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ABSTRACT 

Changes in abundance of interactive species can have cascading, community-wide effects (Soulé 

et al. 2003). Raccoons (Procyon lotor) prey on a competitor for marine turtle eggs, the Atlantic 

ghost crab (Ocypode quadrata). Conservation of marine turtles often includes managing 

raccoons—the most obvious egg predator—which may have broader ecological effects, and 

unknown effects on egg predation. Neither the relationship between raccoons and ghost crab 

density nor the effects of ghost crab density on egg predation are well understood. I studied 

raccoon-ghost crab interactions and the effects of environmental variation on their activity during 

the 2007 marine turtle nesting season on Canaveral National Seashore, FL. My goal was to 

model predator activity and identify efficient management strategies to reduce egg predation. 

Raccoon activity increased with increasing habitat diversity and edge of the dominant cover type, 

coastal strand. Raccoon activity increased locally and became less variable near segments of 

beach accessed for human recreation, but activity was greater on undeveloped beach, where 

habitat diversity and edge were greater. Ghost crab density and size were primarily affected by 

sand characteristics and recreation but decreased with increasing raccoon activity in June, which 

may have contributed to sustained declines in ghost crab density. Hatching success of marine 

turtles decreased with increasing ghost crab egg predation, suggesting ghost crabs are an 

important cause of egg mortality and not merely scavengers on unhatched eggs. Egg predation 

by ghost crabs was unrelated to ghost crab density or size, likely a result of monitoring 

limitations, but raccoon activity increased with increasing egg predation by ghost crabs, 

supporting previous research and experimental evidence suggesting ghost crabs can facilitate 

secondary nest predation by raccoons. This indirect interaction has strong implications for 
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marine turtle conservation, because its strength may increase with increasing ghost crab density, 

potentially negating the effects of raccoon removal.  
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CHAPTER 1. ENVIRONMETAL INFLUENCES ON ACTIVITY OF SEA TURTLE 

NEST PREDATORS & CONSEQUENCES FOR LOGGERHEAD SEA TURTLE 

HATCHING SUCCESS 

Introduction 

When predation affects species of conservation concern, such as marine turtles (Stancyk 1982), 

managers must identify the causes and consequences of changes in predator communities to 

avoid short-lived conservation benefits or unexpected, cascading negative effects (Soule et al. 

2005). Predator replacement through immigration may require continuous predator removal, 

which has far-reaching effects on predator demographics (Barton and Roth 2007). Increased 

predation on sensitive species could result from increased density of intermediate predators, i.e., 

mesopredator release (Crooks and Soule 1999, Barton and Roth 2008). Scientific experiments 

that identify and mitigate factors affecting predator density (e.g., anthropogenic development and 

food subsidies) can improve the efficacy of conservation-oriented predator management 

(Boarman 2003).  

Predation is one of the largest causes of egg mortality for marine turtles in North America 

(Stancyk 1982, Engeman et al. 2003). All four marine turtle species that nest on the Atlantic 

coast of the U.S. are listed as threatened or endangered under the Endangered Species Act of 

1973 and endangered or critically endangered on the International Union for Conservation of 

Nature red list (2007), requiring management actions to mitigate egg loss to predators. Raccoons 

(Procyon lotor) are well-documented predators of marine turtle eggs, preying on >90% of nests 

on some U.S beaches (Davis and Whiting 1977, Stancyk 1982, Engeman et al. 2005, Garmestani 

and Percival 2005). Common management strategies to reduce predation include removing 

raccoons and physically screening them from nests (Engeman et al. 2005, Garmestani and 

Percival 2005). Both methods effectively reduce nest predation by raccoons (Ratnaswamy et al. 
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1997, Engeman et al. 2005, Antworth et al. 2006) but even well-established practices can have 

unexpected results (Barton and Roth 2008) and the broader ecological effects of raccoon 

management are not well understood (Ratnaswamy and Warren 1998).  

Predation of marine turtle eggs by ghost crabs (Ocypode quadrata) also can be substantial 

(Bouchard and Bjorndal 2000, Antworth et al. 2006, Barton and Roth 2008) and they may be the 

most important predators of marine turtle eggs on beaches where raccoon predation is controlled. 

Population densities of raccoons and ghost crabs are negatively correlated on sea turtle nesting 

beaches in Florida (Barton and Roth 2008), so raccoons may limit ghost crab populations and 

their impact on nesting turtles. Intraguild predation, where one predator preys on another that 

shares a common resource, is common in nature and important in structuring ecological 

communities (Polis and Holt 1992, Holt and Polis 1997, Arim and Marquet 2004). By selectively 

preying on large ghost crabs, which may be more effective egg predators (Barton and Roth 

2008), raccoons could alter the size structure and reproduction of ghost crab populations, 

reducing egg predation by ghost crabs. Thus, the indirect negative effects of raccoon removal 

could outweigh the direct benefits for marine turtle hatching success. 

 The mesopredator release hypotheses states that removal of top predators can release 

intermediated-sized predators from predation and competition, resulting in greater predation on 

lower trophic levels (Crooks and Soule 1999). Mesopredator release often has been invoked over 

other explanations for increased predation and mesopredator density, such as changes in 

landscape characteristics that favor mesopredators but negatively affect their prey (see Litvaitis 

and Villafuerte 1996, Gehrt and Clark 2003, Gehrt and Prange 2007). Barton and Roth (2008) 

observed substantial predation of sea turtle nests even with low raccoon densities and suggested 

ghost crabs released from raccoon predation increased in density and size. Furthermore, they 
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suggested increased nest predation by ghost crabs increased the detectability of nests, facilitating 

predation by raccoons (Barton and Roth 2008). Thus, they explained high egg predation by both 

predators combined as arising through mesopredator release and an indirect behavioral 

interaction. However, potential confounding factors could contribute to differences in predator 

densities and predation among sites, including different levels of human development and 

recreation along east-central Florida beaches (Barton and Roth 2008).  

Beach development and recreation may be favorable for raccoons, which often increase in 

density and alter their behavior in response to human activities (Prange et al. 2004) and increased 

landscape diversity (Oehler and Litvaitis 1996). Raccoon abundance and activity have been 

positively correlated with habitat edges (Danielson et al. 1997, Chamberlain et al. 2007) and 

proximity to aquatic habitats (Dijak and Thompson 2000, Chamberlain et al. 2007). Ghost crab 

abundance may be negatively affected by recreational activities due to habitat destruction 

(Barros 2001) or positively affected by food subsidy (Steiner and Leatherman 1981). Sediment 

composition also may influence ghost crab density, with lower abundance in poorly sorted (large 

standard deviation from mean grain size) sediments and smaller burrows in coarse-grained sand 

(Turra et al. 2005). Understanding how human activity and landscape diversity influence the 

dynamics of marine turtle nest predators is important for implementing the most effective 

strategy to reduce predation on sea turtle eggs.  

All research was conducted in collaboration with James D. Roth, Research Faculty, 

Department of Biology, University of Central Florida. We measured the spatiotemporal effects 

of natural and human-influenced environmental variation on raccoon activity, ghost crab burrow 

density, and their subsequent effects on frequency of ghost crab predation on marine turtle eggs. 

We conducted research on Canaveral National Seashore, where all marine turtle nests were 
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screened to prevent nest predation by raccoons (Antworth et al. 2006). When raccoons prey on a 

turtle nest they generally eliminate all evidence of previous predation. Eliminating secondary 

nest predation by raccoons preserves evidence of primary predation and reduces the likelihood of 

underestimating egg predation by ghost crabs.  

We tested the hypothesis that variation in marine turtle egg predation was primarily due to 

changes in ghost crab density, which is affected by turtle nest density, human recreational 

activities, sediment composition, and raccoon activity. We predicted ghost crab density would 

increase with increasing marine turtle nest density, decreasing human recreational activities, 

decreasing mean and standard deviation from mean (SD) sand grain size, and decreasing raccoon 

activity. We predicted raccoon activity would increase with increasing marine turtle nesting, 

human recreational activities, and habitat diversity. Finally, we predicted marine turtle egg 

predation would decrease with decreasing ghost crab density and increasing raccoon activity, due 

to direct effects on ghost crab numbers and indirect effects on their behavior.  

Study Area 

Canaveral National Seashore (CANA), located on central Florida’s Atlantic coast, consists of 

58,000 acres of barrier island, open lagoon, wetlands, coastal hammocks, and pine flatwoods 

managed by the National Park Service (NPS). The 38.4 km segment of barrier island varies 

widely in width, habitat composition and human recreational activity. The central 17.5 km 

(backcountry) has remained undeveloped, with public access restricted to permit holders on foot 

or horseback. The remaining 20.9 km includes the northern (Apollo Beach, ~11.7 km) and 

southern (Playalinda Beach, ~9.2 km) ends of the park. Apollo Beach is the widest portion of 

CANA’s barrier island, with more road but fewer beach access points. Apollo Beach was 

bordered by the town of New Smyrna Beach and contained offices and buildings associated with 



5 

 

research and park management personnel. Playalinda Beach was bordered by relatively 

undeveloped beach and inland habitat managed by Kennedy Space Center and the U.S. Fish and 

Wildlife Service. Both beaches were accessible from parking lots distributed along primary 

access roads inland of the beach dunes. Each parking lot had a vault toilet and refuse cans in 

lidded enclosures, and garbage was relatively inaccessible to raccoons. The level of human 

disturbance varied across the landscape and differed between the two accessible segments of 

beach; Apollo Beach had fewer parking lots and visitors than Playalinda Beach.   

Three species of marine turtle nest regularly on CANA: leatherback (Dermochelys 

coriacea), green (Chelonia mydas), and loggerhead (Caretta caretta). Loggerheads nest in the 

greatest abundance (Antworth et al. 2006) and Kemp’s ridleys (Lepidochelys kempii) nest 

infrequently on CANA. The nesting season extends from April to September or October, but 

most nest deposition occurs from May to August. Nest density is generally higher in the southern 

region, but abundance varies greatly within areas (Antworth et al. 2006). The NPS screens > 

90% of nests within 12 h of deposition to create a physical barrier to raccoon predation. Nests are 

marked with a single wooden stake and covered by a wire screen (2.25 m
2
 with 5 cm x 10 cm 

mesh) impenetrable to most raccoons but not to ghost crabs (Antworth et al. 2006). Most raccoon 

predation occurs prior to screening, so screened nests allow unbiased assessment of egg 

predation by ghost crabs.  

Methods 

Predator Indices 

We used passive tracking methods (Engeman et al. 2003, Barton and Roth 2008) to monitor 

raccoon and ghost crab activity from April to October 2007. Using a landscape rake, we 

smoothed 2 m wide transects from the dune edge to below the current high water mark and 
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marked the center of each transect with a single wooden stake at the dune edge. Transect area 

varied with beach slope and the tide cycle. We restricted measurements to the minimum distance 

on each transect unaffected by tide. Raccoons and ghost crabs are primarily nocturnal 

(Greenwood 1982, Valero-Pacheco et al. 2007) and human beach access was limited to daylight 

hours on CANA. To reduce human disturbance, we monitored transects from 1 h before sunset to 

1 h after sunrise. We divided the beach into 24 sections and randomly selected four points spaced 

>100 m apart within each 1.6 km section. Thus, we sampled a total of 96 transects, each on two 

consecutive nights, bi-weekly; half the beach was sampled in a four day period, alternating 

which quarter was sampled first. To avoid any biases associated with rain, which washes away 

tracks, we sampled only in fair weather. We counted the number of raccoon tracks (a series of 

prints) intersecting each transect and total length (cm) of each raccoon track. We also counted 

the number of tracks of other mammals on the beach; armadillo (Dasypus novemcinctus), bobcat 

(Lynx rufus), and opossum (Didelphis virginiana). We counted all ghost crab burrows within 

transects, measured the diameter (mm) of each burrow (which correlates with carapace width; 

Turra et al. 2005) and considered ghost crab burrows ≥23 mm in diameter to reflect reproductive 

adults (Negreiros-Fransozo et al. 2002). At each sampling period we measured the length of each 

transect from dune to high tide mark in order to calculate burrow density. 

Environmental Variables 

We measured several environmental variables to determine their relationship to the distribution 

and abundance of raccoons and ghost crabs. 

Nest Density.—We used a Garmin 12 Global Positioning System (GPS), accurate to 15 m, to 

gather locations of all marine turtle nests laid from April through July. We counted the 

cumulative number of nests laid within 100 m of each transect on each sampling day, as well as 
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the number of nests laid within the previous 2 d. Numbers of nests were averaged for all 

sampling days for each transect for spatial analyses and averaged for all sampling days within 

each month for temporal analyses.   

Recreation.—We assumed the impact of human recreation on the beach would be related to 

distance to parking lots (which provide beach access with boardwalks over the dunes, thus acting 

as human recreation centers) and the relative use of parking lots by park visitors. We measured 

GPS locations of all beach access boardwalks associated with parking lots and measured the 

distance of each transect to the nearest boardwalk using ArcGIS 9.2. For each parking lot, we 

counted the cars on at least eight occasions between 1700 and 1730 h prior to clearing transects 

for sampling, then regressed the number of cars against the park entrance counts (collected by 

NPS at gate) for each day. We used the resulting linear equations to estimate the number of cars 

present in each parking lot on each sampling day. We averaged the estimated daily counts at the 

nearest parking lot across all sampling days for each transect.  

Sand Composition.— To test the effect of sand composition on ghost crab activity, we 

collected sand from every fourth transect using a 2.5-cm diameter PVC pipe sunk 30 cm 

vertically into the sand, 5 m from the dune edge along the center of the transect. Sand was stored 

in plastic bags and later oven-dried for 24 h, then sifted using USA standard sieves ranging from 

4750 to 63 μm. We decreased the mesh size of each sieve until all sand grains were categorized 

by size. We weighed the sand in each category using a scale accurate to 1 mg and used 

proportions of total sample weight in the program GRADISTAT (Blott and Pye 2001) to 

calculate mean sand grain size and sorting coefficient (SD) using the geometric graphical method 

described in Folk (1966). 
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Land Cover.—We used 2003 land cover maps created by Dynamac Corp., Kennedy Space 

Center, to quantify land cover variables. Edge delineation was accurate to within 5 m for gross 

land cover types (e.g., anthropogenic vs. natural cover edge) and to within 30 m for ecotones 

with gradual transitions (e.g., upland scrub to wetland scrub). Using ArcGIS 9.2, we created 200 

m dia. buffers around each transect and calculated area and edge for each cover type, excluding 

beach and open ocean, within each buffer. We calculated several additional landscape variables 

that may be relevant for raccoons, including total edge (sum of the lengths of the edges between 

cover types within each buffer), coastal strand edge (sum of the lengths of the edges of coastal 

strand, the dominant land cover type), water edge (sum of the lengths of edges of all water cover 

types, excluding open ocean), edge/area (total edge divided by total area of all cover types), and 

habitat diversity (Shannon’s Index): H’=
N

n

N

n ii
ln , where ni is the area of cover type i and N is 

total area (Morrison et al. 1998). 

Nest Predation 

To quantify egg predation we randomly selected 2 freshly deposited nests per 1.6 km section of 

beach during peak nesting in July 2007 (selected nests were >100 m apart). We located these 

nests during deposition (or the morning after deposition), excavated eggs to determine clutch 

size, and reburied each in its original nest chamber (Barton and Roth 2008). Egg fate is 

unaffected by this activity if eggs are handled within 12 h of deposition (Florida Fish and 

Wildlife Conservation Commission 2007). Some nests were washed out or marks were lost, so to 

supplement the sample size we selected the nearest nest to each transect laid between 15 July and 

15 August, 2007. All nests selected were >100 m apart and within 100 m of a transect. We 

excavated nests after a 70-d incubation period or within one week of hatchling emergence, and 
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recorded the number of hatched and unhatched eggs and the number of eggs preyed on by each 

predator. Egg fates were determined using procedures described in Bouchard & Bjorndal (2000), 

and each egg was categorized as hatched (including hatchlings remaining in the nest), unhatched 

(including pipped), or preyed on by ghost crabs.  

Data Analyses 

We sampled the same transects throughout the nesting season. Thus, we used repeated measures 

analysis of variance (ANOVA) to test the effect of month on ghost crab burrow density and 

raccoon activity. When data failed to meet assumptions of sphericity, we adjusted degrees of 

freedom using the Greenhouse-Geisser correction (Keselman et al. 1996). We used univariate 

regression to compare ghost crab burrow density and raccoon activity to cumulative marine turtle 

nests each month. We also tested the relationships each month between ghost crab burrow 

diameter and raccoon activity, and raccoon activity and density of potentially hatching nests. We 

recorded ghost crab burrow density and diameter from Apr.-Oct., raccoon activity from May-

Oct., and nest density from Apr.-July. Raccoon activity and ghost crab burrow density were 

square root transformed for analyses by month.  

We compared habitat edge and diversity adjacent to the beach between areas developed for 

recreation and undeveloped backcountry using independent sample t-tests. For each transect we 

calculated mean ghost crab density, mean raccoon activity, and variance in raccoon activity over 

the entire season and compared mean predator activity(independent sample t-test) and variance 

in raccoon activity (Mann-Whitney U test) between developed and undeveloped beach. 

We assessed alternative general linear models of the primary dependent variables (mean 

raccoon total track length, mean density of ghost crab burrows, mean ghost crab burrow 

diameter, ghost crab egg predation) and natural and anthropogenic habitat variables. Where 
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necessary, data were transformed to meet the assumptions of statistical tests. We excluded 

variables with correlations >0.60 to avoid collinearity. We used Akaike’s Information Criterion 

(AIC) values to select the most informative general linear and multiple regression models 

(Burnham and Anderson 2002).  

Ghost Crab Density.—We calculated density of ghost crab burrows (burrows/m
2
) on each 

transect for each subsampling event and averaged all subsamples. We tested relationships 

between ghost crab density and marine turtle nest density, distance to nearest boardwalk, mean 

and SD sand grain size (location), width of the beach above high tide mark (beach width), and 

raccoon activity.  

Raccoon Activity.—Our index of raccoon activity was total raccoon track length (sum of 

lengths of all tracks on a transect), which did not require distinguishing among individual tracks 

present on transects. For each transect, we averaged total track length for each sampling period. 

We included location (distance along the beach from the northern park boundary) in all models 

to account for spatial autocorrelation among transects. The most complex model included 

location, coastal strand edge (log-transformed), habitat edge/area, habitat diversity (Shannon 

Index), and distance to nearest boardwalk. The full model was compared to models of lesser 

complexity created through stepwise exclusion of variables. 

Nest Predation.—Using all nest data, we compared number of eggs preyed on by ghost 

crabs with number of hatched eggs and with number of unhatched eggs that were not preyed on. 

A negative relationship between number of hatched eggs and number consumed by ghost crabs 

could either mean that ghost crabs decreased hatching success (predation) or that when a greater 

number of eggs failed to hatch for other reasons, more of them were consumed by ghost crabs 

(scavenging). To test whether egg damage by ghost crabs indicated predation or scavenging, we 
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compared number of eggs that failed to hatch for any reason (undeveloped or preyed upon) with 

the proportion of those eggs preyed on by ghost crabs. Since nest predation by raccoons obscures 

predation by ghost crabs, we excluded nests affected by raccoons in analyses of egg predation by 

ghost crabs. To investigate other variables that may affect ghost crab predation, we used the 

nearest nests within 100 m of a transect where predator activity was monitored and averaged 

across the incubation period for each nest. We then tested the relationship between the number of 

eggs preyed on by ghost crabs and ghost crab density, density of adult ghost crab burrows (>23 

mm diameter), and raccoon activity on the nearest transect during the incubation period for each 

nest. 

We assumed a significance level of = 0.05. Results are presented as mean ± SE. 

Results 

Marine turtles laid 3,627 nests on CANA from April-October, 2007, with an average of 584.1

220.8 nests/month. Peak nesting occurred in July (1496 nests). Likewise, activity of both 

predators varied temporally (Figure 1.1) and spatially (Figure 1.2). Raccoons were much more 

abundant than any other mammal recorded (Figure 1.3). 

Ghost Crab Burrow Density and Size 

Ghost crab burrow density differed significantly among months (repeated measures ANOVA, 

F4.4,362.4 = 47.64, P < 0.001) and was best described by a cubic model (F1,82 = 111.75, P < 0.001). 

Ghost crabs were most abundant in April and May, declined from May – August, and increased 

slightly at the end (Figure 1.1). Ghost crab burrow density decreased with increasing raccoon 

activity only in June (Figure 1.4; F1,94 = 28.67, P < 0.001); burrow density was unrelated to 

raccoon activity in May (F1,94 = 0.01, P = 0.91), July (F1,94 = 0.34, P = 0.56), August (F1,94 = 

0.62, P = 0.43), September (F1,81 = 0.35, P = 0.56), and October (F1,94 = 0.14, P = 0.71). Ghost 
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crab density was also unrelated to marine turtle nest density each month: April (F1,91 = 0.17, P = 

0.68), May (F1,94 = 2.60, P = 0.11), June (F1,94 = 0.49, P = 0.49), and July (F1,94 = 0.53, P = 0.47). 

Density of adult ghost crab burrows (≥23 mm) also differed significantly among months 

(F1,82 = 24.121, P < 0.001). Adult ghost crab density decreased with increasing raccoon activity 

in June (r
2
 = 0.106, F1,94 = 11.11, P = 0.001), increased with increasing raccoon activity in 

September (r
2
 = 0.058, F1,79 = 11.11, P = 0.001), and was unrelated to raccoon activity in May (r

2
 

= 0.0, F1,94 = 0.15, P = 0.90), July (r
2
 = 0.002, F1,94 = 0.22, P = 0.64), August (r

2
 = 0.0, F1,94 = 

0.39, P = 0.53), and October (r
2
 = 0.01, F1,94 = 1.08, P = 0.30). Ghost crab burrow diameter 

differed significantly among months (F4.4,363.7 = 5.679, P < 0.001), decreasing linearly (F1,82 = 

16.579, P < 0.001). When we analyzed separately each month using linear regression, mean 

burrow diameter increased with increasing raccoon activity in September (r
2
 = 0.096, F1,79 = 

8.39, P = 0.005), but they were unrelated in May (r
2
 = 0.0, F1,94 = 0.17, P = 0.90), June (r

2
 = 

0.006, F1,94 = 0.60, P = 0.44), July (r
2
 = 0.009, F1,94 = 0.81, P = 0.37), August (r

2
 = 0.007, F1,94 = 

0.69, P = 0.41), or October (r
2
 = 0.015, F1,94 = 1.39, P = 0.24). 

To determine spatial effects on ghost crab density, we averaged burrow densities on each 

transect across all sampling days. Ghost crab burrow density was unrelated to number of marine 

turtle nests (r
2
 = 0.013, F2,94 = 1.24, P = 0.27), loggerhead nests (r

2
 = 0.020, F2,94 = 1.90, P = 

0.171), nests laid within the two previous nights (new nests) (r
2
 = 0.018, F2,94 = 1.70, P = 0.20), 

or new loggerhead nests (r
2
 = 0.012, F2,94 = 1.13, P = 0.29). Ghost crab burrow density was 

related quadratically to distance to nearest boardwalk (F3,93 = 6.49, P < 0.002; Figure 1.5a, Table 

1.1). Splitting the analysis between transects in the north and south end of CANA highlighted a 

potential interaction between location and distance to boardwalk. Ghost crab burrow density 
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increased quadratically with increasing distance from boardwalks in the north (F3,45 = 19.86, P < 

0.001; Figure 1.5b) and decreased quadratically with distance to boardwalks in the south (F3,45 = 

10.33, P < 0.001, Figure 1.5c). 

Ghost crab burrow density decreased logarithmically as sand became less sorted (r
2
 = 0.285, 

F2,22 = 8.78, P = 0.007) and decreased with increasing grain size (F2,22 = 10.02, P = 0.004; Figure 

1.6). Sand grain size and sorting (σ) were correlated with each other (r = 0.438, P = 0.032) and 

location was highly correlated with both size (r = -0.832, P < 0.001) and sorting (r = -0.774, P < 

0.001; Figure 1.7). Thus, we included location in model selection as a proxy for sand 

characteristics. Ghost crab burrow density increased with location (distance from the northern 

park boundary) (F2,94 = 87.38, P < 0.001; Figure 1.8a). The same pattern was observed in adult 

(≥23 mm burrow width) (r
2
 = 0.206, F2,94 = 24.45, P < 0.001) and juvenile ghost crabs (r

2
 = 

0.483, F2,94 = 87.95, P < 0.001). The relationship between ghost crab burrow density and beach 

width was described best by a quadratic function (F3,93 = 7.39, P = 0.001; Figure 1.8b, Table 

1.1). Beach width was correlated with location (r = -0.205, P = 0.045) and distance to boardwalk 

(r = -0.302, P = 0.003). Ghost crab burrow density was unrelated to raccoon activity (F2,94 = 

3.35, P = 0.070; Figure 1.9a) but density of reproductive ghost crabs (≥23 mm) decreased with 

increasing raccoon activity (F2,94 = 4.16, P = 0.044; Figure 1.9b). Mean ghost crab burrow 

density was best explained by the overall multiple regression model including location, distance 

to nearest boardwalk (quadratic), and raccoon activity as independent variables (F4,91 = 33.00, P 

< 0.001; Table 1.2). This model was better than all other models, including those that included an 

interaction between location and distance to boardwalk (Table 1.2). 

We also assessed models to explain ghost crab burrow density in June, the only month in 

which burrow density was negatively related to raccoon activity. June ghost crab burrow density 
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increased with increasing distance from the northern park boundary (location; r
2
 = 0.489, F2,94 = 

90.00, P < 0.001, β0 = 0.153, β1 = 9.4x10
-6

), had a quadratic relationship with beach width (r
2
 = 

0.145, F2,94 = 7.90, P = 0.001, β0 = -0.152, β1 = 0.092, β2 = -0.004), and increased with 

increasing distance to the nearest boardwalk (r
2
 = 0.150, F2,94 = 16.53, P < 0.001, β0 = 0.280, β1 

= 1.9x10
-5

). June ghost crab burrow density was best explained by the overall multiple regression 

model that included location, beach width, distance to nearest boardwalk, and mean raccoon 

activity (F5,90 = 41.53, P < 0.001; Table 1.3). The contribution of raccoon activity to the model 

was nearly as great as that of location and distance to boardwalk, the two most important 

variables in the overall model for ghost crab density (Tables 1.2, 1.3). 

Mean ghost crab burrow diameter increased significantly with increasing distance from the 

northern park boundary (i.e., decreasing mean and SD sand grain size; F2,94 = 16.27, P < 0.001; 

Figure 1.10) but was not related to beach width (r
2
 = 0.000, F2,94 = 0.04, P = 0.84), distance to 

the nearest boardwalk (r
2
 = 0.002, F2,94 = 0.22, P = 0.62), or raccoon activity (r

2
 = 0.000, F2,94 = 

0.02, P = 0.86). Burrow diameter was positively correlated with ghost crab burrow density (r = 

0.440, P < 0.001). 

Raccoon Activity 

Raccoon activity (total track length) increased through most of the nesting season and 

decreased at the end, and differed significantly among months (F3.9,317.7 = 33.822, P < 0.001), 

with a relationship best described by a quadratic function (F1,82 = 156.461, P < 0.001; Figure 

1.1). To examine the effect of marine turtle nesting activity on raccoon activity over time, we 

used univariate regression to compare mean monthly raccoon activity to cumulative nests per 

transect per month. Raccoon activity was unrelated to the number of marine turtle nests in May 

(r
2
 = 0.002, F1,94 = 0.15, P = 0.70), June (r

2
 = 0.003, F1,94 = 0.25, P = 0.62), or July (r

2
 = 0.035, 
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F1,94 = 3.44, P = 0.07). Raccoon activity peaked near the approximate peak in hatching for all 

marine turtle nests (Figure 1.1), but was unrelated to density of potentially hatching nests (2 mo. 

lag time) in July (r
2
 = 0.018, F1,94 = 1.74, P = 0.19), August (r

2
 = 0.01, F1,94 = 0.91, P = 0.34), or 

September (r
2
 = 0.037, F1,94 = 3.09, P = 0.08). Few nests were laid in April so data did not meet 

assumptions of normality. 

To determine spatial effects on raccoon activity, we averaged raccoon total track length on 

each transect across all sampling days. Raccoon activity was not related to number of marine 

turtle nests (r
2
 = 0.022, F94 = 2.07, P = 0.15), loggerhead nests (r

2
 = 0.001, F94 = 0.13, P = 0.72), 

new nests (r
2
 = 0.019, F94 = 1.80, P = 0.18), or new loggerhead nests (r

2
 = 0.000, F94 = 0.02, P = 

0.90). Based on the distribution of mean number of cars in the parking lot nearest to each 

transect (Figure 1.11), we split analyses of the effects of distance to nearest boardwalk into two 

categories: at parking lots with <10 or >10 cars. At parking lots with <10 cars, raccoon activity 

decreased exponentially with increasing distance to nearest boardwalk (F2,39 = 13.27, P = 0.001; 

Figure 1.12a). At parking lots with >10 cars, raccoon activity was best explained by a cubic 

function of distance to nearest boardwalk (F4,51 = 12.43, P < 0.001; Figure 1.12b). There was 

little overlap in distance to nearest boardwalk between the two categories, however, so we 

excluded the categorization in the overall spatial relationship between raccoon activity and 

recreation. This relationship was best described by a cubic function relating raccoon activity to 

distance to the nearest boardwalk (F4,92 = 7.67, P < 0.001), which was selected over competing 

models using AIC (Table 1.1). Raccoon activity decreased up to about 2 km from the nearest 

boardwalk and then started to increase (Figure 1.12c). Overall raccoon activity was greater on 

transects >2000 m from the nearest boardwalk (t’93.2 = -2.98, P = 0.004; Figure 1.13). Variance 



16 

 

in raccoon activity was also greater in the backcountry (median = 38.16) than on segments of 

beach developed for recreation (median = 15.43: Mann-Whitney U = 448.0, P < 0.001). 

Raccoon activity (total track length) increased with increasing habitat edge (r
2
 = 0.134, F2,94 

= 14.52, P < 0.001, β0 = -12.558, β1 = 2.056), habitat edge/area (F2,94 = 15.03, P < 0.001), 

coastal strand edge (F2,94 = 12.01, P = 0.001), and habitat diversity (H’) (F2,94 = 5.34, P = 0.023) 

(Figure 1.14). Raccoon activity was unrelated to water edge (r
2
 = 0.008, F2,94 = 0.72, P = 0.40). 

Habitat edge (t2,94 = -3.856, P < 0.001), coastal strand edge (t2,94 = -7.153, P < 0.001), and 

edge/area (t2,94 = -4.394, P < 0.001) were significantly greater on transects >2000 m from 

recreation (n = 43) than on sections of beach developed for recreation. Habitat diversity followed 

the same trend but was not significant (t’79.0 = -1.774, P = 0.080). Distance to boardwalk was 

correlated with coastal strand edge (r = 0.596, P < 0.001). Habitat edge was correlated with 

edge/area (r = 0.946, P < 0.001), coastal strand edge (r = 0.404, P < 0.001), and habitat diversity 

(r = 0.714, P < 0.001). Edge/area was also correlated with coastal strand edge (r = 0.498, P < 

0.001) and habitat diversity (r = 0.560, P < 0.001). Significant independent variables with 

correlations < 0.6 were retained in multiple regression models, i.e. distance to nearest boardwalk, 

edge/area, coastal strand edge, and habitat diversity. Overall raccoon activity was best explained 

by the multiple regression model including distance to boardwalk (cubic), coastal strand edge 

(ln), habitat diversity, and location (F6,89 = 8.663, P < 0.001; Table 1.4). 

Loggerhead Hatching Success and Egg Predation 

We monitored 102 loggerhead turtle nests, 25 of which washed out with high tides or lost their 

marks. Initial clutch sizes determined for 24 of these nests (counted immediately after laying) 

averaged 107.0  4.8 eggs. After incubation, inventoried clutch size of these pre-counted nests 

was 100.3 ± 4.6, with an average of 6.7 ± 1.8 eggs missing (max = 42), presumably removed by 
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ghost crabs. Two of these pre-counted nests were preyed on by ghost crabs within 12 h of 

deposition, and one pre-counted clutch was completely consumed by raccoons after partial 

predation by ghost crabs. Raccoon predation occurred in one previously unhandled nest where 

ghost crabs also had preyed on eggs.  However, the order of predation was unknown. 

Mean clutch size of unhandled nests (104.4 ± 2.9, n = 52) did not differ significantly from 

pre-counted nests at inventory (t74 = 0.762, P = 0.45). Handled and unhandled nests did not differ 

in mean number of eggs that hatched (t72 = 0.715, P = 0.64), were preyed on by ghost crabs (t72 = 

0.459, P = 0.65), or failed to hatch for any other reason (t72 = 0.841, P = 0.40), so all nests were 

pooled for further analyses. Average inventoried clutch size was 102.9 ± 2.5 (n = 76): 48.4 ± 3.6 

eggs hatched, 46.1 ± 3.5 hatchlings successfully emerged from nests, 34.9 ± 3.1 eggs remained 

pipped or intact and unhatched, raccoons preyed on 1.3 ± 1.0 eggs. Ghost crabs preyed on 17.7 ± 

2.1 eggs per nest (n = 74). In total, we recorded the fates of 7,837 eggs: 3,632 (0.463) hatched, 

3,502 (0.447) produced hatchlings that emerged from nests, at least 1,390 (0.177) were preyed 

on by ghost crabs, and 101 (0.013) potentially were preyed on by raccoons (unknown previous 

predation by ghost crabs). The ratio of successfully hatched eggs to eggs preyed on by ghost 

crabs was < 2.5:1. With average clutch size estimated to be 102.9 eggs, 2572.5 (0.246) of the 

estimated 10,445.5 eggs monitored were washed out, which likely occurred before hatchling 

emergence. When washed out nests were taken into account, hatching success declined to 33.5%.  

We assessed the relationships between egg fate and predator activity for 59 nests within 100 

m of a transect. Two of these transects had two nests within 100 m, so data for those nests were 

averaged. Number of eggs preyed on by ghost crabs was not related to ghost crab burrow density 

(r
2 
= 0.008, F2,55 = 0.45, P = 0.51) or reproductive ghost crab burrow density (r

2
 = 0.002, F2,55 = 

0.09, P = 0.77) during egg incubation. Number of hatched eggs decreased with increasing 
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number of eggs preyed on by ghost crabs (F2,72 = 21.58, P < 0.001; Figure 1.15a) but predation 

was unrelated to number of unhatched eggs (F2,72 = 1.35, P = 0.25; Figure 1.15b) . Likewise, the 

proportion of unsuccessfully hatched eggs preyed on by ghost crabs was unrelated to the number 

of all eggs that did not hatch (F2,72 = 0.76, P = 0.36; Figure 1.15c). When averaged across egg 

incubation, raccoon activity increased marginally with increasing number of eggs preyed on by 

ghost crabs (F2,72 = 3.76, P = 0.058; Figure 1.16).  

Discussion 

Ghost crab activity was primarily affected by human recreational activity and location (sand 

grain characteristics), and including raccoon activity improved the overall model explaining 

ghost crab activity. Raccoon activity was affected by human recreational activity, habitat 

diversity (H’), and length of coastal strand edge. Neither ghost crabs nor raccoons responded to 

spatial variation in marine turtle nesting activity, but raccoon activity tended to increase with 

increasing egg predation by ghost crabs (see Figure 1.17, path of coefficients among all 

variables).    

Although we failed to support our overall hypothesis that loggerhead egg predation was 

primarily affected by changes in ghost crab density, monitoring limitations may have affected 

our ability to detect a relationship between ghost crab density and predation. Ghost crab densities 

on transects up to 100 m away may not be relevant to predation rates in individual nests, because 

we observed high local variation in density. Also, we had very few samples of ghost crab density 

during the incubation period of some nests. However, large ghost crabs feed at a higher trophic 

level than small crabs, suggesting large crabs consume more marine turtle eggs (Barton and Roth 

2007) and on CANA ghost crab burrow diameter increased with increasing burrow density. 

Thus, more refined monitoring may find that egg predation is density dependent.  
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Through our analysis of egg predation we were able to clarify the effect of ghost crabs on 

loggerhead hatching success. We found a negative relationship between the number of eggs 

destroyed or consumed by ghost crabs and the number of hatched eggs. If ghost crab activity 

were primarily compensatory, we would expect to find a positive relationship between the 

proportion of unhatched eggs affected by ghost crabs and the total number of unhatched eggs 

(undeveloped or preyed on by ghost crabs). We found no such association, which suggests ghost 

crabs are predators of potentially viable eggs. This evidence is supported by the detection of 

ghost crab predation in freshly laid nests.  

Interestingly, we did find a relationship between raccoon activity and egg predation, but it 

was not the indirect negative relationship we predicted. Raccoon activity increased with 

increasing egg predation, suggesting raccoons are attracted to nests preyed on by ghost crabs, 

particularly nests with high rates of egg predation. This finding supports the prediction that ghost 

crabs facilitate egg predation by raccoons (Barton and Roth 2008) and is supported by 

experimental data (see Chapter 2).  

Although egg predation by raccoons was rare among the nests we inventoried (2/76 nests), 

we only selected nests screened before raccoon predation occurred. Interestingly, the two 

screened nests preyed on by raccoons were also preyed on by ghost crabs, and in one case 

raccoon predation was definitely secondary. Egg predation by raccoons is common in the United 

States and has resulted in the loss of up to 95% of nests on some beaches (Stancyk 1982). Our 

data suggest ghost crabs contribute substantially to egg predation, even when densities are 

potentially depressed by raccoons, and their effects may have been underestimated previously 

(Bouchard and Bjorndal 2000, Barton and Roth 2008) when nests were secondarily preyed on by 

raccoons. When we inventoried nests to determine egg fates in clutches of known size, we 
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discovered that some eggs were often missing (max = 42), which suggests they were removed by 

predators. We often observed egg shells removed from incubating nests when the only apparent 

predator sign was ghost crab burrows, but egg shells are often scattered before nests are 

inventoried. Ghost crab behavior, coupled with nest monitoring limitations, may further 

contribute to underestimation of their egg predation. We determined that counting eggs within 12 

h of clutch deposition had no effect on loggerhead hatching success and knowledge of initial 

clutch size is necessary for accurately estimating egg predation by ghost crabs. 

Although we found no relationship between ghost crab density and egg predation, we were 

able to construct simple models describing the activity of marine turtle egg predators. These 

models could help improve the efficiency of marine turtle management by identifying landscape 

characteristics and environmental features that potentially alter the susceptibility of eggs to 

predation. The spatial distribution of ghost crabs was affected primarily by human recreational 

activity and sand characteristics. The effect of recreation appeared to be mediated by location, 

since ghost crab density in the southern half of CANA responded positively to proximity to 

boardwalks, while the response in the north was negative (Figure1.10). Although the interaction 

between distance to nearest boardwalk and location explained nearly as much variation in ghost 

crab burrow density as did raccoon activity, it did not improve the overall model (Table 1.2). 

Ghost crab density initially decreased with increasing distance to recreation, suggesting a 

positive effect of recreation, but it then increased, suggesting recreation has localized effects that 

may be outweighed by underlying environmental variation (i.e., sand characteristics).  

Ghost crab density increased with increasing distance from the northern park boundary, as 

mean and SD sand grain size decreased. Turra et al. (2005) associated fine sands and poor 

sorting with low densities of ghost crabs, but their findings were confounded by recreational 
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activities. Similarly, we found higher ghost crab densities in well-sorted sands, but accompanied 

by small mean grain size. Turra et al. (2005) associated smaller burrows with coarse sand and we 

found smaller mean diameters in coarse sand, but we found higher densities of adult and juvenile 

ghost crab burrows in fine sand. Ghost crabs feed primarily on filter-feeders (Wolcott and 

Wolcott 1984) and likely derive little benefit from unpredictable human resources on the beach. 

Sand characteristics likely directly affect ghost crab density and are good indicators of tidal 

characteristics that affect ghost crabs and their prey.  

While sand characteristics and recreation were consistently strong factors affecting ghost 

crab density, beach width and raccoon activity were more limited, with strong effects only in 

June. The differences between the overall ghost crab model (Table 1.2) and the model for burrow 

density in June (Table 1.3) likely indicate important temporal variation in predator behavior and 

environmental variables such as tides. In June, ghost crabs initially increased in density as the 

beach became wider, but eventually decreased with wider beaches. Narrow beaches are an 

unstable environment, subject to erosion and high tides, both potentially detrimental to crabs. 

Ghost crabs prefer to burrow in moist sand near the high tide mark to retain gill water (Valero-

Pacheco et al. 2007). Thus, lower densities on wide beaches may result from patterns in burrow 

selection due to the disproportionately large amount of dry sand. 

Ghost crab burrow density declined sharply between May and July (Figure 1.1) and was 

strongly affected by raccoons in June (Figure 1.8). Raccoon activity in June affected ghost crab 

density nearly as much as location and recreation, the two most important variables in the overall 

spatial model (Table 1.2). Raccoons also appeared to target large ghost crabs in June, which may 

have contributed to suppressing overall ghost crab density by reducing reproduction. We 

observed raccoons hunting ghost crabs and evidence of hunting (i.e., chases, dug up sand or 
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burrows, partially eaten ghost crabs) early in the marine turtle nesting season, but rarely later, 

which suggests raccoons might switch to more abundant prey. Although the interaction was 

weak at the transect level, the temporal relationship between raccoon activity and ghost crab 

density appeared to be strong and negative when averaged across the entire beach (Figure 1.1). 

It can be difficult to determine how landscape variables affect the distribution of generalist 

consumers like raccoons (Crooks 2002) but raccoon activity in our study was clearly related to 

recreation, habitat diversity, and edge of the dominant cover, coastal strand. These relationships 

were not surprising, because raccoons are often associated with human food sources (Prange et 

al. 2004), habitat edges, or diverse cover (Oehler and Litvaitis 1996, Dijak and Thompson 2000, 

Barding and Nelson 2008). 

 The lower inflection point in the cubic relationship between raccoon activity and distance to 

nearest boardwalk was approximately 2000 m, which corresponded closely with the division 

between segments of developed beach, fully-accessible to recreation, and undeveloped beach 

only accessible to permit-holders. Both mean and variance of raccoon activity were lower near 

low diversity cover and centers of human recreation, suggesting these segments of beach 

provided more stable, but lower quality resources than those found near diverse natural cover. 

Raccoon activity was concentrated near recreation access points, suggesting raccoons were 

drawn to human-subsidized resources. However, these resources were not of great enough value 

to stimulate a numerical response in the population. Trash on CANA is disposed of in lidded 

containers inaccessible to raccoons except on high use days when they are overflowing, so 

raccoon typically only consume trash or fishing bait left on the beach. Mean and variance in 

raccoon activity were greater on undeveloped beach and increased with increasing habitat 
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diversity and length of coastal strand edge. Increased variance in activity on undeveloped beach 

likely reflected opportunistic foraging in a higher density segment of the population.  

Although raccoons did not respond numerically to human recreational activity, their activity 

was concentrated and less variable near recreation areas, so nests and hatchlings near boardwalks 

may be more vulnerable to predation. We did observe hatchlings preyed on by raccoons near 

boardwalks on Playalinda Beach. Neither predator altered activity in response to marine turtle 

nesting activity, but when averaged for the entire beach, raccoon activity increased with 

increasing nesting activity, with a lag the approximate length of egg incubation. We observed no 

relationship between raccoon activity and estimated density of hatching nests on individual 

transects in repeated measures analysis. However, incubation is highly variable and the presence 

of hatchlings is ephemeral, so hatching activity was not likely to have strong effects on raccoon 

activity on individual transects, particularly since activity was averaged for each month. Despite 

being screened from eggs, raccoon activity increased on the beach during peak hatch, increasing 

the likelihood of encountering hatchlings.  

Management Implications 

Raccoon activity and ghost crab density can be coarsely predicted using simple models 

constructed from easily attainable environmental measurements. Once developed, these models 

may reduce the effort necessary to continuously monitor predator activity and can aid managers 

in focusing predator monitoring or removal efforts to increase the efficiency of costly 

management. These models may be particularly beneficial in more heterogeneous environments 

with more anthropogenic influence. Our data suggest there is important temporal variation in the 

environmental factors affecting predators and the strength of predator-predator interactions. For 

example, ghost crabs were strongly affected by raccoon activity and beach width in June, but 
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neither was significant in the overall spatial model. Ghost crabs and raccoons are substantial egg 

predators independently, but their combined predation may be enhanced by indirect, facilitated 

predation. Therefore, managers should focus on strategies to reduce the direct effects of both 

predators while simultaneously reducing the effect of indirect interactions. Managers interested 

in efficiently minimizing marine turtle egg predation should time raccoon removal efforts so 

raccoons can control ghost crab density. 

Screening nests is likely an effective method to reduce egg predation by raccoons on CANA, 

because observed rates of nest predation were quite small. However, the effect of unmanaged 

raccoon populations on hatchlings remains unclear and screened nests laid during the peak in 

nesting activity from July to August were strongly affected by high tides. A larger proportion of 

eggs were washed out by high tides than were destroyed by either predator, and the proportion of 

eggs that washed out was only exceeded by the proportion of eggs that did not hatch due to 

reasons other than raccoon or ghost crab predation. A portion of the remaining eggs did not hatch 

due to tidal inundation, further increasing the effect of tides. Screening and marking nests could 

increase the likelihood of washout by increasing water turbulence and sand erosion. Screening 

may be innocuous, but given the high proportion of washed out nests on CANA, the assumption 

should be validated experimentally. Screens not only affect the interaction between nests and 

predators, but nests and the physical environment, which may have stronger effects on hatching 

success than predation.   

Ghost crab density declined through the majority of the 2007 nesting season on Canaveral 

National Seashore (CANA). Off-road vehicles (ORVs) may have strong effects on density of 

ghost crabs and other intertidal invertebrates, particularly if used in the intertidal zone at night 

(Wolcott and Wolcott 1984), and may have broader community effects (Schlacher et al. 2008). 
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Marine turtle management activities on CANA required nightly use of ORVs, which was 

primarily restricted to the high intertidal to avoid dune erosion and disturbance of nesting birds 

(pers. comm., J. Stiner, NPS, Canaveral National Seashore), but ghost crabs were often 

inadvertently killed (pers. obs.). The upper intertidal zone is used extensively by ghost crabs, 

particularly adults (Turra et al. 2005, Valero-Pacheco et al. 2007), so while screening nests may 

reduce egg predation by raccoons, managers are indirectly reducing ghost crab density by 

maintaining raccoon populations and directly manipulating ghost crab density through nighttime 

ORV use. The effects may be sustained outside the nesting season due to increased predation and 

inadvertent killing of potentially reproductive crabs. 

We found substantial egg predation by ghost crabs, but our results do not suggest marine 

turtle egg predation would be mitigated by reducing ghost crab density. We have no ecological 

explanation for the lack of a relationship between egg predation and ghost crab density, so it may 

be a result of monitoring limitations. However, ghost crabs are top predators in a filter-feeding 

food chain (Wolcott 1978) and are preyed on by birds and mammals. Thus, changes in ghost crab 

density could have cascading effects in the intertidal community (Schlacher et al. 2008), and 

potential effects in terrestrial communities. Although ghost crabs are substantial predators of 

marine turtle eggs, the consequences of changes in ghost crab density are unknown, so further 

experimentation and observational studies are necessary to inform effective ghost crab and 

marine turtle management. 

Marine turtles have delayed sexual maturity (Parham and Zug 1997), so the effects of 

management activities on nesting beaches may not be observed for decades. Therefore, it is 

critically important to minimize the broader ecological consequences of marine turtle 
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management, by adapting management based on the results of experiments with a community 

emphasis (Ratnaswamy and Warren 1998).  
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Table 1.1 Univariate regression model selection using Akaike’s Information Criterion (AIC); 

RSS is residual sum of squares, K is number of parameters, ∆AIC is the difference between each 

model and the best model, and AIC weight is relative information content. N = 96 

*Ghost crab density = mean ghost crab burrows m
-2

, raccoon track length = mean raccoon total 

track length (m), distance to boardwalk = distance to the nearest recreational boardwalk (m), 

beach width = mean beach width above high tide mark 

  

Model: Ghost crab density RSS K AIC  ∆AIC AIC Weights

Distance to boardwalk

quadratic 0.416 4 -241.95 0.00 0.66

cubic 0.414 5 -240.39 1.56 0.30

linear 0.451 3 -236.14 5.82 0.04

logarithmic 0.470 3 -232.32 9.63 0.01

exponential 0.479 3 -230.33 11.63 0.00

Beach width

quadratic 0.409 4 -243.57 0.00 0.62

cubic 0.406 5 -242.34 1.23 0.34

linear 0.446 3 -237.29 6.27 0.03

logarithmic 0.455 3 -235.36 8.20 0.01

exponential 0.493 3 -227.54 16.02 0.00

Model: Ghost crab density (June)

Beach width

quadratic 1.843 4 -99.04 0.00 0.60

cubic 1.822 5 -98.14 0.90 0.38

linear 2.025 3 -92.02 7.02 0.02

logarithmic 2.067 3 -90.02 9.02 0.01

Model: Raccoon track length 

Distance to boardwalk

cubic 5.858 5 13.97 0.00 0.64

quadratic 6.079 4 15.52 1.56 0.29

linear 6.394 3 18.38 4.41 0.07

logarithmic 7.036 3 27.56 13.59 0.00
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Table 1.2 Comparison of best models describing ghost crab burrow density (averaged across the 

2007 marine turtle nesting season), with models including the interaction between distance to 

recreation and location. Model selection used Akaike’s Information Criterion (AIC); RSS is 

residual sum of squares, K is number of parameters, ∆AIC is the difference between each model 

and the best model, and AIC weight is relative information content. Below are descriptive 

statistics for the best model and its variable components: P is the statistical significance of the 

model, parameter estimates are slopes, Pi is the statistical significance of variable i. We summed 

AIC weights across all models containing an individual variable (i.e., the weight of each 

variable, given these models). N = 96 

*location = distance from northern park boundary (m), recreation = distance to nearest recreation 

access boardwalk (m), raccoon = ln mean raccoon total track length (m), rec:loc = interaction 

between recreation and location, width = mean beach width above high tide mark (m)  

 

 

 

 

Model: Ghost Crab Burrows m
-2 RSS K R

2
Adj.R

2 AIC  ∆AIC AIC Weights

Competing Models

location + recreation + raccoon 0.19 6 0.592 0.574 -311.45 0.00 0.244

location + recreation 0.20 5 0.583 0.569 -311.37 0.08 0.234

location + recreation + rec:loc 0.19 6 0.591 0.573 -311.11 0.34 0.205

location + recreation + raccoon + rec:loc 0.19 7 0.595 0.573 -310.18 1.27 0.129

location + recreation + width 0.20 7 0.588 0.566 -308.62 2.83 0.059

location + recreation + raccoon + width  0.19 8 0.596 0.569 -308.47 2.99 0.055

location + recreation + rec:loc + width 0.19 8 0.594 0.567 -308.03 3.42 0.044

location + recreation + raccoon + rec:loc + width 0.19 9 0.599 0.567 -307.17 4.28 0.029

location + raccoon + rec:loc 0.23 5 0.516 0.501 -297.13 14.32 0.000

location + rec:loc 0.24 4 0.503 0.493 -296.60 14.85 0.000

location + raccoon 0.24 4 0.502 0.491 -296.29 15.16 0.000

location 0.25 3 0.482 0.476 -294.51 16.95 0.000

location + raccoon + rec:loc + width 0.23 7 0.522 0.495 -294.23 17.23 0.000

location + raccoon + width 0.23 6 0.507 0.486 -293.35 18.11 0.000

Best Model R
2 P P i ∑ AIC Weights

0.592 <0.001

location β1=4.376x10
-6 <0.001 1.0000

recreation β1=-1.836x10
-5 0.001 0.9994

β2=2.582x10
-9 <0.001

raccoon β1=-3.904x10
-3 0.16 0.4568

Excluded Variables 

rec:loc 0.4076

width 0.1926

Parameter Estimate
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Table 1.3 Comparison of models describing ghost crab burrow density (averaged in June). Model 

selection used Akaike’s Information Criterion (AIC); RSS is residual sum of squares, K is 

number of parameters, ∆AIC is the difference between each model and the best model, and AIC 

weight is relative information content. Below are descriptive statistics for the best model and its 

variable components: P is the statistical significance of the model, parameter estimates are 

slopes, Pi is the statistical significance of variable i. We summed AIC weights across all models 

containing an individual variable (i.e., the weight of each variable, given these models). N = 96 

*location = distance from northern park boundary (m), recreation = distance to nearest recreation 

access boardwalk (m), raccoon = ln mean raccoon total track length (m), width = mean beach 

width above high tide mark (m)  

  

  

Model: Ghost Crab Density (June) RSS K R
2

Adj.R
2 AIC  ∆AIC AIC Weights

Competing Models

location + recreation + raccoon + width 0.65 7 0.698 0.681 -192.82 0.00 0.937

location + recreation + raccoon 0.72 5 0.667 0.656 -187.40 5.41 0.063

location + recreation 0.86 4 0.602 0.593 -172.38 20.44 0.000

location + recreation + width 0.84 6 0.609 0.592 -170.16 22.66 0.000

location + raccoon + width 0.85 6 0.605 0.588 -169.25 23.57 0.000

location + raccoon 0.90 4 0.581 0.572 -167.58 25.23 0.000

location 1.10 3 0.489 0.482 -150.46 42.35 0.000

location + width 1.09 5 0.496 0.480 -147.81 45.01 0.000

recreation + raccoon + width 1.33 6 0.382 0.355 -126.17 66.64 0.000

raccoon + width 1.47 5 0.317 0.295 -118.56 74.25 0.000

recreation + raccoon 1.53 4 0.291 0.276 -116.98 75.84 0.000

recreation + width 1.66 5 0.230 0.205 -107.08 85.73 0.000

raccoon 1.75 3 0.190 0.181 -106.16 86.65 0.000

recreation 1.83 3 0.150 0.141 -101.54 91.28 0.000

width 1.84 4 0.145 0.127 -99.04 93.78 0.000

Best Model R
2 P P i ∑ AIC Weights

0.698 <0.001

location β1=8.605x10
-6 <0.001 1.00000

recreation β1=1.567x10
-5 <0.001 0.99999

raccoon β1=-7.167x10
-2 <0.001 0.99995

width β1=4.342x10
-2 0.066 0.93738

β2=-1.345x10
-3 0.15

Parameter Estimate
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Table 1.4 Comparison of models describing raccoon activity (total track length averaged across 

the 2007 marine turtle nesting season). Model selection used Akaike’s Information Criterion 

(AIC); RSS is residual sum of squares, K is number of parameters, ∆AIC is the difference 

between each model and the best model, and AIC weight is relative information content. Below 

are AIC weights summed across all models containing an individual variable (i.e., the weight of 

each variable, given these models). N = 96 

* location = distance from northern park boundary (m), recreation = distance to nearest 

recreation access boardwalk (m), H’ = Shannon Index (diversity of cover by area), strand = ln 

coastal strand edge (m)/200 m buffer, ege/area = habitat edge / habitat area in 200 m buffers   

Model: Raccoon Track Length RSS K R
2

Adj. R
2 AIC  ∆AIC AIC Weights

location + recreation + H' + strand 192.00 8 0.369 0.326 354.98 0.00 0.542

location + recreation + H' + strand + edge/area 191.97 9 0.369 0.319 356.96 1.98 0.201

location + recreation + H' 201.89 7 0.336 0.299 357.80 2.83 0.132

location + recreation + H' + edge/area 198.86 8 0.346 0.302 358.35 3.37 0.100

location + recreation + edge/area 213.22 7 0.299 0.260 363.04 8.07 0.010

location + H' + strand 224.73 5 0.261 0.237 364.09 9.11 0.006

location + recreation + strand 216.26 7 0.289 0.249 364.40 9.42 0.005

location + H' + strand + edge/area 224.61 6 0.261 0.229 366.04 11.06 0.002

location + H' + edge/area 231.75 5 0.238 0.213 367.04 12.06 0.001

location + recreation 234.34 6 0.229 0.196 370.11 15.13 0.000

location + edge/area 252.80 4 0.169 0.151 373.39 18.41 0.000

location + strand + edge/area 251.12 5 0.174 0.147 374.75 19.77 0.000

location + strand 269.58 4 0.114 0.095 379.56 24.58 0.000

location 299.31 3 0.016 0.005 387.60 32.62 0.000

Best Model R
2 P P i ∑ AIC Weights

0.369 <0.001

location β1=-6.461x10
-5 0.006 -

recreation β1=-1.512x10
-3 0.001 0.991

β2=4.565x10
-7 <0.001

β3=-3.274x10
-11 <0.001

H' β1=1.937 0.001 0.985

strand β1=1.628 0.035 0.756

Excluded Variables

edge/area 0.315

Competing Models

Parameter Estimate
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Figure 1.1 Monthly variation in marine turtle nesting and predator activity on Canaveral National 

Seashore, 2007. Turtle nests are the proportion of all nests laid that season (N=3627) by all three 

turtle species. Raccoon activity is total track length (m) and ghost crab activity is the mean 

density of ghost crab burrows, averaged across all transects (error bars are ±1 SE). 
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Figure 1.2 Spatial distribution of marine turtle egg predator activity on Canaveral National 

Seashore during the 2007 nesting season. Predator indices were averaged across all sampling 

dates for each location (distance from the northern park boundary).
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Figure 1.3 Number of tracks recorded for all mammalian predators (tracks/plot/night averaged over the 2007 marine turtle nesting 

season on Canaveral National Seashore).
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Figure 1.4 Temporal changes in response of ghost crab burrow density to raccoon activity (total 

track length, m) on Canaveral National Seashore, 2007 (N=96). Only June was significant (P < 

0.001) 
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Figure 1.5 Relationship between ghost crab burrow density and distance to nearest boardwalk on 

Canaveral National Seashore, 2007, for (a) all transects, (b) transects in the north half of the 

beach, and (c) transects in the south half of the beach. Response to recreation appears to depend 

on location.
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Figure 1.6 Relationship between ghost crab burrow density and sand characteristics on Canaveral 

National Seashore, 2007.
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Figure 1.7 Relationship between location along the beach and sand characteristics on Canaveral 

National Seashore, 2007. 
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Figure 1.8 Responses of ghost crab burrow density to environmental variables on Canaveral 

National Seashore, 2007 (N=96). 

y = 4E-06x + 0.047

r² = 0.482

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 5000 10000 15000 20000 25000 30000 35000 40000

G
h

o
st

 c
ra

b
 b

u
rr

o
w

s 
 m

-2

Distance from northern park boundary (m)

a

y = -0.002x2 + 0.042x - 0.086

r² = 0.137

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

6 10 14 18

G
h

o
st

 c
ra

b
 b

u
rr

o
w

s 
 m

-2

Beach width (m)

b



41 

 

 

Figure 1.9  Effect of raccoon activity (total track length plot
-1 

night
-1

) on (a) ghost crab burrow 

density and (b) reproductive (≥23 mm diameter) ghost crab burrow density on Canaveral 

National Seashore, 2007. 
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Figure 1.10 Relationship between mean ghost crab burrow diameter and location on Canaveral 

National Seashore, 2007 (N=96). 
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Figure 1.11 Histogram of the number of cars per parking lot at Canaveral National Seashore, 

2007, averaged by transect for all sampling dates (96 transects). For analyses of the differential 

effects of recreation, analyses were split by parking lots with ≤10 or >10 cars. 
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Figure 1.12 Relationship between raccoon activity and distance to recreational access points on 

Canaveral National Seashore, 2007, where the nearest parking lot had (a) ≤10 cars (N=41) or (b) 

>10 cars (N=55), or (c) number of cars was excluded. 
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Figure 1.13 Predator activity (mean + SE) on recreation-accessible beach (≤2000 m from the 

nearest boardwalk) and backcountry beach (>2000 m) on Canaveral National Seashore, 2007. 

Both raccoon activity (total track length, m) and ghost crab density (burrows m
-2

) were higher in 

areas far from recreation centers (N = 43 transects) than near (N = 53). 
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Figure 1.14 Response of mean raccoon activity (total track length (m) plot
-1

 night
-1

) to habitat 

variables on Canaveral National Seashore, 2007. Measurements were taken in 200 m buffers 

centered on each sampling transect (N=96). Habitat diversity was calculated using Shannon’s 

Index (Morrison et al. 1998). 
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 Figure 1.15 Relationship between a) number of eggs preyed on by ghost crabs and hatched eggs, 

and b) eggs preyed on by ghost crabs and unhatched eggs that were not preyed on, and c) all eggs 

that did not hatch (undeveloped and preyed on) and the proportion of those preyed on by ghost 

crabs. Each point represents a separate nest. Only the top relationship was significant (p < 0.001) 

(N=74)
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Figure 1.16 Response of raccoon activity during nest incubation to number of loggerhead sea turtle eggs/nest preyed on by ghost crabs 

on Canaveral National Seashore, 2007 (N=74). 
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Figure 1.17 Observed causal relationships (r
2
) among variables significant in spatial models and univariate analyses of egg predation. 

Both predators displayed non-linear relationships with human recreational activity, but both displayed positive relationships within 

approximately 2000 m of human recreational beach access. The dependent variables are at the end points of arrows and the slopes of 

relationships are indicated by + or – symbols. 
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CHAPTER 2. SYNERGISTIC INTERACTIONS BETWEEN INTRAGUILD 

PREDATORS: IMPLICATIONS FOR MARINE TURTLE NEST PROTECTION 

Introduction 

Interactions between predators take on many forms but typically fall into one of two categories: 

antagonistic or synergistic (Losey and Denno 1998). These two types of interactions differ in 

their net effect on shared prey. Antagonistic interactions between predators include intraguild 

predation (IGP), wherein one predator preys on its competitor (Polis et al. 1989). Early IGP 

models exploring the three-species interaction found coexistence of the two predators required a 

competitive advantage in the intermediate predator and significant benefit to the top predator 

derived from consuming its competitor (Holt and Polis 1997). If the interaction between 

predators is strong, the top predator may provide a net benefit to the basal resource by limiting 

predation by the more efficient intermediate predator (Holt and Polis 1997; Figure 2.1a). 

Synergistic interactions, on the other hand, occur when one predator increases the susceptibility 

of a prey species to another predator, often by modifying the behavior of the prey (Charnov et al. 

1976). The combined effect of both predators on the prey, given the interaction, is greater than 

the sum of the individual effects alone (Soluk 1993, Sih et al. 1998; Figure 2.1b)  

A more complex interaction could combine IGP with facilitated predation. If predation on 

the basal resource by the top predator is facilitated by the intermediate predator in an IGP 

relationship, the top predator may no longer gain by preying on the intermediate predator. If 

predation on the intermediate predator is strong, the relationship between predators may be 

primarily antagonistic and provide net benefit to the prey. However, if the direct interaction 

between predators is relatively weak, the relationship could be synergistic, with amplified 

negative effects on the basal resource.  
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Raccoons (Procyon lotor) prey on ghost crabs (Ocypode quadrata) and appear to limit their 

populations (Barton and Roth 2008). Both predators consume eggs of threatened and endangered 

marine turtles (Bouchard and Bjorndal 2000, Antworth et al. 2006, Barton and Roth 2008). 

Given the assumptions of simple intraguild predation models, raccoons could reduce competition 

for eggs by eating ghost crabs. However, egg predation rates appear to be independent of 

raccoon density (Barton and Roth 2008), suggesting exploitative competition between these nest 

predators may be weak. Furthermore, the highest combined egg predation rates occurred at the 

study site where raccoons were least and ghost crabs were most abundant; thus nest predation by 

ghost crabs may facilitate secondary nest predation by raccoons by releasing olfactory cues 

through burrows into nests (Barton and Roth 2008). Facilitation by ghost crabs may decrease 

raccoon search time for nests, thereby increasing efficiency. Thus, the cost of preying on ghost 

crabs may outweigh the benefit to raccoons if the synergistic behavioral interaction is suppressed 

at low ghost crab densities.  

To understand the net effect of the interaction between these predators on hatching success 

of marine turtle nests, the apparent facilitation of raccoon nest predation by ghost crabs must be 

verified. Therefore, we tested whether raccoons are attracted to simulated nest predation by ghost 

crabs. If this synergistic interaction occurs but densities of raccoons and ghost crabs are 

negatively correlated, marine turtle eggs may benefit from the negative interaction between their 

two most important predators. 

Methods 

Study Site 

We conducted research on Canaveral National Seashore (CANA), on the east-central Florida 

coast. Canaveral National Seashore has 17.5 km of undeveloped beach rarely accessed for 
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recreation, which reduced any bias associated with human activity (see Ch. 1). Both raccoons 

and ghost crabs prey on marine turtle eggs laid on this beach (Antworth et al. 2006). We 

conducted research from 21-29 October, 2006, near the end of the marine turtle nesting season, 

to reduce potential effects of increased raccoon activity on nest predation due to our study. 

Simulated Nests and Burrows  

To simulate turtle nests we dug holes approximately 35 cm deep, corresponding with the average 

depth of loggerhead nests on CANA (Carthy et al. 2003). We placed one can of cat food (Purina 

Friskies ocean whitefish) in the bottom of each simulated nest and placed a 38 cm long, 2.5 cm 

dia. polyvinyl chloride (PVC) pipe into nests at an angle roughly 73° relative to the beach 

surface, corresponding with ghost crab burrow architecture (Chan et al. 2006). We placed one 

end into the attractant and the other end extended out to the beach surface.  

At each site we paired a treatment and control nest spaced 10 m apart, parallel to the dune. 

Control pipes were filled with sand but treatment pipes were left open. During each sampling 

period, we installed nests at twenty sites with 100 m interspersion. We placed all nests 5 m from 

a relocation stake at the beach-dune edge. To avoid human disturbance, we installed nests within 

1 h of sunset and checked nests within 1 h of sunrise the following two mornings. We smoothed 

sand within 1 m of each pipe during nest installation and the first morning. Each morning we 

recorded the occurrence of predation or predator tracks ≤ 20 cm from each simulated burrow. We 

considered this assessment of predator attraction conservative, because some tracks within this 

distance simply intersected plots with no evidence the predator investigated burrows. One two-

night sampling period constituted an event for each nest. One week after sampling the first 

twenty sites we established another 20 pairs of nests (treatment and control) in an adjacent 

section of beach that was previously unsampled and followed the same procedures for estimating 
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predator attraction. We tested for a significant difference between visits to treatment and control 

nests using a one-tailed Fisher’s exact test.  

Results 

One treatment and three control nests were preyed on by ghost crabs, which reduced the sample 

size to 39 treatments and 37 controls. Raccoons visited significantly more treatment than control 

nests (25.6% and 2.7%, respectively, P = 0.004, FET; Table 2.1). All control nests preyed on by 

ghost crabs attracted raccoons. No other mammalian predators visited the artificial nests.  

Discussion 

Our results support the presence of a predator-predator interaction not previously described, 

which combines intraguild predation and facilitated predation. The effects of facilitated predation 

on the basal prey likely result from the strength of the numerical relationship between intraguild 

predators. If top-down predation is strong, as it appears to be between raccoons and ghost crabs 

(Barton and Roth 2008), then the synergistic interaction may be weak and the predator-predator 

interaction will remain antagonistic. However, if the numerical relationship between predator 

species is weak, then the interaction could be primarily synergistic, increasing net predation on 

the basal prey.  

Raccoons are commonly removed from marine turtle nesting beaches to mitigate egg loss 

from predation (Engeman et al. 2005, Garmestani and Percival 2005), and removal has 

effectively reduced egg loss when predation rates were very high. However, raccoons can limit 

ghost crab density and our data suggest raccoons are attracted to nests preyed on by ghost crabs 

(Chapter 1, Barton and Roth 2008), so raccoon removal could have unexpected results due to 

facilitated predation. Even raccoons at low density that have limited experience with marine 

resources could have substantial effects on egg mortality (Barton and Roth 2007, 2008). 
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The direct effects of raccoons on ghost crab density and marine turtle egg predation may 

change seasonally or spatially with variation in resources (Chapter 1), altering the effect of 

facilitated predation on net predation. Managers should assess the strength of direct predator-

predator and predator-prey interactions before assuming a management strategy used effectively 

elsewhere will have the same net effect in a different location. If egg predation by raccoons is 

very strong, then reducing raccoon densities may have a greater benefit than the potential costs 

of increased synergism. If nest predation by raccoons is not strong and there is a strong 

numerical relationship between raccoons and ghost crabs, then removing raccoons may have 

counterproductive results.  

Raccoon and ghost crab activity can be predicted using simple spatial models (Chapter 1) 

and likely would be better described with spatiotemporal models. Future research could combine 

experiments designed to characterize predator activity with predator exclusion treatments to 

better understand the independent and indirect effects of both predators on egg predation. It may 

be beneficial to construct a simple three-species IGP model with facilitated predation to explore 

the effect of varying the numerical relationship between predators on basal prey stability. More 

complex models with spatial and temporal heterogeneity in predator-predator and predator-prey 

interactions may help generate predictions of the effects of predator manipulation in different 

environments.  

Literature Cited 

Antworth, R. L., D. A. Pike, and J. C. Stiner. 2006. Nesting ecology, current status, and 

conservation of sea turtles on an uninhabited beach in Florida, USA. Biological 

Conservation 130:10-15. 

Barton, B. T. and J. D. Roth. 2007. Raccoon removal on sea turtle nesting beaches. Journal of 

Wildlife Management 71:1234-1237. 

Barton, B. T. and J. D. Roth. 2008. Implication of intraguild predation for sea turtle nest 

protection. Biological Conservation. doi:10.1016/j.biocon.2008.06.013. 



55 

 

Bouchard, S. S. and K. A. Bjorndal. 2000. Sea turtles as biological transporters of nutrients and 

energy from marine to terrestrial ecosystems. Ecology 81:2305-2313. 

Carthy, R. R., A. M. Foley, and Y. Matsuzawa. 2003. Incubation environment of loggerhead 

turtle nests: effects on hatching success and hatchling characteristics. Pages 144-153 in 

A. B. Bolten and B. E. Witherington, editors. Loggerhead Sea Turtles. Smithsonian 

Institution, Washington, D.C. 

Chan, B. K. K., K. K. Y. Chan, and P. C. M. Leung. 2006. Burrow architecture of the ghost crab 

Ocypode ceratophthalma on a sandy shore in Hong Kong. Hydrobiologia 560:43-49. 

Charnov, E. L., G. H. Orians, and K. Hyatt. 1976. Ecological implications of resource 

depression. American Naturalist 110:247-259. 

Engeman, R. M., R. E. Martin, H. T. Smith, J. Woolard, C. K. Crady, S. A. Shwiff, B. 

Constantin, M. Stahl, and J. Griner. 2005. Dramatic reduction in predation on marine 

turtle nests through improved predator monitoring and management. Oryx 39:318-326. 

Garmestani, A. S. and H. F. Percival. 2005. Raccoon removal reduces sea turtle nest depredation 

in the ten thousand islands of Florida. Southeastern Naturalist 4:469-472. 

Holt, R. D. and G. A. Polis. 1997. A theoretical framework for intraguild predation. American 

Naturalist 149:745-764. 

Losey, J. E. and R. F. Denno. 1998. Positive predator-predator interactions: Enhanced predation 

rates and synergistic suppression of aphid populations. Ecology 79:2143-2152. 

Polis, G. A., C. A. Myers, and R. D. Holt. 1989. The ecology and evolution of intraguild 

predation – potential competitiors that eat each other. Annual Review of Ecology and 

Systematics 20:297-330. 

Sih, A, G. Englund and D. Wooster. 1998. Emergent impacts of multiple predators on prey. 

Trends in Ecology and Evolution 13(9):350-355. 

Soluk, D. A. 1993. Multiple predator effects – predicting combined functional-response of 

stream fish and invertebrate predators. Ecology 74:219-225. 

 

  



56 

 

Table 2.1 Raccoon attraction to simulated egg predation by ghost crabs. Tracks ≤ 20 cm from 

burrows were treated as attraction. 

 

  Treatment Control Total 

Attraction 10 1 11 

Non-attraction 29 36 65 

Total 39 37 76 
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Figure 2.1 In the example of an antagonistic interaction (a) the predators compete for prey, but the top predator preys on the 

intermediate predator, which preys more efficiently on the basal prey. The interaction between predators has an indirect (dashed line) 

and net positive effect on the basal prey. In the synergistic example (b) the predators prefer different habitats, and avoiding one 

predator increases the prey’s likelihood of being preyed on by the other predator. Thus, the interaction has a net negative effect on the 

prey.
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Figure 2.2 Simulated ghost crab burrow in a loggerhead turtle nest. 
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