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The effects of mutational processes and selection
on driver mutations across cancer types
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Epidemiological evidence has long associated environmental mutagens with increased cancer

risk. However, links between specific mutation-causing processes and the acquisition of

individual driver mutations have remained obscure. Here we have used public cancer

sequencing data from 11,336 cancers of various types to infer the independent effects of

mutation and selection on the set of driver mutations in a cancer type. First, we detect

associations between a range of mutational processes, including those linked to smoking,

ageing, APOBEC and DNA mismatch repair (MMR) and the presence of key driver mutations

across cancer types. Second, we quantify differential selection between well-known alter-

native driver mutations, including differences in selection between distinct mutant residues in

the same gene. These results show that while mutational processes have a large role in

determining which driver mutations are present in a cancer, the role of selection frequently

dominates.
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The question of what causes a cancer to have its specific
collection of mutations instead of another remains unan-
swered. The two evolutionary forces of mutation and

selection each provide plausible explanations in their own right:
the unique mutational exposures of a tissue may provide a ‘bias’
towards specific mutations, and evolutionary selection for the
functional consequences of mutations is similarly highly context
specific. In this study, we investigate the contributions of both
mutation and selection in shaping the pattern of cancer-
associated ‘driver’ mutations across cancer types.

Environmental mutagens have long been associated with can-
cer risk1–3, but links between mutagens and the generation of
specific pathological mutations have remained obscure. A land-
mark study by Alexandrov et al.4,5 identified distinct “mutational
signatures”, each the outcome of distinct mutagenic processes,
many of which are attributable to environmental mutagens. Each
signature consists of the frequency of mutations in 96 “channels”
of somatic single-nucleotide substitution variants (SNVs) in the
contexts of the two flanking bases. The study described 21 dif-
ferent mutational signatures, each characterised by different
proportions of the 96 types. Subsequently > 30 signatures, many
with tumour type-specificity, have been reported6–11.

The likelihood of acquisition of specific cancer-causing muta-
tions12, hereafter referred to as ‘driver mutations’, is dependent
on the underlying mutational processes, as the probability of a
mutation in a particular channel differs between processes. For
example, a previous report has highlighted links between
APOBEC-induced mutagenesis and specific driver PIK3CA
mutations across cancer types13. Here, we provide a compre-
hensive statistical assessment of the relationship between relative
mutational process activity and driver mutation acquisition
across cancer types.

The strength of selection experienced by a mutation is also
expected to influence the frequency at which the mutation is
detected in the patient population. If two mutations are equally

likely to occur, we reason that the more strongly selected muta-
tion will be found more frequently. Traditionally, it has been
convenient to classify mutations found in cancer as drivers or
passengers14, but it is likely that the effects of driver mutations
actually lie on a continuum, including both ‘mini-drivers’ and
major drivers15,16. However, the relative selective advantages of
individual driver mutations have not yet been quantified. Here,
we present evidence for differential selection between frequently
mutated amino acids within a driver gene by controlling for
differences in the sequence-specific mutation rate, in cases where
the mutational signatures alone cannot fully explain the spectra of
mutations in driver genes. We also explore differential selection
between sets of related genes that show patterns of mutational
exclusivity.

Together, our analysis quantifies the contributions of both
mutation and selection in shaping the spectrum of driver muta-
tions across cancer types. Although variable mutation rates
influence driver mutation acquisition, large effects of selection are
discernible.

Results
Links between mutational processes and driver mutations. We
investigated the correlations between mutational process activity
and recurrent driver mutations across cancer types. We reasoned
that when a mutational process acts, it makes specific driver
mutations, caused by a mutation in a specific channel enriched in
the mutational signature of the process, more likely. We therefore
tested for a difference in the levels of relative mutational process
activity between cancers with and without specific driver muta-
tions (Fig. 1a). The use of signature and individual channel
activity information was designed to increase the sensitivity and
specificity of the approach. Where the activity of a mutational
process was significantly higher in cancers with a mutation of
interest compared with those without, we considered it
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Fig. 1 Schematic representation of the approach. a In the first part of the study, the effects of mutational process activity on driver mutation frequencies
were investigated. For a driver mutation, the change was assigned to one of the 96 trinucleotide mutational channels (e.g., CTG > CCG). We hypothesised
that mutational signatures in which that channel was higher than average would be over-represented in cancers with these mutations. We tested this
hypothesis by comparing the levels of signatures in cancers harbouring the mutations to those in cancers that did not harbour the mutations. b In the
second part of the study, we investigated the effects of mutational processes on the relative frequencies of specific pathogenic mutations in cancer driver
genes. The causal channels of the different driver mutations (different amino-acid changes) within a gene were identified on a tumour type by tumour type
basis. We then tested whether observed frequencies of each driver mutation differed significantly from those expected based on mutational process
activity alone, thus indicating differential selection between mutations in the same gene. Using a simple mathematical model, we transformed normalised
measurements of mutation frequency into estimates of relative risk between mutations. This analysis was then extended to comparisons between
mutations in different driver genes with apparently equivalent functional effects in a cancer type
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supporting evidence for a causative relationship between the
mutational process activity and the acquisition of the driver
mutation.

Data were obtained and curated from the TCGA and
International Cancer Genome Consortium (ICGC) data portals
(see Methods). Driver genes were classified according to a recent
study16. The data set for analysis represented 11,336 samples
across 22 major cancer types (listed in Supplementary Table 1).
There were 1447 whole-genome samples and 9889 whole-exome
samples. Analysis using only exonic mutations from the whole-
genome samples revealed similar relationships between muta-
tional processes and driver mutations (see Methods). Down-
stream analysis was based on 14,356,672 SNVs, of which 40,753
were non-synonymous mutations in driver genes. We did not
consider other types of genome alteration (such as copy number
alteration).

We estimated the relative activity (exposure) of each
mutational process in each of the samples, using non-negative
least squares regression (see Methods). Simulated data showed

that tumours with 20 mutations or more provided sufficiently
accurate recovery of mutational processes (see Methods;
Supplementary Figs. 1–3). Consequently, we excluded
1153 samples with fewer than 20 mutations from this analysis,
leaving 10,183 samples for further analysis. To test for potential
signature mis-assignment, we also considered a more stringent
cutoff of 50 mutations, which gave similar results (see
Methods). In each cancer type, we classed as ‘recurrent’ non-
silent DNA mutations in driver genes as those that occurred at
least four times in the cancer type (these recurrent mutations
were considered candidate tissue-specific driver mutations). For
each mutation, we selected the channel among the 96
possibilities that matched the observed mutation (hereinafter,
the ‘causal channel’ of the candidate driver mutation). For this
channel, we identified the signatures where the frequency of the
causal channel was above average, relative to all mutational
processes active in the cancer type. For each of these signatures,
we tested for a correlation between mutational process activity
and presence of the mutation in the cancer type.
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Fig. 2 Selected associations between mutational process exposures and driver mutations within cancer types. Q-values shown are for Mann–Whitney U-
test. a KRAS G12C and signature 4 in lung adenocarcinoma. b PIK3CA E545K and signature 2 in breast cancer c FBXW7 R465C and Signature 15 in stomach
cancer d KRAS G12D and signature 26 in uterine carcinoma e PTEN R130Q and signature 10 in uterine carcinoma f APC R213X and signature 1 in colorectal
cancer. Centre line shows median; box shows inter-quartile range; upper whisker shows the upper quartile plus one and a half times the inter-quartile
range, or the maximum data point (if lower); lower whisker shows the lower quartile minus one a half times the inter-quartile range, or the minimum data
point (if higher)
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We analysed the power to detect an association for each of the
tests. To do this, we simulated the driver mutation profile for the
samples in the cancer type, based on their inferred mutational
process exposures. We then tested for an association in this
simulated data. Power was reported as the proportion of
simulations where the test returned a significant result. Mean
power to detect associations was estimated at 13% at alpha= 0.05
(min= 0%, max= 96%), and ‘30/1019’ tests had a power above
50% (see Methods). We found that the power was influenced by
the number of times a mutation occurred, as well as the
enrichment of the mutation causal channel in the signature
compared with average in the cancer type (Multiple Regression, P
< 2E-16 both variables).

Mutational processes shape driver mutation landscape. There
were 43 significant correlations between signature activity and
driver mutations (Mann–Whitney U-test, false discovery rate=
0.05; one-sided test), out of 1019 triplets of specific mutations in
individual driver genes, mutational signatures and cancer types
tested. Three of the associations involved signatures linked to
extrinsic mutational processes (i.e., mutagens), 30 involved sig-
natures linked to intrinsic mutational processes and 10 involved
signatures with no known aetiology (Supplementary Data 1 for
the full list of associations).

Of the associations involving signatures linked to extrinsic
mutational processes, signature 4, linked to smoking, was
associated with KRAS G12C (CCA > CAA) in lung adenocarci-
noma (Fig. 2a) and with CTNNB1 D32Y (TCC > TAC) in liver
cancer. Signature 24, linked to aflatoxin, was associated with TP53
R249S (GCC > GAC) mutations in liver cancer.

There were multiple associations involving signatures linked to
intrinsic mutational processes. APOBEC activity (Signatures 2 and
13) had 11 associations. Remarkably, PIK3CA E542K (TCA > TTA)
and E545K (TCA >TTA) were associated with these signatures
across five cancer types, accounting for 82% (9/11) of all APOBEC
associations (Fig. 2b). In addition, PIK3CA E453K (TCT > TTT)
was associated with an APOBEC signature in breast cancer.

DNA mismatch repair (MMR)-linked signatures (signatures 6,
15, 20 and 26) showed nine positive associations across four
cancer types (stomach, colorectum, uterine carcinoma and glioma
low grade). Of these associations, PIK3CA H1047R (ATG > ACG)
occurred twice. FBXW7 R465C (GCG > GTG), was associated
with MMR signatures in both colorectum and stomach cancer
(Fig. 2c). KRAS G12D (ACC > ATC) and KRAS G13D (GCC >
GTC) were associated with MMR signatures in uterine carcinoma
and stomach cancer, respectively (Fig. 2d). These results suggest
an important role for MMR defects shaping the driver mutation
spectrum of common cancers, and illustrate the likely sequence of
events (early MMR-linked mutational processes relative to driver
mutation acquisition) in some cancers with these defects.

Nine associations with deficiency in DNA-proofreading
(signature 10) were seen in uterine carcinoma and colorectum.
PTEN R130Q (TCG > TTG) was associated with this signature in
both colorectum and uterine carcinoma (Fig. 2e). 2/11 positive
associations involved stop-gain mutations in the APC gene, one
in colorectum and one in uterine carcinoma. Therefore it appears
that POLE defects may cause characteristic driver lesions in these
cancer types.

Six of the associations involved signatures that are known to
correlate with age at diagnosis17. Of particular note, signature 1
was associated with APC R213X (ACG > ATG) in colorectum
(Fig. 2f). This result in particular highlights the important role of
ageing-related processes in cancer development.

Our test for correlation between mutational processes and
driver mutations focussed on processes which exhibit higher

activity of the causal channel. This reduces the overall number of
tests and increases the power to detect putative associations.
However, to probe whether mutational processes and driver
mutation acquisition are correlated in general, we repeated the
analysis above without restricting the tests to signatures where the
frequency of the causal channel was above average in the cancer
type. An enrichment for positive associations between driver
mutations and signatures where the underlying process has a
higher than average activity of the causal channel would be
indicative of a mechanistic relationship. Indeed, we found that 24
out of 37 significant associations had higher than average channel
activity, compared to only 13 cases where the causal channel was
lower than average (P= 5.5E-5; Fisher’s Exact Test; Supplemen-
tary Fig. 4; Supplementary Data 2 for the full list of associations),
supporting the notion that the respective mutational processes are
responsible for the driver mutation. However, as our analysis is
correlative, we cannot entirely rule out the possibility of other
explanations for these associations. Despite this, the results above
support a model whereby mutational processes play an important
role in determining driver mutation spectrum.

We note that there are cases of a common driver mutation in a
cancer, which do not match the dominant signature in that
cancer type. For instance BRAF V600E (GTG > GAG) is not
explained by signature 7, linked to ultraviolet exposure. Neither is
BRAF V600E (GTG > GAG) explained by the dominant MMR-
linked signature 6 in colorectal cancer. Similarly, PTEN R130G
(ACG > AGG) is very common ( > 86% of samples) in uterine
carcinoma but is not explained by signature 6, which is also
dominant in this cancer. These cases point toward a key role for
selection in addition to mutation in determining driver mutation
incidence. In the next section, we turn to explore the role of
selection in greater detail.

Detecting differential selection. Driver mutations are recurrent
in cancer because they experience positive selection. Conse-
quently, the frequency that a particular driver is observed across
cancers is a function both of the mutational likelihood of it
occurring in the first place, and also the selective advantage that
the mutation confers. Accordingly, the selective difference
between the mutations can be inferred by normalising the
observed frequency of the mutations across cancers by their
underlying mutational likelihood (see Methods for mathematical
framework; Fig. 1b for a graphical representation). With this logic
as our foundation, we therefore aimed to quantify the differences
in selective advantage between (typically) mutually exclusive
driver mutations, using the results from the first part of this
manuscript to normalise for mutational likelihood.

To test for differential selection between two related mutations
in a cancer type (e.g., mutation of different residues of the same
driver gene), we calculated the frequency of each mutation and
their relative likelihoods of occurrence, inferred from the
mutational process exposures (as per the analysis above). We
then used the Poisson binomial test to examine the null
hypothesis that the mutation counts were explained solely by
their relative mutational likelihood of occurrence (see Methods).
We explored potential differential selection among the most
common driver mutations ( > 1% of non-synonymous mutations)
in nine genes: KRAS, BRAF, NRAS, IDH1, IDH2, TP53, PIK3CA,
SMAD4 and CTNNB1 (Supplementary Data 3) in individual
cancer types. We conducted pairwise tests among the mutations
from each gene in each cancer type where the common mutations
in the gene occurred at least 10 times.

Differential selection within driver genes. Differential selection
between driver genes was common. In total, 19% (655/3476) of
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pairwise comparisons between mutational likelihood corrected
frequency of mutations of different residues in the same gene in
individual cancer types returned a significant result (Binomial
Test, FDR= 0.05, Supplementary Figs. 5–15). All nine genes
examined had at least one pair of mutations that occurred at
frequencies inconsistent with the underlying mutational like-
lihood (Supplementary Data 4).

Among the most highly significant results, KRAS G12R
appeared more strongly selected than other KRAS mutations,
including KRAS G12C and G13D, in pancreatic cancer (Fig. 3a,
Supplementary Fig. 7), as did BRAF V600E compared with other
BRAF common mutations, including BRAF K601E, in thyroid,
melanoma and colorectal cancer. Also highly significant was
apparent preferential selection for PIK3CA H1047R compared
with multiple PIK3CA mutations, including PIK3CA E545K and
E542K, in breast cancer (Fig. 3b, Supplementary Fig. 9), and for
NRAS Q61K and Q61R above NRAS G12D and G13D in
melanoma. These results suggest that there are strong selective
differences among important driver mutations in the same gene
in these cancer types.

A number of the results are of potential therapeutic interest.
For example, we found evidence that IDH1 R132H is selected
more strongly than IDH1 R132C in low-grade glioma (Fig. 3c,
Supplementary Fig. 14) and glioblastoma. This is of particular
interest given the potential specificity of therapeutic small
molecular inhibitors that target IDH1 and IDH2 mutations18.

KRAS G12C, which was found to be associated with smoking-
associated signature 4 in lung adenocarcinoma (see above), also
appears more strongly selected than other KRAS mutations
(including G12D, G12R and G13D) in this cancer type (Fig. 3d,

Supplementary Fig. 7). Thus, it appears that the high frequency of
this KRAS mutation compared with others in lung adenocarci-
noma is, potentially, owing to both smoking-associated muta-
tional processes and the intrinsic selective advantage of the
mutation.

Interestingly, the relative selective advantages of particular
pathogenic mutations in each gene were broadly consistent across
cancer types. Specifically, there were only 7/118 cases of
differentially selected mutations where a mutation appeared
selected more strongly than another in the same gene in one
cancer type, but less strongly in another cancer type. As our
method controls for differences in mutational process activity
between cancer types, these results provide evidence to support
the hypothesis that the mechanisms that underpin the selective
advantage caused by a specific driver mutation are broadly
uniform across tissue types.

Differential selection between driver genes. We next used the
same methodology to investigate differential selection between
mutations within and between small sets of genes that typically
show mutually exclusive mutation patterns. We considered the
common driver mutations in three sets of functionally related
genes: KRAS, BRAF and NRAS; APC and CTNNB1; and IDH1
and IDH2.

There was evidence of greater selective differences between
genes than between different residues within a gene. 12% (306/
2,541 pairwise comparisons) of tests were significant for
mutations within a gene, whereas 28% (841/2995) were
significant for mutations in different genes (Supplementary
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Figs. 16–20; Supplementary Data 5). Furthermore, for two of the
mutation sets–KRAS, BRAF and NRAS (Supplementary Fig. 21);
and APC and CTNNB1 (Supplementary Fig. 22)—there was
significant heterogeneity across cancer types in terms of the
number of mutations in each gene with evidence of preferential
selection (selection above at least one other mutation in the set)
(Fisher test, q= 2.2 × 10−3, 7.2 × 10−7, respectively), supporting a
model where gene-specific effects on selection vary across cancer
types.

Among KRAS, BRAF and NRAS mutations, only particular
KRAS mutations showed evidence of preferential selection over
mutations in other genes in pancreatic cancer and uterine
carcinoma (Fig. 4a, b), whereas preferential selection across genes

was predominantly in favour of BRAF and NRAS mutations in
melanoma and thyroid cancer (Fig. 4c, d). Illustrating this, BRAF
V600E and NRAS Q61R appeared to be selected more strongly
than KRAS G12D in melanoma and thyroid cancer, but more
weakly than this mutation in pancreatic cancer. Other cancer
types showed a range of patterns of differential selection for these
three genes (Fig. 4e, f, Supplementary Figs. 16–18).

When APC and CTNNB1 mutations were compared, there was
evidence for selection of CTNNB1 mutations over common APC
mutations in each of liver cancer, uterine carcinoma, prostate
cancer and colorectal cancer (Fig. 5a–c Supplementary Fig. 19).
Interestingly however, evidence for selection of APC mutations
above CTNNB1 mutations was found in colorectal cancer only
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Fig. 4 Evidence for differential selection between mutations in KRAS, BRAF and NRAS. Bar plots show modelled relative risk of KRAS, BRAF, and NRAS
mutations (compared with a reference mutation). a Modelled relative risk of KRAS, BRAF and NRAS, mutations compared to KRAS G12R in pancreatic
cancer. b As above, with comparison to KRAS G12V mutations in uterine carcinoma. c As above, with comparison to BRAF V600E mutations in thyroid
cancer. d As above, with comparison to BRAF V600E mutations in melanoma. e As above, with comparison to BRAF V600E in colorectum. f As above, with
comparison to KRAS G12C in lung adenocarcinoma. Confidence intervals obtained by bootstrapping across 100 iterations. Error bars represent 95%
confidence intervals obtained by bootstrapping across 100 iterations. N indicates total number of samples used for the analysis within each cancer type
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(Fig. 5c). We note that this mutation, APC Q1378X, falls
within the functionally defined mutation cluster region of the
gene19.

Among IDH1 and IDH2 mutations, we found preferential
selection for IDH1 R132H (glioma low grade, AML and
glioblastoma), IDH1 R132C (glioma low grade, AML, liver cancer
and melanoma), IDH1 R132G and IDH1 R132S (glioma low
grade) above common IDH2 mutations, as well as preferential
selection for IDH2 R172K above IDH1 R132C in glioma low grade
(Supplementary Fig. 20).

Taken together these results inform our understanding of the
selective landscape experienced by driver genes, and its similarities
and differences between cancer types. Across the cancer types and
mutation sets considered there was a positive correlation (correla-
tion coefficient > 0) between mutation frequency and mutation
probability in 58/76 cases (Supplementary Figs. 23–38). Among
these cases on average 20% (mean R2) of variation in frequency
between related mutations within the cancer type is explained by
variation in mutation probabilities. This suggests an important role
for selective differences in explaining this variation. These results
suggest that both intra-gene and inter-gene effects contribute to
differential selection, with inter-gene but not intra-gene effects
varying across cancer types.

Discussion
Here, we have demonstrated correlations between mutational
processes and key driver mutations across cancer types, and
highlighted the possibility that these correlations may actually be
the result of the mutational process causing specific driver
mutations. Moreover, by normalising for mutational likelihood
we have quantified relative selective differences between related
key driver mutations across cancer types, which sheds light on the
selective landscape constraining cancer evolution.

Many of the associations between mutational processes and
driver mutations presented here are novel to the best of our
knowledge, and warrant further molecular investigation to
explore causality. Our analysis suggests that an ageing-associated
process (signature 1) may cause initiating events in colorectal
cancer because of the implied role of the process in causing APC
R213X ‘gatekeeping’ mutation in colorectal cancer16,19—sug-
gesting a sometimes critical role of ‘bad luck’ in this cancer type20.

Previous work by McGranahan et al.13 examined the rela-
tionship between APOBEC-associated mutational processes
(signatures 2 and 13) and driver mutations and found that clonal
non-synonymous mutations in driver genes occur in an APOBEC
context in bladder cancer. They also described subclonal muta-
tions in driver genes in an APOBEC context in bladder, breast,
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Fig. 5 Evidence for differential selection between mutations in APC and CTNNB1. a liver cancer, b uterine carcinoma and c colorectum. Confidence intervals
obtained by bootstrapping across 100 iterations. Error bars represent 95% confidence intervals obtained by bootstrapping across 100 iterations. N
indicates total number of samples used for the analysis within each cancer type
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head and neck, and lung cancers (cervical cancer was not con-
sidered). Supporting their findings, we detected associations with
APOBEC in bladder cancer and breast cancer, and to a lesser
extent in head and neck, lung squamous and cervical cancer.
Notably, we report novel associations between APOBEC activity
and ERBB2 S310F mutations in bladder cancer. Our findings
support the impression of a pervasive effect of APOBEC activity
on driver mutation spectra in human cancers. Some associations
we describe have been reported previously, notably the associa-
tion between pack years of smoking and the KRAS G12C muta-
tion in lung adenocarcinoma where the connection between the
causal channel of this mutation (C > A in a CCA context) and the
general tendency for tobacco carcinogens to cause transversions is
well known21,22.

Remarkably, 14/43 associations between mutational signatures
and driver mutations involved PIK3CA mutations, and most of
these associations involved signatures linked to APOBEC, which
tends to occur later in carcinogenesis13. Thus, late arising
APOBEC-linked mutational processes can still have important
influences on the driver mutation spectrum. Recent results
showing that PIK3CA mutations are often subclonal13 support
this interpretation.

Through normalising for mutational likelihood, we have also
been able to quantify the relative contribution of clonal selection,
over and above mutational likelihood, in determining driver
mutation spectra across cancers. We found evidence for wide-
spread differences in selective effects between mutations in the
same gene and related genes, and moreover, that these differences
appear to vary across cancer types. These results confirm that not
all driver mutations have the same selective effects, and instead
exist on a spectrum of selective potency. Both mutational like-
lihood and selective difference strongly contribute to the occur-
rence of specific driver mutations in cancers.

Previous methods have taken into account the variability of
mutation rates between mutation types to infer selection23–25.
Through the use of the dN/dS measure (the ratio of non-
synonymous mutations to synonymous mutations within a gene)
two of these studies have gone some way to quantifying the effects
of selection experience by individual genes24,25, beyond a binary
distinction between driver genes and passenger genes. However, all
these studies quantify selection at the level of genes, rather than the
level of individual mutations. To the best of our knowledge, this
study is the first to take into account the variation in background
mutation rates to quantify selection experienced by individual
nucleotide driver mutations in a pan-cancer analysis.

The exact mechanistic cause of the selective differences we have
identified will be an important area for future work. The differ-
ences we identified could reflect variation in the potential of the
mutations in question to initiate disease, or alternately variation
in the growth advantages conferred by these cells in established
tumours. Interestingly, if there are differences in on-going growth
advantages, then our data suggest that the forces of selection
acting in tumours are often insufficient (or have insufficient
temporal opportunity26) to displace sub-optimal mutations, as
less highly selected mutations remain detectable. For a limited
number of driver genes, there is evidence to suggest that specific
mutations correlate with disease outcomes27,28. Further work is
needed to clarify to whether and to what extent the selective
differences indicated here have prognostic and therapeutic
implications.

In lung cancer, the KRAS G12C mutation provides a striking
example of the potential for ‘alignment’ of mutation and selec-
tion: the likelihood of the KRAS G12C mutation is increased by
smoking, but in addition it is also selectively advantageous above
other common KRAS mutations in the disease. The same is also
true for PIK3CA H1047R mutations in stomach cancer, wherein

MMR-associated processes increase the likelihood of the driver
mutation, which is then subsequently strongly selected.

In this study, we have analysed the influence of mutation and
selection on single-nucleotide alteration frequencies. In theory a
similar analysis could be carried out for copy number alterations
or methylation changes. At present, the limited knowledge of
pan-cancer mutational signatures involving these types of change
make this challenging. However, the expected publication of
greater numbers of whole-genome sequencing and methylation
studies could make this possible in the near future.

There are caveats to this analysis. First, we have used data from
a number of sources, which may vary in terms of quality, depth of
coverage and the pipeline used to call mutations. Second, we have
relied on the assignment of signatures to individual samples and
we note that some samples have relatively few mutations, making
this assignment less accurate. Relatedly, in some cancer types,
there are other active signatures that were not considered in this
study. Where other signatures are present, the regression method
used here can only approximate the signature contributions.
Third, some mutational signatures are similar to each other in
composition, making it difficult to determine whether mutations
are generated by one or more independent processes. We rely on
assumptions of uniformity of a mutational process across the
genomic loci considered, and over time. The combined con-
sequences of these caveats could lead to false positives or false
negatives in the associations between mutational signatures and
driver mutations and the inference of differential selection. We
note that based on data from MutSigCV23, genes similar to KRAS,
BRAF, and NRAS, in replication timing and expression have
similar background mutation rates, as do genes similar to APC
and CTNNB1. The background mutation rates of genes similar to
IDH1 and IDH2 show a greater difference, but one that is still
smaller than selective differences inferred between these genes.
Finally, causal links between driver mutations and mutational
processes are one explanation for the associations presented here,
but other explanations cannot be ruled out from these data alone.

In summary, our framework quantifies the combined influence
of both mutation and selection on shaping a cancer’s driver
mutation complement—and importantly emphasises that neither
evolutionary force alone provides a sufficient explanation of the
observed mutation distribution. In colon cancer, for example,
BRAF mutations (that are relatively uncommon) are mutationally
unlikely, but are strongly selected. By contrast, KRAS drivers (that
are more common), are mutationally much more likely, but are
less highly selected. Our data also offer an explanation for the
high frequency of driver APC mutations and relative paucity of
driver CTNNB1 mutations in the colon: APC mutations can be
both more strongly selected and more mutationally likely than
CTNNB1 mutations.

Overall, our results begin to quantitatively delineate the distinct
contributions of mutation and selection in shaping the spectra of
driver mutations in the cancer genome.

Methods
Sample-specific mutation collection. Only mutations on canonical nuclear
chromosomes were considered. For ICGC data, mutations labelled as ‘single-base
substitution’ in the simple somatic mutation files were considered for further
analysis. For TCGA data, only mutations labelled as ‘SNP’ in the mutation
annotation files were considered.

From these lists, non-synonymous mutations in driver genes were extracted.
Driver genes definitions were as is stated below. After filtering for drivers, these
mutations were re-annotated using Annovar29. We included mutations labelled as
‘non-synonymous SNV’, ‘stopgain’ or ‘stoploss’ in a driver gene in the annotation
by Annovar.

Definition of driver genes. Driver genes were defined using a recent study by
Vogelstein et al16. The list of genes is given in Supplementary Data 6.
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Signature exposures for each sample in each cancer type. The 96-channel
context of each SNV was imputed using the R package ‘SomaticSignatures’30, and
the total number of SNVs in each of the 96 channels was calculated for each
sample. Non-synonymous mutations in driver genes were excluded. Mutational
signatures were obtained from the Wellcome Trust Sanger Institute (http://cancer.
sanger.ac.uk/cosmic/signatures) in April 2016. Information on the presence/
absence of these signatures in individual cancer types was obtained from the same
source. For whole-exome data, signatures were re-scaled to the trinucleotide fre-
quencies of the exome. Non-negative least squares regression, implemented in the
R package ‘nnls’31, was used to assign a process activity for each signature reported
as being present in the applicable cancer type. Signature activities were normalised
for each sample to calculate the signature exposures. We note that analyses based
on absolute signature activity gave broadly consistent results.

Required mutations for signature assignment. By treating each of the 30 sig-
natures as a multinomial probability distribution, we simulated data sets from each
signature with n total informative mutations (1 < n < 96). For each signature, for
each value of n, we applied non-negative least squares regression to the simulated
data to assign weights to the true generating signature and a set of 14 randomly
chosen other signatures. We classified the regression as successful when over 50%
of the regression weights were assigned to the true signature. We chose to use 15
possible generating signatures as this was above the maximum number of sig-
natures identified in any individual cancer type. For each signature, for each
number n of informative mutations, we calculated the proportion of simulated data
sets where the regression was successful. We found that 20 mutations gave an
average classification accuracy of 80% across signatures. As a result, we chose to use
a cutoff of 20 mutations to strike a balance between including as many tumour
samples as possible while still maintaining reasonable accuracy of signature
assignment. We repeated the analysis of associations between driver mutations and
mutational signatures using a cutoff of 50 mutations per sample for comparison.
This analysis recovered 41 associations, of which 37 were also found using the 20
mutation cutoff.

Power calculations. We sought to test the power to detect an association between
mutation M and the signature A in cancer type C, where M occurred m times in C.
We considered a simple model of cancer initiation, where M is one of a set of
mutations R of size |R|= n, one of which is required for cancer initiation. For these
purposes we assumed n= 10.

For each random iteration of the power model we randomly selected causal
channels out of 96 possibilities of the nine other mutations in R. We identified the
signature exposures of each sample in C. By treating the signatures as multinomial
probability distributions, we then calculated the per sample probabilities that
mutation M occurred rather than any of the nine mutations in each sample. Based
on these probabilities we randomly selected m samples to bear the mutation M. We
then applied the Mann–Whitney U-test described above.

The power was calculated as the proportion of iterations where the p-value in
the test was less than the quoted value of alpha.

Out of 1019 triplets tested where a signature represented a fold increase in the
causal channel of a recurrent driver mutation in a cancer type, relatively few
significant associations (43) were found. The low number of associations can be
partly explained by the low average power. Even if associations were genuinely
present in every case, the expected number of significant tests was 130 based on the
estimated power. Part of the reason for this is the technical challenges inherent in
deconvolving mutational signature intensities. Timing mismatches between the
activity of a mutational signature and the window of selection for a driver mutation
probably also contribute to the low numbers of associations.

Mathematical framework. Following Tomassetti32, we make the simplifying
assumption that a mutation Mi occurs at a constant low rate ui per year, ui << 1.
Suppose that after the occurrence of the mutation sequence R= <M1,M2,…,Mn >
cancer occurs with constant rate λ << 1. Then by well-known results32,33 the
probability of cancer incidence at time t is given by:

IðtÞ ¼ u1u2 ¼ unλt
nð Þ

n!

Extending this framework to take into account cancer causation by multiple
sequences of mutations Sj= <M1(j),…,Mn(j) > , with rate λj. Cancer incidence at
time t is given by

I tð Þ ¼
P

j u1ðjÞ¼ unðjÞλjtn
� �

n!

The above closely follows32.
Definition—Mutations M1 and M2 are similar with relative risk r1,2 if they

satisfy the following property: a mutation sequence Sj containing M2 causes cancer
with rate λj, just if the mutation sequence Sk, that results from substituting M1 for
M2 in Sj, causes cancer with rate r1,2λj.

We note that by this definition all mutations are similar to themselves with
relative risk 1.

Now consider two mutations M1 and M2, that are similar with relative risk r1,2.
Then the probability that M1 occurs in a cancer sample, given that either M1 or M2

occurs is given by:

P M1jM1 ∪ M2ð Þ ¼ u1r1;2

u1r1;2 þ u2
� �

Test for differential selection between mutations. Given two mutations M1 and
M2 in a cancer type C, we identified the samples in which exactly one of the two
mutations occurred, and no other mutation in the set of mutations under con-
sideration for differential selection occurred. For each such sample Si, we calculated
pi1 and pi2, the probability of the causal channels of M1 and M2, respectively,
occurring among the 96 mutation types, based on mutational signature exposures
for the sample.

We used a Poisson binomial test to test whether the frequencies, m1 and m2, of
M1 and M2 were consistent with their relative probabilities of occurrence across the
samples. Specifically, we modelled m1 with the random variable X, where:

X � Poibin ðqÞ

qi ¼
pi1

pi1 þ pi2ð Þ

We then used a two-tailed test to test whether the observed data differed from the
predicted distribution.

Modelled relative risk. Given two mutations M1 and M2, with probabilities of
occurrence pi1 and pi2 in sample Si, we model the probability qi, that M1 is present
given that either M1 or M2 is present by the following formula:

qi ¼
r1;2 � pi1

� �

r1;2 � pi1 þ pi2
� �

where the parameter r1,2 is the relative risk of mutation M1 compared with
mutation M2.

Defining I1 and I2 as the sets of sample numbers where M1 and M2 occurred,
respectively, then the likelihood of the data, L, is given by:

L ¼
Y

i2I1ð Þ
qi �

Y

i2I2ð Þ
1� qið Þ

We used numerical methods to find the maximum likelihood estimate of r1,2 for
each pair of mutations in each tumour type, based on this formula. Bootstrapping
with 100 iterations was used to find approximate confidence intervals around these
estimates.

Comparison of genomic and exonic mutation distributions. Our study used a
combination of whole-genome sequencing (WGS) and whole-exome sequencing
(WXS) data. The 1441 whole WGS samples were distributed predominantly across
8/22 cancer types. In total, five associations between mutational signatures and
driver mutations were identified across these eight cancer types. All five of these
associations were in Liver cancer, where 27% of samples (305/1110) were WGS
samples.

To assess the effect of using both whole-genome and whole-exome samples on
our analysis, we analysed the effect on our results of replacing the WGS data with
only the exonic subset of mutations. We recovered 41/43 associations between
driver mutations and mutational signatures and found no new associations,
suggesting that using WGS data in addition to WXS has a limited effect on the
analysis.

Variation explained by mutation probability. For each mutation, the probability
of the mutation in each sample of a cancer type was calculated based on sample-
specific mutational signature exposures. The mean probability across samples was
found, as well as the number of times the mutation occurred. Linear regression was
carried out to find the proportion of variance in mutation frequencies across
different mutations explained by variation in their probabilities.

Data availability. Mutation data (SNVs) were downloaded from the ICGC and
TCGA data portals in May 2016 (https://dcc.icgc.org/; https://tcga-data.nci.nih.
gov/docs/publications/tcga/). We excluded data sets aligned to a reference genome
other than hg19, and those with non-conforming formatting. Computer code is
available on request.
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