
CHAPTER 1

ω: with a whimper: messy fields

A common “end” of a field is for it to degenerate into details; I
believe that this is the usual way fields and subfields of science end.
You might call it the “heat death” of a field.

In the below, I outline a theoretical framework (Algorithmic In-
formation Theory), and illustrate with examples.

I see science as the study of concrete patterns (and mathemat-
ics as the study of abstract patterns); one often calls these patterns
“theories”. Within a particular field, you can catalog observations
or facts, and find patterns (in the data) and meta-patterns: meta-
patterns are patterns not in the data but in the theory.

My suggestion is that in a given field, the natural development is
to discover the most elegant patterns (the short theorems and short
proofs that say a lot), then get progressively more specialized, even-
tually descending into tedium.

Note that this is ahistorical: you may only discover the elegant
theorems after understanding many inelegant cases, but ultimately
you do exhaust the elegant patterns, and even the not-so-elegant pat-
terns, and eventually all that’s left is a pile of data.

This “end” is distinct from “computing more decimal places”: I
don’t mean more carefully measuring known phenomena (refining
the statements of existing theories), but the kinds of new phenomena
that you see.

(To explain the punny title: ω for a “small end”. The “whimper”
references T. S. Eliot.)

1. Algorithmic Information Theory

This essay owes a profound debt to Chaitin’s work; see my essay
“Chaitin’s nightmare” for a more formal discussion.

Algorithmic complexity formalizes the notion of “simple pattern”;
it quantifies Occam’s Razor, and formalizes an insight of Leibniz’s.

In a nutshell, algorithmic complexity says that the complexity of
a pattern is the complexity of its shortest description. Formally, the
complexity of a (finite or infinite) string is the length of the shortest

1

2 1. ω: WITH A WHIMPER: MESSY FIELDS

program that generates that string (there are technicalities that I’m
ignoring, clearly). Thus the binary string 111 . . . that’s always 1 has
a very short description (namely “print 1 forever”), while a random
string is (by definition) one that is its own shortest description (or
more formally, the shortest program that generates it is “print (the
string itself)”).

As a concrete example, I would define the computational com-
plexity of a game (like Tic-Tac-Toe) as the length of the shortest pro-
gram that has “perfect play”.

How well AIT describes science is unclear (scientific theories are
not formal systems), but this is at least suggestive.

A key insight is Leibniz’s, in section VI of his “Discours de mta-
physique” (Discourse on Metaphysics), quoted by Chaitin: a theory
must be simpler than the data it explains. A meta-mathematical con-
sequence, drawn by Chaitin, is that you eventually run out of elegant
results: there are more short truths than short proofs.

This formalizes what one means by “all the interesting problems
are solved”: eventually proofs become long enough that they don’t
explain any more than a simple enumeration of cases.

Chaitin is most interested in consequences of unknowablity, which
has deep epistemoloical consequences. I’m more interested in what
this tells us about what we can know: my point is not “there are
some things we cannot know”, but rather “the statements that we
make about a given system are take longer and longer to state and
explain less and less”.

Where does this end? For infinite fields, there is a sharp divide:
there are truths we cannot prove. Further, even the patterns we
can write down (in finite and infinite fields) become progressively
longer, and eventually become either uninteresting in practice or un-
computable in practice (sure, you could write it down, but it would
take two million years, even with a supercomputer). This yields a
fuzzy practical limit to knowledge.

In practice, the line between a “very specialized pattern” and
“pure data” is blurred (does your Connect Four program list 20 pos-
sible endgames, or just do brute force solution?).

2. Examples of messy fields

By “messy fields” I mean ones where we can see this limit of
knowledge: where in practice there is some “raw data”, patterns that
cannot be described more simply.

2. EXAMPLES OF MESSY FIELDS 3

2.1. My motivation. How did I become interested in this? I had
been thinking about a few questions, then read Chaitin’s “The Un-
knowable” (available on his website, though I found it in the library).
Connecting these, I figured out the content of this essay.

Two question I had been thinking about:
Skill at games: I was thinking about “how do you become ‘good’

at a game?” (in the context of skill, and of fun; specifically
computer games).

Here I was thinking of “know the strategy” versus “have
a fast trigger finger”, yielding a continuum of games, from
pure thought (math games) to pure skill (reflexes). This isn’t
the same continuum that I’m discussing here (between ele-
gant formal games that have a good answer and messy for-
mal games where you use brute force), but in both cases
computers are far better (at reflexes and brute force) than
humans are.

Antenna design: I heard that this was a hard field, and thought
I might be able to contribute. Instead, I learned something
far more interesting: it was a formal field that you couldn’t
solve.

2.2. Game strategy: Chess and Connect Four. Chess strategy
(as far as I understand it) illustrates this pattern of exhaustion: there
are some general patterns, including a few key openings and clos-
ings, but specialized rules grow increasingly baroque and are no
simpler than exhaustion.

This is clearer with “Connect Four”, which is a far simpler game
than chess, but complex enough to illustrate these principles. It has
been solved by James D. Allen (1988) and indepently, Victor Allis
(1988), and thus we can speak of it definitively. There are 2 basic
strategies: a quick win, as in Tic-Tac-Toe (if you have two possible
wins on your next move, the opponent cannot block them both) and
a slow win (if you will win when your opponent moves in a given
column, and they will eventually move there by running out of other
moves, then you win: don’t move in that column, and avoid obvious
vertical losses). Beyond that, there are a few subtler strategies, and
a few special cases (which can also be resolved by exhaustion): the
point is that the patterns become more specific and less applicable,
and eventually you get a complete answer, with the last details being
essentially an enumeration.

You can even see this in Tic-Tac-Toe! Basic strategy is to move
in the center, or if playing second, move in the corner – and then

4 1. ω: WITH A WHIMPER: MESSY FIELDS

there are a few details on how to play further cases (they are simple
enough that a child can enumerate them, as I in fact did at that age).
Allis illustrates this in his thesis.

Returning to chess, the field has progressed historically: players
identified further patterns (not necessarily “this is the best move in
such cases”, but at least heuristically “this sort of move tends to be
good”), which are referred to as “strategies”. The ultimate domina-
tion of computer chess proves to most players that chess is funda-
mentally not a strategic game, but a tactical one – beyond a certain
point, brute force beats subtler pattern-finding. Humans are far bet-
ter strategists than computers (being pattern-recognizers par excel-
lence), while computers are far better, well, computers. Chess theory
can still develop (new strategies can be developed), but the endgame
is already known: you ultimately just search through solutions.

Now, mathematically, chess is a relatively complicated game (many
kinds of pieces, some special rules), but the same sort of analysis ap-
plies to mathematically simpler games, like Connect Four (as I’ve
shown) and checkers.

2.3. Antenna design. There is apparently no general theory of
antenna design: there are tractible special cases, but in general each
antenna must be designed individually: there is no algorithm or
even many interesting families of “good antennas”.

Even the explanation of why a particular antenna works for a
given application sheds essentially no light on how to design the
next one, and these days people often use evolutionary algorithms
to just “find good answers”.

This is most notable in NASA’s automated antenna design: ge-
netic algorithms can produce better antennas faster (and more cheaply)
than can trained humans, notably for the ST5 project.

This is a priori shocking: design and engineering feel like pro-
found, high-level human activies.

The reason computers outperform humans at this is obviously
because it plays to computers’ strengths: the problem is ultimately
computation, not pattern-finding. The domain is messy: antennas be-
have in very complicated ways, and an understanding of the princi-
pals doesn’t take you far: the best antennae are “lucky”: they work
because enough stars align, and can only be found by trial and error.
Indeed, given a good result from a genetic algorithm, you often can’t
tell why it works, nor do you care.

3. MATHEMATICAL EXAMPLES 5

3. Mathematical Examples

3.1. Computer-assisted proofs: the 4-color theorem, Kepler’s
Conjecture, etc. The 4-color theorem (every planar graph is 4-colorable)
is a notorious example of a computer-assisted proof, as is Kepler’s
Conjecture (now Hales’ theorem). There is a short proof that every
planar graph is 5-colorable, but the only known proof of the 4-color
theorem reduces to a long enumeration of cases. It is possible that
there is no short proof: it just “happens” that none of the counterex-
amples work, but for no good reason.

It would be more pleasing were there “a good reason”: some
general principle that implied the 4-color theorem without a com-
putation, but in general there is no reason to expect a short, elegant
problem to have a short or elegant solution. (This is a key point of
Chaitin’s “empirical facts of mathematics”.)

A very interesting critique of computer-assisted proofs (whose
attribution escapes me) is that the kind of proof that a computer
would like (an enumeration, which it could easily check) is a proof
that a human wouldn’t: this underlines that (human) math is about
understanding and patterns, not simply solving problems.

3.2. Number theory. There are similar possible examples in num-
ber theory: perhaps Goldbach’s conjecture (every even number can
be expressed as the sum of two primes) is true for a good reason
for large numbers, and just happens to be true for small numbers:
there’s no short proof, but you can check every case. I don’t know
of a particular theorem that has such a proof, but I imagine some ex-
ist. One can also imagine theorems that are true for large numbers,
but fail in a few small cases, so they are not generally true; there are
many theorems which are true for any prime other than 2 and 3, for
instance.

3.3. Enumerations. There are a number of enumerations in math,
where we can write down a list of all mathematical structures, but
“this doesn’t tell you much”: there is not much structure in the list:
it is simply an enumeration. Often it is the case that the number of
items grows very quickly (in terms of some size): we cannot even
list all examples, and we can’t say much about them other than to
list them.

For instance, we can enumerate p-groups of a given order, or
even positive definite unimodular lattices of a given dimension.

The number of even lattices in dimension 8k goes: 1, 2, 24, more
than 1, 160, 000, 000, In other words, we understand even lattices

6 1. ω: WITH A WHIMPER: MESSY FIELDS

of dimension 8, 16, 24, but in higher dimensions there is no general
structure (this doesn’t actually follow: it’s possible that there is some
structure (say, they all fall into a single parameter group), but as far
as I know there isn’t).

3.4. Combinatorics. A similar situation occurs in many combi-
natorics questions; an example I know is Golomb rulers (which are
eerily similar to Yagi-Uda antennae: it’s a question of how to space
tick marks on a ruler). The perfect Golomb ruler of order 4 is beau-
tiful, in that slick combinatorics way, and many optimal (or close to
optimal) Golomb rulers can be produced by projective planes and
affine planes, but for some orders the best rulers have only been
found by computer search and don’t appear to have any general
structure.

3.5. Analysis. I am told that in some areas of analysis, people no
longer write papers – they write monographs. Leaving aside possi-
ble hyperbole, I find this a believable statement: analysis is a mature
field, well-studied for centuries, and one would expect most of the
“short papers” to have already been discovered. This is not to say
that analysis is a dying field, simply a mature one. Now, if each
statement of a theorem took a book, then you’d have trouble.

3.6. Moduli spaces. For many classification problems in alge-
braic geometry, you may have a moduli space with good properties,
but the moduli space itself cannot be written down very nicely. For
instance for curves, if genus g ≥ 22, the moduli space of curves is of
general type.

Similarly, in the classification of algebraic surfaces, little is known
about the moduli spaces, and I’d suspect that they are even harder
to describe in general than for curves.

A deep example is the moduli spaces of Riemannian metrics on a
manifold, which has a large-scale fractal nature, very related to com-
putational complexity (as Nabutovsky and Weinberger (my advisor)
proved).

3.7. Genericity. A related point is familiar from analysis and com-
binatorics, where a randomly chosen representative may have some
property, but it is hard to write down an explicit example: a generic
continuous function is nowhere differentiable, but it wasn’t until
Weierstrass that anyone wrote one down, or even suspected that
they existing. Similarly, for expander graphs, a random regular graph
has good expansion, but writing down explicit ones is rather diffi-
cult.

4. CONSEQUENCES 7

4. Consequences

The above discussion, being about limitations, may strike you as
dreary. It’s not, of course: it is an illustration of a common structure
of fields of science, namely that elegant patterns take you part of the
way, and beyond that you just have data, which you can explore and
enumerate, but not reduce to general patterns.

The key point is: a simple formal system may have some inter-
esting patterns, but not everything about it need have a simple de-
scription: eventually you just list facts.

As the ad for Othello goes, “a minute to learn, a lifetime to mas-
ter” (simple rules, complex solution; this is a computer game par
excellence: in 1980 a computer beat the human world champion).

This is familiar in much of the natural world, notably biology and
linguistics (and, further afield, history): there are patterns in biology,
but there’s also simply data (all the genes in an organism, the whole
tree of life, enumeration of species, etc.); likewise there are patterns
in language but also simply words. In these fields general patterns
get you some distance, but not very. You can say “there are some
laws of history, but not enough”.

This also formalizes Rutherford’s saying that “In science there is
only physics; all the rest is stamp collecting.” (This saying also may
advocate reductionism – only studying the smallest parts is useful –
which is completely wrong.): fields are scientifically interesting, in-
deed are science to the extent that they have patterns, elegant results.
A field that is only tedious, inelegant results is uninteresting qua field:
it’s stamp collecting, not science. To the extent that a field has no pat-
terns, it is simply a mass of data: you can know more or less of it,
but there is no sense of “understanding” beyond “knowledge”. Such
fields are better suited to computers than humans.

To close, a consequence is that there isn’t usually a neat closure to
fields of science: you gradually exhaust them of interest, but further
enumeration of more and more specialized patterns and examples
can continue forever – but is best left to a computer.

