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For most of medical history, practice has been largely 
ad hoc, based on suboptimal evidence from personal 
experience and anecdotes shared among physicians. 

Although individual cases and experiences often yield invalu-
able insights to perceptive physicians, multiple anecdotes 
do not replace systematically collected data and organized 
comparisons, and practice mostly based on personal experi-
ence often has subsequently been shown to be suboptimal. 
(The pleural of anecdote is not data!) Voltaire nicely summa-
rized early medical practice in 1760, writing that physicians 
“poured drugs of which they knew little, for diseases of 
which they knew less, into humans of which they knew noth-
ing.” One hundred years after Voltaire’s comment but con-
siderably before the microbial origin of disease was accepted, 
the British anesthesiologist John Snow, informed by work of 
John Graunt and formal vital statistics systems established 
in mid-16th century London,1 used systematic, dispassionate 
data collection to infer that a contaminated water supply was 
the proximal cause of mid-18th century London cholera out-
breaks.2 During the next century, frameworks for systematic 
collection and evaluation of data, such as Koch’s postulates 
for assessing microbial causation3 and Hill’s guidelines for 
inferring causality more generally,4 fostered greater scientific 
rigor in conjunction with clinical observation.

Clinical research methods have since matured immensely. 
The meticulous work of Feinstein,5–7 Sackett,8 and others on 
the intellectual foundations of clinical epidemiology; the fos-
tering of randomized clinical trials (RCTs) particularly by 
Hill,9,10 Chalmers,11,12 and Cochrane13; and the emergence of 

evidence-based medicine, midwifed by Sackett et al.,14 have 
contributed greatly to revolutionary advances in clinical 
understanding and practice. The application of formal meta-
analytic techniques from education and social science to med-
icine and epidemiology, through evidence-based medicine 
centers and the Cochrane Collaboration,15,16 has systematized 
aggregation of research evidence for the medical community.

We thus now know much about how humans work and 
how they respond to disease and drugs. And we know 
even more about how cells and rodents respond. Physicians 
are thus encouraged to practice evidence-based medicine, 
which means that clinical decisions should be based on 
good evidence, preferably from relevant, high-quality, and 
reproducible studies in humans rather than on the physi-
cian’s personal clinical experience alone.

However, any physician who tries restricting practice 
to methods established on the basis of strong evidence in 
humans quickly discovers that there is distressingly little 
basis for current medical care, although cardiology and 
oncology, with histories of strong National Institutes of 
Health funding and methodologic innovation, seem ahead 
of most specialties in this regard.17,18 The purpose of clinical 
research is to bridge the remaining wide gap from the under-
standing of basic and animal science to the care of patients 
in an effort to improve medical outcomes. Systematic clini-
cal research is necessary because humans have proven to be 
a poor model for rodents!

Even the best clinical studies have potential limitations, 
and it is helpful to understand the strengths and weak-
nesses of various approaches. By this, we do not mean that 
clinical research is generally problematic. However, it helps 
to understand how study design can influence results, and 
which types of studies are most reliable and thus the best 
basis for clinical decisions. In this and 2 subsequent articles, 
we will discuss aspects of clinical research methodology as 
a guide to understanding and interpreting reported results.

Even a series of articles can only have limited scope. 
Our focus will be on design choices in clinical research and 
the advantages and disadvantages of various approaches 

Clinical research can be categorized by the timing of data collection: retrospective or pro-
spective. Clinical research also can be categorized by study design. In case-control studies, 
investigators compare previous exposures (including genetic and other personal factors, envi-
ronmental influences, and medical treatments) among groups distinguished by later disease 
status (broadly defined to include the development of disease or response to treatment).  
In cohort studies, investigators compare subsequent incidences of disease among groups dis-
tinguished by one or more exposures. Comparative clinical trials are prospective cohort stud-
ies that compare treatments assigned to patients by the researchers. Most errors in clinical 
research findings arise from 5 largely distinguishable classes of methodologic problems: selec-
tion bias, confounding, measurement bias, reverse causation, and excessive chance variation.   
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to address clinical research questions. We focus on design 
because, although error can occur in design, data collection, 
and/or analysis and reporting of a study, poor study design 
generally cannot be remedied by subsequent steps.

A consequence of our focus on design is that we will 
not discuss operational issues, including ways to maintain 
blinding, electronic data acquisition, how to minimize and 
deal with missing data, or strategies for the prevention of 
fraud.19 Nor will we discuss result reporting, which also is 
subject to various types of error and potential influence of 
competing interests. Furthermore, the 3 articles in this series 
will include only the most basic statistical approaches.

RESEARCH APPROACHES
Clinical research studies can be broadly categorized as ret-
rospective or prospective. Retrospective studies use exist-
ing data on current and past patients to answer questions. 
These studies are conducted by assembling and organizing 
contemporaneously recorded information on past events, 
analyzing previously stored biosamples, and/or by return-
ing to patients and physicians for further information about 
the past. Prospective studies answer questions by collect-
ing new data on current and future patients over a future 
period during which medically relevant events occur, gen-
erally using methods specific to the intended research.

Prospective studies can be either observational (nonin-
terventional) or experimental (interventional), in the sense 
of manipulating study-related treatments. For example, an 
observational study might involve determining the con-
centration of a blood biomarker and evaluating relevant 
outcomes. Conversely, experimental interventions might 
include the use of a novel anesthesia regimen, intraopera-
tive monitoring device, or temperature management pro-
tocol. Clinical studies also can be characterized by timing. 
In cross-sectional studies, for example, exposure and out-
come are evaluated simultaneously. Cross-sectional stud-
ies thus essentially survey the state of affairs at a particular 
time without looking forward or backward. For example, is 
hypertension more common among current cigarette smok-
ers than among nonsmokers? Or, is reflux less common 
among patients who take antacids?

Cross-sectional studies, although useful for certain ques-
tions such as evaluating the prevalence of disease, are poor at 
capturing changes over time and hence provide little useful 
information for distinguishing causal from other relationships. 
Furthermore, cross-sectional studies may exclude important 
groups, such as people who die quickly, and thus are no longer 
represented in the population when the study is conducted. 
Consequently, cross-sectional studies are used only rarely in 
anesthesia research or in studies of treatment more generally, 
and we will not consider them further in this series.

In case-control studies, investigators ask whether people 
with a particular disease, or whose disease has progressed, 
had different previous exposures than people who remained 
free of the disease or whose disease remained stable or 
improved. For example, are surgical patients who develop 
anaphylactic reactions more likely to have been exposed to 
latex, or are patients who experience intraoperative malig-
nant hyperthermia crises more likely to have a history of 
heat stroke?

In cohort studies, investigators look forward in time from 
exposure to outcome, by comparing frequencies and severi-
ties of outcomes in groups defined by different exposures. 
For example, do people with low vitamin D serum concen-
trations more often develop serious postoperative compli-
cations? The distinction can be nonobvious. For example, 
consider a study in which investigators compared anesthetic 
requirement in patients with and without fibromyalgia. The 
design might appear to be case-control because patients with 
and without disease are being selected. But, in fact, fibromy-
algia is the exposure in this study and anesthetic require-
ment is the outcome. It is thus a cohort design.

An advantage of prospective studies is that they allow 
researchers to plan and manage data collection, which usu-
ally improves data quality. Prospective studies also allow 
investigators to answer specific research questions more 
directly than is usually possible in retrospective research. 
The trade-off for these benefits is higher research costs and 
longer waiting times for answers.

Comparative studies on treatments can be observational, 
when the researcher simply observes and describes current 
clinical practice. However, experimental studies generally are 
less prone to spurious findings than observational studies, 
and prospective cohort studies become experiments when 
researchers manage, rather than simply observe, the choice 
and use of treatments. When treatments are allocated ran-
domly (i.e., “randomized”) to patients, the result is a special 
type of cohort study called a randomized clinical trial (RCT).

Randomization commonly is used, often in conjunction 
with concealment of treatment assignments from study 
participants and some investigators, a process known as 
“masking” or “blinding” allocation. RCTs that are blinded 
to the extent practical provide the clearest evidence of a 
therapy’s effects but are not always practical, and there are 
other legitimate approaches to error mitigation, including 
alternating intervention designs.20 Two subsequent articles 
will discuss observational and randomized blinded studies 
in more detail.

SOURCES OF ERROR
There is no perfect study. All are limited by practical 
and ethical considerations, and it is impossible to con-
trol all sources of error—even in fully randomized and 
meticulously blinded trials. Multiple studies are thus 
usually required to convincingly confirm (or disprove) 
a hypothesis. Most errors in clinical research arise from  
5 major sources of methodologic problems: selection bias, 
measurement bias, reverse causation, excessive random 
(chance) variation, and confounding (Fig. 1). Within each of 
these general classes are many specific types of error such as 
recall bias, attrition bias, confounding by indication, and so 
on.21 Imperfect execution also hinders clinical research, as it 
does all human activities, but does not constitute methodo-
logic error, and is hence beyond our scope here.

Selection bias, measurement bias, and reverse causa-
tion are systematic sources of error. They stem from intrin-
sic aspects of a study’s design and would be expected to 
occur similarly in multiple repetitions of similarly designed 
studies. In contrast, chance or random error describes the 
net effect of idiosyncratic influences, human variation, and 
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trend-free time-to-time fluctuations in measurements and 
measurement processes. Random errors because of such 
chance variation would not, therefore, be expected to simi-
larly recur were the study to be repeated.

Confounding is a phenomenon—essentially, mistakenly 
attributing the influence of one exposure to another—that 
can be inherent in the medical situation being addressed 
or can arise as a consequence of selection bias, measure-
ment bias, or chance. For example, pretzel consumption 
is associated with hepatic cirrhosis. However, pretzels 
do not cause cirrhosis; instead, it is beer consumed with 
pretzels that damages the liver. Statistical planning and 
analysis can be effective in controlling and assessing the 
effects of chance and in removing distortions because of 
anticipatable confounding. The other sources of error—
selection bias, measurement bias, reverse causation,  
and possible confounding by unanticipated or even 
unknown factors—are most effectively addressed by 
strong study design.

Chance
Chance error refers to the fact that the results of any given 
study will differ somewhat from the true biological situa-
tion because of random variation. Such variability is known 
to occur at multiple levels in medical research: from one 
patient to another, from measurements of the same patient 
from one time to another, and from one measurement to 
another of the same patient at the same time. For example, 
results may differ when portions of the same serum sample 
are analyzed by multiple autoanalyzers in the same or dif-
ferent laboratories. Similarly, interpretations of images and 
biopsy samples by multiple radiologists and pathologists 
may differ, as might results from the same radiologists and 
pathologists at different times. Such errors are more com-
mon and of greater magnitude than generally assumed.22–24 
Undetected data recording error, from misplaced decimals, 
reversed digits, and transcriptions from incorrect fields on 

clinical report forms and spreadsheets are an omnipresent 
contributor to random variation in study results.

Another source of random error can be artifact from 
inaccurate or missing information because of random mal-
functions or inappropriate settings of an automated data 
collection instrument: for example, when a blood pressure 
cuff is disconnected or is positioned incorrectly during sur-
gery. Similarly, artifact can occur in nonautomated data col-
lection because of random misunderstanding of definitions 
by database coders. A type of measurement error, artifacts 
are more common than generally appreciated and have 
considerable potential to degrade analyses. We will discuss 
them later in this review in connection with measurement 
bias.

In large, well-designed studies, the net effects of chance 
on estimated treatment effects and other primary study 
conclusions usually are limited. Sometimes, however, just 
by bad luck, and especially in studies with few patients  
and/or imprecise measurement methods, the influence of 
chance can be substantial and lead to an incorrect conclusion  
(i.e., no benefit or even harm, rather than benefit). The trou-
ble is that without replication of a study or another form of 
confirmation, no one can know if its results faithfully rep-
resent the “true” biological situation or if chance (bad luck) 
led to a seriously mistaken inference.

Before starting a study, investigators develop a scientific 
hypothesis: a specific statement of the biological mechanism 
or clinical theory for which evidence will be collected. For 
example: “delirium is reduced by propofol vs. postopera-
tive sevoflurane anesthesia.” From this base, 2 “statistical 
hypotheses” are generated against which evidence collected 
by the study will be weighed.

The first, conventionally called the “null hypothesis H0,” 
is that only chance governs variation in patient responses and 
thus that some systematic relationship implied by the scien-
tific hypothesis does not exist: for example, “H0: Delirium 
is equally likely after propofol and sevoflurane anesthesia.” 
The second is a statement about the sort of relationship 
anticipated if the scientific hypothesis were true, proffered 
as a logical alternative to chance variation alone as reflected 
in H0, and hence called the “alternative hypothesis” HA. 
Here, for instance, the alternative hypothesis would be “HA: 
Delirium is less common after propofol than sevoflurane 
anesthesia.” This is a predicted consequence of the initial 
scientific conjecture in large populations of similar patients 
receiving the 2 types of anesthesia for similar surgeries, and 
can be reasonably assessed by observing samples of patients.

A more general alternative hypothesis, appropriate to a 
less specific theory, would be H′A: the delirium incidences 
after propofol and sevoflurane anesthesia differ. This is a 
“2-sided” alternative because it counts departures from the 
null hypothesis H0 favoring either anesthetic as supportive, 
in contrast to the “1-sided” alternative specifying which 
best reduces delirium. (In general, investigators should a 
priori designate the most specific hypothesis consistent 
with their biological understanding, including expected 
directionality.) Researchers attempt to support alternative 
statistical hypotheses HA, and consequently the scientific 
hypotheses generating them, by obtaining enough data con-
sistent with HA to falsify the corresponding null hypotheses 

Figure 1. Sources of error. Investigators usually want to confirm a 
causal relationship between an exposure (such as obesity) and an 
outcome (such as postoperative respiratory complications); how-
ever, that relationship is only 1 of 7 possible causes of a statistically 
significant outcome; 5 of which are generally misleading—but often 
for subtle reasons. E = exposure; D = disease/outcome.
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Ho. This is effectively done if the data are shown to be of a 
very unusual sort if only chance were involved.

Let us say that in the resulting study sample, delirium 
is actually less common after propofol than after sevoflu-
rane anesthesia. The question then is whether the observed 
reduction is real (a true reflection of the biology) or whether 
it resulted from chance and/or from bias or confounding. 
The influence of bias and confounding is hard to evaluate 
and can be substantial; however, random error (chance) can 
be managed by the use of statistical tools, the 2 most com-
mon of which are P values and confidence intervals.

The P value is an index between 0 and 1 of how easily 
the data can be accounted for by pure chance variation. 
Specifically, P values reflect whether the observed data are 
compatible with what might be expected within the range 
of chance variation for a study of similar size when the null 
hypothesis is true. In the most common circumstances, 
when the null hypothesis represents lack of difference or 
equality of treatment effects, the P value is an index of com-
patibility of the data with biological inactivity or with iden-
tical average effects of competing treatments.

Thus, small P values are interpreted as representing 
data essentially incompatible with random chance, and 
hence “statistically significant” in supporting the hypoth-
esized treatment effect by falsifying H0. A P value <0.05 is 
conventionally considered statistically significant, with 
smaller values reflecting collections of data less and less 
compatible with chance, and hence for which chance is less 
and less plausible as a sole explanation. The conventional  
P value threshold of 0.05 is essentially arbitrary, and there 
are certainly situations (i.e., biologically implausible associ-
ations) in which it is reasonable to require smaller P values. 
Similarly, differences that are not statistically significant 
may well be clinically important.

We note though that a P value neither describes the 
actual magnitude of the clinical effect nor precludes the true 
effect differing considerably from that observed in a given 
study. The reason is that observed results are a combina-
tion of chance error superimposed on treatment benefit. 
Confidence intervals are thus used to describe the range of 
plausible treatment effects. For instance, a 95% confidence 
interval of 5% to 15% for the difference in the fractions of 
surgical patients who develop postoperative delirium after 
propofol or sevoflurane anesthesia is interpreted as mean-
ing that the study data are compatible with a reduction in 
delirium risk anywhere between 5% and 15%.

Formally, a confidence interval is a range of estimates 
of an unknown numerical characteristic of a population 
from which the study sample is obtained, such as delirium 
incidences in patients given propofol or sevoflurane in the 
population of interest rather than the study sample. This 
range is determined from the study data using a method 
that provides a specified chance, called the “confidence 
coefficient,” that the range will include the parameter’s 
true value. Other things being equal, high confidence 
requires wide intervals; narrow intervals can be obtained 
by accepting a greater chance of missing the target and 
thus lower confidence. Assuming technical assumptions 
are correct, approximately 95% of 95% confidence inter-
vals can be expected to include the corresponding true 
targeted values. Investigators who state, based on their 

data, that the true reduction in delirium risk with propo-
fol is between 5% and 15% can thus be 95% confident that 
the statement is true, assuming chance is the only source 
of error. The use of 95% in defining confidence intervals 
is arbitrary but has become a widely accepted medical 
research convention, largely because of a useful connec-
tion between confidence intervals and hypothesis tests.

It is possible to test statistical effects, such as a difference 
in mean responses or a ratio of the fractions responding, by 
rejecting the hypothesized value if the confidence interval 
for the statistical effect excludes that value. For instance, we 
might hypothesize that the fraction of patients experienc-
ing delirium after propofol anesthesia is half of the fraction 
experiencing it after sevoflurane anesthesia. That hypoth-
esis would be rejected if the 95% confidence interval for the 
ratio of propofol to sevoflurane delirium risks generated by 
the data in our study excludes the value 0.5.

Hypothesis testing defined this way will have false-pos-
itive probability (i.e., type 1 error, symbolically α) equal to 
the amount by which the interval’s confidence coefficient 
falls short of certainty, that is, short of 100%. Thus, a 95% 
confidence interval extends the result of a conventional  
α = 5% level test of a statistical null hypothesis, by sum-
marizing the results of similar tests of every possible other 
hypothesis: those with hypothesized values outside the 
interval are rejected, whereas those with hypothesized val-
ues in the interval are retained; this is the sense in which the 
latter are termed compatible with data (Fig. 2).

An additional, and sometimes serious, source of chance 
error results when investigators either informally or for-
mally test various hypotheses, thereafter choosing one that 
is “significant” or consistent with their biases. This process, 
colloquially known as “data mining,” is much more prone 
to false-positive error than is conveyed by the conventional 
α = 5% associated with each individual test. This underly-
ing “multiple testing” issue occurs in various guises. For 
example, the relationships of a disease to many possible risk 
factors (e.g., foods, occupational exposures, gene markers) 
may be simultaneously evaluated. Similarly, many differ-
ent outcomes may be evaluated or a single outcome may be 
assessed at multiple time points. And finally, accumulating 
results of a study may be assessed periodically.

The problem is that if each of a number of tests has 
chance α of producing a false-positive result when no effect 
is present, then the chance of at least some false positives 
when no effect is present increases with the number of tests 
performed to the point where false positives become virtu-
ally certain. The trouble is that false positives cannot readily 
be distinguished from true positives. Several strategies are 
available to address this problem. Perhaps the most impor-
tant is a priori designation of a single primary outcome or 
of multiple outcomes with appropriate statistical compen-
sation to preserve total false-positive error at a specified 
level α. Similarly, the specific statistical approach should be 
designated a priori.

To assure a priori designation of these important design 
elements, most journals will only consider manuscripts 
describing clinical trials if the trials were publically registered 
before trial enrollment starts. Various study registries are 
available, but perhaps the most commonly used is Clinical 
Trials, which can be accessed at ClinicalTrials.gov. Despite its 
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name, the registry is not restricted to trials and will accept 
cohort, case-control, and other types of clinical research. 
Trial registries contain important but limited information. 
Increasingly, investigators are separately publishing detailed 
methods of proposed studies, and some major journals are 
requiring submission and/or posting of study protocols, thus 
publically documenting a priori design and analysis choices.

Unfortunately, neither P values nor confidence intervals 
preclude or incorporate effects of systematic errors, which are 
often far more important than chance errors. In other words, 
the chance of meaningful random error can be very low, but 
the results still completely wrong because of bias and/or 
confounding.

Selection Bias
Selection bias occurs when otherwise-eligible partici-
pants are chosen nonrandomly for study inclusion and/
or assigned to one treatment or another for nonrandom 

reasons, including reasons that might influence their 
response to treatment. This can result from subtle forms 
of the disease being missed or treatment being directed to 
patients thought most likely to benefit.

For example, patients with better education or stronger 
support systems may seek treatment earlier or be given more 
aggressive treatment. Similarly, patients may comply poorly 
with or even stop particular treatments, either for perceived 
lack of efficacy or because of side effects, essentially selecting 
themselves out of a study. For example, in a study of postop-
erative cognitive deficits, those with compromised executive 
function may simply be unable to organize a return visit for 
testing, with the consequence that attrition bias makes the 
tested cohort appear to have better cognitive function than 
the full study population. The extent to which any of these 
events occur nonrandomly usually is difficult to assess.

Directing a treatment to patients subjectively thought 
most likely to benefit is a perfectly natural and appropriate 

Figure 2. Confidence intervals for a difference or other comparative measure of outcomes between an experimental treatment and a control 
treatment. The horizontal axis is a scale of possible true values of this treatment effect, for which each confidence interval spans a range of 
plausible values compatible with the data from which the interval was generated. The vertical lines, from left to right, denote a relative defi-
ciency of the experimental compared with control treatment that is the maximum acceptable in light of other advantages of the experimental 
treatment, such as reduced risk or costs, equality of treatments, and a benefit of the experimental treatment anticipated when designing 
the study. Each pair of lines portrays 95% (shorter) and 99% (longer) confidence intervals, summarizing, respectively, 5% and 1% level tests 
of significance of possible treatment effect values, with each line spanning the range of values which the data are insufficient to reject. 
Interpretations: (A) the observed treatment effect is not statistically significant, while at the 5% level of statistical significance the data are 
incompatible with either an intolerable deficiency or a benefit as large as anticipated, and at the 1% level cannot exclude such effects in either 
direction. B, The observed treatment effect is statistically significant at the 5% but not at the 1% level, compatible with the anticipated experi-
mental treatment benefit, and excludes an intolerable deficiency. C, As for B and also statistically significant at the 1% level. D, The observed 
treatment effect is statistically significant, excludes an intolerable deficiency, and shows statistically significantly better than anticipated treat-
ment benefit at the 5% but not the 1% level. E, The experimental treatment is statistically significantly worse than the control at the 5% but 
not the 1% level and compatible with a range of readily tolerable and clearly intolerable treatment deficiencies. F, As for E and also statistically 
significantly worse at the 1% level. G, The experimental treatment is statistically significantly worse than its maximum tolerable deficiency at 
the 5% level, and statistically significantly worse than control but still compatible with tolerable deficiency at the 1% level.



Copyright © 2015 International Anesthesia Research Society. Unauthorized reproduction of this article is prohibited.

Study Designs and Sources of Error

October 2015  Volume 121  Number 4 www.anesthesia-analgesia.org 1039

tendency in clinical care; however, the selection bias that 
results leads to what is known as “confounding by indi-
cation” in observational treatment comparisons, and the 
consequence is that one cannot be sure whether differ-
ences in treatment outcomes are because of differences 
in the effects of the treatments or initial constitutional 
differences in selected patients. In experimental stud-
ies, selection bias can largely be prevented by proper 
randomization followed by encouragement of patients, 
caregivers, and investigators to maintain the designated 
treatment allocation.

Measurement Bias
In studies that use retrospective data collection, the qual-
ity of records is often poor because most recording systems 
were designed for clinical or administrative purposes rather 
than research. The difficulty is that existing record quality 
may vary nonrandomly. In contrast, the quality of prospec-
tively collected data can be excellent in well-conducted 
studies in which data collection methods can be tailored to 
the research rather than to administrative objectives exter-
nal to it. 

Measurement bias can result in any type of study, when 
any aspects of data quality, availability, or measurement 
method vary for reasons other than chance. For example, 
patients given new treatments may be watched more closely 
than those receiving conventional therapy, and enthusiastic 
clinicians may overestimate the benefits of new treatments 
or underestimate associated complications.

Data artifacts also can easily produce measurement bias 
when data are distorted or missing nonrandomly. However, 
vulnerability to bias depends on precisely what is meant by 
“nonrandom.” Errors or missingness occur “completely at 
random” if there are no correlates of their occurrence and 
magnitude, “at random” if their occurrence and magnitude 
have correlates but are independent of the data missed or 
distorted, and “not at random” if occurrence or magnitude 
depends on the unobserved true values of the distorted or 
missing data.

Problems that occur completely at random increase 
chance variability but do not necessarily produce measure-
ment bias, depending on the specific nature of the problem. 
In contrast, “at random”  problems can easily generate bias, 
but such bias can be corrected by careful analysis if the 
correlates of the problem are known and have been mea-
sured, for example, if data are more frequently missing in 
the elderly but age is recorded. Measurement bias because 
of nonrandom artifact or missingness cannot be corrected 
in data analysis, and hence presents the greatest threat to 
research conclusions. The sensitivity of results to such prob-
lems, however, can be explored by “sensitivity analyses,” 
that is, multiple analyses under different assumptions about 
the error-generating mechanism.

Many papers presenting registry analyses do not ade-
quately describe how artifact, and data accuracy more 
generally, were evaluated and handled, and how much 
artifact was found. It is likely that detailed descriptions 
of artifact definition, quantity, and handling will soon be 
required in registry reports, along with sensitivity analy-
ses when artifact has the potential to substantively influ-
ence conclusions.

Measurement bias in clinical data collection can be subtle 
and hard to detect. Consider, for example, a classic study by 
Schull and Cobb (Schull and Cobb 1969). The investigators 
asked an important question: Is arthritis hereditary? The 
experiment consisted of asking otherwise-similar people, 
with and without arthritis, whether their parents had arthri-
tis. Their results are shown in Table 1. The results were clear: 
people with arthritis were far more likely to report that one 
or both parents also had arthritis. The difference was highly 
statistically significant, with a P value of 0.003.

There was just one problem. The subjects with arthritis 
and the subjects without arthritis were siblings; they had 
exactly the same parents!

So what happened here? Were some of the subjects lying? 
Unlikely. Most likely, people with rheumatoid arthritis 
thought much more about arthritis than those who did not. 
And they were far more likely to have discussed the issue 
with their parents and thus know (and remember) whether 
their parents had arthritis. This is “family information bias,” 
a specific example of what is more generally called “recall 
bias.” There are many other types of measurement bias, 
some of which are equally subtle.

An analog is that people with cancer are preoccupied 
with cancer and spend lots of time asking “why me?” 
Various environmental exposures, such as pesticides and 
workplace chemicals, are known to cause cancer in animal 
models and are thought or known to cause certain specific 
cancers in humans. Now let us say investigators are inter-
ested in whether environmental exposure contributes to the 
development of cancer.

The most obvious approach would be to find a group 
of patients with cancer and a similar group without can-
cer, and then ask about their environmental exposures. The 
results are predictable: those with cancer will come up with 
long lists of exposures because the question was already on 
their minds.

But when the investigators ask noncancer subjects if 
they have had major environmental exposures, the answers 
will usually be something like “Uh, no; not that I remem-
ber.” The point is that such a difference in reported expo-
sure would almost surely be statistically significant in a 
large study and almost certainly exaggerate the difference 
between cases and controls, if any, in real exposure. This is 
another example of recall bias.

Measurement bias also results from the placebo effect, 
which should never be underestimated. This is especially 
the case for subjective responses such as pain and quality-
of-life, but placebo effects also have repeatedly been shown 

Table 1.  Recall Bias, a Type of Measurement Bias
Reported parental 
arthritis history

Rheumatoid  
arthritis (%)

No rheumatoid arthritis 
(%)

Neither parent 27 50
One parent 58 42
Both parents 15 8

Otherwise-similar people with and without arthritis were asked whether their 
parents had arthritis. People with arthritis were far more likely to report that 
one or both parents also had arthritis. The difference was highly statistically 
significant, with a P value of 0.003. The subjects with and without arthritis, 
however, were siblings. They had exactly the same parents! (Modified from 
Schull WJ, Cobb S. The intrafamilial transmission of rheumatoid arthritis. 3. 
The lack of support for a genetic hypothesis. J Chronic Dis 1969;22:217–22.)
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to influence supposedly objective outcomes25–27 and, amaz-
ingly, patients report benefit from placebo administration 
even when they know that their “treatment” is a placebo 
(Fig.  3).27 Taking a placebo—even one they know is a  
placebo—makes people feel better or at least believe and 
say they feel better!

Measurement bias in clinical trials can be largely con-
trolled by blinding, sometimes called double blinding or 
triple blinding, to the extent that patients, clinicians who 
make treatment decisions and investigators who assess out-
comes are unaware of which patients receive which treat-
ments. Blinding does not remove placebo effects, which no 
one knows how to do, but distributes their benefits equally 
across patients in all treatment groups.

Confounding
Confounding is distortion of an apparent association 
between 2 factors that results from failure to account for a 
third factor associated with both. Confounding most often 
is contemplated and recognized when it produces a statis-
tically significant relationship that is not clinically or bio-
logically real; however, confounding can also hide a true 
association. Confounding is an important and sometimes 
subtle source of error because such alternative influences 
may not even be suspected. In retrospective studies, poten-
tial confounding factors may be well known but unavail-
able for analysis by virtue of not being included in clinical 
records.

To take a trivial example, the rate of mortality is much 
greater in Florida than Alaska. Is this because Florida is 
a more dangerous place to live? Should Florida retirees 
move to Alaska to enjoy a longer retirement? No. To do 
so would be to mistakenly attribute effects of biology to 
effects of geography. Mortality is greater in Florida because 
the median age of Floridians is 7 years greater than that in 
Alaska. In other words, the relationship of mortality to the 
state in which one resides is confounded by age, the factor 

that links exposure (the state of residence) with outcome 
(mortality). Of course, if investigators know that age is 
important, and know the ages of people in each state, then 
it is easy to compensate. For example, you might compare 
mortality of subgroups of people of similar ages in each 
state; you might also use statistical adjustments to compen-
sate for differing ages.

The trouble is that potential confounding factors often 
are unknown. Alternatively, factors may be suspected 
confounders, but the data needed for adequate statisti-
cal compensation may not be available. To the extent that 
these factors influence the results, conclusions can be 
quite wrong, with the extent of the error being essentially 
unknown.

As an example of confounding by indication, blood 
transfusions are strongly associated with adverse out-
comes, including mortality. However, blood transfusions 
are far more likely to be required by patients who are sick-
est in the first place. When one compares the mortality of 
groups differing in how many blood transfusions have been 
administered, one is implicitly comparing groups with very 
different levels of underlying illnesses. It is quite possible 
that underlying illness contributes more to subsequent mor-
tality than the blood transfusions themselves.

Consider, for example, patients who have anemia, which 
often accompanies chronic diseases, including cancer, or 
patients having especially long and/or large operations. 
These patients are more likely than others to need a blood 
transfusion, and they are more likely to have bad outcomes. 
But the 2 are not necessarily directly linked; instead, they 
are indirectly linked (i.e., confounded) by the fact that sicker 
patients having larger operations are more likely to both 
need blood and have bad outcomes.

The important point is that a statistical association (i.e., 
P < 0.05) of transfusions with bad outcomes would not nec-
essarily imply that restricting transfusions will improve 
outcomes because an entirely beneficial causal effect of 
transfusions may be concealed by the competing causal 
effect of the poorer initial conditions of patients who require 
them. Even an exceptionally statistically significant excess 
of adverse outcomes in transfused patients might be com-
pletely spurious, because of the separate associations of the 
need for transfusion and adverse outcomes with initially 
poor prognosis for unrelated reasons.

The extent to which these subtle and hard-to-quantify 
confounding factors contribute to research conclusions can 
be difficult to determine retrospectively. In other words, 
blood transfusions may actually worsen outcomes, but it is 
equally possible that outcomes are worse in patients given 
transfusions by virtue of factors that led to their being trans-
fused. The distinction is critical because restricting transfu-
sions will only improve outcomes if the first mechanism is 
accurate. Or, to make a stronger statement, basing transfu-
sion policy on a spurious relationship would likely harm 
patients by denying them needed transfusions.

It is easy to confuse confounding, a statistical problem 
that can arise without a biologically or clinically meaning-
ful basis, solely because of composition of a research sam-
ple, with “effect modification,” which is a manifestation of 
nature’s complexity that may be of critical clinical impor-
tance. Consider 2 examples.

Figure 3. The placebo effect is well known and can substantially 
bias results. However, patients report benefit from placebo admin-
istration even when they know that their treatment is a placebo. 
Patients with irritable bowel syndrome were randomized to either 
open-label placebo pills presented as “placebo pills made of an 
inert substance, like sugar pills, that have been shown in clini-
cal studies to produce significant improvement in IBS symptoms 
through mind-body self-healing processes” or no-treatment controls 
with the same quality of interaction with providers. Open-label pla-
cebo produced significantly higher mean global improvement scores  
(P = 0.02). Modified from Kaptchuk et al.27 Reprinted under a 
Creative Commons Attribution License.
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First, suppose therapy A outperforms therapy B to 
a similar degree whether men or women are treated, but 
women generally do better than men. Suppose 10% of men 
but only 1% of women experience the least desirable out-
come, regardless of which therapy they receive. If therapy 
A has an unpleasant side effect occurring mostly in men, so 
men receive B more than women, then the relative benefit 
of A will be exaggerated by comparing the more frequently 
female recipients of A with the more frequently male recipi-
ents of B. For instance, if 70% of those receiving therapy A 
are female, and 70% of those receiving therapy B are male, 
then the least desirable outcome will be experienced by 
only 0.3 × 10% + 0.7 × 1% = 3.7% of those on therapy A but 
by 0.7 × 10% + 0.3 × 1% = 7.3% of those on therapy B. To 
the naive who compare these proportions without regard 
to the different gender compositions of the patient groups, 
therapy A will appear to have halved the event rate relative 
to therapy B, although the performances of the 2 therapies 
are actually identical. This is confounding, (specifically, con-
founding by indication), a failure to compare appropriately 
similar groups, in a manner fully analogous to the earlier 
geographical example, with therapies A and B playing the 
respective roles of Alaska and Florida, and men and women 
playing the respective roles of seniors and younger folks.

Second, consider a situation in which, because of under-
lying biological mechanisms, therapy A is more effective 
and less toxic in men whereas therapy B is more effective 
and less toxic in women. Or, to take an extreme example, 
for a disease with case fatality of 50% in untreated patients, 
suppose for those receiving therapy A the case fatality 
decreases to 25% in men but increases to 75% in women, 
with these numbers reversed, case fatalities of 75% in men 
but 25% in women, among recipients of therapy B. This is 
effect modification, in which the relative effect of an expo-
sure or treatment differs from group to group, in this case 
as a function of sex. In this example, the effect of therapy A 
relative to therapy B is to triple (75% vs 25%) the case fatal-
ity among women, but to reduce it by two-thirds (25% vs 
75%) among men. Unlike confounding, which is essentially 
a research error, effect modification describes biological sit-
uations with distinct clinical implications and needs to be 
understood if treatments are to be optimally applied.

Aspects of the patient’s condition or circumstances are 
candidates for effect modifiers. A well-known example is 
that the benefit of streptokinase and other thrombolytic 
agents for improving stroke outcomes depends on the time 
elapsed after stroke onset. Specifically, the substantial ben-
efit achievable with early administration is modified (in this 
case largely lost) when a thrombolytic is given too late.

Reverse Causation
Reverse causation is a special and rare type of error in 
which the roles of cause and effect are misconstrued, so an 
effect is mistaken for a cause and a cause mistaken for an 
effect. For example, certain organisms are more commonly 
isolated from the esophagus in patients with esophageal 
cancer or precancerous conditions than from healthy con-
trols. However, a conclusion that such organisms cause the 
cancer would be incorrect because the cancerous condition 
may produce tissue changes altering the microenvironment 
and consequently the esophageal microflora.

Reverse causation errors occur when investigators have 
difficulty identifying the timing, and particularly the order-
ing, of when a patient is exposed to a risk factor of interest 
and when the relevant disease outcome first occurred. Such 
errors are of most concern in studies with retrospective 
data collection. However, reverse causation error also can 
occur in prospective studies of long-term exposures and/
or chronic disease, where data collected prospectively may 
reflect long-standing lifestyle and environmental factors 
and disease signs or symptoms that may have originated 
much earlier with sequence unknown.

For instance, prospective cohort studies of cancer etiology 
typically exclude cases diagnosed early during the follow-up 
period because they may have been latent at the study’s start 
and been initiated before the study’s assessment of the expo-
sure. The problem this causes is evident in studies on smok-
ing and lung cancer. In such studies, lung cancer is found 
more often among smokers who recently quit than among 
current smokers because some people with early symptoms 
of cancer stop smoking before accruing a formal diagnosis. 
Reverse causation thus makes it appear as if quitting smok-
ing promotes cancer, which is not actually the case.

CONCLUSIONS
Clinical research can be categorized by the timing of data 
collection: retrospective or prospective. Clinical research 
also can be categorized by study design. In cross-sectional 
studies, exposure and outcome are evaluated simultane-
ously. In case-control studies, investigators compare previ-
ous exposures (including genetic and other personal factors, 
environmental influences, and medical treatments) between 
groups distinguished by later disease status (broadly 
defined to include the development of disease or response 
to treatment). In cohort studies, investigators compare the 
subsequent incidence of disease between groups distin-
guished by one or more exposures.

The major sources of error in clinical research are selec-
tion bias, confounding, measurement bias, reverse causa-
tion, and chance. Selection bias results from nonrandom 
allocation of patients to exposures in a way that influences 
outcomes. Confounding results when an apparent asso-
ciation between a particular exposure and disease actually 
results from their separate relationships with something 
else, termed a “confounder.” Measurement bias results from 
nonrandom errors in assessing exposure and/or disease. 
Reverse causation errors occur when the timing of exposure 
and disease development are unclear, allowing a conse-
quence of a disease process to be mistaken for a contribut-
ing cause. Chance error refers to the fact that the results of 
any given study will not perfectly reflect the true biological 
situation because of random variation from one patient to 
another, of the same patient from one time to another, and 
from one measurement to another.

Clinical research errors in general, and biases in particu-
lar, are best avoided by a strong study design coupled with 
thoughtful statistical analysis. Although the latter can com-
pensate for confounding to the extent that factors are known 
and measured, formal statistical methods are most effec-
tive in coping with evaluating random variation. Hence, 
although design and analysis are both important, preven-
tion by design is usually much preferable to correction by 
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analysis. Our next article will discuss observational study 
designs and the nature of statistical corrections for con-
founding in observational studies in more detail. The third 
article will focus on experimentation, specifically on the 
design features of RCTs that attempt, and may reasonably 
be expected to succeed, in protecting against the 5 major 
sources of clinical research errors. E
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