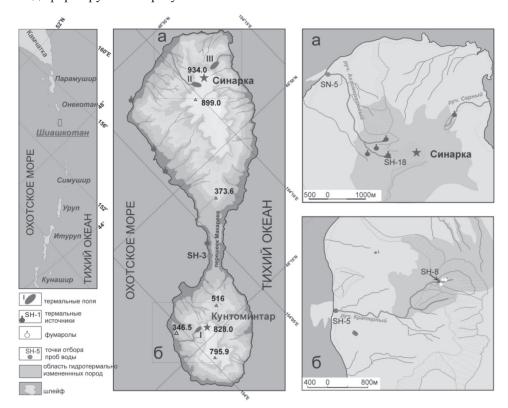
ВУЛКАНО-ГИДРОТЕРМАЛЬНЫЕ СИСТЕМЫ О. ШИАШКОТАН (КУРИЛЬСКИЕ ОСТРОВА): ВЫНОС МАГМАТИЧЕСКИХ КОМПОНЕНТОВ И ХИМИЧЕСКАЯ ЭРОЗИЯ

Калачева Е.Г.¹, Таран Ю.А.², Котенко Т.А.¹


¹Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский, Россия, E-mail: keg@kscnet.ru 2Институт Геофизики Национальный Автономный Университет Мексики, Мехико, Мексика

АННОТАЦИЯ: Все типы вод, распространенных в пределах острова Шиашкотан, были отобраны и проанализированы на макро- и микрокомпоненты и изотопный состав воды. Используя гидрометрические данные основных водотоков, дренирующих остров, и их химический состав, оценена общая гидротермальная разгрузка магматических Cl и S как 20 т/сутки и 40 т/сутки соответственно. Химическая эрозия острова поверхностными водами определена в 27 т/км²/год, термальными водами – в 140 т/км²/год.

1. ВВЕДЕНИЕ

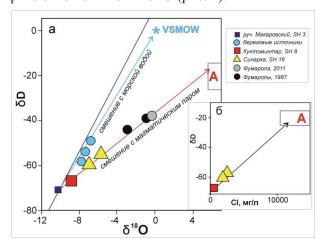
Общий поток компонентов, поступающих из магмы сквозь постоянно дегазирующие вулканы, включает в себя как вынос их с вулканическими парами в атмосферу через фумаролы, так и поставку вулкано-гидротермальными системами через локальную гидрологическую сеть. Большинство таких систем приурочено к активным вулканам, характеризующимся фреато-магматической или фреатической деятельностью, с постоянной пассивной дегазацией в межэруптивные периоды. Анионная составляющая (Cl и SO₄) соответствующих, как правило, ультракислых термальных вод формируется в результате

конденсации вулканических паров в грунтовых водах и должна быть взята в расчет для оценки выноса магматических летучих и их рециклинга в зонах субдукции [6, 8, 9]. Катионная составляющая формируется в результате взаимодействия термальных вод с вмещающими породами. Вынос катионов, а также SiO_2 поверхностными и подземными водами определяет химическую эрозию [7]. В данной работе, используя данные геохимии и гидрометрии основных водотоков, дренирующих термальные поля вулканов Синарка и Кунтоминтар (рис. 1), оценен общий гидротермальный вынос магматических Cl и SO_4 гидротермальными системами о. Шиашкотан.

Puc. 1. Остров Шиашкотан. Положение в Курильской островной дуге и расположение основных термальных полей, источников и точек отбора проб.

Также дана оценка общего количества растворенного вещества, выносимого в океан, как поверхностными водами, так и подземными водами, содержащими высокую долю термальных вод. Проводится сравнение рассчитанной химической эрозии о. Шиашкотан с химической эрозией тропических вулканических островов.

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ


Остров Шиашкотан (см. рис. 1), один из северных островов Курильской дуги, состоит из двух четвертичных вулканов Синарка и Кунтоминтар, характеризующихся современной фумарольной и гидротермальной активностью. Дегазация вулкана Синарка осуществляется через экструзивный купол, на склонах и вершине которого разгружаются высокотемпературные (> 400 °C) [1] фумаролы. Обширное термальное поле вулкана Кунтоминтар, с большим количеством фумарол и кислых термальных источников, расположено в сильно эродированном кратере, амфитеатром открытым на запад. Максимальная измеренная температура парогазовых выходов составила 480 °C [2]. Оба вулкана характеризуются интенсивной гидротермальной активностью с разгрузкой кислых и ультракислых SO₄-Cl вод, стекающих с дренирующими поверхностными водотоками в Охотское море. На охотоморском побережье острова расположены несколько групп нейтральных Na-Cl источников с температурами 50-80 °C. Подробное описание термальных полей и общий химический состав термальных и поверхностных вод рассмотрен в работах [1, 2, 3 и др.].

Базисом дренирования о. Шиашкотан являются Тихий океан и Охотское море. Поверхностный сток осуществляется многочисленными ручьями с расходами от первых единиц до сотен литров в секунду, формирующимися на склонах вулканических массивов. Типичный химический состав вод ручьев, дренирующих остров на площадях, не затронутых современной и прошлой гидротермальной деятельностию, имеет ручей Макаровский (табл. 1). Согласно Атласу Курильских островов, среднее количество осадков в этой части Курильских островов составляет 1300 м. Это означает, что гидрологический баланс острова обеспечивается поверхностными потоками (осадки) и инфильтрацией с общей разгрузкой приблизительно в 5 м³/с. Из-за низкой среднегодовой температуры воздуха (~+5 °C), испарением можно пренебречь. Инфильтрационные воды, частично или полностью нагретые в постройках обоих вулканов, представляют собой гидротермальный поток.

Таблица 1. Химический состав термальных и холодных вод о. Шиашкотан (мг/л)

N°	SH8	SH18	SH5	SN5	SH3
год	2011	2011	2011	1964	2011
T °C	64.5	51.2	9.4		5.6
рНлаб	2.4	2.7	2.9	3.5	7.1
SiO ₂	314	283	67	113	11.5
Cl-	462	2538	67	359	14.2
HCO,	0	0	0	0	17.1
SO4 ² -	3463	1538	730	1625	13.4
Na ⁺	64	385	23	328	8.3
K ⁺	2	30	1.4		0.4
Ca ²⁺	365	545	98	426	8.4
Mg^{2+}	29	501	8.8	84	1.5
A1 ³⁺	338	49	63		< 0.3
Fe ²⁺ +Fe ³⁺	181	106	2.2	30	< 0.05
М, г/л	5.43	6.2	1.11	2.85	0.08

Изотопный состав для всех опробованных вод, включая вулканический газ, показаны на графике отношений δD к $\delta^{18}O$ (рис. 2).

Puc. 2. Изотопный состав термальных и поверхностных вод о. Шиашкотан.

Если для береговых источников существует тренд в сторону смешения метеорной и морской воды, то для кислых Cl-SO_4 вод, разгружающихся на термальных полях вулканических склонов, наблюдается тренд в сторону смешения метеорных вод с магматической островодужной водой [4, 5]. Точки, отражающие изотопный состав воды в фумаролах, также находятся на этой линии смешения. График-вставка (рис. 26) согласуется с вышесказанным: точки составов вулканических кислых вод в координатах отношений δD к ϵCl близки к линии смешения магматических-метеорных вод. Это доказывает, что анионная составляющая кислых вод острова (ϵCl и ϵSO_4) имеет магматическую природу.

На о. Шиашкотан расположены три основных вулкано-гидротермальных дренажа. Кунтоминтарское термальное поле дренируется руч. Кратерным в Охотское море. Северо-Восточное термальное поле вулкана Синарка дренируется руч. Серным в Тихий океан, а группа термальных площадок Центрального экструзивного купола вулкана Синарки дренируются руч. Агломератовым в Охотское море. Воды обоих ручьев, Кратерного и Агломератового, кислые (табл. 1) и формируют шлейфы измененных морских вод в устьях (рис. 1b). В водах руч. Кратерный в устье содержится 67 мг/л хлора и 730 мг/л сульфат-иона при общем измеренном расходе 500±100 л/с. По визуальным оценкам, расход руч. Агломератового подобен руч. Кратерному при концентрации, по [3], Cl-иона в 357 мг/л и 1625 мг/л SO_4 . Нет данных по мощности руч. Серного и его химическому составу, но общая разгрузка близнейтральных термальных вод Северо-Восточного поля вулкана Синарка оценена в 20 л/с [3] со средним значение C1 ~50 мл/л и сульфата ~400 мл/л [1]. Это означает, что ежесуточно в Тихий океан поступает около 1 г Cl и 2.7 г SO $_{\scriptscriptstyle 4}$, т.е. гораздо меньше, чем вынос Кратерным и Агломератовым ручьями. Общий вулкано-гидротермальный вынос хлора и сульфата может быть оценен, таким образом, как 214 г/с хлора, и 393 г/с серы. Принимая в расчет погрешность расчетов не менее, чем в 20%, мы можем сказать, что вулканы о. Шиашкотан через гидротермальную систему выносят около 20 ± 5 т/день C1 и 35 ± 7 т/день S. Полученные расходы магматических Cl и S достаточно высоки и сравнимы с оценками по гидротермальному выносу другими вулканами. Например, в работе [10] был оценен гидротермальный поток Cl из вулкана Эль-Чичон как 470 г/с (~ 42 т/день).

Химический состав руч. Макаровский представлен в таблице 1. Относительно высокое содержание СІ (14 - 25 мг/л) связано с вкладом аэрозолей морской воды в атмосферные осадки. Общее содержание растворенных катионов вместе с SiO₂ в водах ручья находится в диапазоне от 31 до 60 мг/л. Следовательно, 45 мг/л — это средняя концентрация катионов в поверхностных водах острова, и если, согласно [7], половина из них имеет морское происхождение, мы можем оценить поверхностную химическую эрозию острова площадью 118 км² природными водами общим расходом в ~4.9 м³/с в 27 тон/км²/год с возможной погрешностью около 50%.

Минимальная оценка химической эрозии термальными кислыми водами обеих вулканогидротермальных систем (по ручьям Кратерный и Агломератовый) составляет ~140 тон/км²/год, что в 5 раз выше, чем химическая эрозия, производимая поверхностными водами. Полученные данные можно сравнить с подобными оценками для тропических островов Гваделупа (Малые Антильские острова) и Реюньон [7]. Сравнительная характеристика приведена в таблице 2.

Таблица 2. Химическая эрозия о. Шиашкотан в сравнении с тропическими островами

Остров	Шиаш- котан	Гваде- лупа	Рею- ньон			
Площадь, км ²	118	1080	2500			
Осадки, мм	1300	5000	4500			
Средняя температура (°C)	5	28	23			
Химическая эрозия, тонн/км ² /год						
Поверхностная	30	140	100			
Подземная	140	290	270			
Общая	170	430	370			

Поскольку ежегодное количество осадков, выпадающих на о.Шиашкотан, и средняя температура воздуха значительно ниже, чем на тропических островах, то и поверхностный сток холодных вод меньше в 3-4 раза. Гидротермальный поток также в два раза ниже, но, как было сказано выше, это минимальная оценка, проведенная только для двух основных гидротермальных дренажных водотоков острова. В любом случае, для гидротермальной эрозии существенно взаимодействие между двумя основными параметрами: общей инфильтрацией и кислотностью гидротермальных вод.

3. ЗАКЛЮЧЕНИЕ

Вулканы о. Шиашкотан характеризуются интенсивной эмиссией вулканических газов и гидротермальной активностью. Измеренный вулкано-гидротермальный вынос магматических Cl и S кислыми термальными водами с вулканов Синарка и Кунтоминтар составляет 20±5 и 35±7 т/ день соответственно. Химическая эрозия поверхностными (холодными) водами и подземными (термальными) потоками оценена в 27 и 140 тон/км²/год соответственно. Поверхностная эрозия на Шиашкотане в 3-4 раза меньше, чем для тропических вулканических островов (Гваделупа и Реюньон), и пропорциональна норме атмосферных осадков. Оцененная гидротермальная эрозия для о. Шиашкотан в два раза ниже, чем для выше-указанных тропических островов.

ЛИТЕРАТУРА

- 1. Жарков Р.В., Козлов Д.Н., Дегтерев А.В. Современная фумарольная и гидротермальная активность вулкана Синарка (о. Шиашкотан, Курильские острова) // Вестник КРАУНЦ. № 1 (17). 2013. С. 179-185.
- Калачева Е.Г., Котенко Т.А., Котенко Л.В., Волошина Е.В. Геохимия термальных вод и фумарольных газов о. Шиашкотан (Курильские острова) // ВиС. 2014. № 5. С. 1-15.
- 3. Мархинин Е.К., Стратула Д.С. Гидротермы Курильских островов. М.: Наука. 1977. 212 с.
- Таран Ю.А., Покровский Б.Г., Дубик Ю.М. Изотопный состав и происхождение воды в андезитовых магмах // ДАН. 1989. Т. 304. № 2. С. 440-443.
- Giggenbach, W.F. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundar-

- ies and their origin. // Earth Planet Sci Lett. 1992. № 113. P. 495–510.
- Hedenquist, J.W., Aoki, M., and Shinohara, H. Flux of volatiles and ore-forming metals from the magmatic-hydrothermal system of Satsuma Iwojima volcano // Geology. 1994. V. 22. P. 585–588.
- Rad, S.D., Allègre, C.J., Louvat, P. Hidden erosion on volcanic islands // Earth and Planetary Science Letters. 2007. V. 262. P. 109–124.
- Shinohara, H. Volatile flux from subduction zone volcanoes: Insights from a detailed evaluation of the fluxes from volcanoes in Japan // J. Volcanol. Geotherm. Res. 2013. V. 268. P. 46–63
- Taran, Y.A. Geochemistry of volcanic and hydrothermal fluids and volatile budget of the Kamchatka-Kuril subduction zone // Geochim. Cosmochim. Acta. 2009. № 73. P. 1067-1094.
- 10. Taran, Y.A., Peiffer, L. Hydrology, hydrochemistry and geothermal potential of El Chichón volcano-hydrothermal system, Mexico // Geothermics. 2009. V. 38. P. 370–378.