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ABSTRACT
Self-adaptation is a first class concern for cloud applications, which
should be able to withstand diverse runtime changes. Variations are
simultaneously happening both at the cloud infrastructure level —
for example hardware failures — and at the user workload level —
flash crowds. However, robustly withstanding extreme variability,
requires costly hardware over-provisioning.

In this paper, we introduce a self-adaptation programming
paradigm called brownout. Using this paradigm, applications can
be designed to robustly withstand unpredictable runtime variations,
without over-provisioning. The paradigm is based on optional code
that can be dynamically deactivated through decisions based on
control theory.

We modified two popular web application prototypes — RU-
BiS and RUBBoS — with less than 170 lines of code, to make
them brownout-compliant. Experiments show that brownout self-
adaptation dramatically improves the ability to withstand flash-
crowds and hardware failures.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Design—Methodologies; D.1.3
[Software]: Programming Techniques—Distributed programming

General Terms
Design, Experimentation, Theory, Performance

Keywords
Adaptive Software, Control Theory, Brownout, Cloud

1. INTRODUCTION
Many modern software applications are developed for the

cloud [13]. In fact, cloud computing is expected to be one of the
first 5 technologies that will drive the future economy [36]. In ad-
dition to traditional requirements, cloud applications have dynamic
loads and variable number of users, therefore dynamic resource ca-
pacity requirements [56]. Moreover, they also need to be designed
to robustly handle unexpected events: Unexpected peaks — also
called flash crowds — may increase the volume of requests by up to
5 times [9]. Similarly, unexpected hardware failures in data centers
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are the norm rather than an exception [31, 50]. Also, unexpected
performance degradations may arise due to workload consolidation
and the resulting interference among co-located applications [47].

These phenomena are well-known, therefore, software is readily
designed and deployed to cope with them. For example, techniques
such as elasticity [35], replication, dynamic binding and dynamic
load balancing allow to overcome unexpected events as long as re-
source capacity is sufficient [7, 32]. However, given the large mag-
nitude and the relatively short duration of such unexpected events,
it is often economically unfeasible or too costly to provision enough
capacity. As a result, the application can saturate, i.e., it can be-
come unable to serve users in a timely manner. Some users may
experience high latencies, while others may not receive any service
at all. Hence, the application owner may lose customers and profits.
We argue that it is more profitable to downgrade user experience,
thus serving a larger amount of clients.

To allow applications to more robustly handle unexpected events
and avoid saturation, we propose a new programming paradigm
called brownout. Our work borrows on the concept of brownout in
electrical grids. Brownouts are intentional voltage drops often used
to prevent blackouts through load reduction in case of emergency.
In such a situation, incandescent light bulbs dim — emitting less
light and consuming less power — hence originating the term.

We define a cloud application as brownout-compliant if it can
gradually downgrade user experience to avoid saturation. For ex-
ample, online shops usually offer end-users recommendations of
similar products they might be interested in. No doubt, recom-
mender engines greatly increase the user experience, which trans-
lates to higher owner revenue. In fact, a study found an increase
of 50% on song sales when a group of users where exposed to rec-
ommendations [26]. However, due to their sophistication, such en-
gines are highly demanding on computing resources [41]. The de-
veloper can specify that the execution of the recommender engine
is optional. By selectively activating or deactivating optional com-
ponents, the application’s capacity requirements can be controlled
at the expense of end-user experience, without compromising the
functional requirements.

To lower the maintenance effort, brownouts should be automat-
ically triggered. This would enable cloud applications to rapidly
and robustly avoid saturation due to unexpected environmental
changes, lowering the burden on human operators. In other words,
the application should be self-adaptive [17]. Designing brownout-
compliant applications brings the design of the runtime behavior of
the application itself into the software design [5].

Contributions.
In this article we introduce a paradigm to design and develop

cloud applications based on the concept of brownouts. Brownout-
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compliant applications can change their resource capacity require-
ments and automatically adjust to changing conditions of its envi-
ronment. Hence, we add a new mechanism [17] to enable design
and development of self-adaptive applications. First, we discuss a
model that captures the behavior of a typical cloud application with
optional computation that can be activated or deactivated at run-
time. Second, we synthesize a control-theoretical solution to auto-
matically decide when to activate those optional features. Control
theory allows us to provide specific guarantees on desirable prop-
erties such as user-perceived latency. This directly translates into
withstanding unexpected events more robustly.

Our paper offers the following contributions.

• It proposes a model for cloud applications with optional com-
ponents. Applications are extended with a dynamic param-
eter, the dimmer Θ, that monotonically affects both the end-
user experience and the computing capacity required by the
application (Section 2).
• It synthesizes a controller to automatically adapt the dim-

mer to cope with the incoming workload and the available
resources, with formal convergence proof (Section 3).
• It shows the applicability of the brownout paradigm, extend-

ing two popular cloud benchmarks, RUBiS [57] and RUB-
BoS [12], with few non-intrusive changes (Section 4).
• It presents experimental results showing the behavior of

the self-adaptive applications in comparison to their non-
adaptive counterpart, as suggested in [10, 71]. Brownout-
compliant applications more robustly withstand unexpected
events like peak loads and resource shortages (Section 5).

The results show that using the brownout paradigm, applications
can support more users or run on less resources, while maximizing
user experience. Hence, our proposition enables cloud infrastruc-
tures to more robustly deal with unexpected peaks or unexpected
failures, requiring less spare capacity. To foster further research
on application brownouts and to make our results reproducible, we
released all source code1.

2. APPLICATION MODEL
In this section, we define the theoretical foundations of the

brownout paradigm, discussing the methodology of making appli-
cations brownout-compliant.

Cloud applications serve multiple users through the Internet.
Their computations are generally separated into independent and
stateless user requests that, after being processed, provide re-
sponses [24]. An essential requirement of these applications is that
responses should be produced in a time-sensitive way, otherwise
unsatisfied users would abandon the service. Indeed, a study on
web-user behavior found a tolerable waiting-time between 2 and 4
seconds [51]. With this model in mind, brownout can be added to
applications in three steps.

Step 1. The application designer needs to identify which part
of the response can be considered optional. In fact, it is good en-
gineering practice to decompose the act of serving a request into
different software components, each dealing with a different part
of the response. Some of these components produce data that are
necessary to satisfy the user’s request, while other provide acces-
sory information that merely improve user experience.

In a brownout-compliant application, software components are
isolated to make it possible to activate or deactivate the optional
computation per request. Being able to run optional computations

1https://github.com/cristiklein/brownout

is desirable, as they would improve end-user experience. How-
ever, in case of an unexpected event, it is preferable to deactivate
optional computations, instead of saturating the application due to
insufficient hardware resources and providing a response after the
tolerable waiting time of the user has expired. Deciding activation
of optional components for each request allows us to make more
fine-grained trade-offs. For example, instead of completely deacti-
vating optional components, the application may serve every sec-
ond user with the optional part, thus avoiding saturations, but still
improving the experience of some users.

Step 2. The designer needs to provide a knob to control how
often the optional computations are executed. Applications export
a dynamically changeable runtime parameter, a dimmer Θ, which
monotonically affects both the average quality of the user experi-
ence and the amount of resources that the application requires. This
allows a specialized component, called the controller, to monitor
the application and adjust the application’s behavior as needed (see
Step 3). More formally, the number of times that these optional
computations are executed between time k and k+1 (and thus the
amount of resources required by the application) is proportional to
Θk, the dimmer’s value during that time interval2. To adhere to the
stateless request model, for each request, the optional component
can be activated depending on the outcome of a single Bernoulli
trial with success probability Θk.

To clarify the concepts just introduced, we sketch an e-commerce
website as an example of a brownout-compliant application. In the
e-commerce website, we consider the visualization of a page con-
taining one specific product as one request. The optional part of the
response consists in displaying recommendations of similar prod-
ucts. For each request, besides retrieving the product information,
the application runs the recommender engine with a probability
Θ. Increasing Θ increases the number of times recommendations
are displayed, thus improving end-user experience, but also the re-
source requirements of the application. In the end, the resource
requirements will be roughly proportional to Θ.

To show that the brownout paradigm can handle different per-
formance measures and different application-engineering concepts,
we propose another example. A music-streaming service, such as
Spotify [43], serves two types of audio files: songs that the user
chooses to listen to and ads. Since they are simultaneously re-
quested by a large number of users, songs can often be served in a
peer-to-peer fashion, without consuming the service owner’s band-
width. In contrast, ads are personalized for each user and premium
users do not have to listen to them at all. Ads, therefore, need to
be served from the servers operated by the owner. In this case, we
consider the streaming of a song as a single request, which may be
preceded by an ad. Since it is the heart of the business model, the
service owner would like to serve as many ads as possible. How-
ever, it might be better to make serving ads optional and stop serv-
ing them in case of insufficient bandwidth than to damage the ser-
vice’s reputation due to interrupted song streaming. Thus, the asso-
ciated performance is the delivered streaming bandwidth, directly
affecting user satisfaction, while the dimmer Θ is the probability of
serving an ad before streaming a song, affecting the service’s profit.

Step 3. For reduced burden on the human operator, the appli-
cation should be self-adaptive. A new component, called the con-
troller, is added to achieve this. Its goal is to adjust the dimmer
exported during the second step as a function of the current perfor-
mance, e.g., response time, to avoid saturation.

Let us illustrate the interest of self-adaptation through numeri-
cal examples obtained with our extended version of the RUBiS e-

2In the entire paper, we use superscripts to indicate time indexes.

2

https://github.com/cristiklein/brownout


0200400600800

0

5

10

resources [% CPU]

L
at

en
cy

[s
]◦

0
0.5

1

R
ec

[%
]

0

10

20

30

40

T
hr

ou
gh

ou
t[

r/
s]
4

(a) with all recommendations
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(b) with no recommendations
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(c) self-adaptive
Figure 1: Stress-testing RUBiS extended with our recommender engine. The number of users is kept constant and the amount of CPU
allocated is reduced. Throughput reduction and response time increase show the point where the application is saturated.

commerce website. Let us assume that a constant number of users
is accessing the cloud application. Due to various unexpected phe-
nomena — such as cooling failure, hardware failure, performance
interference, etc. — the amount of resources allocated to the appli-
cation may be arbitrarily reduced. Since a usual application serves
recommendations to all users, it would become saturated when the
allocated CPU is lower than 400% (i.e., 4 cores). Effectively, the
application cannot respond to user requests as quickly as they are
issued, therefore, some users experience high latencies, while oth-
ers perceive the applications as unavailable (Fig. 1a). The applica-
tion less robustly withstands unexpected capacity reductions.

To deal with the lack of capacity and restore the application’s re-
sponsiveness, a system administrator could decide to completely
disable recommendations (Fig. 1b). This way, the application
would be responsive as long as it has at least 20% CPU. Effectively,
by disabling recommendations, the application can withstand a fur-
ther capacity reduction of 20 times (i.e., from 400% to 20%).

Nevertheless, adopting such a manual solution has several defi-
ciencies. First, it requires an administrator to constantly monitor
the application and react. Second, no users would receive recom-
mendations, even if there would be extra capacity to serve, for ex-
ample, every second user with recommendations. Therefore, manu-
ally deactivating or activating optional code is not a viable solution.

Avoiding manual intervention, a self-adaptive application would
dynamically adjust the dimmer as available capacity allows
(Fig. 1c). Effectively, as the amount of CPU allocated to the ap-
plication is reduced, the application would transition from serving
recommendations to all users, to serving recommendations to some
users, to serving no recommendations at all. The application more
robustly withstands unexpected resource capacity reductions. Self-
adaptation would require some “headroom”, in our case the amount
of CPU needs to be above 40%, instead of 20% without recommen-
dations. However, we believe the headroom is small when com-
pared to the self-adaptation benefits.

We obtained similar figures with an increase in the number of
users and constant resources, as happens with flash crowds — sud-
den increases of popularity of the application when linked from a
high-profile website. With no recommendations, RUBiS saturates
with 20 times more users than if recommendations are always en-
abled, whereas a self-adaptive approach allows a 10 fold increase
in users. Hence, the brownout paradigm enables cloud applications
to better withstand unexpected events, either load increase or hard-
ware capacity reductions, by gradually reducing user experience.

From an engineering point-of-view, the brownout paradigm also
encourages modularity and separation of concerns. Existing appli-
cations only need to be augmented with the choice of which code

is optional and how to deactivate it, while a separate controller can
take care of when to execute the optional components. In the next
section, we discuss how to build a controller that automatically se-
lects the dimmer for a vast class of applications, providing formal
guarantees on its behavior.

3. CONTROLLER DESIGN
Cloud applications usually run in virtualized environments,

where a hypervisor multiplexes hardware resources among multi-
ple Virtual Machines (VMs). This makes avoiding saturation more
challenging due to the inherent performance unreliability of the un-
derlying VM. Moreover, CPU utilization cannot reliably measure
used capacity: At low utilization, the VM is given the impression
that it runs isolated, without being informed of the amount of CPU
that is allocated to a different VM. This only becomes noticeable
at higher utilizations, reported as “steal-time”, i.e., the time that
the VM would have had something to execute, but the hypervisor
decided to run a different VM instead [23]. This unreliability in-
troduces the need for a different indicator to detect saturation con-
ditions, such as response time. However, the relationship between
response-time and saturation is non-linear, since many applications
behave like queues [2, 54]. Therefore, off-the-shelf controllers, like
PIDs, should be carefully tuned and coupled with online correc-
tions. In this section we present the synthesis of a controller for
average and maximum latency and formally prove its limits. We
employ terminology and notations used in control theory [45].

The first controller keeps the average response time around a
given setpoint. Using a very primitive, yet useful, model we assume
that the average response time of the web application, measured at
regular time intervals, follows the equation

tk+1 = αk ·Θk +δ tk (1)

i.e., the average response time tk+1 of all the requests that are
served between time index k and time instant k + 1 depends on
a time varying unknown parameter αk and can have some distur-
bance δ tk that is a priori unmeasurable. αk takes into account how
the dimmer Θ selection affects the response time, while δ tk is an
additive correction term that models variations that do not depend
on the dimmer choice — for example, variation in retrieval time of
data due to cache hit or miss. Our controller design should aim for
canceling the disturbance δ tk and selecting the value of Θk so that
the average response time would be equal to our setpoint value.

As a first step of the design, we assume that we know αk and
its value is constant and equal to α . We will later substitute an
estimation of its current value in the controller equation, to make
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sure that the behavior of the closed loop system is the desired one.
The Z-transform of the system that we want to control before the
feedback loop is closed, called the plant, described by Eq. (1) is

z ·T (z) = α ·Θ(z)+∆T (z) (2)

where z−1 is the unit delay operator, T (z) is the Z-transform of
the time series tk, Θ(z) relates to Θk and ∆T (z) transforms δ tk.
We cannot control the disturbance ∆T (z), therefore, we are only
interested in the transfer function from the input (the dimmer) to
the output (the measured average response time), which is

P(z) =
T (z)
Θ(z)

=
α
z
. (3)

Every closed loop system composed by one controller and a plant
has the generic transfer function

G(z) =
C(z) ·P(z)

1+C(z) ·P(z) =
Y (z)
R(z)

(4)

where C(z) is the transfer function from the error to the control
signal. In this case, the error is the difference between the setpoint
and the measured value and the control signal is the dimmer value
in the next time interval. P(z) is the plant transfer function [45] —
in our case Eq. (3). Y (z) and R(z) are respectively the output and
the input of the closed loop system, in our case the measured and
the desired average response time. The function G(z) represents the
response of the controlled system with the feedback loop closed.

The next step in controller design consists in deriving an equa-
tion for C(z). One possible strategy is to choose C(z) so that some
properties on G(z), the response of the controlled system, are satis-
fied — in control terms, to select the “shape” of the response. For
example, we want the steady state gain of G(z) in Eq. (4) to be one,
since we want the output to be equal to the setpoint. Also, we want
to introduce a stable pole in the closed loop system, to control the
speed of the response — in order for the system to be stable the
pole should lay within the unit circle, in order to also avoid oscil-
lations its value should be between zero and one. Assuming that
we want to introduce the stable pole in p1, our desired closed loop
transfer function looks like

G(z) =
C(z) ·P(z)

1+C(z) ·P(z) =
1− p1

z− p1
(5)

and substituting the plant transfer function of Eq. (3) into Eq. (5) we
can derive the expression C(z) = (1−p1)·z

α(z−1) for the controller, which
turns to be a PI controller with specific constant values. By apply-
ing the inverse Z transform on C(z), we obtain

Θk+1 = Θk +
1− p1

α
· ek+1 (6)

where ek+1 is the difference measured at time k + 1 between the
setpoint for the response time and its measured value. This equa-
tion can be used to implement a controller that selects the dimmer
parameter. We also add anti-windup to the controller. The choice of
the pole p1 depends on the type of behavior that we want to enforce
for the closed-loop system, as explained later in this section.

During the control synthesis phase, we assumed α to be con-
stant. However, we know that its value changes over time (due to
performance interference) and we should take into account those
variations. We should therefore provide an estimation of its current
value αk as α̃k to be used in the controller. We can use many meth-
ods to estimate it online, while the application is running. The most
simple is to take past measurements, compute the average response
time tk+1, pretend the disturbance δ tk is negligible and compute

α̃k based on Eq. (1). Once a first estimation is available, it is also
possible to assign a weight to new data points and choose

α̃k+1 = (1−µ) · α̃k +µ · t
k+1

Θk (7)

where µ is a discount factor that defines how trustworthy the new
observations are.

The same methodology can be used also to control maximum re-
sponse time, that has become the focus of recent research [20]. The
above designed controller can easily be adapted to this purpose,
by using ek+1 = l̄max− lk

max in Eq. (6), where l̄max is the desired
maximum response time and lk

max is the maximum response time
measured from time index k to k+1.

In what follows, we use the controller for maximum latency. It
is to be expected that latencies can have high variations, but their
maximum should be kept close to the setpoint of the controller.

Control-theoretical guarantees.
Control theory allows us to provide some formal guarantees on

the system. Our main aim is to close a loop around a cloud ap-
plication, constraining the application to have a behavior that is as
predictable as possible. Without any feedback strategy, the appli-
cation can have transient behaviors, depending on the input that
it receives. For example, when the number of users suddenly in-
creases, latencies can raise due to saturation. We would like to en-
force robustness on the application behavior, no matter how much
environmental variations the application is subject to. In control
terms, the uncontrolled variations that the system is exposed to are
disturbances and our aim is to follow the setpoint, rejecting them.

The controller will not be able to reject all types of disturbances.
For example, when even setting the dimmer to zero results in a
too high latency it means that the control system cannot achieve
the desired value. However, if the goal is feasible, i.e., if the con-
troller can set a dimmer value whose operating conditions fulfill
the requirements, it will find it due to its stability property. To en-
force stability — since the closed loop system has the form given
by Eq. (5) — we should simply make sure that the pole p1 belongs
to the open interval (−1,1). To avoid oscillations, the pole should
also be positive [45].

We now analyze how the pole position can compensate the un-
desired effects of introducing an estimator for αk in the control
algorithm. The controller acts based on an estimation of the effect
of its action, α̃k in Eq. (7). If this estimation is incorrect, the con-
troller acts based on some false assumption. However, the presence
of the feedback loop helps in detecting those errors and reacting to
them in a satisfactory way.

The value given to the pole p1 can be use to trade off respon-
siveness (how fast the controller reacts to disturbances, maybe not
correctly estimated) and safety (how sure the controller is that the
action taken will not damage the system). The closer p1 is to one,
the slower the system responds, but the better it rejects measure-
ment noise or other disturbances. Effectively, the controller will
only make small corrections at every iteration. In contrast, val-
ues of p1 close to zero will make the system respond quickly, but
also be more sensitive to disturbances, making large corrections,
that risk being based on transient disturbances instead of long-term
trends. Some values for p1 can be suggested, depending on the
reliability of the measurements and the variability of the incoming
requests. However, selecting a value for p1 is best done based on
empirical testing as shown in Section 5.2.

To complete the trade off analysis we show the entity of incorrect
estimation that each possible value given to p1 is able to withstand.
Assume we estimate αk as α̃k but the real values is α̃k ·∆αk. This
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Figure 2: Multiplicative tolerance on the estimation error.

multiplicative perturbation is often used to quantify how wrong an
estimation can be. If the system tolerates a ∆α equal to 10, it
means that although the estimated value might be 10 times smaller
or larger than the real one, the system will converge anyway due to
the presence of the feedback loop.

We test what is the maximum perturbation that our system is able
to cope with. In other words, we want to find the values of ∆αk for
which our plant is still stable. The plant transfer function P(z) is α

z ,
therefore it becomes Pmod(z) = α̃·∆α

z . The controller transfer func-

tion is C(z) = (1−p1)·z
α̃(z−1) . The closed loop transfer function Gmod(z)

of Eq. (5) becomes therefore

Gmod =
C(z) ·Pmod(z)

1+C(z) ·Pmod(z)
=

(1− p1) ·∆α
z+∆α(1− p1)−1

(8)

which is stable only if the two denominator poles are inside the unit
circle. Since the gain is one, it still hold that, if the system is stable,
the setpoint will be reached. The stability conditions derived by
setting the denominator roots within (−1,1) is 0 < ∆αk < 2

1−p1
,

which means exactly that choosing the value of the pole p1 defines
how safely the controller acts with respect to model perturbations.

Fig. 2 plots the allowed perturbation. The highlighted region is
the safety zone. Setting the pole to 0.9 means that the estimation
can be 20 times wrong, while setting the pole to 0.1 means that the
tolerated estimation error is only twice or half of the real value.

In conclusion, there is a fundamental trade off between the con-
troller reactivity and the safety with respect to perturbations that the
controller can withstand. This trade off can be exploited carefully
choosing the pole p1. In our experimental results we demonstrate
what this means in practice, with statistical analysis, exploring the
range of possible choices for p1 and their effects.

4. IMPLEMENTATION
To demonstrate the easiness of applying the brownout paradigm

to existing cloud applications, we extended two well-known cloud
benchmarks: RUBiS [57] and RUBBoS [12].

RUBiS is an extensively used benchmark that implements an
auction website, similar to eBay. It has been widely used in cloud
research, e.g. in [16, 29, 61, 63, 64, 66, 74]. We built a brownout-
compliant RUBiS version, extending the PHP implementation and
in particular the ViewItem.php page. We show how we applied
the three steps presented in Section 2: selecting an optional com-
ponent, adding the dimmer, closing the feedback loop.

With respect to selecting an optional component, the existing
RUBiS implementation seems a fairly minimalistic auction web-
site. Therefore, to make our evaluation more realistic, instead of
selecting an optional component from the existing code, we de-
cided to extend RUBiS with a simple recommender engine, that
works as follows: When the user views an item j, the engine re-
trieves the set of users U j that bid on the same item in the past.
Then, the engine composes the set of recommended items R j, re-
trieving other items that the users in U j have bid on. The items in R j

Modification RUBiS RUBBoS
Recommender 37 22
Dimmer 3 6
Reporting response time to controller 5 5
Controller 120 120

Total 165 153

Table 1: Effort in logical Source Lines of Code (SLOC) to apply
brownout to two popular cloud applications.

are ordered by popularity, i.e., the number of bids on them, and the
top 5 are returned. While the described engine is not sophisticated,
it does serve as a reasonable example of an optional component that
a cloud application may enable or disable at runtime. Clearly, such
a recommender engine adds a great value to the user experience,
thus increasing the owner’s revenue. However, it is also resource
hungry, as already discussed in Section 2 and Fig. 1. Nevertheless,
in our extension, the recommender engine is well isolated, which
allows us to easily enable and disable it per-request.

Having selected the recommender engine as the optional com-
ponent, we can proceed by adding an externally-modifiable param-
eter to control its activation: the dimmer. Since PHP scripts are
executed independently for each request, adding a central coordi-
nator to decide which requests are to be served with recommenda-
tions and which not may lead to contention, thus reduced scalabil-
ity. Therefore, we chose the dimmer Θ to represent the per-request
probability that the recommender engine is activated. By working
with a probabilistic instead of deterministic behavior, we enable
each invocation to take an independent decision. Each invocation
of a script reads the dimmer value from a file, called the dimmer
file, then a single Bernoulli trial is performed to decide whether
recommendations are served or not: The script generates a random
number r ∈ [0,1] and if r < Θ, recommendations are displayed,
otherwise not. The operating system caches this small dimmer file,
therefore, exporting the dimmer using this procedure is done with
low overhead and is minimally intrusive for the codebase (Table 1).

Finally, we need to close the feedback loop to avoid overload.
We chose as performance criterion the user-perceived latency as it
seems to have a great influence on web user satisfaction [65] and is
highly suitable to predict saturation (Fig. 1). To this end, the begin-
ning and the end time of each “view item” request are recorded and,
by subtracting the two, the response time can be measured. While
this quantity is slightly different than the user-perceived latency —
due to network latencies, context switches and other external fac-
tors — it should be reasonably close. Each invocation of the view-
item page sends the measured response-time to a well-known local
UDP port, on which the controller listens and stores these mea-
surements. The controller’s algorithm is periodically activated to
decide on a new value of the dimmer based on Eq. (6). This value
is atomically written to the dimmer file, using the rename system
call, and is then used by the PHP scripts during the next control
interval. Adding latency reporting and implementing the controller
takes little effort as can be seen in Table 1.

RUBBoS is a bulletin-board prototype website modeled after
Slashdot and has also been used as a benchmark in cloud com-
puting research [19, 37, 46, 69].

Adding brownout-compliance to RUBBoS can be done similarly
to RUBiS described above, focusing on the “view story” page.
However, concerning the first step of our methodology, optional
code choice, RUBBoS offers more flexibility. Indeed, we have
identified two parts that can be considered optional. First, the ex-
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isting code features a comment section that can easily be disabled.
While the comments section is an essential part of a bulletin-board,
users are better served without it, than not at all, in case of over-
load. Second, we extended RUBBoS with a recommender engine,
that suggests other stories that might be related or interesting for
the reader, based on common commentators.

The activation of the two optional components, the comment sec-
tion and the recommender engine, can be linked to the value of the
dimmer Θ in several ways. In our implementation, for each invo-
cation, the view story script stochastically decides how to serve the
page, using a cascade scheme as follows. A first Bernoulli trial is
performed with probability Θ for success. In case of a successful
outcome, comments are served and a second Bernoulli trial is per-
formed with the same probability. In case the second trail succeeds,
then recommendations are also served alongside the comments. As
a result, the probability of serving a page with comments is Θ,
while for serving a page both with comments and recommenda-
tions the probability is Θ2.

The feedback loop is identical to the RUBiS one. We reused the
controller written for RUBiS and implemented the same response
time reporting mechanism through local UDP. As with RUBiS, the
code changes were minimal as shown in Table 1.

Experience with two popular cloud applications showed that
brownout can, in general, be added to existing applications with
minimal intrusion and little effort, once the optional components
have been identified. As with most self-adaptation techniques,
brownout is a cross-cutting concern [17]. Therefore, large projects
would benefit from using aspect-oriented programming [39] to
clearly separate brownout-compliance code from core concerns.

In the next section, we do extensive experimentation, to further
show the benefits of our paradigm, and to provide an in-depth eval-
uation of the behavior of the resulting self-adaptive applications.

5. EVALUATION
In this section, we report results obtained using real-life experi-

ments to show the potential of the brownout paradigm in compari-
son to a non-adaptive approach and to test the behavior of the self-
adaptive application under different conditions. In what follows
we first describe the experimental setup, then we do fine-grained
analysis on the time-series results of a limited number of runs and,
finally, we test the system statistically under a variety of conditions.

Experimental Setup.
Experiments were conducted on a single physical machine

equipped with two AMD OpteronTM 6272 processors3 and 56GB
of memory. To simulate a typical cloud environment and also to
dynamically change the resource allocation, we decided to deploy
each application, with all its tiers, inside its own VM, as is com-
monly done in practice [62], e.g., using a LAMP stack [58]. We
use Xen [6] as hypervisor to get fine-grained resource allocations to
VMs [44]. Initial experiments revealed that CPU is the major bot-
tleneck, both for RUBiS and RUBBoS. Therefore, each VM was
configured with a static amount of memory, 4GB, and a variable
number of virtual CPUs depending on the experiment. Allocating
800% CPU means that the application had exclusive access to 8
cores of the physical machine, while 50% signifies accessing to a
single core of the physical machine, for half of the time. Combined
multiplexing of the physical cores, both in space and in time, is
common in today’s virtualized data-centers [30].

To emulate the users’ behavior, we have found the clients pro-
vided by RUBiS and RUBBoS insufficient for our needs. Specifi-
32100MHz, 16 cores per processor, no hyper-threading.

cally, they do not allow to change the number of concurrent users
and their behavior at run-time. Moreover, they report statistics for
the whole experiment and do not export the time series data, pre-
venting us from observing the application’s behavior during tran-
sient phases. Last, these tools cannot measure the number of re-
quests that have been served with recommendations or comments,
which represents the quality of the user-experience.

We therefore developed a custom tool, httpmon, to emulate web
users. Its behavior is similar both to the tools provided by RU-
BiS and RUBBoS, and to the TPC-W benchmark specification [27].
Among others, it allows to dynamically select a think-time and a
number of users and maintains a number of client threads equal
to the number of users. Each client thread runs an infinite loop,
which waits for a random time and then issues a request for an item
or a story. The random waiting time is chosen from an exponen-
tial distribution, whose rate parameter is given by the reciprocal
of the think-time. A master thread collects information from the
client threads and periodically prints statistics for the previously
elapsed second of execution. In particular, it records the maximum
user-perceived latency — which is the time elapsed from send-
ing the first byte of the HTTP request to receiving the last byte of
the HTTP response — and the ratio of recommendations or com-
ments — the number of requests that have been served executing
the optional code for recommendations or comments divided by the
total number of requests. Note that, due to the stochastic nature of
our implementation (see Section 4), this may be slightly different
from the dimmer Θ, which is the output of the controller. During
all our experiments, httpmon was executed on a dedicated core, to
reduce its influence on the application under test.

5.1 Time-series analysis
Thoroughly testing a system should be done under a variety of

conditions, applying statistical analysis on the result. However, sta-
tistical testing alone may hide details about the behavior of the sys-
tem in transient phases. Therefore, we first show a few, selected
experiments in the form of time-series.

We report three sets of experiments, each focusing on a different
time-varying aspect. First, we vary the resources that the applica-
tion can use. Second, we vary the application load — the number of
connected users. As a third experiment, we vary both these quan-
tities together to emulate a real execution environment. Since pre-
vious research suggests that unexpected peaks vary considerably in
nature [9], we manually chose values for load and resources that
exposed the application to extreme conditions.

The following figures, presenting each a single experiment, are
structured as follows. The bottom x-axis represents the time
elapsed since the beginning of the experiment. Every experiment
consists of 5 intervals, each of them lasting 100 seconds. The ex-
perimental parameter that is changed for every interval and its value
are reported on the top x-axis. Three different metrics are plotted.
First, the maximum user-perceived latency is shown in continuous
blue lines and its y-axis is depicted on the left side of the plot. Sec-
ond, the right y-axis hosts two different curves related to the user
experience. The first one, the dimmer, is the output of the controller
and is shown in dotted red lines. The second one, the comments or
recommendation ratio, depicted in dashed black lines, is the aver-
age ratio of pages served with optional content (number of pages
served with optional content over total number of pages served).
To improve the readability of the graphs, the values are aggregated
over 10-second intervals.

Ideally, the controller should maximize the dimmer while keep-
ing the latency close to the setpoint. Also, the recommendation
ratio should closely follow the dimmer.
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(c) self-adaptive, p1 = 0.9
Figure 3: RUBiS behavior in a non-adaptive configuration and two self-adaptive configurations, varying the resource allocation.
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(c) self-adaptive, p1 = 0.9
Figure 4: RUBiS behavior in a non-adaptive configuration and two self-adaptive configurations, varying the number of users.

Constant Load and Variable Resources.
In this set of experiments, we keep the load constant — 100 con-

current users with a think-time of 3seconds — and vary the amount
of resources allocated to RUBiS. In a cloud data-center, this situ-
ation arises when a physical machine is over-subscribed and co-
located VMs suddenly requires more resources. In fact, when mul-
tiple VMs share the same machine, performance interference may
occur [52]. This is either cause by the hypervisor’s decision to
time-share a CPU core, also called “steal time” [23], or due to the
congestion of a hardware resource, such as memory bandwidth or
CPU cache. Also, CPU throttling due to cooling failures or load re-
distribution due to the failure of a different physical machine may
cause similar VM capacity reductions.

The controller was configured with a control period of 1second
to allow a quick reaction, a target latency of 1second to allow a
safety distance to the tolerable waiting time of 2seconds recom-
mended in [51], a discount factor µ = 1 and a sliding measure win-
dow of 5seconds. This means that the controller’s input is the error
between the desired value of 1second and the maximum latency
measured over the last 5seconds. First, we test the behavior of the
non-adaptive system when no controller is present. Emulating the
non-brownout-compliant version of the application can simply be
done by forcing the output of the controller to maximum. However,
we found that the resulting system behaves poorly, therefore, for
fairer comparison, we set the dimmer to 0.5, which means that re-
quests are served with recommendations only half of the time. Sec-
ond, we compare these results to the case of brownout-compliant
application, when the controller’s pole p1 is set to 0.5 and 0.9.

Figure 3 plots the results of our test. Figure 3a shows that the
non-adaptive application performs quite well in the first interval, up
to 100 seconds, when resources are abundant as the CPU allocation
is set to 400%. Indeed, the latency is below 2seconds and the rec-
ommendation ratio is closely following the dimmer, 0.5. However,
during the next interval, when resources are slightly insufficient as
the amount of allocated CPU is halved, the latency starts increas-

ing because the application is unable to serve requests fast enough
and saturates. In the next time interval, when even fewer resources
are available, the system becomes unresponsive and some users ex-
perience huge latencies, up to 10seconds4. The ratio of recom-
mendations is very low, as requests that would potentially receive
recommendations are abandoned by the client due to timeouts. In
the next interval, more resources are allocated to the web applica-
tion as its CPU is increased to 300%. The application “catches up”
with serving previous requests and the latency decreases. However,
this process takes 60seconds, during which the application seems
unresponsive. In the last interval, resources are insufficient and the
application becomes again unresponsive. The results show that if
resource capacity fluctuates and temporarily becomes insufficient,
a non-adaptive approach may result in users experiencing unpre-
dictable latencies.

Figure 3b plots the results of the self-adaptive application with
the controller configured with the pole p1 = 0.5. In contrast to the
non-adaptive system, the self-adaptive application is perceived as
more predictable from the user’s perspective. Effectively, it man-
aged to maintain the latency below 2seconds whenever possible,
despite a factor 8 reduction of resources, from a CPU of 400% to
one of 50%. This is due to the dimmer adjustment that follows the
available resource capacity. Furthermore, the ratio of recommen-
dations closely follows the dimmer.

We discuss here the few deviations from the desired behavior,
where the latency increases above the tolerable waiting time. The
highest deviations occur as a result of an overload condition, when
the CPU allocation is reduced, around time instant 100, 200 and
400. This is in accordance with theory, since the controller needs
some time to measure the new latencies and correspondingly select
the new dimmer value. Nevertheless, the system quickly recovers
from such conditions, in less than 20seconds. Around time instant
50, 240 and 480, the controller seems to be too aggressive. It tends

4We limit plots to 4seconds to ease comparison among scenarios.
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to increase the dimmer quickly, violating therefore the 2seconds
tolerable latency.

Let us now study how the self-adaptive application behaves when
the controller is tuned for more stability. Figure 3c plots the results
with the same controller configured with p1 = 0.9. As predicted by
theory, it reacts at a slower pace, with small adjustments at every
iteration. Its output seems more steady and it generally does a better
job at keeping the latency around the setpoint of 1second. By using
this controller, the likelihood of having latencies above the tolerable
waiting time is decreased. However, this configuration also takes
more time to recover from overload conditions. Compared to the
previous configuration, it required twice as much time to react to
the resource reduction at time instant 200. Also, during recovery,
the recommendation ratio differs slightly from the dimmer’s value.
This happens because the responses arriving at the client have a
high latency and were actually started at a time when the dimmer
was higher. However, considering that the resources were reduced
instantaneously by a factor of 4, the slower recovery is unlikely to
be a problem in a production environment.

Summarizing, adding brownout self-adaptivity to a cloud ap-
plication may considerably improve its flexibility with respect to
resource allocation. Effectively, the application behaves more ro-
bustly and can withstand large reduction in resource allocation, pro-
portional to the resource requirements of the optional components.

Constant Resources and Variable Load.
In this second set of experiments, we keep the resources con-

stant, setting the CPU allocation to 400%, and vary the number of
users accessing brownout-compliant RUBiS. In a real data-center,
this situation may happen due to flash crowds — sudden increase in
popularity when the page is linked from another high-profile web-
site. However, it can also be the result of load redistribution due
to a failing replica or denial-of-service attacks. The controller is
configured identically to the previous set of experiments.

Let us now discuss the results. Figure 4a shows the results of the
non-adaptive version of RUBiS, when the system cannot keep up
with the load increase. Even after the number of users is signifi-
cantly decreased, such as at 400 seconds, the application requires a
significant time to recover, up to 62seconds.

In contrast, Figure 4b and Figure 4c shows the results with the
self-adaptive version of RUBiS. Despite an 8-fold increase in the
number of users from 100 to 800, the application is more respon-
sive, adjusting the dimmer to adapt to the load increase. Regard-
ing the adaptation time, in the worst interval, when the number of
users was spontaneously increased by a factor of 4 at time 300, the
controllers required respectively 22seconds and 66seconds when
p1 = 0.5 and 0.9. As in the previous experiment, the controller
with a pole of 0.5 is more aggressive, quickly increasing the dim-
mer and risking latencies above the tolerable level. In contrast, set-
ting the pole to 0.9 produces a more conservative controller, which
does smaller adjustments of the dimmer’s value. In any case, the
brownout-compliant cloud application is more robust and avoids
saturation when the number of users increases.

Variable Load and Resources.
To reproduce a realistic setup, we studied how a brownout-

compliant application behaves when both the available resource ca-
pacity and the number of users are varying. We present the results
of an experiment conducted with RUBBoS, incidentally showing
another brownout-compliant application with two optional com-
ponents, comments and recommendations. However, to improve
graph readability, we only present the ratio of requests served with
comments. Concerning controller configuration, we present results
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Figure 5: RUBBoS (brownout-compliant, p1 = 0.9, setpoint 0.5
seconds) behavior varying both resources and users.

with the pole p1 = 0.9 and, to further show that the controller be-
haves as theoretically designed, we chose to reduce the target la-
tency (setpoint) to 0.5seconds.

Figure 5 shows the results of the experiment. As can be ob-
served, except for the fourth interval, the controller successfully
manages to keep the maximum latency around 0.5seconds. In the
fourth interval, the dimmer is kept as close as possible to zero to
serve the maximum number of requests in a reasonable time. In
general, the dimmer is increased when the conditions allow for it,
such as during the second and fifth interval, and decreased when
resource capacity is insufficient or the load is too high, during the
remaining intervals.

The time-series results show that the self-adaptive applications
behaves as intended. The controller adapts the dimmer both to the
available capacity and number of users as expected, and keeps the
perceived latencies close to the setpoint. Moreover, the advantages
that the brownout paradigm brings to a previously non-adaptive ap-
plications can clearly be observed from the results.

The experiments opened up two questions. First, we have shown
that the pole allows to choose between a more aggressive and a
more conservative controller. Which one is “better”, i.e., which
one serves more requests of any kind and which one serves more
requests with optional components enabled? Second, we have cho-
sen to compare the self-adaptive approach with a non-adaptive one
with the dimmer Θ = 0.5. Is it possible that other static dimmer
values compare more favorably? In what follows we show experi-
mental results that answer these two questions.

5.2 Statistical analysis
In this section, we present statistical results to show that our con-

troller is able to tackle a variety of scenarios with invariant benefits
in the cloud application behavior.

We focus our experiments here on unreliable resource capac-
ity. Our intuition is that flash-crowds are somewhat avoidable, for
example, by gradually rolling out an application to an increasing
number of users, as Google did when launching GMail or Face-
book when launching Graph Search. In contrast, for the foresee-
able future, hardware is increasingly unreliable as its scale and
complexity is constantly increasing, therefore, any cloud provider
eventually has to deal with unreliable resource capacity. Moreover,
performance of the cloud applications may be degraded due to co-
location [47]. Since both the stress-test (Fig. 1) and time-series
results (Figs. 3 and 4) suggest that the system behaves similarly in
responding to an increasing number of users as to a reduction in
resources, we believe these results are representative also for the
flash-crowd scenario.

The experimental setup is as follows. Each particular application
configuration, whether non-adaptive or self-adaptive, is subjected
to 10 distinct test-cases. Each test-case consist of 10 time intervals,
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(g) Summary over all self-adaptive configurations.
Figure 6: Statistical results for self-adaptive system. Figs. 6a to 6f show empirical cumulative distribution of latencies for each configuration.
Each line represents the results of a test-case. Fig. 6g shows, for each configuration, over all test-cases, average served requests (bar with no
fill), how many of them were on average served with recommendations (solid, blue bar) and average revenue (red, patterned bar).

each having a duration of 100seconds, but a different amount of
CPU allocated to the application. The first four test-cases allocated
CPU with small uniform random deviation of 50% around 100%,
200%, 400% and 600%. The next four test-cases allocate CPU
uniform randomly between 50% and 800%. The final two test-
cases validate the system in extreme cases, in which the amount of
available resources alternates between 50% and 800% CPU, start-
ing with the lower and higher amount, respectively. We present
results with RUBiS, with the controller configured similarly as in
the previous section, except for a setpoint of 0.5seconds.

For any particular configuration of the application, we are in-
terested in the following metrics: the user-perceived latency rep-
resented as an empirical cumulative distribution function, the total
number of requests served and the total number of requests served
with optional content, such as recommendations. To provide a sin-
gle metric and ease comparison, we compute the revenue of the
application owner. Each served request values 1 monetary unit and
each served recommendation adds 0.5 monetary units. This rev-
enue model is based on a study that found that recommendations
increased sales by 50% [26].

Let us first focus on testing the various self-adaptive configu-
rations. Fig. 6 show the results for various pole configurations
ranging from 0.1 (more aggressive) to 0.9 (less aggressive). The
first take-away point is that every configuration does a reasonable
job in keeping the latencies below the setpoint, therefore, we gain
confidence that our controllers are adjusting their output correctly.
Analyzing the results more in detail, more aggressive controllers
serve slightly more requests than conservative ones, however, they
serve fewer recommendations and perform poorer in maintaining
low latencies (Figs. 6a to 6f). When combining the two dimensions
by looking at revenue (Fig. 6g), values for p1 between 0.6 and 0.8
maximize application owner income. In the end, we determine that
the pole p1 = 0.8 is our best configuration, since it maximizes av-
erage revenue over the test-cases, while at the same time keeping
low latencies.

Having found the best configurations for the self-adaptive ap-
plication, let us compare it to the non-adaptive version. Fig. 7
shows the results for various statically chosen dimmer values with

the same resource availability patterns. The results of the best
brownout-compliant configuration is replotted, for the reader’s con-
venience in Figs. 7f and 7g. As expected, low dimmer values main-
tain low latencies, but deliver no recommendations. High dimmer
values risk saturating the application, which leads to timeouts and,
as a result, reduces the number of requests served. In contrast, the
self-adaptive approach serves recommendations when capacity al-
lows and disables them otherwise. As a result, when it comes to
owner revenues, self-adaptation manages to outperform all static
configurations (Fig. 7g).

To sum up, the results show that adding brownout compliance
to cloud applications increases their robustness in case of flash-
crowds, unexpected hardware failures or unexpected performance
interference. This directly translates into increased revenue for the
application owner and, hence, increased profits.

6. RELATED WORK
Self-adaptation is playing a key role in the development of soft-

ware systems [17, 38, 42] and control theory has proved to be a
useful tool to introduce adaptation in such systems [11, 21, 25, 70].
Although many attempts have been made to apply control theory to
computing systems [53], the research is still in a preliminary stage
and the achievable benefits are yet to be clearly defined [34, 76].

We were inspired by the idea that there might be multiple code
alternatives for the same functionality [3, 22] and not all the code
that a software application is executing is necessary, and some of
its code might be skipped when necessary [49]. A similar concept
has been proposed in the web context. Degrading the static content
of a website was first proposed in [1] and has been subsequently
extended to dynamic content [55]. However, this work tend to pro-
pose controllers that keep CPU usage below a certain threshold,
that should be determined through guesswork or prior knowledge
of the platform. This solution works for web servers running on
bare-metal hardware but it is unsatisfactory in cloud environments.
On one hand, resources may be inefficiently utilized, due to the
fact that the threshold needs to be set low enough to leave head-
room in case of performance interference from co-located VMs.
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Figure 7: Statistical results for non-adaptive system. Figs. 7a to 7e show latency distribution for each non-adaptive configuration, while
Fig. 7f shows our selected self-adaptive behavior. Each line represents a test-case. Fig. 6g shows, for each configuration, over all test-cases,
number of served requests (bar with no fill), how many of them with recommendations (solid bar) and revenue (red, patterned bar).

On the other hand, CPU usage is not a reliable measure for spare
capacity in virtualized environments, due to hypervisor preemption
of virtual machines, also called steal time [23]. We use measured
latency, which requires a carefully-designed controller, in order to
avoid this limitation.

Other proposals exploit partial execution of computation to avoid
overload. Response generation is interrupted after a certain time
budged has been exhausted [33, 40], which is, however, only ap-
plicable to a narrow class of applications. Although in some spe-
cific cases, this may lead to better results, our aim is to provide a
widely-applicable programming paradigm that can tackle the vari-
ety of fluctuations happening in a cloud environment. Therefore,
we propose a general solution that can be applied both to existing
and new cloud applications with minimal impact on their design.

An approach complementary to ours is elasticity [4, 14, 15, 29,
35, 52, 60, 68]. In cloud computing, elasticity means deciding the
right amount of resources each application needs avoiding under-
or over-provisioning. For example, Sharma et al. [59] propose a
system that tries to minimize the cloud tenant’s deployment cost
while reacting to workload changes. The system takes into account
the cost of each instance, the possibility of horizontal and vertical
scaling and the transition time between configurations. However,
elasticity offers no solution if the underlying infrastructure’s ca-
pacity is exhausted, taking only the application’s point-of-view.

Although some work deal with performance differentiation for
multiple classes of clients [48], to our knowledge, the closest cloud
application to a brownout-compliant one is Harmony [18]. Har-
mony adjust the consistency-level of a distributed database as a
function of the incoming end-user requests, so as to minimize re-
source consumption. In this case, the motivation to introduce the
adaptation mechanism lies in limiting the amount of money that the
user is charged for. This is a specific example of how a cloud ap-
plication can be compliant with our paradigm, while we propose a
general technique and build a sufficiently broad control strategy to
realize adaptivity for a vast class of applications.

Related to methodology, cloud research in general relies either
on analytical models [8, 16, 63, 72, 73, 75] or on running actual ex-
periments and building empirical traffic profiles and signatures [28,

52, 64, 66, 67]. Our system uses an analytical model to infer per-
formance from measurements taken from the actual system. Zheng
et al. [74] argue that running actual experiments is cheaper than
building accurate models to validate research proposals. We build
on this assumption, validating our technique on a small scale ex-
perimental testbed.

7. CONCLUSION
In this paper, we introduced the brownout paradigm for cloud

applications. We discussed a model for applications with optional
code, i.e., computations that can be activated or deactivated per
client request. We described our experience with two widely-used,
cloud benchmark applications, RUBiS and RUBBoS, to show the
ease of applying our approach to existing cloud applications. We
synthesized a controller for a wide range of applications, which se-
lects the dimmer parameter based on incoming load and available
capacity. We proved the correctness of the resulting system us-
ing control-theoretical tools. We implemented the framework and
tested it with real-life experiments.

The results show that self-adaptation through brownout can al-
low applications to support more users or run on fewer resources
than their non-adaptive counterparts. Hence, our proposition en-
ables cloud applications to more robustly deal with unexpected
peaks or unexpected failures, without requiring spare capacity.

Future work include extending the contribution to applications
spanning multiple machines and combining brownout-compliance
with other mechanism like horizontal/vertical elasticity and migra-
tion. We believe that brownouts open up a new level of flexibility
in cloud platforms.
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