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ABSTRACT. The present paper is the first in a series of four papers, the
goal of which is to establish an arithmetic version of Teichmdiller theory for number
fields equipped with an elliptic curve — which we refer to as “inter-universal
Teichmiiller theory” — by applying the theory of semi-graphs of anabelioids,
Frobenioids, the étale theta function, and log-shells developed in earlier papers by
the author. We begin by fixing what we call “initial ©-data”, which consists of
an elliptic curve Ep over a number field F', and a prime number [ > 5, as well as
some other technical data satisfying certain technical properties. This data deter-
mines various hyperbolic orbicurves that are related via finite étale coverings to the
once-punctured elliptic curve X determined by Er. These finite étale coverings
admit various symmetry properties arising from the additive and multiplicative
structures on the ring F; = Z/IZ acting on the [-torsion points of the elliptic curve.
We then construct “©F°! NF-Hodge theaters” associated to the given ©-data. These
©*eINF-Hodge theaters may be thought of as miniature models of conventional
scheme theory in which the two underlying combinatorial dimensions of a
number field — which may be thought of as corresponding to the additive and
multiplicative structures of a ring or, alternatively, to the group of units and
value group of a local field associated to the number field — are, in some sense,
“dismantled” or “disentangled” from one another. All ©*°INF-Hodge theaters
are isomorphic to one another, but may also be related to one another by means of a
“©-link”, which relates certain Frobenioid-theoretic portions of one @F¢!NF-Hodge
theater to another in a fashion that is not compatible with the respective conven-
tional ring/scheme theory structures. In particular, it is a highly nontrivial
problem to relate the ring structures on either side of the ©-link to one another. This
will be achieved, up to certain “relatively mild indeterminacies”, in future papers
in the series by applying the absolute anabelian geometry developed in earlier
papers by the author. The resulting description of an “alien ring structure” [asso-
ciated, say, to the domain of the ©-link] in terms of a given ring structure [associated,
say, to the codomain of the ©-link] will be applied in the final paper of the series to
obtain results in diophantine geometry. Finally, we discuss certain technical results
concerning profinite conjugates of decomposition and inertia groups in the tem-
pered fundamental group of a p-adic hyperbolic curve that will be of use in the
development of the theory of the present series of papers, but are also of independent
interest.
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§I1. Summary of Main Results

The present paper is the first in a series of four papers, the goal of which is
to establish an arithmetic version of Teichmiiller theory for number fields
equipped with an elliptic curve, by applying the theory of semi-graphs of anabe-
lioids, Frobenioids, the étale theta function, and log-shells developed in [SemiAnbd],
[FrdI], [FrdIl], [EtTh], and [AbsToplIl] [cf., especially, [EtTh] and [AbsTopllI]].
Unlike many mathematical papers, which are devoted to verifying properties of
mathematical objects that are either well-known or easily constructed from well-
known mathematical objects, in the present series of papers, most of our efforts
will be devoted to constructing new mathematical objects. It is only in the final
portion of the third paper in the series, i.e., [[UTchIII], that we turn to the task of
proving properties of interest concerning the mathematical objects constructed. In
the fourth paper of the series, i.e., [[UTchIV], we show that these properties may
be combined with certain elementary computations to obtain diophantine results
concerning elliptic curves over number fields.

We refer to §0 below for more on the notations and conventions applied in the
present series of papers. The starting point of our constructions is a collection of
initial ©-data [cf. Definition 3.1]. Roughly speaking, this data consists, essentially,
of

- an elliptic curve Er over a number field F,

- an algebraic closure F of F,

- a prime number [ > 5,

- a collection of valuations V of a certain subfield K C F, and

- a collection of valuations V‘r';lafd of a certain subfield Fi,oq C F

that satisfy certain technical conditions — we refer to Definition 3.1 for more details.
Here, we write Fi,0q C F for the field of moduliof Er, K C F for the extension field
of F' determined by the [-torsion points of Er, Xrp C Ep for the once-punctured
elliptic curve obtained by removing the origin from Epr, and Xp — Cp for the
hyperbolic orbicurve obtained by forming the stack-theoretic quotient of X by the
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natural action of {+1}. Then F is assumed to be Galois over Fioq4, Gal(K/F)
is assumed to be isomorphic to a subgroup of GLo(F;) that contains SLs(F;), Ep

is assumed to have stable reduction at all of the nonarchimedean valuations of F,

Cx def Cr xp K is assumed to be a K-core [cf. [CanLift], Remark 2.1.1], V

is assumed to be a collection of valuations of K such that the natural inclusion
Fhoa € F C K induces a bijection V = V04 between V and the set Vy,0q of all
valuations of the number field F},,q, and

Vined S Vinod

mod =

is assumed to be some nonempty set of nonarchimedean valuations of odd residue
characteristic over which Er has bad [i.e., multiplicative] reduction — i.e., roughly
speaking, the subset of the set of valuations where Er has bad multiplicative reduc-
tion that will be “of interest” to us in the context of the theory of the present series

of papers. Then we shall write VP24 def yhad ey V C Y, yeood def Vinoq \ VP2d

mod mod?

yseod def y\ybad. Also, we shall apply the superscripts “non” and “arc” to V, Vi0a
to denote the subsets of nonarchimedean and archimedean valuations, respectively.

This data determines, up to K-isomorphism [cf. Remark 3.1.3], a finite étale
covering C; — Ck of degree [ such that the base-changed covering

Xk et Cx Xcp Xrp — Xk L Xpxp K

arises from a rank one quotient Ex[l] — Q (=2 Z/IZ) of the module Ek|l] of I-

torsion points of Fx(K) [where we write Fk def Er xp K| which, at v € yPbad
restricts to the quotient arising from coverings of the dual graph of the special fiber.
Moreover, the above data also determines a cusp

€

of C'j which, at v € VP24 corresponds to the canonical generator, up to 1, of Q
[i.e., the generator determined by the unique loop of the dual graph of the special
fiber|. Furthermore, at v € ybad, one obtains a natural finite étale covering of
degree [

X - X, ¥ XpxxK, (= ¢, ¥ CxxkK)

~v

v U =2

good

by extracting [-th roots of the theta function; at v € V*°°“, one obtains a natural

finite étale covering of degree [

X - X, € Xgxxk, (= €, T Cgxxk)

determined by e. More details on the structure of the coverings Cy, Xy, X [for

v e Y, X lforve Ve°°d] may be found in [EtTh], §2, as well as in §1 of the
present paper.

In this situation, the objects

Y- Y gy FFY Ry T LR (1)
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[cf. the discussion at the beginning of §4; Definitions 6.1, 6.4] will play an important
role in the discussion to follow. The natural action of the stabilizer in Gal(K/F') of
the quotient Ek[l] - Q on @ determines a natural poly-action of F) on Cy, i.e.,
a natural isomorphism of F;* with some subquotient of Aut(C ) [cf. Example 4.3,
(iv)]. The F;*-symmetry constituted by this poly-action of F;* may be thought
of as being essentially arithmetic in nature, in the sense that the subquotient of
Aut(C ) that gives rise to this poly-action of F;* is induced, via the natural map
Aut(Cp) — Aut(K), by a subquotient of Gal(K/F) C Aut(K). In a similar vein,
the natural action of the automorphisms of the scheme X ;- on the cusps of X ;-
determines a natural poly-action of Ffi on X -, i.e., a natural isomorphism of Ffi
with some subquotient of Aut(X ) [cf. Definition 6.1, (v)]. The F;'*-symmetry
constituted by this poly-action of IF;“[ may be thought of as being essentially geo-
metric in nature, in the sense that the subgroup Autx (X ;) C Aut(X ) [i-e., of
K-linear automorphisms| maps isomorphically onto the subquotient of Aut(X ;)
that gives rise to this poly-action of F/* *. On the other hand, the global F}-
symmetry of C - only extends to a “{1}-symmetry” [i.e., in essence, fails to extend!]
of the local coverings X [for v € ybad] and &U [for v € ngOd], while the global

lei—symmetry of X only extends to a “{£1}-symmetry” [i.e., in essence, fails to
extend!] of the local coverings X [for v € ¥4 and X [forve veeod] — of. Fig.
I1.1 below. - B
{£1}
ry {éy or &E}EEY

/ AN
led: ¥
N Xy

Fig. I1.1: Symmetries of coverings of Xp

We shall write II, for the tempered fundamental group of X ) when v € yPad
[cf. Definition 3.1, (e)]; we shall write II, for the étale fundamental group of X

when v € V&9 [cf. Definition 3.1, (f)]. Also, for v € V", we shall write IT, — G,
for the quotient determined by the absolute Galois group of the base field K,. Often,
in the present series of papers, we shall consider various types of collections of data
— which we shall refer to as “prime-strips” — indexed by v € V ( = Vy,,q) that

are isomorphic to certain data that arise naturally from X ) [when v € ybad] or &U

[when v € yg°°d]. The main types of prime-strips that will be considered in the
present series of papers are summarized in Fig. 11.2 below.

Perhaps the most basic kind of prime-strip is a D-prime-strip. When v €
V™" the portion of a D-prime-strip labeled by v is given by a category equivalent
to [the full subcategory determined by the connected objects of] the category of
tempered coverings of év [when v € Ybad] or finite étale coverings of &v [when

v € V&°°?). When v € V¥, an analogous definition may be obtained by applying
the theory of Aut-holomorphic orbispaces developed in [AbsToplIIl], §2. One variant
of the notion of a D-prime-strip is the notion of a D" -prime-strip. When v € V*°",
the portion of a D"-prime-strip labeled by v is given by a category equivalent to
[the full subcategory determined by the connected objects of] the Galois category
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associated to G,; when v € V¥ an analogous definition may be given. In some
sense, D-prime-strips may be thought of as abstractions of the “local arithmetic
holomorphic structure” of [copies of| Fj,0q [which we regard as equipped with
the once-punctured elliptic curve Xp| — cf. the discussion of [AbsToplII], §13. On
the other hand, D" -prime-strips may be thought of as “mono-analyticizations”
[i.e., roughly speaking, the arithmetic version of the underlying real analytic struc-
ture associated to a holomorphic structure| of D-prime-strips — cf. the discussion of
[AbsToplII], §13. Throughout the present series of papers, we shall use the notation

l_

to denote mono-analytic structures.

Next, we recall the notion of a Frobenioid over a base category [cf. [Frdl]
for more details|. Roughly speaking, a Frobenioid [typically denoted “F”] may
be thought of as a category-theoretic abstraction of the notion of a category of
line bundles or monoids of divisors over a base category |[typically denoted “D”]
of topological localizations [i.e., in the spirit of a “topos”] such as a Galois cate-
gory. In addition to D- and D" -prime-strips, we shall also consider various types
of prime-strips that arise from considering various natural Frobenioids — i.e., more
concretely, various natural monoids equipped with a Galois action — at v € V. Per-
haps the most basic type of prime-strip arising from such a natural monoid is an
F-prime-strip. Suppose, for simplicity, that v € VP24 Then v and F determine,
up to conjugacy, an algebraic closure Fz of K,. Write

- O, for the ring of integers of Fy ;

=
F,

- Of@ for the multiplicative monoid of nonzero integers;

X
OFU

C OE for the multiplicative monoid of units;

|7
.ok

v

C O, for the multiplicative monoid of roots of unity;
- O C O, for the multiplicative monoid of 2I-th roots of unity;

- q € (’)f2 for a 2[-th root of the ¢g-parameter of Er at v.

Thus, O , O% ; O% , (9% , and 0%2‘ are equipped with natural G,-actions. The

portion of an F-prime-strip labeled by v is given by data isomorphic to the monoid
(9% , equipped with its natural II, (= G )-action [cf. Fig. 11.2]. There are various

mono-analytic versions of the notion of an F-prime-strip; perhaps the most basic

is the notion of an F"-prime-strip. The portion of an F" -prime-strip labeled by

v is given by data isomorphic to the monoid (9% x ¢V, equipped with its natural
=v

v

G-action [cf. Fig. I1.2]. Often we shall regard these various mono-analytic ver-
sions of an F-prime-strip as being equipped with an additional global realified
Frobenioid, which, at a concrete level, corresponds, essentially, to considering var-
ious arithmetic degrees € R at v € V ( = Vy,0q) that are related to one another by
means of the product formula. Throughout the present series of papers, we shall

use the notation
-
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Type_of prime-strip Model at v € V"* Reference
D 11, I, 4.1, (i)

D Gy I, 4.1, (iii)

F I, ~ O%E I, 5.2, (i)

Fr G, O;E X gi I, 5.2, (ii)
FHx Gy, ~ (9%2 I1, 4.9, (vii)
Frxp G, ~ %f def ogﬁ/ogﬁ IT, 4.9, (vii)
T xp G, ~ @%;‘ X gi I1, 4.9, (vii)
g Gy, gi I11, 2.4, (ii)
FrL G, ~ (’)%221 X gi III, 2.4, (ii)
Fre = Fr 4 { global realified Frobenioid associated to Fmod}

In some sense, the main goal of the present paper may be thought of as the

Fig. 11.2: Types of prime-strips

construction of ©F'NF-Hodge theaters [cf. Definition 6.13, (i)]

— which may be thought of as “miniature models of conventional scheme the-
ory” — given, roughly speaking, by systems of Frobenioids.

THT@:I:ellNF

To any such
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OTINF-Hodge theater T?—[T@iellNF, one may associate a D-OT!NF-Hodge the-
ater [cf. Definition 6.13, (ii)]
THTD_@ie“NF

— i.e., the associated system of base categories.

One may think of a ©*°!NF-Hodge theater THTQieHNF as the result of gluing

together a ©F°'-Hodge theater TH’T@ieH to a ONF-Hodge theater THTONY [cf. Re-
mark 6.12.2, (ii)]. In a similar vein, one may think of a D-©*°!NF-Hodge theater

+e +e
TP "NE os the result of gluing together a D-O*Hodge theater THTP-© !

to a D-ONF-Hodge theater THTP-ONF A D-©%e!_Hodge theater T’HTD'@ieH may
be thought of as a bookkeeping device that allows one to keep track of the action
of the ]Ffi-symmetry on the labels

(= < ... < -1<0<1<...<I¥)

— which we think of as elements € F; — in the context of the [orbi]curves X j,
X [forve ¥P24]and X lforve V&°°d]. The F**-symmetry is represented in a

= +e
D-0*!_Hodge theater THTP-© ! by a category equivalent to [the full subcategory
determined by the connected objects of] the Galois category of finite étale coverings
of X ;. On the other hand, each of the labels referred to above is represented in

a D-©*_Hodge theater THTD'@ieH by a D-prime-strip. In a similar vein, a
D-ONF-Hodge theater fay7P-ONF may be thought of as a bookkeeping device that
allows one to keep track of the action of the F;*-symmetry on the labels

(1 < ... < I%)

— which we think of as elements € F;* — in the context of the orbicurves C,
X [forve Vb)) and X lorve V&°°d]. The F;*-symmetry is represented in a

D-ONF-Hodge theater THTPONF by a category equivalent to [the full subcategory
determined by the connected objects of] the Galois category of finite étale coverings
of C'j-. On the other hand, each of the labels referred to above is represented in a D-
ONF-Hodge theater fqg7P-ONE by a D-prime-strip. The combinatorial structure
of D-ONF- and D-©*°!'_Hodge theaters summarized above [cf. also Fig. 11.3 below]
is one of the main topics of the present paper and is discussed in detail in §4 and
66. The left-hand portion of Fig. I1.3 corresponds to the D-©*°-Hodge theater;
the right-hand portion of Fig. 11.3 corresponds to the D-ONF-Hodge theater; these
left-hand and right-hand portions are glued together by identifying D-prime-strips
in such a way that the labels 0 # +t € [F; on the left are identified with the
corresponding label j € F} on the right [cf. Proposition 6.7; Remark 6.12.2; Fig.
6.5].

In this context, we remark that many of the constructions of [AbsTopIII] were
intended as prototypes for constructions of the present series of papers. For in-
stance, the global theory of [AbsTopIIl], §5, was intended as a sort of simplified
prototype for the O NF-Hodge theaters of the present paper, i.e., except with
the various label bookkeeping devices deleted. The various panalocal objects of [Ab-
sToplll], §5, were intended as prototypes for the various types of prime-strips that
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appear in the present series of papers. Perhaps most importantly, the theory of the
log-Frobenius functor and log-shells developed in [AbsToplIl], §3, §4, §5, was in-
tended as a prototype for the theory of the log-link that is developed in [TUTchIII].
In particular, although most of the main ideas and techniques of [AbsToplIII],
§3, 84, §5, will play an important role in the present series of papers, many of the
constructions performed in [AbsToplIl], §3, §4, §5, will not be applied in a direct,
literal sense in the present series of papers.

The Ffi-symmetry has the advantange that, being geometric in nature, it
allows one to permute various copies of “G,” [where v € V"°"] associated to dis-
tinct labels € F; without inducing conjugacy indeterminacies. This phenomenon,
which we shall refer to as conjugate synchronization, will play a key role in
the Kummer theory surrounding the Hodge-Arakelov-theoretic evaluation of the
theta function at l-torsion points that is developed in [IUTchII]— cf. the dis-
cussion of Remark 6.12.6; [IUTchll], Remark 3.5.2, (ii), (iii); [IUTchII], Remark
4.5.3, (i). By contrast, the F;-symmetry is more suited to situations in which one
must descend from K to F..q. In the present series of papers, the most important
such situation involves the Kummer theory surrounding the reconstruction of
the number field F),,q from the étale fundamental group of Cj — cf. the dis-
cussion of Remark 6.12.6; [IUTchIl], Remark 4.7.6. This reconstruction will be
discussed in Example 5.1 of the present paper. Here, we note that such situations
necessarily induce global Galois permutations of the various copies of “G,” [where
v € V"] associated to distinct labels € F}® that are only well-defined up to con-
Jugacy indeterminacies. In particular, the Ff—symmetry is ill-suited to situations,
such as those that appear in the theory of Hodge-Arakelov-theoretic evaluation that
is developed in [IUTchII], that require one to establish conjugate synchronization.

g1y (<. < -1<0 1 < ... 1< ...
~ = =
<1< ... <I* < I* < I*

I3 X8
+ — =+ x — X%

X+ *

l IFI,
Tl T~
+ <« + X <~ X

Fig. 11.3: The combinatorial structure of a D-O*°!NF-Hodge theater
[cf. Figs. 4.4, 4.7, 6.1, 6.3, 6.5 for more details]

Ultimately, when, in [TUTchIV], we consider diophantine applications of the
theory developed in the present series of papers, we will take the prime number
[ to be “large”, i.e., roughly of the order of the square root of the height of the
elliptic curve Ep [cf. [IUTchIV], Corollary 2.2, (ii), (C1)]. When [ is regarded as
large, the arithmetic of the finite field F; “tends to approximate” the arithmetic of
the ring of rational integers Z. That is to say, the decomposition that occurs in
a ©F°INF-Hodge theater into the “additive” [i.e., F,'*-] and “multiplicative” [i.e.,
F*-] symmetries of the ring F; may be regarded as a sort of rough, approximate
approach to the issue of “disentangling” the multiplicative and additive struc-
tures, i.e., “dismantling” the “two underlying combinatorial dimensions” [cf.



INTER-UNIVERSAL TEICHMULLER THEORY I 9

the discussion of [AbsTopllIl], §I3], of the ring Z — cf. the discussion of Remarks
6.12.3, 6.12.6.

Alternatively, this decomposition into additive and multiplicative symmetries
in the theory of ©*°!NF-Hodge theaters may be compared to groups of addi-
tive and multiplicative symmetries of the upper half-plane [cf. Fig. 11.4
below]. Here, the “cuspidal” geometry expressed by the additive symmetries of
the upper half-plane admits a natural “associated coordinate”, namely, the clas-
sical g-parameter, which is reminiscent of the way in which the ]Fl”i—symmetry
is well-adapted to the Kummer theory surrounding the Hodge-Arakelov-theoretic
evaluation of the theta function at l-torsion points [cf. the above discussion].
By contrast, the “toral”, or “nodal” [cf. the classical theory of the structure of
Hecke correspondences modulo p|, geometry expressed by the multiplicative sym-
metries of the upper half-plane admits a natural “associated coordinate”, namely,
the classical biholomorphic isomorphism of the upper half-plane with the unit disc,
which is reminiscent of the way in which the Ff—symmetry is well-adapted to the
Kummer theory surrounding the number field F,,,q [cf. the above discussion].
For more details, we refer to the discussion of Remark 6.12.3, (iii).

From the point of view of the scheme-theoretic Hodge-Arakelov theory devel-
oped in [HASurl], [HASurll], the theory of the combinatorial structure of a @F°'NF-
Hodge theater — and, indeed, the theory of the present series of papers! — may
be regarded as a sort of

solution to the problem of constructing “global multiplicative sub-
spaces” and “global canonical generators” [cf. the quotient “Q” and
the cusp “€” that appear in the above discussion!]

— the nonexistence of which in a “naive, scheme-theoretic sense” constitutes the
main obstruction to applying the theory of [HASurl], [HASurll] to diophantine
geometry [cf. the discussion of Remark 4.3.1]. Indeed, prime-strips may be
thought of as “local analytic sections” of the natural morphism Spec(K) —
Spec(Fiod)- Thus, it is precisely by working with such “local analytic sections” —
i.e., more concretely, by working with the collection of valuations V, as opposed to
the set of all valuations of K — that one can, in some sense, “simulate” the notions
of a “global multiplicative subspace” or a “global canonical generator”. On the other
hand, such “simulated global objects” may only be achieved at the cost of

“dismantling”, or performing “surgery” on, the global prime struc-
ture of the number fields involved [cf. the discussion of Remark 4.3.1]

— a quite drastic operation, which has the effect of precipitating numerous technical
difficulties, whose resolution, via the theory of semi-graphs of anabelioids, Frobe-
nioids, the étale theta function, and log-shells developed in [SemiAnbd], [Frdl],
[FrdIl], [EtTh], and [AbsToplll], constitutes the bulk of the theory of the present
series of papers! From the point of view of “performing surgery on the global prime
structure of a number field”, the labels € F;* that appear in the “arithmetic”
F*-symmetry may be thought of as a sort of “miniature finite approxima-
tion” of this global prime structure, in the spirit of the idea of “Hodge theory at
finite resolution” discussed in [HASurl], §1.3.4. On the other hand, the labels € F,
that appear in the “geometric” Ff‘i-symmetry may be thought of as a sort
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of “miniature finite approximation” of the natural tempered Z-coverings [i.e.,
tempered coverings with Galois group Z] of the Tate curves determined by Er at
v € VP again in the spirit of the idea of “Hodge theory at finite resolution”
discussed in [HASurl], §1.3.4.

Classical
upper half-plane

O NF-Hodge theaters
n inter-universal
Teichmdller theory

to add. symm.

Additive z— z4+a, F*-
symmetry z—~—2z+a (a€R) symmetry
“Functions” assoc’d q def p2miz theta fn. evaluated at

I-tors. [cf. T, 6.12.6, (ii)]

mult. symm.

Basepoint assoc’d single cusp yE
to add. symm. at infinity [cf. T, 6.1, (v)]
Combinatorial
prototype assoc’d cusp cusp
to add. symm.
R T . z-cos(t)—sin(t) X
Multiplicative Z Wﬂosgt;’ ;-
Z-cos(t)+sin(t
symmetry Z _z—gﬁls((t))jjéz( o) (t € R) symmetry
“Functions” elements of the
assoc’d to w & i—i_i number field F,,,q

[cf. 1, 6.12.6, (iii)]

Basepoints assoc’d
to mult. symm.

(cos(t) —sin(t))7 (cos(t) sin(t)

sin(t) cos(t) sin(t) —cos(t)
N {entire boundary of $ }

)

Fléé ~ yBOI‘ — IF;G . y:l:un
[cf. T, 4.3, (i)]

Combinatorial
prototype assoc’d
to mult. symm.

nodes of mod p
Hecke correspondence
[cf. 11, 4.11.4, (iii), (c)]

nodes of mod p
Hecke correspondence
[cf. II, 4.11.4, (iii), (c)]

Fig. I1.4: Comparison of ]Ff‘i—, Ff—symmetries
with the geometry of the upper half-plane
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As discussed above in our explanation of the models at v € VP* for F"-prime-
strips, by considering the 2/-th roots of the g-parameters of the elliptic curve Ep
at v € V" and, roughly speaking, extending to v € V&°°Y in such a way as to
satisfy the product formula, one may construct a natural 7" -prime-strip “§" "
[cf. Example 3.5, (ii); Definition 5.2, (iv)]. This construction admits an abstract,

algorithmic formulation that allows one to apply it to the underlying “©-Hodge
+ell
theater” of an arbitrary OF U NF-Hodge theater THT®™ N g0 as to obtain an F'F-
prime-strip
TSII;OC{

[cf. Definitions 3.6, (c); 5.2, (iv)]. On the other hand, by formally replacing the
2l-th roots of the g-parameters that appear in this construction by the reciprocal
of the l-th root of the Frobenioid-theoretic theta function, which we shall denote
“Q 7 [for v € Vb)) studied in [EtTh] [cf. also Example 3.2, (ii), of the present

pal;er], one obtains an abstract, algorithmic formulation for the construction of an
F'"-prime-strip

i
[cf. Definitions 3.6, (c); 5.2, (iv)] from [the underlying ©-Hodge theater of] the
O©*°INF-Hodge theater T’HT@ieHNF.

Now let iHT@iCIINF be another OF'NF-Hodge theater [relative to the given
initial ©-data]. Then we shall refer to the “full poly-isomorphism” of [i.e., the
collection of all isomorphisms between] F'" -prime-strips

~

I+ -
Tgtht — iSmod

as the ©-link from [the underlying ©-Hodge theater of] t 7O NE g4 [the under-

lying ©-Hodge theater of] t9TO*"NE [cf. Corollary 3.7, (i); Definition 5.2, (iv)].
One fundamental property of the ©-link is the property that it induces a collection
of isomorphisms [in fact, the full poly-isomorphism] between the F" > -prime-strips

X ~ Tbx
gmod - gmod

associated to T§" . and *F" . [cf. Corollary 3.7, (ii), (iii); [ITUTchII], Definition
4.9, (vii)].

+e
Now let {”HT@ HNF}neZ be a collection of distinct OF " NF-Hodge theaters
[relative to the given initial ©-data] indexed by the integers. Thus, by applying the
constructions just discussed, we obtain an infinite chain

e} _ +ell ) +ell (€] +ell )
(n 1)7_[7—@ NF nHTe NF (n+1)r}_l7—@ NF

of ©-linked OT°'NF-Hodge theaters [cf. Corollary 3.8], which will be re-
ferred to as the Frobenius-picture [associated to the ©-link]. One fundamen-
tal property of this Frobenius-picture is the property that it fails to admit per-
mutation automorphisms that switch adjacent indices n, n + 1, but leave the
remaining indices € 7Z fixed [cf. Corollary 3.8]. Roughly speaking, the ©-link

+e +e
nyTOTINE O (n41)q O INE may be thought of as a formal correspondence

ngv — (n—|—1)q

=v
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[cf. Remark 3.8.1, (i)], which is depicted in Fig. I1.5 below.

In fact, the ©-link discussed in the present paper is only a simplified version
of the “©-link” that will ultimately play a central role in the present series of papers.
The construction of the version of the ©-link that we shall ultimately be interested
in is quite technically involved and, indeed, occupies the greater part of the theory
to be developed in [IUTchII], [IUTchIII]. On the other hand, the simplified version
discussed in the present paper is of interest in that it allows one to give a relatively
straightforward introduction to many of the important qualitative properties of
the ©-link — such as the Frobenius-picture discussed above and the étale-picture
to be discussed below — that will continue to be of central importance in the case
of the versions of the O-link that will be developed in [IUTchII], [[UTchIII].

nHT@ieuNF n+1HT@iellNF
---- nq — nQU S (n+1)q ~ (n+1)Qv -- - -
=v —— =v ——
ngv — (n—‘,—l)g

Fig. I1.5: Frobenius-picture associated to the ©-link

Now let us return to our discussion of the Frobenius-picture associated to the ©-
link. The D" -prime-strip associated to the F"*-prime-strip TSZS 4 may, in fact, be
naturally identified with the D" -prime-strip T@; associated to a certain F-prime-
strip TF~ [cf. the discussion preceding Example 5.4] that arises from the ©-Hodge

theater underlying the ©*°'NF-Hodge theater T’HT@ieuNF. The D-prime-strip
f®< associated to the F-prime-strip 'F~ is precisely the D-prime-strip depicted
as “[1 < ... < [*]” in Fig. 11.3. Thus, the Frobenius-picture discussed above
induces an infinite chain of full poly-isomorphisms

~ ~ ~ ~

5 Wbt 50 onph 50 (dbgph 3

of DF-prime-strips. That is to say, when regarded up to isomorphism, the D'-
prime-strip “(_)CD';” may be regarded as an invariant — i.e., a “mono-analytic
core” — of the various ©T*"NF-Hodge theaters that occur in the Frobenius-picture
[cf. Corollaries 4.12, (ii); 6.10, (ii)]. Unlike the case with the Frobenius-picture,

the relationships of the various D-O*°'NF-Hodge theaters ”HTD'@ieHNF to this
mono-analytic core — relationships that are depicted by spokes in Fig. 11.6 below
— are compatible with arbitrary permutation symmetries among the spokes
[i.e., among the labels n € Z of the D-OF*'"NF-Hodge theaters| — cf. Corollaries
4.12, (iii); 6.10, (iii), (iv). The diagram depicted in Fig. I1.6 below will be referred
to as the étale-picture.

Thus, the étale-picture may, in some sense, be regarded as a collection of
canonical splittings of the Frobenius-picture. The existence of such splittings
suggests that
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by applying various results from absolute anabelian geometry to the
various tempered and étale fundamental groups that constitute each D-
O*°INF-Hodge theater in the étale-picture, one may obtain algorithmic
descriptions of — i.e., roughly speaking, one may take a “glimpse”
inside — the conventional scheme theory of one ©*°'"NF-Hodge the-
ater mHT@ie”NF in terms of the conventional scheme theory associated

to another ©F°'NF-Hodge theater ng O NE [i.e., where n # m].

Indeed, this point of view constitutes one of the main themes of the theory developed
in the present series of papers and will be of particular importance in our treatment
in [IUTchIII] of the main results of the theory.

_@TLell
nHTD (S NF

n—lHTD'eiellNF (—)@; n+17_[7—D-@ﬂ:ellNF

n+2HTD_@icllNF

Fig. I11.6: Etale—picture of D-©*°'NF-Hodge theaters

Before proceeding, we recall the “heuristic” notions of Frobenius-like — i.e.,
“order-conscious” — and étale-like — i.e., “indifferent to order” — mathematical
structures discussed in [FrdlI], §14. These notions will play a key role in the theory
developed in the present series of papers. In particular, the terms “Frobenius-
picture” and “étale-picture” introduced above are motivated by these notions.

The main result of the present paper may be summarized as follows.

Theorem A. (F;*-/F-Symmetries, O-Links, and Frobenius- /Etale-Pic-
tures Associated to O °!NF-Hodge Theaters) Fir a collection of initial ©-
data [cf. Definition 8.1], which determines, in particular, data (Ep, F, 1, V) as
in the above discussion. Then one may construct a ©F°'"NF-Hodge theater /cf.
Definition 6.13, (i)]

THTQieIINF

— in essence, a system of Frobenioids — associated to this initial ©-data, as well as
+ell
an associated D-OF'NF-Hodge theater TH7P©  NF [cf. Definition 6.13, (ii)]
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— 1in essence, the system of base categories associated to the system of Frobenioids

+ell
THT@ NF ]

(i) (F**- and F¥-Symmetries) The O\ NF-Hodge theater 1HTO " NF

may be obtained as the result of gluing together a ©F°'-Hodge theater THT@ien to
a ONF-Hodge theater THTONY [¢f. Remark 6.12.2, (ii)]; a similar statement holds
for the D-©F" NF-Hodge theater T’HTD'@ieHNF. The global portion of a D-©%!l-
Hodge theater T’HTD'@ieH consists of a category equivalent to [the full subcategory
determined by the connected objects of | the Galois category of finite étale coverings
of the [orbiJcurve X ;. This global portion is equipped with an Ffi-symmetry,
i.e., a poly-action by Ffi on the labels

(- < ... < -1 <0< 1< ...<I¥)

— which we think of as elements € F; — each of which is represented in the D-
O*_Hodge theater iy P-0+" by a D-prime-strip [cf. Fig. 11.3]. The global
portion of a D-ONF-Hodge theater THTE 9N consists of a category equivalent to
[the full subcategory determined by the connected objects of] the Galois category of
finite étale coverings of the orbicurve C . This global portion is equipped with an
F*-symmetry, i.e., a poly-action by F;* on the labels

(1 < ... < I%)

— which we think of as elements € Fl* — each of which is represented in the
D-ONF-Hodge theater THTPONY by o D-prime-strip [¢f. Fig. 11.3]. The D-
O*_Hodge theater TH']JD'@ieu is glued to the D-ONF-Hodge theater THTP-ONF
by identifying D-prime-strips in such a way that the labels 0 # +t € F; that
arise in the Ffi-symmetry are identified with the corresponding label j € F)* that
arises in the F} -symmetry [cf. Proposition 6.7; Remark 6.12.2; Fig. 6.5].

(ii) (©-links) By considering the 2l-th roots of the g-parameters ‘G 7 of

=v
the elliptic curve Er at v € ybad and extending to other v € V in such a way as
to satisfy the product formula, one may construct a natural F'"-prime-strip
+ell
TS'I;Od associated to the OF " NF-Hodge theater fy©  NF [cf.  Definitions 3.6,

(c); 5.2, (i)]. In a similar vein, by considering the reciprocal of the l-th root
of the Frobenioid-theoretic theta function “QU 7 associated to the elliptic curve

Ep atv € V" and extending to other v € V in such a way as to satisfy the
product formula, one may construct a natural F" -prime-strip TS"cht associated

to the ©F°' NF-Hodge theater fq 7O " NE [cf. Definitions 3.6, (c); 5.2, (iv)]. Now

i =INF +ell . T
let YHT® be another O~ NF-Hodge theater [relative to the given initial ©-
data]. Then we shall refer to the “full poly-isomorphism” of [i.e., the collection of
all isomorphisms between] F'"-prime-strips

Tglti_ht :> iglri;lod
as the ©-link from [the underlying ©-Hodge theater of] FpTOTNE 4, [the under-
lying ©-Hodge theater of] iHT@ie“NF [ef. Corollary 3.7, (i); Definition 5.2, (iv)].
The O-link induces the full poly-isomorphism between the F~*-prime-strips

T:S'}—X :> 13;I—><

mod mod
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associated to " and ¥F" . [cf. Corollary 3.7, (ii), (iii); [IUTchII], Definition
4.9, (vii)].

(iii) (Frobenius- /Etale-Pictures) Let {”HT@iCIINF}RGZ be a collection of
distinct ©F°!NF-Hodge theaters [relative to the given initial ©-data] indeved
by the integers. Then the infinite chain

N (n—1)H7-eie“NF EN nHT@ie“NF N (n+1)7_[7—@ie“NF N
of ©-linked ©*°'NF-Hodge theaters will be referred to as the Frobenius-
picture [associated to the ©-link] — cf. Fig. I1.5; Corollary 3.8. The Frobenius-
picture fails to admit permutation automorphisms that switch adjacent indices
n, n+ 1, but leave the remaining indices € Z fized. The Frobenius-picture induces
an infinite chain of full poly-isomorphisms

5 (=bgph 5 onpt 50 (gt &

between the various D™ -prime-strips "@';, i.e., in essence, the D" -prime-strips
associated to the FT*-prime-strips ”S;ﬁd. The relationships of the wvarious D-

O NF-Hodge theaters ”HTD'@iEIINF to the “mono-analytic core” constituted
by the D" -prime-strip “(*)9'; 7 regarded up to isomorphism — relationships that are
depicted by spokes in Fig. I1.6 — are compatible with arbitrary permutation
symmetries among the spokes, i.e., among the labels n € 7 of the D-O*I NF-
Hodge theaters [cf. Corollaries 4.12, (ii), 6.10, (i)]. The diagram depicted in Fig.
11.6 will be referred to as the étale-picture.

In addition to the main result discussed above, we also prove a certain technical
result concerning tempered fundamental groups — cf. Theorem B below —
that will be of use in our development of the theory of Hodge-Arakelov-theoretic
evaluation in [IUTchII]. This result is essentially a routine application of the the-
ory of mazimal compact subgroups of tempered fundamental groups developed in
[SemiAnbd] [cf., especially, [SemiAnbd], Theorems 3.7, 5.4, as well as Remark 2.5.3,
(ii), of the present paper|. Here, we recall that this theory of [SemiAnbd] may be
thought of as a sort of “Combinatorial Section Conjecture” [cf. Remark 2.5.1
of the present paper; [[UTchIl], Remark 1.12.4] — a point of view that is of particu-
lar interest in light of the historical remarks made in §I5 below. Moreover, Theorem
B is of interest independently of the theory of the present series of papers in that
it yields, for instance, a new proof of the normal terminality of the tempered fun-
damental group in its profinite completion, a result originally obtained in [André],
Lemma 3.2.1, by means of other techniques [cf. Remark 2.4.1]. This new proof
is of interest in that, unlike the techniques of [André], which are only available in
the pmﬁmte case, thls new proof [cf. Proposmon 2.4, (iii)] holds in the case of

pro-S-completions, for more general 3 [i.e., not just the case of S = Primes].

Theorem B. (Profinite Conjugates of Tempered Decomposition and
Inertia Groups) Let k be a mixed-characteristic [nonarchimedean] local
field, X a hyperbolic curve over k. Write

tp
HX
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for the tempered fundamental group 7" (X) [relative to a suitable basepoint]

of X [cf. [André], §4; [SemiAnbd], Example 3.10]; l1x for the étale fundamental
group [relative to a suitable basepoint] of X. Thus, we have a natural inclusion

¢ ~
H)? — HX

which allows one to identify ﬁX with the profinite completion of HE?. Then every
decomposition group in Iy (respectively, inertia group in Iy ) associated to
a closed point or cusp of X (respectively, to a cusp of X ) is contained in Hg‘g iof
and only if it 1s a decomposition group in HE? (respectively, inertia group in Hg? )
associated to a closed point or cusp of X (respectively, to a cusp of X ). Moreover,
a Il x -conjugate of HE? contains a decomposition group in Ht)? (respectively, inertia
group in Hg?) associated to a closed point or cusp of X (respectively, to a cusp of
X ) if and only if it is equal to TI'Y.

Theorem B is [essentially] given as Corollary 2.5 [cf. also Remark 2.5.2] in
§2. Here, we note that although, in the statement of Corollary 2.5, the hyperbolic
curve X is assumed to admit stable reduction over the ring of integers Oy, of k, one
verifies immediately [by applying Proposition 2.4, (iii)] that this assumption is, in
fact, unnecessary.

Finally, we remark that one important reason for the need to apply Theorem B
in the context of the theory of ©*°'"NF-Hodge theaters summarized in Theorem A
is the following. The Fﬁi-symmetry, which will play a crucial role in the theory
of the present series of papers [cf., especially, [ITUTchII], [[TUTchIII]], depends, in an
essential way, on the synchronization of the +-indeterminacies that occur locally
at each v € V [cf. Fig. I1.1]. Such a synchronization may only be obtained by
making use of the global portion of the ©*°'-Hodge theater under consideration.
On the other hand, in order to avail oneself of such global +-synchronizations
[cf. Remark 6.12.4, (iii)], it is necessary to regard the various labels of the F;**-
symmetry

(= < ... < -1<0<1<..<I%)

as conjugacy classes of inertia groups of the [necessarily] profinite geometric étale
fundamental group of X ,. That is to say, in order to relate such global profinite
conjugacy classes to the corresponding tempered conjugacy classes [i.e., conjugacy
classes with respect to the geometric tempered fundamental group] of inertia groups
at v e yPad [i.e., where the crucial Hodge-Arakelov-theoretic evaluation is to be
performed!], it is necessary to apply Theorem B — cf. the discussion of Remark
4.5.1; [IUTchII], Remark 2.5.2, for more details.

§I2. Gluing Together Models of Conventional Scheme Theory

As discussed in §I1, the system of Frobenioids constituted by a @F!NF-Hodge
theater is intended to be a sort of miniature model of conventiglgal scheme the-
ory. One then glues multiple ©*°'NF-Hodge theaters {"HT® NF}neZ together
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by means of the full poly-isomorphisms between the “subsystems of Frobenioids”
constituted by certain F'"-prime-strips

~

I+ I+
Tgtht — iSmod

to form the Frobenius-picture. One fundamental observation in this context is
the following:

these gluing isomorphisms — i.e., in essence, the correspondences

— and hence the geometry of the resulting Frobenius-picture lie outside
the framework of conventional scheme theory in the sense that they
do not arise from ring homomorphisms/

In particular, although each particular model "’HT@ieHNF of conventional scheme
theory is constructed within the framework of conventional scheme theory, the
relationship between the distinct [albeit abstractly isomorphic, as ©T!NF-Hodge
theaters!] conventional scheme theories represented by, for instance, neighboring

O©*°INF-Hodge theaters ”HT@iellNF, ”+1HT®iellNF cannot be expressed scheme-
theoretically. In this context, it is also important to note that such gluing operations
are possible precisely because of the relatively simple structure — for instance,
by comparison to the structure of a ring! — of the Frobenius-like structures
constituted by the Frobenioids that appear in the various F'"-prime-strips involved,
i.e., in essence, collections of monoids isomorphic to N or R>¢ [cf. Fig. 11.2].

-~ ~
V/anti-holomorphic\\‘,
reflection

one model another model

)
| |
L}
[ ]
. ' .
of conventional of conventional
scheme theory scheme theory

Fig. 12.1: Depiction of Frobenius- and étale-pictures of ©*°!NF-Hodge theaters
via glued topological surfaces
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If one thinks of the geometry of “conventional scheme theory” as being analo-
gous to the geometry of “Fuclidean space”, then the geometry represented by the
Frobenius-picture corresponds to a “topological manifold”, i.e., which is obtained by
gluing together various portions of Euclidean space, but which is not homeomorphic
to Euclidean space. This point of view is illustrated in Fig. 12.1 above, where the
various ©F°!NF-Hodge theaters in the Frobenius-picture are depicted as [two-
dimensional! — cf. the discussion of §I1] twice-punctured topological surfaces
of genus one, glued together along tubular neighborhoods of cycles, which
correspond to the [one-dimensionall — cf. the discussion of §I1] mono-analytic
data that appears in the isomorphism that constitutes the ©-link. The permuta-
tion symmetries in the étale-picture [cf. the discussion of §I1] are depicted in Fig.
2.1 as the anti-holomorphic reflection [cf. the discussion of multiradiality in
[[IUTchII], Introduction!] around a gluing cycle between topological surfaces.

Another elementary example that illustrates the spirit of the gluing operations
discussed in the present series of papers is the following. For ¢ = 0,1, let R; be
a copy of the real line; I; C R; the closed unit interval [i.e., corresponding to
[0,1] € R]. Write Cy C I for the Cantor set and

¢100:>Il

for the bijection arising from the Cantor function. Then if one thinks of Ry and
R; as being glued to one another by means of ¢, then it is a highly nontrivial
problem

to describe structures naturally associated to the “alien” ring structure
of Ry — such as, for instance, the subset of algebraic numbers € Ry —
in terms that only require the use of the ring structure of R;.

A slightly less elementary example that illustrates the spirit of the gluing op-
erations discussed in the present series of papers is the following. This example is
technically much closer to the theory of the present series of papers than the exam-
ples involving topological surfaces and Cantor sets given above. For simplicity, let
us write

GnO*, GO~
for the pairs “G, ~ O% 7, Gy (9% ” [cf. the notation of the discussion

surrounding Fig. 11.2]. Recall from [AbsToplIIl], Proposition 3.2, (iv), that the
operation

GAO") —» G

of “forgetting O®” determines a bijection from the group of automorphisms of the
pair G ~ O — i.e., thought of as an abstract ind-topological monoid equipped
with a continuous action by an abstract topological group — to the group of au-
tomorphisms of the topological group G. By contrast, we recall from [AbsTopllIl],
Proposition 3.3, (ii), that the operation

GO0 —» G

of “forgetting O*” only determines a surjection from the group of automorphisms
of the pair G ~ O* — i.e., thought of as an abstract ind-topological monoid
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equipped with a continuous action by an abstract topological group — to the group

of automorphisms of the topological group G; that is to say, the kernel of this

surjection is given by the natural action of Z* on O*. In particular, if one works
>

with two copies G; ~ OF, where i = 0,1, of G ~ O%, which one thinks of as being

glued to one another by means of an indeterminate isomorphism

~

[i.e., where one thinks of each (G; ~ O.°), for i = 0, 1, as an abstract ind-topological
monoid equipped with a continuous action by an abstract topological group], then,
in general, it is a highly nontrivial problem

to describe structures naturally associated to (Go ~ OF) in terms that
only require the use of (G; ~ OF).

One such structure which is of interest in the context of the present series of papers
[cf., especially, the theory of [IUTchII], §1] is the natural cyclotomic rigidity
isomorphism between the group of torsion elements of OF and an analogous
group of torsion elements naturally associated to Gy — i.e., a structure that is
manifestly not preserved by the natural action of 7> on of!

In the context of the above discussion of Fig. 12.1, it is of interest to note the
important role played by Kummer theory in the present series of papers [cf. the
Introductions to [IUTchII], [ITUTchIII]]. From the point of view of Fig. 12.1, this
role corresponds to the precise specification of the gluing cycle within each twice-
punctured genus one surface in the illustration. Of course, such a precise specifi-
cation depends on the twice-punctured genus one surface under consideration, i.e.,
the same gluing cycle is subject to quite different “precise specifications”, relative
to the twice-punctured genus one surface on the left and the twice-punctured genus
one surface on the right. This state of affairs corresponds to the quite different
Kummer theories to which the monoids/Frobenioids that appear in the ©-link are
subject, relative to the ©@F!NF-Hodge theater in the domain of the ©-link and
the ©F°INF-Hodge theater in the codomain of the ©-link. At first glance, it might
appear that the use of Kummer theory, i.e., of the correspondence determined by
constructing Kummer classes, to achieve this precise specification of the relevant
monoids/Frobenioids within each ©**"NF-Hodge theater is somewhat arbitrary,
i.e., that one could perhaps use other correspondences [i.e., correspondences not
determined by Kummer classes| to achieve such a precise specification. In fact,
however, the rigidity of the relevant local and global monoids equipped with Ga-
lois actions [cf. Corollary 5.3, (i), (ii), (iv)] implies that, if one imposes the natural
condition of Galois-compatibility, then

the correspondence furnished by Kummer theory is the only accept-
able choice for constructing the required “precise specification of the
relevant monoids/Frobenioids within each ©F°' NF-Hodge theater”

— cf. also the discussion of [IUTchII], Remark 3.6.2, (ii).

The construction of the Frobenius-picture described in §I1 is given in the
present paper. More elaborate versions of this Frobenius-picture will be discussed
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in [IUTchll], IUTchIII]. Once one constructs the Frobenius-picture, one natural
and fundamental problem, which will, in fact, be one of the main themes of the
present series of papers, is the problem of

describing an alien “arithmetic holomorphic structure” [i.e., an

. . . +ell
alien “conventional scheme theory”| corresponding to some ma O NE

in terms of a “known arithmetic holomorphic structure” corresponding to
+ell
nHTO N [where n # m]

— a problem, which, as discussed in §I1, will be approached, in the final portion of
[[TUTchIII], by applying various results from absolute anabelian geometry [i.e.,
more explicitly, the theory of [SemiAnbd], [EtTh], and [AbsToplIII]] to the various
tempered and étale fundamental groups that appear in the étale-picture.

The relevance to this problem of the extensive theory of “reconstruction of
ring/scheme structures” provided by absolute anabelian geometry is evident from
the statement of the problem. On the other hand, in this context, it is of interest to
note that, unlike conventional anabelian geometry, which typically centers on the
goal of reconstructing a “known scheme-theoretic object”, in the present series of
papers, we wish to apply techniques and results from anabelian geometry in order to
analyze the structure of an unknown, essentially non-scheme-theoretic object,
namely, the Frobenius-picture, as described above. Put another way, relative
to the point of view that “Galois groups are arithmetic tangent bundles” [cf. the
theory of the arithmetic Kodaira-Spencer morphism in [HASurl]], one may think
of conventional anabelian geometry as corresponding to the computation of the
automorphisms of a scheme as

H®(arithmetic tangent bundle)

and of the application of absolute anabelian geometry to the analysis of the Frobenius-
picture, i.e., to the solution of the problem discussed above, as corresponding to
the computation of

H*(arithmetic tangent bundle)

— i.e., the computation of “deformations of the arithmetic holomorphic
structure” of a number field equipped with an elliptic curve.

In the context of the above discussion, we remark that the word “Hodge” in the
term “Hodge theater” was intended as a reference to the use of the word “Hodge”
in such classical terminology as “variation of Hodge structure” [cf. also the
discussion of Hodge filtrations in [AbsToplIII], §I5], for instance, in discussions of
Torelli maps [the most fundamental special case of which arises from the tautologi-
cal family of one-dimensional complex tori parametrized by the upper half-plane!],
where a “Hodge structure” corresponds precisely to the specification of a partic-
ular holomorphic structure in a situation in which one considers variations of the
holomorphic structure on a fixed underlying real analytic structure. That is to say,
later, in [IUTchIII], we shall see that the position occupied by a “Hodge theater”
within a much larger framework that will be referred to as the “log-theta-lattice” [cf.
the discussion of §14 below| corresponds precisely to the specification of a partic-
ular arithmetic holomorphic structure in a situation in which such arithmetic
holomorphic structures are subject to deformation.
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§I3. Basepoints and Inter-universality

As discussed in §12, the present series of papers is concerned with considering
“deformations of the arithmetic holomorphic structure” of a number field — i.e., so
to speak, with performing “surgery on the number field”. At a more concrete
level, this means that one must consider situations in which two distinct “theaters”
for conventional ring/scheme theory — i.e., two distinct @F°!NF-Hodge theaters
— are related to one another by means of a “correspondence”; or “filter”, that fails
to be compatible with the respective ring structures. In the discussion so far of
the portion of the theory developed in the present paper, the main example of such
a “filter” is given by the ©-link. As mentioned earlier, more elaborate versions
of the O-link will be discussed in [IUTchII], [IUTchIII|. The other main example
of such a non-ring/scheme-theoretic “filter” in the present series of papers is the
log-link, which we shall discuss in [IUTchIII] [cf. also the theory of [AbsToplII]].

One important aspect of such non-ring/scheme-theoretic filters is the property
that they are incompatible with various constructions that depend on the ring
structure of the theaters that constitute the domain and codomain of such a filter.
From the point of view of the present series of papers, perhaps the most impor-
tant example of such a construction is given by the various étale fundamental
groups — e.g., Galois groups — that appear in these theaters. Indeed, these
groups are defined, essentially, as automorphism groups of some separably closed
field, i.e., the field that arises in the definition of the fiber functor associated to the
basepoint determined by a geometric point that is used to define the étale fun-
damental group — cf. the discussion of [IUTchII|, Remark 3.6.3, (i); [IUTchIII],
Remark 1.2.4, (i); [AbsToplll], Remark 3.7.7, (i). In particular, unlike the case
with ring homomorphisms or morphisms of schemes with respect to which the étale
fundamental group satisfies well-known functoriality properties, in the case of non-
ring /scheme-theoretic filters, the only “type of mathematical object” that makes
sense simultaneously in both the domain and codomain theaters of the filter is the
notion of a topological group. In particular, the only data that can be considered in
relating étale fundamental groups on either side of a filter is the étale-like struc-
ture constituted by the underlying abstract topological group associated to
such an étale fundamental group, i.e., devoid of any auxiliary data arising from the
construction of the group “as an étale fundamental group associated to a base-
point determined by a geometric point of a scheme”. 1t is this fundamental aspect
of the theory of the present series of papers — i.e.,

of relating the distinct set-theoretic universes associated to the distinct
fiber functors/basepoints on either side of such a non-ring/scheme-theoretic
filter

— that we refer to as inter-universal. This inter-universal aspect of the theory
manifestly leads to the issue of considering

the extent to which one can understand various ring/scheme structures
by considering only the underlying abstract topological group of some
étale fundamental group arising from such a ring/scheme structure
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— i.e., in other words, of considering the absolute anabelian geometry [cf. the
Introductions to [AbsTopl|, [AbsTopll], [AbsToplll]] of the rings/schemes under
consideration.

At this point, the careful reader will note that the above discussion of the
inter-universal aspects of the theory of the present series of papers depends, in
an essential way, on the issue of distinguishing different “types of mathematical
objects” and hence, in particular, on the notion of a “type of mathematical object”.
This notion may be formalized via the language of “species”, which we develop
in the final portion of [ITUTchIV].

Another important “inter-universal” phenomenon in the present series of pa-
pers — i.e., phenomenon which, like the absolute anabelian aspects discussed above,
arises from a “deep sensitivity to particular choices of basepoints” — is the phe-
nomenon of conjugate synchronization, i.e., of synchronization between conju-
gacy indeterminacies of distinct copies of various local Galois groups, which, as was
mentioned in §I1, will play an important role in the theory of [ITUTchII], [[UTchIII].
The various rigidity properties of the étale theta function established in [EtTh]
constitute yet another inter-universal phenomenon that will play an important role
in theory of [TUTchII], [TUTchIII].

§I4. Relation to Complex and p-adic Teichmiiller Theory

In order to understand the sense in which the theory of the present series
of papers may be thought of as a sort of “Teichmiiller theory” of number fields
equipped with an elliptic curve, it is useful to recall certain basic, well-known facts
concerning the classical complex Teichmiiller theory of Riemann surfaces of
finite type [cf., e.g., [Lehto], Chapter V, §8]. Although such a Riemann surface is
one-dimensional from a complex, holomorphic point of view, this single complex
dimension may be thought of consisting of two underlying real analytic dimensions.
Relative to a suitable canonical holomorphic coordinate z = x + iy on the Riemann
surface, the Teichmiiller deformation may be written in the form

z = (= &+im= Kr+y

— where 1 < K < oo is the dilation factor associated to the deformation. That is
to say, the Teichmiiller deformation consists of dilating one of the two underlying
real analytic dimensions, while keeping the other dimension fixed. Moreover,
the theory of such Teichmiiller deformations may be summarized as consisting of

the explicit description of a varying holomorphic structure within a
fixed real analytic ‘“container”

— i.e., the underlying real analytic surface associated to the given Riemann surface.

On the other hand, as discussed in [AbsToplII], §I3, one may think of the ring
structure of a number field F' as a single “arithmetic holomorphic dimen-
sion”; which, in fact, consists of two underlying “combinatorial dimensions”,
corresponding to
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- its additive structure “H” and its multiplicative structure “X”.

When, for simplicity, the number field F' is totally imaginary, one may think of
these two combinatorial dimensions as corresponding to the

- two cohomological dimensions of the absolute Galois group G of F.

A similar statement holds in the case of the absolute Galois group G, of a nonar-
chimedean local field k. In the case of complex archimedean fields k [i.e.,
topological fields isomorphic to the field of complex numbers equipped with its
usual topology], the two combinatorial dimensions of k£ may also be thought of as
corresponding to the

- two underlying topological /real dimensions of k.

Alternatively, in both the nonarchimedean and archimedean cases, one may think
of the two underlying combinatorial dimensions of k as corresponding to the

- group of units O and value group k*/O; of k.

Indeed, in the nonarchimedean case, local class field theory implies that this last
point of view is consistent with the interpretation of the two underlying combi-
natorial dimensions via cohomological dimension; in the archimedean case, the
consistency of this last point of view with the interpretation of the two underly-
ing combinatorial dimensions via topological /real dimension is immediate from the
definitions.

This last interpretation in terms of groups of units and value groups is of
particular relevance in the context of the theory of the present series of papers.
That is to say, one may think of the ©-link

~

I+ I+
Jrgtht - igmod

{ TQU — ig }yeybad
v =v

— which, as discussed in §I1, induces a full poly-isomorphism

T‘S'_X :> i‘S'_X

mod mod

~

{ O%U — O%U }yeybad

— as a sort of “Teichmiiller deformation relative to a ©-dilation”, i.e., a de-
formation of the ring structure of the number field equipped with an elliptic
curve constituted by the given initial ©-data in which one dilates the underlying
combinatorial dimension corresponding to the local value groups relative to a “©O-
factor”, while one leaves fixed, up to isomorphism, the underlying combinatorial di-
mension corresponding to the local groups of units [cf. Remark 3.9.3]. This point
of view is reminiscent of the discussion in §I1 of “disentangling/dismantling”
of various structures associated to a number field.
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In [IUTchIII], we shall consider two-dimensional diagrams of ©*°'"NF-Hodge
theaters which we shall refer to as log-theta-lattices. The two dimensions of such
diagrams correspond precisely to the two underlying combinatorial dimensions of
a ring. Of these two dimensions, the “theta dimension” consists of the Frobenius-
picture associated to [more elaborate versions of] the ©-link. Many of the impor-
tant properties that involve this “theta dimension” are consequences of the theory
of [Frdl], [Frdll], [EtTh]. On the other hand, the “log dimension” consists of iter-
ated copies of the log-link, i.e., diagrams of the sort that are studied in [AbsTopIII].
That is to say, whereas the “theta dimension” corresponds to “deformations of the
arithmetic holomorphic structure” of the given number field equipped with an el-
liptic curve, this “log dimension” corresponds to “rotations of the two underlying
combinatorial dimensions” of a ring that leave the arithmetic holomorphic struc-
ture fized — cf. the discussion of the “juggling of H, X induced by log” in
[AbsTopllIl], §13. The wultimate conclusion of the theory of [ITUTchIII] is that

the “a priori unbounded deformations” of the arithmetic holomorphic
structure given by the ©-link in fact admit canonical bounds, which
may be thought of as a sort of reflection of the “hyperbolicity” of the
given number field equipped with an elliptic curve

— cf. [IUTchIII], Corollary 3.12. Such canonical bounds may be thought of as
analogues for a number field of canonical bounds that arise from differentiating
Frobenius liftings in the context of p-adic hyperbolic curves — cf. the discus-
sion in the final portion of [AbsToplIII], §I5. Moreover, such canonical bounds are
obtained in [IUTchIII] as a consequence of

the explicit description of a varying arithmetic holomorphic struc-
ture within a fixed mono-analytic “container”

— cf. the discussion of §I12! — furnished by [IUTchIII], Theorem 3.11 [cf. also
the discussion of [IUTchIII|, Remarks 3.12.2, 3.12.3, 3.12.4], i.e., a situation that
is entirely formally analogous to the summary of complex Teichmiiller theory given
above.

The significance of the log-theta-lattice is best understood in the context of
the analogy between the inter-universal Teichmiiller theory developed in the
present series of papers and the p-adic Teichmiiller theory of [pOrd], [pTeich].
Here, we recall for the convenience of the reader that the p-adic Teichmiiller theory
of [pOrd], [pTeich] may be summarized, [very!] roughly speaking, as a sort of
generalization, to the case of “quite general” p-adic hyperbolic curves, of
the classical p-adic theory surrounding the canonical representation

m( (P'\{0,1,00})g, ) — m((Men)g,) — PGLy(Z,)

— where the “m(—)’s” denote the étale fundamental group, relative to a suitable
basepoint; (Men)g, denotes the moduli stack of elliptic curves over Qp; the first
arrow denotes the morphism induced by the elliptic curve over the projective line
minus three points determined by the classical Legendre form of the Weierstrass
equation; the second arrow is the representation determined by the p-power torsion
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points of the tautological elliptic curve over (Men)g,. In particular, the reader who
is familiar with the theory of the classical representation of the above display, but
not with the theory of [pOrd], [pTeich], may nevertheless appreciate, to a substantial
degree, the analogy between the inter-universal Teichmiiller theory developed in the
present series of papers and the p-adic Teichmiiller theory of [pOrd], [pTeich] by

thinking in terms of the
well-known classical properties of this classical representation.

In some sense, the gap between the “quite general” p-adic hyperbolic curves that
appear in p-adic Teichmiiller theory and the classical case of (P*\ {0, 1,00})g, may
be thought of, roughly speaking, as corresponding, relative to the analogy with the
theory of the present series of papers, to the gap between arbitrary number fields
and the rational number field Q. This point of view is especially interesting in
the context of the discussion of §I5 below.

The analogy between the inter-universal Teichmiiller theory developed in
the present series of papers and the p-adic Teichmiiller theory of [pOrd], [pTeich]
is described to a substantial degree in the discussion of [AbsToplII], §I5, i.e., where
the “future Teichmiiller-like extension of the mono-anabelian theory” may be un-
derstood as referring precisely to the inter-universal Teichmiiller theory developed
in the present series of papers. The starting point of this analogy is the correspon-
dence between a number field equipped with a [once-punctured] elliptic curve [in the
present series of papers| and a hyperbolic curve over a positive characteristic perfect
field equipped with a nilpotent ordinary indigenous bundle [in p-adic Teichmiiller
theory] — cf. Fig. 14.1 below. That is to say, in this analogy, the number field —
which may be regarded as being equipped with a finite collection of “exceptional”
valuations, namely, in the notation of §I1, the valuations lying over VPad
sponds to the hyperbolic curve over a positive characteristic perfect field — which
may be thought of as a one-dimensional function field over a positive characteristic
perfect field, equipped with a finite collection of “exceptional” valuations, namely,
the valuations corresponding to the cusps of the curve.

— COorITre-

On the other hand, the [once-punctured] elliptic curve in the present series
of papers corresponds to the nilpotent ordinary indigenous bundle in p-adic Te-
ichmiiller theory. Here, we recall that an indigenous bundle may be thought of as a
sort of “virtual analogue” of the first cohomology group of the tautological elliptic
curve over the moduli stack of elliptic curves. Indeed, the canonical indigenous
bundle over the moduli stack of elliptic curves arises precisely as the first de Rham
cohomology module of this tautological elliptic curve. Put another way, from the
point of view of fundamental groups, an indigenous bundle may be thought of as
a sort of “virtual analogue” of the abelianized fundamental group of the tau-
tological elliptic curve over the moduli stack of elliptic curves. By contrast, in the
present series of papers, it is of crucial importance to use the entire nonabelian
profinite étale fundamental group — i.e., not just its abelizanization! — of the
given once-punctured elliptic curve over a number field. Indeed, only by working
with the entire profinite étale fundamental group can one avail oneself of the crucial
absolute anabelian theory developed in [EtTh], [AbsToplIII] [cf. the discussion
of §I3]. This state of affairs prompts the following question:

To what extent can one extend the indigenous bundles that appear in clas-
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sical compler and p-adic Teichmiller theory to objects that serve as “vir-
tual analogues” of the entire nonabelian fundamental group of the
tautological once-punctured elliptic curve over the moduli stack of [once-

punctured] elliptic curves?

Although this question lies beyond the scope of the present series of papers, it is
the hope of the author that this question may be addressed in a future paper.

Inter-universal Teichmdller theory

p-adic Teichmiller theory

number field
F

hyperbolic curve C over a
positive characteristic perfect field

[once-punctured]
elliptic curve
X over F

nilpotent ordinary
indigenous bundle
P over C

O-link arrows of the
log-theta-lattice

mixed characteristic extension
structure of a ring of Witt vectors

log-link arrows of the
log-theta-lattice

the Frobenius morphism
in positive characteristic

the entire
log-theta-lattice

the resulting canonical lifting
+ canonical Frobenius action;
canonical Frobenius lifting
over the ordinary locus

relatively straightforward
original construction of
log-theta-lattice

relatively straightforward
original construction of
canonical liftings

highly nontrivial
description of alien arithmetic
holomorphic structure
via absolute anabelian geometry

highly nontrivial

absolute anabelian
reconstruction of
canonical liftings

Fig. 14.1: Correspondence between inter-universal Teichmiiller theory and
p-adic Teichmiiller theory
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Now let us return to our discussion of the log-theta-lattice, which, as discussed
above, consists of two types of arrows, namely, ©-link arrows and log-link ar-
rows. As discussed in [IUTchIII], Remark 1.4.1, (iii) — cf. also Fig. I4.1 above,
as well as Remark 3.9.3, (i), of the present paper — the ©-link arrows correspond
to the “transition from p"Z/p" 7 to p"~1Z/p"Z”, i.e., the mixed characteris-
tic extension structure of a ring of Witt vectors, while the log-link arrows, i.e.,
the portion of theory that is developed in detail in [AbsToplIl], and which will be
incorporated into the theory of the present series of papers in [IUTchIII], corre-
spond to the Frobenius morphism in positive characteristic. As we shall see in
[IUTchIII], these two types of arrows fail to commute [cf. [ITUTchIII], Remark 1.4.1,
(i)]. This noncommutativity, or “intertwining”, of the ©-link and log-link arrows
of the log-theta-lattice may be thought of as the analogue, in the context of the
theory of the present series of papers, of the well-known “intertwining between the
mixed characteristic extension structure of a ring of Witt vectors and the Frobenius
morphism in positive characteristic” that appears in the classical p-adic theory. In
particular, taken as a whole, the log-theta-lattice in the theory of the present series
of papers may be thought of as an analogue, for number fields equipped with a
[once-punctured] elliptic curve, of the canonical lifting, equipped with a canon-
ical Frobenius action — hence also the canonical Frobenius lifting over the
ordinary locus of the curve — associated to a positive characteristic hyperbolic
curve equipped with a nilpotent ordinary indigenous bundle in p-adic Teichmiiller
theory [cf. Fig. 14.1 above; the discussion of [ITUTchIII], Remarks 3.12.3, 3.12.4].

Finally, we observe that it is of particular interest in the context of the present
discussion that a theory is developed in [CanLift], §3, that yields an absolute
anabelian reconstruction for the canonical liftings of p-adic Teichmdiller the-
ory. That is to say, whereas the original construction of such canonical liftings
given in [pOrd], §3, is relatively straightforward, the anabelian reconstruction given
in [CanLift], §3, of, for instance, the canonical lifting modulo p? of the logarith-
mic special fiber consists of a highly nontrivial anabelian argument. This state of
affairs is strongly reminiscent of the stark contrast between the relatively straight-
forward construction of the log-theta-lattice given in the present series of papers and
the description of an “alien arithmetic holomorphic structure” given in [TUTchIII],
Theorem 3.11 [cf. the discussion in the earlier portion of the present §I4], which
is achieved by applying highly nontrivial results in absolute anabelian geometry —
cf. Fig. I4.1 above. In this context, we observe that the absolute anabelian theory
of [AbsToplII], §1, which plays a central role in the theory surrounding [TUTchIII],
Theorem 3.11, corresponds, in the theory of [CanLift], §3, to the absolute anabelian
reconstruction of the logarithmic special fiber given in [AbsAnab], §2 [i.e., in essence,
the theory of absolute anabelian geometry over finite fields developed in [Tamal]; cf.
also [Cusp], §2]. Moreover, just as the absolute anabelian theory of [AbsToplII], §1,
follows essentially by combining a version of “Uchida’s Lemma” [cf. [AbsToplIl],
Proposition 1.3] with the theory of Belyi cuspidalization — i.e.,

[AbsTopIII], §1 = Uchida Lem. + Belyi cuspidalization

— the absolute anabelian geometry over finite fields of [Tamal], [Cusp], follows
essentially by combining a version of “Uchida’s Lemma” with an application [to
the counting of rational points| of the Lefschetz trace formula for [powers of] the
Frobenius morphism on a curve over a finite field — i.e.,
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[Tamal], [Cusp] = Uchida Lem. + Lefschetz trace formula for Frob.

— cf. the discussion of [AbsTopllIl], §I5. That is to say, it is perhaps worthy of
note that in the analogy between the inter-universal Teichmiiller theory developed
in the present series of papers and the p-adic Teichmiiller theory of [pOrd], [pTeich],
[CanLift], the application of the theory of Belyi cuspidalization over number fields
and mixed characteristic local fields may be thought of as corresponding to the
Lefschetz trace formula for [powers of] the Frobenius morphism on a curve over a
finite field, i.e.,

Belyi cuspidalization <+—  Lefschetz trace formula for Frobenius

[Here, we note in passing that this correspondence may be related to the corre-
spondence discussed in [AbsToplll], §I5, between Belyi cuspidalization and the
Verschiebung on positive characteristic indigenous bundles by considering the ge-
ometry of Hecke correspondences modulo p, i.e., in essence, graphs of the Frobenius
morphism in characteristic p!] It is the hope of the author that these analogies and
correspondences might serve to stimulate further developments in the theory.

¢I5. Other Galois-theoretic Approaches to Diophantine Geometry

The notion of anabelian geometry dates back to a famous “letter to Falt-
ings” [cf. [Groth]], written by Grothendieck in response to Faltings’ work on the
Mordell Conjecture [cf. [Falt]]. Anabelian geometry was apparently originally con-
ceived by Grothendieck as a new approach to obtaining results in diophantine
geometry such as the Mordell Conjecture. At the time of writing, the author is
not aware of any expositions by Grothendieck that expose this approach in detail.
Nevertheless, it appears that the thrust of this approach revolves around applying
the Section Conjecture for hyperbolic curves over number fields to obtain a con-
tradiction by applying this Section Conjecture to the “limit section” of the Galois
sections associated to any infinite sequence of rational points of a proper hyperbolic
curve over a number field [cf. [MNT], §4.1(B), for more details]. On the other hand,
to the knowledge of the author, at least at the time of writing, it does not appear
that any rigorous argument has been obtained either by Grothendieck or by other
mathematicians for deriving a new proof of the Mordell Conjecture from the [as
yet unproven| Section Conjecture for hyperbolic curves over number fields. Nev-
ertheless, one result that has been obtained is a new proof by M. Kim [cf. [Kim]]
of Siegel’s theorem concerning (Q-rational points of the projective line minus three
points — a proof which proceeds by obtaining certain bounds on the cardinality
of the set of Galois sections, without applying the Section Conjecture or any other
results from anabelian geometry.

In light of the historical background just discussed, the theory exposed in
the present series of papers — which yields, in particular, a method for applying
results in absolute anabelian geometry to obtain diophantine results such
as those given in [IUTchIV] — occupies a somewhat curious position, relative to
the historical development of the mathematical ideas involved. That is to say, at a
purely formal level, the implication

anabelian geometry =— diophantine results
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at first glance looks something like a “confirmation” of Grothendieck’s original
intuition. On the other hand, closer inspection reveals that the approach of the
theory of the present series of papers — that is to say, the precise content of the
relationship between anabelian geometry and diophantine geometry established in
the present series of papers — differs quite fundamentally from the sort of approach
that was apparently envisioned by Grothendieck.

Perhaps the most characteristic aspect of this difference lies in the central role
played by anabelian geometry over p-adic fields in the present series of papers.
That is to say, unlike the case with number fields, one central feature of anabelian
geometry over p-adic fields is the fundamental gap between relative and absolute
results [cf., e.g., [AbsTopl], Introduction|. This fundamental gap is closely related
to the notion of an “arithmetic Teichmiiller theory for number fields” [cf.
the discussion of §14 of the present paper; [AbsTopllIl], §13, §I5] — i.e., a theory of
deformations not for the “arithmetic holomorphic structure” of a hyperbolic curve
over a number field, but rather for the “arithmetic holomorphic structure” of the
number field itselfl To the knowledge of the author, there does not exist any mention
of such ideas [i.e., relative vs. absolute p-adic anabelian geometry; the notion of an
arithmetic Teichmiiller theory for number fields] in the works of Grothendieck.

As discussed in §I4, one fundamental theme of the theory of the present series
of papers is the issue of the

explicit description of the relationship between the additive structure and
the multiplicative structure of a ring/number field/local field.

Relative to the above discussion of the relationship between anabelian geometry
and diophantine geometry, it is of interest to note that this issue of understand-
ing/describing the relationship between addition and multiplication is, on the one
hand, a central theme in the proofs of various results in anabelian geometry [cf.,
e.g., [Tamal], [pGC], [AbsToplll]] and, on the other hand, a central aspect of the
diophantine results obtained in [[UTchIV].

From a historical point of view, it is also of interest to note that results from ab-
solute anabelian geometry are applied in the present series of papers in the context
of the canonical splittings of the Frobenius-picture that arise by considering the
étale-picture [cf. the discussion in §I1 preceding Theorem A]. This state of affairs
is reminiscent — relative to the point of view that the Grothendieck Conjecture
constitutes a sort of “anabelian version” of the Tate Conjecture for abelian varieties
[cf. the discussion of [MNT], §1.2] — of the role played by the Tate Conjecture for
abelian varieties in obtaining the diophantine results of [Falt], namely, by means
of the various semi-simplicity properties of the Tate module that arise as formal
consequences of the Tate Conjecture. That is to say, such semi-simplicity proper-
ties may also be thought of as “canonical splittings” that arise from Galois-theoretic
considerations [cf. the discussion of “canonical splittings” in the final portion of
[CombCusp], Introduction].

Certain aspects of the relationship between the inter-universal Teichmiiller
theory of the present series of papers and other Galois-theoretic approaches to dio-
phantine geometry are best understood in the context of the analogy, discussed in
§14, between inter-universal Teichmiiller theory and p-adic Teichmiiller theory.
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One way to think of the starting point of p-adic Teichmiiller is as an attempt to
construct a p-adic analogue of the theory of the action of SLs(7Z) on the upper
half-plane, i.e., of the natural embedding

PR : SLQ (Z) — SLQ (R)

of SLy(7Z) as a discrete subgroup. This leads naturally to consideration of the
representation

ps = [[ re: SLa(2)" — SLa(Z) = ][] SLa(Zy)

pEPrimes

— where we write SLo(Z)" for the profinite completion of SLy(Z). If one thinks
of SLo(Z)™ as the geometric étale fundamental group of the moduli stack of elliptic
curves over a field of characteristic zero, then the p-adic Teichmiiller theory of
[pOrd], [pTeich] does indeed constitute a generalization of pz, to more general p-
adic hyperbolic curves.

From a representation-theoretic point of view, the next natural direction
in which to further develop the theory of [pOrd], [pTeich| consists of attempting to
generalize the theory of representations into SLs(Z,) obtained in [pOrd], [pTeich]
to a theory concerning representations into SL,(Z,) for arbitrary n > 2. This is

precisely the motivation that lies, for instance, behind the work of Joshi and Pauly
[cf. [JP]].

On the other hand, unlike the original motivating representation pr, the rep-
resentation p is far from injective, i.e., put another way, the so-called Congruence
Subgroup Property fails to hold in the case of SLy. This failure of injectivity means
that working with

py only allows one to access a relatively limited portion of SLy(Z)".

From this point of view, a more natural direction in which to further develop the
theory of [pOrd], [pTeich]| is to consider the “anabelian version”

pa:  SL(Z)" — Out(Ayy)

of p5 — i.e., the natural outer representation on the geometric étale fundamen-
tal group Aq 1 of the tautological family of once-punctured elliptic curves over the
moduli stack of elliptic curves over a field of characteristic zero. Indeed, unlike the
case with p-, one knows [cf. [Asada]] that pa is injective. Thus, the “arithmetic
Teichmiiller theory for number fields equipped with o [once-punctured] el-
liptic curve” constituted by the inter-universal Teichmiiller theory developed in
the present series of papers may [cf. the discussion of §I4!] be regarded as a
realization of this sort of “anabelian” approach to further developing the p-adic
Teichmiiller theory of [pOrd], [pTeich].

In the context of these two distinct possible directions for the further develop-
ment of the p-adic Teichmiiller theory of [pOrd], [pTeich], it is of interest to recall
the following elementary fact:
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If G is a free pro-p group of rank > 2, then a [continuous| representation

pc: G — GL,(Qp)

can never be injective!

Indeed, assume that p¢ is injective and write ... C H; C ... C Im(pg) € GL,(Qy)
for an exhaustive sequence of open normal subgroups of the image of pi. Then since
the H; are closed subgroups GL,(Q,), hence p-adic Lie groups, it follows that the
Qp-dimension dim(H ;’“b ® Q) of the tensor product with Q, of the abelianization
of H; may be computed at the level of Lie algebras, hence is bounded by the Q,-
dimension of the p-adic Lie group GL,(Q,), i.e., we have dim(Hj‘?‘b ® Q) < n?, in
contradiction to the well-known fact since G = Im(p¢) is free pro-p of rank > 2, it
holds that dim(H ;?‘b ® Q) — o0 as j — oco. Note, moreover, that

this sort of argument — i.e., concerning the asymptotic behavior of
abelianizations of open subgroups — is characteristic of the sort of proofs
that typically occur in anabelian geometry [cf., e.g., the proofs of

[Tamal], [pGC], [CombGC]!].

On the other hand, the fact that pg can never be injective shows that

so long as one restricts oneself to representation theory into GL,(Q,)
for a fixed n, one can never access the sort of asymptotic phenomena
that form the “technical core” [cf., e.g., the proofs of [Tamal], [pGC],
[CombGC]!] of various important results in anabelian geometry.

Put another way, the two “directions” discussed above — i.e., representation-
theoretic and anabelian — appear to be essentially mutually alien to one
another.

In this context, it is of interest to observe that the diophantine results de-
rived in [IUTchIV] from the inter-universal Teichmiiller theory developed in the
present series of papers concern essentially asymptotic behavior, i.e., they do
not concern properties of “a specific rational point over a specific number field”,
but rather properties of the asymptotic behavior of “varying rational points over
varying number fields”. One important aspect of this asymptotic nature of the dio-
phantine results derived in [IUTchIV] is that there are no distinguished number
fields that occur in the theory, i.e., the theory — being essentially asymptotic in
nature! — is “invariant” with respect to the operation of passing to finite exten-
sions of the number field involved [which, from the point of view of the absolute
Galois group Gg of QQ, corresponds precisely to the operation of passing to smaller
and smaller open subgroups, as in the above discussion!|. This contrasts sharply
with the “representation-theoretic approach to diophantine geometry” constituted
by such works as [Wiles|, where specific rational points over the specific number field
Q — or, for instance, in generalizations of [Wiles] involving Shimura varieties, over
specific number fields characteristically associated to the Shimura varieties involved
— play a central role.
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Section 0: Notations and Conventions

Monoids and Categories:

We shall use the notation and terminology concerning monoids and categories
of [Frdl], §0.

We shall refer to a topological space P equipped with a continuous map
PxP>S — P

as a topological pseudo-monoid if there exists a topological abelian group M [whose
group operation will be written multiplicatively] and an embedding of topological
spaces ¢ : P — M such that S = {(a,b) € P x P | «(a) - (b) € «(P) C M}, and
the map S — P is obtained by restricting the group operation M x M — M on
M to P by means of «. Here, if M is equipped with the discrete topology, then
we shall refer to the resulting P simply as a pseudo-monoid. In particular, every
topological pseudo-monoid determines, in an evident fashion, an underlying pseudo-
monoid. Let P be a pseudo-monoid. Then we shall say that the pseudo-monoid
P is divisible if M and ¢ may be taken such that for each positive integer n, every
element of M admits an n-th root in M, and, moreover, an element a € M lies
in «(P) if and only if a™ lies in «(P). We shall say that the pseudo-monoid P is
cyclotomic if M and ¢ may be taken such that the subgroup gy € M of torsion
elements of M is isomorphic to the group Q/Z, pyr C «(P), and pps - 1(P) C o(P).

We shall refer to an isomorphic copy of some object as an isomorph of the
object.

If C and D are categories, then we shall refer to as an isomorphism C — D any
isomorphism class of equivalences of categories C — D. [Note that this termniology
differs from the standard terminology of category theory, but will be natural in the
context of the theory of the present series of papers.| Thus, from the point of view
of “coarsifications of 2-categories of 1-categories” [cf. [Frdl], Appendix, Definition
A1, (ii)], an “isomorphism C — D” is precisely an “isomorphism in the usual sense”
of the [1-|category constituted by the coarsification of the 2-category of all small
1-categories relative to a suitable universe with respect to which C and D are small.

Let C be a category; A, B € Ob(C). Then we define a poly-morphism A — B
to be a collection of morphisms A — B [i.e., a subset of the set of morphisms
A — B]J; if all of the morphisms in the collection are isomorphisms, then we shall
refer to the poly-morphism as a poly-isomorphism; if A = B, then we shall re-
fer to a poly-isomorphism A = B as a poly-automorphism. We define the full
poly-isomorphism A = B to be the poly-morphism given by the collection of all
isomorphisms A = B. The composite of a poly-morphism {f; : A — B};c; with a
poly-morphism {g; : B — C'};c is defined to be the poly-morphism given by the
set [i.e., where “multiplicities” are ignored] {gj o fi : A — C}; jyerxs-

Let C be a category. We define a capsule of objects of C to be a finite collection
{A;};cs [i-e., where J is a finite index set] of objects A; of C; if |J| denotes the
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cardinality of J, then we shall refer to a capsule with index set J as a |J|-capsule;

also, we shall write mo({A4;};cs) 7 A morphism of capsules of objects of C

{Aj}jes = { AL }jrer

is defined to consist of an injection ¢ : J < J’, together with, for each j € J, a
morphism A; — A/ () of objects of C. Thus, the capsules of objects of C form a

category Capsule(C). A capsule-full poly-morphism
{Aj}jes = { AL }jrer

between two objects of Capsule(C) is defined to be the poly-morphism associated
to some [fixed] injection ¢ : J — J’' which consists of the set of morphisms of
Capsule(C) given by collections of [arbitrary] isomorphisms A; = Al s for j €
J. A capsule-full poly-isomorphism is a capsule-full poly-morphism for which the
associated injection between index sets is a bijection.

If X is a connected noetherian algebraic stack which is generically scheme-like
[cf. [Cusp], §0], then we shall write

B(X)

for the category of finite étale coverings of X [and morphisms over X|; if A is a

noetherian [commutative] ring [with unity/, then we shall write B(A) o B(Spec(A)).
Thus, [cf. [Frdl], §0] the subcategory of connected objects B(X)? C B(X) may
be thought of as the subcategory of connected finite étale coverings of X [and
morphisms over X|.

Let II be a topological group. Then let us write
Btemp(H)

for the category whose objects are countable [i.e., of cardinality < the cardinality
of the set of natural numbers|, discrete sets equipped with a continuous IT-action,
and whose morphisms are morphisms of II-sets [cf. [SemiAnbd], §3]. If I may be
written as an inverse limit of an inverse system of surjections of countable discrete
topological groups, then we shall say that II is tempered [cf. [SemiAnbd], Definition
3.1, (i)]. A category C equivalent to a category of the form B*™P(II), where II is a
tempered topological group, is called a connected temperoid [cf. [SemiAnbd], Defi-
nition 3.1, (ii)]. Thus, if C is a connected temperoid, then C is naturally equivalent
to (C°) T [cf. [Frdl], §0]. Moreover, if IT is Galois-countable [cf. Remark 2.5.3, (i),
(T1)], then one can reconstruct [cf. Remark 2.5.3, (i), (T5)] the topological group II,
up to inner automorphism, category-theoretically from B*™P(II) or B*™P(I1)° [i.e.,
the subcategory of connected objects of B*™P(II)]; in particular, for any Galois-
countable [cf. Remark 2.5.3, (i), (T1)] connected temperoid C, it makes sense to
write

m1(C), m(C°)

for the topological groups, up to inner automorphism, obtained by applying this
reconstruction algorithm [cf. Remark 2.5.3, (i), (T5)].
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In this context, if Cq1, Co are connected temperoids, then it is natural to define
a morphism

C1 %CQ

to be an isomorphism class of functors Co — C; that preserves finite limits and
countable colimits. [Note that this differs — but only slightly! — from the definition
given in [SemiAnbd], Definition 3.1, (iii). This difference does not, however, have
any effect on the applicability of results of [SemiAnbd] in the context of the present
series of papers.] In a similar vein, we define a morphism

Y — I

to be a morphism (CY)T — (C9) " [where we recall that we have natural equivalences
of categories C; = (C?)T for i = 1,2]. One verifies immediately that an “isomor-
phism” relative to this terminology is equivalent to an “isomorphism of categories”
in the sense defined at the beginning of the present discussion of “Monoids and
Categories”. Finally, if II;, II, are Galois-countable [cf. Remark 2.5.3, (i), (T1)]
tempered topological groups, then we recall that there is a natural bijective corre-
spondence between

(a) the set of continuous outer homomorphisms IT; — II5,
(b) the set of morphisms B*™P(II;) — B*™P(Il;), and
(c) the set of morphisms B*™P(11;)" — Btemp(1I,)°

— cf. Remark 2.5.3, (ii), (E7); [SemiAnbd], Proposition 3.2.

Suppose that for i = 1,2, C; and C; are categories. Then we shall say that two
isomorphism classes of functors ¢ : C; — Ca, ¢' : C} — Ch are abstractly equivalent
if, for i = 1,2, there exist isomorphisms «; : C; = C! such that ¢’ oa; = ag o0 ¢. We
shall also apply this terminology to morphisms between [connected] temperoids,
as well as to morphisms between subcategories of connected objects of [connected]
temperoids.

Numbers:

We shall use the abbreviations NF (“number field”), MLF (“mixed-characteris-
tic [nonarchimedean] local field”), CAF (“complex archimedean field”), as defined
in [AbsTopl], §0; [AbsToplll], §0. We shall denote the set of prime numbers by
Primes.

Let F be a number field [i.e., a finite extension of the field of rational numbers].
Then we shall write
V(F) = v(E) e vy

for the set of valuations of F', that is to say, the union of the sets of archimedean
[i.e., V(F)?] and nonarchimedean [i.e., V(F)"°"] valuations of F'. Here, we note
that this terminology “valuation”, as it is applied in the present series of papers,
corresponds to such terminology as “place” or “absolute value” in the work of other
authors. Let v € V(F'). Then we shall write F,, for the completion of F' at v and
say that an element of F' or F), is integral [at v]if it is of norm < 1 with respect
to the valuation v; if, moreover, L is any [possibly infinite] Galois extension of F,
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then, by a slight abuse of notation, we shall write L, for the completion of L at
some valuation € V(L) that lies over v. If v € V(F)"" then we shall write p,
for the residue characteristic of v. If v € V(F)*°, then we shall write p, € F,
for the unique positive real element of F,, whose natural logarithm is equal to 1
[i.e., “e = 2.71828..."]. By passing to appropriate projective or inductive limits,
we shall also apply the notation “V(F)”, “F,”, “p,” in situations where “F” is an
infinite extension of Q.

Curves:

We shall use the terms hyperbolic curve, cusp, stable log curve, and smooth
log curve as they are defined in [SemiAnbd], §0. We shall use the term hyperbolic
orbicurve as it is defined in [Cusp], §0.
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Section 1: Complements on Coverings of Punctured Elliptic Curves

In the present §1, we discuss certain routine complements — which will be of
use in the present series of papers — to the theory of coverings of once-punctured
elliptic curves, as developed in [EtTh], §2.

Let [ > 5 be an integer prime to 6; X a hyperbolic curve of type (1,1) over a
field k of characteric zero; C a hyperbolic orbicurve of type (1,l-tors)y [cf. [EtTh],
Definition 2.1] over k, whose k-core C' [cf. [CanLift], Remark 2.1.1; [EtTh], the
discussion at the beginning of §2] also forms a k-core of X. Thus, C determines,
up to k-isomorphism, a hyperbolic orbicurve X def C x¢o X of type (1,l-tors) [cf.
[EtTh], Definition 2.1] over k. Moreover, if we write Gy, for the absolute Galois
group of k [relative to an appropriate choice of basepoint], II(_y for the arithmetic
fundamental group of a geometrically connected, geometrically normal, generically
scheme-like k-algebraic stack of finite type “(—)” [i.e., the étale fundamental group
m1((—))], and Ay for the geometric fundamental group of “(—)” [i.e., the kernel
of the natural surjection II(_y — G}], then we obtain natural cartesian diagrams

X — X Hz — IIx A& — AX
I |
Q — C HQ — Il¢ AQ — AC

of finite étale coverings of hyperbolic orbicurves and open immersions of profinite
groups. Finally, let us make the following assumption:

(*) The natural action of G on A% ® (Z/IZ) [where the superscript “ab”
denotes the abelianization] is trivial.

Next, let € be a nonzero cusp of C' — i.e., a cusp that arises from a nonzero
element of the quotient “Q)” that appears in the definition of a “hyperbolic orbicurve
of type (1,I-tors).” given in [EtTh], Definition 2.1. Write € for the unique “zero
cusp” [i.e., “non-nonzero cusp”] of X; ¢, €’ for the two cusps of X that lie over ¢;

and
A£ —» A% ®(Z)IZ) — AE

for the quotient of A3 ® (Z/IZ) by the images of the inertia groups of all nonzero
cusps # € , €’ of X. Thus, we obtain a natural exact sequence

0o — IE/X]E” — AE — AE®(Z/ZZ) — 0

— where we write E for the genus one compactification of X, and I, I for

the respective images in A, of the inertia groups of the cusps €', €’ [S(_) we have
noncanonical isomorphisms I = Z /17 = 1.).

Next, let us observe that Gy, Gal(X/C) (£ Z/27Z) act naturally on the above
exact sequence. Write ¢ € Gal(X/C) for the unique nontrivial element. Then ¢
induces an isomorphism I = I.v; if we use this isomorphism to identify I, I,
then one verifies immediately that ¢ acts on the term “I x I.»” of the above exact
sequence by switching the two factors. Moreover, one verifies immediately that ¢
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acts on Ag ®(Z/1Z) via multiplication by —1. In particular, since [ is odd, it follows
that the action by ¢ on A, determines a decomposition into eigenspaces

AgﬁA;xAg

€

— i.e., where ¢ acts on Ag' (respectively, A ) by multiplication by +1 (respectively,
—1). Moreover, the natural composite maps

IS' — AE —» Ag, IE” — AE —» Ag_

determine isomorphisms I, = A}, I.» = AF. Since the natural action of G,
on A, clearly commutes with the action of ¢, we thus conclude that the quotient
Ax — A — A} determines quotients

— where the surjections IIx — Gy, II¢ — G} induce natural exact sequences
1 - A - Jx - G — 1,1 - A x Gal(X/C) — Jo — G — 1; we have a
natural inclusion Jx — Jg.

Next, let us consider the cusp “2¢” of C' — i.e., the cusp whose inverse images in
X correspond to the points of E obtained by multiplying €/, ¢ by 2, relative to the
group law of the elliptic curve determined by the pair (X, €°). Since 2 # £1 (mod 1)
[a consequence of our assumption that [ > 5], it follows that the decomposition group
associated to this cusp “2¢” determines a section

UZGk—>JQ

of the natural surjection Jo — Gy. Here, we note that although, a priori, o is only
determined by 2¢ up to composition with an inner automorphism of Jo determined
by an element of A} x Gal(X/C), in fact, since [in light of the assumption (x)!]
the natural [outer] action of Gy on AT x Gal(X/C) is trivial, we conclude that o
is completely determined by 2e, and that the subgroup Im(c) C Jg determined by
the image of o is normal in Jg. Moreover, by considering the decomposition groups
associated to the cusps of X lying over 2¢, we conclude that Im(o) lies inside the
subgroup Jx C Jg. Thus, the subgroups Im(o) C Jx, Im(o) x Gal(X/C) C Jo
determine [the horizontal arrows in| cartesian diagrams

X — X Hx — llx Ax — Ax
A l
Q> — Q Hg — HQ Ag — AQ

of finite étale cyclic coverings of hyperbolic orbicurves and open immersions [with
normal image] of profinite groups; we have Gal((/C) = Z/IZ, Gal(X/C) = Z/2Z,

and Gal(X,/C) & Gal(X/C) x Gal(C,/C) = Z,/2IZ.

Definition 1.1.  We shall refer to a hyperbolic orbicurve over k that arises, up to
isomorphism, as the hyperbolic orbicurve X, (respectively, () constructed above
for some choice of [, ¢ as being of type (1,l-tors) (respectively, (1,[-tors)+).
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Remark 1.1.1. The arrow “—” in the notation “X”, “C”, “(1,l-tors)”,
“(1,1-tors)+” may be thought of as denoting the “archimedean, ordered labels
1,2,...”7 — i.e., determined by the choice of ¢/ — on the {£1}-orbits of ele-
ments of the quotient “Q)” that appears in the definition of a “hyperbolic orbicurve
of type (1,l-tors)+” given in [EtTh], Definition 2.1.

Remark 1.1.2.  We observe that X, ( are completely determined, up to k-
isomorphism, by the data (X/k, C, ¢).

Corollary 1.2. (Characteristic Nature of Coverings) Suppose that k is
an NF or an MLF. Then there exists a functorial group-theoretic algorithm
[ef. [AbsToplll], Remark 1.9.8, for more on the meaning of this terminology] to
reconstruct

Iy, Hg, Ue (respectively, II¢)

together with the conjugacy classes of the decomposition group(s) determined by the
set(s) of cusps {€',€"}; {e} (respectively, {€}) from Il x (respectively, Il ¢ ). Here,
the asserted functoriality is with respect to isomorphisms of topological groups; we
reconstruct x, I ¢, e (respectively, Ilg ) as a subgroup ofAut(H&) (respectively,
Aut(II ol ).

Proof. For simplicity, we consider the non-resp’d case; the resp’d case is entirely
similar [but slightly easier]. The argument is similar to the arguments applied in
[EtTh], Proposition 1.8; [EtTh], Proposition 2.4. First, we recall that Il x, Hx, and

Il are slim [cf., e.g., [AbsTopl], Proposition 2.3, (ii)], hence embed naturally into
Aut(IIx ), and that one may recover the subgroup A x C IIx via the algorithms of

[AbsTopl], Theorem 2.6, (v), (vi). Next, we recall that the algorithms of [AbsToplI],
Corollary 3.3, (i), (ii) — which are applicable in light of [AbsTopl|, Example 4.8
— allow one to reconstruct Ilo [together with the natural inclusion IT X = 1],

as well as the subgroups Ax C Ag C Ile. In particular, [ may be recovered via
the formula l2 = [AX : Aé] . [A& . A&] = [AX . A&] = [AC . A&]/2 Next, let

us set H % Ker(Ax — A% ® (Z/IZ)). Then IIy C Il may be recovered via the
leasily verified] equality of subgroups IIx = II x - H. The conjugacy classes of the

decomposition groups of €, €, ¢ in II x may be recovered as the decomposition

groups of cusps [cf. [AbsTopl|, Lemma 4.5, as well as Remark 1.2.2, (ii), below]
whose image in Gal(X /X)) = Ilx /I x is nontrivial. Next, to reconstruct Il¢ C Ilc,

it suffices to reconstruct the splitting of the surjection Gal(X/C) = Il¢/Ilx —
o /Iy = Gal(X/C) determined by Gal(X/C) = Il¢/Ilx; but [since [ is prime to
3!] this splitting may be characterized [group-theoretically!] as the unique splitting
that stabilizes the collection of conjugacy classes of subgroups of IIx determined

by the decomposition groups of €°, €/, ¢’. Now II ¢ C Ilg may be reconstructed

by applying the observation that (Z/2Z =) Gal(X,/ () C Gal(X,/C) (= Z/2IZ)
is the unique maximal subgroup of odd index. Finally, the conjugacy classes of
the decomposition groups of €, €’ in IIx may be recovered as the decomposition
groups of cusps [cf. [AbsTopl|, Lemma 4.5, as well as Remark 1.2.2, (ii), below]
whose image in Gal(X /X) = IIx /Il x is nontrivial, but which are not fized [up to
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conjugacy| by the outer action of Gal(X /C) = Il¢/Ilx on IIx. This completes the
proof of Corollary 1.2. O

Remark 1.2.1. It follows immediately from Corollary 1.2 that
Autp(X) = Gal(X /C) (2 Z/21Z); Autp(C) = Gal(G/C) (= Z/IZ)
[cf. [EtTh], Remark 2.6.1].

Remark 1.2.2. The group-theoretic algorithm for reconstructing the decomposi-
tion groups of cusps given [AbsTopl], Lemma 4.5 — which is based on the argument
given in the proof of [AbsAnab|, Lemma 1.3.9 — contains some minor, inessential
inaccuracies. In light of the importance of this group-theoretic algorithm for the
theory of the present series of papers, we thus pause to discuss how these inaccu-
racies may be amended.

(i) The final portion [beginning with the third sentence] of the second paragraph
of the proof of [AbsAnab], Lemma 1.3.9, should be replaced by the following text:

Since r; may be recovered group-theoretically, given any finite étale cov-
erings

such that Z; is cyclic [hence Galois|, of degree a power of I, over V;,
one may determine group-theoretically whether or not Z; — V; is totally
ramified [i.e., at some point of Z;|, since this condition is easily verified
to be equivalent to the condition that the covering Z; — V, admit a
factorization Z; — W; — V;, where W; — V; is finite étale of degree I,
and ry, < l-ry,. Moreover, this group-theoreticity of the condition that a
cyclic covering be totally ramified extends immediately to the case of pro-I
cyclic coverings Z; — V;. Thus, by Lemma 1.3.7, we conclude that the
inertia groups of cusps in (Ax,)® [i.e., the maximal pro-I quotient of Ax. ]
may be characterized [group-theoretically!] as the maximal subgroups of
(A Xi)(l) that correspond to [profinite| coverings satisfying this condition.

(ii) The final portion [beginning with the third sentence] of the statement of
[AbsTopl], Lemma 4.5, (iv), should be replaced by the following text:

Then the decomposition groups of cusps C H* may be character-
ized [“group-theoretically”/ as the maximal closed subgroups I C H*
isomorphic to Z; which satisfy the following condition: We have

dxgclo((ﬂ NP RQ)+1<1- {dyeyern (1 - D Q)+ 1}

[i.e., “the covering of curves corresponding to J C I-J is totally ramified

at some cusp”] for every characteristic open subgroup J C H* such that
J#ET-J.

Remark 1.2.3. The minor, inessential inaccuracies in the group-theoretic al-
gorithms of [AbsAnab], Lemma 1.3.9; [AbsTopl|, Lemma 4.5, that were discussed



INTER-UNIVERSAL TEICHMULLER THEORY I 41

in Remark 1.2.2 are closely related to certain minor, inessential inaccuracies in
the theory of [CombGC]|. Thus, it is of interest, in the context of the discussion of
Remark 1.2.2, to pause to discuss how these inaccuracies may be amended. These
inaccuracies arise in the arguments applied in [CombGC], Definition 1.4, (v), (vi),
and [CombGC]|, Remarks 1.4.2, 1.4.3, and 1.4.4, to prove [CombGC], Theorem
1.6. These arguments are formulated in a somewhat confusing way and should be
modified as follows:

(i) First of all, we remark that in [CombGC], as well as in the following dis-
cussion, a “Galois” finite étale covering is to be understood as being connected.

(ii) In the second sentence of [CombGC], Definition 1.4, (v), the cuspidal and
nodal cases of the notion of a purely totally ramified covering are in fact unnecessary
and may be deleted. Also, the terminology introduced in [CombGC], Definition

1.4, (vi), concerning finite étale coverings that descend is unnecessary and may be
deleted.

(iii) The text of [CombGC], Remark 1.4.2, should be replaced by the following
text:

Let G — G be a Galois finite étale covering of degree a positive power of
[, where G is of pro-X PSC-type, ¥ = {l}. Then one verifies immediately
that, if we assume further that the covering G’ — G is cyclic, then G’ — G
is cuspidally totally ramified if and only if the inequality

r(G") <1-r(G)

— where we write ' — G” — G for the unique [up to isomorphism]|
factorization of the finite étale covering G’ — G as a composite of finite
étale coverings such that G” — G is of degree | — is satisfied. Suppose
further that G’ — G is a [not necessarily cyclic!] II§"" -covering [so n(G') =
deg(G’/G)-n(G)]. Then one verifies immediately that G’ — G is verticially
purely totally ramified if and only if the equality

i(G") = deg(G'/G) - (i(G) — 1) +1

is satisfied. Also, we observe that this last inequality is equivalent to the
following equality involving the expression “i(...) —n(...)” [cf. Remark
1.1.3]:

i(G") —n(G") = deg(G'/G) - (i(G) —n(G) — 1)+ 1

(iv) The text of [CombGC], Remark 1.4.3, should be replaced by the following
text:

Suppose that G is of pro-X PSC-type, ¥ = {l}. Then one verifies immedi-
ately that the cuspidal edge-like subgroups of Ilg may be characterized as
the mazximal [cf. Proposition 1.2, (i)] closed subgroups A C Ilg isomorphic
to Z; which satisfy the following condition:

for every characteristic open subgroup Ilg: C Ilg, if we write
G — G” — @G for the finite étale coverings corresponding to
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IIg C Ilgn Ly IIg: C IIg, then the cyclic finite étale covering

G — G" is cuspidally totally ramified.

[Indeed, the necessity of this characterization is immediate from the def-
initions; the suffictency of this characterization follows by observing that
since the set of cusps of a finite étale covering of G is always finite, the
above condition implies that there exists a compatible system of cusps of
the various G’ that arise, each of which is stabilized by the action of A.] On
the other hand, in order to characterize the unramified verticial subgroups
of TIg", it suffices — by considering stabilizers of vertices of underlying
semi-graphs of finite étale 15" -coverings of G — to give a functorial char-
acterization of the set of vertices of G [i.e., which may also be applied
to finite étale IIg""-coverings of G|. This may be done, for sturdy G, as
follows. Write MG™ for the abelianization of IIg". For each vertex v of
the underlying semi-graph G of G, write M§""[v] € Mg"" for the image of
the IIg" -conjugacy class of unramified verticial subgroups of IIg"" associ-
ated to v. Then one verifies immediately, by constructing suitable abelian
g™ -coverings of G via suitable gluing operations [i.e., as in the proof of
Proposition 1.2], that the inclusions Mg [v] C ME" determine a split
mgjection
P Mg = My
v

3 3 unr-vert
) =
[where v ranges over the vertices of G|, whose image we denote by Mg C
Mg™. Now we consider elementary abelian quotients

¢ ME" — Q

— i.e., where Q) is an elementary abelian group. We identify such quotients
whenever their kernels coincide and order such quotients by means of the
relation of “domination” [i.e., inclusion of kernels]. Then one verifies im-
mediately that such a quotient ¢ : Mg"™ — Q) corresponds to a verticially
purely totally ramified covering of G if and only if there exists a vertex v
of G such that (Mg [v]) = Q, ¢(ME[v']) = 0 for all vertices v' # v of
G. In particular, one concludes immediately that

the elementary abelian quotients ¢ : M§™ — @ whose restric-
tion to M‘g“‘r“’ert surjects onto () and has the same kernel as the
quotient

M&nr-vert s Mémr [U] s élnl‘ [U] ® Fl

— where the first “—” is the natural projection; the second “—”
is given by reduction modulo I — may be characterized as the
maximal quotients [i.e., relative to the relation of domination]
among those elementary abelian quotients of Mg"" that corre-
spond to wverticially purely totally ramified coverings of G.

Thus, since G is sturdy, the set of vertices of G may be characterized as
the set of [nontrivial!] quotients MZ™ v — Mg™[v] @ F;.
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(v) The text of [CombGC], Remark 1.4.4, should be replaced by the following
text:

Suppose that G is of pro-¥ PSC-type, where ¥ = {i}, and that G is
noncuspidal. Then, in the spirit of the cuspidal portion of Remark 1.4.3,
we observe the following: One verifies immediately that the nodal edge-like
subgroups of Ilg may be characterized as the maximal [cf. Proposition 1.2,
(i)] closed subgroups A C Ilg isomorphic to Z; which satisfy the following
condition:

for every characteristic open subgroup Ilg: C Ilg, if we write

G — G — G for the finite étale coverings corresponding to

IIg C Ilgn Ly, IIg: C Ilg, then the cyclic finite étale covering

G — G" is nodally totally ramified.

Here, we note further that [one verifies immediately that] the finite étale
covering G' — G” is nodally totally ramified if and only if it is module-wise
nodal.

(vi) The text of the second paragraph of the proof of [CombGC], Theorem 1.6,
should be replaced by the following text [which may be thought as being appended
to the end of the first paragraph of the proof of [CombGC]|, Theorem 1.6]:

Then the fact that « is group-theoretically cuspidal follows formally from
the characterization of cuspidal edge-like subgroups given in Remark 1.4.3
and the characterization of cuspidally totally ramified cyclic finite étale
coverings given in Remark 1.4.2.

(vii) The text of the final paragraph of the proof of [CombGC], Theorem 1.6,
should be replaced by the following text [which may be thought of as a sort of

“easy version” of the argument given in the proof of the implication “(iii) = (i)”
of [CbTpll], Proposition 1.5]:

Finally, we consider assertion (iii). Sufficiency is immediate. On the
other hand, necessity follows formally from the characterization of unram-
ified verticial subgroups given in Remark 1.4.3 and the characterization

of verticially purely totally ramified finite étale coverings given in Remark
1.4.2.
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Section 2: Complements on Tempered Coverings

In the present §2, we discuss certain routine complements — which will be of
use in the present series of papers — to the theory of tempered coverings of graphs
of anabelioids, as developed in [SemiAnbd], §3 [cf. also the closely related theory
of [CombGCl]].

Let X, S be nonempty sets of prime numbers such that 3 C i;

g

a semi-graph of anabelioids of pro-¥ PSC-type [cf. [CombGC], Definition 1.1, (i)],
whose underlying semi-graph we denote by G. Write Htgp for the tempered funda-
mental group of G [cf. the discussion preceding [SemiAnbd], Proposition 3.6, as
well as Remark 2.5.3, (i), (T6), of the present paper| and ﬁg for the pro-f] li.e.,
maximal pro—i quotient of the profinite] fundamental group of G [cf. the discussion
preceding [SemiAnbd], Definition 2.2] — both taken with respect to appropriate
choices of basepoints. Thus, since discrete free groups of finite rank inject into
their pro-l completions for any prime number [ [cf., e.g., [RZ], Proposition 3.3.15],
it follows that we have a natural injection [cf. [SemiAnbd], Proposition 3.6, (iii), as
well as Remark 2.5.3, (ii), (ET7), of the present paper, when 5. = Primes; the proof
in the case of arbitrary S is entirely similar]

tp -

that we shall use to regard Htgp as a subgroup of ﬁg and ﬁg as the pro—i completion
of Htgp.

Next, let
H

be the semi-graph of anabelioids associated to a connected sub-semi-graph H C
G. One verifies immediately that the restriction of H to the mazimal subgraph
[cf. the discussion at the beginning of [SemiAnbd], §1] of H coincides with the
restriction to the maximal subgraph of the underlying semi-graph of some semi-
graph of anabelioids of pro-3 PSC-type. That is to say, roughly speaking, up to the
possible omission of some of the cuspidal edges, H “is” a semi-graph of anabelioids
of pro-¥ PSC-type. In particular, since the omission of cuspidal edges clearly does
not affect either the tempered or pro—i fundamental groups, we shall apply the
notation introduced above for “G” to H. We thus obtain a natural commutative
diagram . R
Htgp — ﬁg
of [outer] inclusions [cf. [SemiAnbd], Proposition 2.5, (i), when & = PPrimes; in

light of the well-known structure of fundamental groups of hyperbolic Riemann
surfaces of finite type, a similar proof may be given in the case of arbitrary 3, i.e.,
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by considering successive composites of finite étale Galois coverings that restrict to
trivial coverings over the closed edges and finite étale abelian [Galois] coverings ob-
tained by gluing together suitable abelian coverings] of topological groups, which we
shall use to regard all of the groups in the diagram as subgroups of Ilg. In partic-
ular, one may Ehink of H;f (respectively, I1y) as the decomposition Tﬁbgmup in Htgp
(respectively, TIg) [which is well-defined up to Htgp— (respectively, IIg-)conjugacy]
associated to the sub-semi-graph .

The following result is the central technical result underlying the theory of the
present §2.

Proposition 2.1. (Profinite Conjugates of Nontrivial Compact Sub-
groups) In the notation of the above discussion, let A C ng be a nontrivial

compact subgroup, v € ﬁg an element such that v-A-~y~1 C Htgp [or, equiva-
lently, A C =111 - ]. Then v € 117

Proof. Write T for the ¢ ‘pro- S semi- graph” associated to the universal | pro- 5 étale
covering of G [i.e., the covering corresponding to the subgroup {1} C Hg] [P for
the “pro-semi- graph” associated to the universal tempered covering of G [i.e., the
covering corresponding to the subgroup {1} C Htgp]. Thus, we have a natural dense
map ' — . Let us refer to a [“pro-"]vertex of I that occurs as the image of
a [“pro-"]vertex of I'*P as tempered. Since A, - A -~v~! are compact subgroups of
Htgp, it follows from [SemiAnbd], Theorem 3.7, (iii) [cf. also [SemiAnbd], Example
3.10, as well as Remark 2.5.3, (ii), (E7), of the present paper|, that there exist
verticial subgroups A', A" C Htgp such that A C A/, v-A-~~1 C A”. Thus, A,
A" correspond to tempered vertices v', v" of Ty {1} #£~-A-~7"L C - A -~77L, so
(v AN -1 N A" # {1}. Since A”, v- A’ -y~ are both verticial subgroups of
ﬁg, it thus follows either from [AbsTopll], Proposition 1.3, (iv), or from [NodNon],
Proposition 3.9, (i), that the corresponding vertices v, (v')7 of T are either equal
or adjacent. In particular, since v” is tempered, we thus conclude that (v')7 is
tempered. Thus, v, (v')7 are tempered, so v € IIY, as desired. O

Next, relative to the notation “C”, “N” and related terminology concerning
commensurators and normalizers discussed, for instance, in [SemiAnbd], §0; [Com-
bGC], §0, we have the following result.

Proposition 2.2. (Commensurators of Decomposition Subgroups As-
sociated to Sub-semi-graphs) In the notation of the above discussion, Iy (re-
spectively, 152 2 ) s commensurably terminal in Hg ( respectwely, Hg [hence, also
in 11 p/) In particular, H s commensurably terminal in Hg

Proof. First, let us observe that by allowing, in Proposition 2.1, A to range over the
open subgroups of any verticial [hence, in particular, nontrivial compact!] subgroup
of Htgp, we conclude from Proposition 2.1 that

Htgp is commensurably terminal in ﬁg
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— cf. Remark 2.2.2 below. In particular, by applying this fact to H [cf. the discus-
sion preceding Proposition 2.1, we conclude that Hg_rz is commensurably terminal
in IT5. Next, let us observe that it is immediate from the definitions that

I3 € Crpp (IL)) € O (IL}) € Cy_(T1)

[where we think of ﬁH, ﬁg, respectively, as the pro—i completions of H;_IZ, Htgp].

On the other hand, by the evident pro-% analogue of [SemiAnbd], Corollary 2.7,
(i) [cf. also the argument involving gluing of abelian coverings in the discussion
preceding Proposition 2.1], we have Cﬁg (IT3) = 1. Thus, by the commensurable

terminality of H;f in ﬁH, we conclude that
t t t t
I € Cq, (IY) € Cf (IL}) =113}

— as desired. )

Remark 2.2.1. It follows immediately from the theory of [SemiAnbd] [cf., e.g.,
[SemiAnbd], Corollary 2.7, (i)] that, in fact, Propositions 2.1 and 2.2 can be proven
for much more general semi-graphs of anabelioids G than the sort of G that appears
in the above discussion. We leave the routine details of such generalizations to the
interested reader.

Remark 2.2.2. Recall that when & = Primes, the fact that

Htgp is normally terminal in ﬁg

may also be derived from the fact that any nonabelian finitely generated free group
is normally terminal [cf. [André], Lemma 3.2.1; [SemiAnbd], Lemma 6.1, (i)] in its
profinite completion. In particular, the proof of the commensurable terminality of
Htgp in ﬁg that is given in the proof of Proposition 2.2 may be thought of as a new
proof of this normal terminality that does not require one to invoke [André|, Lemma
3.2.1, which is essentially an immediate consequence of the rather difficult conjugacy
separability result given in [Stb1l], Theorem 1. This relation of Proposition 2.1 to
the theory of [Stbl] is interesting in light of the discrete analogue given in Theorem
2.6 below of [the “tempered version of Theorem 2.6” constituted by] Proposition
2.4 [which is essentially a formal consequence of Proposition 2.1].

Now let k be an MLF, k an algebraic closure of k, G, oot Gal(k/k), X a
hyperbolic curve over k that admits stable reduction over the ring of integers Oy of
k. Write

t t
Iy, AY
for the respective “i‘-tempered ” quotients of the tempered fundamental groups WEP(X ),

P (X3) [relative to suitable basepoints] of X, X3 L X ik [cf. [André], §4; [Semi-

Anbd], Example 3.10]. That is to say, m"(X7) - AY¥ is the quotient determined

by the intersection of the kernels of all continuous surjections of WEP(XE) onto ex-
tensions of a finite group of order a product [possibly with multiplicities] of primes
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€ 3 by a discrete free group of finite rank; P (X) — II? is the quotient of P (X)
determined by the kernel of the quotient of ﬂp(XE) — AP, Write Ax for the
pro—f] i.e., maximal pro—f] quotient of the profinite] fundamental group of X+; Il X
for the quotient of the profinite fundamental group of X by the subgroup of the
profinite fundamental group of X7 that determines the quotient Ax. T hus, since
discrete free groups of finite rank inject into their pro-I completions for any prime
number [ [cf., e.g., [RZ], Proposition 3.3.15], we have natural inclusions

t - t A
H)? — 1y, A)? —  Ax

[cf., e.g., [SemiAnbd], Proposition 3.6, (iii) as well as Remark 2.5.3, (ii), (E )
of the present paper, when S = Primes|; A x may be identified with the pro- 5
completion of Ag?; ﬁX is generated by the images of HX and AX.

Now suppose that the residue characteristic p of £ is not contained in ¥;
that the semi-graph of anabelioids G of the above discussion is the pro-X semi-graph
of anabelioids associated to the geometric special fiber of the stable model X of X
over Oy [cf., e.g., [SemiAnbd], Example 3.10]; and that the sub-semi-graph H C G
is stabilized by the natural action of G, on G. Thus, we have natural surjections

AR — Htgp; Ax —» ﬁg
of topological groups.

Corollary 2.3. (Subgroups of Tempered Fundamental Groups Associ-
ated to Sub-semi-graphs) In the notation of the above discussion:

(i) The closed subgroups

def def

tp tp tp tp. A A T A
AX,H A XHtgp H?—L - AX’ AX,H AX XAg H’H - AX

are commensurably terminal. In particular, the natural outer actions of Gy on
AE?, Ax determine natural outer actions of G on AE?H, Ax .

(ii) The closure of AE?’H C Ag? C AX m ﬁx is equal to ﬁx,H.

(iii) Suppose that [at least] one of the following conditions holds: (a) S contains
a prime number I ¢ X\ J{p}; (b) S = Primes. Then AXH is slim. In particular,
the natural outer actions of Gy, on AE?H, AX m [cf. (i)] determine natural exact

sequences of center-free topological groups [cf. (ii); the slimness of AKH,
[AbsAnab], Theorem 1.1.1, (ii)]

tp tp
1= Axy — Uy — G —1
1_>AX,H_>HX,H_>GR_>1
— where HE?H, IIx m are defined so as to render the sequences exact.

(iv) Suppose that the hypothesis of (iii) holds. Then the images of the natural
inclusions HX " HX, HX H < HX are commensurably terminal.
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(v) We have: AX,HQAE? = A?H C Ay.

(vi) Let
I, C A}p (respectively, I, C Ax)

be an inertia group associated to a cusp x of X. Write & for the cusp of the stable
model X corresponding to x. Then the following conditions are equivalent:

(a) I, lies in a AR- (respectively, Ax-) conjugate of AtXp’H (respectively,
AX,H);

(b) & meets an irreducible component of the special fiber of X that is con-
tained n H.

Proof. Assertion (i) follows immediately from Proposition 2.2. Assertion (ii) fol-
lows immediately from the definitions of the various tempered fundamental groups
involved, together with the following elementary observation: If G — F'is a surjec-
tion of finitely generated free discrete groups, which induces a surjection G F
between the respective pro—f) completions [so, since discrete free groups of finite
rank inject into their pro-l completions for any prime number [ [cf.; e.g., [RZ],
Proposition 3.3.15], we think of G and F' as subgroups of G and F, respectively],
then H &' Ker(G — F) is dense in H o Ker(G — F), relative to the pro-3 topol-
ogy of G. Indeed, let ¢ : F' < G be a section of the given surjection G — F' [which
exists since F' is free] Then if {g; }ien is a sequence of elements of G that converges,
in the pro- ) topology of G to a given element h € H and maps to a sequence of
elements {f;}ien of F [Whlch necessarily converges, in the pro-3 topology of F, to
the identity element 1 € F), then one verifies immediately that {gi - ( i) thien is

a sequence of elements of H that converges, in the pro-X topology of G to h. This
completes the proof of the observation and hence of assertion (ii).

Next, we consider assertion (iii). In the following, we give, in effect, two distinct

proofs of the slimness of Ay p: one is elementary, but requires one to assume that
condition (a) holds; the other depends on the highly nontrivial theory of [Tama2]
and requires one to assume that condition (b) holds. If condition (a) holds, then

let us set ¥* X% UJ{l}. If condition (b) holds, but condition (a) does not hold [so

S = Primes = X U{p}], then let us set ¥* Ly, Thus, in either case, p € ¥*, and
YCY*Cl.

Let J C AX be a normal open subgroup. Write Jy def Jﬂﬁx,H; J — J* for
the mazimal pro-X* quotient; Jj; C J* for the image of Jy in J*. Now suppose that
acA x,m commutes with Jg. Let v be a vertex of the dual graph of the geometric
special fiber of a stable model X; of the covering X ; of X7 determined by J. Write
Jy C J for the decomposition group [well-defined up to conjugation in J] associated
to v; J; C J* for the image of J, in J*. Then let us observe that

(1) there exists an open subgroup Jy C KX which is independent of J, v,
and a such that if J C Jy, then for arbitrary v [and o] as above, it holds
that J¥ () Ji (C J*) is infinite and nonabelian.
Indeed, suppose that condition (a) holds. Now it follows immediately from the
definitions that the image of the homomorphism J, C J C Ax — Ilg is pro-X; in
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particular, since [ ¢ %, and Ker(J, C J C Ax —» ﬁg) C Jy () Ju, it follows that
Jy () Ju, hence also J} () Jy;, surjects onto the mazimal pro-l quotient of .J,,, which
is isomorphic to the pro-I completion of the fundamental group of a hyperbolic
Riemann surface hence [as is well-known] is infinite and nonabelian [so we may

take Jo < A x]. Now suppose that condition (b) holds, but condition (a) does
not hold. Then it follows immediately from [Tama2], Theorem 0.2, (v), that, for
an appropriate choice of Jy, if J C Jy, then every v corresponds to an irreducible
component that either maps to a point in X or contains a node that maps to a
smooth point of X. In particular, it follows that for every choice of v, there exists
at least one pro-X, torsion-free, pro-cyclic subgroup F C J, that lies in Ker(J, C
J C Ax — ﬁg) C J,NJu and, moreover, maps injectively into J*. Thus, we
obtain an injection F' — J* (" Jji; a similar statement holds when F' is replaced by
any J,-conjugate of F'. Moreover, it follows from the well-known structure of the
pro-X completion of the fundamental group of a hyperbolic Riemann surface [such
as J;] that the image of the J,-conjugates of such a group F' topologically generate
a closed subgroup of J¥ (] Jj; which is infinite and nonabelian. This completes the
proof of (7).

Next, let us observe that it follows by applying either [AbsTopllI], Proposition
1.3, (iv), or [NodNon], Proposition 3.9, (i), to the various A y-conjugates in J* of
Jr () Jg as in () that the fact that a commutes with J7 (1) Jjj implies that a fizes
v. If condition (a) holds, then the fact that conjugation by « on the mazimal pro-l
quotient of J, [which, as we saw above, is a quotient of J () Ji] is trivial implies
[cf. the argument concerning the inertia group “I, € D,” in the latter portion
of the proof of [SemiAnbd], Corollary 3.11] that « not only fixes v, but also acts
trivially on the irreducible component of the special fiber of X; determined by v;
since v as in (}) is arbitrary, we thus conclude that « acts on the abelianization
(J*)*P of J* as a unipotent automorphism of finite order, hence that « acts trivially
n (J*)2P; since J as in () is arbitrary, we thus conclude [cf., e.g., the proof of
[Config], Proposition 1.4] that « is the identity element, as desired. Now suppose
that condition (b) holds, but condition (a) does not hold. Then since J and v as
in (1) are arbitrary, we thus conclude again from [Tama2], Theorem 0.2, (v), that
a fixes not only v, but also every closed point on the irreducible component of the
special fiber of X; determined by v, hence that « acts trivially on this irreducible
component. Again since J and v as in () are arbitrary, we thus conclude that
« is the identity element, as desired. This completes the proof of assertion (iii).
In light of the exact sequences of assertion (iii), assertion (iv) follows immediately
from assertion (i). Assertion (vi) follows immediately from a similar argument to
the argument applied in the proof of [CombGC], Proposition 1.5, (i), by passing to
pro- completions.

Finally, it follows immediately from the definitions of the various tempered
fundamental groups involved that to verify assertion (v), it suffices to verify the
following analogue of assertion (v) for a nonabelian finitely generated free discrete
group G: for any ﬁmtely generated subgroup F C G, if we use the notation “A”
to denote the pro- 5 completion, then F (NG = F. But to verify this assertion
concerning G, it follows immediately from [SemiAnbd], Corollary 1.6, (ii), that we
may assume without loss of generality that the inclusion F' C G admits a splitting
G — F [i.e., such that the composite F' <— G — F' is the identity on F], in which
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case the desired equality “ﬁﬂG = I follows immediately. This completes the
proof of assertion (v), and hence of Corollary 2.3. O

Next, we observe the following arithmetic analogue of Proposition 2.1.

Proposition 2.4. (Profinite Conjugates of Nontrivial Arithmetic Com-
pact Subgroups) In the notation of the above discussion:

(i) Let A C At)? be a nontrivial pro-Y compact subgroup, 7 € Iy an
element such that v - A-~y~1 C AR for, equivalently, A C v~' - A'® - y]. Then
v e Iy.

(ii) Suppose that S = Primes. Let AAQ 'Y be a [nontrivial] compact
subgroup whose image in Gy, is open, v € IIx an element such that v-A-~y~1 C
H}p [or, equivalently, A C v~ Hg(p -y/]. Then v € HEI(’.

(iii) AY (respectively, TI'Y) is commensurably terminal in Ax (respec-
tively, 1x ).

Proof.  First, we consider assertion (i). We begin by observing that since [as is
well-known — cf., e.g., [Config], Remark 1.2.2] A x 1s strongly torsion-free, it follows
that there exists a finite index characteristic open subgroup J C AE? such that, if
we write G ; for the pro-3 semi-graph of anabelioids associated to the special fiber of
the stable model [i.e., over the ring of integers Oy of k| of the finite étale covering of
X xj k determined by .J, then J (A has nontrivial image in the pro-X completion
of the abelianization of J, hence in Htg‘?] [since, as is well-known, our assumption
that p ¢ ¥ implies that the surjection J —» Htng induces an isomorphism between
the pro-X completions of the respective abelianizations]. Since the quotient Ht)?
surjects onto G, and J is open of finite index in AE‘;, we may assume without loss
of generality that ~ lies in the closure J of Jin II x. Since J (A has nontrivial
image in Htl?], it thus follows from Proposition 2.1 [applied to G;] that the image

of v via the natural surjection on pro-ZA) completions J - ﬁg , lies in Htgp . Since,
- J

by allowing J to vary, HE? (respectively, I1x) may be written as an inverse limit of

the topological groups T /Ker(.J — Hg’]) (respectively, IIx /Ker(J — Ilg,)), we

thus conclude that [the original] 7 lies in TT'Y, as desired.

Next, we consider assertion (ii). First, let us observe that it follows from a sim-
ilar argument to the argument applied to prove Proposition 2.1 — where, instead of
applying [SemiAnbd|, Theorem 3.7, (iii), we apply its arithmetic analogue, namely,
[SemiAnbd], Theorem 5.4, (ii); [SemiAnbd], Example 5.6 [cf. also Remark 2.5.3,
(i), (E5), (ET), of the present paper] — that the image of v in Iy /Ker(Ax —» Ig«)
lies in TT'¢ /Ker(AY — Htgp*), where [by invoking the hypothesis that & = Primes]
we take G* to be a semi-graph of anabelioids as in [SemiAnbd], Example 5.6, i.e.,
the semi-graph of anabelioids whose finite étale coverings correspond to arbitrary
admissible coverings of the geometric special fiber of the stable model X'. Here, we
note that when one applies either [AbsTopll], Proposition 1.3, (iv), or [NodNon],



INTER-UNIVERSAL TEICHMULLER THEORY I 51

Proposition 3.9, (i) — after, say, restricting the outer action of Gy on Hgl to a
closed pro-3 subgroup of the inertia group I of G that maps isomorphically onto
the maximal pro-X quotient of Iy — to the vertices “v””, “(v')?”, one may only
conclude that these two vertices either coincide, are adjacent, or admit a common
adjacent verter; but this is still sufficient to conclude the temperedness of “(v’)7”
from that of “0””. Now [just as in the proof of assertion (i)] by applying [the evident

analogue of] this observation to the quotients T — I /Ker(J — Htg%) — where
J C Ag? is a finite index characteristic open subgroup, and G is the semi-graph of

anabelioids whose finite étale coverings correspond to arbitrary admissible coverings
of the special fiber of the stable model over Oy of the finite étale covering of X xj k

determined by J — we conclude that v € HE?, as desired.

Finally, we consider assertion (iii). Just as in the proof of Proposition 2.2, the
commensurable terminality of AP in Ax follows immediately from assertion (i),
by allowing, in assertion (i), A to range over the open subgroups of a pro-X Sylow
subgroup of a decomposition group C Apr associated to an irreducible component
of the special fiber of X'. The commensurable terminality of Hf}? in IIy then follows
immediately from the commensurable terminality of Ag? in Ay. O

Remark 2.4.1. Thus, when S = Primes, the proof given above of Proposition
2.4, (iii), yields a new proof of [André|, Corollary 6.2.2 [cf. also [SemiAnbd], Lemma
6.1, (ii), (iii)] which is independent of [André|, Lemma 3.2.1, hence also of [Stb1],
Theorem 1 [cf. the discussion of Remark 2.2.2].

Corollary 2.5. (Profinite Conjugates of Tempered Decomposition and
Inertia Groups) In the notation of the above discussion, suppose further that
S = Primes. Then every decomposition group in ﬁX (respectively, inertia
group in ﬁX) associated to a closed point or cusp of X (respectively, to a cusp of
X ) is contained in TIY if and only if it is a decomposition group in TIY (respectively,
mertia group in Ht)?) associated to a closed point or cusp of X (respectively, to a
cusp of X ). Moreover, a f[X—conjugate of Hg? contains a decomposition group in
HE? (respectively, inertia group in Ht)?) assoctated to a closed point or cusp of X
(respectively, to a cusp of X ) if and only if it is equal to Ht)?.

Proof. Let D, C HE? be the decomposition group in Ht}() associated to a closed

point or cusp x of X; I def D, ﬂAt)?. Then the decomposition groups of ﬁX

associated to x are precisely the II x-conjugates of D,; the decomposition groups
of Ht)? associated to x are precisely the Hg?—conjugates of D,. Since D, is compact
and surjects onto an open subgroup of Gy, it thus follows from Proposition 2.4,
(ii), that a Il x-conjugate of D, is contained in Ht)? if and only if it is, in fact, a
HE?-conjugate of D,, and that a ﬁx-conjugate of Hg(p contains D, if and only if
it is, in fact, equal to HE?. In a similar vein, when = is a cusp of X [so [, = 2],
it follows — i.e., by applying Proposition 2.4, (i), to the unique maximal pro-%
subgroup of I, — that a I x-conjugate of I, is contained in Hg? if and only if it is,
in fact, a Hglg—conjugate of I, and that a Il x-conjugate of Hg? contains [, if and
only if it is, in fact, equal to Hf}g. This completes the proof of Corollary 2.5. O
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Remark 2.5.1. The content of Corollary 2.5 may be regarded as a sort of [very
weak!] version of the “Section Conjecture” of anabelian geometry — i.e., as the
assertion that certain sections of the tempered fundamental group [namely, those
that arise from geometric sections of the profinite fundamental group| are geometric
as sections of the tempered fundamental group. This point of view is reminiscent
of the point of view of [SemiAnbd], Remark 6.9.1. Perhaps one way of summarizing
this circle of ideas is to state that one may think of

(i) the classification of maximal compact subgroups of tempered fundamental
groups given in [SemiAnbd], Theorem 3.7, (iv); [SemiAnbd], Theorem 5.4,
(ii) [cf. also Remark 2.5.3, (ii), (E5), (ET7), of the present paper], or, for
that matter,

(ii) the more elementary fact that “any finite group acting on a tree [without
inversion] fizes at least one vertez” [cf. [SemiAnbd], Lemma 1.8, (ii)] from
which these results of [SemiAnbd] are derived

as a sort of combinatorial version of the Section Conjecture.

Remark 2.5.2.  Ultimately, when we apply Corollary 2.5 in [IUTchlII], it will
only be necessary to apply the portion of Corollary 2.5 that concerns inertia groups
of cusps, i.e., the portion whose proof only requires the use of Proposition 2.4,
(i), which is essentially an immediate consequence of Proposition 2.1. That is to
say, the theory developed in [IUTchlI] [and indeed throughout the present series of
papers| will never require the application of Proposition 2.4, (ii), i.e., whose proof
depends on a slightly more complicated version of the proof of Proposition 2.1.

Remark 2.5.3. In light of the importance of the theory of [SemiAnbd] in the
present §2, we pause to discuss certain minor oversights on the part of the author
in the exposition of [SemiAnbd].

(i) Certain pathologies occur in the theory of tempered fundamental groups
if one does not impose suitable countability hypotheses. In order to discuss these
countability hypotheses, it will be convenient to introduce some terminology as
follows:

(T1) We shall say that a tempered group is Galois-countable if its topol-
ogy admits a countable basis. We shall say that a connected temperoid
is Galois-countable if it arises from a Galois-countable tempered group.
We shall say that a temperoid is Galois-countable if it arises from a col-
lection of Galois-countable connected temperoids. We shall say that a
connected quasi-temperoid is Galois-countable if it arises from a Galois-
countable connected temperoid. We shall say that a quasi-temperoid is
Galois-countable if it arises from a collection of Galois-countable connected
quasi-temperoids.

(T2) We shall say that a semi-graph of anabelioids G is Galois-countable if it
is countable, and, moreover, admits a countable collection of finite étale
coverings {G; — G}ies such that for any finite étale covering H — G,
there exists an ¢ € I such that the base-changed covering H xg G; — G;
splits over the constituent anabelioid associated to each component of [the
underlying semi-graph of| G,.
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(T3) We shall say that a semi-graph of anabelioids G is strictly coherent if it
is coherent [cf. [SemiAnbd], Definition 2.3, (iii)], and, moreover, each of
the profinite groups associated to components ¢ of [the underlying semi-
graph of] G [cf. the final sentence of [SemiAnbd], Definition 2.3, (iii)] is
topologically generated by N generators, for some positive integer N that
is independent of c. In particular, it follows that if G is finite and coherent,
then it is strictly coherent.

(T4) One verifies immediately that every strictly coherent, countable semi-
graph of anabelioids is Galois-countable.

(T5) One verifies immediately that if, in [SemiAnbd], Remark 3.2.1, one as-
sumes in addition that the temperoid X" is Galois-countable, then it follows
that its associated tempered fundamental group 7P (X) is well-defined
and Galois-countable.

(T6) One verifies immediately that if, in the discussion of the paragraph
preceding [SemiAnbd]|, Proposition 3.6, one assumes in addition that the
semi-graph of anabelioids G is Galois-countable, then it follows that its
associated tempered fundamental group 7" (G) and temperoid B*™?(G)

are well-defined and Galois-countable.

Here, we note that, in (T5) and (T6), the Galois-countability assumption is nec-
essary in order to ensure that the index sets of “universal covering pro-objects”
implicit in the definition of the tempered fundamental group may to be taken to
be countable. This countability of the index sets involved implies that the various
objects that constitute such a universal covering pro-object admit a compatible sys-
tem of basepoints, i.e., that the obstruction to the existence of such a compatible
system — which may be thought of as an element of a sort of “nonabelian R* lim”
— wvanishes. In order to define the tempered fundamental group in an intrinsi-
cally meaningful fashion, it is necessary to know the existence of such a compatible
system of basepoints.

(ii) The effects of the omission of Galois-countability hypotheses in [SemiAnbd],
§3 [cf. the discussion of (i)], on the remainder of [SemiAnbd], as well as on subse-
quent papers of the author, may be summarized as follows:

(E1) First of all, we observe that all topological subquotients of absolute Galois
groups of fields of countable cardinality are Galois-countable.

(E2) Also, we observe that if k is a field whose absolute Galois group is Galois-
countable, and U is a nonempty open subscheme of a connected proper
k-scheme X that arises as the underlying scheme of a log scheme that is
log smooth over k [where we regard Spec(k) as equipped with the trivial
log structure], and whose interior is equal to U, then the tamely ramified
arithmetic fundamental group of U [i.e., that arises by considering finite
étale coverings of U with tame ramification over the divisors that lie in
the complement of U in X] is itself Galois-countable [cf., e.g., [AbsTopl],
Proposition 2.2].

(E3) Next, we observe, with regard to [SemiAnbd]|, Examples 2.10, 3.10,
and 5.6, that the tempered groups and temperoids that appear in these
Examples are Galois-countable [cf. (E1), (E2)], while the semi-graphs of
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anabelioids that appear in these Examples are strictly coherent [cf. item
(T3) of (i)], hence [cf. item (T4) of (i)] Galois-countable. In particular,
there is no effect on the theory of objects discussed in these Examples.

(E4) Tt follows immediately from (E3) that there is no effect on [SemiAnbd],
§6.

(E5) It follows immediately from items (T3), (T4) of (i), together with the
assumptions of finiteness and coherence in the discussion of the para-
graph immediately preceding [SemiAnbd], Definition 4.2, the assumption
of coherence in [SemiAnbd], Definition 5.1, (i), and the assumption of
[SemiAnbd], Definition 5.1, (i), (d), that there is no effect on [SemiAnbd],
84, §5. [Here, we note that since the notion of a tempered covering of a
semi-graph of anabelioids is only defined in the case where the semi-graph
of anabelioids is countable, it is implicit in [SemiAnbd], Proposition 5.2,
and [SemiAnbd], Definition 5.3, that the semi-graphs of anabelioids under
consideration are countable.]

(E6) There is no effect on [SemiAnbd], §1, §2, or the Appendix of [SemiAnbd],
since tempered fundamental groups are never discussed in these portions
of [SemiAnbd].

(E7) In the Definitions/Propositions/Theorems/Corollaries of [SemiAnbd]
that are numbered 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, one must assume
that all tempered groups, temperoids, and semi-graphs of anabelioids that
appear are Galois-countable. On the other hand, it follows immediately
from (E1), (E2), and (E3) that there is no effect on the remaining portions
of [SemiAnbd], §3.

(E8) In [QuCnf] and [FrdIl], one must assume that all tempered groups and
[quasi-]temperoids that appear are Galois-countable.

(E9) There is no effect on any papers of the author other than [SemiAnbd|
and the papers discussed in (ES8).

(iii) The assertion stated in the second display of [SemiAnbd], Remark 2.4.2,
is false as stated. [The automorphisms of the semi-graphs of anabelioids in [Semi-
Anbd], Example 2.10, that arise from “Dehn twists” constitute a well-known coun-
terexample to this assertion.] This assertion should be replaced by the following
slightly modified version of this assertion:

The isomorphism classes of the ¢, completely determine the isomorphism
class of each of the ¢., as well as each isomorphism ¢;, up to composi-
tion with an automorphism of the composite 1-morphism of anabelioids
Ge — Hy — H, that arises from an automorphism of the 1-morphism of
anabelioids G, — Hy.

Also, in the discussion following this assertion [as well as the various places where
this discussion is applied, i.e., [SemiAnbd], Remark 3.5.2; the second paragraph of
[SemiAnbd], §4; [SemiAnbd], Definition 5.1, (iv)], it is necessary to assume further
that the semi-graphs of anabelioids that appear satisfy the condition that every
edge abuts to at least one verter.
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(iv) The phrase “is Galois” at the end of the first sentence of the proof of
[SemiAnbd], Proposition 3.2, should read “is a countable coproduct of Galois ob-

jects”.

Of”

and

(O1)

(v) In the first sentence of [SemiAnbd], Definition 3.5, (ii), the phrase “Suppose
that” should read “Suppose that each connected component of”; the phrase “splits
the restriction of” should read “splits the restriction of this connected component

(vi) In order to carry out the argument stated in the proof of [SemiAnbd],
Proposition 5.2, (i), it is necessary to strengthen the conditions (¢) and (d) of
[SemiAnbd], Definition 5.1, (i), as follows. This strengthening of the conditions (c)
(d) of [SemiAnbd], Definition 5.1, (i), has no effect either on the remainder
of [SemiAnbd| or on subsequent papers of the author. Suppose that G is as in
[SemiAnbd], Definition 5.1, (i). Then we begin by making the following observation:

Suppose that G is finite. Then G admits a cofinal, countable collection
of connected finite étale Galois coverings {G* — G}ier, each of which is
characteristic [i.e., any pull-back of the covering via an element of Aut(G)
is isomorphic to the original covering|. [For instance, one verifies immedi-
ately, by applying the finiteness and coherence of G, that such a collection
of coverings may be obtained by considering, for n a positive integer, the
composite of all connected finite étale Galois coverings of degree < n.] We
may assume, without loss of generality, that this collection of coverings
arises from a projective system, which we denote by G. Thus, we obtain a
natural exact sequence

1 — Gal(G/G) — Aut(G/G) — Aut(G) — 1

— where we write “Aut(g /G)” for the group of pairs of compatible auto-
morphisms of G and G.

This observation (O1) has the following immediate consequence:

(02)

The
wish

(Cnew)

Suppose that we are in the situation of (O1). Consider, for i € I, the
finite index normal subgroup

Auti(G/G) < Auwt(G/9)

of elements of Aut(G/G) that induce the identity automorphism on the
underlying semi-graph G' of G, as well as on Gal(G'/G). Then one
verifies immediately [from the definition of a semi-graph of anabelioids;
cf. also [SemiAnbd], Proposition 2.5, (i)] that the intersection of the
Auti(G/G), for i € I, is = {1}. Thus, the Aut‘(G/G), for i € I, de-
termine a natural profinite topology on Aut(g /G) and hence also on the
quotient Aut(G), which is easily seen to be compatible with the profinite
topology on Gal(g/g) and, moreover, independent of the choice of G.

new version of the condition (c) of [SemiAnbd], Definition 5.1, (i), that we

to consider is the following;:

The action of H on G is trivial; the resulting homomorphism H —
Aut(G[c]), where ¢ ranges over the components [i.e., vertices and edges]
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of G, is continuous [i.e., relative to the natural profinite group topology
defined in (O2) on Aut(Glc])].

It is immediate that (¢"°V) implies (c). Moreover, we observe in passing that:

(O3) In fact, since H is topologically finitely generated [cf. [SemiAnbd], Defi-
nition 5.1, (i), (a)], it holds [cf. [NS], Theorem 1.1] that every finite index
subgroup of H is open in H. Thus, the conditions (c) and (c"%) in fact
hold automatically.

The new version of the condition (d) of [SemiAnbd], Definition 5.1, (i), that we
wish to consider is the following:

(d"™) There is a finite set C* of components [i.e., vertices and edges] of G
such that for every component ¢ of G, there exists a ¢* € C* and an
isomorphism of semi-graphs of anabelioids G[c] = G[c*] that is compatible
with the action of H on both sides.

It is immediate that (d"“") implies (d). The reason that, in the context of the
proof of [SemiAnbd], Proposition 5.2, (i), it is necessary to consider the stronger
conditions (¢"*V) and (d"") is as follows. It suffices to show that, given a connected
finite étale covering G' — G, after possibly replacing H by an open subgroup of
H, the action of H on G lifts to an action on G’ that satisfies the conditions of
[SemiAnbd], Definition 5.1, (i). Such a lifting of the action of H on G to an action
on the portion of G’ that lies over the wvertices of G follows in a straightforward
manner from the original conditions (a), (b), (c), and (d). On the other hand,
in order to conclude that such a lifting is [after possibly replacing H by an open
subgroup of H| compatible with the gluing conditions arising from the structure of
G’ over the edges of G, it is necessary to assume further that the “component-wise
versions (c"V ), (d"7)” of the original “vertex-wise conditions (¢), (d)” hold. This

issue is closely related to the issue discussed in (iii) above.

Finally, we observe that Proposition 2.4, Corollary 2.5 admit the following
discrete analogues, which may be regarded as generalizations of [André], Lemma
3.2.1 [cf. Theorem 2.6 below in the case where H = F' = G is free|; [EtTh], Lemma
2.17, (i).

Theorem 2.6. (Profinite Conjugates of Discrete Subgroups) Let F be
a group that contains a subgroup of finite index G C F such that G is either a
free discrete group of finite rank or an orientable surface group fi.e., a
fundamental group of a compact orientable topological surface of genus > 2J; H C F
an infinite subgroup. Since F' is reszdually ﬁmte [¢f., e.g., [Config], Proposition 7.1,
(ii)], we shall write H G C F C F, where F denotes the profinite completion of

F. Let v € F be an element such that
v-H- -~V CF Jor, equivalently, H C v~ ' - F-~].
Write He = H(\G. Theny € F - N5(Hg), i.e., v Hg Nl =8 Hg- 67, for

some 0 € F. If, moreover, Hg is nonabelian, then v € F.

Proof. Let us first consider the case where Hq is abelian. In this case, it follows
from Lemma 2.7, (iv), below, that Hg is cyclic. Thus, by applying Lemma 2.7,
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(ii), it follows that by replacing G by an appropriate finite index subgroup of G,
we may assume that the natural composite homomorphism Hg — G — G?" is a
split injection. In particular, by Lemma 2.7, (v), we conclude that Na(Hg) = Hg,

where we write H¢ for the closure of He in the profinite completion G of G. Next,
let us observe that by multiplying + on the left by an appropriate element of F', we
may assume that v € G. Thus, we have v- Hg -y ' C F N G=0G. Next, let us
recall that G is conjugacy separable. Indeed, this is precisely the content of [Stbl],
Theorem 1, when G is free; [Stb2], Theorem 3.3, when G is an orientable surface
group. Since G is conjugacy separable, it follows that v- Hg -y~ ! =¢- Hg - e~ ! for
some € € G, 507 € G-N5(Hg) = G-Heg C F-N=(Hg), as desired. This completes
the proof of Theorem 2.6 when Hg is abelian.

Thus, let us assume for the remainder of the proof of Theorem 2.6 that Hq is
nonabelian. Then, by applying Lemma 2.7, (iii), it follows that, after replacing G by
an appropriate finite index subgroup of GG, we may assume that there exist elements
x,y € Hg that generate a free abelian subgroup of rank two M C G®* such that
the injection M < G2 splits. Write H,,H, C Hg for the subgroups generated,
respectively, by x and y; f-\lm, ﬁy C G for the respective closures of H,, H,. Then
by Lemma 2.7, (v), we conclude that N5(H,) = H,, Ny(Hy) = ?I Next, let us
observe that by multlplymg ~ on the left by an appropriate element of F', we may
assume that v € G. Thus, we have v- Hg -y 1 C F ) G=G. In particular, by
applying the portion of Theorem 2.6 that has already been proven to the subgroups
H,;, H, C G, we conclude that v € G- Ng(H,) = G- Hy,veq- Ng(Hy) =G+ H
Thus, by projecting to Gab, and applying the fact that M is of rank two, we conclude
that v € G, as desired. This completes the proof of Theorem 2.6. ()

Remark 2.6.1. Note that in the situation of Theorem 2.6, if H¢g is abelian, then
— unlike the tempered case discussed in Proposition 2.4! — it is not necessarily
the case that F =~~1 - F ..

Lemma 2.7. (Well-known Properties of Free Groups and Orientable

Surface Groups) Let G be a group as in Theorem 2.6. Write G for the profinite
completion of G. Then:

(i) Any subgroup of G generated by two elements of G is free.

(ii) Let x € G be an element # 1. Then there exists a finite index subgroup
G1 C G such that x € Gy, and = has nontrivial image in the abelianization G5®

OfGl.

(iii) Let z,y € G be noncommuting elements of G. Then there exists a
finite index subgroup G1 C G and a positive integer n such that z",y"™ € G, and
the images of ™ and y" in the abelianization G3° of G| generate a free abelian
subgroup of rank two.

(iv) Any abelian subgroup of G is cyclic.

(v) Let T C G be a closed subgroup such that there exists a continuous surjec-
tion of topological groups ¢ G — Z that induces an 1somorphism T 5 7. Then T is
normally terminal in G.
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(vi) Suppose that G is nonabelian. Write N C G for the kernel of the natural
surjection G — G to the abelianization G*® of G. Then the centralizer ZA(N)

ofﬁ in G is trivial.

(vii) In the notation of (vi), let o be an automorphism of the profinite group
G that preserves and restricts to the identity on the subgroup N. Then « is the
identity automorphism of G.

Proof.  First, we consider assertion (i). If G is free, then assertion (i) follows
from the well-known fact that any subgroup of a free group is free. If G is an
orientable surface group, then assertion (i) follows immediately — i.e., by consid-
ering the noncompact covering of a compact surface that corresponds to an infinite
indez subgroup of G of the sort discussed in assertion (i) — from a classical result
concerning the fundamental group of a noncompact surface due to Johansson |cf.
[Stl], p. 142; the discussion preceding [FRS], Theorem A1l|. This completes the
proof of assertion (i). Next, we consider assertion (ii). Since G is residually finite
[cf., e.g., [Config], Proposition 7.1, (ii)], it follows that there exists a finite index
normal subgroup Gy C G such that z € Gy. Thus, it suffices to take GG; to be the
subgroup of G generated by Gy and z. This completes the proof of assertion (ii).

Next, we consider assertion (iii). By applying assertion (i) to the subgroup J
of G generated by = and y, it follows from the fact that = and y are noncommuting
clements of G that J is a free group of rank 2, hence that 2 - y* # 1, for all
(a,b) € Z x Z such that (a,b) # (0,0). Next, let us recall the well-known fact
that the abelianization of any finite index subgroup of G is torsion-free. Thus,
by applying assertion (ii) to z and y, we conclude that there exists a finite index
subgroup Gy C G and a positive integer m such that 2", y™ € Gy, and ™ and y™
have nontrivial image in the abelianization G& of Gy. Now suppose that 2™ - y™b
lies in the kernel of the natural surjection Gy — G&P for some (a,b) € Z x Z
such that (a,b) # (0,0). Since G is residually finite, and [as we observed above]
o™ . y™mb £ 1 it follows, by applying assertion (ii) to Gy, that there exists a finite
index subgroup G; C Gy and a positive integer n that is divisible by m such that
™, y", a™me .y € Gy, and the image of ™% - y™? in G%P is nontrivial. Since G3P
is torsion-free, it thus follows that the image of "% - y"™® in G%P is nontm’m’al. On
the other hand, by considering the natural homomorphism Gab — G3P, we thus
conclude that the images of 2" and y™ in G%" generate a free abelian subgroup of
rank two, as desired. This completes the proof of assertion (iii).

Next, we consider assertion (iv). By assertion (i), it follows that any abelian
subgroup of GG generated by two elements is free, hence cyclic. In particular, we
conclude that any abelian subgroup J of GG is equal to the union of the groups
that appear in some chain G; C Gy C ... C G of cyclic subgroups of G. On
the other hand, by applying assertion (ii) to some generator of G, it follows that
there exists a finite index subgroup G and a positive integer n such that G C Gy
for all j = 1,2,..., and, moreover, G} has nontrivial image in G&°. Thus, by
considering the image in [the finitely generated abelian group] G&P of the chain
of cyclic subgroups G} C G5 C ..., we conclude that this chain, hence also the
original chain G; C Go C ..., must terminate. Thus, J is cyclic, as desired. This
completes the proof of assertion (iv).
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Next, we consider assertion (v). By con51der1ng the surJectlon G — Z we con-
clude immediately that the normalizer N5 (T ) of T in G is equal to the centralizer
Z@(T )of T in G. If Za(f ) # T, then it follows immediately that, for some prime
number [, there exists a closed [abelian] subgroup 7} C Z a(f) containing the pro-I
portion of T such that there exists a continuous surjection Z; x Z; —» T\l whose ker-
nel lies in [ - (Zl X 7). In particular, one computes easily that the [- cohomological
dimension of Ty is > 2. On the other hand, since T, is of infinite index in G it
follows s immediately that there exists an open subgroup G, CG of G such that
T 1 C Gl, and, moreover, there exists a continuous surjection ¢ : G1 —» 7, whose
kernel Ker(¢) contains T 1. In particular, since the cohomology of T T} may be com-
puted as the direct limit of the cohomologies of open subgroups of G containing T 1y
it follows immediately from the existence of ¢, together with the well-known struc-
ture of the cohomology of open subgroups of CAT’, that the [-cohomological dimension
of Ty is 1, a contradiction. This completes the proof of assertion (v).

Next, we consider assertion (vi). Write N C G for the kernel of the natu-
ral surjection G — G to the abelianization G* of G. It follows immediately
from the “tautological universal property” of a free group or an orientable sur-
face group [i.e., regarded as the quotient of a free group by a single relation] that
N is not cyclic, hence by assertion (iv), that N is nonabelian. Thus, by asser-
tion (iii), there exist a finite index subgroup G; C G equipped with a surjection
B : Gy — Z x Z and elements x,y € N () G; such that g(x) = (1,0) and
B ( ) (0, 1) In particular, it follows from assertion (v) that the closed subgroups
T w,T C G topologically generated by z and y, respectively, are normally termi-
nal in the proﬁmte completlon G1 C G of Gi. But this implies formally that

Z5(N N) N Gy C ZA( 2) N ZAl( y) c T, N T = {1} [where the last equal-

ity follows from the existence of the surjection G — 7 x 7 induced by B]. Since [as
is well-known| the abelianizations of all open subgroups of G are torsion-free, we
thus conclude that Z5(N) = {1}, as desired. This completes the proof of assertion

(vi). Finally, we consider assertion (vii). If z € G, y € N [so z-y-2~! € NJ, then
vyl = alz-y-27) = al@)-aly)-alx)™t = az)-y-alz)”t. We thus
conclude from assertion (vi) that a(z) - 27! € Z5(N) = {1}, ie., that a(z) = z.

This completes the proof of assertion (vii). O

Corollary 2.8. (Subgroups of Topological Fundamental Groups of Com-
plex Hyperbolic Curves) Let Z be a hyperbolic curve over C. Write Il for

the usual topological fundamental group of Z; I, for the profinite completion of
IIz. Let H C IIz be an infinite subgroup [such as a cuspidal inertia group!//;

v E ﬁz an element such that
v-H-y"YCly [or, equivalently, H C v~ ' Tz -~/

Then v € HZ-NﬁZ(H), e, v-H-yv1=68§-H-671, for some d € Ilz. If, moreover,
H is nonabelian, then v € 115.

Remark 2.8.1. Corollary 2.8 is an immediate consequence of Theorem 2.6. In
fact, in the present series of papers, we shall only apply Corollary 2.8 in the case
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where Z is non-proper, and H is a cuspidal inertia group. In this case, the proof
of Theorem 2.6 may be simplified somewhat, but we chose to include the general
version given here, for the sake of completeness.
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Section 3: Chains of ©-Hodge Theaters

In the present §3, we construct chains of “O-Hodge theaters”. Each “©-Hodge
theater” is to be thought of as a sort of miniature model of the conventional
scheme-theoretic arithmetic geometry that surrounds the theta function.
This miniature model is formulated via the theory of Frobenioids [cf. [Frdl]; [FrdIl];
[EtTh], §3, 84, §5]. On the other hand, the link [cf. Corollary 3.7, (i)] between
adjacent members of such chains is purely Frobenioid-theoretic, i.e., it lies outside
the framework of ring theory/scheme theory. It is these chains of ©-Hodge theaters
that form the starting point of the theory of the present series of papers.

Definition 3.1. We shall refer to as initial ©-data any collection of data

F/F, Xp, 1, Cp, V, VP24 ¢
(/7 y by MKy Yo

mod>

that satisfies the following conditions:

(a) F is a number field such that v/—1 € I'; F is an algebraic closure of F.
Write G %' Gal(F/F).

(b) X is a once-punctured elliptic curve [i.e., a hyperbolic curve of type
(1,1)] over F' that admits stable reduction over all v € V(F)"°". Write Ep
for the elliptic curve over F determined by Xz [so Xp C Erl;

XF—>CF

for the hyperbolic orbicurve [cf. §0] over F' obtained by forming the stack-
theoretic quotient of X by the unique F-involution [i.e., automorphism
of order two| “—1" of Xp; Finoa C F for the field of moduli [cf., e.g.,

[AbsToplIl], Definition 5.1, (ii)] of Xr; Fyo) C F for the mazimal solvable

def

extension of Fyoq in F; Vigoq = V(Fiod). Then

bad
Vmod g Vmod

is a nonempty set of nonarchimedean valuations of F,,q of odd residue
characteristic such that Xp has bad [i.e., multiplicative] reduction at the

elements of V(F) that lie over VP24, C V4. Write eood def Vinoa \ VP24

mod mod
[where we note that Xp may in fact have bad reduction at some of the

elements of V(F') that lie over Vi?;; C Vimod!]; V(F)H = VB Xy, V(F)
for O € {bad, good};

def def
IIx, = m(XFr) Cllg, = m(Cp)

Ax d:efwl(XF xp F)C Ac d:efm(CF xp F)

for the étale fundamental groups [relative to appropriate choices of base-
points] of X, Cr, Xp xp F, Op xr F. [Thus, we have natural exact
sequences 1 — Ay — Iy, — Gr — 1 for “(—)” taken to be either
“X” or “C”.] Here, we suppose further that the field extension F'/F,0q
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is Galois of degree prime to [, and that the 2 - 3-torsion points of Er are
rational over F'.

(c) lis a prime number > 5 such that the image of the outer homomorphism
GF — GL2 (Fl)

determined by the [-torsion points of Ep contains the subgroup SLo(F;) C
G Lo(IF;); write K C F for the finite Galois extension of F determined by
the kernel of this homomorphism. Also, we suppose that [ is prime to the
[residue characteristics of the] elements of VPad, "as well as to the orders

of the g-parameters of Ep [i.e., in the terminology of [GenEll], Definition
3.3, the “local heights” of Er] at the primes of V(F)Pad.

(d) C is a hyperbolic orbicurve of type (1,1-tors) [cf. [EtTh], Definition 2.1]
over K, with K-core [cf. [CanLift], Remark 2.1.1; [EtTh], the discussion
at the beginning of §2] given by Cx or xp K. [Thus, by (c), it follows
that C is completely determined, up to isomorphism over F', by Cr.] In
particular, C'j determines, up to K-isomorphism, a hyperbolic orbicurve
Xy of type (1,1-tors) [cf. [EtTh], Definition 2.1] over K, together with
natural cartesian diagrams

Xr — Xp HKK — Ilx, Ax — Ax
| | | | I |
Cr — Cr HQK — ¢, Ac — Ac¢

of finite étale coverings of hyperbolic orbicurves and corresponding open
immersions of profinite groups. Finally, we recall from [EtTh|, Proposition
2.2, that Ag admits uniquely determined open subgroups Ay C Ag C

Ac, which may be thought of as corresponding to finite étale coverings

of C% def C xp F by hyperbolic orbicurves X, C% of type (1, I-tors®),

(1,1-tors®), respectively [cf. [EtTh], Definition 2.3].
(e) VCV(K) is a subset that induces a natural bijection

y :> Vmod

— 1.e., a section of the natural surjection V(K) — Vi,0q. Write V" def

YHV(K)HOH, yarc d:ef yﬂV(K)arc’ ngOd d:ef YHV(K)gOOd, ybad d:ef

VO V(K)P*, For each v € V(K), we shall use the subscript v to de-
note the result of base-changing hyperbolic orbicurves over F' or K to

K,. Thus, for each v € V(K) lying under a v € V(F), we have natural
cartestan diagrams

év — X, — Xy Aé — Hﬁg — lx,
| N | |
c. — 0, — G Ac — Mg, — g,

of profinite étale coverings of hyperbolic orbicurves and corresponding
injections of profinite groups [i.e., étale fundamental groups]. Here, the
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subscript U denotes base-change with respect to F < F; the various

profinite groups “II(_y” admit natural outer surjections onto the decom-

position group G, € Gk def Gal(F/K) determined, up to G x-conjugacy,

by v. If v € V"4 then we assume further that the hyperbolic orbicurve
C, is of type (1,Z/1Z)+ [cf. [EtTh], Definition 2.5, (i)]. [Here, we note
that it follows from the portion of (b) concerning 2-torsion points that the
base field K, satisfies the assumption “K = K” of [EtTh], Definition 2.5,
(i).] Finally, we observe that when v € V" it follows from the theory
of [EtTh], §2 — i.e., roughly speaking, “by eztracting an I-th root of the
theta function” — that év’ gv admit natural models
X. C

over K, which are hyperbolic orbicurves of type (1, (Z/1Z)®), (1,(Z/1Z)®)+,
respectively [cf. [EtTh], Definition 2.5, (i)]; these models determine open
subgroups lIy ClIlc Cll¢ . Ifv e ybad, then, relative to the notation

of Remark 3.1.1 below, we shall write IL, def Ht)? .

(f) € is a cusp of the hyperbolic orbicurve C [cf. (d)] that arises from
a nonzero element of the quotient “Q)” that appears in the definition of
a “hyperbolic orbicurve of type (1,I-tors)y” given in [EtTh], Definition
2.1. If v € V, then let us write ¢, for the cusp of C, determined by
e. Ifve ybad, then we assume that ¢, is the cusp that arises from the

canonical generator [up to sign] “+1” of the quotient “77 that appears

in the definition of a “hyperbolic orbicurve of type (1,Z/IZ)+” given in

" . def
[EtTh], Definition 2.5, (i). Thus, the data (Xx = Xp xp K,Ck,¢€)

determines hyperbolic orbicurves

&K’ Q>K
of type (1,l-tors), (1,l-tors)s, respectively [cf. Definition 1.1, Remark
1.1.2], as well as open subgroups H&K C HQK Cllc,,Ax CAg CAc,
and, for v € V&°°d, Iy Clg Cllg,. Ifve v&°°d then we shall write

I, €Iy .

Remark 3.1.1.  Relative to the notation of Definition 3.1, (e), suppose that
v € V"". Then in addition to the various profinite groups II(_) , Ay, one also
has corresponding tempered fundamental groups
tp . tp
0o A,
[cf. [André|, §4; [SemiAnbd], Example 3.10], whose profinite completions may be

identified with I, A(_y. Here, we note that unlike “A_)”, the topological

group A?i)v depends, a priori, on v.
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Remark 3.1.2.

(i) Observe that the open subgroup x C Il may be constructed group-
theoretically from the topological group llc . Indeed, it follows immediately from
the construction of the coverings “X”, “C” in the discussion at the beginning
of [EtTh], §2 [cf. also [AbsAnab], Lemma 1.1.4, (i)], that the closed subgroup
Ax CIlg, may be characterized by a rather simple explicit algorithm. Since the
decomposition groups of II¢  at the nonzero cusps — i.e., the cusps whose inertia
groups are contained in Ax [cf. the discussion at the beginning of §1] — are also
group-theoretic [cf., e.g., [AbsTopl|, Lemma 4.5, as well as Remark 1.2.2, (ii), of the
present paper|, the above observation follows immediately from the easily verified
fact that the image of any of these decomposition groups associated to nonzero
cusps coincides with the image of lIx in Ilg, _/Ax.

(ii) In light of the observation of (i), it makes sense to adopt the following
convention:

Instead of applying the group-theoretic reconstruction algorithm of [Ab-
sToplll], Theorem 1.9 [cf. also the discussion of [AbsTopllIl], Remark
2.8.3], directly to Il¢,_ [or topological groups isomorphic to Il¢ |, we
shall apply this reconstruction algorithm to the open subgroup Ilx — C
¢, to reconstruct the function field of X -, equipped with its natural
Gal(X x/Cy) = 1l¢, /Ux, -action.

In this context, we shall refer to this approach of applying [AbsToplIII], Theorem 1.9,
as the @-approach to [AbsToplIIl], Theorem 1.9. Note that, for v € V&°°d N y=or
(respectively, v € ybad), one may also adopt a “©-approach” to applying [Ab-
sToplll], Theorem 1.9, to Il or [by applying Corollary 1.2] II x . 1lg (respec-
tively, to HtCE’ or [by applying [EtTh], Proposition 2.4] HE? ). In the pres_ent series
of papers, we shall always think of [AbsToplII], Theorem 1.9 las well as the other
results of [AbsToplII] that arise as consequences of [AbsToplII], Theorem 1.9] as be-
ing applied to [isomorphs of] IIg _ or, for v € Ve M V™" (respectively, v € VP29,
llg , lx , g (respectively, Htcp , TP ) via the “©-approach” [cf. also Remark

3.4.3, (1), below]. o

(iii) Recall from the discussion at the beginning of [EtTh], §2, the tautological
extension
1= Ag =AY 5 AY =1

— where Ao ' [Ax, Ax]/[Ax, [Ax, Ax]l AQ & Ax/[Ax, [Ax, Ax]); AP &
A%, The extension class € H2(ASY, Ag) of this extension determines a tautological
1somorphism

My 5 Ae

— where we recall from [AbsToplII], Theorem 1.9, (b), that the module “Mx”
of [AbsToplIl], Theorem 1.9, (b) [cf. also [AbsToplIII], Proposition 1.4, (ii); [Ab-

sToplI], Remark 1.10.1, (ii)], may be naturally identified with Hom(H?(ASY, 2), Z)
In particular, we obtain a tautological isomorphism

Mx = (1 Ag)
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[i.e., since [Ax : Ax| = I]. In particular, we observe that if we write g,
for the étale fundamental group of the orbicurve CF, , discussed in Remark 3.1.7,
(i), below, then Mx = (I - Ag) may be regarded as a characteristic subquotient
of HCFmod’ hence admits a natural conjugation action by HCFmod‘ From the point
of view of the theory of the present series of papers, the significance of the “©-
approach” lies precisely in the existence of this tautological isomorphism Mx = (1
Ag), which will be applied in [TUTchII] at v € V"*!. That is to say, the ©-approach
involves applying the reconstruction algorithm of [AbsToplIII], Theorem 1.9, via the
cyclotome My, which may be identified, via the above tautological isomorphism,
with the cyclotome (I - Ag), which plays a central role in the theory of [EtTh] —
cf., especially, the discussion of “cyclotomic rigidity” in [EtTh], Corollary 2.19, (i).

(iv) If one thinks of the prime number [ as being “large”, then the role played
by the covering X in the above discussion of the “©-approach” is reminiscent of the
role played by the universal covering of a complex elliptic curve by the complex plane
in the holomorphic reconstruction theory of [AbsToplII], §2 [cf., e.g., [AbsTopIII],
Propositions 2.5, 2.6].

Remark 3.1.3. Since VP24, £ () [cf. Definition 3.1, (b)], it follows immediately
from Definition 3.1, (d), (e), (f), that the data (F/F, Xp, I, Cf, V, VPad = ¢) s,

mod’

in fact, completely determined by the data (F/F, Xp, Ck, V, VP2d) and that
C is completely determined up to K-isomorphism by the data (F/F, Xp, 1, V).
Finally, we remark that for given data (Xp, I, VP2d) distinct choices of “V” will

mod
not affect the theory in any significant way.

Remark 3.1.4. It follows immediately from the definitions that at each v € yhad
[which is necessarily prime to | — cf. Definition 3.1, (c¢)] (respectively, each v €
VEed M V™" which is prime to l; each v € V&4 My on), X, (respectively, &U;

XE) admits a stable model over the ring of integers of K.

Remark 3.1.5. Note that since the 3-torsion points of Er are rational over F,
and F' is Galois over Fy,oq [cf. Definition 3.1, (b)], it follows [cf., e.g., [IUTchIV],
Proposition 1.8, (iv)] that K is Galois over Fyoq. In addition to working with
the field Foq and various extensions of Foq contained in F, we shall also have
occasion to work with the algebraic stack

Smod = Spec(Or) // Gal(K/Fuoq)

obtained by forming the stack-theoretic quotient [i.e., “//”] of the spectrum of the
ring of integers O of K by the Galois group Gal(K/Fy,0q). Thus, any finite exten-
sion L C F of Fj0q in F determines, by forming the integral closure of Sy0q in L, an
algebraic stack Smod,r over Smod. In particular, by considering arithmetic line bun-
dles over such Sy,oq,1,, One may associate to any finite quotient Gal(F/Fmod) - Q)
a Frobenioid via [the easily verified “stack-theoretic version” of] the construction
of [FrdI], Example 6.3. One verifies immediately that an appropriate analogue of
[Frdl], Theorem 6.4, holds for such stack-theoretic versions of the Frobenioids con-
structed in [FrdI], Example 6.3. Also, we observe that upon passing to either the
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perfection or the realification, such stack-theoretic versions become naturally iso-
morphic to the non-stack-theoretic versions [i.e., of [FrdI|, Example 6.3, as stated].

Remark 3.1.6. In light of the important role played by the various orbicurves
constructed in [EtTh], §2, in the present series of papers, we take the opportunity
to correct an unfortunate — albeit in fact irrelevant! — error in [EtTh]. In the
discussion preceding [EtTh], Definition 2.1, one must in fact assume that the integer
l is odd in order for the quotient A x to be well-defined. Since, ultimately, in [EtTh]
[cf. the discussion following [EtTh], Remark 5.7.1], as well as in the present series
of papers, this is the only case that is of interest, this oversight does not affect
either the present series of papers or the bulk of the remainder of [EtTh|. Indeed,
the only places in [EtTh]| where the case of even [ is used are [EtTh], Remark 2.2.1,
and the application of [EtTh], Remark 2.2.1, in the proof of [EtTh], Proposition
2.12, for the orbicurves “g”. Thus, [EtTh], Remark 2.2.1, must be deleted; in
[EtTh]|, Proposition 2.12, one must in fact exclude the case where the orbicurve
under consideration is “C”. On the other hand, this theory involving [EtTh],
Proposition 2.12 [cf., especially, [EtTh], Corollaries 2.18, 2.19] is only applied after
the discussion following [EtTh]|, Remark 5.7.1, i.e., which only treats the curves
“X”. That is to say, ultimately, in [EtTh], as well as in the present series of papers,

one is only interested in the curves “X7”, whose treatment only requires the case of
odd 1.

Remark 3.1.7.

(i) Observe that it follows immediately from the definition of Fy,,q and the K-
coricity of C'k [cf. Definition 3.1, (b), (d)] that C'r admits a unique [up to unique
isomorphism]| model

Cr,

mod

over Fioq. If v € Vo4, then we shall write C, for the result of base-changing this
model to (Fiod)y. When applying the group-theoretic reconstruction algorithm
of [AbsTopllII]|, Theorem 1.9 [cf. Remark 3.1.2, (ii)], it will frequently be useful to
consider certain special types of rational functions on Cr__, and C,, as follows.
Let L be a field which is equal either to Fi,oq or to (Finod)y for some v € Vyoq.
Write Cp, for the model just discussed of C'r over L. Thus, one verifies immediately
that the coarse space |Cp| associated to the algebraic stack C, is isomorphic to
the affine line over L. Now suppose that we are given an algebraic closure L¢
of the function field Lo of Cp. Write L for the algebraic closure of L determined
by Lc. We shall refer to a closed point of the proper smooth curve determined
by some finite subextension C L¢ of L¢ as a critical point if it maps to a closed
point of the [proper smooth] compactification |C|P* of |Cf| that arises from one
of the 2-torsion points of Er; we shall refer to a critical point which does not
map to the closed point of |CL|P* that arises from the unique cusp of Cf, as strictly
critical. Thus, as one might imagine from the central importance of 2-torsion points
in the elementary theory of elliptic curves, the strictly critical points of |Cp|P* may
be thought of as the “most fundamental/canonical non-cuspidal points” of
|C'L|°Pt. We shall refer to a rational function f € Le on Cf, as k-coric — where we
think of the x as standing for “Kummer” — if
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whenever f & L, it holds that, over L, f has precisely one pole [of
unrestricted order], but at least two distinct zeroes;

the divisor of zeroes and poles of f is defined over a number field and
avoids the critical points;
- f restricts to a root of unity at every strictly critical point of |Cp|°P*.

Thus, the first displayed condition, taken together with the latter portion of the
second displayed condition, may be understood as the condition that there exist
a unique non-critical L-rational point of |C|°P* with respect to which [i.e., if one
takes this L-rational point to be the “point at infinity”] f may be thought of as a
polynomial on the affine line over L with non-critical zeroes. In particular, it
follows from the first displayed condition that, whenever f & L, it is never the case
that both f and f~! are k-coric. By contrast, the third displayed condition may be
understood as the condition that restriction to the strictly critical points determines
a sort of canonical splitting up to roots of unity [which will play an important
role in the present series of papers — cf., e.g., the discussion of Example 5.1, (v);
Definition 5.2, (vi), (viii); Remark 5.2.3, below| of the set of nonzero constant [i.e.,
L-] multiples of k-coric functions into a direct product, up to roots of unity, of
the set of k-coric functions and the set of nonzero elements of L. In particular, it
follows from the third displayed condition that if ¢ € L and f € L¢ are such that
both f and c- f are k-coric, then c is a root of unity.

(ii) We maintain the notation of (i). Let LY be an intermediate field between
L and L that is solvably closed [cf. [GISol], Definition 1, (i)], i.e., has no nontrivial
abelian extensions. Observe that, since |Cp|P* has precisely 4 critical points, it
follows immediately from the elementary theory of polynomial functions on
the affine line over L [i.e., the complement in |CL|P* of some L-rational point
|C'L|°P*] that there exists a k-coric fso € Lo [i-e., a rational function on the affine
line over L] of degree 4. In particular, it follows immediately from the elementary
theory of polynomial functions on the affine line [i.e., |CL|] over L [together with
“Hensel’s lemma” — cf., e.g., the method of proof of [AbsTopll], Lemma 2.1]
(respectively, from the existence of fs, [together with the well-known fact that the
symmetric group on 4 letters is solvable]) that

every element of L (respectively, LD) appears as a value of some k-coric
rational function on C, at some L- (respectively, L5-) valued point of Oy,
that is not critical.

If L = Fuoa, then write U7 for the group L™ of nonzero elements of L;if L =
(Finod)v for some v € Vi,q, then write U4 for the group of umits [i.e., relative
to the unique valuation on L that extends v] of L. We shall say that an element
f € L¢ is sok-coric if there exists a positive integer n such that ™ is a k-coric
element of L¢; we shall say that an element f € Lo is ook X -coric if there exists
an element ¢ € Uy such that c- f € L¢ is sok-coric. Thus, an element f € L¢ is
k-coric if and only if it is o k-coric. Also, one verifies immediately that

an kX -coric element f € L¢ is o k-coric if and only if it restricts to a
root of unity at some [or, equivalently, every| strictly critical point of the
proper smooth curve determined by some finite subextension C L¢ of the
function field Lo that contains f.
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Finally, one verifies immediately that the operation of multiplication determines a
structure of pseudo-monoid [cf. §0] on the sets of k-, o k-, and o,k Xx-coric rational
functions; moreover, in the case of . k- and ,, kX-coric rational functions, the re-
sulting pseudo-monoid is divisible and cyclotomic. These pseudo-monoids will be
of use in discussions concerning the Kummer theory of rational functions on Cp,
[cf. Example 5.1, (i), (v); Definition 5.2, (v), (vi), (vii), (viii), below].

(iii) We maintain the notation of (i) and (ii) and assume further that L = F,,q,
L = F. We shall say that an element f € L¢ is k-solvable if it is an F.-multiple
[cf. Definition 3.1, (b)] of a o k-coric element of L. Thus, one verifies immediately
that an element f € L¢ is k-solvable if and only if there exists a positive integer
n such that f is a s kx-coric element of Fy, - Lo. Write F(u;) € K for the
subextension of K generated by the [-th roots of unity; Lo (k-sol) € L for the
subfield of Lo generated by the k-solvable elements of Leo; Lo(Cy) C L for the
subfield of Lo generated over Lo by the images of the F/(p;)- Lo-linear embeddings
into Lo of the function field of C - Thus, the fact that the extension F/Fy0q is
Galois of degree prime to | [cf. Definition 3.1, (b)] implies that

the subgroup Gal(K/F(w;)) C Gal(K/Foa) is normal and may be char-
acterized as the unique subgroup of Gal(K/Fy,0q) that is [abstractly]
isomorphic to SLs(F;)

[cf. Remark 3.1.5; [GenEll], Lemma 3.1, (i)]. Moreover, we observe that it follows
immediately from the well-known fact that the finite group SLo(FF;) is perfect [cf.
Definition 3.1, (c); [GenEll], Lemma 3.1, (ii)], together with the definition of the
term “, kX -coric” [cf., especially, the fact that the zeroes and poles avoid the critical

points!], that

the subfields Lo(Cp) € Lo 2 F(w) - Lo(k-sol) are linearly disjoint
over F(pu;) - Le.

In particular, it follows that there is a natural isomorphism
Gal(Lc(Cr)/F(m) - Le) = Gal(Le(Ck) - Le(k-sol) /F () - Lo(k-sol))

— i.e., one may regard Gal(Lo(Cg)/F (1) - Le) as being equipped with an action
on Lo(C ) - Lo(k-sol) that restricts to the trivial action on F () - Le(k-sol).

(iv) We maintain the notation of (iii). In the following, we shall write “Out(—)”
for the group of outer automorphisms of the topological group in parentheses. Con-
sider the tautological exact sequence of Galois groups

1 — Gal(L¢/Lo(k-sol)) — Gal(Le/Le) — Gal(Lo(k-sol)/Le) — 1

[cf. the discussion of (iii)]. Let us refer to a subgroup of Gal(Lo/Lc(k-sol)) as
a k-sol-open subgroup if it is the intersection with Gal(L¢ /L (k-sol)) of a normal
open subgroup of Gal(Lo/L¢). Thus, the subgroups

Aut°(Gal(Le/Le(k-sol))) € Aut(Gal(Le/Le(k-sol)))

Out™**!(Gal(Lc/Le(k-sol))) € Out(Gal(Le/Le(k-sol)))
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of automorphisms /outer automorphisms of the topological group Gal(L¢/L¢ (k-sol))
that preserve each k-sol-open subgroup — i.e., of “k-sol-automorphisms/k-sol-outer
automorphisms” — admit natural compatible homomorphisms

Aut™s°Y(Gal(Lc /L (k-s01))) — Aut(Q)
Out™s°}(Gal(Lc /Lo (k-s01))) — Out(Q)

for each quotient Gal(L¢ /Lc(k-sol)) — Q by a k-sol-open subgroup. The kernels of
these natural homomorphisms [for varying “Q”] determine natural profinite topolo-
gies on Aut**°!(Gal(Lc /L (k-sol))), Out®s°(Gal(L¢c/Lc(k-sol))), with respect to
which each arrow of the commutative diagram of homomorphisms

Gal(Lc/Lc) —  Aut™*(Gal(L¢ /Lo (k-s01)))

l l

Gal(Lc(k-sol)/Lg) — Out™s°Y(Gal(Lg/Lc(k-sol)))

that arises, via conjugation, from the exact sequence considered above is continuous.
Finally, we observe that

Gal(Lc/Lc(k-sol)) is center-free; in particular, the above commutative
diagram of homomorphisms of topological groups is cartesian.

Indeed, let us first observe that it follows immediately from the definitions that
Gal(F - Lo(k-sol) /F - L¢) is abelian. Thus, it follows formally, by applying Lemma,
2.7, (vi), (vii), to the geometric fundamental groups of the various genus zero affine
hyperbolic curves whose function field is equal to L¢, that the conjugacy action by
any element « in the center of Gal(Lc/Lc(k-sol)) on such a [center-free] geometric
fundamental group is trivial and hence, by [the special case that was already known
to Belyi of] the Galois injectivity result discussed in [NodNon], Theorem C, that «
is the identity element of Gal(L¢c/Lc(k-sol)), as desired.

Given initial ©-data as in Definition 3.1, the theory of Frobenioids given in
[Frdl], [FrdII], [EtTh] allows one to construct various associated Frobenioids, as
follows.

Example 3.2. Frobenioids at Bad Nonarchimedean Primes. Let v €
yhad = VN V(K)P2d. The theory of the “Frobenioid-theoretic theta function” dis-
cussed in [EtTh], §5, may be thought of as a sort of formal, category-theoretic way
to formulate various elementary classical facts [which are reviewed in [EtTh], §1]
concerning the theory of the line bundles and divisors related to the classical theta
function on a Tate curve over an MLF. We give a brief review of this theory of
[EtTh], §5, as follows:

(i) By the theory of [EtTh], the hyperbolic curve X = determines a tempered

Frobenioid



70 SHINICHI MOCHIZUKI

[i.e., the Frobenioid denoted “C” in the discussion at the beginning of [EtTh], §5;
cf. also the discussion of Remark 3.2.4 below| over a base category

D,

[i.e., the category denoted “D” in the discussion at the beginning of [EtTh], §5].
We recall from the theory of [EtTh] that D, may be thought of as the category
of connected tempered coverings — i.e., “Btemp(év)o” in the notation of [EtTh],

Example 3.9 — of the hyperbolic curve X - the following, we shall write

[cf. the notational conventions concerning categories discussed in §0]. Also, we
observe that DZ may be naturally regarded [by pulling back finite étale coverings
via the structure morphism X — Spec(Ky)] as a full subcategory

D

T

c D,

of D,, and that we have a natural functor D, — D, which is left-adjoint to

the natural inclusion functor D, < D, [cf. [Frdll], Example 1.3, (ii)]. If (-)
is an object of D,, then we shall denote by “T(_y” the Frobenius-trivial object [a
notion which is category-theoretic — cf. [Frdl], Definition 1.2, (iv); [Frdl], Corollary
4.11, (iv); [EtTh], Proposition 5.1 of £, [which is completely determined up to

b

isomorphism] that lies over “(—)

(ii) Next, let us recall [cf. [EtTh], Proposition 5.1; [FrdI], Corollary 4.10] that
the birationalization

may be reconstructed category-theoretically from ;U [cf. Remark 3.2.1 below]. Write

Y =X

=v =v

.. 1

for the tempered covering determined by the object “Y “®” in the discussion at the
beginning of [EtTh], §5. Thus, we may think of gv as an object of D, [cf. the
object “A%” of [EtTh], §5, in the “double underline_case”]. Then let us recall the
“Frobenioid-theoretic -th root of the theta function”, which is normalized so as to

attain the value 1 at the point “\/—1" [cf. [EtTh], Theorem 5.7]; we shall denote
the reciprocal of [i.e., “1 over”] this theta function by

9, €0X(T} )

—v

— where we use the superscript “+” to denote the image in £ ; of an object of £ .

Here, we recall that QU is completely determined up to multiplication by a 21-th root

of unity [i.e., an element of po; (T; )] and the action of the group of automorphisms

—v
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[-Z C Aut(Ty ) [ie., we write Z for the group denoted “Z” in [EtTh], Theorem

5.7; cf. also the discussion preceding [EtTh], Definition 1.9]. Moreover, we recall
from the theory of [EtTh], §5 [cf. the discussion at the beginning of [EtTh]|, §5;
[EtTh], Theorem 5.7] that

Ty [regarded up to isomorphism] and

—v

©  [regarded up to the ugl(T ), I - Z indeterminacies discussed above]

—1)

may be reconstructed category-theoretically from év [cf. Remark 3.2.1 below].

(iii) Next, we recall from [EtTh], Corollary 3.8, (ii) [cf. also [EtTh], Proposition
5.1}, that the p,-adic Frobenioid constituted by the “base-field-theoretic hull” [cf.
[EtTh], Remark 3.6.2]

c.CF,

li.e., we write C, for the subcategory “cbs-fld” of [EtTh], Definition 3.6, (iv)] may
be reconstructed category-theoretically from ;v [cf. Remark 3.2.1 below].

(iv) Write g, for the g-parameter of the elliptic curve £, over K,. Thus, we may
think of ¢, as an element ¢, € OD(T X ) (=2 0% ) Note that it follows from our as-

sumption concerning 2-torsion [cf. Deﬁmtlon 3.1, (b)], together with the definition
of “K” [cf. Definition 3.1, (c)], that ¢, admits a 2I-th root in O%(Tx ) (= O% ).

Then one computes immediately from the final formula of [EtTh], Proposition 1.4,
(ii), that the value of O at /=gy is equal to

def
¢ =q/*€0”(Tx)

U

— where the notation qv/ b

[hence also ¢ | is completely determined up to a
p2(Tx )-multiple. Write ®¢, for the divis;% monoid [cf. [Frdl], Definition 1.1,
(iv)] (;Ethe py-adic Frobenioid C,. Then the image of q determines a constant
section [i.e., a sub-monoid on D, isomorphic to N] “logq)( )” of &¢,. Moreover,

the resulting submonoid [cf. Remark 3.2.2 below]

(I)CW = N logq)( )|'DF C ®C |DF

determines a p, -adic Frobenioid with base category given by DZ [cf. [Frdll], Example

1.1, (ii)]

— which may be thought of as a subcategory of C,. Also, we observe that [since the
g-parameter a € K,, it follows that] a determines a ugl( )-orbit of characteristic

splittings [cf. [FrdI] Definition 2.3]

| E\]'r
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on C!.

(v) Next, let us recall that the base field of iv is equal to K, [cf. the discussion

of Definition 3.1, (e)]. Write
D? S (Du)y

- -

for the full subcategory of the category (D,)y [cf. the notational conventions

—v

concerning categories discussed in §0] determined by the products in D, of zv
with objects of D! . Thus, one verifies immediately that “forming the product
with gv” determines a natural equivalence of categories Dlz_ = 'DS . Moreover, for
A® ¢ Ob(DS), the assignment

A% 0X(Tpe) - (8, Ir,0) € OF(Tje)

determines a monoid Oge(—) on DS [in the sense of [FrdlI], Definition 1.1, (ii)];
write Oé(? (—) C OCD? (—) 2for the submonoid determined by the invertible elements.
Next, let_us observe_that, relative to the natural equivalence of categories DZ = Dy@
— which we think of as mapping Ob(D'E_) 5 A A9 Y zv x A€ Ob(DS) — we
have natural isomorphisms

OCZF(_) = O?g)(_)S Oéi(_) = (959(—)

[where OCD;(_)7 Oé}(—) are the monoids associated to the Frobenioid C£ as in

[FrdI], Proposition 2.2] which are compatible with the assignment

gEhTA = QEM[‘A@

and the natural isomorphism [i.e., induced by the natural projection A® = zv X
A — A] O*(T4) = O*(T 40). In particular, we conclude that the monoid 0% (—)

determines — in a fashion consistent with the notation of [FrdI], Proposition 2.2!
— a py-adic Frobenioid with base category given by DS [cf. [FrdIl], Example 1.1,

(i) |
¢, (€ £

— which may be thought of as a subcategory of £ j, and which is equipped with a

por(=)-orbit of characteristic splittings [cf. [Frdl], Definition 2.3]

(C]

Ty

determined by @U. Moreover, we have a natural equivalence of categories

¢ 5c®
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that maps 7/ to 72. This fact may be stated more succinctly by writing
Fy S FY

— where we write F, & (Cyo1y); Fo oo (C9,72). In the following, we shall refer

vy vy
to a pair such as F, or F consisting of a Frobenioid equipped with a collection

of characteristic splittings as a split Frobenioid.

(vi) Here, it is useful to recall [cf. Remark 3.2.1 below] that:

(a) the subcategory D'E_ C D, may be reconstructed category-theoretically
from D, [cf. [AbsAnab], Lemma 1.3.8];

(b) the category DS may be reconstructed category-theoretically from D, |cf.
(a); the discussion at the beginning of [EtTh], §5];

(¢) the category DZ (respectively, DS ) may be reconstructed category-theoretically
from Cy (respectively, C2) [cf. [Frdl], Theorem 3.4, (v); [FrdIl], Theorem
1.2, (i); [FrdII], Example 1.3, (i); [AbsAnab], Theorem 1.1.1, (ii)];

(d) the category D, may be reconstructed category-theoretically either from
F  [ef. [EtTh], Theorem 4.4; [EtTh], Proposition 5.1] or from C, [cf.

[Frdl], Theorem 3.4, (v); [FrdIl], Theorem 1.2, (i); [FrdIl], Example 1.3,
(1); [SemiAnbd], Example 3.10; [SemiAnbd], Remark 3.4.1].

Next, let us observe that by (b), (d), together with the discussion of (ii) concerning
the category-theoreticity of © , it follows [cf. Remark 3.2.1 below] that

(e) one may reconstruct the split Frobenioid ]:2@ [up to the [-Z indeterminacy
in © discussed in (ii); cf. also Remark 3.2.3 below] category-theoretically

from F [cf. [Frdl], Theorem 3.4, (i), (v); [EtTh], Proposition 5.1].

Next, let us recall that the values of Qv may be computed by restricting the cor-

responding Kummer class, i.e., the “étale theta function” [cf. [EtTh], Proposition
1.4, (iii); the proof of [EtTh], Theorem 1.10, (ii); the proof of [EtTh], Theorem 5.7],
which may be reconstructed category-theoretically from D, [cf. [EtTh], Corollary
2.8, (i)]. Thus, by applying the isomorphisms of cyclotomes of [AbsToplIl], Corol-
lary 1.10, (c); [AbsToplIII], Remark 3.2.1 [cf. also [AbsToplll], Remark 3.1.1], to
these Kummer classes, one concludes from (a), (d) that

(f) one may reconstruct the split Frobenioid F., category-theoretically from

Cy, hence also [cf. (ii)] from F [cf. Remark 3.2.1 below].

Remark 3.2.1.

(i) In [FrdI], [FrdIl], and [EtTh] [cf. [EtTh], Remark 5.1.1], the phrase “recon-
structed category-theoretically” is interpreted as meaning “preserved by equivalences
of categories”. From the point of view of the theory of [AbsToplIIl] — i.e., the dis-
cussion of “mono-anabelian” versus “bi-anabelian” geometry [cf. [AbsToplll], §12,
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(Q2)] — this sort of definition is “bi-anabelian” in nature. In fact, it is not difficult
to verify that the techniques of [Frdl], [Frdll], and [EtTh] all result in explicit re-
construction algorithms, whose input data consists solely of the category structure
of the given category, of a “mono-anabelian” nature that do not require the use of
some fixed reference model that arises from scheme theory [cf. the discussion of
[AbsToplll], §I4]. For more on the foundational aspects of such “mono-anabelian
reconstruction algorithms”, we refer to the discussion of [I[UTchIV], Example 3.5.

(ii) One reason that we do not develop in detail here a “mono-anabelian ap-
proach to the geometry of categories” along the lines of [AbsTopllIl] is that, unlike
the case with the mono-anabelian theory of [AbsToplll], which plays a quite essen-
tial role in the theory of the present series of papers, much of the category-theoretic
reconstruction theory of [Frdl], [FrdIl], and [EtTh] is not of essential importance
in the development of the theory of the present series of papers. That is to say, for
instance, instead of quoting results to the effect that the base categories or divisor
monoids of various Frobenioids may be reconstructed category-theoretically, one
could instead simply work with the data consisting of “the category constituted by
the Frobenioid equipped with its pre-Frobenioid structure” [cf. [Frdl], Definition
1.1, (iv)]. Nevertheless, we chose to apply the theory of [Frdl], [FrdII], and [EtTh]
partly because it simplifies the exposition [i.e., reduces the number of auxiliary
structures that one must carry around], but more importantly because it renders
explicit precisely which structures arising from scheme-theory are “categorically
intrinsic” and which merely amount to “arbitrary, non-intrinsic choices” which,
when formulated intrinsically, correspond to various “indeterminacies”. This ex-
plicitness is of particular importance with respect to phenomena related to the unit-
linear Frobenius functor [cf. [FrdI], Proposition 2.5] and the Frobenioid-theoretic
indeterminacies studied in [EtTh], §5.

Remark 3.2.2.  Although the submonoid ®¢- is not “absolutely primitive” in the

sense of [Frdll], Example 1.1, (ii), it is “very close to being absolutely primitive”,
in the sense that [as is easily verified] there exists a positive integer N such that
N - @er is absolutely primitive. This proximity to absolute primitiveness may also

be seen in the existence of the characteristic splittings T£ .

Remark 3.2.3.

(i) Let o € Autp, (Y ). Then observe that a determines, in a natural way, an

automorphism ap of the }unctor DZ — D, obtained by composing the equivalence
of categories D) = ij [i.e., which maps Ob(DZ )2 A A® € Ob(DS )] discussed
in Example 3.2, (v), with the natural functor DS C (Dy)y — D,. Moreover,

—v

ap induces, in a natural way, an isomorphism ao= of the monoid O?@(—) on
v

DS associated to gv in Example 3.2, (v), onto the corresponding monoid on Dye
associated to the a-conjugate O of gv. Thus, it follows immediately from the

discussion of Example 3.2, (v), that

ap> — hence also a — induces an isomorphism of the split Frobenioid
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v

F© associated to QU onto the split Frobenioid ]:fa associated to 93 which

lies over the identity functor on DS .

In particular, the expression “]-"2@ ,

regarded up to the [ - Z indeterminacy in QU
discussed in Example 3.2, (i1)” may be understood as referring to the various splif

Frobenioids “F9°”, as a ranges over the elements of Autp, (Yv), relative to the

identifications given by these isomorphisms of split Frobenioids induced by the
various elements of Autp, (¥ ).

(ii) Suppose that A € Ob(D,) lies in the image of the natural functor DS C
(Dy)y — Dy, and that ¢ : B — T, is a linear morphism in the Frobenioid F .

—v

Then 1) induces an injective homomorphism
O*(T3) — O*(B™)

[cf. [FrdI], Proposition 1.11, (iv)]. In particular, one may pull-back sections of the
monoid Oge (=) on DS of Example 3.2, (v), to B. Such pull-backs are useful, for

instance, when one considers the roots of QU, as in the theory of [EtTh], §5.

Remark 3.2.4. Before proceeding, we pause to discuss certain minor oversights
on the part of the author in the discussion of the theory of tempered Frobenioids
in [EtTh], §3, §4. Let 3!°¢ be as in the discussion at the beginning of [EtTh], §3.
Here, we recall that 3! is obtained as the “universal combinatorial covering” of
the formal log scheme associated to a stable log curve with split special fiber over
the ring of integers of a finite extension of an MLF of residue characteristic p [cf.
loc. cit. for more details|; we write Z'°¢ for the generic fiber of the stable log curve
under consideration.

(i) First, let us consider the following conditions on a nonzero meromorphic
function f on 3.98:

(a) For every N € Nxq, it holds that f admits an N-th root over some
tempered covering of Z1°8,

(b) For every N € N> which is prime to p, it holds that f admits an N-th
root over some tempered covering of Z'°8.

(c) The divisor of zeroes and poles of f is a log-divisor.

It is immediate that (a) implies (b). Moreover, one verifies immediately, by consid-
ering the ramification divisors of the tempered coverings that arise from extracting
roots of f, that (b) implies (¢). When N is prime to p, if f satisfies (c), then
it follows immediately from the theory of admissible coverings [cf., e.g., [PrfGC],
§2, §8] that there exists a finite log étale covering Y'°8 — Z!°¢ whose pull-back
Y108 — Z1%¢ to the generic fiber Z1%8 of 319 is sufficient

(R1) to annihilate all ramification over the cusps or special fiber of 3!°¢ that
might arise from extracting an N-th root of f, as well as
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(R2) to split all extensions of the function fields of irreducible components of
the special fiber of 398 that might arise from extracting an N-th root of

f.

That is to say, in this situation, it follows that f admits an N-th root over the
tempered covering of Z'°% given by the “universal combinatorial covering” of Y'°8.
In particular, it follows that (c) implies (b). Thus, in summary, we have:

(a) = (b) = (o).

On the other hand, unfortunately, it is not clear to the author at the time of writing
whether or not (¢) [or (b)] implies (a).

(ii) Observe that it follows from the theory of [EtTh], §1 [cf., especially, [EtTh],
Proposition 1.3] that the theta function that forms the main topic of interest of
[EtTh] satisfies condition (a) of (i).

(iii) In [EtTh], Definition 3.1, (ii), a meromorphic function f asin (i) is defined
to be “log-meromorphic” if it satisfies condition (c) of (i). On the other hand, in the
proof of [EtTh], Proposition 4.2, (iii), it is necessary to use property (a) of (i) —
i.e., despite the fact that, as remarked in (i), it is not clear whether or not property
(c) implies property (a). The author apologizes for any confusion caused by this
oversight on his part.

(iv) The problem pointed out in (iii) may be remedied — at least from the
point of view of the theory of [EtTh] — via either of the following two approaches:

(A) One may modify [EtTh], Definition 3.1, (ii), by taking the definition of a
“log-meromorphic” function to be a function that satisfies condition (a) [i.e., as
opposed to condition (c)] of (i). [In light of the content of this modified definition,
perhaps a better term for this class of meromorphic functions would be “tempered-
meromorphic”.] Then the remainder of the text of [EtTh| goes through without
change.

(B) One may modify [EtTh]|, Definition 4.1, (i), by assuming that the meromorphic
function “f € O*(APFat)” of [EtTh], Definition 4.1, (i), satisfies the following
“Frobenioid-theoretic version” of condition (a):

(d) For every N € N>i, there exists a linear morphism A" — A in C such
that the pull-back of f to A" admits an N-th root.

[Here, we recall that, as discussed in (ii), the Frobenioid-theoretic theta functions
that appear in [EtTh] satisfy (d).] Note that since the rational function monoid of
the Frobenioid C, as well as the linear morphisms of C, are category-theoretic [cf.
[FrdI], Theorem 3.4, (iii), (v); [FrdI], Corollary 4.10], this condition (d) is category-
theoretic. Thus, if one modifies [EtTh], Definition 4.1, (i), in this way, then the
remainder of the text of [EtTh] goes through without change, except that one must
replace the reference to the definition of “log-meromorphic” [i.e., [EtTh], Definition
3.1, (ii)] that occurs in the proof of [EtTh], Proposition 4.2, (iii), by a reference to
condition (d) [i.e., in the modified version of [EtTh]|, Definition 4.1, (i)].

(v) In the discussion of (iv), we note that the approach of (A) results in a
slightly different definition of the notion of a “tempered Frobenioid” from the original
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definition given in [EtTh]. Put another way, the approach of (B) has the advantage
that it does mot result in any modification of the definition of the notion of a
“tempered Frobenioid”; that is to say, the approach of (B) only results in a slight
reduction in the range of applicability of the theory of [EtTh], §4, which is essentially
irrelevant from the point of view of the present series of papers, since [cf. (ii)] theta
functions lie within this reduced range of applicability. On the other hand, the
approach of (A) has the advantage that one may consider the Kummer theory
of arbitrary rational functions of the tempered Frobenioid without imposing any
further hypotheses. Thus, for the sake of simplicity, in the present series of papers,
we shall interpret the notion of a “tempered Frobenioid” via the approach of (A).

(vi) Strictly speaking, the definition of the monoid “®¢}” given in [EtTh],
Example 3.9, (iii), leads to certain technical difficulties, which are, in fact, entirely
irrelevant to the theory of [EtTh]. These technical difficulties may be averted by
making the following slight modifications to the text of [EtTh|, Example 3.9, as
follows:

(1) In the discussion following the first display of [EtTh|, Example 3.9, (i),
the phrase “Y'°% is of genus 17 should be replaced by the phrase “Y'°¢ is
of genus 1 and has either precisely one cusp or precisely two cusps whose
difference is a 2-torsion element of the underlying elliptic curve”.

(2) In the discussion following the first display of [EtTh], Example 3.9, (i),
the phrase

the lower arrow of the diagram to be “Xlog N Q'logn
should be replaced by the phrase

the lower arrow of the diagram to be “X'°8 — Clog”

(3) In the discussion following the first display of [EtTh], Example 3.9, (ii),
the phrase “unramified over the cusps of ...” should be replaced by the
phrase “unramified over the cusps as well as over the generic points of the
irreducible components of the special fibers of the stable models of ...”.
Also, the phrase “tempered coverings of the underlying ...” should be
replaced by the phrase “tempered admissible coverings of the underlying

2

In a word, the thrust of both the original text and the slight modifications just
discussed is that the monoid “®$1” is to be defined to be just large enough to
include precisely those divisors which are necessary in order to treat the theta
functions that appear in [EtTh].

Example 3.3. Frobenioids at Good Nonarchimedean Primes. Let v €
ygood mynon‘ Then:

(i) Write
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[cf. §0]. Thus, DZ may be naturally regarded [by pulling back finite étale coverings
via the structure morphism &U — Spec(K,)] as a full subcategory

D

T

C D,

of D,, and we have a natural functor D, — DE , which is left-adjoint to the natural

inclusion functor D < D, [cf. [Frdll], Example 1.3, (ii)]. For Spec(L) € Ob(D})

li.e., L is a finite separable extension of K], write ord(OY) oo O /OF asin [FrdIl],

Example 1.1, (i). Thus, the assignment [cf. §0]
®c, : Spec(L) ord(O% )Pt

determines a monoid ®¢, on [DE , hence, by pull-back via the natural functor D, —
D£ , on] D,; the assignment

®er : Spec(L) — ord(Zy) (S ord(OF )P

determines an absolutely primitive [cf. [FrdIl], Example 1.1, (ii)] submonoid ®¢- C

®c, |pr on D' ; these monoids Per, @c, determine py-adic Frobenioids
C, CCy

[cf. [FrdII], Example 1.1, (ii), where we take “A” to be Z], whose base categories
are given by DZ , D, [in a fashion compatible with the natural inclusion DZ C Dy,
respectively. Also, we shall write

[cf. the notation of Example 3.2, (i)]. Finally, let us observe that the element
Pv € ZEJ C O?{U determines a characteristic splitting

'_

I@\‘

on C! [cf. [FrdIl], Theorem 1.2, (v)]. Write ]—"5 & (C:,TL__) for the resulting split

Frobenioid.

(ii) Next, let us write log(p, ) for the element p, of (i) considered additively and
consider the monoid on D'E_

0% (=) = O (=) x (N -log(py)

associated to C'E_ [cf. [Frdl], Proposition 2.2]. By replacing “log(p,)” by the formal
log(©
symbol “log(py) - log(©) = log(pgg(:))”, we obtain a monoid

O%e (=) € Oga(—) x (N-log(p,) - log(8))
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[i.e., where Oje (—) et (”)X (—)], which is naturally isomorphic to O, and which

arises as the monoid “OD(—)” of [FrdI] Proposition 2.2, associated to some Po-adic

Frobenioid C@ with base category D® DF equipped with a characteristic splitting
79 determined by log(py) - 1og(©). In particular, we have a natural equivalence

Fo S F

— where f9 ot (C@ 9) of split Frobenioids.

v ’U
(iii) Here, it is useful to recall that

(a) the subcategory D'E_ C D, may be reconstructed category-theoretically
from D, [cf. [AbsAnab], Lemma 1.3.8];

(b) the category D! (respectively, D@) may be reconstructed category-theoretically
from C, (respectlvely, C@) [cf. [FrdI], Theorem 3.4, (v); [Frdll], Theorem
1.2, (i ), [FrdII], Example 1.3, (i); [AbsAnab], Theorem 1.1.1, (ii)];

(c) the category D, may be reconstructed category-theoretically from JF .= Cy

[cf. [FrdI], Theorem 3.4, (v); [FrdII], Theorem 1.2, (i); [FrdIl], Example
1.3, (i); [AbsAnab], Lemma 1.3.1].

Note that it follows immediately from the category-theoreticity of the divisor monoid
®c, [ef. [Frdl], Corollary 4.11, (iii); [Frdll], Theorem 1.2, (i)], together with (a),

(¢), and the definition of CE [cf. also [AbsAnab], Proposition 1.2.1, (v)], that

(d) CE may be reconstructed category-theoretically from ;U.

Finally, by applying the algorithmically constructed field structure on the image
of the Kummer map of [AbsTopllII], Proposition 3.2, (iii) [cf. Remark 3.1.2; Re-
mark 3.3.2 below], it follows that one may construct the element “p,” of (9['>(v

category-theoretically from J ) hence that the characteristic splitting Tg may be
reconstructed category-theoreti_ca,lly Jrom F .- [Here, we recall that the curve Xp is
“of strictly Belyi type” — cf. [AbsToplII], Remark 2.8.3.] In particular,

(e) one may reconstruct the split Frobenioids .7-"5 , .7-"2@ category-theoretically
from ;g.

Remark 3.3.1. A similar remark to Remark 3.2.1 [i.e., concerning the phrase
“reconstructed category-theoretically”| applies to the Frobenioids C,, C£ constructed
in Example 3.3.

Remark 3.3.2. Note that the p,-adic Frobenioid C, (respectively, Cf) of Example

3.3, (i), consists of essentially the same data as an “MLF-Galois TM-pair of strictly
Belyi type” (respectively, “MLF-Galois TM-pair of mono-analytic type”), in the
sense of [AbsTopllII|, Definition 3.1, (ii) [cf. [AbsToplIlI], Remark 3.1.1]. A similar
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remark applies to the p,-adic Frobenioid C, (respectively, C'£ ) of Example 3.2, (iii),
(iv) [cf. [AbsToplll], Remark 3.1.3].

Example 3.4. Frobenioids at Archimedean Primes. Let v € V*°. Then:

(i) Write
XQ) CE? X27 QQ? Xqﬂ Q’U

for the Aut-holomorphic orbispaces [cf. [AbsToplIIl], Definition 2.1, (i); [AbsTopIII],
Remark 2.1.1] determined, respectively, by the hyperbolic orbicurves X, Cx, X o,
Ck, &K, Q>K at v. Thus, for O € {X,,C,,X,,C,, &2, Qz}’ we have a complex

archimedean topological field [i.e., a “CAF” — cf. §0]
Ag

[cf. [AbsTopllIl], Definition 4.1, (i)] which may be algorithmically constructed from
OJ; write Ag L \ {0} [cf. Remark 3.4.3, (i), below|. Next, let us write

and

for the archimedean Frobenioid as in [FrdII], Example 3.3, (ii) [i.e., “C” of loc. cit.],
where we take the base category [i.e., “D” of loc. cit.] to be the one-morphism
category determined by Spec(K,). Thus, the linear morphisms among the pseudo-
terminal objects of C determine wunique isomorphisms [cf. [Frdl], Definition 1.3,
(iii), (c)] among the respective topological monoids “O%(—)" — where we recall
[cf. [Frdl], Theorem 3.4, (iii); [FrdII], Theorem 3.6, (i), (vii)] that these topological
monoids may be reconstructed category-theoretically from C. In particular, it makes
sense to write “O%(C,)”, “O*(Cy) € O%(Cy)”. Moreover, we observe that, by
construction, there is a natural isomorphism

O (Cy) = 0%

of topological monoids. Thus, one may also think of C, as a “Frobenioid-theoretic

representation” of the topological monoid OF [cf. [AbsToplIl], Remark 4.1.1].

Observe that there is a natural topological isomorphism K, 5 Ap,, which may be
restricted to O?ﬂ, to obtain an inclusion of topological monoids

Ky : (’)D(CQ) — ./41)2

— which we shall refer to as the Kummer structure on C, [cf. Remark 3.4.2 below].
Write

def
F = (Cy, Dy, k)

:E

[cf. Example 3.2, (i); Example 3.3, (i)].
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(i) Next, recall the category TM' of “split topological monoids” of [AbsToplIII],
Definition 5.6, (i) — i.e., the category whose objects (C, C') consist of a topolog-
ical monoid C isomorphic to OF and a topological submonoid C C [neces-
sarily isomorphic to R>g] such that the natural inclusions C* — C' [where C*,
which is necessarily isomorphic to S', denotes the topological submonoid of invert-
ible elements], — (' determine an isomorphism C'* x 5 O of topological
monoids, and whose morphisms (Cq, 81) — (Cy, 82) are isomorphisms of topo-
logical monoids C; = C5 that induce isomorphisms C'; = ('5. Note that the
CAF’s K, Ap, determine, in a natural way, objects of TM"™. Write

| d\‘T

for the resulting characteristic splitting of the Frobenioid CF def Cy, i.e., so that we
may think of the pair (OD(CF) ) as the object of TM" determined by Ky;
D-

v

for the object of TM™ determined by ZDE;

Fy (€ Dy )

for the [ordered] triple consisting of CF D!, and 7). Thus, the object (OD(CF) )

of TM' is isomorphic to D . Moreover CF (respectlvely, DF F, F) may be algomth—
mically reconstructed from ‘7::11 (respectlvely, Dy; E v).

(iii) Next, let us observe that p, € K, [cf. §0] may be thought of as a(n) [non-
identity| element of the noncompact factor (PC)— [i.e., the factor denoted by a “—” in

the definition of TM"] of the object (O (C'_) ™) of TM". This noncompact factor
®cr is isomorphic, as a topological monoid, to R>o; let us write ®cr additively
and denote by log(p,) the element of Pcr determined by p,. Thus, relative to
the natural action [by multiplication!] of R>q on ®er-, it follows that log(py) is a
generator of Per-. In particular, we may form a new topological monoid

Do e R>o - log(py) - log(©)

log(©
isomorphic to R>g that is generated by a formal symbol “log(p, )-log(©) = log(py Q)

Moreover, if we denote by O, the compact factor of the object ((’)'>(C1'j ), T, 2) of

).

TM", and set OX o ng, then we obtain a new split Frobenioid (Cv@ ; U@ ), isomor-
phic to (CZ, Ty ), such that

OD(CS) = 06 x co
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— where we note that this equality gives rise to a natural isomorphism of split Frobe-
nioids (C; , T£ ) = (CS, TE ), obtained by “forgetting the formal symbol log(©)”. In

particular, we thus obtain a natural isomorphism
Fy = Fy

— where we write ]-"_@ Lof (CS ,D9,79) for the [ordered] triple consisting of CS,

v vy
DS def DZ , 72@. Finally, we observe that ]-"2@ may be algorithmically reconstructed
from F .

Remark 3.4.1. A similar remark to Remark 3.2.1 [i.e., concerning the phrase
“reconstructed category-theoretically”] applies to the phrase “algorithmically recon-
structed” that was applied in the discussion of Example 3.4.

Remark 3.4.2. One way to think of the Kummer structure
Ky : OF (Cy) — Ap,

discussed in Example 3.4, (i), is as follows. In the terminology of [AbsToplII], Def-
inition 2.1, (i), (iv), the structure of CAF on Ap, determines, via pull-back by Ko,
an Aut-holomorphic structure on the groupification O (Cy)&P of O (Cy), together
with a [tautological!] co-holomorphicization O (Cy)® — Ap,. Conversely, if one
starts with this Aut-holomorphic structure on [the groupiﬁcati(_)n of] the topological
monoid O (C,), together with the co-holomorphicization O%(C,)8? — Ap,, then
one verifies immediately that one may recover the inclusion of topological monoids
ky. [Indeed, this follows immediately from [AbsToplll], Corollary 2.3, together
with the elementary fact that every holomorphic automorphism of the complex Lie
group C* that preserves the submonoid of elements of norm < 1 is equal to the
identity.] That is to say, in summary,

the Kummer structure x, is completely equivalent to the collection
of data consisting of the Aut-holomorphic structure [induced by r,] on
the groupification O (C,)®? of O% (C,), together with the co-holomorphi-
cization [induced by .| O (Cy)®? — Ap, .

The significance of thinking of Kummer structures in this way lies in the observation
that [unlike inclusions of topological monoids!]

the co-holomorphicization induced by «, is compatible with the log-

arithm operation discussed in [AbsToplII], Corollary 4.5.

Indeed, this observation may be thought of as a rough summary of a substantial
portion of the content of [AbsToplIII], Corollary 4.5. Put another way, thinking of
Kummer structures in terms of co-holomorphicizations allows one to separate out
the portion of the structures involved that is not compatible with this logarithm
operation — i.e., the monoid structures! — from the portion of the structures
involved that is compatible with this logarithm operation — i.e., the tautological
co-holomorphicization.
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Remark 3.4.3.

(i) In the notation of Example 3.4, write A C Apq for the topological group
of units [i.e., of elements of norm 1] of the CAF Ag [so AJ is noncanonically iso-
morphic to the unit circle S; AE C A for the subgroup of torsion elements
[so Af, is noncanonically isomorphic to Q/Z]; E, for the Aut-holomorphic space
[cf. [AbsToplll], Definition 2.1, (i)] determined by the elliptic curve obtained by
compactifying X ;- at v. Now recall from the construction of “An” in [AbsTopllIl],
Corollary 2.7 [cf. also [AbsToplII], Definition 4.1, (i)] via the technique of “holo-
morphic elliptic cuspidalization”, that one has a natural isomorphism of CAF’s

Ay = Ap, 5 Ay

— which may be used to “identify” A x = ZDE with ZXU- Indeed, thinking of
“A x = _,71293” as “71&” is natural from the point of view of the “©-approach”
discussed in Remark 3.1.2, (ii). Moreover, by allowing Ag to “act” [cf. the algo-

rithm discussed in [AbsToplII], Corollary 2.7, (e)] on points in a sufficiently small
neighborhood of [but not equal to!] a given point “z” of E,, one may regard the

“circle” Ag as a deformation retract of the complement of x in a suitable small

neighborh(;(;d of x in Ey‘ In particular,

from the point of view of the “©-approach” discussed in Remark 3.1.2,
(i), it is natural to think of “Ax = Ap,” as “Ax " and to regard

Hom(Q/Z, Ay ) = Hom(Q/Z, Ag )
[a profinite group which is noncanonically isomorphic to 2] as the result

of identifying the cuspidal inertia groups of the various points “z” of
E

=v
— cf. discussion of the cuspidal inertia groups “I,” in [AbsToplII]|, Proposition
1.4, (i), (ii). Indeed, this interpretation of Ax = Ap, via cuspidal inertia groups
may be thought of as a sort of archimedean version of the “©-approach” discussed
in Remark 3.1.2, (ii).

(ii) We observe that just as the theory of elliptic cuspidalization [cf. [AbsTopll],
Example 3.2; [AbsTopll], Corollaries 3.3, 3.4] admits a straightforward holomorphic
analogue, i.e., the theory of “holomorphic elliptic cuspidalization” [cf. [AbsToplIII],
Corollary 2.7] referred to in (i) above, the theory of Belyi cuspidalization [cf. [Ab-
sTopll], Example 3.6; [AbsTopll], Corollaries 3.7, 3.8; [AbsTopIII|, Remark 2.8.3]
admits a straightforward holomorphic analogue, i.e., a theory of “holomorphic
Belyi cuspidalization”. We leave the routine details to the reader. Here, we ob-
serve that one immediate consequence of such “holomorphic Belyi cuspidalizations”
may be stated as follows:

the set of NF-points [i.e., points defined over a number field] of the
underlying topological space of the Aut-holomorphic space D, may be
reconstructed via a functorial algorithm from the [abstract] Aut-
holomorphic space D,,.
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Example 3.5. Global Realified Frobenioids.

(i) Write
CH—

mod

for the realification [cf. [Frdl], Theorem 6.4, (ii)] of the Frobenioid of [Frdl], Example
6.3 [cf. also Remark 3.1.5 of the present paper], associated to the number field Fy,0q
and the trivial Galois extension [i.e., the Galois extension of degree 1] of Fioq [s0
the base category of CIf . is, in the terminology of [Frdl], equivalent to a one-
morphism category]. Thus, the divisor monoid (I)Cl;od of C‘r;od may be thought of

as a single abstract monoid, whose set of primes, which we denote Prime(Cl;Od)
[cf. [Frdl], §0], is in natural bijective correspondence with Vy,0q [cf. the discussion

of [Frdl], Example 6.3]. Moreover, the submonoid ®.r _w Oof ®cr- corresponding

mod
to v € Vinea 1s naturally isomorphic to ord(O(DFmod)v)pf ® R>o (2 Rxg) [ie., to
ord (O

(Fanoa) ) (2 Rxp) if v € V2¢,]. In particular, p, determines an element
log;od(pv) € Por L Write v € V for the element of V that corresponds to v.

Then observe that regardless of whether v belongs to VP24, y&ood () V" or V¥,

the realification @gf of the divisor monoid ®c- of CE [which, as is easily verified,

is a constant monoid over the corresponding base category] may be regarded as a
single abstract monoid isomorphic to R>o. Write logg (py) € <I>21,f for the element

defined by p, and
Cpy * Cinoa — (C,)™

for the natural restriction functor [cf. the theory of poly-Frobenioids developed in
[FrdIl], §5] to the realification of the Frobenioid C£ [cf. [Frdl], Proposition 5.3].
Thus, one verifies immediately that sz is determined, up to isomorphism, by the
isomorphism of topological monoids [which are isomorphic to R>¢]
. ~ rlf
pﬂ . @cl:odm — QC’_
induced by C,, — which, by considering the natural “volume interpretations” of
the arithmetic divisors involved, is easily computed to be given by the assignment

10 m0a(P0) Koo 1108 (Py)-

(ii) In a similar vein, one may construct a “©-version” [i.e., as in Examples
3.2, (v); 3.3, (ii); 3.4, (iii)] of the various data constructed in (i). That is to say, we
set
def
ey, = ey, 1o8(@)

— i.e., an isomorphic copy of ®.r . generated by a formal symbol log(©). This

monoid <I>thkh . thus determines a Frobenioid C‘t;t, equipped with a natural equivalence

of categories C\ ;= Cii. and a natural bijection Prime(Cly.) = Vipoa. For v €
Vimod, the element log’ . (py) of the submonoid @ L & ®er thus determines

mod

an element log" ;(p,) - log(©) of a submonoid P € Per . Write v € V for the

— 1wV —

element of V that corresponds to v. Then the realification (IDE% of the divisor monoid

Do of CO [which, as is easily verified, is a constant monoid over the corresponding
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base category] may be regarded as a single abstract monoid isomorphic to Rxq.
Write
Cpo : Cine — (C0)™

for the natural restriction functor [cf. (i) above; the theory of poly-Frobenioids de-
veloped in [FrdII], §5] to the realification of the Frobenioid CS [cf. [Frdl], Proposi-
tion 5.3]. Thus, one verifies immediately that C po is determined, up to isomorphism,

by the isomorphism of topological monoids [Whi_Ch are isomorphic to Rx>]

R

2 }t’v

induced by Cye. If v € V& then write logg (py) - log(©) € ®LE for the element

determined by logg (py); thus, [cf. (i)] pg is given by the assign;nent log™ .4 (py) -
log(©) mlogq) (pv) -10g(©). On the other hand, if v € VP24 then let us

write
logé(@ ) € <I>rlf

for the element determined by © [cf. Example 3.2, (v)] and logg(py) for the

constant section of ®¢, determined by Py [cf. the notation “logq,( )” of Example
3.2, (iv)]; in particular, it makes sense to write logg (pv)/logq)( ) € Q>0, thus, [cf.
(i)] p(z is given by the assignment

logg (pv) logg (gy)
KQ: (Fmod)v] ‘ IOgé(gv)

logp0q(pov) - 1og(©) [

— cf. Remark 3.5.1, (i), below. Note that, for arbitrary v € V, the various p,,

pv are compatible with the natural isomorphisms C\- . = Ch ., CI = CO [cf. §0].
This fact may be expressed as a natural isomorphism between collections of data
[consisting of a category, a bijection of sets, a collection of data indexed by V, and
a collection of isomorphisms indexed by V]|

Smod — Stht

— where we write
def ~
gmod - (Cinod7 Prlme(cl;od) — y’ {F£}£€Y7 {pU}UGV)

def ~
Stht = (C} tht> Prlme(Ctht) -V, {-FQG)}BEY7 {pv }vev)

[and we apply the natural bijection V = V,,,q]; c¢f. Remark 3.5.2 below.

(iii) One may also construct a “D-version” — which, from the point of view of
the theory of [AbsToplIII|, one may also think of as a “log-shell version” — of the
various data constructed in (i), (ii). To this end, we write

D

mod
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for a [i.e., another] copy of Cm0 q- Thus, one may associate to D‘Fod various objects
@Du— Prlme(Dlr;od) = Vimods loggod(pv) € CI)DH— - (I)Du— [fOI‘ AN Vmod]
that ma,p to the corresponding obJects associated to C mod under the tautological
equivalence of categories Ci- = DI .. Write v € V for the element of V that
corresponds to v. Next, suppose that v € V*°"; then let us recall from [AbsToplIII],
Proposition 5.8, (iii), that [since the profinite group associated to D! is the absolute
Galois group of an MLF] one may construct algorithmically from D! a topological
monotd isomorphic to R>q -

(RS0)w

[i.e., the topological monoid determined by the nonnegative elements of the ordered
topological group “Ron(G)” of loc. cit.] equipped with a distinguished “Frobenius
element” € (RS ),; if e, is the absolute ramification index of the MLF K, then we
shall write logg (pv) € (RS4), for the result of multiplying this Frobenius element
by [the positive real number| e,. Next, suppose that v € V*; then let us recall
from [AbsToplII], Proposition 5.8, (vi), that [since, by definition, D!, € Ob(TM")]
one may construct algorithmically from DZ a topological monoid ison;orphic to R>g

(RS0)w

[i.e., the topological monoid determined by the nonnegative elements of the ordered
topological group “R,;.(G)” of loc. cz't] equipped with a distinguished “Frobenius
element” € (R';O)U, we shall write logy (py) € (RS,), for the result of dividing this
Frobenius element by [the positive real number] 2. In particular, for every v € V,
we obtain a uniquely determined isomorphism of topological monoids [which are
isomorphic to R>]

(bDH_

mod’Y :> (REO)E

by assigning log®_(p,) — mlogg (pv). Thus, we obtain data [consisting of

a Frobenioid, a bijection of sets, a collection of data indexed by V, and a collection
of isomorphisms indexed by V]

def ~
I{) = (Dmod7 Prlme(pmod) - y? {DZ}QGY’ {PE}QEY)

[where we apply the natural bijection V = V,,,4], which, by [AbsToplII], Proposi-
tion 5.8, (iii), (vi), may be reconstructed algorithmically from the data {DZ}EGY'

Remark 3.5.1.

(i) The formal symbol “log(8)” may be thought of as the result of identifying
the various formal quotients “logg(© ) / logq,( ) , as v varies over the elements of
Vbad.

(ii) The global Frobenioids C! ., Cl . of Example 3.5 may be thought of as

“devices for currency exchange” between the various “local currencies” constituted
by the divisor monoids at the various v € V.
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(iii) One may also formulate the data contained in g _,, Fi;. via the language
of poly-Frobenioids as developed in [FrdII], §5, but we shall not pursue this topic in
the present series of papers.

Remark 3.5.2. In Example 3.5, as well as in the following discussion, we shall
often speak of “isomorphisms of collections of data”, relative to the following con-
ventions.

(i) Such isomorphisms are always assumed to satisfy various evident compati-
bility conditions, relative to the various relationships stipulated between the various
constituent data, whose explicit mention we shall omit for the sake of simplicity.

(ii) In situations where the collections of data consist partially of various cat-
egories, the portion of the “isomorphism of collections of data” involving corre-
sponding categories is to be understood as an isomorphism class of equivalences of
categories [cf. §0].

Definition 3.6.  Fix a collection of initial ©-data (F /F, Xp, I, Cy, V, VP2d ¢)

mod?’
as in Definition 3.1. In the following, we shall use the various notations introduced

in Definition 3.1 for various objects associated to this initial ©-data. Then we define
a ©-Hodge theater [relative to the given initial ©-data] to be a collection of data

HT® = ({("E Jvev, "Fimoa)

that satisfies the following conditions:

(a) If v € V" then T£ , is a category which admits an equivalence of cate-
gories T]:-"U = F . [where Z is as in Examples 3.2, (i); 3.3, (i)]. In partic-
ular, T F v_admits_ a natural Frobenioid structure [cf. [Frdl], Corollary 4.11,

(iv)], which may be constructed solely from the category-theoretic struc-
ture of T]: Write TDU, D" TD@ T]:'_ T]-"f) for the objects constructed

category—theoretzcally from T£ ) that correspond to the objects without a
“” discussed in Examples 3.2, 3.3 cf., especially, Examples 3.2, (vi); 3.3,
(iii)].

(b) If v € V¥ then Tév is a collection of data (1Cy, Dy, Tk,) — where 1C,
is a category equivalent to the category C, of Example 3.4, (i); TD2 is an
Aut-holomorphic orbispace; and T, : O”(1C,) < Aip, is an inclusion

of topological monoids, which we shall refer to as the Kummer structure
on TCE — such that there exists an isomorphism of collections of data

T]: = F [where Z is as in Example 3.4, (i)]. Write Dy, DY, TFy,
T}" 2 for the objects constructed algorithmically from T]-" that correspond
to the objects without a “t” discussed in Example 3.4, ( i), (iii).

(c) T3, is a collection of data

(Tcmodv Prlme(TCmod> :> y? {Tf:}er’ {TPU}QEY)
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— where TC"Fod is a category which admits an equivalence of categories
TC'F —> Ci;od [which implies that TC'FOd admits a natural category-theore-
tically constructible Frobenioid structure — cf. [Frdl], Corollary 4.11,
(iv); [Frdl], Theorem 6.4, (i)]; Prime(TC" ) = V is a bijection of sets,
where we write Prime(TC!"_,) for the set of primes constructed from the

category TC . [cf. [FrdI], Theorem 6.4, (iii)]; "7 is as discussed in

mod v

(a), (b) above; Tp, @ @ior

v @ﬁlcfk [where we use notation as in the
mod’ v

discussion of Example 3.5, (i)] is an igomorphism of topological monoids.
Moreover, we require that there exist an isomorphism of collections of data
f5 o= 't 4 [where §'-_, is as in Example 3.5, (ii)]. Write g7, T35
for the objects constructed algorithmically from T%"I;Od that correspond to
the objects without a “1” discussed in Example 3.5, (ii), (iii).

Remark 3.6.1. When we discuss various collections of ©-Hodge theaters, labeled
by some symbol “[J” in place of a “4”, we shall apply the notation of Definition 3.6
with “4” replaced by “[J” to denote the various objects associated to the ©@-Hodge
theater labeled by “[17.

Remark 3.6.2. If "H7® and ¥HT® are ©-Hodge theaters, then there is an
evident notion of isomorphism of ©-Hodge theaters THT® = tHT® [cf. Remark
3.5.2]. We leave the routine details to the interested reader.

Corollary 3.7.  (©-Links Between ©-Hodge Theaters) Fiz a collection of
initial ©-data (F/F, Xr, I, Cy, V, VP34 "¢} as in Definition 3.1. Let

mod?

THT@ ({TF }UEV7 lr;od); 1HT@ ({i‘F }UEV7 ‘Smod)

be ©-Hodge theaters [relative to the given initial ©-dataj. Then:

(i) (©-Link) The full poly-isomorphism /cf. §0] between collections of data
[cf. Remark 3.5.2]

Jrgtht Smod

is nonempty [cf. Remark 3.7.1 below]. We shall refer to this full poly-isomorphism

as the ©-link

fy7e 2 iy7e

from YHT® to IHT®.

(ii) (Preservation of “D"”) Let v € V. Recall the tautological isomor-
phisms DDF = DD@ for O = 1,1 — i.e., which arise from the definitions when
v e yeood [cf E:mmples 3.8, (ii); 3.4, (m)] and which arise from a natural product
functor [cf. Ezample 3.2, (v)] when v € VP, Then we obtain a composite [full]
poly-isomorphism

D) 5 DY 5 Dy
by composing the tautological isomorphism just mentioned with the poly-isomorphism
induced by the ©-link poly-isomorphism of (7).
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(iii) (Preservation of “O*”) Let v € V. Recall the tautological isomor-
phisms OF,. = OF .o [where we omit the notation “(—)”] for O = 1,1 — i.e,

which arise from the definitions when v € V&°°4 [cf. Examples 3.3, (ii); 8.4, (iii)],
and which are induced by the natural product functor [cf. Example 3.2, (v)] when
v e yhad, Then, relative to the corresponding composite isomorphism of (ii), we
obtain a composite [full] poly-isomorphism

X ~ X ~ X
ey = Yieg 7 Yigy

by composing the tautological isomorphism just mentioned with the poly-isomorphism
induced by the ©-link poly-isomorphism of (7).

Proof. The various assertions of Corollary 3.7 follow immediately from the defini-
tions and the discussion of Examples 3.2, 3.3, 3.4, and 3.5. O

Remark 3.7.1. One verifies immediately that there exist many distinct isomor-
phisms TS'cht = ig'r;od as in Corollary 3.7, (i), none of which is conferred a “dis-
tinguished” status, i.e., in the fashion of the “natural isomorphism %"I;Od = SLth 7

discussed in Example 3.5, (ii).
The following result follows formally from Corollary 3.7.

Corollary 3.8. (Frobenius-pictures of ©-Hodge Theaters) Fix a collection
of initial ©-data as in Corollary 3.7. Let {"HT®}ncz be a collection of distinct
©-Hodge theaters indezed by the integers. Then by applying Corollary 3.7, (i),

with THT® & nHTE, THTO Lof (n+DHTO  we obtain an infinite chain

Oy mhy7e 2y ay7e 2y (hy7e 2

of ©-linked ©-Hodge theaters. This infinite chain may be represented symboli-
cally as an oriented graph I' [cf. [AbsToplll], §0]

— ° — ° — ° —

— 1.e., where the arrows correspond to the « 9, ’s”, and the “e’s” correspond to the
3 TO 7. This oriented graph L' admits a natural action by Z — i.e., a translation
symmetry — but it does not admit arbitrary permutation symmetries. For
mstance, [' does not admit an automorphism that switches two adjacent vertices,
but leaves the remaining vertices fixed. Put another way, from the point of view of
the discussion of [Frdl], §1/, the mathematical structure constituted by this infinite
chain is “Frobenius-like”, or “order-conscious”. [t is for this reason that
we shall refer to this infinite chain in the following discussion as the Frobenius-
picture.
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Remark 3.8.1.

(i) Perhaps the central defining aspect of the Frobenius-picture is the fact that

the ©-link maps
n Q — (n+1) q
= 2,
[i.e., where v € ¥P*d — ¢f. the discussion of Example 3.2, (v)]. From this point of
view, the Frobenius-picture may be depicted as in Fig. 3.1 below — i.e., each box
is a ©-Hodge theater; the “~~” may be thought of as denoting the scheme theory

that lies between “q 7 and “QU”; the “- - - -7 denotes the ©-link.
:E ——
n n (n+1) (n+1)
- ggw QE - ng QQ -
nQ — (n+1)q
= =v

Fig. 3.1: Frobenius-picture of ©-Hodge theaters

(ii) Tt is perhaps not surprising [cf. the theory of [FrdI|] that the Frobenius-

picture involves, in an essential way, the divisor monoid portion [i.e., “q 7 and
=v

“Qv”] of the various Frobenioids that appear in a ®-Hodge theater. Put another
way,

it is as if the “Frobenius-like nature” of the divisor monoid portion of the
Frobenioids involved induces the “Frobenius-like nature” of the Frobenius-
picture.

By contrast, observe that for v € V, the isomorphisms

= nph 5 (dbpE X

of Corollary 3.7, (ii), imply that if one thinks of the various (_)DZ as being only
known up to tsomorphism, then

one may regard (_)DZ as a sort of constant invariant of the wvarious

©-Hodge theaters that constitute the Frobenius-picture

— cf. Remark 3.9.1 below. This observation is the starting point of the theory of
the étale-picture [cf. Corollary 3.9, (i), below]. Note that by Corollary 3.7, (iii), we
also obtain isomorphisms

~ X ~ ~

X
= Oier = O<n+1>cg —

lying over the isomorphisms involving the “(_)DZ 7 discussed above.

(iii) In the situation of (i), suppose that v € V", Then (7)Df is simply

the category of connected objects of the Galois category associated to the profinite
group G,. That is to say, one may think of (=)Df as representing “Gy up to
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isomorphism”. Then each "D, represents an “isomorph of the topological group
I1,, labeled by n, which is regarded as an extension of some isomorph of G, that
is independent of n”. In particular, the quotients corresponding to G, of the

copies of II, that arise from "HT® for different n are only related to one another
via some indeterminate isomorphism. Thus, from the point of view of the theory of
[AbsTopllI] [cf. [AbsToplIl], §I3; [AbsToplll], Remark 5.10.2, (ii)], each IL, gives
rise to a well-defined ring structure — i.e., a “holomorphic structure” — which is
obliterated by the indeterminate isomorphism between the quotient isomorphs of
G arising from U T® for distinct n.

(iv) In the situation of (ii), suppose that v € V**°. Then (_)DE is an object
of TM"; each "D, represents an “isomorph of the Aut-holomorphic orbispace &U,

labeled by n, whose associated [complex archimedean] topological field A x  gues

rise to an isomorph of DE that is independent of n”. In particular, the various
isomorphs of Dz associated to the copies of &U that arise from "HT® for different

n are only related to one another via some indeterminate isomorphism. Thus, from
the point of view of the theory of [AbsToplll] [cf. [AbsToplIll], §I3; [AbsToplll],
Remark 5.10.2, (ii)], each &U gives rise to a well-defined ring structure — i.e., a

“holomorphic structure” — which is obliterated by the indeterminate isomorphism
between the isomorphs of Dlg_ arising from "H7T® for distinct n.

The discussion of Remark 3.8.1, (iii), (iv), may be summarized as follows.

Corollary 3.9. (Etale-pictures of ©-Hodge Theaters) In the situation of
Corollary 3.8, let v € V. Then:

an

(n-vp | — DF - |,

(n+2)p,

Fig. 3.2: Etale-picture of ©-Hodge theaters
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an

(n—l)Dv — D: % OE’(F 7 (n+1)D

(n+2)p,

Fig. 3.3: Etale—picture plus units

(i) We have a diagram as in Fig. 3.2 above, which we refer to as the étale-
picture. Here, each horizontal and vertical “— —7 denotes the relationship be-
tween (_)Dy and D, — i.e., an extension of topological groups when v € V™",
or the underlying object of TM"™ arising from the associated topological field when
v € V¥ — discussed in Remark 3.8.1, (iii), (iv). The étale-picture [unlike the
Frobenius-picture!] admits arbitrary permutation symmetries among the la-
bels n € 7Z corresponding to the various ©-Hodge theaters. Put another way, the
étale-picture may be thought of as a sort of canonical splitting of the Frobenius-
picture.

(i) In a similar vein, we have a diagram as in Fig. 3.3 above, obtained
by replacing the ‘”DZ 7 in the middle of Fig. 3.2 by ‘”DZ > (’)CXF ”. Here, each
horizontal and vertical “— —7 denotes the relationship between_(_)D2 and DZ

discussed in (i); when v € V" the notation ‘”DZ ~ Of.7 denotes an isomorph
of the pair consisting of the category DZ together with the_group—like monoid (’)éi

on DZ; when v € V¥, the notation ‘”DE ~  OF.7 denotes an isomorph of the

pair consisting of the object DZ e Ob(TM") and the topological group O, [which

1s isomorphic — but not canonically! — to the compact factor of DZ] Just as in
the case of (i), this diagram admits arbitrary permutation symmetries among
the labels n € Z corresponding to the various ©-Hodge theaters.

Remark 3.9.1. If one formulates things relative to the language of [AbsTopIII],
Definition 3.5, then (7)D! constitutes a core. Relative to the theory of [AbsToplII],
§5, this core is essentiall}_/ the mono-analytic core discussed in [AbsToplIII], §I3;
[AbsToplIl], Remark 5.10.2, (ii). Indeed, the symbol “+” is intended — both in
[AbsToplIl] and in the present series of papers! — as an abbreviation for the term
“mono-analytic”.
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Remark 3.9.2. Whereas the étale-picture of Corollary 3.9, (i), will remain valid
throughout the development of the remainder of the theory of the present series of
papers, the local units “(’)éi ” that appear in Corollary 3.9, (ii), will ultimately cease

to be a constant invariant of various enhanced versions of the Frobenius-picture that
will arise in the theory of [[UTchIII]. In a word, these enhancements revolve around
the incorporation into each Hodge theater of the “rotation of addition [i.e., HB’]
and multiplication [i.e., ™X’]” in the style of the theory of [AbsToplII].

Remark 3.9.3.

(i) As discussed in [AbsToplll], §I3; [AbsToplII], Remark 5.10.2, (ii), the
“mono-analytic core” {D}},ev may be thought of as a sort of fixed underly-
ing real-analytic surface associated to a number field on which various holo-
morphic structures are imposed. Then the Frobenius-picture in its entirety may
be thought of as a sort of global arithmetic analogue of the notion of a Te-
ichmiiller geodesic in classical complex Teichmiiller theory or, alternatively, as a

global arithmetic analogue of the canonical liftings of p-adic Teichmiiller theory
[cf. the discussion of [AbsToplII], §I5].

(ii) Recall that in classical complex Teichmiiller theory, one of the two real di-
mensions of the surface is dilated as one moves along a Teichmiiller geodesic, while
the other of the two real dimensions is held fixed. In the case of the Frobenius-
picture of Corollary 3.8, the local units “O*” correspond to the dimension that
is held fixed, while the local value groups are subject to “O-dilations” as one
moves along the diagram constituted by the Frobenius-picture. Note that in order
to construct such a mathematical structure in which the local units and local value
groups are treated independently, it is of crucial importance to avail oneself of
the various characteristic splittings that appear in the split Frobenioids of Ex-
amples 3.2, 3.3, 3.4. Here, we note in passing that, in the case of Example 3.2,
this splitting corresponds to the “constant multiple rigidity” of the étale theta
function, which forms a central theme of the theory of [EtTh].

(iii) In classical complex Teichmiiller theory, the two real dimensions of the
surface that are treated independently of one another correspond to the real and
imaginary parts of the coordinate obtained by locally integrating the square root
of a given square differential. In particular, it is of crucial importance in classical
complex Teichmiiller theory that these real and imaginary parts not be “subject to
confusion with one another”. In the case of the square root of a square differential,
the only indeterminacy that arises is indeterminacy with respect to multiplication
by —1, an operation that satisfies the crucial property of preserving the real and
mmaginary parts of a complex number. By contrast, it is interesting to note that

if, for n > 3, one attempts to construct Teichmiiller deformations in the
fashion of classical complex Teichmiiller theory by means of coordinates
obtained by locally integrating the n-th root of a given section of the n-
th tensor power of the sheaf of differentials, then one must contend with
an indeterminacy with respect to multiplication by an n-th root of unity,
an operation that results in an essential confusion between the real and
imaginary parts of a complex number.
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(iv) Whereas linear movement along the oriented graph T of Corollary 3.8 cor-
responds to the linear flow along a Teichmiiller geodesic, the “rotation of addition
fi.e., B’] and multiplication [i.e., ™’]” in the style of the theory of [AbsTopllII]
— which will be incorporated into the theory of the present series of papers in
[[UTchIII] [cf. Remark 3.9.2] — corresponds to rotations around a fized point in
the complex geometry arising from Teichmiiller theory [cf., e.g., the discussion of
[AbsToplll], §I3; the hyperbolic geometry of the upper half-plane, regarded as the
“Teichmiiller space” of compact Riemann surfaces of genus 1]. Alternatively, in the
analogy with p-adic Teichmiiller theory, this “rotation of H and X” corresponds
to the Frobenius morphism in positive characteristic — cf. the discussion of [Ab-
sTopllI], §I5.

Remark 3.9.4. At first glance, the assignment “”@U — (®+tDg 7 [cf. Remark
= 4

3.8.1, (i)] may strike the reader as being nothing more than a “conventional eval-
uation map” [i.e., of the theta function at a torsion point — cf. the discussion of
Example 3.2, (iv)]. Although we shall ultimately be interested, in the theory of the
present series of papers, in such “Hodge-Arakelov-style evaluation maps” [within a
fixed Hodge theater!] of the theta function at torsion points” [cf. the theory of
[IUTchII]], the ©-link considered here differs quite fundamentally from such con-
ventional evaluation maps in the following respect:

the value ("tDg  belongs to a distinct scheme theory — i.e., the
=v

scheme theory Te];'resented by the distinct ©-Hodge theater "TOHTE —
from the base "q [which belongs to the scheme theory represented by the
=v

©-Hodge theater ”_’HT@/ over which the theta function ”Qv is constructed.

The distinctness of the ring/scheme theories of distinct ©-Hodge theaters may be
seen, for instance, in the indeterminacy of the isomorphism between the associated
isomorphs of D!, an indeterminacy which has the effect of obliterating the ring
structure — i.e., the “arithmetic holomorphic structure” — associated to "D, for
distinct n [cf. the discussion of Remark 3.8.1, (iii), (iv)].
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Section 4: Multiplicative Combinatorial Teichmiiller Theory

In the present §4, we begin to prepare for the construction of the various
“enhancements” to the ©-Hodge theaters of §3 that will be made in §5. More
precisely, in the present §4, we discuss the combinatorial aspects of the “D” — i.e.,
in the terminology of the theory of Frobenioids, the “base category” — portion of the
notions to be introduced in §5 below. In a word, these combinatorial aspects revolve

around the “functorial dynamics” imposed upon the various number fields and
local fields involved by the “labels”

def

e FF Fy {1}

— where we note that the set F}* is of cardinality I* Lo (l—1)/2 — of the [-torsion

points at which we intend to conduct, in [IUTchII], the “Hodge-Arakelov-theoretic
evaluation” of the étale theta function studied in [EtTh]| [cf. Remarks 4.3.1; 4.3.2;
4.5.1, (v); 4.9.1, (i)].

In the following, we fix a collection of initial ©-data

(F/Fa XF; l7 QK; Y7 Vbad §)

mod»

as in Definition 3.1; also, we shall use the various notations introduced in Definition
3.1 for various objects associated to this initial ©-data.

Definition 4.1.

(i) We define a holomorphic base-prime-strip, or D-prime-strip, [relative to the
given initial ©-data] to be a collection of data

D= {TDQ}QEY

that satisfies the following conditions: (a) if v € V", then "D, is a category which
admits an equivalence of categories D, = D, [where D, is as in Examples 3.2, (i);
3.3, (i)]; (b) if v € V¥, then D, is an Aut-holomorphic orbispace such that there
exists an isomorphism of Aut-holomorphic orbispaces D, = D, [where D, is as in
Example 3.4, (i)]. Observe that if v € V", then m; (TD,) determines, in a functorial
fashion, a topological [in fact, profinite if v € V&°°Y] group corresponding to “C,”
[cf. Corollary 1.2 if v € V8°°4; [EtTh], Proposition 2.4, if v € ¥**], which contains
71("D,) as an open subgroup; thus, if we write "D, for B(—)° of this topological
group, then we obtain a natural morphism D, — T@U [cf. §0]. In a similar vein, if
v € V¥, then since X admits a Ky-core, a routine translation into the “language
of Aut-holomorphic orbispaces” of the argument given in the proof of Corollary 1.2
[cf. also [AbsToplll], Corollary 2.4] reveals that D, determines, in a functorial
fashion, an Aut-holomorphic orbispace TQE correspor?ding to “QE”, together with

a natural morphism TD2 — TQE of Aut-holomorphic orbispaces. Thus, in summary,
one obtains a collection of data

Tg = {TQ’U }EGY
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completely determined by ™D.

(ii) Suppose that we are in the situation of (i). Then observe that by applying
the group-theoretic algorithm of [AbsTopl], Lemma 4.5 [cf., especially, [AbsTopl],
Lemma 4.5, (v), as well as Remark 1.2.2, (ii), of the present paper], to construct
the set of conjugacy classes of cuspidal decomposition groups of the topological
group m(1D,) when v € V™" or by considering mo(—) of a cofinal collection of
“neighborhoods of infinity” [i.e., complements of compact subsets| of the underlying
topological space of TD2 when v € V*°, it makes sense to speak of the set of cusps
of TDE; a similar observation applies to D, for v € V. If v € V, then we define

a label class of cusps of TD2 to be the set of cusps of TDE that lie over a single
“nonzero cusp” [i.e., a cusp that arises from a nonzero element of the quotient “Q)”
that appears in the definition of a “hyperbolic orbicurve of type (1,l-tors),” given
in [EtTh], Definition 2.1] of "D, ; write

LabCusp('D,)

for the set of label classes of cusps of TDE. Thus, for each v € V, LabCusp(TDy)
admits a natural F}*-torsor structure [i.e., which arises from the natural action of
F; on the quotient “Q” of [EtTh], Definition 2.1]. Moreover, [for any v € V!] one
may construct, solely from TDE, a canonical element

TQU € LabCusp('D,)

determined by “e,” [cf. the notation of Definition 3.1, (f)]. [Indeed, this follows

from [EtTh], Corollary 2.9, for v € VP24 from Corollary 1.2 for v € V&°°d ) v=or,
and from the evident translation into the “language of Aut-holomorphic orbispaces”
of Corollary 1.2 for v € V*]

iii) We define a mono-analytic base-prime-strip, or D" -prime-strip, [relative
Y
to the given initial ©-data] to be a collection of data

T@" — {TDZ}EGY

that satisfies the following conditions: (a) if v € V*°", then TDE is a category which
admits an equivalence of categories TD! = D! [where D! is as in Examples 3.2,
(i); 3.3, (i)]; (b) if v € V¥, then TDZ is an object of the category TM™ [so, if Df

is as in Example 3.4, (ii), then there exists an isomorphism D! = D in TM'_].

(iv) A morphism of D- (respectively, D" -) prime-strips is defined to be a col-
lection of morphisms, indexed by V, between the various constituent objects of the
prime-strips. Following the conventions of §0, one thus has a notion of capsules of
D- (respectively, D" -) and morphisms of capsules of D- (respectively, D" -) prime-
strips. Note that to any D-prime-strip 7®, one may associate, in a natural way,
a D" -prime-strip T®" — which we shall refer to as the mono-analyticization of
D — by considering appropriate subcategories at the nonarchimedean primes [cf.
Examples 3.2, (i), (vi); 3.3, (i), (iii)], or by applying the construction of Example
3.4, (ii), at the archimedean primes.
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(v) Write
D° € B(CK )"

[cf. §0]. Then recall from [AbsTopllIl], Theorem 1.9 [cf. Remark 3.1.2], that
there exists a group-theoretic algorithm for reconstructing, from m1(D®) [cf. §0],
the algebraic closure “F” of the base field “K”, hence also the set of valuations
“V(F)” [e.g., as a collection of topologies on F' — cf., e.g., [AbsToplII], Corollary
2.8]. Moreover, for w € V(K)**°, let us recall [cf. Remark 3.1.2; [AbsTopllII],
Corollaries 2.8, 2.9] that one may reconstruct group-theoretically, from 71 (D®), the
Aut-holomorphic orbispace C,, associated to C,. Let TD® be a category equivalent
to D®. Then let us write
(1p°)

for the set of valuations [i.e., “V(F)”], equipped with its natural 7 ("D®)-action,

def

v('D?) V('D®)/m ("D?)

for the quotient of V(D®) by w1 (fD®) [i.e., “V(K)”], and, for w € V(ID®)are,
C('D°,w)

i.e., “C,” — cf. the discussion of [AbsToplIl], Definition 5.1, (ii)] for the Aut-
holomorphic orbispace obtained by applying these group-theoretic reconstruction
algorithms to 71 ("D®). Now if U is an arbitrary Aut-holomorphic orbispace, then
let us define a morphism

U— 1D®

to be a morphism of Aut-holomorphic orbispaces [cf. [AbsToplIl], Definition 2.1,
(ii)] U — C("D®,w) for some w € V(ID®)r¢, Thus, it makes sense to speak of the
pre-composite (respectively, post-composite) of such a morphism U — TD® with
a morphism of Aut-holomorphic orbispaces (respectively, with an isomorphism [cf.
§0] TD® = D [i.e., where ¥D® is a category equivalent to D®]). Finally, just as in
the discussion of (ii) in the case of “v € V& (N V"™ we may apply [AbsTopl],
Lemma 4.5 [cf. also Remark 1.2.2, (ii), of the present paper], to conclude that it
makes sense to speak of the set of cusps of TD®, as well as the set of label classes
of cusps
LabCusp("D?)

of "D®, which admits a natural F}*-torsor structure.

(vi) Let "D® be a category equivalent to D®, ® = {ID,},ev a D-prime-
strip. If v € V, then we define a poly-morphism TDE — D@ to be a collection of
morphisms "D, — TD® [cf. §0 when v € V™" (v) when v € V*°]. We define a
poly—morphism_

T 5 Tp@

to be a collection of poly-morphisms {TD, — "D®},cy. Finally, if {*D}.cr is a
capsule of D-prime-strips, then we define a poly-morphism

{"D}eer — p© (respectively, {*D}ccrp — T@)
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to be a collection of poly-morphisms {¢® — "D®} . (respectively, {¢D — D} .cp).

The following result follows immediately from the discussion of Definition 4.1,

(ii).

Proposition 4.2. (The Set of Label Classes of Cusps of a Base-Prime-
Strip) Let T® = {TDE}QQY be a D-prime-strip. Then for any v,w € V, there
exist bijections

LabCusp("D,) = LabCusp("Dy)

that are uniquely determined by the condition that they be compatible with
the assignments Tﬂv > Tﬂw [ef.  Definition 4.1, (ii)], as well as with the F; -
torsor structures on either side. In particular, these bijections are preserved
by arbitrary isomorphisms of D-prime-strips. Thus, by identifying the various
“LabCusp(TD,)” via these bijections, it makes sense to write LabCusp('D).
Finally, LabCusp(T®) is equipped with a canonical element, arising from the Tﬂv

[for v € V], as well as a natural F;*-torsor structure; in particular, this canonical
element and Fl*—torsor structure determine a natural bijection

LabCusp('®) = FF

that is preserved by isomorphisms of D-prime-strips.

Remark 4.2.1.  Note that if, in Examples 3.3, 3.4 — ie., at v € V&8°°d
one defines “Dy” by means of “C,” instead of “&U ”_ then there does not exist
a system of bijections as in Proposition 4.2. Indeed, by the Tchebotarev density
theorem [cf., e.g., [Lang], Chapter VIII, §4, Theorem 10], it follows immediately that
there exist v € V such that, for a suitable embedding Gal(K/F') < GL2(F;), the
decomposition subgroup in Gal(K/F) < GLy(F;) determined [up to conjugation]
by v is equal to the subgroup of diagonal matrices with determinant 1. Thus, if
1D ={1D,}yev, 7@ = {TD, },ev are as in Definition 4.1, (i), then for such a v, the
automorphism group of "D, acts transitively on the set of label classes of cusps of
D, , while the automorphism group of D, acts trivially [by [EtTh], Corollary 2.9]

on the set of label classes of cusps of TQE for any w € yhad,
Example 4.3. Model Base-NF-Bridges. In the following, we construct the
“models” for the notion of a “base-NF-bridge” [cf. Definition 4.6, (i), below].

(i) Write

Aut (Cgx) <€ Aut(Cg) = Out(llg, ) = Aut(D?)

— where the first “=” follows, for instance, from [AbsToplIII], Theorem 1.9 — for
the subgroup of elements which fiz the cusp e. Now let us recall that the profi-
nite group Ax may be reconstructed group-theoretically from 1o [cf. [AbsTopll],
Corollary 3.3, (i), (ii); [AbsToplI], Remark 3.3.2; [AbsTopl], Example 4.8]. Since
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inner automorphisms of II¢  clearly act by multiplication by £1 on the I-torsion
points of E [i.e., on A3 ® ], we obtain a natural homomorphism Out(Ilg, ) —

Aut(AZ ®TF;)/{£1}. Thus, it follows immediately from the discussion of the nota-
tion “K”, “C”, and “¢” in Definition 3.1, (c), (d), (f) [cf. also Remark 3.1.5; the
discussion preceding [EtTh]|, Definition 2.1; the discussion of [EtTh|, Remark 2.6.1],
that, relative to an isomorphism Aut(A3®F;)/{+1} = GL(F;)/{£1} arising from

a suitable choice of basis for A @ I, if we write Im(Gp,_,) € GLo(F;)/{£1} for

the image of the natural action [i.e., modulo {£1}] of Gp__, &t Gal(F/Fpoq) on

the [-torsion points of Er [cf. the homomorphism of the display of Definition 3.1,
(c); the model “Cp,_ "7 discussed in Remark 3.1.7], then the images of the groups
Aut(Cy), Aut(C) may be identified with the subgroups consisting of elements
of the form

62 = ) = o s
0 =1 0 =

— l.e., “semi-unipotent, up to £1”7 and “Borel” subgroups — of Im(Gp, . ,) C
GLo(F;)/{£1}. Write

Aut;% (Ck) C Aut(Cr), Aut’*(Crk) C Aut(C)
for the respective subgroups of elements that act trivially on the subfield F'(u;) C K
[cf. Remark 3.1.7, (iii)] and

VER € At (Cx) -V € VBT L Aw(Cy) V. C V(K)

for the resulting subsets of V(K'). Thus, one verifies immediately that the subgroup
Aut (C) C Aut(Cy) is normal, and that we have natural isomorphisms

Aut™(C)/ AUthL(QK) = Aut(Cg)/Aut(Cx) = Ff

— so we may think of VB as the F*-orbit of VEU Also, we observe that [in light
of the above discussion] it follows immediately that there exists a group-theoretic
algorithm for reconstructing, from 7, (D®) [i.e., an isomorph of Tl ] the subgroup

Aut (D®) C Aut(D?)
determined by Aut.(Cy).

(ii) Let v € V", Then the natural restriction functor on finite étale coverings
arising from the natural composite morphism &U — C, = Cg ifuv € yeood
(respectively, ég - C, - Cgifv e ¥P2) determines [cf. Examples 3.2, (i);

3.3, (i)] a natural morphism ¢37}, : Dy — D® [cf. §0 for the definition of the term
“morphism”]. Write
¢p" : Dy — D

for the poly-morphism given by the collection of morphisms D, — D® of the form

NF
Bodltoa
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— where a € Aut(D,) = Aut(&v) (respectively, o € Aut(D,) = Aut(X )); B €
Aut (D®) 22 Aut(C) [cf., e.g., [AbsToplIII], Theorem 1.9]. -

)
(iii) Let v € V**°. Thus, [cf. Example 3.4, (i)] we have a tautological morphism

D,=X —C, = C(D®,v), hence a morphism ¢.N1§ : Dy, — D® [cf. Definition
4.1, (v)]. Write
¢p" : Dy — D

for the poly-morphism given by the collection of morphisms D, — D® of the form
b o (bl.\nz o«

— where a € Aut(D,) = Aut(X ) [cf. [AbsTopIII], Corollary 2.3]; 5 € Aut (D) =
Aut (C). B

(iv) For each j € F}', let
D= {Dyj }oew

— where we use the notation v; to denote the pair (j,u) — be a copy of the
“tautological D-prime-strip” {D,}vev. Let us denote by

Il\IFZ©1—>D©

[where, by abuse of notation, we write “1” for the element of IFZ* determined by 1]
the poly-morphism determined by the collection {QZSUNlF : Dy, — D®} ey of copies of
the poly-morphisms ¢N¥ constructed in (ii), (iii). Note that ¢\'F is stabilized by the
action of Aut.(C ) on D®. Thus, it makes sense to consider, for arbitrary j € F/",
the poly-morphism

3" D; — DO

obtained [via any isomorphism © = ©,| by post-composing with the “poly-action”
[i.e., action via poly-automorphisms — cf. (i)] of j € F)* on D®. Let us write

def
99:6 = {gj }jeIFl*

for the capsule of D-prime-strips indexed by j € F/ [cf. Definition 4.1, (iv)] and
denote by

Py 1 Dy — D
the poly-morphism given by the collection of poly-morphisms {(ﬁ?F} JEFx- Thus,
(bI;iF is equivariant with respect to the natural poly-action of Fl* on D® and the
natural permutation poly-action of F}*, via capsule-full [cf. §0] poly-automorphisms,

on the constituents of the capsule ® 4. In particular, we obtain a natural poly-action
of Ff on the collection of data (D, D, qﬁL\iF)
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Remark 4.3.1.

(i) Suppose, for simplicity, in the following discussion that F' = F,,q4. Note
that the morphism of schemes Spec(K) — Spec(F) [or, equivalently, the homomor-
phism of rings F — K] does not admit a section. This nonexistence of a section
is closely related to the nonexistence of a “global multiplicative subspace” of the
sort discussed in [HASurlI], Remark 3.7. In the context of loc. cit., this nonexis-
tence of a “global multiplicative subspace” may be thought of as a concrete way
of representing the principal obstruction to applying the scheme-theoretic Hodge-
Arakelov theory of [HASurl], [HASurIl] to diophantine geometry. From this point
of view, if one thinks of the ring structure of F; K as a sort of “arithmetic holo-
morphic structure” [cf. [AbsToplll], Remark 5.10.2, (ii)], then one may think of
the [D-Jprime-strips that appear in the discussion of Example 4.3 as defining, via
the arrows gbyF of Example 4.3, (iv),

“arithmetic collections of local analytic sections” of Spec(K) — Spec(F')

— cf. Fig. 4.1 below, where each “- —-— ... — . —.” represents a [D-|prime-strip.

In fact, if, for the sake of brevity, we abbreviate the phrase “collection of local an-
alytic” by the term “local-analytic”, then each of these sections may be thought of
as yielding not only an “arithmetic local-analytic global multiplicative sub-
space”, but also an “arithmetic local-analytic global canonical generator”
[i.e., up to multiplication by +1, of the quotient of the module of I-torsion points of
the elliptic curve in question by the “arithmetic local-analytic global multiplicative
subspace”]. We refer to Remark 4.9.1, (i), below, for more on this point of view.

L ~ Gal(K/F)
C GLy(F)

Fig. 4.1: Prime-strips as “sections” of Spec(K) — Spec(F')

(ii) The way in which these “arithmetic local-analytic sections” constituted
by the [D-]prime-strips fail to be [globally] “arithmetically holomorphic” may be
understood from several closely related points of view. The first point of view was
already noted above in (i) — namely:

(a) these sections fail to extend to ring homomorphisms K — F.

The second point of view involves the classical phenomenon of decomposition of
primes in extensions of number fields. The decomposition of primes in extensions
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of number fields may be represented by a tree, as in Fig. 4.2, below. If one thinks
of the tree in large parentheses of Fig. 4.2 as representing the decomposition of
primes over a prime v of F' in extensions of F' [such as K], then the “arithmetic
local-analytic sections” constituted by the D-prime-strips may be thought of as

(b) an isomorphism, or identification, between v [i.e., a prime of F| and
v' [i.e., a prime of K| which [manifestly — cf., e.g., [NSW], Theorem
12.2.5] fails to extend to an isomorphism between the respective prime

decomposition trees over v and v’.

If one thinks of the relation “€” between sets in axiomatic set theory as determining
a “tree”, then

the point of view of (b) is reminiscent of the point of view of [[UTchIV], §3,
where one is concerned with constructing some sort of artificial solution to
the “membership equation a € a” [cf. the discussion of [[UTchIV], Remark
3.3.1, (i)].

The third point of view consists of the observation that although the “arithmetic
local-analytic sections” constituted by the D-prime-strips involve isomorphisms of
the various local absolute Galois groups,

(c) these isomorphisms of local absolute Galois groups fail to extend to a
section of global absolute Galois groups Gp — Gk [i.e., a section of the
natural inclusion G — Gp|.

Here, we note that in fact, by the Neukirch-Uchida theorem [cf. [NSW], Chapter
XII, §2], one may think of (a) and (c) as essentially equivalent. Moreover, (b) is
closely related to this equivalence, in the sense that the proof [cf., e.g., [NSW],
Chapter XII, §2] of the Neukirch-Uchida theorem depends in an essential fashion
on a careful analysis of the prime decomposition trees of the number fields involved.

\l/ . \I/

N\

v

U

U/

Fig. 4.2: Prime decomposition trees

(iii) In some sense, understanding more precisely the content of the failure of
these “arithmetic local-analytic sections” constituted by the D-prime-strips to be
“arithmetically holomorphic” is a central theme of the theory of the present series
of papers — a theme which is very much in line with the spirit of classical complex
Teichmiiller theory.

Remark 4.3.2. The incompatibility of the “arithmetic local-analytic sections” of
Remark 4.3.1, (i), with global prime distributions and global absolute Galois groups
[cf. the discussion of Remark 4.3.1, (ii)] is precisely the technical obstacle that
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will necessitate the application — in [IUTchIII] — of the absolute p-adic mono-
anabelian geometry developed in [AbsToplII], in the form of “panalocalization along
the various prime-strips” [cf. [[UTchIII] for more details]. Indeed,

the mono-anabelian theory developed in [AbsToplIII] represents the cul-
mination of earlier research of the author during the years 2000 to 2007
concerning absolute p-adic anabelian geometry — research that was
motivated precisely by the goal of developing a geometry that would allow
one to work with the “arithmetic local-analytic sections” constituted by
the prime-strips, so as to overcome the principal technical obstruction to
applying the Hodge-Arakelov theory of [HASurl], [HASurll] [cf. Remark
4.3.1, (i)].

Note that the “desired geometry” in question will also be subject to other require-
ments. For instance, in [ITUTchIII] [cf. also [IUTchII], §4], we shall make essential
use of the global arithmetic — i.e., the ring structure and absolute Galois groups —
of number fields. As observed above in Remark 4.3.1, (ii), these global arithmetic
structures are not compatible with the 