North American Tunneling

2010 Proceedings

Edited by Lawrence R. Eckert, Matthew E. Fowler Michael F. Smithson, Jr., Bradford F. Townsend

Published by:

Contents

Preface ix
TRACK 1: TECHNOLOGY
Session 1: Applied Technologies
Deep Inclined Water Intake Shafts
Construction of the Railway Bosphorus Tube Crossing, Tunnels, and Stations
Ground Freezing Challenges for Horizontal Connection Between Shafts Under Difficult Geologic and Hydrostatic Conditions
Final Lining at Devil's Slide Tunnel
The History of Tunneling in Portland: Rail, Highways, and the Environment
San Vicente Pipeline Tunnel: A Sophisticated Ventilation System
Session 2: Innovation
Onsite, First Time Assembly of TBMs: Merging 3D Digital Modeling, Quality Control, and Logistical Planning
Large Diameter Segmentally Lined Shafts
Large Diameter TBM Development
ADECO as an Alternative to NATM: 22 m Wide, 14 m High, Full Face Tunnel Excavation in Clays
Cutter Instrumentation System for Tunnel Boring Machines
Towards Precise Under Ground Mapping System in Canada
Session 3: Pressurized Face Tunneling
Lake Mead Intake No 3 Tunnel: Geotechnical Aspects of TBM Operation
Continuous Conveyor Design in EPB TBM Applications
International Practices for Connecting One Pass Precast Segmental Tunnel Linings
Geotechnical and Design Challenges for TBM Selection on the ICE Tunnel

Soft Ground Tunneling on a Mexico City Wastewater Project	3
Small Diameter Tunneling: Ems-Dollard Crossing	4
Session 4: Sustainability17	1
Sustainable Tunnel Linings: Asset Protection That Will Not Cost the Earth	3
Design for Sustainable and Economical Tunnels	3
Sacramento UNWI Sections 1 and 2 Project: Special Tunnel Construction with Plastic-Lined PCC Segments	1
Sustainable Underground Structure Design	0
Use of Underground Space in a Pristine Watershed: Chester Morse Lake Pump Plant and Intake, North Bend, WA	6
Session 5: Tunnel Lining and Remediation	3
High-Pressure Concrete Plug Leakage Remediation	5
Structural Inspections of Colorado's Eisenhower Johnson Memorial Tunnel, Hanging Lake Tunnel, and Reverse Curve Tunnel	4
Corrosion Protected Systems for Tunnels and Underground Structures	3
Lined Concrete Segments: An Alternative Construction Method for a Large Diameter	_
Sewer Tunnel	2
Portal Slope Stability and Tunnel Leakage Remediation	9
Inspection and Rehabilitation of Heroes Highway Tunnel in Connecticut	7
TRACK 2: DESIGN	
Session 1: Design Validation by Instrumentation, Monitoring, and Mapping26	7
Instrumentation of Freight Tunnel in Chicago	
Field Mapping and Photo Documentation of the Southern Nevada Water Authority's Lake Mead Intake No. 3 Project, Saddle Island, Lake Mead, Nevada	3
Tunnel-Induced Surface Settlement on the Brightwater Conveyance East Contract	8
Strategic Tunnel Enhancement Programme, Abu Dhabi, UAE: An Overview of Geology and Anticipated Geotechnical Conditions Along the Deep Sewer Tunnel Alignment	4

Geotechnical Variability and Uncertainty in Long Tunnels
Session 2: Challenging Conditions and Site Constraints323
New Irvington Tunnel Design Challenges
The Sunnydale CSO Tunnel: Dealing with Urban Infrastructure
New York Harbor Siphon Project
Rehabilitation of Rail Tunnels with Widening the Cross-Section While Maintaining the Regular Rail Traffic
Development of Seismic Design Criteria for the Coronado Highway Tunnel
Session 3: Managing Risk, Safety, and Security Through Design
Performance-Based Design Using Tunnel Fire Suppression
First Comprehensive Tunnel Design Manual in the United States
Geotechnical Investigations for the Anacostia River Projects
Session 4: Strength, Stresses, and Stability Assessment Selection
Lining Design Issues Associated with the Storage of Cryogenic Fluids in Rock Caverns
Design Guidelines for Sequential Excavations Method (SEM) Practices for Road Tunnels in the United States
Continuum and Discontinuum Modeling of Second Avenue Subway Caverns
Shaft, Cavern, and Starter Tunnel Construction for Lake Mead Intake No. 3: Temporary Support and Permanent Lining Solutions
Methodology for Structural Analysis of Large-Span Caverns in Rock
Session 5: Design Optimization and Alignment Selection
Factors Influencing Tunnel Design in Mass Transit Applications
Transbay Transit Center Program Downtown Rail Extension Project
A Tale of Two Capitals: Modeling Helps Designers Manage Strong Surge and Pneumatic Forces in Deep Combined Sewer Storage Tunnels
McCook Reservoir Main Tunnel Connection Marks Another Significant Milestone in Chicago's TARP
Faruk Oksuz, Megan Puncke, Jeffrey Rair, Paul Headland

Integration of Operations and Underground Construction: Sound Transit University Link
TRACK 3: PLANNING
Session 1: Project Cost Estimating/Finance
Size Matters If You're a Tunnel
Setting the Owner's Budget: A Guideline
Show Me the Money: The Real Savings in Tunnel Contract Payment Provisions
Planning Level Tunnel Cost Estimation
Session 2: Project Delivery
Lake Mead Intake No. 3, Las Vegas, NV: A Transparent Risk Management Approach Adopted by the Owner and the Design-Build Contractor and Accepted by the Insurer
Tunneling MegaProjects: They Are Different
Alternative Contracting and Delivery Methods
Design of the Waller Creek Tunnel, Austin, Texas
Tunneling as a PPP-Project: Risks from the Viewpoint of the Insurer on a Case Study of a Tunnel Collapse
Christian Wawrzyniak, Winfried Luig, Achim Dohmen
DCWASA's Project Delivery Approach for the Washington DC CSO Program
How to Deliver Your Project On Time: An Owners Procurement Strategy
Session 3: Project Planning and Implementation I
Sustainability Drives Jollyville Transmission Main Tunnel Design
Sustainable Underground Solutions for an Above Ground Problem
Large Diameter TBM Solution for Subway Systems
Digging Deep to Save Green While Being Green and Sustainable
Design and Construction Considerations for Shafts at Grand Central Terminal for the MTACC's East Side Access Project
The Urban Ring Project: Planning a New Bus Rapid Transit Tunnel for Boston

Session 4: Project Risk, Buaget, and Schedule	33
Blast and Post Blast Behavior of Tunnels	55
Decision-Making Case History for Municipal Infrastructure Improvements	54
Risk Management to Make Informed, Contingency-Based CIP Decisions	76
Linear Schedules for Tunnel Projects	33
Building Mined Underground Stations in Soft Ground with NATM Construction Practices) 5
Cost and Schedule Contingency for Large Underground Projects: What the Owner Needs to Know 71 Christopher Laughton	10
Management of Cost and Risk to Meet Budget and Schedule	18
Overhead and Uncertainty in Cost Estimates: A Guide to Their Review	25
Session 5: Project Planning and Implementation II	31
Sedimentary Rock Tunnel for CSO Storage and Conveyance in Cincinnati, Ohio	33
Tunneling to Preserve Tollgate Creek	40
Tunneling Under Downtown Los Angeles	50
Selecting an Alignment for the Blacklick Creek Sanitary Interceptor Sewer Tunnel— Columbus, Ohio	58
TRACK 4: CASE HISTORIES	
Session 1: Small Diameter7	69
Microtunneling Challenges: Crossing Under Major Railroad and Highways in Very Soft Glacial Soils—The Evolution of a Ground Treatment Assessment Process	71
Marysville Trunk Interceptor Project: A Case History	88
Case History: Innovative CSO Pipe Installation in a Congested Urban Setting	96
Pipe Jacking Through Hardpan: A Case History—North Gratiot Interceptor Drain Phase I 8 Joseph B. Alberts, Jason R. Edberg, Keith Graboske, Gordon Wilson, Steven Mancini	04
Construction Challenges for Small Diameter Soft Ground Tunnels	13
Session 2: NATM/SEM	23
Past and Present Soft Ground NATM for Tunnel and Shaft Construction for the Washington, D.C. Metro	325

The Lincoln Square Tunnel: Tunneling Between Two Parking Garages Using Sequential Excavation Mining
Case History: Complex Design and Construction of Tunnel and SOE to Accommodate Challenging Site Conditions
Session 3: Challenging Conditions
Tunneling on Brightwater West855 Glen Frank, Mina M. Shinouda, Greg Hauser
New York City Transit No. 7 Subway Extension Underpinning and Construction Under the 8th Ave. Subway
Consolidation Grouting of the Riverbank Filtration Tunnel
Gotthard Base Tunnel: Micro Tremors and Rock Bursts Encountered During Construction
Optimization in Blasting Production and Vibration Mitigation for Shaft and Tunnel
Construction at Lake Mead
Session 4: Conventional Tunneling895
A Conventionally Tunneled River Undercrossing897 Adrian A.J. Holmes, Sangyoon Min, Klaus G. Winkler, Jim Brunkhorst
Tunneling Ground Reinforcement by TAM Grouting: A Case History
The Construction of the Tunnels and Shafts for the Project XFEL (X-Ray Free Electron Laser) 916 Paul Erdmann
Canadian Fast-Track Drill and Blast: Excavating the Rupert Transfer Tunnel at James Bay, Québec, Canada
Re-Design of Water Tunnels for Croton Water Treatment Plant, New York City
Keys to Success in Managing a Complicated Tunnel Project: City of Columbus— Big Walnut Sanitary Trunk Sewer Extension
Drop Structures and Diversion Structures for the East Side Combined Sewer Overflow Project, Portland, Oregon
Special Session: Operational Criteria and Functionality for Highway Tunnels
National Tunnel Inspection Standards (NTIS)
U.S. Domestic Scan Program—Best Practices for Roadway Tunnel Design, Construction, Operation, and Maintenance