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1 Introduction and definitions

Suppose X is a compact Riemann surface, i.e., it is compact surface with a hyperbolic
structure if g ≥ 2. We know that PSL(2,R) structures correspond to Riemann surfaces of
genus g ≥ 2 via H/Γ. What about say PSL(2,R)× U(n) ?

A holomorphic vector bundle E of rank r on a complex manifold X is simply a smooth
complex vector bundle whose transition functions are holomorphic, i.e., E = ∪αUα×Cr

((x,~vα)=(x,gαβ(x)~vβ)

where gαβ(z) : Uα ∩ Uβ → GL(r,C) is a holomorphic matrix-valued function of z. What
are examples of such bundles ? Well, we have trivial bundles X × Cr of course. The
holomorphic tangent bundle (whose fibre at every point of X is generated by ∂

∂z1
, ∂
∂z2
, . . .) is

another example. In the case of Riemann surfaces, this is a line bundle.
How does one come up with more examples ? More importantly, can one classify bundles

over Riemann surfaces ? Can one make the set of all bundles (the moduli space) a manifold ?
Unfortunately these are too hard (and the last one is just not true). In 1963, Mumford wrote
a paper where he defined some special bundles called stable bundles over Riemann surfaces,
whose moduli space can be made into a smooth complex manifold. In 1965, Narasimhan
and Seshadri proved a remarkable theorem that essentially described all stable bundles very
nicely in terms of the fundamental group of the Riemann surface. This led to a flurry of
similar results (starting with Donaldson who gave a differentio-geometric proof of the NS
theorem) of the flavour of “A certain kind of a metric with good curvature properties exists if
and only if and algebro-geometric obstruction is met”. This is called the Kobayashi-Hitchin
correspondence.

The construction employed by NS was (I believe) due to Andre-Weil. Essentially, if
you take a unitary irreducible representation ρ of the fundamental group Γ, then E =

H×Cr
(z,v)=(γz,ρ(γ)v)

defines a holomorphic vector bundle (exercise) on X. Is this bundle stable ?
Do all stable bundles arise this way ? The answer is almost yes according to the NS theorem.
Almost because this is true for the so-called degree zero bundles. We shall take Donaldson’s
differentio-geometric approach to this theorem.

Firstly, what is a stable bundle ? Before that, we need to know what the “degree”
of a bundle means. To this end, let’s define the notion of a connection ∇ on a bundle.
A connection ∇ is a first order differential operator that is supposed to remind us of the
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directional derivative. That is, ∇Xs is the directional derivative of a section s of the bundle
along the tangent vector field X. In other words, ∇ takes a section and spits out a one
form tensored with sections. Naively speaking, if s is a vector of functions (in a trivilisation)
∇Xs = ∂

∂xi
X is. But this does not change correctly when a change of trivialisation changes

s to gαβs. To correct this, we add a zeroeth order piece. Finally, a connection ∇α = d+Aα
where d is the exterior derivative and A is an r × r matrix of 1-forms. Under change of
trivialisation, Aα = gαβAβg

−1
αβ −dgαβg

−1
αβ . Connections exist for every bundle (by a partition-

of-unity) argument. The square of a connection ∇2 is shockingly enough not a second order
operator. It is a zeroeth order operator called the Curvature Θ. Indeed, ∇2s = Θs where
Θ = dA + A ∧ A is the an r × r matrix of 2-forms called the curvature matrix which
transforms as Θα = gαβΘαβg

−1
αβ . Thus tr(Θα) = tr(Θβ) is a globally defined 2-form that is

independent of the trivialisation chosen. In fact, it is a closed form whose cohomology class
is independent of the connection chosen! It is called the first Chern class c1(E) = [tr(

√
−1

2π
Θ)].

In particular, a trivial bundle has an obvious connection A = 0. Therefore Θ = 0 and hence
c1(Trivial bundle) = 0. A connection whose curvature is 0 is called flat. If X is a Riemann
surface, then

∫
X
c1(E) is an integer called the degree of E. A holomorphic vector bundle E

of degree d and rank r on a Riemann surface is said to be stable if for every proper subbundle
F , µ(F ) = degree of F

rank of F
< µ(E) = d

r
. The µ is called the “slope” of the bundle. If equality is

allowed to hold, then the bundle is called semi-stable. Note that if the degree and rank of
E are coprime, the bundle is automatically stable.

Connections can be used to define parallel transport. If you give me a vector ~v from the
fibre of the vector bundle at a point p ∈ X, and a loop γ based at p, then I can solve the
system of differential equations ∇γ′s(γ(t)) = 0 with s(t = 0) = ~v and come up with another
vector Pγ(v) at p which differs from identity (for small loops) by an integral involving the
curvature of the connection. If we take a flat connection, Pγ depends only on the homotopy
class of γ. Thus parallel transport gives a representation of the fundamental group (called
the monodromy representation).

On a holomorphic vector bundle, there is a nice way to come up with a connection. Firstly,
suppose we are given a hermitian metric h on E, then in a holomorphic trivialisation, hα is
a hermitian positive-definite r × r matrix. The formula Aα = h−1

α ∂hα (where ∂f = ∂f
∂zi
dzi is

a so-called (1, 0)-form) defines a connection. You can check that it transforms correctly. Its
curvature turns out to be Θα = ∂̄Aα. This connection is called the “canonical connection
associated to the given metric h” or sometimes the “Chern connection associated to h”. If
you take the bundle H×Cr/Γ, then it admits an obvious metric whose Chern connection is
flat.

Here is a property of Chern connections : If S is a sub-bundle of E, then the curvature
of the Chern connection associated to the restriction of the metric to S is less than that of
E. (This is in sharp contrast to intuition. The sphere is more curved than three dimensional
space.) Therefore, a simple calculation shows that if you have a flat Chern connection, you
are at least semi-stable.

Thus it seems reasonable to expect the NS theorem to be equivalent to saying that a
degree zero indecomposable (i.e. not a direct sum of smaller bundles) bundle on a compact
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RS admits a flat Chern connection if and only if it is stable. More generally,

Theorem 1.1. An indecomposable holomorphic bundle E of rank r and degree d on a com-
pact Riemann surface X whose tangent bundle is equipped with a metric g = e−φdz ⊗ dz̄
is stable if and only if it admits a metric h whose Chern connection has curvature Θ sat-
isfying

√
−1

2π
Θ = d

rV ol(g)
ωI where ω is the (1, 1) form given by ω = e−φdz ∧ dz̄ and I is the

identity endomorphism of E. This metric (called a Hermite-Einstein metric) is unique up
to rescaling.

This is what Donaldson proved and we shall follow his proof. Here is a little more
theory. Suppose E is a smooth complex vector bundle with a given metric h. A unitary
gauge transformation u is simply a smooth endomorphism of E that is a unitary matrix
in a trivialisation formed by orthonormal vectors. u acts on a given metric-compatible
connection A (meaning that if you choose an orthonormal trivialisation, then A is a skew-
hermitian matrix of one forms) via u(A) = uAu−1 − duu−1. By the way, given a connection
A on a bundle E, one can produce a connection on the bundle of endomorphisms End(E).
Indeed, if u is an endomorphism, then ∇Au = du + [A, u] where [, ] is the commutator of
matrices. Thus u(A) = A−∇Auu

−1. The group of unitary gauge transformations is denoted
by G and its complexification, the group of all complex gauge transformations by GC. A
complex gauge transformation g acts on connections compatible with a given metric h via
g(A) = A − ∂̄Agg−1 + (∂̄Agg

−1)†. An interesting observation is the following. For a Chern
connection on a holomorphic bundle A = h−1∂h, note that it has no (0, 1)-part. Conversely,
on Riemann surfaces, given any connection that is compatible with the given metric h its
(0, 1)-part ∂̄A defines a holomorphic structure ! Indeed, those sections s are holomorphic
that satisy ∂̄As = 0. Why is this equivalent to the usual definition ? That is a theorem.
So the bottom line is “Either give me a holomorphic structure and look for an appropriate
HE metric h or give me a metric h0 and look for an appropriate connection A inducing
an isomorphic holomorphic structure”. Given a hermitian holomorphic bundle (E, h0), we
denote by O(E) the complex gauge orbit of the Chern connection of h0, i.e., these are all
connections whose induced holomorphic structures are isomorphic.

2 Basic strategy

Firstly, let’s look at line bundles. Line bundles have no non-trivial subbundles. So they
are automatically stable. Given any metric h0, any other metric h = e−uh0. Therefore,
Θh = ∂̄(h−1∂h) = ∂∂̄u+Θ0. So we want to solve

√
−1

2π
(Θ0+∂∂̄u) = λω where ω =

√
−1

2π
Θ0+dη.

It turns out (through a piece of analysis called Hodge theory) that every d-exact (1, 1)-form
is ∂∂̄u for some function u. If the form is real, the function is

√
−1× a real function. Thus

the NS theorem is proven for line bundles. Donaldson uses induction on the rank of the
bundle to prove it for higher rank bundles.

The basic idea is to use calculus of variations. He came up with an “energy” functional
J whose critical points are HE connections. So one needs to
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1. Define over what space of connections one wants to minimise J . It is the space of rough
(Sobolev) connections that are complex-gauge equivalent to a fixed one obtained by a
fixed metric on the given holomorphic bundle. We call such connections O(E).

2. Prove that J is indeed bounded below on that space. (This will be true by construc-
tion.)

3. Since J is bounded below, there exist a sequence of connections Ai s.t. J(Ai)→ inf J .

4. We need to extract a convergent subsequence somehow. A technical tool called Uh-
lenbeck’s compactness theorem shows that there exist unitary gauge transformations
gni such that gni acting on Ani give us a (new) subsequence of connections whose J ’s
converge “weakly” to inf J and which converge themselves to a connection A.

5. Now a rough connection induces a rough ∂̄ operator but this is not good enough to
talk about a holomorphic structure on the bundle. However, Atiyah-Bott proved that
given a rough connection, there is a smooth connection arbitarily close to it in the
complex gauge orbit of the rough connection. So choose a smooth connection Ã in the
complex gauge orbit of A whose energy is not very different from that of A.

6. Ã either induces the same holomorphic structure on E or a different one. Using sta-
bility, we rule out introducing a different holomorphic structure. (Here we use the
induction hypothesis.)

7. The technique of Atiyah-Bott can be used to prove that, given a rough connection A
such that its complex gauge orbit contains smooth connections inducing an indecom-
posable holomorphic structure, we can find a gauge unitary transformation g such that
g.A is smooth. Then we show that indeed the fact that it attains the minimum of J
implies that it is a HE connection.

8. Lastly, one proves uniqueness by taking two metrics, subtracting, integrating-by-parts
etc.

3 Details of existence

Firstly, define an energy functional J on the space of smooth unitary connections as

J(A) =

(∫
X

Tr

[
−
√
−1Θ

2πω
+ µI

]2
)1/2

Therefore, J is obviously bounded below and is 0 iff there is a HE connection. Now J
depends on one derivative of A. Actually, it depends on the L2 norm of Θ = dA + A ∧ A.
Note that in the proof of the uniformisation theorem we defined Sobolev spaces W 1,2 as
the spaces of functions/sections of a vector bundle which are completions of the spaces of
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smooth functions satisfying

∫
|∇f |2 + |f |2 < ∞. These spaces are Hilbert spaces. They

embed continuously in L2. Actually, it turns out that on Riemann surfaces, the embed in
Lq for all ∞ > q ≥ 2. (The Sobolev embedding theorem.) In fact, they are even better than
that. If you have a bounded sequence fi in W 1,2 then

1. A subsequence fnk converges weakly to f in W 1,2, i.e., for every linear functional F ,
F (fnk)→ F (f).

2. A subsequence fmk converges in Lq. (The Rellich compactness lemma.)

In other words, the functional J makes sense not just for smooth connections, but for W 1,2

connections.
Since J is bounded below, there exists a sequence of W 1,2 connections Ai such that

J(Ai)→ inf J . At this point, we need a small observation. Suppose Ai → A in W 1,2 weakly.
This means that Θi → Θ in L2 weakly. Does this mean that J(Ai) → J(A) ? Not quite.
Instead, one can conclude that J(A) ≤ lim inf J(Ai). This is because the set of α such that(∫

X

Tr
[
(α + µI)†(α + µI)

])1/2

≤ J(A)− ε

is a closed convex subset of a Hilbert space and hence one can separate a point −
√
−1Θ
2πω

not
lying on it by a hyperplane for every ε > 0. So if (after taking a subsequence) J(A) ≥
lim J(Ai)− ε0, then Θi eventually lie on the wrong side of a hyperplane whereas, they should
not (because Θi → Θ weakly). Anyway, since we have a sequence Ai such that J(Ai)→ inf J
where the infimum is taking over the complex gauge orbit O(E) of a fixed connection defining
the holomorphic structure of E. Ideally we want to extract a convergent subsequence of Ai
and hope that the limiting connection is our desired HE connection. While we may not
have such a subsequence, here is a technical, useful result due to Uhlenbeck (Uhlenbeck’s
compactness theorem).

Theorem 3.1. Suppose that Ai is a sequence of W 1,2 connections with Θi bounded in L2.
Then there is a subsequence ij andW

2,2 gauge transformations uj such that uj(Aij) converges
weakly in W 1,2 to a connection A.

(The rough idea of the proof is to choose the “best” connection in every gauge orbit,
namely, the so-called “Coulomb gauge”, and prove estimates on such “best” connections.)

So after composing with gauge transformations (gauge transforms do not change J) we
see that (up to a subsequence) J(Ai) → infO(E) J and Ai → A in W 1,2 weakly. Thus
J(A) ≤ lim J(Ai). Now choose a smooth connection (which we shall also call A abusing
notation a bit) lying the complex gauge orbit of A (by Atiyah-Bott) that is close to A so
that its energy J is not very different from that of A.

So either the approximate limiting connection A defines the same holomorphic structure
as E or something bad has to happen which has to contradict stability somehow. Stability
requires testing against a subbundle. How does one produce subbundles of vector bundles ?
One way is to take an eigenspace of an endomorphism. Indeed,
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Lemma 3.2. Let E be a holomorphic bundle over X. Then either inf J over O(E) is attained
in O(E) or there is a holomorphic bundle F 6= E of the same degree and rank as E with
inf J |O(F) ≤ inf J |O(E) and with Hom(E,F ) 6= 0.

Proof. Choose Ai such that J(Ai)→ infE J . By Uhlenbeck compactness, after a subbundle
one may assume that Ai → A weakly in W 1,2 and that J(A) ≤ infE J . Since a smooth
approximation of A lying in the same complex gauge orbit defines a holomorphic structure
EA, the lemma will follow if we show that Hom(E,EA) 6= 0. Indeed, suppose it is 0.

Note that Hom(E,F ) can be interpreted as the kernel of a certain elliptic ∂̄ operator.
If Hom(E,F ) = 0 this would mean that the said operator would have trivial kernel. But
Ai are all in O(E) and therefore the identity morphism makes sense between (E,Ai) and
(E,Aj). But the limit of Ai apparently has no morphism with E which sounds strange. This
is the intuition behind the following proof.

Note that given Ai, A, there is an obvious connection on Hom(Ei, EA) = E∗i ⊗ EA with
the corresponding ∂̄Ai,A operator such that ∂̄s = 0 correspond to Hom(Ei, EA).

By standard estimates, if ∂̄ does not have a kernel, then ‖∂̄s‖L2 ≥ C‖s‖W 1,2 for all
connections s. But by Sobolev embedding, ‖s‖W 1,2 ≥ C‖s‖4

L. Now ‖(∂̄A0,A − ∂̄A0,Ai)s‖L2 ≤
C‖Ai − A‖L4‖s‖L4 . This implies that

‖∂̄A0,Ais‖L2 ≥ (C1 − C2‖Ai − A‖L4‖‖s‖L4

Since Ai → A in L4, this means that Hom(E,Ei) = 0 for large i contradicting the fact that
Ei introduces an isomorphic holomorphic structure.

We want to rule out the possibility of E 6= F by using stability. To this end, suppose
we are given a matrix-valued holomorphic function whose determinant is 0 throughout in a
ball. Then one can write a Jordan canonical form centred at the origin. So clearly one can
locally break the matrix up as a map between two vector spaces (the non-zero eigenspaces
at the origin and parts of the kernel where vanishing is at an order lower than the highest
order) having a determinant that is not identically zero. This when done globally yields the
following exact sequence : 0 → P → E → Q → 0 and 0 ← N ← F ← M → 0 with the
given morphism α between E and F and β between Q and M such that rk(Q) = rk(M)
and deg(Q) ≤ deg(M).

So decompose E and F as above thus producing 0 → M → F → N → 0 with
µ(N ) ≥ µ(Q) ≥ µ(E) = µ(F ) > µ(P). So the bundle F is unstable. The idea is to
prove that this implies that its energy is pretty large (whereas it is supposed to be smaller
than that of E).

Before we proceed to utilize this observation, here are some generalities about the be-
haviour of Chern connections on exact sequences. If

0→ S → E → Q→ 0

is an exact sequence, then any Chern connection on E has the form[
AS β
−β† AQ

]
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where β is End(Q,S)-valued (0, 1)-form that represents how far E is from S ⊕ Q. The
corresponding curvature is [

ΘS − β ∧ β† dAβ
−dAβ† ΘQ − β† ∧ β

]
which means that the subbundle has smaller curvature and the quotient larger (which is why
HE bundles are stable in the first place). An easy calculation shows the following lemma
(which roughly states that instability increases energy).

Lemma 3.3. If F is a holomorphic bundle over X such that

0→M→ F → N → 0

with µ(M) ≥ µ(F ) then for any Chern connection A on F we have

J(A) ≥ rk(M)(µ(M)− µ(F )) + rk(N )(µ(F )− µ(M)) = J0

with equality only if the extension splits.

The next lemma shows that assuming the induction hypothesis (on rank) stable bundles
have small energy.

Lemma 3.4. If E is a stable holomorphic bundle over X such that

0→ P → E → Q→ 0

, then assuming the induction hypothesis that lower rank stable bundles admit HE connec-
tions, there is a connection A on E with

J(A) < rk(P)(µ(E)− µ(P)) + rk(Q)(−µ(E) + µ(Q)) = J1

The proof of this lemma relies on a couple of ideas (we will only sketch the proof).

1. Every holomorphic bundle on a Riemann surface admits a Harder-Narasimhan fil-
tration, i.e., a filtration by subbundles whose succesive quotients Ci are semistable.
Moreover, semistable bundles Ci admit a filtration whose successive quotients Cij are
stable bundles.

2. Now a connection on E can be given by the information AP , AQ, tβ where the A are
connections on the sub and quotient bundles, β is the extension form, and t is a real
parameter. If t 6= 0, all such connections define isomorphic holomorphic structures.
However, when t = 0, the holomorphic structure on E jumps to P ⊕ Q. Likewise, P
and Q are themselves “perturbations” of direct sums ⊕ijCij of stable bundles. Thus by
the induction hypothesis, they admit connections that are “perturbations” of a direct
sum of HE equations. A small calculation shows that if the perturbation parameter is
small, then the energy J ≤ J1.
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These two lemmata applied to our situation of E and F as above, lead to a contradiction.
Thus the infimum of J over O(E) is attained at a W 1,2 connection A defining an iso-

morphic holomorphic structure. If this connection were smooth, then a simple calculus of
variations argument (where A is varied along a path of complex-gauge equivalent connec-
tions) shows that indeed A is HE.

So the difficulty seems to be able to prove that there is a smooth connection unitarily
gauge equivalent to A. This is accomplished by a preposterously clever argument due to
Atiyah and Bott : Firstly, an open neighbourhood of the identity in the unitary gauge group
acts on a connection to give a closed Hilbert submanifold of finite codimension in the space
of W 1,2 connections (The idea is to compute the derivative of this map, use elliptic regularity
to prove that the range of the derivative is closed, and then prove that the kernel is trivial
using indecomposability. Thus the inverse function theorem on Hilbert manifolds implies
that the image is an immersed submanifold). Secondly, suppose N is a finite dimensional
subspace (of dimension k) transverse to the unitary gauge orbit. So given A, a small neigh-
bourhood V of A admits a continuous map π : V → N near A fibring at A with fibre the
Hilbert manifold. Thirdly, choose k + 1 points in N having A has their barycentre. Note
that the corresponding simplex generates the homology Hk−1(N − A). By continuity, this
will be true if we change the simplex slightly. Since smooth connections are dense, choose
a simplex of smooth connections nearby generating the homology. The intersection number
with the Banach submanifold of gauge equivalent connections does not change and hence
there is a smooth connection in the unitary gauge orbit.
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