Regular polytopes

Notes for talks given at LSBU, November \& December 2014 Tony Forbes

Flags A flag is a sequence $\left(f_{-1}, f_{0}, \ldots, f_{n}\right)$ of faces f_{i} of a polytope f_{n}, each incident with the next, with precisely one face from each dimension $i, i=-1,0, \ldots, n$.
Since, however, the minimal face f_{-1} and the maximal face f_{n} must be in every flag, they are often omitted from the list of faces. The minimal face is often denoted by the empty set, \emptyset. In this face diagram of a square pyramid with apex a and base $b c d e$ the flag on the right is $(\emptyset, e, b e, b c d e, P)$.

Vertex figure A vertex figure of an n-dimensional polytope is the ($n-1$)-dimensional polytope created when the vertex is sliced off by an $(n-1)$-hyperplane.

Truncation and rectification. For an n-polytope \mathcal{P} and $t \leq n-1$, truncation occurs when each vertex v is chopped off by an $(n-1)$-hyperplane that meets each edge, extended if necessary, incident with v at a point distance t from v. For special values of t we have truncation, $t=1 / 3$; rectification, $t=1 / 2$; bitruncation, $t=2 / 3$; birectification, $t=1$; and so on.
An m-rectification truncates m-faces to points. If an n-polytope is $(n-1)$-rectified, its $(n-1)$ faces are reduced to points and the polytope becomes its dual. For a 3 -polytope, rectification reduces edges to points and birectification reduces faces to points.
For a 3-polytope, bitruncation is equivalent to truncation of its dual. Thus, for example,

$$
\text { cube } \xrightarrow{t=\frac{1}{3}} \underset{\text { cube }}{\text { truncated }} \xrightarrow{t=\frac{1}{2}} \text { cuboctahedron } \xrightarrow{t=\frac{2}{3}} \text { truncated } \text { octahedron }_{t=1} \text { octahedron. }
$$

$$
\text { octahedron } \stackrel{t=\frac{1}{3}}{\longrightarrow} \text { truncated } \begin{gathered}
t=\frac{1}{2} \\
\text { octahedron }
\end{gathered} \xrightarrow{t=\frac{2}{3}} \text { truncated } \underset{\text { cube }}{t=1} \text { cube. }
$$

The Schläfli symbol A regular convex p-gon as has Schläfli symbol $\{p\}$.
An n-polytope has Schläfli symbol $\left\{p_{1}, p_{2}, \ldots, p_{n-1}\right\}$ if its facets ($n-1$)-faces) have Schläfli symbol $\left\{p_{1}, p_{2}, \ldots, p_{n-2}\right\}$ and the vertex figures have Schläfli symbol $\left\{p_{2}, p_{3}, \ldots, p_{n-1}\right\}$. Order is relevant.
Suppose \mathcal{P} has Schläfli symbol $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$. The dual of \mathcal{P} has Schläfli symbol $\left\{p_{n}, p_{n-1}, \ldots, p_{1}\right\}$. A vertex figure of a facet of \mathcal{P} is the same as a facet of a vertex figure of $\mathcal{P},\left\{p_{2}, p_{3}, \ldots, p_{n-2}\right\}$.

Extensions of the Schläfli symbol A p-sided regular star polygon where the vertices are arranged in a circle and vertex i is joined to vertex $i+d, d<n / 2, \operatorname{gcd}(d, p)=1$, has Schläfli symbol $\{p / d\}$. Presumably p / d is not a number; so, for example, the pentagram must be written as $\{5 / 2\}$, not $\{2.5\}$.
A system of extensions to include Archimedean solids and the like consists of including the prefix t with subscripts. Suppose a polytope \mathcal{P} has Schläfli symbol $\left\{p_{1}, p_{2}, \ldots, p_{n-1}\right\}$. Then $t_{0} \mathcal{P}=\mathcal{P} ; t_{0}\{4,3\}=\{4,3\}$ is a cube;
$t_{1} \mathcal{P}$ is a rectified $\mathcal{P} ; t_{1}\{4,3\}$ is a cuboctahedron;
$t_{2} \mathcal{P}$ is a birectified $\mathcal{P} ; t_{2}\{4,3\}$ is an octahedron (dual of the cube);
$t_{3} \mathcal{P}$ is a trirectified $\mathcal{P} ; t_{3}\{4,3,3\}$ is a 16 -cell (dual of the 4 -cube);
$t_{0,1} \mathcal{P}$ is a truncated $\mathcal{P} ; t_{0,1}\{4,3\}$ is a truncated cube;
$t_{0,2} \mathcal{P}$ is a rectified rectified $\mathcal{P} ; t_{0,2}\{4,3\}$ is a rhombicuboctahedron;
$t_{1,2} \mathcal{P}$ is a bitruncated $\mathcal{P} ; t_{1,2}\{4,3\}$ is a truncated octahedron;
$t_{0,1,2} \mathcal{P}$ is a truncated rectified $\mathcal{P} ; t_{0,1,2}\{4,3\}$ is a truncated cuboctahedron.
However, this does not cover all Archimedean solids, so the notation is extended by further prefixes h, half, a, altered, as well as various modifications to the original symbol. For example, $h t_{0,1,2}\{4,3\}$ is a snub cube. See Wiki for details.

The groups S_{n} and A_{n} Label a tree on n vertices with the elements being permuted by S_{n}. Then by the result of Cara \& Cameron, transpositions corresponding to the edges of the tree form an independent generating set for S_{n}. For $n=1,2, \operatorname{Aut}\left(S_{n}\right)$ and $\operatorname{Aut}\left(A_{n}\right)$ are trivial. For $n \geq 3, n \neq 6, \operatorname{Aut}\left(S_{n}\right) \cong S_{n}$ and all the automorphisms are inner. For $n=6$, there is one outer automorphism, and $\operatorname{Aut}\left(S_{6}\right) \cong S_{6} \rtimes C_{2}$. The outer automorphism can be defined by its action on generating transpositions:

$$
\begin{aligned}
& \text { (12) } \mapsto(12)(34)(56),(13) \mapsto(13)(25)(46),(14) \mapsto(14)(26)(35), \\
& (15) \mapsto(15)(24)(36),(16) \mapsto(16)(23)(45) .
\end{aligned}
$$

This works because $3 \cdot 5=15=\binom{6}{2}$.
If $n \geq 4, n \neq 6, \operatorname{Aut}\left(A_{n}\right) \cong S_{n} ; \operatorname{Aut}\left(A_{3}\right)=\operatorname{Out}\left(A_{3}\right) \cong C_{2}$ and $\operatorname{Aut}\left(A_{6}\right) \cong S_{6} \rtimes C_{2}$. In each case the extra outer automorphism is conjugation by an odd permutation.

Partially ordered sets A partially ordered set is a set with a partial order \leq that satisfies (i) $a \leq a$, (ii) $a \leq b \& b \leq a \Rightarrow a=b$ and (iii) $a \leq b \& b \leq c \Rightarrow a \leq c$.

A join semi-lattice is a partially ordered set where any two elements a, b have a supremum (or join or least upper bound), denoted by $a \vee b$. A bounded join semi-lattice has a unique maximum, usually denoted by 1 .
A meet semi-lattice is a partially ordered set where any two elements a, b have an infimum (or meet or greatest lower bound), denoted by $a \wedge b$. A bounded meet semi-lattice has a unique minimum, usually denoted by 0 .
A lattice is a partially ordered set where any two elements a, b have a supremum and an infimum. Thus it is both join semi-lattice and a meet semi-lattice. A bounded lattice has a unique maximum, 1 , and a unique minimum, 0 . The join and meet operations have the following properties.

$$
\begin{aligned}
& a \vee b=b \vee a, \quad a \vee(b \vee c)=(a \vee b) \vee c, \quad a \vee(a \wedge b)=a, \quad a \vee a=a \vee 0=a, \\
& a \wedge b=b \wedge a, \quad a \wedge(b \wedge c)=(a \wedge b) \wedge c, \quad a \wedge(a \vee b)=a, \quad a \wedge a=a \wedge 1=a
\end{aligned}
$$

A Boolean algebra or Boolean lattice is a complemented distributive lattice. The join and meet
satisfy the distributivity law and there is a unary operation \bar{a} (not a):

$$
a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c), \quad a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c), \quad a \vee \bar{a}=1, \quad a \wedge \bar{a}=0
$$

A finite Boolean lattice is isomorphic to the lattice of subsets of a finite set X with $A \vee B=A \cup B$, $A \wedge B=A \cap B$ and $\bar{A}=X \backslash A$ for $A, B \subseteq X$. If $|X|=r$, we denote this lattice by $B(r)$.

Combinatorial polytopes An n-dimensional polytope \mathcal{P} is a partially ordered set with the following properties. We call the elements faces and we say that two faces a and b are incident if $a \leq b$ or $b \leq a$.
(1) There exists a unique minimal element f_{-1}, and a unique maximal element f_{n}. Every maximal chain has length $n+2$ and contains both f_{-1} and f_{n}. These are the polytope's flags. If $\left(f_{-1}, f_{0}, \ldots, f_{n}\right)$, is a flag, then we say that f_{i} has dimension or rank $i, i=-1,0,1, \ldots, n$. A j-face is a face of dimension j. A point is a 0 -face, an edge is a 1 -face, a polygon is a 2 -face and a polyhedron is a 3 -face.
(3) If $a<b$ are faces of dimension i and $i+2$ respectively, then there exactly two faces of dimension $i+1$ incident with both a and b.
(4) Connectedness. If F and G are two flags, there is a sequence of flags starting at F and ending at G such that consecutive members intersect in all but one of their faces, and that $F \cap G$ is in each member.

Regular polytopes A polytope is regular if its automorphism group acts transitively on its flags. For an n-polytope, all the j-faces, $j=0,1, \ldots, n-1$ are regular polytopes of dimension less than n.
The regular polytopes realizable as convex objects in \mathbb{E}^{n} are: (1) the closed interval;
(2) the regular m-gon, $m \geq 3$: $\{m\}$;
(3) the five Platonic solids: $\{3,3\},\{4,3\},\{3,4\},\{5,3\},\{3,5\}$;
(4) the six regular 4 -polytopes: the 4 -simplex $\{3,3,3\}$, the 4 -cube $\{4,3,3\}$, the 16 -cell or 4 -cross-polytope $\{3,3,4\}$, the 24 -cell $\{3,4,3\}$, the 120 -cell $\{5,3,3\}$ and the 600 -cell $\{3,3,5\}$;
(5) for $n \geq 5$, the n-simplex $\{3,3, \ldots, 3\}$, the n-cube $\{4,3,3, \ldots, 3\}$ and the n-cross-polytope $\{3,3, \ldots, 3,4\}$.
A regular m-gon has $2 m$ flags, the order of its automorphism group, D_{m}. A regular tetrahedron has 24 flags. Labelling its vertices $a b c d$ and omitting the end points, the flags containing a are

$$
(a, a b, a b c), \quad(a, a b, a b d), \quad(a, a c, a b c), \quad(a, a c, a c d), \quad(a, a d, a b d), \quad(a, a d, a c d)
$$

Also one can identify the 48 flags in a cube. Labelling two opposite squares a, b, c, d and e, f, g, h such that $a e, b f, c g, c h$ are edges, the six flags containing a are

$$
(a, a b, a b c d), \quad(a, a b, a b f e), \quad(a, a d, a b c d), \quad(a, a d, a b h e), \quad(a, a e, a b f e), \quad(a, a e, a d h e) .
$$

Similarly we see that the octahedron has 48 flags, the dodecahedron 120 and icosahedron 120.

Coxeter groups

A Coxeter group is a group with presentation $\left\langle r_{1}, r_{2}, \ldots, r_{n}:\left(r_{i} r_{j}\right)^{m_{i, j}}=1\right\rangle$, where $m_{i, i}=1$ and $m_{i, j}=m_{j, i} \geq 2$ for $i \neq j$. The condition $m_{i, j}=\infty$ means there is no condition $\left(r_{i} r_{j}\right)^{m}$.
The relation $m_{i, i}=1$ means that $r_{i}^{2}=1$ for all i; the generators are involutions. If $m_{i, j}=2$, the generators r_{i} and r_{j} commute. Observe that $(x y)^{k}$ and $(y x)^{k}$ are conjugates; $y(x y)^{k} y^{-1}=$ $(y x)^{k} y y^{-1}=(y x)^{k}$.
The Coxeter matrix is the $n \times n$ symmetric matrix with entries $m_{i, j}$. The Coxeter matrix can be encoded by a Coxeter diagram, an edge-labelled graph where the vertices are the generators
r_{i}, and $r_{i} \sim r_{j}$ iff $m_{i, j} \geq 3$; also the edge $r_{i} \sim r_{j}$ is labelled with the value of $m_{i, j}$ (usually omitted if 3). For example, the n-vertex path with edges labelled 3 (or unlabelled) gives the symmetric group S_{n+1}, the generators corresponding to (1,2), $(2,3), \ldots,(n-1, n),(n, \infty)$.

Polyhedra with symmetry group $I_{h} \cong A_{5} \times C_{2}$ and rotation group $I \cong A_{5}$
Dodecahedron $\{5,3\}, v=20, e=30, f=12$;
(note that $I_{h} \not \approx S_{5} \cong A_{5} \rtimes C_{2}$)
Icosahedron $\{3,5\}, v=12, e=30, f=20$;
Great dodecahedron $\{5,5 / 2\}, v=12, e=30, f=12$;
Small stellated dodecahedron $\{5 / 2,5\}, v=12, e=30, f=12$;
Great icosahedron $\{3,5 / 2\}, v=12, e=30, f=20$;
Great stellated dodecahedron $\{5 / 2,3\}, v=20, e=30, f=12$.

Reference P. J. Cameron, Regular Polytopes, Slides for Old Codgers meeting, 2014.

Three views of a transparent regular dodecahedron. The 5 cubes formed by face diagonals are shown in red, green, blue, cyan and magenta. These are the objects on which the rotation group A_{5} acts. Rotation by $2 \pi / 5$ induces a 5 -cycle of the cubes; rotation by $2 \pi / 3$ fixed two cubes and 3 -cycles the others; rotation by π fixes one cube and swaps the others in pairs.

