR = −1 (rotation) sector. We find that the ground state is lying in the
kx = ky = π sector for doping 0.125% and in the kx = ky = 0 sector for doping
0.25%. Regarding the 9-holes calculations, the results must be taken with care.
On one hand, we have for this particular case a polarized ground state (Sz = 1/2)
which is clearly not representative of the thermodynamic limit. Equally puzzling,
the ground state has a finite impulsion, which is a certainly a strong finite-size
effect as well. The latter two facts could lead to strange behavior in the correla-
tion functions. Moreover, the free fermi shell is degenerate for the case of 9 holes,
and not degenerate for the case of 10 holes.

Regarding the doping of 25% obtained with 10 holes, we are lying at much
larger doping than the experimental range where the circulating current phase
was observed by Bourges and collaborators. We can still however learn about
the symmetry of the current pattern if present. We find indeed that the current
correlations are rather small for the largest distance in the lattice (see Fig. 6.12,
the reference link is indicated by the bold link, the most distant plaquette is
indicated by the dotted box, the current correlations are about ≈ 0.006 and we
find current circulation with a symmetry close to the θ2 phase).

For finite-size clusters, time reversal symmetry cannot be broken in finite-size
clusters, but we can approximate the value of the current by considering the
square root of the current-current correlations, which would lead to a current
amplitude of approximately ≈ 0.07eV . Interestingly, we find that the pattern
of the correlations is the same for the three distant plaquette from the reference
link, and the obtained symmetry is close to the θ2 symmetry, although one of the
p − p current orientation is flipped when compared with the θ2 current pattern.
Furthermore, the sum of the three oriented currents around one triangle is finite
and opposite in two of the opposite triangle around one copper, suggesting that
if true currents are present, the symmetry would be θ2 like.

Surprisingly, we found that the current-current correlations depend only weakly
on the Coulomb repulsion Vdp: for Vdp = 3 we found small variations of ampli-
tude < 3% and the orientations of the current-current correlation pattern does
not change.

Since we want to deal with broken symmetry theories, and look at the pos-
sibility of currents in the ground state of the Hubbard model , or at least in
the low energy states of the Hubbard Hamiltonian, we turn back to Variational
Monte Carlo simulations on larger lattices. Variational Monte Carlo is certainly
a powerful tool to deal with possible symmetry breaking at zero temperature.
Though it cannot give the true ground state properties, it allows for looking at
the tendency towards long-range order instabilities.
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Figure 6.11: Current-current correlations for 9 holes (Sz = 1/2) on a 8 copper
lattice (24 sites) obtained by Lanczos. The reference link is indicated by the bold
link, the most distant plaquette is indicated by the dotted box. The blue (green)
circles are indicating circulation inside a triangle with clockwise (anti-clockwise)
direction, the radius of the circles is proportional to the circulation of the current
around the corresponding triangle.
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Figure 6.12: Current-current correlations for 10 holes (Sz = 0) on a 8 copper
lattice (24 sites) obtained by Lanczos. The reference link is indicated by the
bold link, the most distant plaquette is indicated by the dotted box, the current
correlations are about ≈ 0.006 and we find current circulation with a symmetry
close to the θ2 phase. The blue (green) circles are indicating circulation inside
a triangle with clockwise (anti-clockwise) direction, the radius of the circles is
proportional to the circulation of the current around the corresponding triangle.
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6.9 Comparison VMC/AFQMC/Lanczos

Exact-diagonalization calculations are interesting for comparison with non-exact
techniques, like variational Monte Carlo, though they are restricted to very small
clusters and can only give limited information on the long-range properties. Con-
sequently, we propose in this section a benchmark of the quality of the wavefunc-
tion (6.20). We first compare energies for a small 8 copper cluster (24 sites)
with 10 holes (see Table 6.1). Interestingly, we find that our variational wave-
function is very close in energy to the true ground state when the full Jastrow
and the RVB parameters are considered (wavefunction RVB/JA) . The energy of
the best variational wavefunction can be systematically improved by minimizing

the new wavefunction |ψ′〉 =
(
1 + αĤ

)
|ψ〉 , where α is a variational parameter

(this procedure is called Lanczos Step). We obtain an improved energy (wave-
function 1LS/RVB/JA, see Table 6.1), which has an energy similar to what can
be obtained with the Green function Monte Carlo method (GFMC). The lat-
ter method suffers from the minus sign problem, and we have to use the fixed
node (FN) approximation to overcome this problem, using the long-range Jas-
trow wavefunction as a guiding function. This latter procedure gives improved
variational energies. The GFMC, though it improves drastically the energy, can
only be used in our implementation for real wavefunction 3, and therefore is not
suited to improve the circulating current wavefunction. Another problem of the
GFMC is that the calculations of non-diagonal observables needs a very large
amount of computer time. The auxiliary-field quantum Monte Carlo (AFQMC)
technique allows also to improve the wavefunction. AFQMC considers the im-
proved wavefunction |ψ′〉 = eλ1K̂eµ1Û × ... × eλmK̂eµmÛ |ψ〉 , where λ1...λm and
µ1...µm are variational parameters, m = 1, .., 5 is the number of iterations. In
AFQMC |ψ〉 is allowed to be complex, and K̂ and Û are respectively the oper-
ators of the kinetic and on-site repulsion parts of the Hubbard Hamiltonian (we
apply the AFQMC method on the orbital current instability). The limitation of
AFQMC is that it cannot deal with the long-range Jastrow factor that optimizes
our variational wavefunction. The reason for this is related to the well known
sign problem which occurs in Quantum Monte Carlo simulations, though it is
related in AFQMC to the choice of the Hubbard-Stratanovitch transformation
that maps the correlated problem to uncorrelated fermions coupled to an external
fluctuating field. Hence, in the framework of AFQMC calculations, we drop out
the full Jastrow factor and keep only the local Gutzwiller projection. The energy
for different iterations of the AFQMC method are shown in Fig. 6.13 and Table
6.10.1, and convergence is apparently obtained for m = 5.

In conclusion, each quantum method has some advantages and some restric-
tions, but our best simple variational wavefunction leads to energies that are

3The so-called fixed phase approximation should be used to use the GFMC with complex
wavefunctions.
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Figure 6.13: Energy of the AFQMC/FLUX wavefunction for different iterations
m. The horizontal dotted line show the energy of our best variational Jastrow
wavefunction JA/FLUX/1LS

similar to those obtained with the different improved Quantum Monte Carlo
methods. Furthermore, we find that improving the wavefunction with Quantum
Monte Carlo technique (GFMC,AFQMC) converges almost to the true ground
state for the small 8-copper lattice.
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6.10 Variational Monte Carlo calculations on large

lattices

6.10.1 Orbital currents

In the previous section we showed that our best variational Ansatz describes
qualitatively the low energy physics on small clusters. By moving towards larger
lattices, we found after minimization that finite orbital currents are stabilized
for both hole and electron doping close to x = 0.08 − 0.15 (see Fig. 6.15). The
current pattern consists of lines of current along the x, y, x+ y direction, like in
the θ2 phase, but the current along the x + y diagonal is reversed (see inset of
Fig. 6.15).

The amplitude of the circulation of the charge current around one triangle
plaquette is shown in Fig. 6.15. We find a current circulation of about 0.1eV ,
which is smaller than what is obtained within the mean-field theory ≈ 0.30eV
(Fig. 6.7), but which is close to the approximate current value extracted from
the Lanczos calculations ≈ 0.07eV . A small but finite energy gain is obtained by
considering the orbital current instability (see Fig. 6.14).

Nevertheless, though the projected current pattern has current flowing around
the opposite direction along the diagonal, the symmetry of the non-projected vari-
ational parameters is θ2 like. The current operator defined at the mean-field level

ĴMF =
(
tvar
ij c†icj + c.c.

)
is also in agreement with the θ2 pattern. This latter

operator is valid in the broken symmetry mean-field theory, and tvar
ij are com-

plex hoppings entering the mean-field Hamiltonian HMF . The Janus-like duality
between the mean-field operator ĴMF and the true gauge invariant operator Ĵ
leads to non-trivial difficulties in the understanding of the variational results. On
one hand, at the mean-field level, we find a true θ2 orbital current phase that
minimizes the energy of the true Hubbard Hamiltonian. On the other hand, on
a pure mathematical point of view, the physical current once measured in our
variational Ansatz has not the same pattern. The main reason that explains
the duality lies in equation (6.3). Indeed, the information on the current is not
contained entirely in the wavefunction, but depends on the Hamiltonian that is
considered (the current operator is given by equation (6.3) ). From another point
of view, we could expect that a good enough mean-field decoupling of the Hub-
bard Hamiltonian would lead to mean-field operators that are consistent with the
low-energy physics. The relation between Ĵ and ĴMF is investigated further in
Appendix B. Therefore, we find a current pattern that does not have the current
conservation in each of the px − dx2−y2 − py plaquette. We note that the conser-
vation of the current is satisfied by considering the periodic conditions of the full
lattice. Furthermore, we get a finite current flowing through the boundary of the
lattice, which is clearly forbidden in the thermodynamic limit. We could expect
that the energy of our variational Ansatz is minimized due to the current flowing
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Figure 6.14: Top : Energy of the SDW and RVB wavefunctions when compared
to the free Fermi sea. No Gutzwiller projection was considered for these calcula-
tions. Bottom : Hierarchy of the variational energies of the different variational
wavefunctions when compared to the Gutzwiller projected wavefunction. Calcu-
lations were done on a 192 site lattice.
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Figure 6.15: Circulation of the current around one plaquette in the three-band
Hubbard model obtained by VMC for different lattice sizes. The current pattern
is close to the θ2 symmetry: however, the obtained pattern has current running
in the reversed direction on the oxygen-oxygen links. The resulting circulation of
the current is finite for two opposite triangle plaquettes around the copper site,
and vanishes for the two other plaquettes. This leads to un-physical macroscopic
currents running through the boundary conditions.

through the torus on which the lattice is defined [143]. Moreover, by imposing
the current conservation inside each px − dx2−y2 − py triangle, we find that the
sign of the variational d−p kinetic part is changed and such a wavefunction with
local conserved current has a worse kinetic energy. At present stage we cannot
reach a definitive conclusion.

It is also interesting to carry out further variational calculations on lattices
with open boundary conditions. This will at least remove the flux at the bound-
ary. However, we expect very large finite size effect for such geometries. These
calculations are done in section 6.10.2. Since the circulation of the current found
by variational Monte Carlo is rather small, we would like to check if this small
circulation persists upon other improvements of the wavefunction. To assess such
an issue, we first compare the energy and the current circulation value when we
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w.f. Etot Current circulation
JA/FS −1.2445(4)

GFMC/JA/FS −1.3257(4)
JA/FLUX −1.2722(5) 0.102(2)

JA/FLUX/1LS −1.3258(1) 0.113(5)
FLUX/AFQMC m=1 −1.220(1) 0.091(5)
FLUX/AFQMC m=2 −1.300(1) 0.094(5)
FLUX/AFQMC m=3 −1.319(1) 0.096(5)
FLUX/AFQMC m=4 −1.330(5) 0.112(1)
FLUX/AFQMC m=5 −1.339(4) 0.104(1)

Table 6.3: Variational energies and the circulation of the current around one
plaquette for different AFQMC iterations m = 1, ..., 5. Results were obtained on
a 96 site lattice.

apply successively AFQMC optimizations (see table 6.10.1). Auxiliary-field quan-
tum Monte Carlo is a very powerful tool to improve further our wavefunction.
The method is purely variational, but it might suffer from the so-called quantum
sign problem. However, we find that the sign problem is not severe for lattice
with 32 copper sites (96 sites). Therefore, we checked on a 32-copper site lattice
the quality of our wavefunction at hole doping x = 0.125%. In Table 6.10.1 we
show the energies of the different AFQMC iterations, and convergence is almost
reached for 5 iterations. Interestingly enough, the current amplitude does not
change significantly when the energy converges to the ground state energy. This
supports the presence of current along lines in the lattice in the ground state of
the Hubbard model when periodic boundary conditions are present.

6.10.2 Open boundary conditions

The previously discussed θ2 flux wavefunction consists mainly of horizontal and
vertical lines and has only currents on the diagonal lines. Therefore, there is
a finite current flowing across the boundary conditions of the lattice, which is
not allowed in the thermodynamic limit. Noteworthy, considering anti-periodic
conditions for the Hubbard model 4 would also lead to a flux through the lattice,
and the energy of this model would be slightly lower than the Hubbard model
with periodic conditions. The energy corrections due to the boundary conditions
is a finite-size-effect decreasing with the size of the lattice like 1/L, where L is the
linear size of the lattice. Similarly, the ground state of a copper-Oxide model on

4A cluster with so-called anti-periodic conditions in one of the ex (ey) direction has a change
in the sign in the hopping integrals that connect sites across the vertical (horizontal) boundary
of the lattice.
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Figure 6.16: Energy difference between the different variational Ansatz and the
Gutzwiller wavefunction. Open boundary conditions are assumed in these calcu-
lations.

a ring coupled to an external flux [143] is minimized in finite-size rings at integer
values of the flux quanta. The ring can be seen as a one dimensional chain with
periodic boundary conditions and therefore it has also in this case a net current
running through the boundary conditions. In conclusion, models with artificial
flux through the boundary conditions are known to introduce corrections to the
energy for finite-size clusters. Therefore, the small energy optimization of the
JA/FLUX wavefunction could well be due to a finite-size effect. However, there
is a subtle but crucial difference between comparing the energy of the ground-
states of Hamiltonians with different periodic/anti-periodic conditions, or having
different flux imposed, and comparing for a given model the energy of different
variational wavefunction. In the former case, the parameters of the model are
changed, and a finite flux through the boundary conditions is stabilized in the
ground state. But this flux is already introduced in the original Hamiltonian, and
it is natural to observe it in the ground state. In the latter case, the Hubbard
Hamiltonian does not contain any flux originally, but the variational Ansatz opti-
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Figure 6.17: Amplitude of the current obtained in the JA/FLUX wavefunction for
a 192 site lattice with open boundary conditions. The current operator measured
on a copper-oxygen and on a oxygen-oxygen link is shown. The sign is positive
when the current is oriented according to the θ2 current pattern, and negative
when its direction is opposite.

mizes the energy by spontaneously generating a finite flux. This occurs due to the
presence of strong interactions, and it is not connected to the geometry of the lat-
tice. In order to prevent the JA/FLUX wavefunction to have a net current across
the boundary, we have done further calculations for clusters with open boundary
conditions. In this particular case, the usual reciprocal space construction of the
variational wavefunction is no longer valid, and the real-space diagonalization of
the mean-field Hamiltonian must be used (see Chapter 2). The θ2 flux wave-
function is still stabilized, though the range of stabilization is for slightly higher
doping range on the small 36 copper lattice, and moves towards smaller doping
range for a 64 copper lattice (see Fig.6.16). The current pattern measured in the
projected wavefunction is identical to the pattern obtained with periodic bound-
ary conditions. However, the current is not conserved at the vertices where the
line of currents meet the boundary conditions, though the current is conserved in
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the simulations with periodic boundary conditions. We emphasize that no condi-
tion is present at the variational level that would ensure the current conservations
in the variational wavefunction which is proposed as Ansatz for the three-band
Hubbard model.

Finally, we conclude that the JA/FLUX wavefunction is stabilized also in the
case when it cannot have a non-physical flux through the boundary. Nevertheless,
the open boundary conditions are also expected to introduce severe finite-size
effects, that could also stabilize non-physical phases.

6.10.3 Magnetism and superconductivity

According to previous VMC evaluations for the Ud = ∞ three-band Hubbard
model [140], the antiferromagnetic region extends up to 50% hole doping and
the d-wave superconducting phase exists only in the infinitesimally small region
near the boundary of the antiferromagnetic phase. Thus, previous VMC results
concluded that the chance for d-wave superconductivity is small in the three-
band Hubbard model. It was concluded that the parameters of the Hubbard
Hamiltonian should be tuned such that the anfiferromagnetic phase shrinks to a
smaller range of doping. We propose to study in this section the stabilization of
the RVB and magnetic phase with our Jastrow wavefunction, which is expected
to treat correctly the correlations.

Therefore, besides the orbital current instabilities, we considered also the pos-
sibility for Néel magnetic long-range order and superconductivity. We considered
as a first approximation only the Q = (π, π) pitch vector for the spin density
wave. We would although expect that the pitch vector is doping dependent.
This issue was addressed for the three-band Hubbard model in Ref. [59]. The
possibility for stripes was also considered by variational calculations [139]. In
our work, we expect that the long-range correlations contained in the Jastrow
factor will allow a correct treatment of the spin correlations. We find indeed that
the magnetic order parameter M = limr→∞

√
〈Sz

i S
z
i+〉) is for our best variational

wavefunction 66% of the classical value (see Table 6.2). Using this wavefunction
as a guiding function for the fixed node calculations, we find a slightly higher
magnetic order with 69%. This value can be compared with the 60% obtained
by quantum Monte Carlo in the one-band Heisenberg model. However, in the
three-band Hubbard model, the magnetic instability is strongly dependent on the
oxygen-oxygen hopping integral tpp. Since this hopping frustrates the geometry,
we find that the magnetic order is destroyed when tpp ≈ 2eV .

Nevertheless, the magnetic instability is overestimated when compared to the
cuprates phase diagram where it vanishes for a small hole doping of approxi-
mately x = 2%. The spin density wave is however very likely to be stabilized in
variational calculations, since the alternating magnetization allow to avoid dou-
ble occupancy in the uncorrelated part of the wavefunction. The presence of
magnetic order obviously costs kinetic energy, but it it does a better job than a
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doping. The saturated value for the magnetic order parameter is M = 0.5.

pure local gutzwiller projection, which kills very strongly the kinetic energy. An-
other way to reduce the double occupancy is done by the resonating valence bond
instability, which optimizes both the double occupancy and the kinetic energy.
We show in Fig. 6.14 the energy gains of the SDW and RVB instabilities when
no projection are present. The two instabilities cross at around x ≈ 20% doping.
However, the correlated part of the wavefunction plays a drastic role and clearly
needs to be considered. Very interestingly, we find that the symmetry of the
pairing ∆ij is, in the real space representation of the three-band Hubbard model,
not restricted to nearest neighbor copper and oxygen sites. Indeed, no energy
optimization can be obtained when the pairing is restricted to oxygen-oxygen
and copper-oxygen bonds. This can be understood in terms of the Zhang-Rice
mapping of the three-band Hubbard model to the one band t−J model. In the
frame of this theory, the particles of the t−J model are equivalent to a local
copper-oxygen d↑ (px↓ − p−x↓ + py↓ − p−y↓) singlet in the three-band language. It
was very strongly established that a d-wave RVB instability is present in the t−J
model [19, 144, 24, 129], but it is not intuitive to get a picture of this supercon-
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ducting instability in terms of the holes in the three-band Hubbard model. The
symmetry that was found in our calculations, by the energy minimization of the
RVB wavefunction, is shown in Fig. 6.19. We note that for a reference site i, ∆ij

consists of four strong plaquettes (bold square in Fig. 6.19) around the reference
site. The sign of the pairing has a d-wave symmetry for these latter plaquettes,
and additionally, inside each of the plaquette the sign is alternating identically
to the Zhang-Rice singlet d↑ (px↓ − p−x↓ + py↓ − p−y↓) symmetry.

6.11 Role of the Apical oxygens

The theoretical challenge is to find the simplest model of the copper-oxygen plane
which would contain all the essential physical aspects. The electronic structure
calculations suggest that a good starting point is provided by the previously
discussed three-band model, including coper 3dx2−y2 orbitals and oxygen 2pσ

orbitals. It has been repeatedly argued that the two dimensional plane contains
the essential of the low energy physics. Zhang and Rice pointed out that a hole
in a copper dx2−y2 orbital and a hole in the oxygen orbital form a local singlet
for the realistic parameters of the three-band Hamiltonian, and the three-band
model does reduce to an effective single-band t-J model.

However, one of the issues related to a breakdown of such a mapping is related
to the presence of additional apical oxygens. It was proposed for example that
a triplet states could be favored, instead of the singlet state, and stabilized by
the occupancy of apical oxygens and copper d3z2−r2 orbitals. Indeed, since the
early days of high-temperature superconductivity, the question of a possible role
of apical sites in cuprates superconductors has been controversially discussed.
A part of the measurements were consistent with the conjecture that there is a
significant influence of the apical site on high-Tc superconductivity.

Moreover, further theoretical investigations using a six-band Hubbard model
interaction scheme showed that some holes with Cu3d3z2−r2 orbital character do
exist (experimental evidence for this can be found in Ref. [145]), and that a
fraction of them is hybridized with the apical oxygen [146]. This can easily be
understood, since there is a strong Coulomb repulsion between the holes at Cu
sites, the extra holes introduced by doping residing primarily on oxygen sites.

Furthermore, it has been pointed out that for a realistic description of the
principal features of the cuprates superconductors, like for example the insulating
gap in the undoped parent compounds, one has to include also the orbitals of
apical oxygens.

Several experiments indicate that the out-of-plane apical oxygen orbitals are
also involved in accommodating some of the holes doped into the CuO2 planes.
One of the most exciting ones is that there might exist a correlation between the
maximal critical temperature Tc reached in different cuprates and the copper-to-
apex bonding, as well as the Madelung potential at the apical oxygen measured
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b)

Figure 6.19: RVB variational parameters ∆ij , where a reference site i is located
at the site located at the center of the cluster, and j is running through all the
site of the lattice. Red (blue) circles denotes positive (negative) ∆ij , and the
radius of the circle is proportional to |∆ij |. Top: the reference site i is located
on a copper site. Bottom : the reference site i is located on an oxygen site.
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with respect to that at the oxygens in the planes [147]. Equally interesting, X-
ray absorption spectroscopy on single crystals of infinite-layer compounds of Ca
doped YBCO compounds have shown that superconductivity might appear in
this compound only when holes are present at the apical oxygen sites [148].

Going also in this direction, it was argued recently that upon hole doping,
the static charge attraction between the apical oxygens and the d orbitals could
lead to a reduction of this distance [149]. Theoretically, it was shown by the
first-principles variational calculations of the spin-density-functional approach
that the optimized distance between apical O and Cu in La2−xSrxCuO4 which
minimizes the total energy decreases upon Sr doping. As a result, the elongated
CuO6 octahedrons by the Jahn-Teller interactions, shrink by doping holes. This
shrinking effect was called anti-Jahn-Teller effect.

We propose to address the issue of the presence of apical oxygen, in the context
of circulating orbital currents, and we use the same variational frame-work as
developed in the previous section. We consider the extended 6-band Hubbard
model including the two additional apical oxygens surrounding a copper atom
and also the additional d3z2−r2 orbitals:

H =
∑

m,ασ

εαnm,ασ + εp +
∑
k,σ

nk,aσ +
∑

〈m,i〉,ασ

tαp

(
d†m,ασpiσ + c.c.

)
+

tza

∑
〈m,k〉,σ

(
d†m,zσakσ + c.c

)
+ tpp

∑
〈i,j〉,σ

(
p†iσpjσ + c.c.

)
+ tpa

∑
〈i,k〉,σ

(
p†iσakσ + c.c.

)
+

Ud

∑
mα

nm,α↑nm,α↓ + Up

∑
i

ni,p↑ni,p↓ + Ua

∑
k

nk,a↑nk,a↓ +
(
Uxz − 1

2
Jxz

)∑
m

nmxnmz+

Jxz

∑
m

(
d†m,x↑d

†
m,x↓dm,z↓dm,z↑ + c.c.

)
− 2Jxz

∑
m

smx · smz+
∑
〈m,i〉

Uαpnmαnip+∑
〈m,k〉,α

Uαanmαnka

(6.22)

Here the d†mxσ and d†mzσ creates a hole respectively in the dx2−y2 and d3z2−r2

orbitals; piσ refer to the orbitals lying inside the plane, and aiσ refer to the apical
oxygen orbitals. Furthermore, Smx and Smz are spin operators for the dx2−y2 and
d3z2−r2 orbitals. The Hamiltonian contains inter-orbitals Hund’s coupling Jxz

which reduces the on-site Coulomb repulsion Uxz. The first three terms specify
the reference hole atomic energies. The hopping elements tαp (α = x, z), tza, tpp,
tpa stand for the copper-oxygen-in-plane, copper-Apical-oxygen, oxygen-oxygen-
in-plane, oxygen-in-plane-Apical-oxygen hoppings respectively. The on-site intra-
orbitals Coulomb repulsion are Ud, Up and Ua respectively, while the inter-orbital
Coulomb and exchange energies at copper sites are Uxz and Jxz. Only the most
important nearest neighbor Coulomb repulsions Udp and Uda were considered.
Moreover, we consider a set of realistic parameters [145, 147,150,151]:
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ε (dx2−y2) 0 ε (d3z2−r2) 0.64
ε (pσ) 3.51 ε (az) 2.05

t (dx2−y2 , pσ) 1.30 t (d3z2−r2, pσ) 0.95
t (d3z2−r2, az) 0.82 t (pσ, pσ) 0.61
t (pσ, az) 0.33

Jxz (dx2−y2 , d3z2−r2) 1.19
U (pσ) 4.19 U (az) 3.67
U (a, d) 0.18 U (p, d) 0.60

U (dx2−y2) = U (d3z2−r2) 8.96 U (dx2−y2 , d3z2−r2) 6.58

In what follows, we add an additional phenomenological parameter D1 that
describes the distance between the copper atom and the apical oxygens. If the
distance is reduced, we expect that the transfer integrals tza, tpa will be increased.
We consider therefore D1tza and D1tpa as hopping integrals and we propose to
tune D1.

After the minimization process in a 32 copper lattice (192 sites), we find that
the current circulation in the px − dx2−y2 − py plaquette when D1 < 1.5, with a
current pattern close to θ2 symmetry of the three-band Hubbard model (see Fig.
6.21). We get indeed the same orbital current pattern as the one discussed in the
previous section for the range D1 ∈ [0, 1.5]. We can raise the same critics to this
orbital current instability, i.e. there is a finite flux running through the periodic
boundaries and there is no current conservation inside all the triangle plaquettes.

It is worth noting that, when D1 > 1.5, the current circulates mainly in
the px − pz − py plaquettes and in the px − dz − py plaquettes, with a pattern
corresponding to θ1 symmetry (see Fig. 6.21). However, the current is a true
rotational flow in these latter plaquettes and the conservation of the current is
almost achieved in all the plaquettes. Let us note that the latter plaquettes
have the hopping signs that correspond to the circulating plaquettes discussed in
section 6.6. In this limit, the current flowing across the boundary is small, and
the current pattern has a finite out-of-plane component.

Interestingly, it was also found in neutron experiments that the magnetic mo-
ments have an in-plane component, which would be consistent with our present
result, though we had to introduce an additional parameter D1 to tune the trans-
fer integral parameter to obtain a stronger tza and tpa transfer integrals. Note-
worthy, this would be consistent with the assumption that the apical oxygen are
getting closer to the copper sites when the system is doped with additional holes.
As discussed in Ref. [149], this could happen if the electrostatic force between the
copper and apical oxygen becomes strong. Eventually, when D1 = 1.5, the two
types of patterns are close in energy and consequently, we could expect a 2-fold
degenerate ground state in the intermediate regime. If the θ1 and θ2 instabilities
stabilized variationally in the six-band model are taken seriously, than a 2-fold
discrete order parameter could be built in the regime D1 ≈ 1.5, and we might
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expect a finite temperature transition associated with this order parameter 5.

6.12 Bond-Charge repulsion

In the calculations, presented so far, the strong correlations between the electrons
were mainly contained in the Coulomb repulsion term of the three- and six-
band Hubbard Hamiltonians. However, only a very rough approximation of the
two-body Coulomb observables was considered, by assuming a diagonal form
V̂ = Uijn̂in̂j . The purpose of this section is to consider a more realistic description
of the two-body Coulomb observable. Indeed, in this section we want to include
the renormalization of the single-hole hopping tij due to the Coulomb repulsion
in the three-band Hubbard Hamiltonian. In particular, for the case of the three-
band Hubbard model, since the distance between the copper and the p− p bond
is small, we propose in this section to include the repulsion between the p − p
bonds and a charge localized at a dx2−y2 orbital [152, 153]. We start with the
Coulomb observable in second quantization:

V̂ =
∑

ijkl,σσ′
c†iσc

†
jσ′ck,σ′cl,σφijkl (6.23)

and φijkl is defined in terms of the Wannier orbitals φi (r −Ri):

φijkl =

∫
d3r3d3r′φ†

i (r −Ri)φ
†
j (r′ − Rj)Vee (r − r′)φk (r′ − Rk)φl (r − Rl)

(6.24)
Therefore, to take into account a more realistic description of the Coulomb in-
teractions, we consider the additional interacting term in the electron notations :

H3 = V2

⎛
⎝ ∑

〈i,j〉,σ
tijc

+
i,σcj,σ (ni−σ + nj,−σ) +

∑
〈i,j,k〉σ

(
tijnkc

+
i,σcj,σ + c.c.

)⎞⎠ (6.25)

This term is nothing else but a correlated hopping process. It was suggested
in the context of the one band Hubbard model that non-diagonal Coulomb in-
teractions might be important for superconductivity, namely, the so-called bond-
charge repulsion, i.e. the Coulomb interaction between a bond charge and an
atomic charge [153]. In general, the contribution of these interactions in real
materials are very different; for instance, for 3d electrons in transition metals
U ,V ,V2 have typically the proportions 20 : 3 : 0.5.

5The Mermin-Wagner theorem prevents any continuous symmetry breaking at a finite tem-
perature in two dimensions, but a it does not rule out the possibility for a discrete symmetry
breaking.
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a) d)

b) e)

c) f)

Figure 6.20: Flux pattern obtained in the six-band Hubbard model. The current
is circulating with a θ2 like pattern a),b),c) or with a θ1 like pattern d),e),f). The
current is circulating in the px − pz − py plaquettes a),d), in the px − dz − py

plaquettes b),e), and in the px − dx − py plaquettes c),f).
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Figure 6.21: Circulation of current around a px − pz − py plaquette (triangles),
around a px − dz − py plaquette (squares), and around a px − dx − py plaquette
(circles) when the apical oxygen-copper distance D1 is reduced. The symmetry of
the orbital current pattern is θ2 like when D1 < 1.5 and the current is circulating
inside the horizontal plane. When D1 > 1.5 the symmetry changes towards the
θ1 pattern and the current has a finite out-of-plane component. The calculations
were done on a 192 site lattice.
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Figure 6.22: Lanczos calculations of the current-current correlations for the two
most distant links in a 8 copper lattice with 10 holes (Sz

i = 0). The correlations
of the current operator increase strongly with V2.

By applying the variational Monte Carlo procedure to the extended Hamil-
tonian containing both the parameters of the usual three-band Hubbard Hamil-
tonian and the correlated hopping term V2, we find a clear enhancement of the
orbital currents when V2 > 0.4. The currents become large when the doping is
close to x ≈ 0.12. In the VMC frame, we find that the symmetry of the charge
currents is still θ2 like (Fig. 6.24). The current-current correlations in a small 8
copper cluster were also calculated, and we find very strong correlations, though
the symmetry in the small cluster is θ1 like (see Fig. 6.22 and Fig. 6.24). The
change of the orbital current pattern between the small 8 copper lattice and larger
lattice suggests that the finite-size effects are too strong on cluster as small as
8 coppers. Although it is difficult to extract a well defined current value in the
Lanczos calculations, we show in Fig. 6.22 how the current correlations evolve
when the correlated hopping term increases.

6.13 Conclusion

In this work we have considered several scenarii that are shedding light on the pos-
sibility for spontaneous time reversal symmetry breaking in Hubbard-like models.
As a first step, we have considered a simple three-site ring with a pair of holes:
this small model already shows that when the hopping integral t is positive, there
is a natural trivial charge circulation. Indeed, further variational Monte Carlo
and mean-field calculations show that for some particular choices of the sign of
the hopping transfer integral within the three-band Hubbard model, orbital cur-
rents are strongly stabilized. When the choice of the hopping sign leads to 2
triangles with positive hopping sign around each copper site, the resulting sym-
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Figure 6.23: Current-current correlations obtained by Lanczos for 10 holes (Sz =
0) on a 8 copper lattice (24 sites) with V2 = 0.6.
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Figure 6.24: Circulation of the current for different doping obtained by VMC
with the JA/FLUX wavefunction in a 192 site lattice. We show result for V2 =
0.4, 0.6, 0.8. The pattern of the circulating currents is θ2 like.
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metry is θ2 like, and when the hopping signs lead to 4 triangles with positive
hopping transfer, the orbital current symmetry is θ1 like. Current-current cor-
relations measured in the corresponding free Fermi sea wavefunction show that
short-range correlations with the respective symmetry are present with corre-
sponding θ1,2 for these two particular choices of the hopping signs. Nevertheless,
these choices of the transfer integrals are arbitrary and do no correspond to the
real physical model, which is expected to describe the cuprates. Applying the
Variational Monte Carlo method, we found in our best variational Ansatz the
presence of small currents for doping close to x = 0.08. The symmetry of the
currents measured in the projected wavefunction consists of lines of currents,
as in the θ2 phase, but with reversed diagonal currents. We get a net macro-
scopic current running through the periodic boundary of the lattice, which is
clearly forbidden in the thermodynamic limit and suggests that the presence of
currents at the variational level might be an artefact. On the other hand, the
variational parameters of the variational function are exactly those of the θ2
phase. The other competing instabilities are the spin-density wave and the res-
onating valence bond wavefunctions. Antiferromagnetism is found to be stable
for x = [0., 0.11], and the Néel magnetism is reduced at half-filling down to 68%
of the classical value by the quantum fluctuations. When the doping is close
to 0.25%, we find superconductivity with a d-wave like symmetry, although the
energy gain of the superconducting wavefunction is small, and it is difficult to
get a definitive conclusion on the exact nature of the RVB phase. We proposed
additionally two other models that might shed light on the presence of orbital
currents: (1) We extended first the three-band Hubbard model by considering
the additional out-of-plane apical oxygens and the copper d3z2−r2 orbitals, (2)
We considered an additional correlated hopping term in the three-band Hubbard
model. In the former model we found interestingly that when the transfer integral
connected to the apical oxygen are slightly enhanced, then strong orbital currents
start to develop with an in-plane magnetic moment, in agreements with neutron
experimental results. In the latter model, we found that the orbital currents
are strongly stabilized when the correlated hopping V2 ≈ 0.4. The symmetry of
the current pattern in this case is θ2-like. As an outlook, we would suggest to
study further the orbital current present in the three-band Hubbard model when
open boundaries are considered. In this particular case, the flux running through
the boundary would at least be removed, and the stability of the charge current
phase could be better studied. Finally, it has also been argued that holes doped
in the antiferromagnetically correlated spin systems induce incommensurate spin
correlations in the ground state for the one- and three-band Hubbard models
within mean-field approximations. Therefore, it would be interesting to compare
the energies of these phases with our Jastrow projected wavefunction, and see if
these latter phases are still present.
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Conclusion

For the square lattice, both the variational Monte Carlo method (VMC) [32,
18, 19, 21] and mean-field (MF) theories [20] were successful to find a d-wave
superconducting phase that is in good agreement with experimental data. Nev-
ertheless, not so many variational Monte Carlo data exist for other geometries,
that might be able to describe well the magnetic and superconducting instabil-
ities in other compounds, like in the cobaltites or in the graphene. Moreover,
since the discovery of the high temperature superconductors, one of the leading
issue is the origin of the pseudo gap phase which exists in the the low hole doping
side (underdoped region) of the phase diagram. No present theory was yet able
to catch all the features of the pseudo-gap phase of the cuprates. In the present
dissertation, progress has been achieved in these directions.

Recent data obtained in the cobaltite compound NaxCoO2.yH2O showed that
superconductivity is obtained by cooling the compound below T = 4K [74] and
for electron doping between 1/4 < x < 1/3. In chapter 3 we have presented
a variational Monte Carlo study of the t−J (J/t = 0.4 and t < 0) model on
the triangular lattice, using extended wavefunctions containing both supercon-
ductivity and non-collinear magnetism, as well as flux phase instabilities. The
method provided a general framework to tackle the competition between anti-
ferromagnetism and superconductivity and we obtained very good variational
energies at half-filling when compared to other more sophisticated methods. The
fermionic representation of our wavefunction allowed to consider hole and elec-
tron doping. The most stable pairing corresponds to singlet pairing. We found
that dx2−y2 + idxy superconductivity is only weakly stabilized for electron doping
in a very small window (δ = [0, 0.12]) and is much stronger and also appears in
a wider range (δ = [0, 0.16]) in the case of hole doping. Since the results are not
in agreement with the experimental results, it is suggesting that the t−J model
might be not sufficient to account for superconductivity in the electron doped
side of the phase diagram. In particular, we expect that the oxygen atoms might
play an important role for superconductivity. Another missing ingredient in the
simple t−J model that could restore the agreement with the experimental data,
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is the strong Coulomb repulsion V between nearest-neighbors.
In order to analyze how the magnetism and the superconductivity depend

on the geometry of the compound, we have extended further in chapter 4 the
variational study to correlated electrons on the honeycomb lattice, which could
give a good description of graphene single sheets. At half-filling, we have found
a ground state mixing at the same time antiferromagnetism and superconduct-
ing pairing. The staggered magnetization is 66% of the classical value, which is
slightly higher than the 50% obtained with exact Quantum Monte Carlo. How-
ever, the energy obtained is very close to the exact value: we find a variational
Heisenberg energy per site, extrapolated to the thermodynamic limit, that is only
0.3% higher than the quantum Monte Carlo result. A coexistence phase between
the two order parameters is found in the range x = [0, 0.07], and superconductiv-
ity is suppressed at the van Hove singularity x = 1/8. Therefore the range of the
superconducting order is δ =]0, 1

8
[. The amplitude and the range of existence of

the superconducting parameter is four times smaller than in the square lattice.
We find good agreement between the VMC calculations and an RVB MF theory
in the superconducting phase, namely the same dx2−y2 + idxy symmetry and a
similar amplitude of the pairing order parameter. For hole doping larger than
1/8, we find that a spin density wave (SDW), with pitch vector equal to one of the
three possible nesting vectors, is stabilized in the range δ = [1

8
, 0.22]. The SDW

phase leads to an optimization of the kinetic energy. However, a stronger gain in
kinetic energy, and also a lower variational energy, is obtained at δ = 0.22 with a
weak ferromagnetic polarized phase, which is polarized linearly and reaches full
polarization at doping δ = 0.5. Ferromagnetism disappears again at δ = 0.6.

We performed also measurements on a number of single sheet wrapped nan-
otubes, in order to investigate the limit of the quasi-1D system with variational
Monte Carlo. We observe that not only the amplitude of the superconductivity,
but the phase of the pairing on each nearest-neighbor link depend on the wrap-
ping of the tube. We have measured the phase after projection of the BCS pairing
in the different tubes, and we observe that the phases of the pairing observable
moves from the dx2−y2 + idxy symmetry in the case of the 2 dimensional lattice
towards intermediate value, and converge to the d-wave symmetry in the case of
the 2-leg ladder, which is also the smallest nanotube that can be wrapped with
a 2-site unit-cell. We found a suppression of the magnetism when the diameter
is small and reaches the limit of the 2-leg ladder, and an enhancement of the
pairing order parameter in the same limit. This might be interpreted as the sig-
nature that quantum fluctuations become much larger when the tube reaches the
one dimensional limit, and our variational magnetic order parameter is no longer
stabilized when these fluctuations become too strong. At the same time, it is
interesting to note that the pairing survives very well in the 1D limit, though
we do not expect any real pairing in a quasi-1D model. Indeed, in this limit the
ground state will be a Luttinger liquid.

Finally, we considered the square lattice geometry, and extended the pre-
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vious VMC approaches to allow for bond-order modulations in the variational
wavefunction. This is motivated by the observation of inhomogeneous checker-
board patterns in some high-Tc cuprate compounds. Using several variational
Gutzwiller-projected wavefunctions with built-in charge and bond order parame-
ters, we studied the extended t−J−V model on the square lattice at low doping.
It was found with both VMC and mean-field theory that the model stabilizes a
4× 4 bond-order modulation spontaneously on top of the staggered flux pattern
for hole doping around 1/8. The competition of the BO-modulated staggered
flux wavefunction with respect to the d-wave RVB wavefunction or the commen-
surate flux state was investigated, and it was found that a short range Coulomb
repulsion penalizes the d-wave superconductor for V ≈ 1 − 2eV , and that the
Coulomb repulsion brings them very close in energy.

One of the further recent proposals for the pseudo-gap phase of the cuprates
is that the anomalous properties of the cuprates may be due to quantum crit-
ical fluctuations of current patterns formed spontaneously in the CuO2 planes.
Related to this assumption, a break-through was realized recently by Bourges et
al. [136], by using polarized elastic neutron diffraction, who reported the signa-
ture of an unusual magnetic order in the underdoped phase of YBa2Cu3O6 + x
(YBCO). They argue that this hidden order parameter defines the pseudo-gap
phase of cuprates. They found that no translational symmetry breaking of the
lattice is associated with this order parameter. Moreover, the pattern of the
observed magnetic scattering corresponds to the one expected in the circulating
current theory of the pseudo-gap state with current loops inside the CuO2 unit-
cell developed by Chandra Varma [138], especially with a current pattern that has
two current loops per copper unit-cell. In this dissertation, we have considered
several theoretical scenarii that might shed light on the possibility for sponta-
neous time reversal symmetry breaking in Hubbard-like models. As a first step,
we have measured the current-current correlations in a small 8 copper cluster,
where exact diagonalization calculations can still be done. No clear signature of a
current pattern is found for hole doping x = 25%. However, the small size of this
cluster does not allow for lower doping studies, and we applied the Variational
Monte Carlo method on larger system sizes. We found in our best variational
Ansatz the presence of small currents for doping close to x = 0.12%. However,
the symmetry of the currents measured in the projected wavefunction consists
of line of currents, identically to the θ2 phase, but with reversed diagonal line of
currents on the oxygen-oxygen bonds. This leads to a finite flux flowing through
the periodic boundary of the lattice, which is clearly forbidden in the thermody-
namic limit, suggesting that the presence of current at the variational level might
be an artefact. The other competing instabilities are the spin density wave and
the resonating valence bond wavefunctions. Anti-ferromagnetism is found to be
stable for x = 0 − 11%, and Néel magnetism is reduced at half-filling down to
68% of the classical value by the quantum fluctuations. When the doping is close
to 0.25% we find the presence of superconductivity with a d-wave like symmetry,
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although the energy gain of the superconducting wavefunction is small, and it is
difficult to get a definitive conclusion on the exact nature of the RVB phase. We
proposed additionally two other models that might shed light on the presence of
orbital currents: (1) We extended first the three-band Hubbard model by consid-
ering the additional out-of-plane apical oxygens and the copper d3z2−r2 orbitals,
(2) We considered an additional correlated hopping term in the three-band Hub-
bard model. In the former model we found interestingly that when the transfer
integrals connected to the apical oxygen are slightly enhanced, then strong or-
bital currents start to develop with an in-plane magnetic moment, in agreement
with neutron experimental results. In the latter model, we found that the orbital
currents are strongly stabilized when the correlated hopping V2 ≈ 0.4. The sym-
metry of the current pattern in this case is θ2 like. Additionally, we have studied
further the orbital current present in the three-band Hubbard model when open
boundaries are considered. In this particular case, the flux flowing through the
boundary is removed, and the charge current phase is still stabilized. Finally,
it has also been argued that holes doped in the antiferromagnetically correlated
spin systems induce incommensurate spin correlations in the ground state for
the one-band hubbard model and three-band model within the mean-field ap-
proximation. Therefore, it would be interesting to compare the energies of these
phases with our Jastrow projected wavefunction, and see if these phases are still
present.
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Appendix A

The projected wave-function
written with Determinants and
Pfaffians

During a variational Monte-Carlo simulation, we need to project the variational
wave-function φ in the basis of real-space fermion configurations. We define a
real-space configuration of a fixed number of fermions, and we consider first the
case of a Sz = 0 fermionic configuration :

|α〉 =
(
c†R1↑...c

†
RN↑c

†
R′

1↓.....c
†
R′

N ↓
)
|0〉 (A.1)

The wave-function φ is given by:

|φ〉 =
∑

{i1...iN};{j1...jN}
{a(i1, j1)...a(iN , jN)} c†i1↑...c

†
iN↑c

†
j1↓.....c

†
jN↓ |0〉 (A.2)

where 2N is the number of particles contained in the wave-function, and a(i, j)
are numerical coefficients found by the diagonalization of the mean-field hamil-
tonian. Only permutations P of the fermions indices in (A.1) will be kept by the
projection of |φ〉 onto the state 〈α|:

I = {i1, ..., iN} = P{R1, ..., RN} (A.3)

J = {j1, ..., jN} = P ′{R′
1, ..., R

′
N} (A.4)

By ordering the up and the down fermions respectively we get:

|φ〉 =
∑
I,J

{a(i1, j1)...a(iN , jN)} (−1)sign(P)(−1)sign(P ′)c†R1↑...c
†
RN↑c

†
R′

1↓...c
†
R′

N↓ |0〉

(A.5)
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Moreover, we can further order the ai,j terms with respect to the index i :

|φ〉 =
∑

J

(∑
I

a(R1, P (j1))...a(RN , P (j′N))(−1)sign(P)(−1)sign(P ′)

)

c†R1↑...c
†
RN↑c

†
R′

1↓.....c
†
R′

N↓ |0〉 (A.6)

Using that jk = P ′(R′
k), we get:

|φ〉 =
∑

J

(∑
I

a(R1, P (P ′(R′
1)))...a(RN , P (P ′(R′

N)))(−1)sign(P)(−1)sign(P ′)

)

c†R1↑...c
†
RN↑c

†
R′

1↓.....c
†
R′

N↓ |0〉 (A.7)

This leads to the final result that the projection of the state |φ〉 on the configu-
ration 〈α| is a determinant:

〈α|φ〉 =
∑
P
a(R1,P(R′

1))...a(RN ,P(R′
N ))(−1)sign(P)

= det
(
{a(Ri, R

′
j)}

)
This calculation can be extended to the case of a polarized fermionic configura-
tion:

|α〉 = c†R1σR1
...c†R2N σR2N

|0〉 (A.8)

And the terms in the wave-function |φ〉 that are not killed by the projection are
given by:

|φ〉 =
∑

{i1...i2N}
{a(i1, i2)...a(i2N−1, i2N)} c†i1σi1

..c†i2N σi2N
|0〉

=
∑

{{i1<i2}..{i2N−1<i2N}}
{(a(i1, i2) − a(i2, i1)) ... (a(i2N−1i2N ) − a(i2N , i2N−1))} c†i1σi1

..c†i2N σi2N
|0〉

=
∑
P

{
D(P(R1),P(R2))...D(P(R2N−1),P(R2N ))(−1)sign(P)

}
c†R1σR1

..c†R2N σR2N
|0〉

= Pf ({D(Ri, Rj)}) c†R1σR1
..c†R2N σR2N

|0〉 (A.9)

where Dij = (aij − aji) and the sum in (A.9) is taken over all partitions of
(R1...R2N ) into pairs (i1, i2). We get therefore that the projection of the state |φ〉
onto the basis element 〈α| is a Pfaffian. However, the equation (A.9) cannot be
reduced to a determinant like in equation (A.7), since the a(i1, i2) terms cannot
be ordered separately with respect to the index i1 and i2.



Appendix B

A Simple variational
wavefunction for a pair of
particles

We consider in this Appendix a simple variational wavefunction for the three-
band Hubbard model on a simple CuO4 cluster. We study the more general
variational wavefunction for a Sz = 0 pair of holes, that is :

|ψ〉 =

(
αd†↑d

†
↓ +

(∑
j

βjd
†
↑p

†
j↓ − γjd

†
↓p

†
j↑

)
+ λijp

†
i↑p

†
j↓

)
|0〉 (B.1)

where d stands for the dx2−y2 orbital and p for the pσ orbitals. The current
operator measured in this wavefunction is given for a d− p link by:

〈jd−px〉 = itd−px

(
α† (γx + βx) +

∑
j

(
β†

jλxj + γ†jλjx

))
+ c.c. (B.2)

and the current operator measured along a px − py link by:

〈jpx−py〉 = itpx−py

(
β†

xβy + γ†xγy +
∑

j

(
λ†xjλyj + λ†jxλjy

))
+ c.c. (B.3)

Similar equations hold for bonds obtained by 90◦ rotations. The current will
therefore be finite when α, β, γ and λij are complex numbers: α = Rae

ia, βx,y =
Reibx,y , γx,y = Reicx,y and λij = Lije

ilij .

〈jd−px〉 = 2td−px

(
RaR sin(cx − a) +RaR sin(bx − a)

+
∑

j

(RLxj sin(lxj − bj) +RLjx sin(ljx − cj))
)

(B.4)
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a) b)

b
-x
=-χ

b
x
=-χ

b
y
=χ

b
-y
=χ

b
-x
=-χ

b
x
=χ

b
y
=χ

b
-y
=-χ

a=0 a=0

Figure B.1: The two patterns of current that can be obtained when a = 0 is
imposed, and tdp = −1, tpp < 0. The arrows indicate the current orientations.
Additional complex parameters λij and α must be used to obtain the conservation
of the current inside one triangle plaquette. For example, when a = π the current
arrows on the horizontal and vertical links are reversed, and the current is then
circulating around the triangle plaquettes. However, when a = π the hopping
energy on these bonds is also changing sign, and therefore the energetic cost for
having circulating currents is of the order of td−px .

And:

〈jpx−py〉 = 2tpx−py

(
R2 sin(by − bx) +R2 sin(cy − cx)

+
∑

j

(LxjLyj sin(lyj − lxj))
)

(B.5)

Moreover, the kinetic energy on these links is obtained by replacing the sin
by cos in the expressions (B.4) and (B.5). Besides, we assume for simplicity
that td−px = −1, and we consider that all the oxygen-oxygen bonds have also
negative transfer integrals (tpx−py < 0). This choice of the sign is equivalent to
the hybridization obtained in the physical three-band Hubbard model for the
cuprates. In Fig. B.1 we show two simple examples of current patterns that are
obtained for two choices of the parameters b. Noteworthy is the fact that the
currents cannot be oriented as a rotational flow around a triangle plaquette when
td−px < 0 and tpx−py < 0. When tpx−py > 0 the current is a true rotational flow and
the conservation of the current is easily obtained inside each triangle plaquette.
By imposing the conservation of the current in all the triangle plaquettes, we get
when the phases b = ±χ are chosen according to the pattern (a) of Fig. B.1:

sin(χ− a)

sin(−2χ)
= 2

tpp

tdp

R

Ra
(B.6)
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Since the energy difference between the oxygen and the copper atomic levels is of
the order of ∼ 3.5eV , the component of the wavefunction p†↑p

†
↓ is expected to be

negligible, and we can assume to simplify the calculations that Lij ∼ 0. Finally,
we get the current conservation inside the triangle plaquette, for the alternative
pattern (b) of Fig. B.1, when this equation is satisfied:

sin(χ− a)

sin(−2χ)
=
tpp

tdp

R

Ra

(B.7)

The right hand term of the two equations above is positive for the choice of
the transfer integrals that corresponds to the physical compounds. However,
the left handed term is negative when a < χ, and moreover, the conservation
of the current at the copper vertex imposes a = {0, π}. We emphasize that
for the unphysical choice of the hopping integral tpp > 0, the equations can be
satisfied. In conclusion, for the physical choice of the hopping hybridizations,
the current will be rotationally circulating with the two types of patterns pro-
posed by C.Varma [138] only when the simple wavefunction has a negative term
−|α|d†↑d

†
↓, but the sign of the tdp kinetic energy is reversed at the same time. The

above simple variational theory is however valid only for a pair of electrons in a
small cluster. A more general variational wavefunction for many electrons, in the
three-band Hubbard model on a large lattice, is given by the ground-state of the
following mean-field Hamiltonian :

HMF =
∑
〈i,j〉

tije
iθijc†iσcjσ + c.c. (B.8)

This hamiltonian describes free electrons coupled to an external magnetic field,
that enters the equations through the θij variables. We assume now that θij is
oriented like the current pattern θ2 proposed by Chandra Varma. In particular,
θij takes two different amplitudes on the copper-oxygen links (|θCu−O| = α1) and
on the links oxygen-oxygen (|θO−O| = α2). We define the current operator ĵ and
the kinetic energy K̂ associated with the same bond :

ĵkl =
∑

σ

itklc
†
iσcjσ + c.c. (B.9)

K̂kl =
∑

σ

tklc
†
iσcjσ + c.c. (B.10)

ĵ and K̂ are shown in Fig.B.2 for the parameters (α1, α2). The wavefunction is
defined for a 64 copper lattice doped with holes at x = 0.125. ĵ is orientated such
that when jCu−O, jO−O > 0 the pattern is orientated similarly to the θ2 pattern
of C. Varma. We see in Fig.B.2 that the zone where jCu−O > 0 and jO−O > 0
(short dashed rectangular box) corresponds to a maximum of the kinetic energy
and therefore is not expected to be stabilized by other interactions, since the cost
in energy for such a phase is of the order of 1.3eV in the cuprates.
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Nevertheless, we found in the three-band Hubbard model that the wavefunc-
tion with (α1, α2) lying in the long-dashed rectangular box of Fig.B.2 was op-
timal. This later wavefunction has a current pattern which is similar to the θ2
phase of C.Varma, but has reversed current lines on the oxygen-oxygen bonds,
and the amplitude of these lines is small. On the other hand, we measured the
corresponding mean-field operator that are defined by :

ĵMF
kl =

∑
σ

itkle
iθklc†iσcjσ + c.c. (B.11)

K̂MF
kl =

∑
σ

tkle
iθklc†iσcjσ + c.c. (B.12)

We show in Fig.B.3 the range of parameters (α1, α2) that are stabilized in vari-
ational Monte-Carlo calculations (short-dashed rectangular box). For the cor-
responding range of parameters the mean-field current operator is identical to
the θ2 phase of C. Varma, with strong currents on the oxygen-oxygen bonds. In
conclusion, the variational calculations stabilize a wavefunction that has a flux
through the periodic boundaries and a weak current on the oxygen-oxygen links
when the physical current observable ĵ is considered, but the same wavefunction
would have a true current circulation inside the triangle plaquettes when the
mean-field current operator jMF is measured in this same wavefunction.
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jCu-O KCu-O

jO-O KO-O

Figure B.2: Operator j and K measured in a wavefunction with flux parameters
α1 and α2 (see text). The short-dashed box indicates the region where the current
pattern is orientated like the θ2 pattern by Chandra Varma. The long-dashed box
indicates the region of parameters that is stabilized in the 3-band Hubbard model.
α1 and α2 are in units of 2π.
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jMF
Cu-O KMF

Cu-O

jMF
O-O KMF

O-O

Figure B.3: Mean-field operators ĵMF and K̂MF measured in a variational wave-
function with flux variational parameters α1 and α2 (see text). The long-dashed
box indicates the region of parameters that lead to an energy optimization in the
3-band Hubbard model. α1 and α2 are in units of 2π.
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not change with the inclusion of the spin-lattice coupling was reported. 
Implications for the prototype for a layered J1-J2 model in the collinear region 
were discussed [5]. 

o Effect of static disorder. Presently we are studying the effect of static disorder 
in a frustrated spin model, and presently we found that non trivial interaction 
between disorder and frustration occurs.  



 
 

2. Model of strongly correlated electrons 

 

o Magnetism and Superconductivity in the t-J model on the triangular 
lattice. We have investigated the phase diagram of the t-J Model on a triangular 
lattice using a variational Monte Carlo approach. We used an extended set of 
Gutzwiller projected fermionic trial wave-functions allowing for simultaneous 
magnetic and superconducting order parameters, which were extended by using 
Pfaffian matrices. We obtained energies at zero doping for the spin-1/2 
Heisenberg model in very good agreement with the best estimates. Upon 
electron doping this phase is surprisingly stable variationally up to electronic 
density n=1.4, while the d+id order parameter is rather weak. For hole doping 
the coplanar magnetic state is almost immediately destroyed and the d+id 
superconductivity survives down to n=0.8. Moreover, there are evidences for a 
narrow spin density wave phase and ferromagnetism [6]. 

 

o Bond-order wave instability in the t-J model on the square lattice. 
Motivated by the observation of inhomogeneous patterns in some high- Tc 
cuprate compounds, several variational Gutzwiller-projected wave functions 
with built-in charge and bond-order parameters are proposed for the extended t-
J-V model on the square lattice at low doping. In this work, we investigate, as a 
function of doping and Coulomb repulsion the relative stability of a wide 
variety of modulated structures. It is found that the 4×4 bond-order wave 
function with staggered-flux pattern (and small charge and spin current density 
wave) is a remarkable competitive candidate for hole doping around 1⁄8 in 
agreement with scanning tunneling microscopy observations in the underdoped 
regime of some cuprates. This wave function is then optimized accurately and 
its properties studied extensively using a variational Monte Carlo scheme. 
Moreover, we find that under increasing the Coulomb repulsion, the d -wave 
superconducting RVB wave function is rapidly destabilized with respect to the 
4×4 bond-order wave function [8,9].  

 

o Scanning-tunneling microscopy. Low temperature (3.9 K) scanning-tunneling 
spectroscopy on a Ag(111) surface has revealed that for some concentration of 
Cerium ad-atoms on-top of the surface, a superstructure (hexagonal) of ad-atom 
could be stabilized. Using a tight-binding model, we could relate the overall 
spectral structures to the scattering of Ag(111) surface-state electrons by the Ce 
ad-atoms. Also the site dependence could be related to the disorder induced by 
imperfections of the superlattice, and the opening of a gap in the local density of 
states could explain the observed stabilization of superlattices with ad-atom 
distances in the range of 2.3-3.5nm. For more details see ref. [2]. 



 
 

 

Parallel scientific activity 
In parallel to my thesis scientific work, I have also research interests in complex biological 
systems, like DNA. The tools used in this activity are essentially numerical (Polymer Monte-
Carlo simulations, 3D surface construction, bezier curve interpolation), and mathematics (Knot 
Topology, Fluid Dynamics) but also consist of some engineering (stereo-lithography 
technique). This scientific activity has focused on the following fields (reference numbers 
relate to the List of publications hereafter):  
 

3. Physics of DNA knots 
o DNA knot dynamics and collisions. Gel electrophoresis allows one to separate 

knotted DNA (nicked circular) of equal length according to the knot type. At 
low electric fields, complex knots, being more compact, drift faster than simpler 
knots. Recent experiments have shown that the drift velocity dependence on the 
knot type is inverted when changing from low to high electric fields. We have 
presented a computer simulation on a lattice of a closed, knotted, charged DNA 
chain drifting in an external electric field in a topologically restricted medium. 
Using a Monte Carlo algorithm, the dependence of the electrophoretic migration 
of the DNA molecules on the knot type and on the electric field intensity is 
investigated. Moreover, we have observed that at high electric fields the 
simulated knotted molecules tend to hang over the gel fibres and require passing 
over a substantial energy barrier to slip over the impeding gel fibre. At low 
electric field the interactions of drifting molecules with the gel fibres are weak 
and there are no significant energy barriers that oppose the detachment of 
knotted molecules from transverse gel fibres [3,4,7]. At present time, 
macroscopic experiments of plastic models of DNA knots falling under gravity 
in a very viscuous medium are performed. Such experiments, performed at very 
low Reynolds number, could simulate the behaviour of DNA knots inside the 
biological cell moving under an electric field during gel electrophoresis. 

o DNA disentanglement. Type-2 DNA topoisomerases maintain the level of 
DNA knotting up to 80-times lower than the topological equilibrium that would 
result from random inter-segmental passages occurring within freely fluctuating 
DNA molecules. Keeping the level of DNA knotting below the topological 
equilibrium is not a paradox as these enzymes use the energy of ATP hydrolyzis 
for each inter-segmental passage. However, it is unknown how these enzymes 
that interact with a small portion of knotted circular DNA molecule can 
recognize whether a given intersegmental passage will rather lead to a 
simplification than to a complication of DNA topology. Over the years several 
different mechanisms were proposed to explain the selective simplification of 
DNA topology by DNA topoisomerases. We study at present time realistic 
simulations of DNA unknotting and find results in agreements with experiments 
for realistic geometries. 
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