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Summary

In this dissertation an original method of predicting the minimum induced drag
conditions in a conventional or innovative lifting systems is presented. The
procedure here shown is based on the lifting line theories and the small perturbation
acceleration potential. Under the hypothesis of linearity and rigid wake aligned
with the freestream, the optimal condition is formulated using the Euler-Lagrange
integral equation under the conditions of fixed total lifting force and wing span.
The Lagrange multiplier method is applied. Particular attention is paid to analyze
and solve the Hadamard finite-part integrals involved in the solution process. The
minimum induced drag problem is then formulated and solved numerically and
analytically when possible. Classical configurations and non-planar lifting systems
are extensively analyzed. In particular, the following configurations are examined:

• Classical cantilever wing and biplane

• Circular annular wing

• Elliptical annular wing

• Elliptical lifting arcs

For each system, the optimal circulation distribution and the minimum induced
drag are calculated. Munk’s theorems are also applied to verify the quality of the
solutions. Also, comparison with the theoretical and experimental reference values
is made.
In order to develop a nonlinear aeroelastic model, a structural nonlinear plate
model is formulated as well. It is based on the Principal of Virtual Displacement
(PVD), and the plate model adopted is the Classical Plate Lamination Theory
(CLPT). The unknown displacements are written as a product between known
functions and unknown coefficients (Ritz’s approach). The boundary conditions and
compatibility of motion between adjacent plate segments are imposed via penalty
function approach. Test results obtained by the present method for a variety of
plate structures show good correlation with published results and results by other
computer codes. A joined wing configuration is analyzed using this procedure as
well.
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Preface

This dissertation should be a self-reading dissertation even for non expert readers.
In this thesis several theoretical problems are analyzed. Therefore, the necessary
basic concepts are introduced in the first chapters, while the ”state of the art” part
is discussed in chapter 4. In order to facilitate the reading, a list of the dissertation’s
chapters and their contents are reported here.

• Chapter 1
The fundamental equations of inviscid fluids are presented. The concepts of
velocity potential, acceleration potential and small perturbation potential are
also introduced. Some elementary solutions of Laplace’s equation are reported
as well.

• Chapter 2
This chapter is mainly concerned with the mathematical issues encountered
in this thesis. In particular, the Gaussian quadrature formulae and the
Hadamard finite-part integrals are analyzed. A quadrature formula for
those hypersingular integrals is presented. A technique to solve the integral
equations and the Euler-Lagrange integral equation (that minimizes the
induced drag) is presented. The Lagrange multiplier method is extended for
these problems. A numerical method to solve the Euler-Lagrange equation is
also presented.

• Chapter 3
The basic ideas of the lifting line theories are introduced in this chapter.
A generic thin airfoil is studied with the velocity potential and acceleration
potential. Prandtl’s lifting line is presented. Weissinger’s approach is reported
as well. Also, the consistency of Weissinger’s approach is demonstrated.
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• Chapter 4
This chapter is mainly concerned with the induced drag and its physical
description and reduction. The ”state of the art” of induced drag and its
calculation/reduction is reported as well in this chapter. In particular, the
different methods of calculating the induced drag are summarized. The
problem of the wake modeling is also presented. Munk’s Stagger Theorem
and Munk’s Minimum Induced Drag Theorem are described in detail. The
non-planar wing systems are extensively studied. The attention is focused
on the circulation distribution in such systems, and the main differences with
the classical wing systems are illustrated. The concept of induced lift is also
covered. Some important properties of the closed systems are described as well.
The wing-grid idea is briefly reported. Finally, an Italian research project (the
Prandtlplane) is discussed.

• Chapter 5
This chapter introduces the procedure developed in this study. In particular,
using the small perturbation acceleration potential, the well known results of
the classical wing under optimal conditions are obtained. The biplane under
optimal conditions is extensively analyzed. It is demonstrated that, under
optimal conditions, the two wings (which have the same wing span) have the
same circulation distribution. In addition, the cases of both infinite distance
and infinitesimal distance between the wings are analyzed. The case with finite
distance is also considered, and it is shown that the optimal distribution is, in
general, not elliptical.

• Chapter 6
The annular wings are studied in detail. A closed form solution is found using
Weissinger’s approach. Using the small perturbation acceleration potential,
the expressions of induced velocity, total lifting force and induced drag for
circular and elliptical annular wings are determined.

• Chapter 7
The elliptical lifting arcs are analyzed using the small perturbation acceleration
potential and Weissinger’s approach. The equations for the lifting force and
induced drag are obtained.

• Chapter 8
A few numerical issues related to the solution of the integral equations are
reported here. In particular, the convergence of the collocation method is
demonstrated. Moreover, five numerical techniques to calculate the induced
drag are presented and discussed together with some results. All tests
are conducted studying an elliptical annular wing subjected to a twist
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corresponding to a rigid rotation of the ellipse along the axis representing
the wing span. Furthermore, a few numerical problems related to the aspect
ratio are discussed.

• Chapter 9
In this chapter, the circular and elliptical annular wings are analyzed under
optimal conditions, and the Euler-Lagrange equation is solved analytically and
numerically. The expressions of the optimal circulation, coefficient of minimum
induced drag and the normalwash are determined. Munk’s Minimum Induced
Drag Theorem is verified in each case examined. It is also shown that the
solution is not unique (general property of the closed wing systems). It is
demonstrated that, in a circular annular wing, the optimal twist corresponds to
a rigid rotation of the wing with respect to the axis representing the wing span.
The elliptical annular wing and the biplane, both under optimal conditions,
are compared. It is demonstrated that, for small aspect ratio, the elliptical
annular wing and the biplane have almost the same efficiency. Additionally,
a comparison with some experimental results obtained by Alenia Aeronautica
(Turin, Italy) is also reported.

• Chapter 10
The Euler-Lagrange equation is presented and numerically solved for the
elliptical lifting arcs. Good correlation with some results available in the
literature is reported. It is proved that a C-wing has almost the same induced
drag as can be found in a closed system. The optimal circulation distribution
along the lifting line is determined and compared with the corresponding closed
system.

• Chapter 11
A plate structural model is described here. The wing is divided into plate
elements (wing segments) and the boundary conditions are imposed via
penalty function. Moderately large displacements are considered in the model.
The unknown displacement field is discretized using Ritz’s approach. The
nonlinear structural code is tested with some results available in the literature
and with the commercial codes NASTRAN and ADINA. A nonlinear analysis
of a joined wing configuration is performed and the results are compared with
the displacements obtained using NASTRAN.
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Part I

Aerodynamic and Mathematical
Tools



Chapter 1

Equations for Ideal Fluids and
Aerodynamic Tools

1.1 Introduction

The fundamental equations of ideal fluids (i.e., inviscid fluids) and some important
concepts are introduced in this chapter. In particular, the derivations of the velocity
potential and acceleration potential are introduced. All derivations reported here are
based on [1], [2] and [3].

1.2 Euler Equations

In this section the Euler equations are recalled.

• Continuity Equation:

∂ρ

∂t
= −∇ · (ρV ) or

1

ρ

Dρ

Dt
= −∇ · V , (1.1)

where ρ is the fluid density, V = Vxi+Vyj+Vzk is the velocity vector, ∂
∂t

is the
Euler derivative and D

Dt
= ∂

∂t
+ Vx

∂
∂x

+ Vy
∂
∂y

+ Vz
∂
∂z

is the Lagrange derivative.

For constant fluid density1:
∇ · V = 0. (1.2)

• Equation of Motion2:

DV

Dt
= −1

ρ
∇p, or

∂V

∂t
+∇

(
V 2

2

)
= −1

ρ
∇p, (1.3)

1This means that ρ = ρ∞ everywhere.
2In aeronautical applications this equation has no other terms. But in some applications, like

meteorology, other contributes have to be included.
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1 – Equations for Ideal Fluids and Aerodynamic Tools

where p is the pressure. If the fluid is incompressible (i.e., ρ = ρ∞ is a
known constant), the continuity and motion equations form one system of
four equations with four unknowns Vx, Vy, Vz and p. If the density is not
constant, two other equations are required. These two equations are reported
below.

• Energy Equation:
De

Dt
= −p

D

Dt

(
1

ρ

)
, (1.4)

where e is the thermal energy for unit mass. e is also proportional to the
temperature T :

e = cvT,

where cv is the specific heat for unit mass and with constant volume.

• Constitutive Equation (for ideal gas)

p

ρ
= R?T (1.5)

where R? is the gas constant. If the fluid is air, R? = 287 J
Kg K

.

1.3 Velocity Potential

In most aeronautical studies it can be assumed that the curl of the velocity is zero3.
Therefore, it is possible to define a scalar function Φ called velocity potential, whose
gradient is equal to the velocity:

V = ∇Φ. (1.6)

From the equation of motion and equation (1.6) the equation of the velocity potential
can be derived as

∇2Φ− 1

c2

[
∂2Φ

∂t2
+

∂

∂t

(
V 2

)
+ V · ∇

(
V 2

2

)]
= 0, (1.7)

where c = c(V ) = c(Φ) is the speed of sound.
If the fluid is incompressible, the equation becomes Laplace’s equation:

∇2Φ = 0. (1.8)

3If the aeronautics bodies are well designed, the vorticity is confined in the boundary layer and
in the wake (very small). Therefore, if curved shock waves are not present, the assumption of zero
curl of the velocity is acceptable.
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It is important to notice that equation (1.7) is nonlinear while equation (1.8) is
linear. Since irrotational, incompressible flow is governed by Laplace’s equation,
which is linear, it can be concluded that a complicated flow pattern for an
irrotational, incompressible flow can be synthesized by superimposing a number of
elementary flows which are also irrotational and incompressible. This technique will
be used in coming chapters.

1.4 Acceleration Potential

The velocity potential Φ has been defined. Similarly, the acceleration potential [4]
can be defined. Using the equation of motion (1.3):

DV

Dt
= −1

ρ
∇p. (1.9)

If the entropy is assumed constant, the relation p
ργ = const4 is valid, and it is possible

to prove the relation

1

ρ
∇p = ∇

(∫ dp

ρ

)
= ∇

(∫ dp

ρ
+ G (t)

)
. (1.10)

The goal is to write the relation (1.9) in the form of

DV

Dt
= ∇Ψ. (1.11)

By combining the relations (1.11), (1.10) and (1.9), the expression of the acceleration
potential Ψ can be found:

Ψ = −
∫ dp

ρ
−G (t) . (1.12)

Here, G (t) is a function of time t and furnishes the value of Ψ at the start of the
integration domain.

1.5 Boundary Conditions

In aeronautics it is common to have an airplane moving in an infinite field. Under
the hypothesis of the viscosity µ = 0 and ρ = const, two requirements have to be
satisfied5:

4 If the fluid is air, γ = cp

cv
= 1.4 .

5If these hypothesis are removed, the requirements are different.
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• Requirement 1
Far away from the body (toward infinity), in all directions, the flow approaches
the uniform freestream conditions. Let V∞ be aligned with the x direction in
a reference coordinate system, at infinity the following relations have to be
satisfied:

Vx = V∞ ,

Vy = Vz = 0.
(1.13)

This condition is the Boundary Condition on Velocity at Infinity (BCVI).

• Requirement 2
If the body has a solid surface then it is impossible for the flow to penetrate
the surface. The relative velocity at the surface can be finite, but, because the
flow cannot penetrate the surface, the relative velocity of the fluid must be
tangent to the surface. This is the Wall Tangency Condition(WTC).

1.6 Thin Wings: Linear Theory

1.6.1 Boundary Conditions

Consider a thin wing, meaning that the wing has small curvature and thin thickness.
Let V∞ be aligned with the x direction. The velocity can be expressed as

V = (V∞ + vx) i + vyj + vzk vx,vy,vz << V∞, (1.14)

where vx, vy and vz are the components of the perturbation velocity. Obviously, this
equation satisfies the BCVI requirement.
The aim is to formulate a theory in order to calculate the lifting force and the
induced drag of a wing system. It is well known from the aerodynamic theory that
the thickness does not produce a lifting force. Therefore, consider the wing as a
surface without thickness. Indicating the equation of wing surface with z = f(x,y),
the vector

n =
∂f

∂x
i +

∂f

∂y
j − ∂f

∂z
k, (1.15)

is perpendicular to the wing surface. In steady conditions, the WTC can be imposed
in the following manner:

V · n = 0 ⇒ (V∞ + vx)
∂f

∂x
+ vy

∂f

∂y
− vz = 0. (1.16)

Suppose that the curvature is very small (small perturbation theory). Under this
condition, the terms vx

∂f
∂x

and vy
∂f
∂y

are negligible and equation (1.16) becomes

V∞
∂f

∂x
− vz = 0 ⇒ vz

V∞
=

∂f

∂x
. (1.17)
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This equation represents the WTC for thin wings.

1.6.2 Small Perturbation Velocity Potential

Under the small perturbation hypothesis, it is possible to introduce the small
perturbation velocity potential φ as

φ = Φ− V∞x. (1.18)

From that equation it is possible to write:

vx = ∂φ
∂x

= Vx − V∞,

vy = ∂φ
∂y

= Vy,

vz = ∂φ
∂z

= Vz.

(1.19)

In this case the Laplace’s equation

∇2φ = 0 (1.20)

is valid.

1.6.3 Acceleration Potential and Pressure Perturbation

From its definition (see equation (1.12)), by using the isentropic relation, the
acceleration potential expression can be demonstrated as

Ψ =
γ

γ − 1

p1/γ
∞
ρ∞

[
p(γ−1)/γ
∞ − p(γ−1)/γ

]
. (1.21)

The quantities with the subscript ∞ are referred to the freestream far ahead of
the body. Suppose it is possible to use the linear theory (i.e., to have very small
perturbations) then the pressure can be written as

p = p∞ (1 + ε) (ε → 0). (1.22)

Using equation (1.22) and the Taylor expansion truncated at the first order yields

p(γ−1)/γ = p(γ−1)/γ
∞ (1 + ε)(γ−1)/γ = p(γ−1)/γ

∞

(
1 +

(γ − 1)

γ

(
p

p∞
− 1

))
. (1.23)

Substituting (1.23) into relation (1.21), the obtained result is

Ψ =
p∞ − p

ρ∞
. (1.24)
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This expression is very important. Consider a very thin wing6 (see figure 1.1). Using
the superscript + for the upper surface and the superscript − for the lower surface,
the relation between the local load L(y) and the small perturbation acceleration
potential can be written as7

ρ∞
(
Ψ− (y)− Ψ+ (y)

)
= ρ∞4Ψ (y) = L (y) . (1.25)

If the hypotheses used to obtain equation (1.25) are satisfied, and if the fluid is

Figure 1.1. Acceleration potential and local load 4p (y).

incompressible (i.e., ρ = ρ∞), by using the local Kutta-Joukowski theorem

L (y) = ρ∞V∞Γ (y) , (1.26)

it is possible to relate the local circulation Γ (y) with the quantity 4Ψ (y) as

Γ (y) =
4Ψ (y)

ρ∞V∞
. (1.27)

This formula will be used later to switch Γ (y) and the dipole intensity distribution
m (y).

6The wing must be thin in order to use the linear approach.
7Consider that Weissinger’s approximation is valid. Only one load L(y) for each y is considered.

This concept will be further explained in chapter 3.
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1.6.4 Acceleration Potential and Small Perturbation
Velocity Potential: Relations and Concepts

For the steady case, it can be demonstrated that Laplace’s equation is valid also for
the acceleration potential. Therefore, the following expression is valid:

∇2Ψ = 0. (1.28)

This relation is, in a formal point of view, the same equation that the small
perturbation velocity potential has to fulfill. Hence, it is possible to superimpose a
number of elementary solutions8.
Why is the acceleration potential important?

• Reason 1
It is directly related to the local load (see equation (1.25)).

• Reason 2
In a simplified model for wings (like Prandtl’s lifting-line theory), the vortices
in the wake do not have to be considered if the acceleration potential is used.
This is useful if the geometry of the wing is complex and the Biot Savart law
is not easy to apply.

• Reason 3
In the lifting line theories, the final equation is not an integral-differential
equation but only an integral equation if the acceleration potential is used.
This helps greatly in the numerical approach, when the circulation distribution
on the wing has to be found: only the unknown distribution (and not its
derivative) has to be discretized. But, if the acceleration potential is not used
then an integral-differential equation has to be solved9. In subsequent chapters
this aspect will be studied more in depth.

To correctly impose the WTC, the velocity is needed. However, the velocity is
the gradient of the velocity potential. Therefore, the small perturbation velocity
potential as a function of the acceleration potential has to be expressed. The wanted
relation for steady flow can be demonstrated as

Ψ = V∞
∂φ

∂x
⇒ φ (x,y,z) =

1

V∞

x∫

−∞
Ψ (ξ,y,z) dξ. (1.29)

8Similar operation is done when, for example, the vortices are used to analyze a wing: this is
possible because they singly solve Laplace’s equation and because it is linear.

9 However, in that case, it is possible to use the integration-by-part rule and obtain an integral
equation only. An example reported in chapter 3 will clarify the concept.
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1.7 Some Elementary Solutions of

Laplace’s Equation

Laplace’s equation is linear. This property will be used in subsequent chapters to
study non-conventional wings.
In this section a few elementary solutions of Laplace’s equation are analyzed. Only
the small perturbation velocity potential expressions will be obtained, but it has to
be clear that, because of the linearity, these expressions are valid for both the small
perturbation velocity potential and the acceleration potential10.

1.7.1 Two-Dimensional Case

The Source

Consider a two-dimensional, incompressible and steady flow. If all the streamlines
are straight lines emanating from a central point O, and if the velocity changes
intensity inversely with distance from point O, the flow is called a source flow. The
velocity and the velocity potential expressions can easily be demonstrated as

V = Vr =
Q

2πr
, (1.30)

φs =
Q

2π
ln r. (1.31)

Q = [m2/s] is the intensity of the source. If the value is negative then it is called
sink.
The source flow has the following properties:

• Property 1
∇ · V = 0 for all points except point O, where ∇ · V →∞.

• Property 2
The curl of the velocity is zero on all points: ∇× V = 0.

Figure 1.2 shows the source flow and sink flow.

The Doublet

There is a special, degenerate case of a source-sink pair that leads to a singularity
called a doublet (see figure 1.3).

10Remember that under the hypothesis of linearity both the small perturbation velocity potential
and the small perturbation acceleration potential satisfy Laplace’s equation.
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Figure 1.2. Source and sink flows.

The doublet expression is obtained by considering one source and one sink of equal
strength Q separated by a distance d. With a limit process (as will be seen in the
three-dimensional case), the potential of a doublet M can be demonstrated as

φd = − M

2πr
cos (ϑ− α) . (1.32)

When α = π
2
, the previous relation becomes

φd = −M

2π

z

x2 + z2
. (1.33)

The doublet flow has the following properties:

• Property 1
∇ · V = 0 for all points.

• Property 2
The curl of the velocity is zero on all points: ∇× V = 0.

The Vortex

Consider a flow where the streamlines are concentric circles about a given point O.
Moreover, let the velocity along any given circular streamline be constant, but let it
vary from one streamline to another inversely with the distance from the common

10
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Figure 1.3. Doublet flow.

center O. Such a flow is called a vortex flow (see figure 1.4).
It is possible to demonstrate the following relations:

Vϑ =
Γ

2πr
, (1.34)

φv =
Γ

2π
ϑ. (1.35)

Figure 1.4. Vortex flow.

The vortex flow has the following properties:

11
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• Property 1
∇ · V = 0 in every point.

• Property 2
The curl of the velocity is zero on all points except point O,
where ∇× V →∞.

1.7.2 Three Dimensional Case

The Source

In a cartesian system, let the origin of the system be called O. If a source of intensity
Q[m3/s] is positioned at that point, because of the symmetry, the potential is a
constant function over a sphere which is centered at point O. Q must always be the
same and independent from the sphere cosidered. For that reason and because the
velocity is radial (symmetric flow), Q can be written as

Q = 4πr2Vr ⇒ Vr =
Q

4πr2
. (1.36)

The velocity Vr is also the derivative of the velocity potential. This yields

Vr =
Q

4πr2
=

∂φs

∂r
⇒ φs = − Q

4πr
. (1.37)

Therefore, the velocity potential for the source is

φs = − Q

4π
√

x2 + y2 + z2
. (1.38)

Obviously, even if the source is not in the origin of the system, the previous formula
is still valid, but now the cartesian distance from the point P (x,y,z) and the source
positioned at point Ps(xs,ys,zs) appears in the expression of the velocity potential:

φs = − Q

4π
√

(x− xs)
2 + (y − ys)

2 + (z − zs)
2
. (1.39)

The Doublet

Consider two sources11 with intensity +Q and −Q, respectively (see figure 1.5).
Because of the linearity, the small perturbation velocity potential at point P (x,y,z)

11Here the generic term ”source” is used, but it is clear that when the intensity is negative it
becomes a sink.

12
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Figure 1.5. Potential of a dipole from two sources.

is the summation of two contributes12 written as

φd = −−Q

4πr
− +Q

4πa
=

Q

4πr

(
1− r

a

)
, (1.40)

in which equation (1.37) has been used. The unit vectors t and n are written in the
following manner:

t = x
r
i + y

r
j + z

r
k,

n = ndxi + ndyj + ndzk.
(1.41)

From figure 1.5, by applying the Carnot’s theorem, the following relation can be
written:

a2 = r2 + d2 − 2rd cos ϑ = r2 + d2 − 2r · d. (1.42)

Using the relations
d = dn = d (ndxi + ndyj + ndzk) ,

r = rt = r
(

x
r
i + y

r
j + z

r
k

)
,

(1.43)

yields
a2 = r2 + d2 − 2d (ndxx + ndyy + ndzz) . (1.44)

Suppose now that d is very small. Under that condition, d2 is negligible and the
previous equation becomes

a2 = r2 − 2ε ⇒ a2

r2
= 1− 2ε

r2
⇒ r

a
=

(
1− 2ε

r2

)− 1
2 ≈ 1 +

ε

r2
ε → 0. (1.45)

12Now the subscript d is used because the expression will lead to writing the potential of a dipole.
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Using the last equation and relation (1.40), the obtained result is

φd = − Q

4πr

ε

r2
= − Qd

4πr3
(ndxx + ndyy + ndzz) . (1.46)

Now consider the following operations at the same time:

d → 0

Q →∞
Qd ≡ M finit value, neither zero nor infinity.

(1.47)

Equation (1.46) becomes

φd = − M

4πr3
(ndxx + ndyy + ndzz) , (1.48)

where M is the strength of the dipole positioned in the origin of the reference
cartesian coordinate system and with direction n.
In a general case, the dipole is positioned at a generic point Pd = (xd,yd,zd). In that
case, the previous equation becomes

φd (x,y,z) = −M

4π

ndx (x− xd) + ndy (y − yd) + ndz (z − zd)
[
(x− xd)

2 + (y − yd)
2 + (z − zd)

2
] 3

2

. (1.49)

Observation 1 It is possible to derive the velocity potential of a dipole, with a
formal derivative operation from a velocity potential of a source positioned at the
same point. The derivative direction has to be the negative dipole direction −n.
This operation is also valid in the two dimensional case.

To prove that, consider a simple case, where the dipole M is positioned at the origin,
and where its axis n is directed along −z. The expression of the velocity potential
is

φd (x,y,z) = −M

4π

−z

[x2 + y2 + z2]
3
2

=
M

4π

z

[x2 + y2 + z2]
3
2

. (1.50)

Consider now a source Q positioned at the same point. Its potential velocity is

φs (x,y,z) = − Q

4π

1

[x2 + y2 + z2]
1
2

. (1.51)

It is easy to see that calculating a partial derivative ∂
∂z

of the last relation and
formally changing the symbol Q with M yields the relation (1.50).

14
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Observation 2 The formal operation seen above may greatly help to write the
velocity potential of a dipole in complicated geometries. However, it is a delicate
process in some cases. The writer’s advice is to always use the relation (1.49) to
avoid possible problems.

To explain what has been said, consider the following example.
Consider a circumference and suppose that the goal is to find the velocity potential
at point P (R,ϕ) of a distribution m of dipoles positioned on that circumference and
with orientation along the radial direction n (see figure 1.6). It is possible to start

Figure 1.6. Example of potential of a dipole distribution.

from a source distribution q positioned on the circumference and use the formalism
based on the derivative operation along the radial direction. Therefore, the potential
of the source Q (ϕd) = q (ϕd) Rwdϕd positioned at point A (see figure 1.6) is

dφs = − 1
4π

q(ϕd)Rwdϕd

D
= − 1

4π
q(ϕd)Rwdϕd√

R2
wX2+R2+R2

w−2RRw cos(ϕ−ϕd)
x = RwX. (1.52)

In the previous equation relation (1.39) was used. Now, because the dipole directions
are opposite of the radius directions (n = −N), the potential of the m distribution
is the derivative with respect to R of the previous expression (with the formal change
q → m) as follows:

dφd =
1

4π

m (ϕd) Rwdϕd (R−Rw cos (ϕ− ϕd))

(R2
wX2 + R2 + R2

w − 2RRw cos (ϕ− ϕd))
3
2

. (1.53)

15
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Now, under the hypothesis of linearity, it is possible to integrate over the
circumference:

φd =
1

4π

2π∫

0

m (ϕd) Rw (R−Rw cos (ϕ− ϕd))

(R2
wX2 + R2 + R2

w − 2RRw cos (ϕ− ϕd))
3
2

dϕd. (1.54)

But this expression is not correct. By using the general formula (1.49) a different
result is obtained13:

φd =
1

4π

2π∫

0

m (ϕd) Rw (R cos (ϕ− ϕd)−Rw)

(R2
wX2 + R2 + R2

w − 2RRw cos (ϕ− ϕd))
3
2

dϕd. (1.55)

Only equation (1.55) is correct. Where is the error in equation (1.54)? Why is the
result incorrect? The error is in the derivative operation: the directional derivative
with respect to the opposite direction of the dipole is not ∂

∂R
alone, as it has been

done in the wrong derivation (equation (1.54)). Now the correct approach is shown.
From equation (1.52), the gradient in the polar coordinate system14 can be written
as

x component : − 1
4π

Rwq(ϕd)dϕd

(x2+R2+R2
w−2RRw cos(−ϕ+ϕd))

3
2

(−x) ,

R component : − 1
4π

Rwq(ϕd)dϕd

(x2+R2+R2
w−2RRw cos(−ϕ+ϕd))

3
2

[−R + Rw cos (ϕ− ϕd)] ,

ϕ component : − 1
4π

Rwq(ϕd)dϕd

(x2+R2+R2
w−2RRw cos(ϕ−ϕd))

3
2

1
R

[−RwR sin (ϕ− ϕd)] .

(1.56)

In accordance with the formal method shown in observation 1, the derivative has to
be performed along the N = −n direction because the dipole is directed along the
n direction. By using the well known equation of a directional derivative along the
unit vector N of a function f ,

∂f

∂v
= ∇f ·N , (1.57)

the derivative can be written as

dφd =
1

4π

Rw (R cos (ϕ− ϕd)−Rw) m (ϕd)

(x2 + R2 + R2
w − 2RRw cos (ϕ− ϕd))

3
2

dϕd. (1.58)

Here in equation (1.58), equations (1.57), (1.52), (1.56) and the fact that (see figure
1.6) N = −n = cos (ϕ− ϕd)iR − sin (ϕ− ϕd)iϕ have been used.
Now, because of the linearity, the final expression is easily written by integrating
over the circumference. Thus, it can be understood that the correct equation is
relation (1.55).

13See chapter 6.
14Remember the formula ∇f (x,R,ϕ) = ∂f(x,R,ϕ)

∂x i + ∂f(x,R,ϕ)
∂R iR + 1

R
∂f(x,R,ϕ)

∂ϕ iϕ.
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Observation 3 All the equations written in this section have been demonstrated
by using the velocity potential. It has already been explained that in the linear
case the acceleration potential satisfies Laplace’s equation as the velocity potential.
Therefore, all of these relations are also valid for the acceleration potential.

Thus, it can be written that:

Ψs = − Q

4π
√

(x− xs)
2 + (y − ys)

2 + (z − zs)
2
, (1.59)

Ψd (x,y,z) = −M

4π

ndx (x− xd) + ndy (y − yd) + ndz (z − zd)
[
(x− xd)

2 + (y − yd)
2 + (z − zd)

2
] 3

2

. (1.60)

Obviously, the unit of measure of Q and M have changed. For example, M = [m4/s2]
instead of M = [m4/s] if the velocity potential is used. Similarly, now Q = [m3/s2]
instead of Q = [m3/s].

1.7.3 The Vortex Filament, the Biot-Savart Law,
and Helmholtz’s Theorems

The straight vortex filament extending to ±∞ has been analyzed and the expressions
for the velocity and for the potential φv have been written.
Now consider a general case, where the vortex filament is curved. By referring to
figure 1.7, it is possible to demonstrate the Biot-Savart law15:

dV =
Γ

4π

dl× r

|r3| (1.61)

Now applying the Biot-Savart law to a straight filament of infinite length (see figure
1.8), the expression

V =
Γ

2πh
(1.62)

can be derived. Similarly, considering a semi-infinite vortex filament which starts
from a point A (see figure 1.9), the expression

V =
Γ

4πh
(1.63)

15Drawing an analogy with the electromagnetic theory, in the Biot-Savart law, the magnetic field
dB induced at point P by a segment of the wire dl with the current I moving in the direction of
dl

dB =
µI

4π

dl× r

|r3| ,

where µ is the permeability of the medium surrounding the wire, can be recognized. Indeed,
the Biot-Savart law is a general result of potential theory, and potential theory describes
electromagnetic fields as well as inviscid, incompressible flows.
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Figure 1.7. Vortex filament and Biot-Savart law.

Figure 1.8. Velocity induced at point P by an infinite vortex filament.

can be obtained. Helmholtz’s theorems are the following:

• Theorem 1
The strength of a vortex filament is constant along its length.

• Theorem 2
A vortex filament cannot end in a fluid; it must extend to the boundaries of
the fluid (which can be ±∞) or form a closed path.

18



1 – Equations for Ideal Fluids and Aerodynamic Tools

Figure 1.9. Velocity induced at point P by a semi-infinite vortex filament.

Observation 4 From these theorems, it can be understood that a vortex filament
can be divided into two or more filaments, but, if the generic strength is indicated
with Γi , the following relation must be satisfied:

∑

i

Γi = Γ. (1.64)

The property shown in equation (1.64) will be used in the lifting-line theories (see
chapter 3).

19



1 – Equations for Ideal Fluids and Aerodynamic Tools

Nomenclature

ρ fluid density

µ fluid viscosity

p pressure

T temperature

t time

V velocity vector

M doublet strength

Q source strength

m doublet distribution

q source distribution

Γ vorticity

BCV I Boundary Condition on Velocity at Infinity

WTC Wall Tangency Condition

Φ velocity potential

φ small perturbation velocity potential

Ψ acceleration potential or small perturbation acceleration potential

vx x-component perturbation velocity

vy y-component perturbation velocity

vz z-component perturbation velocity

Vx x-component velocity

Vy y-component velocity

Vz z-component velocity

i, j,k unit vectors

e thermal energy for unit mass

cv, cp specific heat for unit mass

R? gas costant

c sound speed
∂
∂t

Euler derivative
D
Dt

Lagrange derivative

Subscripts

∞ freestream conditions

w wing
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Chapter 2

Mathematical Tools

2.1 Introduction

In this chapter a few important mathematical tools, used in the rest of the
dissertation, are introduced. In particular, some properties of quadrature formulas
and integral equations will be discussed. Particularly relevant and important will
be the concepts of hypersingular integrals (see [5]).

2.2 Brief Description of the Quadrature Formulas

Most of the integral can not be solved analytically. Therefore, approximate methods
have to be used. Several formulas, such as Newton-Cotes formulae and Gaussian
quadrature are available. In this section, only a few of these formulae are discussed
and analyzed. More details can be found in ([6]) and ([7]).

2.2.1 Gaussian Quadrature

Numerical quadrature involves estimating
b∫
a

f(x) dx using a formula of the form

b∫

a

f(x) dx ≈
M∑

i

cif(xi). (2.1)

A quadrature formula, whose nodes (abscissas) xi and coefficients wi are chosen to
achieve a maximum order of accuracy, is called a Gaussian quadrature formula. The
integrand usually involves a weight function w. An integral in x on an interval (a,b)
must be converted into an integral in t over the interval (A,B) specified for the
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weight function involved. This can be accomplished by the transformation
t = (bA−aB)

(b−a)
+ (B−A)x

(b−a)
. Gaussian quadrature formulae generally take the form

B∫

A

w (t) f (t) dt ≈
M∑

i=1

wif (ti) . (2.2)

Presented below are some of the classical Gaussian quadrature formulas.

• Gauss-Legendre Quadrature

+1∫

−1

f (t) dt ≈
M∑

i=1

wif (ti) .

• Gauss-Jacobi Quadrature

+1∫

−1

(1− t)α (1 + t)β f (t) dt ≈
M∑

i=1

wif (ti) α,β > −1.

• Gauss-Laguerre Quadrature

+∞∫

0

e−tf (t) dt ≈
M∑

i=1

wif (ti) .

• Gauss-Hermite Quadrature

+∞∫

−∞
e−t2f (t) dt ≈

M∑

i=1

wif (ti) .

Now consider the Gauss-Legendre quadrature1

+1∫

−1

f (t) dt =
M∑

i=1

hif (ti) . (2.3)

The expression for the weights2 hi = wi (see [6]) is

hi =
−2

(M + 1) PM+1 (ti) P ′
M (ti)

, (2.4)

1In this dissertation the Gauss-Legendre formula will be used often. In some cases, the adaptive
quadrature is applied, and only for the Hadamard finite-part integrals a particular quadrature
formula is required.

2In the Gauss-Legendre formula, the notation hi = wi is used for the weights. This is required
because the quadrature formula for the Hadamard finite part integrals already has the symbol wI

i .
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where the nodes ti are the zeros of the Legendre polynomial PM(t). To complete
this brief introduction, reported below is the recursive formula for the Legendre
polynomials:

P0 (t) = 1,P1 (t) = t − 1 ≤ t ≤ 1,

(n + 1) Pn+1 (t) = (2n + 1) tPn (t)− nPn−1 (t) n = 1,2...
(2.5)

and the first five polynomials are:

P0 = 1,

P1 = t,

P2 =
(3t2−1)

2
,

P3 = 5
2
t3 − 3

2
t,

P4 = 35
8
t4 − 15

4
t2 + 3

8
.

(2.6)

2.2.2 Adaptive Quadrature

Here, the basic concepts of adaptive quadrature method are shown. For more details
see [8] and [9]. The concept is to divide the interval of integration into subintervals.
If the assigned precision has not been achieved yet, the subintervals will be divided
into more parts with an iterative algorithm until the integral is calculated with the
desired accuracy. Figure 2.1 shows this concept. As can be seen in the figure, if the
function has a very high gradient, it is very hard to calculate the integral. In such
cases, even the Gaussian quadrature is not very good and an adaptive formula is
required.

Figure 2.1. Basic concepts of the adaptive quadrature.

23



2 – Mathematical Tools

2.3 Integrals With Strong Singularities:

Hadamard Finite-part Integrals

This section analyzes integrals with strong singularities (hypersingular integrals, see
[5]). Such integrals exist only if they are defined in a proper sense3, and usually
they are called finite-part integrals. The concept of finite-part integrals was first
introduced and examined by Hadamard in 1923 [10].

To introduce the concept of finite-part integral, consider the integral4

b∫

a

dt

t− s
a < s < b. (2.7)

In a standard way, this integral is obviously not defined because, when t → s,
the denominator reaches zero with order 1. To correctly evaluate the integral, its
definition has to be changed. Therefore, the symbol

=
∫

(2.8)

is introduced. Thus, equation (2.7) becomes

=

b∫

a

dt

t− s
a < s < b. (2.9)

To proceed, consider the following standard non-singular5 integrals:

s−ε∫
a

dt
t−s

= ln ε− ln (s− a) ,

b∫
s+ε

dt
t−s

= ln (b− s)− ln ε.

(2.10)

By using the previous expressions6 (equation (2.10)), the following definitions can
be introduced.

Definition 1

=

s∫

a

dt

t− s
= lim

ε→0




s−ε∫

a

dt

t− s
− ln ε


 = − ln (s− a) , (2.11)

3In a ”classical” point of view, such integrals cannot be calculated.
4 The case in which s coincides with one of the endpoints of the integral is not encountred in

this dissertation.
5ε is a positive number.
6Notice that the definitions are obtained by elimination of the singular term ln ε in equation

(2.10). This operation is done by summing or subtracting the term ln ε.
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=

b∫

s

dt

t− s
= lim

ε→0




b∫

s+ε

dt

t− s
+ ln ε


 = ln (b− s) , (2.12)

=

b∫

a

dt

t− s
= =

s∫

a

dt

t− s
+ =

b∫

s

dt

t− s
= ln

(b− s)

(s− a)
. (2.13)

In order to formulate definition 2, consider now an integer p > 07. Consider also the
following standard integrals:

s−ε∫

a

dt

(t− s)p+1 =
1

p

[
1

(a− s)p −
1

(−ε)p

]
, (2.14)

b∫

s+ε

dt

(t− s)p+1 =
1

p

[
− 1

(b− s)p +
1

εp

]
. (2.15)

Eliminating the singular terms, definition 2 is obtained (see below).

Definition 2

=

s∫

a

dt

(t− s)p+1 = lim
ε→0




s−ε∫

a

dt

(t− s)p+1 +
1

p (−ε)p


 =

1

p (a− s)p , (2.16)

=

b∫

s

dt

(t− s)p+1 = lim
ε→0




b∫

s+ε

dt

(t− s)p+1 −
1

pεp


 = − 1

p (b− s)p , (2.17)

=

b∫

a

dt

(t− s)p+1 = =

s∫

a

dt

(t− s)p+1 + =

b∫

s

dt

(t− s)p+1 = −1

p

[
1

(b− s)p −
1

(a− s)p

]
. (2.18)

From equation (2.18), it is easy to understand that

=

b∫

a

dt

(t− s)p = − 1

p− 1

[
1

(b− s)p−1 −
1

(a− s)p−1

]
. (2.19)

Because the identity

d

ds

(
− 1

(p− 1)

[
1

(b− s)p−1 −
1

(a− s)p−1

])
= −

[
1

(b− s)p −
1

(a− s)p

]
(2.20)

7p will be an integer in this dissertation, and in some demonstrations this condition will be
used. In the original work of the Prof. Monegato (see [5]), p can be a real number.
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is valid, equations (2.19) and (2.18) lead to writing:

d

ds
=

b∫

a

dt

(t− s)p = p =

b∫

a

dt

(t− s)p+1 . (2.21)

Now consider a function f(t) of class Cp. Because the identity

f (t) = f (t)−
p∑

k=0

f (k) (s)

k!
(t− s)k +

p∑

k=0

f (k) (s)

k!
(t− s)k (2.22)

is valid, the following quantity can be defined.

Definition 3

=

b∫

a

f (t)

(t− s)p+1 dt =

b∫

a

f (t)−
p∑

k=0

f (k)(s)
k!

(t− s)k

(t− s)p+1 dt+ =

b∫

a

p∑
k=0

f (k)(s)
k!

(t− s)k

(t− s)p+1 dt, (2.23)

or equivalently

=

b∫

a

f (t)

(t− s)p+1 dt =

b∫

a

f (t)−
p∑

k=0

f (k)(s)
k!

(t− s)k

(t− s)p+1 dt +
p∑

k=0

f (k) (s)

k!
=

b∫

a

1

(t− s)p+1−k dt.

(2.24)

Observation 5 Notice that p has been assumed as an integer; thus, equation (2.24)
contains the term

f (p) (s)

p!
=

b∫

a

1

(t− s)
dt. (2.25)

Because of the hypothesis a < s < b, the integral in the previous expression could
be interpreted in the Cauchy principal sense8. By using the definitions formulated
avove, the finite-part integral could be generalized as

=

b∫

a

dt

t− s
= lim

ε→0




s−ε1(ε)∫

a

dt

t− s
+

b∫

s+ε2(ε)

dt

t− s


 = ln

b− s

s− a
+ lim

ε→0
ln

ε1 (ε)

ε2 (ε)
. (2.26)

Assuming that

lim
ε→0

ln
ε1 (ε)

ε2 (ε)
= ec, (2.27)

8If the singularity is in an endpoint, the Cauchy integral is not defined, and the integral has to
be defined as Hadamard finite-part integral.
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then9

=

b∫

a

dt

t− s
= −

b∫

a

dt

t− s
+ c. (2.28)

Observation 6 It should be noticed that the integral in equation (2.24)

b∫

a

f (t)−
p∑

k=0

f (k)(s)
k!

(t− s)k

(t− s)p+1 dt (2.29)

is not singular.

Observation 7 From the definitions analyzed before, it is possible to obtain the
following relation10:

d

ds
=

b∫

a

f (t)

(t− s)p dt = p =

b∫

a

f (t)

(t− s)p+1 dt. (2.30)

Using this formula, it is possible to write:

=

b∫

a

f (t)

(t− s)p+1 dt =
1

p!

dp

dsp
−
b∫

a

f (t)

(t− s)
dt. (2.31)

Hence, it can be said that Hadamard finite-part integrals can be seen as the derivative
of an integral interpreted in the Cauchy sense.

Observation 8 From the previous definitions, it immediately follows that

=

b∫

a

a1f (t) + a2g (t)

(t− s)p+1 dt = a1 =

b∫

a

f (t)

(t− s)p+1 dt + a2 =

b∫

a

g (t)

(t− s)p+1 dt. (2.32)

Therefore, it can be understood that the operator =
∫

is a linear operator as the
operator

∫
.

9Remember that the integral interpreted in the Cauchy sense is

−
b∫

a

dt

t− s
= ln

b− s

s− a
.

10 Remember that p is an integer and a < s < b. Only these conditions allow the use of this
formula.
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Observation 9 By using the expressions analyzed in this section, it is possible to
show that11

=

b∫

a

f (t)

(t− s)p+1 dt = −1

p

[
f (b)

(b− s)p −
f (a)

(a− s)p

]
+

1

p
=

b∫

a

f
′
(t)

(t− s)p dt. (2.33)

Hence, it can be said that in Hadamard finite-part integrals the integration by parts
rule is still valid.

Observation 10 Consider the following Hadamard finite-part integral12:

=

b∫

a

f (s) =

b∫

a

f (t)

(t− s)2 dt ds. (2.34)

The following properties are valid:

• Property 1
If the function is zero in both endpoints, the external integral can be defined
as a normal integral. Therefore,

=

b∫

a

f (s) =

b∫

a

f (t)

(t− s)2 dt ds =

b∫

a

f (s) =

b∫

a

f (t)

(t− s)2 dt ds. (2.35)

Moreover, it is possible to change the variables of integration or switch the
variables (see appendix A).

• Property 2
If the function is not zero in both endpoints, but the curve is a closed path,
the following equation is valid:

=

b∫

a

f (s) =

b∫

a

f (t)

(t− s)2 dt ds = −
b∫

a

f (s) =

b∫

a

f (t)

(t− s)2 dt ds. (2.36)

Even now it is possible to change the variables of integration or switch the
variables (see appendix A).

11 Even in this case, this formula is valid because p is an integer and a < s < b.
12This is the only case that will be considered in subsequent discussions.
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2.4 Summary and Examples of

Hadamard Finite-part Integrals

In the previous section Hadamard finite-part integrals were introduced. Summarized
below are the properties of Hadamard finite-part integrals when a < s < b and p is
an integer.

• Property 1
They can be seen as a derivative of an integral interpreted in the Cauchy sense.

• Property 2
They are linear operators.

• Property 3
The integration by parts rule is valid.

As an easy example, consider the finite-part integral

=

+1∫

−1

t2

(t− s)4 dt − 1 < s < +1. (2.37)

By using equation (2.31), the integral can be written as

=

+1∫

−1

t2

(t− s)4 dt = =

+1∫

−1

t2

(t− s)3+1 dt =
1

3!

d3

ds3
−
+1∫

−1

t2

(t− s)
dt. (2.38)

In order to calculate the Cauchy principal value contained in equation (2.38), the
following indefinite integral is required:

∫ t2

(t− s)
dt = ts +

1

2
t2 + s2 ln (|−t + s|) . (2.39)

The Cauchy principal value definition is:

−
+1∫

−1

t2

(t− s)
dt = lim

ε→0




s−ε∫

−1

t2

(t− s)
dt +

+1∫

s+ε

t2

(t− s)
dt


 . (2.40)

From equation (2.39)

s−ε∫
−1

t2

(t−s)
dt =

[
ts + 1

2
t2 + s2 ln (|t− s|)

]s−ε

−1
=

= 3
2
s2 − 2sε + 1

2
ε2 + s2 ln ε + s− 1

2
− s2 ln (s + 1) ,

+1∫
s+ε

t2

(t−s)
dt =

[
ts + 1

2
t2 + s2 ln (|t− s|)

]1

s+ε
=

= −3
2
s2 − 2sε− 1

2
ε2 − s2 ln ε + s + 1

2
+ s2 ln (1− s) .

(2.41)
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Substituting these expressions into equation (2.40)

−
+1∫

−1

t2

(t− s)
dt = 2s + s2 ln

(1− s)

(1 + s)
. (2.42)

Observing that

d3

ds3

(
2s + s2 ln (1− s)− s2 ln (1 + s)

)
= 4

3 + s2

(s− 1)3 (s + 1)3 , (2.43)

and recalling equation (2.38), the following result is obtained:

=

+1∫

−1

t2

(t− s)4 dt =
1

3!
4

3 + s2

(s− 1)3 (s + 1)3 =
2

3

3 + s2

(s− 1)3 (s + 1)3 . (2.44)

Observation 11 Practically, the Hadamard finite-part integral can be calculated
in a simple way. Consider the antiderivative of the function under the Hadamard
integral:

∫ t2

(t− s)4 dt = −1

3

s2

(t− s)3 −
s

(t− s)2 −
1

t− s
. (2.45)

Calculating the Hadamard finite-part integral by ignoring that the integral in s is
singular, and applying the ”standard” rule for the integrals, the result is

=

+1∫

−1

t2

(t− s)4 dt =
2

3

3 + s2

(s− 1)3 (s + 1)3 . (2.46)

This result is the same as what was found in equation (2.44).
Therefore, if the antiderivative F of the function in a Hadamard finite-part integral
is known, the value of the integral will be the quantity F (b)−F (a). In a formal point
of view:

∫ f (t)

(t− s)p+1 dt = F ⇒=

b∫

a

f (t)

(t− s)p+1 dt = F (b)− F (a) . (2.47)

This property will be used often when the condition of minimum induced drag in
the elliptical and circular annular wings is found.
It should be clear that, in general, the antiderivative is not known. Appropriate
quadrature formula is then required.
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2.5 Hadamard Finite-part Integrals:

a Quadrature Formula

In this section, a quadrature formula for the Hadamard finite-part integrals is
described. Only the case in which a < s < b and p = 1 is considered. Consider the
following hypersingular integral13:

=

+1∫

−1

f (t)

(t− s)2 dt. (2.48)

It is possible to calculate the integral by using the following formula14:

=

+1∫

−1

f (t)

(t− s)2 dt =
M∑

i=1

wI
i f (ti) . (2.49)

The last relation contains the following quantities:

• The nodes ti. They coincide with the zeros of the Legendre polynomial PM(t).

• The weights: wI
i (s) = hi

M−1∑
j=0

d−1
j Pj (ti)

[
Q
′
j (s)

]
.

• The Gauss weights hi.

• The integrals of the Legendre polynomials: dj =
+1∫
−1

P 2
j (t) dt = 2

2j+1
.

• The derivative of the integrals interpreted in the Cauchy15 sense:

Q
′
j (s) = d

ds
Qj (s) = d

ds
−
+1∫
−1

Pj(t)

t−s
dt.

13Only the case a = −1 and b = +1 will be analyzed because, in the case examined here, p is an
integer and the singularity is not in an endpoint. Therefore, it is possible to change the variables
of integration in such a way as to have a = −1 and b = +1, as is usually done when calculating
the standard integrals using the Gaussian quadrature rule.

14This is only a particular case of a general method that is possible to find in paper [5] written
by prof. G. Monegato.

15It has been seen that the Hadamard finite-part integrals are the derivative of the Cauchy
integrals. Thus, it is obvious that in the quadrature formula Cauchy integrals appear as well.
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Using the definitions formulated in section 2.3, the explicit form of the quantities
Qj and their derivatives can be expressed as follows:

Q0 (s) = −
+1∫
−1

1
t−s

dt ⇒

Q0 (s) = limε→0

(
s−ε∫
−1

1
t−s

dt +
+1∫

s+ε

1
t−s

dt

)
⇒

Q0 (s) = limε→0

(
ln |t− s|s−ε

−1 + ln |t− s|+1
s+ε

)
⇒

Q0 (s) = limε→0 (ln |s− ε− s| − ln |−1− s|+ ln |1− s| − ln |s + ε− s|) ⇒
Q0 (s) = limε→0 (ln |−ε| − ln |−1− s|+ ln |1− s| − ln |+ε|) ⇒
Q0 (s) = − ln |−1− s|+ ln |1− s| .

Operating in a similar way:

Q1 (s) = limε→0

(
s−ε∫
−1

t
t−s

dt +
+1∫

s+ε

t
t−s

dt

)
⇒

Q1 (s) = (1 + s ln (|1− s|))− (−1 + s ln (|−1− s|)) .

Because a = −1, b = +1 and a < s < b, the previous equations can be rewritten as:

Q0 (s) = − ln (1 + s) + ln (1− s) ,
Q1 (s) = (1 + s ln (1− s))− (−1 + s ln (1 + s)) .

(2.50)

A recursive formula is possible to use to determine the quantities Qj (s) and Q
′
j (s)

as follows:

Qj (s) = (ajs + bj) Qj−1 (s)− cjQj−2 (s) , (2.51)

where

aj =
2j − 1

j
, bj = 0, cj =

j − 1

j
. (2.52)

Substituting this relation into equation (2.51), the final expressions for the integrals
interpreted in the Cauchy principal value sense can be written as

Qj (s) = s2j−1
j

Qj−1 (s)− j−1
j

Qj−2 (s)

Q
′
j (s) = s2j−1

j
Q
′
j−1 (s)− j−1

j
Q
′
j−2 (s) + 2j−1

j
Qj−1 (s) .

(2.53)

This equation leads to calculating the weights wI
i (s) and, as a result, the assigned

Hadamard finite-part integral.
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2.6 Integral Equations

This section contains a general analysis of the integral equations (see [6]) without
demonstrations. Several types of equations will be introduced.

2.6.1 Definitions

Consider the following integral equation:

h (s) m (s) = f (s) + Λ

b(s)∫

a

K (s,t) G [m (t) ; t] dt. (2.54)

Definitions:

• K(s,t): kernel.

• m(s): function to be determined.

• h(s),f(s): given functions.

• Λ: eigenvalue.

2.6.2 Classification of Integral Equations

The classification is:

• Linear G[m(s); s] = m(s).

• Volterra b(s) = s.

• Fredholm b(s) = b.

• First kind h(s) = 0.

• Second kind h(s) = 1.

• Third kind h(s) 6= 0,1.

• Homogeneous f(s) = 0.

• Singular a = −∞, b = +∞.
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2.6.3 Classification of Kernels

• Symmetric K(s,t) = K(t,s)

• Separable/degenerate K (s,t) =
n∑

i=1
ai (s) bi (t) , n < ∞

• Difference K(s,t) = K(s− t).

• Cauchy K(s,t) = 1
s−t

• Singular K(s,t) →∞ as t → s

• Hilbert-Schmidt
b∫
a

b∫
a
|K (s,t)|2 ds dt < ∞

2.6.4 Integral Equations Involving Hadamard Finite-part
Integrals

A general analysis of the integral equations was presented in previous sections. In
this section one particular case is analyzed: an integral equation with a symmetric16

kernel and with an integral interpreted as Hadamard finite-part integral (p = 1).
In subsequent chapters, a few integral equations of the following type will be derived:

α (ϕ) = g (ϕ)

(∫ b

a
m (ϕd) K (ϕ,ϕd) dϕd+ =

∫ b

a
m (ϕd) Y (ϕ,ϕd) dϕd

)
, (2.55)

where K (ϕ,ϕd) and Y (ϕ,ϕd) are the kernels of the equation, α (ϕ) and g (ϕ) are
known functions, and m (ϕd) is the unknown function. How can this equation be
solved? Because the kernel Y (ϕ,ϕd) is singular17, the numeric approximation must
be performed carefully. One good method consists of the following steps:

• Step 1
Changing of the variable of integration in such a way as to obtain the endpoints
-1 and +1, respectively. In this case this is possible either because the function
is zero in both endpoints or because the curve is a closed path.

• Step 2
Decomposition of the function m in a series of known N functions multiplied
by the unknown constant coefficients ck.

16This hypothesis is not used here, but in this dissertation only this type of equations are used.
17The second integral is defined in the Hadamard finite-part sense. m is considered as a non-

singular function. Therefore, the kernel Y (ϕ,ϕd) is singular.
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• Step 3
Application of the collocation method: the integral equation has to be satisfied
exactly in N points. Thus, a set of linear algebraic equations18 can be written
and the unknown coefficients ck can be found.

Observation 12 In order to obtain the best results, it is important to know, with
good accuracy, the coefficients of the linear system that lead to determining the
unknown ck. As can be seen in the following example, this affirmation means that
the integrals (”classical” and interpreted in the Hadamard finite-part sense) have to
be calculated with a sufficient precision using an efficient algorithm (for example, it
is possible to use the method seen in section 2.5).

Example 1: Numerical Solution of a Simple Case

Consider the following integral equation19:

ln
(1− s)

(1 + s)
− 2s

(1− s) (1 + s)
= =

+1∫

−1

m (t)

(t− s)2 dt − 1 < s < +1. (2.56)

It is easy to see that equation (2.56) is one of the types shown in equation (2.55),
where:

α (s) = ln (1−s)
(1+s)

− 2s
(1−s)(1+s)

,

g (s) = 1,

K (t,s) = 0,

Y (t,s) = 1
(t−s)2

.

(2.57)

Now the procedure described above is applied:

• Step 1
This operation has already been done (the integral in equation (2.56) has
endpoints -1 and +1).

• Step 2
The function m is decomposed in a series of known N functions multiplied by
the unknown constant coefficients ck. The Legendre polynomials20 are chosen:

m (t) =
k=N−1∑

k=0

ckPk. (2.58)

18These linear equations will have coefficients dependent on some integrals, as can be seen in
the example below.

19It is supposed that the original variables have already been transformed into the new variables
t and s in order to have the integrals with endpoints -1 and +1.

20This is not the only possible choice that can be made.
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The Hadamard finite-part integral becomes:

=

+1∫

−1

m (t)

(t− s)2 dt = =

+1∫

−1

k=N−1∑
k=0

ckPk

(t− s)2 dt =
k=N−1∑

k=0

ck =

+1∫

−1

Pk

(t− s)2 dt. (2.59)

Just to explain the method, consider a simple case where N = 2:

m (t) = c0P0 + c1P1, (2.60)

=

+1∫

−1

m (t)

(t− s)2 dt = c0 =

+1∫

−1

P0

(t− s)2 dt + c1 =

+1∫

−1

P1

(t− s)2 dt. (2.61)

Obviously, the Legendre polynomials are:

P0 = 1,

P1 = t.
(2.62)

• Step 3
Application of the collocation method: the integral equation has to be satisfied
exactly in N points. A good choice is to take the zeros of the Legendre
polynomial PN . Let s1 and s2 be called the zeros of P2(s). The collocation
method consists of the following N (remember that in this case N = 2)
equations:

=

+1∫

−1

m (t)

(t− s1)
2 dt = ln

(1− s1)

(1 + s1)
− 2s1

(1− s1) (1 + s1)
, (2.63)

=

+1∫

−1

m (t)

(t− s2)
2 dt = ln

(1− s2)

(1 + s2)
− 2s2

(1− s2) (1 + s2)
. (2.64)

Using equations (2.61) and (2.62):

c0 =

+1∫

−1

1

(t− s1)
2 dt + c1 =

+1∫

−1

t

(t− s1)
2 dt = ln

(1− s1)

(1 + s1)
− 2s1

(1− s1) (1 + s1)
, (2.65)

c0 =

+1∫

−1

1

(t− s2)
2 dt + c1 =

+1∫

−1

t

(t− s2)
2 dt = ln

(1− s2)

(1 + s2)
− 2s2

(1− s2) (1 + s2)
. (2.66)

Observing that

=

+1∫

−1

1

(t− s1,2)
2 dt = − 2

(1− s1,2) (1 + s1,2)
, (2.67)
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=

+1∫

−1

t

(t− s1,2)
2 dt = − 2s1,2

(1− s1,2) (1 + s1,2)
+ ln

(1− s1,2)

(1 + s1,2)
, (2.68)

the following linear system is obtained:

c0

(
− 2

(1−s1)(1+s1)

)
+ c1

(
ln (1−s1)

(1+s1)
− 2s1

(1−s1)(1+s1)

)
= ln (1−s1)

(1+s1)
− 2s1

(1−s1)(1+s1)
,

c0

(
− 2

(1−s2)(1+s2)

)
+ c1

(
ln (1−s2)

(1+s2)
− 2s2

(1−s2)(1+s2)

)
= ln (1−s2)

(1+s2)
− 2s2

(1−s2)(1+s2)
.

(2.69)
The linear system has the solution:

c0 = 0,

c1 = 1.
(2.70)

Therefore, the unknown function m(t) is:

m (t) = c0P0 + c1P1 = t. (2.71)

Thus, the integral equation is solved. Notice that in this example the function
m (t) = t exactly satisfies the integral equation. Usually, it is necessary to use
more terms in the m expansion. Practically, N = 20÷ 30 is sufficient in most
applications (see chapter 8 for more details).

Observation 13 In this example, the Hadamard integrals are calculated
analytically, though in practical applications they are calculated numerically
by using the algorithm seen in section 2.5.

Example 2: Numerical Solution of a More General Case

Consider an integral equation which has an integral of the type

I = =

+1∫

−1

m (t)
1

1− cos (π (t− s))
dt − 1 < s < +1. (2.72)

Clearly, the integral has to be interpreted in the Hadamard finite-part sense, because
when t → s, the denominator of the integrand function is an infinitesimal function.
It is easy to show that, when t → s, the denominator can be written by using the
Taylor expansion as

1− cos (π (t− s)) ≈
(

1

2
π2

)
(t− s)2 +

(
− 1

24
π4

)
(t− s)4 . (2.73)
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The previous expression suggests that the original integral can be transformed into
a form =

∫ f(t)

(t−s)2
. To achieve this result, it is sufficient to multiply and divide the

function21 1
1−cos(π(t−s))

by the quantity (t− s)2:

I = =

+1∫

−1

m (t)
1

1− cos (π (t− s))
dt = =

+1∫

−1

H (t,s)
1

(t− s)2 dt, (2.74)

where

H (t,s) = m (t)
(t− s)2

1− cos (π (t− s))
. (2.75)

Using the Legendre polynomials to expand the unknown function m(t), the obtained
result is:

m (t) =
N−1∑

k=0

ckPk (t) ⇒ H (t,s) =
(t− s)2

1− cos (π (t− s))

N−1∑

k=0

ckPk (t) . (2.76)

Substituting this formula into the integral I:

I = =

+1∫

−1

(t−s)2

1−cos(π(t−s))

N−1∑
k=0

ckPk (t)

(t− s)2 dt =
N−1∑

k=0

ck =

+1∫

−1

(t−s)2

1−cos(π(t−s))
Pk (t)

(t− s)2 dt. (2.77)

By observing equation (2.77), it can be understood that, when the collocation
method is applied, the integral

Il = =

+1∫

−1

(t−sl)
2

1−cos(π(t−sl))
Pk (t)

(t− sl)
2 dt (2.78)

has to be calculated numerically. Clearly, sl is the lth zero of the Legendre polynomial
PN(s). To calculate the previous integral, the algorithm seen in section 2.5 can be
used:

=

+1∫

−1

(t−sl)
2

1−cos(π(t−sl))
Pk (t)

(t− sl)
2 dt =

M∑

i=1

wI
i (sl)

(ti − sl)
2

1− cos (π (ti − sl))
Pk (ti) , (2.79)

where

wI
i (sl) = hi

M−1∑

j=0

d−1
j Pj (ti)

[
Q
′
j (sl)

]
. (2.80)

21Notice that (t−s)2

1−cos(π(t−s)) is not singular because limt→s
(t−s)2

1−cos(π(t−s)) = 2
π2 .
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It is very important to notice that ti are the zeros of the Legendre polynomial PM ,
and that, in general, M 6= N . In this dissertation, N = 20 and M = 200 will be
used very often (see chapter 8). This condition is required in order to solve the
integral equation with sufficient accuracy.

Observation 14 If ti ≈ sl, the function (ti−sl)
2

1−cos(π(ti−sl))
is in the form 0

0
. To avoid

numerical problems, under that condition, it is better to use the Taylor expansion
as

(ti − sl)
2

1− cos (π (ti − sl))
≈ 2

π2
+

(ti − sl)

6

2

+
π2 (ti − sl)

4

120
+

π4 (ti − sl)
6

3024
+

π6 (ti − sl)
8

86400
.

(2.81)

2.7 Euler-Lagrange Equation Involving Hadamard

Finite-part Integrals

This is one of the most important tools used in this dissertation. The mathematical
derivation is not obtained in a very rigorous way because the purpose of this section
is only to help the reader better understand the next chapters.
Presented here is an original extension, proposed by the writer, of the well known
Euler-Lagrange equation (see [11]) in a particular case, where the integral has to be
interpreted in the Hadamard finite-part sense. Consider the following integral22:

J = C1

+1∫

−1

m (s)


 =

+1∫

−1

m (t) Y (t,s) dt


 ds, (2.82)

where C1 is a constant and where the kernel Y (t,s) is the following symmetric
function23:

Y (t,s) = Y (s,t) =
1

(t− s)2 . (2.83)

Suppose that the goal is to minimizes J . Consider, also, a condition of the following
type:

C = C2

+1∫

−1

m (t) g (t) dt, (2.84)

22If the external integral is either a Cauchy integral or a Hadamard finite-part integral, the
procedure reported below does not change.

23 In this dissertation, only Y (t,s) = 1
(t−s)2

or a different expression referable to this will be

found.
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where C is an assigned constant and g (s) is a known function. Obviously, the
function m has to satisfy the boundary conditions

m (−1) = m0,

m (+1) = m1.
(2.85)

In order to achieve the goal, consider now a function δ1(t) that satisfies the condition

δ1 (−1) = δ1 (+1) = 0. (2.86)

With this function, a solution for the problem can be found using the following
relation24:

m (·) = mopt (·) + σδ1 (·) σ ∈ (−1,1) . (2.87)

Notice that in the previous equation m satisfies the boundary conditions (2.85), if

mopt (−1) = m0,

mopt (+1) = m1.
(2.88)

Notice, also, that mopt is the candidate function to minimize J . In order to apply
the Lagrange multiplier method, condition (2.84) has to be manipulated. It can be
written as

l (t) = C2

t∫

−1

m (s) g (s) ds ⇒ l′ (t)− C2m (t) g (t) = 0, (2.89)

where,
l (+1) = C,

l (−1) = 0.
(2.90)

As can be seen in [11], in order to apply the Lagrange multiplier method, the
following steps must be taken:

• Step 1
Substitution of m (·) = mopt (·) + σδ1 (·) into the expression of J , and
calculation of the derivative with respect to σ. The derivative has to be
evaluated for σ = 0.

• Step 2
Substitution of l (·) = l (·)opt+σδ2 (·) and m (·) = mopt (·)+σδ1 (·) into equation

(2.89). Notice that δ2 (+1) = δ2 (−1) = 0, lopt (+1) = C and lopt (−1) = 0.
After the substitution, the derivative with respect to σ has to be calculated
and evaluated for σ = 0.

24The subscript ”opt” indicates the optimal condition: J is minimized.
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The result of the first step is:

J (mopt (·) + σδ1 (·)) = C1

+1∫

−1

(mopt (s) + σδ1 (s))


 =

+1∫

−1

(mopt (t) + σδ1 (t)) Y (t,s) dt


 ds.

(2.91)
From this expression, it is easy to calculate the derivative with respect to σ:

d
dσ

J (mopt (·) + σδ1 (·)) = C1

+1∫
−1

δ1 (s)

(
=
+1∫
−1

(mopt (t) + σδ1 (t)) Y (t,s) dt

)
ds +

+ C1

+1∫
−1

(mopt (s) + σδ1 (s))

(
=
+1∫
−1

δ1 (t) Y (t,s) dt

)
ds.

(2.92)
The derivative, calculated for σ = 0, is:

[
d
dσ

J (mopt (·) + σδ1 (·))
]
σ=0

= C1

+1∫
−1

δ1 (s)

(
=
+1∫
−1

mopt (t) Y (t,s) dt

)
ds +

+ C1

+1∫
−1

mopt (s)

(
=
+1∫
−1

δ1 (t) Y (t,s) dt

)
ds.

(2.93)

The two integrals seen in equation (2.93) are equal to each other (see appendix A
for the demonstration). Thus, it can be deduced that

[
d

dσ
J (mopt (·) + σδ1 (·))

]

σ=0

= 2C1

+1∫

−1

δ1 (t)


 =

+1∫

−1

mopt (s) Y (t,s) ds


 dt. (2.94)

Now, calculating the derivative for the condition written in equation (2.89), it is
possible to write:

[
d

dσ

(
(lopt (t) + σδ2 (t))′ − C2 (m (t) + σδ1 (t)) g (t)

)]

σ=0

= δ′2 (t)−C2δ1 (t) g (t) = 0.

(2.95)
Multiplying this expression by λ (t), integrating by parts the term which contains
the derivative of δ2

25 and summing the result with equation (2.94), the resulting
expression is:

2C1

+1∫

−1

δ1 (t)


 =

+1∫

−1

mopt (s) Y (t,s) ds


 dt−

+1∫

−1

λ′ (t) δ2 (t) dt−C2

+1∫

−1

λ (t) δ1 (t) g (t) dt = 0.

(2.96)

25Remember the condition for δ2: δ2 (+1) = δ2 (−1) = 0.
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Observing that δ1 (t) and δ2 (t) are independent and arbitrary functions, δ1 ≡ 0 and
δ2 ≡ 0 can be imposed separately. Imposing δ1 ≡ 0:

δ1 ≡ 0 ⇒ −
+1∫

−1

λ′ (t) δ2 (t) dt = 0. (2.97)

Because δ2 (t) is an arbitrary function, to always satisfy the previous relation, the
following condition is required:

λ′ (t) = 0 ⇒ λ = const. (2.98)

Using this result and imposing δ2 ≡ 0, from (2.96), it can be deduced that:

δ2 ≡ 0 ⇒ 2C1

+1∫

−1

δ1 (t)


 =

+1∫

−1

mopt (s) Y (t,s) ds


 dt−C2λ

+1∫

−1

δ1 (t) g (t) dt = 0. (2.99)

The previous equation can be rewritten as

+1∫

−1

δ1 (t)


2C1 =

+1∫

−1

mopt (s) Y (t,s) ds− C2λg (t)


 dt = 0. (2.100)

Again, the function δ1 (t) is arbitrary. Therefore, in order to solve equation (2.100),
the following equation has to be satisfied:

2C1 =

+1∫

−1

mopt (s) Y (t,s) ds− C2λg (t) = 0. (2.101)

This is the Euler-Lagrange equation, which, in usual problems, is a differential
equation. Here, in this particular problem, it is an integral equation.
Obviously, the condition for the function mopt

C = C2

+1∫

−1

mopt (t) g (t) dt (2.102)

has to be satisfied as well as the Euler-Lagrange equation.

2.7.1 Numerical Solution of the Euler-Lagrange
Integral Equation

The Euler-Lagrange equation was just introduced in previous section. How can it
be solved numerically to find mopt? By observing the linearity of the equations, the
procedure reported below can be followed.
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• Step 1
The value of λ is arbitrarily chosen: λ = λguess 6= 0.

• Step 2
The Euler-Lagrange integral equation (2.101) is solved by using the collocation
method and by expanding the function, for example, with Legendre polyno-
mials. Let mguess be called the solution.

• Step 3
mguess is substituted into equation (2.102)

Cguess = C2

+1∫

−1

mguess (t) g (t) dt. (2.103)

• Step 4
Because of the linearity of the Euler-Lagrange equation, it can be concluded
that:

mopt = mguess
C

Cguess

. (2.104)

In subsequent chapters, this method will be applied often26.

26In some cases, an analytical solution is possible. See chapter 9.
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Nomenclature

Pj, Pn, PM Legendre polynomial

hi Gauss weights used in the Gauss-Legendre quadrature

wi Gauss weights used in the generic Gauss quadrature

ti nodes used in the quadrature formulae

=
∫

Hadamard finite-part integral

−∫ integral defined in the Cauchy principal value sense

wI
i weights used in the quadrature of hypersingular integrals

F antiderivative of f

Qj −
+1∫
−1

Pj(t)

t−s
dt

dj

+1∫
−1

P 2
j dt

K regular kernel

Y singular kernel

J functional

m unknown function

mopt solution of the Euler-Lagrange equation

δ1(t), δ2(t) arbitrary functions

σ parameter with the property σ ∈ (−1, + 1)

λ Lagrange multiplier

g, α known functions

C1, C2, C constant parameters

l (t) C2 =
t∫
−1

m (s) g (s) ds

sl lth zero of PN(s)

Subscripts

guess related to the numerical solution of the Euler-Lagrange equation

opt related to the solution of the Euler-Lagrange equation
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Chapter 3

Basic Concepts of Lifting-line
Theories

3.1 Introduction

This chapter introduces some classical theories of airfoils and wings under the
hypotheses of ideal incompressible fluid and small perturbations (linear theory). The
fundamental concepts of Weissinger’s assumption and Prandtl’s classical lifting-line
theory are treated as well.

3.2 Classical Thin Airfoil Theory

It is not of interest to determine the velocity field around the airfoil. The only
interest is to calculate the lifting force1, thus, only the camber line2 with vortices
is considered. The concept of vortex sheet is more than a mathematical method
to study the problem; it also has physical significance. In reality, there is a thin
layer on the surface, due to the friction between the surface and the airflow (called
boundary layer), which is a highly viscous region in which the velocity gradient is
large. Because of this gradient, a vorticity is produced. The idea to use the vortices
is one method to take into account the viscosity effects in the inviscid fluid (see [1]).
Since the airfoil is thin, it can be assumed that the vortices are all positioned along
the x axis (the axes are chosen as shown in figure 3.2). The small perturbation
velocity potential at a point P (x,z) is:

dφ (x,z) = −dΓ

2π
ϑ = −dΓ

2π
arctan

z

x− ξ
= −γ (ξ)

2π
arctan

z

x− ξ
dξ. (3.1)

1Under the assumption made before, the drag is zero. See [1] and [2] for details.
2In [1], [2] and [3] it is demonstrated that the thickness does not effect the lifting force.
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Figure 3.1. Vortex sheet.

Figure 3.2. Thin airfoil and vortices along x.

Because of the linearity, the total small perturbation velocity potential is:

φ (x,z) = − 1

2π

l∫

0

γ (ξ) arctan
z

x− ξ
dξ. (3.2)
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It is easy to show that the potential is not a continuous function. In particular, in
the wake3, for x > l:

limz→0+ φ (x > l,z → 0+) = 0,

limz→0− φ (x > l,z → 0−) = − 1
2π

l∫
0

γ (ξ) 2π dξ = −Γ.
(3.3)

From these equations:

∆φ (x > l,0) = φ
(
x > l,z → 0+

)
− φ

(
x > l,z → 0−

)
= Γ. (3.4)

It can be concluded that the discontinuity of the potential is equal to the circulation
Γ . From the potential, it is possible to obtain the following velocities:

vx (x,z) = ∂φ
∂x

= 1
2π

l∫
0

γ (ξ) z
(x−ξ)2+z2 dξ,

vz (x,z) = ∂φ
∂z

= − 1
2π

l∫
0

γ (ξ) x−ξ

(x−ξ)2+z2 dξ.

(3.5)

It is possible to demonstrate (see [3]):

vx (x,0) = ±γ (x)

2
, vz (x,z) = − 1

2π
−
l∫

0

γ (ξ)

x− ξ
dξ. (3.6)

The integral equation in the unknown γ (ξ) is written by the imposition of the WTC.
Let the equation of the camber line be called f(x). The WTC is now:

vz (x,z) = − 1

2π
−
l∫

0

γ (ξ)

x− ξ
dξ = V∞

df

dx
. (3.7)

It is well known that the solution of equation (3.7) is not unique. To avoid this
problem, the Kutta condition (V1 = V2, as shown in figure 3.3) is used. This
condition is equivalent to4

γ(l) = 0. (3.8)

Now consider a flat plate (see figure 3.4). The integral equation (3.7) becomes:

− 1

2π
−
l∫

0

γ (ξ)

x− ξ
dξ = V∞

df

dx
= −V∞α ⇒ α =

1

2πV∞
−
l∫

0

γ (ξ)

x− ξ
dξ. (3.9)

3It is correct to say that the position of the wake is known and coincident with the x axis only
under the small perturbations hypothesis. See chapter 4 for more details.

4 Notice that γ(l) = 0 is also equivalent to ∆p(l) = ρ∞V∞γ(l) = 0.
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Figure 3.3. Kutta condition.

Figure 3.4. Flat plate with incidence α.

It is possible to demonstrate that the solution is:

γ (x) = 2V∞α

√
l − x

x
. (3.10)

From this relation, the total circulation Γ is:

Γ =

l∫

0

γ (ξ) dξ = 2V∞α

l∫

0

√
l − ξ

ξ
dξ = 2V∞α

lπ

2
= V∞αlπ. (3.11)

Observation 15 Is it possible, for a flat plate, to concentrate all vortices at a
point xΓ such that the total circulation Γ is the same? It is possible. Obviously, the
following condition has to be satisfied:

xΓ

l∫

0

γ (x) dx =

l∫

0

γ (x) x dx. (3.12)
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Using equation (3.10), and observing that

l∫

0

√
l − x

x
dx =

lπ

2
, (3.13)

l∫

0

√
l − x

x
x dx =

l2π

8
, (3.14)

the obtained result is

xΓ
lπ

2
=

l2π

8
⇒ xΓ =

l

4
. (3.15)

Observation 16 By using the concentrated vortex, what is the point where the
WTC is exactly satisfied? In other words, if the concentrated vortex Γ = V∞αlπ is
positioned at xΓ , for what point is vz = −V∞α? The answer is simple. The induced
velocity by the vortex Γ is:

vz (x) = − Γ

2π (x− xΓ )
. (3.16)

By imposing vz (xWTC) = −V∞α:

− Γ

2π (xWTC − xΓ )
= −V∞α ⇒ xWTC =

3l

4
. (3.17)

3.3 An Alternative Thin Airfoil Theory Using the

Small Perturbation Acceleration Potential

From [3], it is possible to see an alternative formulation which is based on the
small perturbation acceleration potential rather than the small perturbation velocity
potential. Consider the same airfoil studied in the previous section and a distribution
ma(x) of doublets5 on the x axis. Suppose that all axes are parallel and directed
along z. The small perturbation acceleration potential of the doublet distribution
is:

Ψ (x,z) = − 1

2π

l∫

0

ma (ξ)
z

(x− ξ)2 + z2
dξ. (3.18)

5The subscript a means ”airfoil”, to distinguish ma from m, which is the doublet distribution

on a wing (m =
l∫
0

ma (ξ) dξ).
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This equation is formally the same as the first expression in equation (3.5) from

which vx (x,0) = ±γ(x)
2

was found, and, in a similar way, the following result can be
obtained:

Ψ (x,0) = ∓ma (x)

2
. (3.19)

Under the hypothesis of small perturbations, the relation

∆p = −ρ∞∆Ψ (3.20)

is valid, hence, it can be inferred that

∆p (x) = −ρ∞
[
Ψ

(
x,0−

)
− Ψ

(
x,0+

)]
= −ρ∞ma (x) . (3.21)

In order to impose the WTC, the velocity is needed. Therefore, it is useful to write
the small perturbation velocity potential from the small perturbation acceleration
potential. Recalling

φ (x,z) =
1

V∞

x∫

−∞
Ψ (τ,z) dτ, (3.22)

and using equation (3.18), the small perturbation velocity potential is:

φ (x,z) = − 1

2πV∞

l∫

0

ma (ξ)

x∫

−∞

z

(τ − ξ)2 + z2
dτ dξ (3.23)

By calculating the integral6 and the velocity vz = ∂φ
∂z

, the WTC can be imposed.
By solving the integral equation, ma(x) can be found. When ma(x) is determined,
∆p (x) can be calculated.

6 Observe that
∫

z
(τ−ξ)2+z2 dτ = arctan τ−ξ

z ; therefore,

x∫

−∞

z

(τ − ξ)2 + z2
dτ = arctan

x− ξ

z
− lim

τ→−∞
arctan

τ − ξ

z
.

Now, observing that limτ→−∞ arctan τ−ξ
z = const, the following relation can be written:

x∫

−∞

z

(τ − ξ)2 + z2
dτ = arctan

x− ξ

z
− const.

Thus, it is deduced that

φ (x,z) = − 1
2πV∞

l∫

0

ma (ξ)
(

arctan
x− ξ

z
− const

)
dξ.

(Continued on page 51)

50



3 – Basic Concepts of Lifting-line Theories

Observation 17 By using the doublet distribution, it is possible to concentrate the
doublets at a point xm, as it was proved for the vortices in section 3.2. Repeating
the same procedures, the following expressions can be demonstrated:

ma (x) = −2V 2
∞α

√
l − x

x
, (3.24)

m =

l∫

0

ma (ξ) dξ = −2V 2
∞α

l∫

0

√
l − ξ

ξ
dξ = −V 2

∞αlπ. (3.25)

It is also possible to demonstrate the following relations:

xΓ = xm =
l

4
, xWTC =

3l

4
. (3.26)

3.4 Prandtl’s Classical Lifting-line Theory

Now Prandtl’s approach to predict the aerodynamic properties of a finite wing will
be analyzed. In Prandtl’s scheme, the wing is studied by using the scheme shown
in figure (3.5). The velocity dun at a distance y induced by a vortex γ(yd) dyd is
needed. Using the Biot and Savart law (see figure 3.5)7:

dun (y) = − γ (yd) dyd

4π (yd − y)
⇒ un (y) = −

+bw∫

−bw

dΓ (yd)
dyd

4π (yd − y)
dyd. (3.27)

Each airfoil is considered independently. Therefore, applying the Kutta-Joukowski
theorem:

dL = ρ∞V∞Γ (y) dy =
1

2
ρ∞V 2

∞l (y) 2π [α (y)− αi (y)− αL=0 (y)] dy. (3.28)

(Continued from page 50, footnote 6)

This expression is the same as the expression (3.2) if it is observed that arctan x−ξ
z = π

2−arctan z
x−ξ

and if the following relation is used:

γ (ξ) = −ma (ξ)
V∞

.

7The induced velocity un (y) is assumed positive if it is directed along z.
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Figure 3.5. Prandtl’s scheme.

Figure 3.6. Induced angle of attack.

Using equation (3.27) and the expression of the induced angle of attack (αi (y) =

−un(y)
V∞

):

ρ∞V∞Γ (y) =
1

2
ρ∞V 2

∞l (y) 2π



α (y) +

−
+bw∫
−bw

dΓ(yd)
dyd

4π(yd−y)
dyd

V∞
− αL=0 (y)




. (3.29)
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Simplifying, the fundamental equation of Prandtl’s lifting-line theory is obtained:

Γ (y)

V∞l (y) π
= α (y)− αL=0 +

1

4πV∞
−
+bw∫

−bw

dΓ (yd)
dyd

(yd − y)
dyd. (3.30)

The solution of this equation, Γ , leads to calculating the lift and, as will be better
seen later, the induced drag.

Observation 18 In Prandtl’s lifting-line theory, the lifting-line is positioned in a
non-imposed abscissa.

Observation 19 Consider Prandtl’s fundamental equation. In that formula, the
only unknown is the circulation Γ (y), which appears also in the derivative form. It
is possible to modify the equation in such a way as to have only the unknown Γ (y)
and not its derivative. To achieve that, observe that the circulation Γ must be zero
at the tips. This is because there is a pressure equalization from the bottom to the
top of the wing (precisely, at y = ±bw), and, hence, no lift is created at these points.
By using these conditions, it is possible to integrate by parts the Cauchy integral:

−
+bw∫

−bw

dΓ (yd)
dyd

(yd − y)
dyd =

[
Γ (yd)

(yd − y)

]+bw

−bw

+ =

+bw∫

−bw

Γ (yd)

(yd − y)2 dyd = =

+bw∫

−bw

Γ (yd)

(yd − y)2 dyd. (3.31)

Using this relation, Prandtl’s fundamental equation becomes:

Γ (y)

V∞l (y) π
= α (y)− αL=0 +

1

4πV∞
=

+bw∫

−bw

Γ (yd)

(yd − y)2 dyd. (3.32)

This equation is much easier to solve numerically.

3.5 Weissinger’s Lifting-line Theory

The airfoil theory has shown that, for a flat plate, the WTC is exactly satisfied in
xWTC when the vortex is positioned at xΓ .
Weissinger’s approach (see [12] and [13]) is based on this concept: the vortices
are concentrated in a single vortex Γ (like in Prandtl’s theory). Unlike Prandtl’s
theory, the vortex is now positioned at xΓ (y). The WTC condition is then imposed
on xWTC(y).
In order to show Weissinger’s approach, the integral equation is obtained by using the
small acceleration potential and a flat plate8. Consider a wing without a sweep angle

8In a flat plate, αL=0 = 0.
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and with the property l(y) = const. It is possible to translate the coordinate system
to have xΓ = xm = 09. Obviously, in that coordinate system, xWTC = const = l

2
.

To achieve the goal of writing the integral equation using Weissinger’s method, the
following steps must be taken:

• Step 1
Writing the expression of the small perturbation acceleration potential of the
doublet distribution along the line xm = 0. The axes of the doublets directed
along +z can be chosen10.

• Step 2
Writing the expression of the small perturbation velocity potential from the
small perturbation acceleration potential by integration.

• Step 3
Imposition of the WTC on xWTC . The resulting equation will be Weissinger’s
integral equation.

The above operations will be performed in the following subsections.

3.5.1 Writing of the Small Perturbation Acceleration
Potential

Consider a doublet M(yd) = m(yd) dyd positioned at a point Pd(0,yd,0). The small
perturbation acceleration potential at a generic point P (x,y,z) is:

dΨ (x,y,z) = −m (yd) dyd

4π

z
[
x2 + (y − yd)

2 + z2
] 3

2

. (3.33)

Now, because of the linearity, the potential of all doublets can be written by
integrating the previous equation:

Ψ (x,y,z) = − 1

4π

+bw∫

−bw

m (yd)
z

[
x2 + (y − yd)

2 + z2
] 3

2

dyd. (3.34)

9 Unlike the general case, because of the made assumptions, xm is not a function of y.
10It is possible to make the opposite choice. The method is formally the same.
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3.5.2 Writing of the Small Perturbation Velocity
Potential

As was seen in chapter 1, this operation is easily done by using the formula

φ (x,y,z) =
1

V∞

x∫

−∞
Ψ (τ,y,z) dτ. (3.35)

Substituting in the expression of Ψ :

φ (x,y,z) = − 1

4πV∞

+bw∫

−bw

x∫

−∞
m (yd)

z
[
τ 2 + (y − yd)

2 + z2
] 3

2

dτ dyd. (3.36)

And, calculating the integral, the small perturbation velocity potential expression
becomes:

φ (x,y,z) = − 1

4πV∞

+bw∫

−bw

m (yd)
z

(y − yd)
2 + z2




x√(
x2 + (y − yd)

2 + z2
) + 1


 dyd.

(3.37)

3.5.3 Imposing of WTC and Writing of Weissinger’s
Integral Equation

In this particular case, the WTC is easily expressed as

α (y) = αi (y) ⇒ α (y) = − un

V∞
= − 1

V∞

[
∂φ (x,y,z)

∂z

]

z = 0
x = l

2

. (3.38)

The derivative of the small perturbation velocity potential calculated at z = 0 and
x = l

2
is:

un (y) =

[
∂φ (x,y,z)

∂z

]

z = 0
x = l

2

= − 1

4πV∞
=

+bw∫

−bw

m (yd)

(y − yd)
2




(
l
2

)
√(

l
2

)2
+ (y − yd)

2
+ 1


 dyd.

(3.39)
In order to use the quadrature formula for the Hadamard finite-part integral, it is
convenient to isolate the singularity. To achieve that, notice the identity

1
(y−yd)2


 ( l

2)√
( l

2)
2
+(y−yd)2

+ 1


 = −1(

( l
2)+

√
( l

2)
2
+(y−yd)2

)√
( l

2)
2
+(y−yd)2

+ 2
(y−yd)2

.

(3.40)
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Substituting into the equation that represents un(y) and using equation (3.38), the
final expression of Weissinger’s integral equation is obtained:

α (y) = 1
2πV 2∞

=
+bw∫
−bw

m(yd)

(y−yd)2
dyd − 1

4πV 2∞

+bw∫
−bw

m(yd)(
l
2
+

√(
( l

2)
2
+(y−yd)2

))√(
( l

2)
2
+(y−yd)2

) dyd.

(3.41)

Observation 20 What is the difference between Weissinger’s integral equation and
Prandtl’s integral equation? To answer this question, consider Prandtl’s equation
written for the same case:

Γ (y)

V∞l (y) π
= α (y) +

1

4πV∞
=

+bw∫

−bw

Γ (yd)

(yd − y)2 dyd. (3.42)

Observing that

− ρ∞m (yd) = ρV∞Γ (yd) ⇒ Γ (yd) = −m (yd)

V∞
, (3.43)

it is deduced that the corresponding Prandtl’s equation is:

α (y) = −m (y)

V 2∞lπ
+

1

4πV 2∞
=

+bw∫

−bw

m (yd)

(yd − y)2 dyd. (3.44)

Comparing this formula with Weissinger’s equation (3.41), it is clear that Weissinger’s
equation is much more accurate. That is for two reasons:

• Reason 1
Weissinger’s equation contains a term dependent on l.

• Reason 2
The imposition of the WTC in xΓ = xm has a physical meaning, as seen in
the airfoil theory.

3.5.4 An Alternative Demonstration of Kutta-Joukowski
Theorem: Consistency of Weissinger’s Scheme

In this section, the writer proposes an alternative demonstration for a particular
case of the Kutta-Joukowski theorem. This is not a very general demonstration, but
it shows some interesting aspects of Weissinger’s scheme. Consider an infinite wing
(see figure 3.7). Assume l = const and α = const. The y axis is coincident with
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Figure 3.7. A two-dimensional wing.

the position of xΓ . The doublet11 distribution m(y) must be constant for symmetry
reason. Because of that, the small perturbation acceleration potential is:

ψ (x,y,z) = −m

4π

+∞∫

−∞

z
[
x2 + (y − yd)

2 + z2
] 3

2

dyd = −m
z

2π (x2 + z2)
. (3.45)

The small perturbation velocity potential is12:

φ (x,y,z) = 1
V∞

x∫
−∞

ψ (τ,y,z) dτ = − 1
2V∞

m
π

[
arctan τ

z

]x

−∞ =

= − 1
2V∞

m
π

arctan x
z

+ 1
2V∞

m
π
· const.

(3.46)

The integral equation is now:

α = − 1
V∞

[(
∂φ(x,y,z)

∂z

)]
x = l

2

z = 0

= − 1
V∞

[
1

2V∞
m
π

x
x2+z2

]
x = l

2

z = 0

= − 1
V 2∞

m
π

1
l
.

(3.47)

Thus, it has been demonstrated that

m = −lπV 2
∞α. (3.48)

In the airfoil theory, it has also been shown that

Γ = V∞αlπ. (3.49)

11It is assumed that all doublets have axes directed along +z.
12If it is supposed that z > 0, the constant is +π

2 . If it is supposed that z < 0, the constant is
−π

2 . Notice that in this demonstration the constant value is not important, because the expression
of the potential will be derived to obtain the velocity.
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Substituting:
m = −lπV 2

∞α = −V∞Γ. (3.50)

Remembering that the lift for unit of length is L = −ρm, the obtained results is:

L = ρ∞V∞Γ. (3.51)

Therefore, the Kutta-Joukowski theorem has been obtained. This shows that
Weissinger’s scheme is consistent.
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Nomenclature

=
∫

Hadamard finite-part integral

−∫ integral defined in the Cauchy principal value sense

ρ fluid density

∆p pressure jump

m doublet distribution

Γ circulation

γ distributed vorticity, distributed trailing vorticity

WTC Wall Tangency Condition

φ small perturbation velocity potential

Ψ small perturbation acceleration potential

∆Ψ small perturbation acceleration potential jump

vx x-component perturbation velocity

vy y-component perturbation velocity

vz z-component perturbation velocity

l chord

f equation of the chamber line

α angle of attack

αi induced angle of attack

αL=0 angle of attack corresponding to the condition of zero lift

un normalwash

2bw wing span

Subscripts

∞ freestream conditions

a airfoil

Γ position where the vortex is concentrated

m position where the doublet is concentrated

WTC position where WTC is imposed
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Chapter 4

Induced Drag

4.1 Introduction

This chapter introduces the fundamental concept of induced drag.
The induced drag is an important issue in the aeronautic field. At present, airlines
pay hundreds of millions of dollars in fuel costs annually, and the environmental
impact of aircraft is closely tied to the amount of fuel consumed, therefore, the
accurate estimation and reduction of this drag is of great interest.
It is well known (see [14]) that the induced drag is 80%-90% of the entire drag at
takeoff1. The takeoff phase is a small portion of the entire aircraft mission, but
the design constraints of the engines are critical constraints in the aircraft design.
Hence, the induced drag reduction is very important to optimize the entire design
of an airplane. Moreover, the induced drag is directly tied to takeoff noise, and a
reduction of its amount is very desirable.

4.2 Physical description of the Induced Drag

In an ideal fluid (i.e., a fluid without viscosity), an airfoil has no drag2 (see [1], [2]).
Physically, the result of zero drag makes no sense. It is known that any aerodynamic
body immersed in a real flow will experience a drag. Why is this possible? It is
possible because the viscous effects, which generate frictional shear stress at the
body surface (skin friction drag) and which cause the flow to separate from the
surface on the back of the body (form drag), thus creating a wake downstream, are
not taken into account.
Now consider a finite wing. It is well known that even if the fluid is inviscid the drag

1The induced drag constitutes approximately 40% of the total drag of typical transport aircraft
at cruise conditions (see [14]).

2This is the well known D’Alambert’s paradox.
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is not zero. How is it possible? To explain this concept, consider the mechanism
that creates the lift. In a wing the lift is generated by the net imbalance of the
pressure distribution around the airfoil. This pressure distribution creates also a
flow around the tips (see figure 4.1). It is not difficult to understand that trailing
vortices are created. This is the difference with the two-dimensional case: in the
three-dimensional case there is the wake and it induces a vertical velocity3 called
downwash. That is why each airfoil of the wing is now subjected to the velocity
V∞ and to the downwash velocity (see figure 56). As a consequence, the relative
velocity is no longer V∞, and the effective angle of attack is αeff = α − αL=0 − αi.
The component dDi of the aerodynamic force dF is the induced drag. For a very
good overview of the theory related to induced drag, see [14]-[17].

Observation 21 As seen in chapter 3, the induced velocity depends on the gradients
of the circulation. This is the mathematical explanation of the physical generation
of the induced drag (see figure 4.1): at the tips the circulation must be zero4 and,
therefore, the gradient of the circulation is large. Consequently, the induced drag is
generated.
Based on this fact, the induced drag can be reduced by reducing such high gradients
(C-wings, winglets, non-planar wings, closed wing systems, wing-grid concepts; see
for more details [14]).

Figure 4.1. Aerodynamic of a finite wing.

3A classical cantilever wing is implicitly considered. In general, the induced velocity is not
vertical.

4The circulation is related to the jump of pressure, and at the tips it has to be zero. Thus, the
circulation has to be zero as well.
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Figure 4.2. Induced drag and induced angle of attack.

4.2.1 Wake Description

It has been shown that the wake has an important role in the induced velocity and,
therefore, in the induced drag. As described in [18]-[22], two different approaches
can be used (see figure 4.3).

• Approach 1
Wake aligned with freestream.

• Approach 2
Wake not aligned with freestream.

Figure 4.3. Wake models in a wing.
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Clearly, in the real case, the wake is not aligned with freestream. This last case is
much more complicated (see [18]) because the final position of the wake is not known
and has to be determined (see [21]). Therefore, the problem becomes nonlinear even
if the flow governing equations are linear.
The wake modelization is well described in the Ph.D. dissertation of Smith [20]
and in [21]. Summarizing, Smith takes a control volume around the wing. From

Figure 4.4. Control volume (from [20]).

momentum conservation, he derives, in a steady flow, the following induced drag
expression (referred to the surface S6, see figure 4.4):

Di = −
∫

S6

(p− p∞) ds−
∫

S6

ρvx (V∞ + vx) ds. (4.1)

Smith also uses the small perturbations second-order accurate Bernoulli’s equation
(isentropic flow):

p− p∞ = −1

2
ρ∞

(
2vxV∞ +

(
1−M2

∞
)
v2

x + v2
y + v2

z

)
, (4.2)

and a similar expression for the density ρ′ = ρ− ρ∞:

ρ′ = −1

2
ρ∞

M2
∞

V 2∞

(
2vxV∞ +

(
1− (2− γ) M2

∞
)
v2

x + v2
y + v2

z

)
. (4.3)

Using these relations, he obtains:

Di = 1
2
ρ∞

∫
S6

[(
v2

x + v2
y + v2

z

)
+ (M2

∞ − 2) v2
x + M2∞vx

V∞

(
(γ − 2) M2

∞v2
x + v2

y + v2
z

)]
ds.

(4.4)
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This expression is valid for both wake models (either aligned with the local flow or
aligned with the freestream). Introducing the small perturbation velocity potential
φ and using the Laplace’s equation and Gauss’ theorem, Smith obtains the induced
drag expression:

Di = 1
2
ρ∞

∫
wt

∆φ
(

∂φ
∂n

)
dl + 1

2
ρ∞

∫
S6

(
φ∂vx

∂x
+ (M2

∞ − 1) v2
x+

+M2∞vx

V∞

(
(γ − 2) M2

∞v2
x + v2

y + v2
z

) )
ds.

(4.5)

In the last expression, the following properties are satisfied:

• Property 1
In the line integral along the wake trace from tip to tip, the potential jump
∆φ, from the upper side to the lower side of the wake, is present.

• Property 2
The velocity potential is discontinuous across the wake, but the normal velocity
∂φ
∂n

is continuous.

• Property 3
The induced drag expression also contains the vx perturbation and its
streamwise gradient ∂vx

∂x
.

When the rear surface (S6 in figure 4.4) of the control volume is moved far
downstream of the lifting system, the vx perturbation produced by the bound
vorticity becomes diminishingly small, leaving only the perturbations produced by
the trailing wake5.
Now it is possible to see the effect of the wake model. If the wake is considered to
be rigid and aligned with the freestream, no vx component can be produced, and
equation (4.5) leads to the well known expression for the induced drag:

Di =
1

2
ρ∞

∫

wt

∆φ

(
∂φ

∂n

)
dl. (4.6)

If the wake is modeled like depicted in figure 4.5, a vx component is produced and
the correct expression for the induced drag is equation (4.5). The quantity v′z in
figure 4.5 is the induced velocity on the wake.

5When the surface S6 is moved far from the lifting system, it is traditionally referred to as the
Trefftz plane (see [23] and [24]).
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Figure 4.5. vx perturbation in the wake.

4.3 Induced Drag Calculation

There are several methods available in the literature to calculate the induced drag.
A very good overview of these procedures is given in [14], [18] and [21]. As reported
in [18], to calculate the induced drag generated by a lifting surface, it is required that
all, or at least a portion, of the velocity field has to be determined in the vicinity of
the wing. Linear potential flow methods generally solve for the velocity over only a
small part of the flow field and save a tremendous amount of computational time.
In the present thesis, this approach will be used, introducing a new and original
technique to calculate the minimum induced drag in planar and non-planar wing
systems.
Some methods used to calculate the induced drag are briefly described here.
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• Method 1
Lifting-line theories

• Method 2
Vortex lattice methods

• Method 3
Linear panel methods

4.3.1 Lifting-line Theories

As was seen in chapter 3, the lifting-line theory analyzes the flow field as a potential
field with the wing modeled as a singularity in the form of a line vortex strength
located at the wing in an undefined or defined position ([1], [2], [13], [18] and [25]).
Helmholtz’s theorem requires that the spanwise change in vorticity of the lifting line
be shed into a sheet of distributed trailing vorticity. Typically, the trailing vorticity
is assumed to be aligned with the free-stream velocity and extended downstream to
infinity. As seen in chapter 3, the strength of the trailing vortex sheet at any point
is equal to the spanwise change in vortex strength at the corresponding point on
the lifting line. The sheet of trailing vorticity is assumed to be rigid and does not
deform under its own induced velocity. Referring to figure 56, the velocity un that
the trailing vortex sheet induces on the lifting line is used to calculate the induced
drag of the wing. Here, it should be noticed that the lifting-line model ignores the
effect of the chordwise distribution of vorticity on the downwash distribution, since
it collapses all of the vorticity generated at a given spanwise location to a single
point. Also, the effect that the deforming wake might have on a wing performance is
neglected. An interesting lifting-line theory has been formulated by Eppler [26].
Eppler used the lifting line located at the trailing edge of the planform. The
advantage of the method is that it has the simplicity of Prandtl’s lifting-line model,
but it includes some planform effects in the form of the trailing-edge shape.

4.3.2 Vortex-lattice Methods

The vortex-lattice methods are very useful: it is possible to capture the effect of
the chordwise loading on the overall wing aerodynamics. It is based (see [1], [3],
[18] and [27]-[38]) on the concept used in the lifting-line theories. The difference
is that, now, the vorticity along the wing is a function of x and y (lifting surface).
From a numerical point of view, the vortex-lattice method uses an array of horseshoe
vortices with spanwise segments bound to the wing and streamwise segments trailing
downstream from the trailing edge parallel to the free-stream velocity. The strength
of each vortex is determined by satisfying the condition that the flow has to be
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tangent to the wing (considered as a surface without thickness) at a number of
control points equal to the number of vortices used. This constraint defines a system
of simultaneous linear equations which are solved for the vortex strength. The
strength of the streamwise trailing vortex filaments are taken as the sum of the
strength of the horseshoe vortices distributed over the chord at a given spanwise
position. This method is shown in figure 4.6. Induced drag is normally calculated

Figure 4.6. Vortex-lattice system in a finite wing.

in the vortex-lattice method by applying the Kutta-Joukowski law on the spanwise
bound vortex segments under the influence of the local downwash. As is said in [18],
if the bound vortex segments are aligned perpendicular to the free-stream velocity or
aligned in some other direction depending on the wing planform shape, the solution
can be significantly different.
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4.3.3 Linear Panel Methods

Panel methods (see [39] and [40], for example) discretize wing’s upper and lower
surfaces into source, doublet, or vortex panels which induce a perturbation (see
previous chapters) on the uniform velocity field. The advantage of these methods
is that the wing thickness is taken into account. The strength of each panel is
determined by satisfying the flow tangency condition at a number of control points
equal to the number of panels used. A linear system of equations has to be solved
in order to find the unknowns. The shape of the freely deforming wake can also
be computed by discretizing the wake into panels and calculating the flow velocity
at each panel. If the wake is not oriented with the local velocity vector then the
panels in the wake are reoriented. An iterative process has to be conducted until the
convergence is reached. In the panel methods, the induced drag can be calculated by
taking the streamwise component of the product of surface pressure and panel area
and summing over all of the wing panels. The problem with this approach is that
the error in the calculated pressure distribution affects the induced drag calculation.
More details can be found in [2] and [18].

4.4 Munk’s Induced Drag Theorems

One of the most important contributes to the induced drag calculation and
minimization was given by Munk in one of his papers, [41]. In this section, Munk’s
two famous theorems will be analyzed.

4.4.1 Munk’s Stagger Theorem

The total induced drag of any three-dimensional system of lifting elements is
independent of the positions of the various elements in the direction of the freestream
velocity V∞.

This theorem is valid under the hypothesis of small perturbations, incompressible
fluid and rigid wake aligned with the freestream velocity. This theorem is very
useful. If all the lifting elements of a system are translated, parallel to V∞, into a
single plane normal to V∞, while the initial circulation is maintained constant, the
induced drag of the resulting two-dimensional system will be exactly the same as
that of the three-dimensional system. In figure 4.7, this theorem is explained with
an example. In particular, it is shown that the swept wing has the same induced
drag as the wing with straight lifting line (contained in a plane perpendicular to
V∞).
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Figure 4.7. Munk’s Stagger Theorem.

4.4.2 Munk’s Minimum Induced Drag Theorem

When all the elements of a lifting system have been translated into a single plane
(Munk’s Stagger Theorem), the induced drag will be minimum when the component
of the induced velocity normal to the lifting element at each point is proportional to
the cosine of the angle of inclination of the lifting element at that point.

This is Munk’s most important theorem. Incredibly, it is often ignored in the
literature. For that reason, the contents of this theorem are analyzed in detail.
In order to demonstrate the theorem6, consider the lifting line representing a non-
planar wing, as depicted in figure 4.8. Suppose that the distribution of circulation is
optimal, and, therefore, the induced drag is the minimum. Now consider an arbitrary
variation in the circulation distribution represented by δΓ1 and δΓ2. The local
aerodynamic load will be represented by ρ∞V∞δΓ1 and ρ∞V∞δΓ2, respectively. As
a result, the variation of the lifting contribute (see figure 4.8) is

δL = ρ∞V∞δΓ1 cos ϑ1 + ρ∞V∞δΓ2 cos ϑ2. (4.7)

6The demonstration reported here is not the original demonstration used by Munk.
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Figure 4.8. Munk’s Minimum Induced Drag Theorem in a non-planar wing.

Variations of circulation that do not change the lift are considered. Consequently,
δL has to be zero:

δL = ρ∞V∞δΓ1 cos ϑ1 + ρ∞V∞δΓ2 cos ϑ2 = 0. (4.8)

Now, because the initial condition is optimal, the variation of induced drag has to
be zero too:

δDi = ρ∞V∞δΓ1

(
−un1

V∞

)
+ ρ∞V∞δΓ2

(
−un2

V∞

)
= 0. (4.9)

Thus: 



δL = 0 ⇒ δΓ1 cos ϑ1 + δΓ2 cos ϑ2 = 0,

δDi = 0 ⇒ δΓ1un1 + δΓ2un2 = 0.
(4.10)

Clearly, if un1 = k cos ϑ1 and un2 = k cos ϑ2 (k is a constant), the previous system
is satisfied. This last statement demonstrates Munk’s Minimum Induced Drag
Theorem7.

Observation 22 Using Munk’s Minimum Induced Drag Theorem, interesting prop-
erties can be observed in conventional and non-conventional wing configurations. For

7Notice that if other conditions are imposed (like the structural weight) this theorem is no
longer valid (see [42], [43] and [44], for example).
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example, in a classical cantilever wing cos ϑ = 1 everywhere. Therefore, the induced
velocity must be constant along the longitudinal direction under optimal conditions.
It is also well known that when the circulation distribution is elliptical the induced
velocity is constant. Hence, the elliptical distribution is the optimal one. Another
example is the box wing (see Figure 4.9): in the vertical parts ϑ = π/2. For that
reason, un has to be zero in order to have the minimum induced drag8.

Figure 4.9. Munk’s Minimum Induced Drag Theorem in a box wing.

More details about this theorem and its applications can be found in [15] and [18].

4.5 Induced Drag Reduction: Non-planar Wing

Systems

As was said in the introduction, a reduction of the induced drag is of great interest
in the aircraft design. The non-planar wing system can influence a larger mass of air
than a classical wing with the same wing span and it can impart, to this air mass, a
lower average velocity change and, therefore, it has less drag. Biplane, multiplanes,
winglets, C-wings and closed wing systems are examples of non-planar wing systems.
Prandtl in [46] studied the multiplanes, and he outlined the following conclusions:

• Prandtl’s Conclusion 1
The biplane has less induced drag than a monoplane.

8The distribution over the horizontal parts is not discussed here. Details can be found in [45].
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• Prandtl’s Conclusion 2
The triplane has less induced drag than a biplane and so forth.

• Prandtl’s Conclusion 3
The wing system with minimum induced drag is the box wing system (see
figure 4.9 and, for more details, [45]). It was called best wing system by Prandtl.

It is evident that nonplanar wings have a better performance than classical wings
with the same wing span and total lift. Several authors have studied non-planar
wings. The most important contributes have been made by Kroo ([14]) and Cone
([15] ). They studied several non-planar wing configurations and showed the high
efficiency of those systems. An interesting example of non-planar wing is the wing-
grid tip device (for more details see [47]-[51]). In figure 4.10 and 4.11 a few examples
of the wing-grid concept are reported.

Figure 4.10. Wing-grid concept.

4.5.1 Non-planar Wing Systems: The Induced Lift

Induced lift is an important concept in non-planar wings, but it is often not
considered in the theoretical approaches. Consider a non-planar wing system (see
figure 4.12). As well explained in [15], the generic vortex positioned at point A
induces a velocity duT at point B. As result of this induced velocity, an induced
lift dLi is produced at point B. The concept of induced lift is interesting when two
different wings with the same induced drag and total lift are considered. In some
cases the induced lift is positive and in other cases it is negative. As reported in
[15], for a lifting segment represented using an arc,
the induced lift is positive when the local aerodynamic force F acts towards the local
center of curvature of the arc and negative when this force is directed outward from
the center of curvature (see figure (4.13)).
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Figure 4.11. Wing-grid examples (figures from [47]).

Figure 4.12. Induced lift in a non-planar wing.

Under the assumption of small velocities, uT can be neglected in comparison with
V∞. Therefore, In this dissertation, the induced lift effects are not considered.

4.5.2 Non-planar Wing Systems: Closed Wing Systems

A simple closed wing system is shown in figure 4.9. A possible practical closed wing
system could be a joined wing configuration as shown in figure 4.14. Why is a closed
system useful? There are several interesting properties that involve different fields
(aerodynamic, structures, flight mechanics, aeroelasticity and so forth) that should
be analyzed in order to answer this question. Here, only the aerodynamic point of
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Figure 4.13. Induced lift. Relation with the local aerodynamic force.

Figure 4.14. Closed wing system example: a joined wing configuration

view of the problem is analyzed. For more details see [52] and [53].
The main aerodynamic characteristics of a closed wing system are the following:

• Characteristic 1
The optimal induced drag is smaller in such wings than in a classical cantilever
wing with the same wing span and total lift. This property, for the annular
wings, will be demonstrated in chapter 9. Interesting considerations can be
found in [14] and [15].

74



4 – Induced Drag

• Characteristic 2
It is possible to add a constant circulation vortex to the system without
changing the wake. Such a constant strength vortex distribution does not add
any lift and the induced drag does not change. It may be used to manipulate the
section lift coefficients in a desirable way. This property, often not considered
in the theoretical derivations, will be used in chapter 9.

These characteristics will be extensively analyzed later. Here they are analyzed in
an intuitive way using graphical examples.
Consider the first property mentioned above. Why is the induced drag in a closed
wing system smaller? In order to answer the question, consider figure 4.15. As it is

Figure 4.15. Circulation distribution in a classical and closed wing systems.

easy to see, the circulation gradients are higher in the classical wing systems where
the circulation must be zero at the tips. In a closed wing system, there is not a
particular point where the circulation has to be zero, thus, the wing can be designed
to have a circulation distribution which has less induced drag (with the same lift). It
will be demonstrated that in an elliptical annular wing, the induced drag is smaller
than in a classical wing, even under optimal conditions for both wings9.

9This is true if the wing span and the total lift are the same.
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Now consider the second property. Because the induced drag is related to the
circulation gradients, it is clear that if a constant circulation is added, no lift or
induced drag are added (that property will be demonstrated for the elliptical annular
wing in chapter 9). This is very useful, since the circulation distribution (therefore
the lift distribution) can be modified as desired or needed without induced drag
penalty and without changing the total lift. For a box wing system, the property is
illustrated10 in figure 4.16.

Figure 4.16. A property in a closed wing system.

Using the previous property, it is easy to show ([14] and [54]-[55]) that a C-wing has
an optimal induced drag similar to the ”best wing system” (see also chapter 10). It
is possible to add a constant circulation distribution11 in such a way as to reduce
the load in the upper wing and increase the aerodynamic load in the lower wing
without changing the total load and induced drag . As can be seen in figure 4.17,
after this ideal operation the upper wing is almost with no load which explains, in a

10The initial circulation distribution corresponds to the optimal distribution (Prandtl’s best wing
system), see [45] for more details.

11Notice that, in figure 4.17, the optimal circulation distribution in the box wing system is still
considered.
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Figure 4.17. Box wing and C wing. An intuitive comparison.

qualitative way, the similar efficiency between the box wing and the C-wing found
by Kroo.

Closed Wing Systems. An Italian Research Project: the Prandtlplane

Following Prandtl’s idea of the best wing system, many scientists studied new
configurations (see, for example, [52]). One of these, the Prandtlplane, is a joined
wing configuration which consists of two swept wings (with opposite swept angle)
and is closed by two vertical additional surfaces. A comprehensive study of a similar
configuration was first performed by Lange [56]. The aeroelastic phenomena was
found to be a weak point of the considered analyses. Extensive use of composite
materials along with aeroelastic tailoring could be conveniently employed to this
purpose. For this reason, the configuration is nowadays very interesting. It
could increase the payload considerably and reduce the induced drag. In Italy,
five universities (Università di Pisa, Politecnico di Torino, Politecnico di Milano,
Università La Sapienza and Università Roma 3) and the aerospace company Alenia
Aeronautica have been working on this project. Several papers can be found in
literature (see, for example, [57]-[68]) covering aerodynamic, flight mechanics and
structures of the Prandtlplane. Particularly interesting are the wind tunnel tests
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conducted in Alenia Aeronautica company and Politecnico di Torino. The wind
tunnel models are reported in figures 4.19 and 4.20. The logo of the italian research
is shown in figure 4.1812.

Figure 4.18. Italian research project on Prandtlplane. Logo.

Figure 4.19. Alenia’s Prandtlplane model (figure from [68]).

12The logo has been designed by the writer.
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Figure 4.20. Politecnico di Torino’s Prandtlplane model.
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Nomenclature

α angle of attack

αi induced angle of attack

αL=0 angle of attack corresponding to the condition of zero lift

ρ fluid density

ρ′ perturbation density

vx x-component perturbation velocity

vy y-component perturbation velocity

vz z-component perturbation velocity

v′z induced velocity on the wake

M∞ Mach number (freestream conditions)

φ small perturbation velocity potential

∆φ small perturbation velocity potential jump

wt wake trace

Γ circulation

δΓ arbitrary variation of Γ

γ ratio of specific heats, distributed trailing vorticity

un normalwash

2bw wing span

ϑ angle of inclination of the lifting element

L lift

Li induced lift

Di induced drag

δL arbitrary variation of lift

δDi arbitrary variation of induced drag

F aerodynamic force

uT induced velocity in the direction of V∞

Subscripts

∞ freestream conditions
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Chapter 5

Validation of the Present
Optimization Method: Cantilever
Wing and Biplane

5.1 Introduction

This chapter demonstrates the well known result concerning a classical wing: the
elliptical circulation distribution is the optimal distribution, and the induced velocity
is constant along the wing span (Munk’s Minimum Induced Drag Theorem).
This operation is done using the methods exposed in previous chapters: lifting-line
theory (Weissinger’s lifting-line model) for the aerodynamic part and Hadamard
finite-part integral equation for the mathematical aspect of the problem. The
optimum is found using the Euler-Lagrange integral equation obtained using the
Lagrange multiplier method.
The same procedure proposed by the writer is applied in another classical (but non-
planar) wing: the biplane. It is an interesting case often not well considered.
Commonly, it is believed that, in a biplane, the optimal circulation distribution
is an ellipse. As will be shown, this is true only in two particular cases: wings
indefinitely distant from each other and wings indefinitely close together.

5.2 Classical Cantilever Wing. Minimum

Induced Drag

In this section, the classical cantilever wing will be studied. Its study is the easiest
and clearly shows the minimizing procedure used in this dissertation.
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5.2.1 Geometrical Derivation of the Induced Velocity and
Induced Drag

Considering figures 5.1 and 5.21, it can be understood that the induced velocity
(positive when oriented along the z axis ) is

un (y) =
1

4π
−
+bw∫

−bw

−dΓ (yd)
dyd

(y − yd)
dyd. (5.1)

Integrating by parts and observing that Γ (+bw) = Γ (−bw) = 0:

Figure 5.1. Lifting-line model in a classical wing.

un (y) =
1

4π
=

+bw∫

−bw

Γ (yd)

(y − yd)
2 dyd. (5.2)

The consequent induced incidence is αi(y) = −un(y)
V∞

, and the induced drag2 is

Di =

+bw∫

−bw

ρ∞V∞


− 1

4πV∞
Γ (y) =

+bw∫

−bw

Γ (yd)

(y − yd)
2 dyd


 dy. (5.3)

1The distributed trailing vorticity is indicated by γx instead of γ to clarify that the velocity V∞
is directed along x.

2The external integral is not defined as Hadamard finite-part integral because the circulation Γ
is zero at both endpoints (the tips).

83



5 – Validation of the Present Optimization Method: Cantilever Wing and Biplane

Figure 5.2. Induced velocity by the vortex γx dyd.

With a few simple algebraic manipulations, the expressions of the lift and induced
drag coefficients are obtained:

CDi
= − 1

4πV 2∞bwl

+bw∫
−bw

Γ (y) =
+bw∫
−bw

Γ (yd)

(y−yd)2
dyd dy,

CL = 1
V∞bwl

+bw∫
−bw

Γ (y) dy.

(5.4)

The previous expression can easily be rewritten using the small perturbation
acceleration potential and a doublet distribution along the lifting line3 (with the
positive direction along −z):

CDi
= − 1

4πV 4∞bwl

+bw∫
−bw

m (y) =
+bw∫
−bw

m(yd)

(y−yd)2
dyd dy,

CL = 1
V 2∞bwl

+bw∫
−bw

m (y) dy.

(5.5)

5.2.2 Euler-Lagrange Equation

The goal is to find the minimum CDi
under fixed CL. As have been seen in chapter

2, the Euler-Lagrange equation4 is:

2C1 =

+bw∫

−bw

mopt (y) Y (yd,y) ds− C2λg (yd) = 0. (5.6)

3Remember that ρ∞V∞Γ (y) = ρ∞m(y).
4It should be observed that in this case Y (yd,y) = 1

(y−yd)2
, g (yd) = 1, C1 = − 1

4πV 4∞bwl and

C2 = 1
V 2∞bwl , where Y (yd,y), g (yd), C1 and C2 are defined in chapter 2.
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In explicit form:

− 1

2πV 2∞
=

+bw∫

−bw

mopt (y)
1

(y − yd)
2 dy − λ = 0, (5.7)

with the condition

CL =
1

V 2∞bwl

+bw∫

−bw

mopt (y) dy. (5.8)

Now, the fact that the optimum distribution is an ellipse, will be verified. Thus,
consider a solution in the form

mopt (y) = m

√√√√1− y2

b2
w

. (5.9)

Substituting this expression into (5.7) and (5.8):




m
2πV 2∞

=
+bw∫
−bw

√
1− y2

b2w

(y−yd)2
dy + λ = 0,

CL = m
V 2∞bwl

+bw∫
−bw

√
1− y2

b2w
dy.

(5.10)

With the substitution y = bw sin Θ and yd = bw sin Θd, the system becomes:




m
2πV 2∞bw

=
+π

2∫
−π

2

cos2 Θ
(sin Θ−sin Θd)2

dΘ + λ = 0,

CL = m
V 2∞l

+π
2∫

−π
2

cos2 Θ dΘ = mπ
2V 2∞l

.

(5.11)

With a few algebraic operations5 the result is:

m = 2V 2∞l
π

CL,

λ = CLl
πbw

.
(5.12)

5Setting u = tan Θ
2 , v = tan Θd

2 :

u = tan Θ
2 , v = tan Θd

2 , cos Θ = 1−u2

1+u2 ,

sin Θ = 2u
1+u2 , sin Θd = 2v

1+v2 , dΘ = 2
u2+1 du.

The Euler-Lagrange equation becomes

m

2πV 2∞bw
=

+1∫

−1

2
u2 + 1

(
1−u2

1+u2

)2

(
2u

1+u2 − 2v
1+v2

)2 du + λ = 0.
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The system is satisfied, and, thus, the distribution mopt (y) = m
√

1− y2

b2w
=

2V 2∞l
π

CL

√
1− y2

b2w
is the optimal distribution. This can be verified by observing

that un is constant for that distribution, satisfying Munk’s Minimum Induced Drag
Theorem. In completeness, the minimum induced drag coefficient is:

[
(CDi

)opt

]
ref

=
lC

2
L

2bwπ
. (5.13)

The subscript ”ref” indicates ”reference” and has been placed with CDi
because the

classical wing will be used as a reference case and all wings will be compared with
the classical cantilever wing.

5.3 Classical Biplane Wing System. Minimum

Induced Drag

In some publications, it is said that the minimum induced drag in a biplane is
obtained when the distribution of each wing is elliptical and when the wings have
the same load distribution. This statement is false. The misunderstanding is from
article [46], where Prandtl assumed the elliptical distribution for each wing in a
biplane and obtained that, under this condition, the best biplane had wings with
the same wing span. But Prandtl never said that the elliptical distribution is the
optimal distribution for a biplane. This chapter will demonstrate that the elliptical
circulation distribution is the optimum only if the distance between the two wings
is either near zero or infinity.
Consider a biplane (see figure 5.36) with wing span 2bw and distance between the

(Continued on page 86)
(Continued from page 85, footnote 5)

Now, observing that

∫
2

u2 + 1

(
1−u2

1+u2

)2

(
2u

1+u2 − 2v
1+v2

)2 du = 2

[(
1 + v2

) (
2v − u− v2u

)

4v (v − u− v2u + vu2)
− arctanu +

v ln |−v + u|
−1 + v2

− v ln |−1 + vu|
−1 + v2

]
,

and remembering the Hadamard finite-part integral definition, the Euler-Lagrange equation
becomes:

− m

2πV 2∞bw
π + λ = 0 ⇒ λ =

CLl

πbw
.

6Even if the wings have sweep angles, the biplane depicted in the figure is useful because Munk’s
Stagger Theorem can be applied (see chapter 4).
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Figure 5.3. Biplane. Geometry and notations.

wings H. Clearly, the upper wing (here called wing 1) is positioned at z = +H
2
,

while the lower wing (here called wing 2) is positioned at z = −H
2

in the reference
system shown in figure 5.3.

5.3.1 Writing of the Integral Equations

As seen in chapter 3 and 4, the lifting-line theory can be used to describe the wings.
If the small perturbation acceleration potential is used, the writing of the integral
equations7 can be accomplished using the procedures shown in the following steps:

• Step 1
Writing of the small perturbation acceleration potential of the dipole distribu-
tion over the wings.

• Step 2
Writing of the small perturbation velocity potential by integration of the small
perturbation acceleration potential.

• Step 3
Imposition of the WTC using Weissinger’s approach.

7As will be seen, in this case there are two integral equations containing the unknown dipole
distributions on the wings 1 and 2.
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Small Perturbation Acceleration Potential

In order to start this procedure, the distance between a generic point in space with
coordinates x, y, z and a point on wing 1 with coordinates xd1, yd1, zd1, in which a
generic doublet is positioned8, has to be calculated. It is easy to obtain

D1 =
√

(x− xd1)
2 + (y − yd1)

2 + (z − zd1)
2. (5.14)

The reference coordinate system is chosen in such a way as to have the lifting lines
contained in the y − z plane, so xd1 = 0. Moreover, zd1 = H

2
. Using these relations:

D1 =

√
x2 + (y − yd1)

2 +
(
z − H

2

)2

. (5.15)

Similarly for the wing 2:

D2 =

√
x2 + (y − yd2)

2 +
(
z +

H

2

)2

. (5.16)

Next consider wing 1. The generic expression for the small perturbation acceleration
potential is

dΨ1 (x,y,z) = −m1 (yd1) dyd1

4π

nd1x (x− xd1) + nd1y (y − yd1) + nd1z (z − zd1)
[
(x− xd1)

2 + (y − yd1)
2 + (z − zd1)

2
] 3

2

.

(5.17)
Now, choosing the doublet axis to be directed along +z, it can be deduced that
nd1x = nd1y = 0 and nd1z = 1. Substituting into the previous equation and
remembering that zd1 = +H

2
:

dΨ1 (x,y,z) = −m1 (yd1) dyd1

4π

(
z − H

2

)

[
x2 + (y − yd1)

2 +
(
z − H

2

)2
] 3

2

. (5.18)

Now, because of the linearity, it is possible to integrate over wing 1:

Ψ1 (x,y,z) =

+bw∫

−bw

−m1 (yd1)

4π

(
z − H

2

)

[
x2 + (y − yd1)

2 +
(
z − H

2

)2
] 3

2

dyd1. (5.19)

The same operations can be repeated for wing 2:

Ψ2 (x,y,z) =

+bw∫

−bw

−m2 (yd2)

4π

(
z + H

2

)

[
x2 + (y − yd2)

2 +
(
z + H

2

)2
] 3

2

dyd2. (5.20)

8The subscript ”1” indicates that wing 1 is being considered.
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It is possible to think that the integration process is done in such a way as to have
yd1 = yd2. Calling yd the common value, the previous expressions become:

Ψ1 (x,y,z) =

+bw∫

−bw

−m1 (yd)

4π

(
z − H

2

)

[
x2 + (y − yd)

2 +
(
z − H

2

)2
] 3

2

dyd, (5.21)

Ψ2 (x,y,z) =

+bw∫

−bw

−m2 (yd)

4π

(
z + H

2

)

[
x2 + (y − yd)

2 +
(
z + H

2

)2
] 3

2

dyd. (5.22)

Small Perturbation Velocity Potential

The small perturbation velocity potential has the expression

φ (x,y,z) =
1

V∞

x∫

−∞
Ψ1 (τ,y,z) dτ +

1

V∞

x∫

−∞
Ψ2 (τ,y,z) dτ = φ1 + φ2, (5.23)

where φ1 and φ2 are the contributes of the wings 1 and 2, respectively. Therefore,
the following can be written:

φ1 (x,y,z) = 1
V∞

x∫
−∞

Ψ1 (τ,y,z) dτ =

= − 1
4πV∞

+bw∫
−bw

m1 (yd)
(
z − H

2

) x∫
−∞

1[
τ2+(y−yd)2+(z−H

2 )
2
] 3

2
dτdyd,

(5.24)

φ2 (x,y,z) = 1
V∞

x∫
−∞

Ψ2 (τ,y,z) dτ =

= − 1
4πV∞

+bw∫
−bw

m2 (yd)
(
z + H

2

) x∫
−∞

1[
τ2+(y−yd)2+(z+H

2 )
2
] 3

2
dτdyd.

(5.25)

Observing that

x∫

−∞

f
(√

τ 2 + g
)3 dτ = f

x +
√

(x2 + g)

g
√

(x2 + g)
=

f

g


 x√

(x2 + g)
+ 1


 , (5.26)

the previous expressions become:

φ1 (x,y,z) = − 1
4πV∞

+bw∫
−bw

m1(yd)(z−H
2 )

(y−yd)2+(z−H
2 )

2


 x√(

x2+(y−yd)2+(z−H
2 )

2
) + 1


 dyd, (5.27)
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φ2 (x,y,z) = − 1
4πV∞

+bw∫
−bw

m2(yd)(z+H
2 )

(y−yd)2+(z+H
2 )

2


 x√(

x2+(y−yd)2+(z+H
2 )

2
) + 1


 dyd. (5.28)

WTC Imposition Using Weissinger’s Approach

The WTC have to be imposed on both wings. Thus:

−α1 (y,z1) = 1
V∞

(
∂φ(x,y,z)

∂z

)
z = z1

x = x0

−α2 (y,z2) = 1
V∞

(
∂φ(x,y,z)

∂z

)
z = z2

x = x0

(5.29)

where x0 = l
2
. Calculating the derivative of the small perturbation velocity potential

φ1:

∂φ1

∂z
= − 1

4πV∞

+bw∫
−bw

m1 (yd)
(y−yd)2−(z−H

2 )
2

(
(y−yd)2+(z−H

2 )
2
)2


 x√(

x2+(y−yd)2+(z−H
2 )

2
) + 1


 dyd+

+ 1
4πV∞

+bw∫
−bw

m1 (yd)
x(z−H

2 )
2

(
(y−yd)2+(z−H

2 )
2
)(

x2+(y−yd)2+(z−H
2 )

2
) 3

2
dyd.

(5.30)
And, similarly, for φ2:

∂φ2

∂z
= − 1

4πV∞

+bw∫
−bw

m2 (yd)
(y−yd)2−(z+H

2 )
2

(
(y−yd)2+(z+H

2 )
2
)2


 x√(

x2+(y−yd)2+(z+H
2 )

2
) + 1


 dyd+

+ 1
4πV∞

+bw∫
−bw

m2 (yd)
x(z+H

2 )
2

(
(y−yd)2+(z+H

2 )
2
)(

x2+(y−yd)2+(z+H
2 )

2
) 3

2
dyd.

(5.31)
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Calculating the derivatives on the wings9 at x = x0 and isolating the singular term10:

[
∂φ1

∂z

]
z = z1

x = x0

= − 1
4πV∞

+bw∫
−bw

−m1(yd)(
x0+

√
(x2

0+(y−yd)2)
)√

(x2
0+(y−yd)2)

dyd+

− 1
4πV∞

=
+bw∫
−bw

2m1(yd)

(y−yd)2
dyd,

[
∂φ2

∂z

]
z = z1

x = x0

= − 1
4πV∞

+bw∫
−bw

m2 (yd)
(y−yd)2−H2

((y−yd)2+H2)
2


 x0√

(x2
0+(y−yd)2+H2)

+ 1


 dyd+

+ 1
4πV∞

+bw∫
−bw

m2 (yd)
x0H2

((y−yd)2+H2)(x2
0+(y−yd)2+H2)

3
2

dyd,

[
∂φ2

∂z

]
z = z2

x = x0

= − 1
4πV∞

+bw∫
−bw

−m2(yd)(
x0+

√
(x2

0+(y−yd)2)
)√

(x2
0+(y−yd)2)

dyd+

− 1
4πV∞

=
+bw∫
−bw

2m2(yd)

(y−yd)2
dyd

[
∂φ1

∂z

]
z = z2

x = x0

= − 1
4πV∞

+bw∫
−bw

m1 (yd)
(y−yd)2−H2

((y−yd)2+H2)
2


 x0√

(x2
0+(y−yd)2+H2)

+ 1


 dyd+

+ 1
4πV∞

+bw∫
−bw

m1 (yd)
x0H2

((y−yd)2+H2)(x2
0+(y−yd)2+H2)

3
2

dyd.

(5.32)
Substituting these quantities into equation (5.29), the integral equations containing
the unknown m1 and m2 representing the doublet distributions on wings 1 and 2
are obtained. It should be noticed that there is no condition that imposes m1 = m2,
since the wings can have different aerodynamic properties (for example, the twist);
hence, in general, m1 6= m2. It is important to see that the integral equations (5.29)

9That means z = +H
2 over the wing 1, and z = −H

2 over the wing 2.
10To do that, the following identity is used:

1
(y − yd)

2




x0√(
x2

0 + (y − yd)
2
) + 1


 =

−1(
x0 +

√(
x2

0 + (y − yd)
2
)) √(

x2
0 + (y − yd)

2
)+

2
(y − yd)

2 .
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can be used to solve the direct problem: what are the unknown doublet distributions
m1 and m2 over the wings 1 and 2 under the velocity V∞ and with the twist laws
α(y,z1) and α(y,z2)? Applying the numerical methods explained in chapter 2, it is
possible to solve the integral equations and find m1 and m2. The direct problem
will not be solved here.

5.3.2 Normalwash

The expression of the induced drag has been seen. The normalwash un is involved
in its formula. Now the expression of the induced velocity over the wings will be
determined. From the definition of small perturbation velocity potential, for the
wing 1, the induced velocity has the expression

un1 =

[
∂φ1

∂z

]

z = z1

x = 0

+

[
∂φ2

∂z

]

z = z1

x = 0

. (5.33)

Using the previous expressions, the normalwash for the wing 1 is determined:

un1 (y) = − 1

4πV∞
=

+bw∫

−bw

m1 (yd)

(y − yd)
2 dyd − 1

4πV∞

+bw∫

−bw

m2 (yd)
(y − yd)

2 −H2

(
(y − yd)

2 + H2
)2 dyd1.

(5.34)
Similarly for the wing 2:

un2 (y) = − 1

4πV∞
=

+bw∫

−bw

m2 (yd)

(y − yd)
2 dyd − 1

4πV∞

+bw∫

−bw

m1 (yd)
(y − yd)

2 −H2

(
(y − yd)

2 + H2
)2 dyd.

(5.35)

Observation 23 The normalwash can also be determined geometrically. Obvi-
ously, the final expressions must be the same as the expressions found in (5.34) and
(5.35). Supposing that the circulation distributions on the wings are known, and
using the Biot-Savart law, the normalwash is computed geometrically in appendix
B.

5.3.3 Induced Drag

Consider the upper wing. The doublets have axes directed along +z. Hence, the
aerodynamic force is

F1 (yd) = −ρ∞m1 (yd) . (5.36)
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The induced incidence on the wing 1 is

αi1 (yd) = − [un1 (yd)]x=0

V∞
, (5.37)

while the induced drag on the same wing is

Di1 (yd) =

+bw∫

−bw

F (yd) tan (α1i (yd)) dyd '
+bw∫

−bw

F1 (yd) α1i (yd) dyd. (5.38)

Using the previous expressions:

Di1 = − ρ∞
4πV 2∞

+bw∫

−bw

m1 (yd)


 =

+bw∫

−bw

m1 (y)

(y − yd)
2 dy +

+bw∫

−bw

m2 (y)
(y − yd)

2 −H2

(
(y − yd)

2 + H2
)2 dy


 dyd.

(5.39)

Repeating the same procedure for the wing 2:

Di2 = − ρ∞
4πV 2∞

+bw∫

−bw

m2 (yd)


 =

+bw∫

−bw

m2 (y)

(y − yd)
2 dy +

+bw∫

−bw

m1 (y)
(y − yd)

2 −H2

(
(y − yd)

2 + H2
)2 dy


 dyd.

(5.40)

Obviously, the total induced drag is the summation of the contributes of the wings
1 and 2; thus,

Di = − ρ∞
4πV 2∞

+bw∫
−bw

=
+bw∫
−bw

(
m1(yd)m1(y)

(y−yd)2
+

[m1(yd)m2(y)+m1(y)m2(yd)]((y−yd)2−H2)
((y−yd)2+H2)

2

)
dy dyd

− ρ
4πV 2∞

+bw∫
−bw

=
+bw∫
−bw

(
m2(y)m2(yd)

(y−yd)2
dy

)
dyd.

(5.41)

5.3.4 Total Lifting Force

It is very simple to calculate the total lifting force. Recalling the expressions of the
aerodynamic forces, the expression for total lifting force can be written as

L = L1 + L2 =
+bw∫
−bw

F1 (yd) dyd +
+bw∫
−bw

F2 (yd) dyd =

= −ρ∞
+bw∫
−bw

m1 (yd) dyd − ρ∞
+bw∫
−bw

m2 (yd) dyd.

(5.42)
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5.3.5 Derivation of the Euler-Lagrange Equations

The purpose is to minimize the induced drag under the condition of fixed total lifting
force and wing span. To achieve this goal, the methods explained in chapter 2 have
to be used. The functional is reported in (5.41). Setting:

m1 (·) = (m1)opt (·) + σδ1 (·) σ ∈ (−1,1) ,

m2 (·) = (m2)opt (·) + σδ2 (·) σ ∈ (−1,1) ,
(5.43)

the functional becomes

J
(
(m1)opt (·) + σδ1 (·) , (m2)opt (·) + σδ2 (·)

)
=

= − ρ∞
4πV 2∞

+bw∫
−bw

=
+bw∫
−bw

[A1(yd)][A1(y)]

(y−yd)2
dy dyd+

− ρ∞
4πV 2∞

+bw∫
−bw

+bw∫
−bw

[A1(yd)][A2(y)]+[A1(y)][A2(yd)]

((y−yd)2+H2)
2

(
(y − yd)

2 −H2
)

dy dyd+

− ρ∞
4πV 2∞

+bw∫
−bw

=
+bw∫
−bw

[A2(yd)][A2(y)]

(y−yd)2
dy dyd,

(5.44)

where
A1 (yd) = (m1)opt (yd) + σδ1 (yd) ,

A1 (y) = (m1)opt (y) + σδ1 (y) ,

A2 (yd) = (m2)opt (yd) + σδ2 (yd) ,

A2 (y) = (m2)opt (y) + σδ2 (y) .

(5.45)

Following the procedure used in chapter 2 (see appendix C for details), the Euler-
Lagrange integral equations are obtained:

− ρ∞
2πV 2∞

=
+bw∫
−bw

(m1)opt(y)

(y−yd)2
dy − ρ∞

2πV 2∞

+bw∫
−bw

(m2)opt(y)((y−yd)2−H2)
((y−yd)2+H2)

2 dy + ρ∞λ = 0. (5.46)

− ρ∞
2πV 2∞

=
+bw∫
−bw

(m2)opt(y)

(y−yd)2
dy − ρ∞

2πV 2∞

+bw∫
−bw

(m1)opt(y)((y−yd)2−H2)
((y−yd)2+H2)

2 dy + ρ∞λ = 0. (5.47)

It can be observed that:

• One equation is identical to the other if the subscripts 1 and 2 are switched.
This implies that, under optimal conditions, the distributions on the wings
must be the same: (m1)opt = (m2)opt. This result makes perfect sense, since, in
a physical point of view, there is no reasonable motivation to suppose (m1)opt 6=
(m2)opt.
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• The induced velocity over the wings must be constant 11.

• Munk’s Minimum Induced Drag Theorem is satisfied, and it can be observed
that ϑ = 0 = const1 and un = const2 in both wings.

It has been demonstrated that the doublet (or circulation) distributions over the
wings are the same. Hence, the equations can be summarized as12:

(Di)opt = − ρ∞
2πV 2∞

+bw∫
−bw

(m)opt (yd)

(
=
+bw∫
−bw

(m)opt(y)

(y−yd)2
dy +

+bw∫
−bw

(m)opt(y)((y−yd)2−H2)
((y−yd)2+H2)

2 dy

)
dyd,

(5.48)

L = −2ρ∞

+bw∫

−bw

(m)opt (y) dy, (5.49)

− ρ∞
2πV 2∞

=

+bw∫

−bw

(m)opt (y)

(y − yd)
2 dy − ρ∞

2πV 2∞

+bw∫

−bw

(m)opt (y)
(
(y − yd)

2 −H2
)

(
(y − yd)

2 + H2
)2 dy + ρ∞λ = 0,

(5.50)
where the last expression is the Euler-Lagrange equation. Notice that it no longer
contains two equations.

5.3.6 Optimal Doublet Distribution: H → 0 Case

When H → 0, the equations become:

(Di)opt = − ρ∞
πV 2∞

+bw∫
−bw

(m)opt (yd)

(
=
+bw∫
−bw

(m)opt(y)

(y−yd)2
dy

)
dyd, (5.51)

L = −2ρ∞

+bw∫

−bw

(m)opt (y) dy, (5.52)

− ρ∞
πV 2∞

=

+bw∫

−bw

(m)opt (y)

(y − yd)
2 dy + ρ∞λ = 0. (5.53)

It will be demonstrated now that under this particular condition (H → 0 case) the
optimal distribution is elliptical and the induced drag is the same as an optimally

11See the expressions of un1 and un2 and compare with equations (5.46) and (5.47).
12It has already been demonstrated that, under optimal condition, the distribution over the wing

1 is equal to the distribution over the wing 2. Therefore, the optimal doublet distribution along
wing 1 or wing 2 is indifferently indicated by (m)opt.
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loaded classical wing with the same total lift and wing span. Consider an elliptical
doublet distribution:

(m)opt (y)

m
=

√√√√1− y2

b2
w

. (5.54)

Using the same procedure seen in the classical cantilever wing and operating the
same techniques to solve the integrals, yields:

m = − L

ρ∞πbw

, (5.55)

(Di)opt =
ρ∞
πV 2∞

(
L

ρ∞πbw

)2
π2

2
=

L
2

2πρ∞b2
wV 2∞

. (5.56)

Thus, the same induced drag as an optimally loaded cantilever wing has been found.

5.3.7 Optimal Doublet Distribution: H →∞ Case

When H →∞, the equations become:

(Di)opt = − ρ∞
2πV 2∞

+bw∫
−bw

(m)opt (yd)

(
=
+bw∫
−bw

(m)opt(y)

(y−yd)2
dy

)
dyd, (5.57)

L = −2ρ∞

+bw∫

−bw

(m)opt (y) dy, (5.58)

− ρ∞
2πV 2∞

=

+bw∫

−bw

(m)opt (y)

(y − yd)
2 dy + ρ∞λ = 0. (5.59)

It will be demonstrated now that under this particular condition (H → ∞ case)
the optimal distribution is elliptical and the induced drag is 1

2
of an optimally loaded

classical wing with the same total lift and wing span. Consider an elliptical doublet
distribution:

(m)opt (y)

m
=

√√√√1− y2

b2
w

. (5.60)

Using the same procedure seen in the classical cantilever wing and operating the
same techniques to calculate the integrals, produces the following results:

m = − L

ρ∞πbw

, (5.61)

(Di)opt =
L

2

4πρ∞b2
wV 2∞

. (5.62)

Thus, 1
2

the induced drag of an optimally loaded cantilever wing has been found.
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Observation 24 This result can be understood in a different way. Consider a
biplane with an elliptical doublet distribution in both wings. Suppose that the wings
have the same total load (L1 = L2 = L

2
) and that their distance from each other is

infinite. Now, because the distance between the wings is infinite, the wings can be
considered as two identical and independent classical wings. Therefore, the induced
drag can be considered only as a sum of two contributions without interaction:

Di = Di1 + Di2. (5.63)

But in a classical wing it is known that the induced drag is proportional to the
square of the lift13:

Di1 = kL2
1 = k

(
L
2

)2
,

Di2 = kL2
2 = k

(
L
2

)2
.

(5.64)

Thus,

Di = Di1 + Di2 = 2k
(

L

2

)2

= k
L2

2
. (5.65)

A classical wing with the same load has the induced drag

Di = kL2. (5.66)

Comparing the last two expressions, it is clear that the induced drag in a biplane,
with H →∞ and under optimal conditions, is 1

2
of the induced drag in an optimally

loaded classical wing with the same wing span.

5.3.8 Optimal Doublet Distribution: H 6= 0,∞ Case

Is the optimal distribution elliptical? In order to answer the question, it is useful
to change the variables and manipulate the Euler-Lagrange equation. Setting s =
y
bw
⇒ y = sbw, t = yd

bw
⇒ yd = tbw and h = H

bw
, the Euler-Lagrange equation

becomes:

1

2πbwV 2∞

+1∫

−1

(m)opt (s)
(
(t− s)2 − h2

)

(
(t− s)2 + h2

)2 ds+
1

2πbwV 2∞
=

+1∫

−1

(m)opt (s)

(t− s)2 ds−λ = 0. (5.67)

Suppose that the optimal distribution is elliptical. Then, the distribution (m)opt

should be:
(m)opt (s) = m

√
1− s2. (5.68)

13The constant k must be the same because the wings are exactly identical and the lift
distribution is the same.
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Substituting this expression into equation (5.67), equation (5.67) has to be satisfied.
Now consider the Lagrange multiplier: it is constant. The Hadamard finite-part
integral is constant as well, because the distribution is elliptical14. It is evident that
equation (5.67) can be satisfied under elliptical distribution only if

+1∫

−1

(m)opt (s)
(
(t− s)2 − h2

)

(
(t− s)2 + h2

)2 ds =

+1∫

−1

m
√

1− s2
(
(t− s)2 − h2

)

(
(t− s)2 + h2

)2 ds = constant.

(5.69)
In other words, for a fixed value of the parameter h, the integral must not be
dependent on the value of the variable t. For example, consider h = m = 1. It
is easy to see that the integral is not constant with t. For example, using t = 0.2 or
t = −0.5, yields different values15:

+1∫
−1

√
1−s2((0.2−s)2−1)
((0.2−s)2+1)

2 ds = −0.8869751615

+1∫
−1

√
1−s2((−0.5−s)2−1)
((−0.5−s)2+1)

2 ds = −0.7188925775 6= −0.8869751615.

(5.70)

Thus, it has been demonstrated that, under optimal condition, the doublet distribu-
tion is not elliptical if the distance H between the wings is finite (not zero). This
will be further demonstrated in the next section.

5.3.9 Numerical Evaluations

In previous sections the optimization problem in a theoretical point of view was
analyzed. Here, a few numerical solutions to the optimization problem are analyzed.
The Euler-Lagrange equation is solved using the collocation method and guessing
the initial value of the Lagrange multiplier λ (see chapter 2).
Consider a biplane with the following parameters16: CL = 1.0, bw

l
= 12. The effect

of the parameter H
l

is now discussed. The following cases are analyzed:

• Case 1
H → 0 case. It is studied considering Hl = 10−4

• Case 2
H →∞ case. It is studied considering Hl = 10+4

14In a classical wing under optimal conditions, the Hadamard finite-part integral is constant, as
it has been seen. For a biplane with elliptical distribution, the Hadamard finite-part integral has
the same formal expression as the classical wing case; therefore, it has to be constant as well.

15The integrals have been calculated using MAPLE.
16The reference surface for the non-dimensional coefficients of lift and induced drag is 4bwl.
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• Case 3
H 6= 0,∞ case. It is studied considering Hl = 6

The optimal non-dimensional doublet distribution along a wing17 is plotted against
the elliptical distribution18 in all three cases (see figures 5.4, 5.5 and 5.6). In the
numerical solution of the Euler-Lagrange equation, 20 collocation points are used. It

Figure 5.4. Optimal doublet distribution when H → 0. Comparison with the
elliptical distribution.

is clear that the previous theoretical considerations are correct: in the general case,
the optimal doublet (or circulation) distribution along a wing in a biplane is not
elliptical. The optimal distribution is elliptical only when the distance between the
wings is near zero or infinity. Comparison of figures 5.4, 5.5 and 5.6, shows that the
least induced drag in a biplane occurs when the wings are indefinitely distant and,
in that case, its value is 1/2 the induced drag of an optimally loaded classical wing
with the same wing span and total lift. The behavior of the induced drag is more
clear when figures 5.7 and 5.8 are analyzed. In particular, the optimal induced drag
starts from the same value as the classical wing and it decreases as H increases19.
From figure 5.820, it is clear that, when H/bw = 0.4, the induced drag coefficient is

17Remember that, in the biplane, the optimal distribution is the same over the two wings.
Therefore, it is not important to specify the wing in which the distribution is considered.

18Notice that if the total lift is fixed and the distribution is elliptical, the amplitude of the load
(the semi-axis of the ellipse) does not change if the parameter H is changed. For that reason, in
all three figures 5.4, 5.5 and 5.6, the elliptical distribution is always the same even if the distance
H changes.

19This is a general result for non-planar wings.
20For that analysis, bw = 10, l = 1 and CL = 1.0 have been considered.
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Figure 5.5. Optimal doublet distribution when H → ∞. Comparison with the
elliptical distribution.

Figure 5.6. Optimal doublet distribution when H 6= 0,∞. Comparison with the
elliptical distribution.

1.36 times smaller than the value obtained for H/bw = 0.0 (this is the same as the
optimally loaded classical wing with the same wing span and total lift). This result
has been found also by Kroo [14].
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Figure 5.7. Optimal induced drag coefficient versus H/bw.

Figure 5.8. Optimal induced drag coefficient versus H/bw.

5.4 Conclusion

The absolutely general minimization procedure has been used in the classical
cantilever wing and in a biplane. The well known results of optimum, under
elliptical distribution, for the classical wing have been found, and it has been
demonstrated that, for a biplane under optimum conditions, the wings have the
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same doublet distribution, which in general, is not elliptical, as reported in some
papers. In subsequent chapters, closed wing systems and other non-planar wings
will be analyzed, and it will be shown that the procedure used here is general and
valid under the used hypotheses.

102



5 – Validation of the Present Optimization Method: Cantilever Wing and Biplane

Nomenclature

α angle of attack
αi induced angle of attack
ρ fluid density
φ small perturbation velocity potential
Ψ small perturbation acceleration potential
Γ vorticity
γx distributed trailing vorticity
un normalwash
2bw wing span
ϑ angle of inclination of the lifting element
l chord
H distance between wing 1 and 2 (biplane case)
m doublet distribution
(m)opt doublet distribution which minimizes the induced drag
m doublet distribution constant
L lift
Di induced drag
CL coefficient of lift
CDi

coefficient of induced drag
F aerodynamic force
L fixed value of the lifting force
CL fixed value of the coefficient of lift
(CDi

)ref coefficient of minimum induced drag in a cantilever wing
(CDi

)opt coefficient of minimum induced drag
(Di)opt minimum induced drag
δ1(t), δ2(t) arbitrary functions
σ parameter with the property σ ∈ (−1, + 1)
λ Lagrange multiplier
u, v, t, s auxiliary variables
h H

bw

V∞ velocity (freestream conditions)
=
∫

Hadamard finite-part integral

Subscripts

∞ freestream conditions
1 wing 1
2 wing 2
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Chapter 6

Closed Wing Systems: Annular
Wings. Analytical Formulation

6.1 Introduction

Using the analytical procedure developed and tested in previous chapters, the
following closed wing systems will be analyzed:

• System 1
Circular annular wing with the wing span representing its diameter1.

• System 2
Elliptical annular wing with the wing span representing its major axis2.

• System 3
Elliptical annular wing with the wing span representing its minor axis3.

For each wing, the following quantities will be found:

• Quantity 1
The twist expressed as a function, which will be an integral equation, of the
doublet distribution.

• Quantity 2
The expression of the induced velocity (normalwash).

• Quantity 3
The expression of the induced drag.

1 In this case the radius is indicated by Rw; thus the wing span is 2Rw.
2 In this case the major semi-axis is indicated by bw; thus the wing span is 2bw.
3 In this case the minor semi-axis is indicated by bw; thus the wing span is 2bw.
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• Quantity 4
The expression of the lift.

Figure 6.1. Joined wing and elliptical annular wing.

Why is studying the annular wing useful? Referring to figure 6.1, it is clear that
both wings are closed wing systems and, therefore, they have similar aerodynamic
properties. Thus, the results of the annular wings can not be considered exact
for a joined wing, but, qualitatively, they can show some interesting properties of
the closed wing systems and, as will be shown in chapter 9, they can have good
correlations with the experimental results.

6.2 Circular Annular Wing with Wing Span

Representing its Diameter

The geometry of the wing is displayed in figure 6.2. In figure 6.3, the reference
coordinate system and a few useful notations are reported.

6.2.1 Coordinate Transformation

Because of the geometry of the wing, it is clear that a good coordinate system that
is useful for this study is:

y = R cos ϕ 0 ≤ ϕ ≤ 2π,
z = R sin ϕ R > 0.

(6.1)

Practically, each point which in the y−z plane was characterized by the coordinates
(y,z), is now characterized by the coordinates (R,ϕ). The circle representing the

105



6 – Closed Wing Systems: Annular Wings. Analytical Formulation

Figure 6.2. Circular annular wing.

Figure 6.3. Circular annular wing: reference coordinate system.

wing has the equation:

y = Rw cos ϕ 0 ≤ ϕ ≤ 2π,
z = Rw sin ϕ Rw > 0,

(6.2)

where Rw is the radius of the circular lifting line used to represent the wing.
Differentiating equation (6.1):

dy = cos ϕ dR−R sin ϕ dϕ,
dz = sin ϕ dR + R cos ϕ dϕ.

(6.3)

Squaring and summing:

ds2 = dx2 + dy2 = h2
RdR2 + h2

ϕdϕ2 = dR2 + R2dϕ2. (6.4)
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Clearly, on the wing, R = Rw = constant ⇒ dR = 0. Hence:

dsd = Rwdϕd. (6.5)

6.2.2 Small Perturbation Acceleration Potential

In order to write the acceleration potential, the distance between a generic point
P (x,y,z) in space and a point Pd(xd,yd,zd) on the lifting line w (the point is
characterized by ϕ = ϕd), where a generic doublet is positioned (see figure 6.4),
is needed. The distance is:

D =
√

(x− xd)
2 + (y − yd)

2 + (z − zd)
2. (6.6)

The lifting line is contained in the y−z plane, thus xd = 0. Using the transformation

Figure 6.4. Positive direction of the doublet’s axis.

seen above:

D =

√(
R2

wX2 + (R cos ϕ−Rw cos ϕd)
2 + (R sin ϕ−Rw sin ϕd)

2
)
. (6.7)

The previous relation can be written in a different way:

D = [∆ (X,R,ϕ,Rw,ϕd)]
1
2 , (6.8)
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where
∆ = R2

wX2 + R2 + R2
w − 2RRw cos (ϕ− ϕd) . (6.9)

Using the generic formula (1.49), the small perturbation acceleration potential of a
doublet M = m (sd) dsd, positioned at a point on the lifting line characterized by
ϕ = ϕd, is:

Ψ = − 1

4π
M

ndx (x− xd) + ndy (y − yd) + ndz (z − zd)
[
(x− xd)

2 + (y − yd)
2 + (z − zd)

2
] 3

2

. (6.10)

It is very easy to see that
ndx = 0,
ndy = − cos ϕd,
ndz = − sin ϕd.

(6.11)

Hence, the expression of the small perturbation acceleration potential of a doublet
is:

dΨ (X,R,ϕ,Rw) = −m(ϕd)
4π

− cos ϕd(R cos ϕ−Rw cos ϕd)−sin ϕd(R sin ϕ−Rw sin ϕd)

∆
3
2

Rwdϕd.

(6.12)
Integrating over the circle representing the lifting line yields:

Ψ =
1

4πR2
w

2π∫

0

m (ϕd) (R cos (ϕ− ϕd)−Rw)
(
X2 + R2

R2
w

+ 1− 2 R
Rw

cos (ϕ− ϕd)
) 3

2

dϕd (6.13)

6.2.3 Small Perturbation Velocity Potential

In order to write the integral equation, Weissinger’s condition has to be imposed.
Therefore, the velocity perpendicular to the lifting line is needed, but, to get this
velocity, the small perturbation velocity potential is required.
The relation that can be used to derive the velocity potential from the acceleration
potential is:

φ (x,R,ϕ,Rw) =
1

V∞

x∫

−∞
Ψ (ξ,R,ϕ,Rw) dξ. (6.14)

Changing the variables in order to use the non-dimensional variable X instead of x:

ξ = Rwτ ⇒ τ =
ξ

Rw

⇒ dτ =
dξ

Rw

, (6.15)

φ (X,R,ϕ,Rw) =
Rw

V∞

X∫

−∞
Ψ (τ,R,ϕ,Rw) dτ. (6.16)
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Recalling the small perturbation acceleration potential:

φ (X,R,ϕ,Rw) =
Rw

V∞

X∫

−∞




1

4πR2
w

2π∫

0

m (ϕd) (R cos (ϕ− ϕd)−Rw)
(
τ 2 + R2

R2
w

+ 1− 2 R
Rw

cos (ϕ− ϕd)
) 3

2

dϕd


 dτ.

(6.17)
Changing the order of integration:

φ (X,R,ϕ,Rw) =
1

4πV∞Rw

2π∫

0

dϕd

X∫

−∞

m (ϕd) (R cos (ϕ− ϕd)−Rw)
(
τ 2 + R2

R2
w

+ 1− 2 R
Rw

cos (ϕ− ϕd)
) 3

2

dτ. (6.18)

The inner integral of expression (6.18) is of the type

X∫

−∞

f
(√

τ 2 + g
)3 dτ = f

X +
√

(X2 + g)

g
√

(X2 + g)
=

f

g


 X√

(X2 + g)
+ 1


 , (6.19)

where
f = m (ϕd) (R cos (ϕ− ϕd)−Rw),

g = R2

R2
w

+ 1− 2 R
Rw

cos (ϕ− ϕd).
(6.20)

Substituting:

φ (X,R,ϕ,Rw) = 1
4πV∞Rw

2π∫
0

m(ϕd)(R cos(ϕ−ϕd)−Rw)
R2

R2
w

+1−2 R
Rw

cos(ϕ−ϕd)
·

·


 X√(

X2+ R2

R2
w

+1−2 R
Rw

cos(ϕ−ϕd)

) + 1


 dϕd.

(6.21)

6.2.4 Imposition of Weissinger’s Condition

Weissinger’s condition consists of the WTC imposed in X0 = l
2Rw

:

− α (ϕ) =
1

V∞

(
1

hR

∂φ (X,R,ϕ,Rw)

∂R

)

X=X0; R=Rw

. (6.22)

The small perturbation velocity potential is written in the form

φ (X,R,ϕ,Rw) =
1

4πV∞Rw

2π∫

0

m (ϕd) f1 (R,ϕ,ϕd,Rw) · (6.23)

·f2 (R,ϕ,ϕd,Rw) · f3 (X,R,ϕ,ϕd,Rw) dϕd,
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where:

f1 (R,ϕ,ϕd,Rw) = (R cos (ϕ− ϕd)−Rw) ,

f2 (R,ϕ,ϕd,Rw) = 1
R2

R2
w

+1−2 R
Rw

cos(ϕ−ϕd)
= 1

D(R,ϕ,ϕd,Rw)
,

f3 (X,R,ϕ,ϕd,Rw) = X√(
X2+ R2

R2
w

+1−2 R
Rw

cos(ϕ−ϕd)

) + 1 = X√
X2+D(R,ϕ,ϕd,Rw)

+ 1.

(6.24)
Therefore, to calculate the small perturbation velocity potential derivatives, the
following quantity is required:

[
∂

∂R
(f1 · f2 · f3)

]

R=Rw; X=X0

=

[
∂f1

∂R
· f2f3 + f1

∂f2

∂R
f3 + f1f2

∂f3

∂R

]

R=Rw; X=X0

.

(6.25)
It is easy to show that

[f1]R=Rw
= −Rw (1− cos (ϕ− ϕd)) ,

[f2]R=Rw
= 1

2
1

1−cos(ϕ−ϕd)
,

[f3]R=Rw,X=X0
= X0√

(X2
0+2(1−cos(ϕ−ϕd)))

+ 1,

[
∂f1

∂R

]
R=Rw

=cos (ϕ− ϕd) ,
[

∂f2

∂R

]
R=Rw

= − 1
2Rw

1
(1−cos(ϕ−ϕd))

,
[

∂f3

∂R

]
R=Rw,X=X0

= − 1
Rw

X0
(1−cos(ϕ−ϕd))(√

(X2
0+2(1−cos(ϕ−ϕd)))

)3 ,

[
∂f1

∂R
f2f3

]
R=Rw,X=X0

= 1
2

cos(ϕ−ϕd)
1−cos(ϕ−ϕd)


 X0√

(X2
0+2(1−cos(ϕ−ϕd)))

+ 1


 ,

[
f1

∂f2

∂R
f3

]
R=Rw,X=X0

= 1
2


 X0√

(X2
0+2(1−cos(ϕ−ϕd)))

+ 1


 ,

[
f1f2

∂f3

∂R

]
R=Rw,X=X0

= 1
2
X0

(1−cos(ϕ−ϕd))(√
(X2

0+2(1−cos(ϕ−ϕd)))
)3 .

(6.26)

Notice that the term
[

∂f1

∂R
f2f3

]
R=Rw,X=X0

is singular when ϕ = ϕd.
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Treatment of the Singular Term

The singular term can be isolated through some algebraic manipulations. To achieve
this, the definition

[
∂f1

∂R
f2f3

]

R=Rw,X=X0

=
cos (ϕ− ϕd) F (X0,ϕ,ϕd,Rw)

1− cos (ϕ− ϕd)
, (6.27)

where

F (X0,ϕ,ϕd,Rw) =
1

2


 X0√

(X2
0 + 2 (1− cos (ϕ− ϕd)))

+ 1


 , (6.28)

is used. Summing and subtracting the term F (X0,ϕ,ϕ,Rw):

cos(ϕ−ϕd)F (X0,ϕ,ϕd,Rw)
1−cos(ϕ−ϕd)

= cos(ϕ−ϕd)(F (X0,ϕ,ϕd,Rw)−F (X0,ϕ,ϕ,Rw))
1−cos(ϕ−ϕd)

+

+ cos(ϕ−ϕd)F (X0,ϕ,ϕ,Rw)
1−cos(ϕ−ϕd)

,
(6.29)

where

F (X0,ϕ,ϕ,Rw) =
1

2


 X0√

(X2
0 + 2 (1− cos (ϕ− ϕ)))

+ 1


 = 1. (6.30)

Simplifying equation (6.29):

[
∂f1

∂R
f2f3

]
R=Rw,X=X0

= cos (ϕ− ϕd)
F (X0,ϕ,ϕd,Rw)−F (X0,ϕ,ϕ,Rw)

1−cos(ϕ−ϕd)
+ cos(ϕ−ϕd)

(1−cos(ϕ−ϕd))
.

(6.31)
But:

cos (ϕ− ϕd)

(1− cos (ϕ− ϕd))
= −1 +

1

(1− cos (ϕ− ϕd))
, (6.32)

and
F (X0,ϕ,ϕd,Rw)− F (X0,ϕ,ϕ,Rw) =

= −(1−cos(ϕ−ϕd))(
X0+

√
(X2

0+2(1−cos(ϕ−ϕd)))
)√

(X2
0+2(1−cos(ϕ−ϕd)))

. (6.33)

Thus, it can be concluded that
[

∂f1

∂R
f2f3

]
R=Rw,X=X0

= − cos(ϕ−ϕd)(
X0+

√
(X2

0+2(1−cos(ϕ−ϕd)))
)√

(X2
0+2(1−cos(ϕ−ϕd)))

+

−1 + 1
(1−cos(ϕ−ϕd))

.

(6.34)

Using this last relation, Weissinger’s condition leads to introducing the integral
equation reported in the next section.
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6.2.5 Integral Equation with the Variables ϕ, ϕd

Using the relations found in the previous section, the integral equation containing
the unknown doublet distribution m is:

−α (ϕ) = 1
4πV 2∞Rw

=
2π∫
0

m (ϕd)

[
− cos(ϕ−ϕd)(

X0+

√
(X2

0+2(1−cos(ϕ−ϕd)))
)√

(X2
0+2(1−cos(ϕ−ϕd)))

+

−1 + 1
(1−cos(ϕ−ϕd))

+ 1
2


 X0√

(X2
0+2(1−cos(ϕ−ϕd)))

+ 1


 +

+1
2
X0

(1−cos(ϕ−ϕd))(√
(X2

0+2(1−cos(ϕ−ϕd)))
)3

]
dϕd.

(6.35)
Notice that, since the equation contains a singular term (as shown inside the box),
the integral has to be defined as Hadamard finite-part integral.

6.2.6 Integral Equation with the Variables t, s

For numerical approaches, it is useful to extend the integration domain between -1
and +1. Therefore, the following transformations are used:

ϕd = π (t + 1) ,ϕ = π (s + 1) , (6.36)

dϕd = πdt,
ϕ− ϕd = π (s− t) .

(6.37)

Substituting into the integral equation obtained in the previous section:

−α (s) = 1
4V 2∞Rw

=
+1∫
−1

m (t)

[
− cos(π(t−s))(

X0+

√
(X2

0+2(1−cos(π(t−s))))
)√

(X2
0+2(1−cos(π(t−s))))

+

−1 + 1
(1−cos(π(t−s)))

+ 1
2


 X0√

(X2
0+2(1−cos(π(t−s))))

+ 1


 +

+1
2
X0

(1−cos(π(t−s)))(√
(X2

0+2(1−cos(π(t−s))))
)3

]
dt.

(6.38)

6.2.7 Total Lifting Force

Remembering the convention for the positive sign of the doublet axis, the aerody-
namic force which acts outward from the center is (see figure 6.5):

F (ϕd) = − (−ρ∞m (ϕd)) = ρ∞m (ϕd) . (6.39)
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The local lifting force is:

Figure 6.5. Calculation of the lifting force.

L (ϕd) = F (ϕd) sin ϕd = ρ∞m (ϕd) sin ϕd. (6.40)

The total lifting force is obtained by integrating4:

L =
∫

ll

L (sd) dsd. (6.41)

Using the expression dsd = Rwdϕd:

L =

2π∫

0

RwL (ϕd) dϕd =

2π∫

0

ρ∞Rwm (ϕd) sin ϕddϕd = ρ∞Rw

2π∫

0

m (ϕd) sin ϕddϕd.

(6.42)
Introducing the coefficient of lift (reference surface defined as S = 4Rwl):

CL =
L

1
2
ρ∞ (4Rwl) V 2∞

=
1

2lV 2∞

2π∫

0

m (ϕd) sin ϕd dϕd. (6.43)

Expressing equation (6.43) using variables t and s yields

CL = − π

2lV 2∞

+1∫

−1

m (t) sin (πt) dt. (6.44)

4ll indicates ”lifting line”.
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6.2.8 Normalwash [un (ϕ)]X=0

Recalling the definition of the small perturbation velocity potential, the normalwash
is:

[un (ϕ)]X=0 =

(
1

hR

∂φ (X,R,ϕ,Rw)

∂R

)

R=Rw; X=0

. (6.45)

Notice that this expression is formally similar to the expression used in Weissinger’s
condition. Hence:

[un (ϕ)]X=0 = 1
4πV∞Rw

=
2π∫
0

m (ϕd) ·

· limX→0

{[
− cos(ϕ−ϕd)(

X+
√

(X2+2(1−cos(ϕ−ϕd)))

)√
(X2+2(1−cos(ϕ−ϕd)))

+

−1 + 1
(1−cos(ϕ−ϕd))

+ 1
2

(
X√

(X2+2(1−cos(ϕ−ϕd)))
+ 1

)
+

+1
2
X (1−cos(ϕ−ϕd))(√

(X2+2(1−cos(ϕ−ϕd)))

)3

]}
dϕd.

(6.46)

Simplifying:

[un (ϕ)]X=0 =
1

8πV∞Rw

=

2π∫

0

m (ϕd)

(1− cos (ϕ− ϕd))
dϕd. (6.47)

Observation 25 It is easy to show that

[un (ϕ)]X=0 =
1

2
[un (ϕ)]X→∞ . (6.48)

The following comments can be made about this relation:

• Comment 1
The result was predictable because the wing is positioned in a vertical plane5.

• Comment 2
This is also a verification of the theory: the formulation leads to correct results.

6.2.9 Normalwash [un (s)]X=0

Using the expression of un found in the previous section, it is easy to show that

[un (s)]X=0 =
1

8V∞Rw

=

+1∫

−1

m (t)

(1− cos (π (t− s)))
dt. (6.49)

5This result is valid also in a classical wing, where it is well known that the induced velocity in
the Trefftz plane is twice the induced velocity on the wing [2].
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6.2.10 Normalwash [un (ϕ)]X=0: a Geometrical Approach

Suppose that the circulation Γ (ϕ) on the lifting line is known. Referring to figure
6.6, the modulus of the induced velocity in a point on the circle characterized by the
angle ϕ is indicated by Vγx . This velocity is induced by the trailing vortex γxdsd

positioned in correspondence to the angle ϕd. Moreover, the radial component of
the induced velocity is indicated by dun . From figure 6.6, it is clear that6

Figure 6.6. Induced velocity by the vortex γxdsd.

dun = Vγx cos ς. (6.50)

Writing the induced velocity in an explicit form:

dun =
γx (sd)

4πr
cos ς dsd, (6.51)

where r is the modulus of the vector r. r is obtainable as the difference between the
position vectors as follows:

r = V (ϕ)−V (ϕd) = (Rw cos ϕ−Rw cos ϕd) j + (Rw sin ϕ−Rw sin ϕd) k. (6.52)

6Clearly, the positive direction for un acts toward the centre. Notice that in the previous
analytical derivation the convention was the opposite.
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Therefore, the modulus is

r =
√

r2
y + r2

z = Rw

√
2 (1− cos (ϕ− ϕd)). (6.53)

Clearly, nγx has the expression

nγx = i× r

r
= − (sin ϕ− sin ϕd)√

2 (1− cos (ϕ− ϕd))
j+

(cos ϕ− cos ϕd)√
2 (1− cos (ϕ− ϕd))

k. (6.54)

The vector with unitary modulus acting toward the center and characterized by ϕ
has the expression:

nϕ = − cos ϕ j− sin ϕ k. (6.55)

Therefore, it is possible to determine cos ς as a scalar product of nγx and nϕ:

cos ς = nγx · nϕ = − (sin ϕ−sin ϕd)√
2(1−cos(ϕ−ϕd))

(− cosϕ) + (cos ϕ−cos ϕd)√
2(1−cos(ϕ−ϕd))

(− sinϕ) =

= sin(ϕ−ϕd)√
2(1−cos(ϕ−ϕd))

.
(6.56)

Substituting into equation (6.51):

dun =
γx (sd)

4πr


 sin (ϕ− ϕd)√

2 (1− cos (ϕ− ϕd))


 dsd. (6.57)

Notice that, here, the induced velocity is considered positive when it acts toward
the center. Considering figure 6.7:

Figure 6.7. Bounded Vortex and trailing vortex.

γx (sd) = −dΓ (sd)
dsd

,

dsd = Rwdϕd.
(6.58)

Using the expression used for r:

dun =
−dΓ(ϕd)

dϕd

4πRw

√
2(1−cos(ϕ−ϕd))

sin(ϕ−ϕd)√
2(1−cos(ϕ−ϕd))

dϕd. (6.59)
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Integrating over the circle:

un = − 1

8πRw

=

2π∫

0

dΓ (ϕd)
dϕd

sin (ϕ− ϕd)

(1− cos (ϕ− ϕd))
dϕd. (6.60)

Using the identity sin(ϕ−ϕd)
(1−cos(ϕ−ϕd))

= 1

tan
ϕ−ϕd

2

, yields

un = − 1

8πRw

=

2π∫

0

dΓ (ϕd)
dϕd

tan ϕ−ϕd

2

dϕd. (6.61)

Changing the variables in a way to calculate the integrals in the interval -1,+1:

un =
1

8πRw

=

+1∫

−1

dΓ (t)
dt

tan π(t−s)
2

dt. (6.62)

Now it has to be demonstrated that equation (6.62) is the same as the normalwash
formula (equation (6.49)) reported below7:

[un (s)]X=0 =
1

8V∞Rw

=

+1∫

−1

m (t)

(
1

(1− cos (π (t− s)))

)
dt. (6.63)

Integrating equation (6.63) by parts:

[un (s)]X=0 =
[
m (t)

(
− 1

π tan
(π(t−s))

2

)]+1

−1
− =

+1∫
−1

dm
dt

(
− 1

π tan
(π(t−s))

2

)
. (6.64)

But m (−1) = m (+1) in the annular wing, thus, expression (6.64) becomes

[un (s)]X=0 = 1
8V∞Rw

=
+1∫
−1

dm
dt

(
1

π tan
(π(t−s))

2

)
. (6.65)

Observing that m and Γ are directly related:

m (t) = −V∞Γ (t) , (6.66)

and remembering the sign convention used for un, it is clear that the expressions
(6.62) and (6.49) are the same. Therefore, the geometric approach yielded the same
equation for normalwash as was obtained using the analytical procedure.

7 In equation (6.63), un is positive when it acts outward from the center, while in equation
(6.62) un is positive when it acts toward the center.
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6.2.11 Evaluation of the Induced Drag

As seen in chapter 4, under the assumption made, the local contribute of the induced
drag is

Di (ϕd) = F (ϕd) tan (αi (ϕd)) ' F (ϕd) αi (ϕd) , (6.67)

where

F (ϕd) = − (−ρ∞m (ϕd)) = ρ∞m (ϕd) . (6.68)

The induced incidence is

αi (ϕd) = − [un (ϕd)]X=0

V∞
, (6.69)

where [un (ϕd)]X=0 has been calculated before. Integrating over the entire lifting
line8:

Di = −
∫

ll

F (sd) αi (sd) dsd. (6.70)

Using the expression of dsd:

Di = ρ∞Rw −
2π∫

0

m (ϕd)

(
− [un (ϕd)]X=0

V∞

)
dϕd. (6.71)

The corresponding coefficient of induced drag is

CDi
=

1

2lV 3∞
−
2π∫

0

m (ϕd) (− [un (ϕd)]X=0) dϕd. (6.72)

The coefficient of induced drag expressed with the variables t and s is:

CDi
=

π

2lV 3∞
−
+1∫

−1

m (t) (− [un (t)]X=0) dt. (6.73)

Observation 26 Notice that the external integral in the expression of the induced
drag has to be defined in the Cauchy sense. The reason is that the curve representing
the lifting line is closed and, thus, the singularity is always inside the interval of
integration. This last property guarantees that the external integral can be defined
as a Cauchy integral instead of a Hadamard integral.

8ll means that the integrals have to be calculated over the lifting line representing the wing.
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6.3 Elliptical Annular Wing with Wing Span

Representing its Major Axis

The analytical procedure that will be used here is similar to the procedure adopted in
the circular annular wing case. However, the mathematical expressions are different.
Therefore, for the aim of completeness, the details of the derivations are not omitted.
The reader not interested in mathematical derivations, could skip to chapter 7.

The geometry of the wing is shown in figure 6.8. In figure 6.9, the reference

Figure 6.8. Elliptical annular wing with bw > aw.

coordinate system and a few useful notations are reported. Like the circular annular
wing, the calculation of the normalwash is important. Thus, the derivatives along the
perpendicular directions of the ellipse are required. This is done using a particular
transformation of coordinates shown in the next subsection.

6.3.1 Coordinate Transformation

Is it possible to transform the coordinate system in order to define the same point
using two directions which are tangent and perpendicular to an ellipse? The answer
is yes. It is sufficient to write

y = c cosh ψ cos ϕ 0 ≤ ϕ ≤ 2π,
z = c sinh ψ sin ϕ ψ > 0.

(6.74)

It can observed that the ellipse with semi-axes aw and bw is obtainable when

aw = c sinh ψw,
bw = c cosh ψw.

(6.75)
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Figure 6.9. Elliptical annular wing: reference coordinate system.

From the last equations:
c2 = b2

w − a2
w,

cosh2 ψw = b2w
b2w−a2

w
.

(6.76)

The ellipse representing the lifting line9 is

y = c cosh ψw cos ϕ 0 ≤ ϕ ≤ 2π,
z = c sinh ψw sin ϕ ψw > 0.

(6.77)

Now consider the generic ellipse. It is easy to show that

dy = c sinh ψ cos ϕ dψ − c cosh ψ sin ϕ dϕ,
dz = c cosh ψ sin ϕ dψ + c sinh ψ cos ϕ dϕ.

(6.78)

Squaring and summing:

ds2 = dy2 + dz2 = c2
(
cosh2 ψ − cos2 ϕ

) (
dψ2 + dϕ2

)
= h2

(
dψ2 + dϕ2

)
. (6.79)

From this equation, it is not difficult to understand that, for the ellipse representing
the lifting line, the infinitesimal arc has the length10:

dsd = c
√

cosh2 ψw − cos2 ϕ dϕd. (6.80)

9That ellipse is obtained by setting ψ = ψw.
10On the ellipse w (the lifting line), ψ = ψw = const ⇒ dψ = 0. Notice, the subscript d is used

because a doublet will be positioned on the infinitesimal arc (see next derivations).
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In figure 6.10, the transformation of the coordinate system can been seen. Each

Figure 6.10. Transformation of the coordinate system.

point is uniquely determined as the intersection of an ellipse (each curve with ψ =
const is an ellipse) and a hyperbola (each curve with ϕ = const is a hyperbola).
Notice that in each intersection of an ellipse and a hyperbola, the tangent of the
ellipse is perpendicular to the tangent of the hyperbola. This is shown in appendix
D.

6.3.2 Small Perturbation Acceleration Potential

In order to write the acceleration potential, the following quantities are needed:

• Quantity 1
The distance between a generic point P (x,y,z) in space and a point Pd(xd,yd,zd)
on the lifting line w.

• Quantity 2
The cosine direction of the normal on the lifting line. The normal acts toward
the local center of curvature.

These quantities are calculated in appendix E. Using the generic formula (1.49), the
small perturbation acceleration potential of a doublet M = m (sd) dsd positioned at
a point on the ellipse characterized by ϕ = ϕd is:

dΨ (x,ψ,ϕ,ψw) = m(ϕd)dϕd

4πc
H1

H
3/2
2

, (6.81)
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where
H1 = cos ϕd sinh ψw (cosh ψ cos ϕ− cosh ψw cos ϕd) +

+ sin ϕd cosh ψw (sinh ψ sin ϕ− sinh ψw sin ϕd) ,

H2 = X2 + (cosh ψ cos ϕ− cosh ψw cos ϕd)
2 +

+ (sinh ψ sin ϕ− sinh ψw sin ϕd)
2 .

(6.82)

In equation (6.81), the following relations have been used:

xd = 0,

yd = c cosh ψw cos ϕd,

zd = c sinh ψw sin ϕd,

y = c cosh ψ cos ϕ,

z = c sinh ψw sin ϕ,

dsw = c
√

cosh2 ψw − cos2 ϕddϕd.

(6.83)

Finally, using the relation

1
2 (sinh (ψ + ψw) cos (ϕ− ϕd)− sinh (ψ − ψw) cos (ϕ + ϕd)− sinh 2ψw) =

= (cosϕd sinhψw) (coshψ cosϕ− coshψw cosϕd)+

+ (sinϕd coshψw) (sinhψ sinϕ− sinhψw sinϕd) ,

(6.84)

and integrating over the lifting line yields:

Ψ (x,ψ,ϕ,ψw) = 1
8πc

2π∫
0

m (ϕd)
H3

H
3/2
4

dϕd, (6.85)

where

H3 = (sinh (ψ + ψw) cos (ϕ− ϕd)− sinh (ψ − ψw) cos (ϕ + ϕd)− sinh 2ψw) ,

H4 = X2 + sinh2 ψ + cos2 ϕ− cosh (ψ − ψw) cos (ϕ + ϕd) +

− cosh (ψ + ψw) cos (ϕ− ϕd) + sinh2 ψw + cos2 ϕd.
(6.86)

Equation (6.85) represents the small perturbation acceleration potential of all
doublets positioned on the elliptical lifting line.
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6.3.3 Small Perturbation Velocity Potential

Using the procedure adopted for the circular annular wing, it is possible to obtain
the small perturbation velocity potential:

φ = 1
8πV∞

2π∫
0

m (ϕd)
H3

H4−X2

(
X√
H4

+ 1
)

dϕd. (6.87)

This expression is very useful, because by deriving it, the velocity perpendicular to
the ellipse can be written and, therefore, Weissinger’s condition can be imposed.
This operation is done in the next subsection.

6.3.4 Imposition of Weissinger’s Condition

Weissinger’s condition consists of the WTC imposed in X0 = l
2c

:

− α (ϕ) =
1

V∞

(
1

h

∂φ (X,ψ,ϕ,ψw)

∂ψ

)

X=X0; ψ=ψw

. (6.88)

The explicit form of the derivatives and the treatment of the consequent singular
term are given in appendix F.

6.3.5 Integral Equation with the Variables ϕ, ϕd

Using the relations found above, the final expression of Weissinger’s condition can be
written. It is represented by an integral equation containing the unknown function
m(ϕ), which is the doublet distribution on the elliptical lifting line. Thus11:

−α (ϕ) = 1

8πcV 2∞

√
(cosh2 ψw−cos2 ϕ)

=
2π∫
0

m (ϕd)
( [

f2
∂f3

∂ψ

]
ψ=ψw,X=X0

+

+
([

∂f2

∂ψ

]
f3

)
ψ=ψw,X=X0

)
dϕd,

(6.89)

11 Notice that the integral has to be defined as a Hadamard finite-part integral because the
integral contains the singular term 2

1−cos(ϕ−ϕd) .
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where

[
f2

∂f3

∂ψ

]
ψ=ψw,X=X0

= X0 cosh2 ψw sinh2 ψw(1−cos(ϕ−ϕd))

(H5)(H6)
3
2

,

([
∂f2

∂ψ

]
f3

)
ψ=ψw,X=X0

=
([

∂f2

∂ψ

]R
f3

)

ψ=ψw,X=X0

+
([

∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

,

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

= cosh2 ψw cos(ϕ−ϕd)−cos ϕ cos ϕd

(H5)
· fI − cosh(2ψw)

(H5)
+

+ 2
1−cos(ϕ−ϕd)

,

([
∂f2

∂ψ

]R
f3

)

ψ=ψw,X=X0

= sinh2 ψw cosh2 ψw

(H5)2
·
(

X0√
H6

+ 1
)
,

fI = −2(H5)

(X0+
√

H6)
√

H6
,

H5 = sinh2 ψw + sin2 ϕ+ϕd

2
,

H6 = X2
0 + 2

(
sinh2 ψw + sin2 ϕ+ϕd

2

)
(1− cos (ϕ− ϕd)) .

(6.90)

The term inside the box is the singular term.

6.3.6 Integral Equation with the Variables t, s

The new variables t and s are defined as

ϕd = π (t + 1) ,ϕ = π (s + 1) . (6.91)

Observing the previous equation, it can be deduced that:

dϕd = πdt
ϕ− ϕd = π (s− t) ,
cos (π (s + 1)) = cos (πs + π) = − cos (πs) ,
cos (π (t + 1)) = cos (πt + π) = − cos (πt) .

(6.92)

Substituting into the integral equation yields:

−α (s) = 1
8cV 2∞

1√
(cosh2 ψw−cos2(πs))

=
+1∫
−1

m (t)
( [

f2
∂f3

∂ψ

]
ψ=ψw,X=X0

+

+
([

∂f2

∂ψ

]
f3

)
ψ=ψw,X=X0

) dt,

(6.93)
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where
[
f2

∂f3

∂ψ

]
ψ=ψw,X=X0

= X0 cosh2 ψw sinh2 ψw(1−cos(π(t−s)))

(H5)(H6)
3
2

,

([
∂f2

∂ψ

]
f3

)
ψ=ψw,X=X0

=
([

∂f2

∂ψ

]R
f3

)

ψ=ψw,X=X0

+
([

∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

,

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

= cosh2 ψw cos(π(t−s))−cos(πs) cos(πt)
(H5)

· fI − cosh(2ψw)
(H5)

+

+ 2
1−cos(π(t−s))

,

([
∂f2

∂ψ

]R
f3

)

ψ=ψw,X=X0

= sinh2 ψw cosh2 ψw

(H5)2

(
X0√
H6

+ 1
)
,

fI = −2(H5)

(X0+
√

H6)
√

H6
,

H5 = sinh2 ψw + sin2
(

π(t+s)
2

)
,

H6 = X2
0 + 2

(
sinh2 ψw + sin2

(
π(t+s)

2

))
(1− cos (π (t− s))) .

(6.94)

6.3.7 Total Lifting Force

Remembering the convention for the positive sign of the doublet axis, the aerody-
namic force, which acts outward from the local center of curvature, is

F (ϕd) = − (−ρ∞m (ϕd)) = ρ∞m (ϕd) . (6.95)

The local normal direction is the aerodynamic force direction. Recalling the
expression of the unit vector which acts outward from the local center of curvature:

Nd = −nd =
cos ϕd sinh ψw√

cosh2 ψw − cos2 ϕd

j +
sin ϕd cosh ψw√

cosh2 ψw − cos2 ϕd

k, (6.96)

it is easy to obtain (see figure 6.11)12:

sin β = (Nd)z =
sin ϕd cosh ψw√

cosh2 ψw − cos2 ϕd

. (6.97)

The local lift is:

L (ϕd) = F (ϕd) sin β = ρ∞m (ϕd)
cosh ψw sin ϕd√

cosh2 ψw − cos2 ϕd

. (6.98)

12Notice that vector Nd has modulus equal to one.
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Figure 6.11. Calculation of the lifting force.

The total lifting force is determined by integrating

L =
∫

ll

L (sd) dsd. (6.99)

But it has been demonstrated that dsd = c
√

cosh2 ψw − cos2 ϕd dϕd; thus13

L = c
2π∫
0

L (ϕd)
√

cosh2 ψw − cos2 ϕd dϕd = ρ∞bw

2π∫
0

m (ϕd) sin ϕd dϕd. (6.100)

Using the variable t instead of ϕd:

L = −ρ∞πbw

+1∫

−1

m (t) sin (πt) dt. (6.101)

The corresponding coefficient of lift (using the reference surface S = 4bwl) is

CL =
L

1
2
ρ∞SV 2∞

= − π

2lV 2∞

+1∫

−1

m (t) sin (πt) dt. (6.102)

6.3.8 Normalwash [un (ϕ)]X=0

The induced velocity perpendicular to the lifting line is very important in the induced
drag calculation. It is not difficult to analytically determine the expression of the
induced velocity. It is sufficient to use the small perturbation velocity potential as
following:

[un (ϕ)]X=0 =

(
1

h

∂φ (X,ψ,ϕ,ψw)

∂ψ

)

ψ=ψw; X=0

. (6.103)

13Notice that c coshψw = bw.
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Obviously, the positive direction of the induced velocity acts outward from the local
center of curvature. Using the previous expressions, the normalwash equation is
obtained:

[un (ϕ)]X=0 = 1

8πcV∞
√

(cosh2 ψw−cos2 ϕ)
=
2π∫
0

m (ϕd)
( [

f2
∂f3

∂ψ

]
ψ=ψw,X=0

+

+
([

∂f2

∂ψ

]
f3

)
ψ=ψw,X=0

)
dϕd,

(6.104)

where[
f2

∂f3

∂ψ

]
ψ=ψw,X=0

= 0

([
∂f2

∂ψ

]
f3

)
ψ=ψw,X=0

=
([

∂f2

∂ψ

]R
f3

)

ψ=ψw,X=0
+

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=0
,

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=0
= − 1

2
cosh(2ψw)

(sinh2 ψw+sin2 ϕ+ϕd
2 )

+ 1
1−cos(ϕ−ϕd)

,

([
∂f2

∂ψ

]R
f3

)

ψ=ψw,X=0
= sinh2 ψw cosh2 ψw

(sinh2 ψw+sin2 ϕ+ϕd
2 )

2 .

(6.105)

Expressing the normalwash equation with the variables t and s yields:

[un (s)]X=0 = 1

8cV∞
√

(cosh2 ψw−cos2(πs))
=
+1∫
−1

m (t)
( [

f2
∂f3

∂ψ

]
ψ=ψw,X=0

+

+
([

∂f2

∂ψ

]
f3

)
ψ=ψw, X=0

)
dt,

(6.106)

where[
f2

∂f3

∂ψ

]
ψ=ψw,X=0

= 0

([
∂f2

∂ψ

]
f3

)
ψ=ψw,X=0

=
([

∂f2

∂ψ

]R
f3

)

ψ=ψw,X=0
+

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=0
,

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=0
= − 1

2
cosh(2ψw)

(sinh2 ψw+sin2(π(t+s)
2 ))

+ 1
(1−cos(π(t−s)))

,

([
∂f2

∂ψ

]R
f3

)

ψ=ψw,X=0
= sinh2 ψw cosh2 ψw

(sinh2 ψw+sin2(π(t+s)
2 ))

2 .

(6.107)

Observation 27 The normalwash satisfies the following relation:

[un (ϕ)]X=0 =
1

2
[un (ϕ)]X→∞ , (6.108)

as was shown in the circular annular wing case.
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Observation 28 The induced velocity can be easily determined geometrically as
has been done for the biplane and the circular annular wing. Details can be found
in appendix G.

6.3.9 Evaluation of the Induced Drag

Under the assumption made, the local contribute of the induced drag is:

Di (ϕd) = F (ϕd) tan (αi (ϕd)) ' F (ϕd) αi (ϕd) , (6.109)

where
F (ϕd) = − (−ρ∞m (ϕd)) = ρ∞m (ϕd) . (6.110)

The induced incidence is

αi (ϕd) = − [un (ϕd)]X=0

V∞
. (6.111)

Integrating over the entire lifting line:

Di = −
∫

ll

F (sd) αi (sd) dsd. (6.112)

Using the expression of dsd, the equation of induced drag is obtained:

Di = −
2π∫

0

ρ∞cm (ϕd)

(
− [un (ϕd)]X=0

V∞

) √
cosh2 ψw − cos2 ϕd dϕd. (6.113)

The corresponding coefficient of induced drag is

CDi
=

c

2bwlV 3∞
−
2π∫

0

m (ϕd)
√

cosh2 ψw − cos2 ϕd (− [un (ϕd)]X=0) dϕd. (6.114)

Expressing the coefficient of induced drag with the variables t and s:

CDi
=

πc

2bwlV 3∞
−
+1∫

−1

m (t)
√

cosh2 ψw − cos2 (πt) (− [un (t)]X=0) dt. (6.115)
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6.4 Elliptical Annular Wing with Wing Span

Representing its Minor Axis

The geometry of the wing is shown in figure 6.12. The reference coordinate system

Figure 6.12. Elliptical annular wing with bw < aw.

is similar to the reference coordinate system seen in previous cases. Here, the
transformation of variables is different. The same transformation used when bw > aw

can not be used. In particular, now

y = c sinh ψ cos ϕ 0 ≤ ϕ ≤ 2π,
z = c cosh ψ sin ϕ ψ > 0.

(6.116)

It can be observed that the ellipse with semi-axes aw and bw is obtainable when

aw = c cosh ψw,
bw = c sinh ψw.

(6.117)

From the last equations:
c2 = a2

w − b2
w,

cosh2 ψw = a2
w

a2
w−b2w

,

sinh2 ψw = b2w
a2

w−b2w
.

(6.118)

The ellipse representing the lifting line14 is

y = c sinh ψw cos ϕ 0 ≤ ϕ ≤ 2π,
z = c cosh ψw sin ϕ ψw > 0.

(6.119)

14That ellipse is obtained by setting ψ = ψw.
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As has been done for the case in which bw > aw, it is possible to find the relation

ds2 = dy2 + dz2 = c2
(
sinh2 ψ + cos2 ϕ

) (
dψ2 + dϕ2

)
= h2

(
dψ2 + dϕ2

)
. (6.120)

Now consider the ellipse w. It is easy to show that the infinitesimal arc has the
dimension

dsd = c
√

sinh2 ψ + cos2 ϕ dϕd. (6.121)

Figure 6.13 shows the transformation of the coordinate system. Each point in the

Figure 6.13. Transformation of the coordinate system.

plane y− z is uniquely determined as the intersection of an ellipse (each curve with
ψ = const is an ellipse) and a hyperbola (each curve with ϕ = const is a hyperbola).
Notice that in each intersection of an ellipse and a hyperbola, the tangent of the
ellipse is perpendicular to the tangent of the hyperbola, as it was for the ellipse with
bw > aw.

6.4.1 Small Perturbation Acceleration Potential

In order to write the acceleration potential, the following quantities are needed:

• Quantity 1
The distance between a generic point P (x,y,z) in space and a point Pd(xd,yd,zd)
on the lifting line w.

• Quantity 2
The cosine directions of the normal to the lifting line. The normal acts toward
the local center of curvature.
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These quantities are calculated in appendix H. Using the generic formula (1.49), the
small perturbation acceleration potential of a doublet M = m (sd) dsd positioned at
a point on the ellipse characterized by ϕ = ϕd is

dΨ (x,ψ,ϕ,ψw) = m(ϕd)dϕd

4πc
H1

H
3/2
2

, (6.122)

where
H1 = cos ϕd cosh ψw (sinh ψ cos ϕ− sinh ψw cos ϕd) +

+ sin ϕd sinh ψw (cosh ψ sin ϕ− cosh ψw sin ϕd) ,

H2 = X2 + (sinh ψ cos ϕ− sinh ψw cos ϕd)
2 +

+ (cosh ψ sin ϕ− cosh ψw sin ϕd)
2 .

(6.123)

In equation (6.122), the following relations have been used:

xd = 0,

yd = c sinh ψw cos ϕd,

zd = c cosh ψw sin ϕd,

y = c sinh ψ cos ϕ,

z = c cosh ψw sin ϕ,

dsd = c
√

sinh2 ψw + cos2 ϕd dϕd.

(6.124)

Integrating over the lifting line yields the small perturbation acceleration potential
of all doublets positioned on the elliptical lifting line:

Ψ (x,ψ,ϕ,ψw) = 1
8πc

2π∫
0

m (ϕd)
H3

H
3
2
4

dϕd, (6.125)

where

H3 = (sinh (ψ + ψw) cos (ϕ− ϕd) + sinh (ψ − ψw) cos (ϕ + ϕd)− sinh 2ψw) ,

H4 = X2 + sinh2 ψ + sin2 ϕ + sinh2 ψw + sin2 ϕd+

− cosh (ψ + ψw) cos (ϕ− ϕd) + cosh (ψ − ψw) cos (ϕ + ϕd) .
(6.126)

6.4.2 Small Perturbation Velocity Potential

Using the procedure adopted in the previous sections, it is possible to obtain the
small perturbation velocity potential:

φ = 1
8πV∞

2π∫
0

m (ϕd)
H3

H4−X2

(
X√
H4

+ 1
)

dϕd. (6.127)
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6.4.3 Imposition of Weissinger’s Condition

Weissinger’s condition consists of the WTC imposed in X0 = l
2c

:

− α (ϕ) =
1

V∞

(
1

h

∂φ (X,ψ,ϕ,ψw)

∂ψ

)

X=X0; ψ=ψw

. (6.128)

The explicit form of the derivatives and the treatment of the consequent singular
term are given in appendix I.

6.4.4 Integral Equation with the Variables ϕ, ϕd

Using the relations found above, the final expression of Weissinger’s condition can be
written. It is represented by an integral equation containing the unknown function
m(ϕ), which is the doublet distribution on the elliptical lifting line. Thus:

−α (ϕ) = 1
8πcV 2∞

1√
(sinh2 ψw+cos2 ϕ)

=
2π∫
0

m (ϕd)
( [

f2
∂f3

∂ψ

]
ψ=ψw,X=X0

+

+
([

∂f2

∂ψ

]
f3

)
ψ=ψw,X=X0

)
dϕd,

(6.129)

where
[
f2

∂f3

∂ψ

]
ψ=ψw,X=X0

= X0 cosh2 ψw sinh2 ψw(1−cos(ϕ−ϕd))

(H5)(H6)
3
2

,

([
∂f2

∂ψ

]
f3

)
ψ=ψw,X=X0

=
([

∂f2

∂ψ

]R
f3

)

ψ=ψw,X=X0

+
([

∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

,

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

= cosh2 ψw cos(ϕ−ϕd)−sin ϕ sin ϕd

(H5)
· fI − cosh(2ψw)

(H5)
+

+ 2
1−cos(ϕ−ϕd)

,

([
∂f2

∂ψ

]R
f3

)

ψ=ψw,X=X0

= sinh2 ψw cosh2 ψw

(H5)2

(
X0√
H6

+ 1
)
,

fI = −2(H5)

(X0+
√

H6)
√

H6
,

H5 = sinh2 ψw + cos2 ϕ+ϕd

2
,

H6 = X2
0 + 2

(
sinh2 ψw + cos2 ϕ+ϕd

2

)
(1− cos (ϕ− ϕd)) .

(6.130)

The term inside the box is the singular term: when ϕ → ϕd the term becomes
infinite. In the next section, the same equation written in terms of the new variables
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t and s, which have the property to transform all intervals of integration in the
manner: [0,2π] → [−1, + 1], will be seen.

6.4.5 Integral Equation with the Variables t, s

The new variables t and s are defined as

ϕd = π (t + 1) ,ϕ = π (s + 1) . (6.131)

Observing the previous equation, it can be deduced that:

dϕd = πdt,
ϕ− ϕd = π (s− t) ,
sin (π (s + 1)) = sin (πs + π) = − sin (πs) ,
sin (π (t + 1)) = sin (πt + π) = − sin (πt) .

(6.132)

Substituting into the integral equation yields:

−α (s) = 1

8cV 2∞

√
(sinh2 ψw+cos2(πs))

=
+1∫
−1

m (t)
( [

f2
∂f3

∂ψ

]
ψ=ψw,X=X0

+

+
([

∂f2

∂ψ

]
f3

)
ψ=ψw,X=X0

)
dt,

(6.133)

where
[
f2

∂f3

∂ψ

]
ψ=ψw,X=X0

= X0 cosh2 ψw sinh2 ψw(1−cos(π(t−s)))

(H5)(H6)3/2 ,

([
∂f2

∂ψ

]
f3

)
ψ=ψw,X=X0

=
([

∂f2

∂ψ

]R
f3

)

ψ=ψw,X=X0

+
([

∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

,

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

= cosh2 ψw cos(π(t−s))−sin(πs) sin(πt)
(H5)

fI − cosh(2ψw)
(H5)

+

+ 2
(1−cos(π(t−s)))

,

([
∂f2

∂ψ

]R
f3

)

ψ=ψw,X=X0

= sinh2 ψw cosh2 ψw

(H5)2

(
X0√
H6

+ 1
)
,

fI = −2(H5)

(X0+
√

H6)
√

H6
,

H5 = sinh2 ψw + cos2
(

π(t+s)
2

)
,

H6 = X2
0 + 2

(
sinh2 ψw + cos2

(
π(t+s)

2

))
(1− cos (π (t− s))) .

(6.134)
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6.4.6 Total Lifting Force

Recalling the convention for the positive sign of the doublet axis, the aerodynamic
force, which acts outward from the local center of curvature, is

F (ϕd) = − (−ρm (ϕd)) = ρm (ϕd) . (6.135)

The local normal direction is the aerodynamic force direction. Recalling the
expression of the unit vector, which acts outward from the local center of curvature:

Nd = −nd =
cos ϕd cosh ψw√

sinh2 ψw + cos2 ϕd

j +
sin ϕd sin ψw√

sinh2 ψw + cos2 ϕd

k, (6.136)

It easy to obtain (see figure 6.14)15:

sin β = (Nd)z =
sin ϕd sin ψw√

sinh2 ψw + cos2 ϕd

. (6.137)

The local lift is:

Figure 6.14. Calculation of the lifting force.

L (ϕd) = F (ϕd) sin β = ρ∞m (ϕd)
sin ϕd sin ψw√

sinh2 ψw + cos2 ϕd

. (6.138)

15Notice that vector Nd has modulus equal to one.
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The total lifting force is determined by integrating

L =
∫

ll

L (sd) dsd. (6.139)

But it has been demonstrated that dsd = c
√

sinh2 ψw + cos2 ϕd dϕd; thus16,

L = c
2π∫
0

L (ϕd)
√

sinh2 ψw + cos2 ϕd dϕd = ρ∞bw

2π∫
0

m (ϕd) sin ϕd dϕd. (6.140)

Using the variable t instead of ϕd:

L = −ρ∞πbw

+1∫

−1

m (t) sin (πt) dt. (6.141)

The corresponding coefficient of lift (using the reference surface S = 4bwl) is

CL =
L

1
2
ρ∞SV 2∞

= − π

2lV 2∞

+1∫

−1

m (t) sin (πt) dt. (6.142)

6.4.7 Normalwash [un (ϕ)]X=0

The induced velocity perpendicular to the lifting line is very important in the induced
drag calculation. It is not difficult to analytically find the expression of the induced
velocity. It is sufficient to use the small perturbation velocity potential:

[un (ϕ)]X=0 =

(
1

h

∂φ (X,ψ,ϕ,ψw)

∂ψ

)

ψ=ψw; X=0

. (6.143)

Obviously, the positive direction of the induced velocity acts outward from the local
center of curvature. Using the previous expressions, the normalwash equation is
obtained:

[un (ϕ)]X=0 = 1

8πcV∞
√

sinh2 ψw+cos2 ϕd

=
2π∫
0

m (ϕd)
( [

f2
∂f3

∂ψ

]
ψ=ψw,X=0

+

+
([

∂f2

∂ψ

]
f3

)
ψ=ψw,X=0

)
dϕd,

(6.144)

16Notice that c sinhψw = bw.
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where
[
f2

∂f3

∂ψ

]
ψ=ψw,X=0

= 0

([
∂f2

∂ψ

]
f3

)
ψ=ψw,X=0

=
([

∂f2

∂ψ

]R
f3

)

ψ=ψw,X=0
+

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=0
,

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=0
= − 1

2
cosh(2ψw)

(sinh2 ψw+cos2
ϕ+ϕd

2 )
+ 1

1−cos(ϕ−ϕd)
,

([
∂f2

∂ψ

]R
f3

)

ψ=ψw,X=0
= sinh2 ψw cosh2 ψw

(sinh2 ψw+cos2
ϕ+ϕd

2 )
2 .

(6.145)

Expressing the normalwash equation with the variables t and s yields:

[un (s)]X=0 = 1

8cV∞
√

sinh2 ψw+cos2(πt)
=
+1∫
−1

m (t)
( [

f2
∂f3

∂ψ

]
ψ=ψw,X=0

+

+
([

∂f2

∂ψ

]
f3

)
ψ=ψw, X=0

)
dt,

(6.146)

where
[
f2

∂f3

∂ψ

]
ψ=ψw,X=0

= 0

([
∂f2

∂ψ

]
f3

)
ψ=ψw,X=0

=
([

∂f2

∂ψ

]R
f3

)

ψ=ψw,X=0
+

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=0
,

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=0
= − 1

2
cosh(2ψw)

(sinh2 ψw+cos2(π(t+s)
2 ))

+ 1
(1−cos(π(t−s)))

,

([
∂f2

∂ψ

]R
f3

)

ψ=ψw,X=0
= sinh2 ψw cosh2 ψw

(sinh2 ψw+cos2(π(t+s)
2 ))

2 .

(6.147)

Observation 29 It is easy to demonstrate that

[un (ϕ)]X=0 =
1

2
[un (ϕ)]X→∞ , (6.148)

as has been found for the other cases.

6.4.8 Evaluation of the Induced Drag

Using the same procedure adopted for the other annular wings, it possible to obtain
the induced drag and the coefficient of induced drag equations:

Di = −
2π∫

0

ρ∞cm (ϕd)

(
− [un (ϕd)]X=0

V∞

) √
sinh2 ψw + cos2 ϕd dϕd, (6.149)
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CDi
=

c

2bwlV 3∞
−
2π∫

0

m (ϕd)
√

sinh2 ψw + cos2 ϕd (− [un (ϕd)]X=0) dϕd. (6.150)

Expressing the equation with the variables t and s yields:

CDi
=

πc

2bwlV 3∞
−
+1∫

−1

m (t)
√

sinh2 ψw + cos2 (πt) (− [un (t)]X=0) dt. (6.151)
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6 – Closed Wing Systems: Annular Wings. Analytical Formulation

Nomenclature

α angle of attack
αi induced angle of attack
ρ fluid density
φ small perturbation velocity potential
Ψ small perturbation acceleration potential
Γ circulation
γx distributed trailing vorticity
un normalwash
2bw wing span
l chord
M doublet
m doublet distribution
L lift
Di induced drag
CL coefficient of lift
CDi

coefficient of induced drag
F algebraic expression, aerodynamic force
t, s auxiliary variables
V∞ velocity (freestream conditions)
=
∫

Hadamard finite-part integral

−∫ integral defined in the Cauchy principal values sense

bw semi-axis elliptical annular wing

aw semi-axis elliptical annular wing

Rw radius of a circular annular wing

ds, dsd infinitesimal length

R, ϕ coordinates used in the circular annular wing

ψ, ϕ coordinates used in the elliptical annular wing

c
√

b2
w − a2

w,
√

a2
w − b2

w

X x
Rw

, x
c

X0
l

2Rw
, l

2c

D distance between a generic point and a point on the wing

i, j,k unit vectors

nϕ,nγx unit vectors

nd,N d unit vectors

WTC Wall Tangency Condition
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Subscripts

∞ freestream conditions
d doublet
w quantity referred to the wing
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Chapter 7

Elliptical Lifting Arcs. Analytical
Formulation

7.1 Introduction

Chapter 6 introduced the theory related to the annular wings. But it is interesting
to see, from an aerodynamic point of view, what happens if a closed wing system with
a non-planar wing system like an arc is compared. To illustrate this concept, the
differences between the elliptical annular wing (see wing 1 in figure 7.1) and elliptical
lifting arcs (see wings 2-4 in figure 7.1) should be understood. In this chapter, the

Figure 7.1. A few examples of elliptical annular wing and elliptical lifting arcs.

elliptical lifting arcs obtained from an annular wing with bw > aw will be analyzed.
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7 – Elliptical Lifting Arcs. Analytical Formulation

Obviously, the formulation reported here is extendable to the cases in which bw = aw

or bw < aw
1. Notice that with this mathematical model winglets and C-wings can

be described as well. It is important to know that future analyses are valid only
from an aerodynamic point of view. Other aspects of the design (aeroelasticity, for
example) have to be taken into account when studying a wing system [14].

7.2 Convex Elliptical Lifting Arcs

The convex elliptical lifting arcs (see figure 7.2) can be studied similarly, as have
been done for the other wings. This means using a doublet distribution, writing

Figure 7.2. Convex Elliptical Lifting Arcs. Geometry and notations.

the small perturbation acceleration potential, imposing Weissinger’s condition and
finding the integral equation. But there is a simple way to achieve the same goal:
the same equations (opportunely modified) used for the corresponding annular wings
can be used. Consider an annular wing. It has been found that the total lift and
induced drag have the expressions:

L = ρ∞bw

2π∫

0

m (ϕd) sin ϕd dϕd, (7.1)

1Clearly, the corresponding annular wings will be circular and elliptical (with bw < aw),
respectively.
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7 – Elliptical Lifting Arcs. Analytical Formulation

Di = − ρ∞
8πV 2∞

2π∫
0

m (ϕd)
2π∫
0

m (ϕ)

(
sinh2 ψw cosh2 ψw(

sinh2 ψw+sin2 ϕ+ϕd
2

)2 −
1
2

cosh(2ψw)(
sinh2 ψw+sin2 ϕ+ϕd

2

)
)

dϕdϕd+

− ρ∞
8πV 2∞

−
2π∫
0

m (ϕd) =
2π∫
0

m(ϕ)
1−cos(ϕ−ϕd) dϕdϕd.

(7.2)
What is the difference between the annular wing and the elliptical arc wing? Because
of the supposed linearity, the difference is only in the integration domain. Therefore,
it can be concluded that for elliptical arcs (see figure 7.2)2:

L = ρ∞bw

β2∫

β1

m (ϕd) sin ϕd dϕd, (7.3)

Di = − ρ∞
8πV 2∞

β2∫
β1

m (ϕd)
β2∫
β1

m (ϕ)

(
sinh2 ψw cosh2 ψw(

sinh2 ψw+sin2 ϕ+ϕd
2

)2 −
1
2

cosh(2ψw)(
sinh2 ψw+sin2 ϕ+ϕd

2

)
)

dϕdϕd+

− ρ∞
8πV 2∞

β2∫
β1

m (ϕd) =
β2∫
β1

m(ϕ)
1−cos(ϕ−ϕd) dϕ dϕd,

(7.4)
where

β1 = 3
2
π − επ,

β2 = 3
2
π + επ.

(7.5)

For a numerical analysis, it is useful to convert the domain of integration. Thus3:

ϕd = 3
2
π + επt,

ϕ = 3
2
π + επs.

(7.6)

With this transformation, it can be concluded that

L = −επρ∞bw

+1∫

−1

m (t) cos (επt) dt, (7.7)

Di = −ρ∞ε2π
8V 2∞

+1∫
−1

m (s)
+1∫
−1

m (t)
(

sinh2 ψw cosh2 ψw

(sinh2 ψw+cos2(επ t+s
2 ))2 −

1
2

cosh(2ψw)

(sinh2 ψw+cos2(επ t+s
2 ))

)
dtds+

−ρ∞ε2π
8V 2∞

+1∫
−1

m (s) =
+1∫
−1

m(t)
1−cos(επ(t−s)) dt ds.

(7.8)

2Notice that, now, the external integral in the expression of Di is neither a Hadamard finite-part
integral nor a Cauchy integral because the doublet distribution must be zero at the tips.

3The variables t and s are not the same variables t and s used for the elliptical annular wing.
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7 – Elliptical Lifting Arcs. Analytical Formulation

The corresponding coefficients of lift and induced drag are, respectively,

CL = −2επbw

SV 2∞

+1∫

−1

m (t) cos (επt) dt, (7.9)

CDi = − ε2π
4SV 4∞

+1∫
−1

m (s)
+1∫
−1

m (t)
(

sinh2 ψw cosh2 ψw

(sinh2 ψw+cos2(επ t+s
2 ))2 −

1
2

cosh(2ψw)

(sinh2 ψw+cos2(επ t+s
2 ))

)
dt ds+

− ε2π
4SV 4∞

+1∫
−1

m (s) =
+1∫
−1

m(t)
1−cos(επ(t−s)) dtds.

(7.10)
S is the reference surface, and it can be chosen as the projection of the wing on
plane x− y:

S = 2lbw sin επ if ε < 1
2
,

S = 2lbw if ε ≥ 1
2
.

(7.11)

S can also be chosen to be equal to 4bwl, in order to have an easy comparison with
the elliptical annular wing.

7.3 Concave Elliptical Lifting Arcs

The concave elliptical lifting arcs (see figure 7.3) can be studied similarly, as in the
previous section. In a formal point of view, equations (7.3) and (7.4) are still valid.
Only the definition of β1 and β2 (see figure 7.3) are different:

β1 = π
2
− επ,

β2 = π
2

+ επ.
(7.12)

The new variables t and s are now defined as

ϕd = π
2

+ επt,

ϕ = π
2

+ επs.
(7.13)

Therefore, the expressions for the lifting force and induced drag are

L = επρ∞bw

+1∫

−1

m (t) cos (επt) dt, (7.14)

Di = −ρ∞ε2π
8V 2∞

+1∫
−1

m (s)
+1∫
−1

m (t)
(

sinh2 ψw cosh2 ψw

(sinh2 ψw+cos2(επ t+s
2 ))2 −

1
2

cosh(2ψw)

(sinh2 ψw+cos2(επ t+s
2 ))

)
dtds+

−ρ∞ε2π
8V 2∞

+1∫
−1

m (s) =
+1∫
−1

m(t)
1−cos(επ(t−s)) dt ds.

(7.15)
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7 – Elliptical Lifting Arcs. Analytical Formulation

Figure 7.3. Concave Elliptical Lifting Arcs. Geometry and notations.

Notice that in the expression of the lifting force only the sign is changed, while in
the expression of the induced drag nothing is changed. Thus, the non-dimensional
coefficient will be the same as before, except the fact that now the sign of the
coefficient of lift is changed. Also, the reference surface expressions are the same
(see equation (7.11)).
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7 – Elliptical Lifting Arcs. Analytical Formulation

Nomenclature

ρ fluid density
l chord
m doublet distribution
L lift
Di induced drag
CL coefficient of lift
CDi

coefficient of induced drag
V∞ velocity (freestream conditions)
=
∫

Hadamard finite-part integral

−∫ integral defined in the Cauchy principal values sense

bw semi-axis of the corresponding elliptical annular wing

aw semi-axis of the corresponding elliptical annular wing

ψ, ϕ coordinates used in the elliptical annular wing

ε see figures 7.2 and 7.3

β1, β2 see figures 7.2 and 7.3

Subscripts

∞ freestream conditions
d doublet
w quantity referred to the wing
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Chapter 8

Numerical Validation

8.1 Introduction

In chapter 6 the analytical expression for the total lifting force and induced drag
of annular wings were obtained. Also, from Weissinger’s condition, the integral
equation containing the unknown doublet distribution on the lifting line representing
the wing was obtained. It is clear that the present approach for solving the
aerodynamic problem consists of the following steps:

• Step 1
Writing of Weissinger’s condition and the integral equation containing the
unknown m (see chapter 6 for the annular wings and chapter 5 for the biplane).

• Step 2
Solving of the integral equation which contains Hadamard finite-part integrals
(see chapter 2).

• Step 3
Determining of the total lifting force using the calculated doublet
distribution m.

• Step 4
Determining of the induced drag using the calculated doublet
distribution m.

In the discussion of biplane and minimum induced drag conditions in chapter 5, not
all related issues were explicitly considered. This chapter will analyze those issues
and show how they can be solved.
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8.2 Integral Equation: Numerical Solution

Consider the elliptical annular wing with bw > aw
1. As was seen in chapter 6, the

integral equation with the unknown doublet distribution is in the form of

− α (s) =
1

8cV 2∞

√(
cosh2 ψw − cos2 (πs)

) =

+1∫

−1

m (t)
(
fR

int (t,s) + fS
int (t,s)

)
dt, (8.1)

where fR
int and fS

int are the regular and singular2 functions, respectively. In chapter 2,
the numerical methods available to solve that equation were discussed. In particular,
the collocation method and a few particular techniques to manipulate the Hadamard
finite-part integrals were discussed.
When using the collocation method, the functions fR

int and fS
int have to be calculated

at some points. Thus, the integrals3 must be calculated numerically. Particularly
difficult is the calculation of the regular integrals involving function fR

int, because this
function shows very high gradients; hence, the Gaussian quadrature is not always
very accurate. In order to analyze this problem in more detail, consider an elliptical
annular wing with the following data4:

l = 1, V∞ = 2, bw = 12, aw = 10, c2 = b2
w − a2

w = 44,

cosh2 ψw = b2w
b2w−a2

w
= 36

11
, sinh2 ψw = a2

w

b2w−a2
w

= 25
11

, X0 = l
2c

= 1
44

√
11.

(8.2)

In figures 8.1 and 8.2, the behavior of the function fR
int versus the variable t with fixed

s is illustrated. As can be seen, the Gaussian quadrature is not a very good method
to integrate this function. This problem is particularly evident in the induced drag
computation. Therefore, an adaptive subroutine (H2A1D from the ABACI library)
has been used.

8.2.1 Collocation Method: Numerical Study

The collocation method has been discussed. But the important question to answer
is: how many points are required in order to have a good accuracy? As will be
seen later, 20 points give sufficient precision of the results. In order to show that,
consider the following case.

1The numerical issues that will be analyzed are, also, valid for the other annular wings, elliptical
lifting arcs, biplane and, in general, for all wings studied using the present procedure.

2See chapter 6 for their explicit form.
3Regular integrals for the function fR

int and Hadamard integrals for the function fS
int.

4All lengths are expressed in meters.
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Figure 8.1. fR
int versus t with s = 2

10 .

Figure 8.2. fR
int versus t with s = 1

2 and s = 1.
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Elliptical Annular Wing with Twist Corresponding to a Rigid
Rotation Along the y Axis

The elliptical annular wing with twist α(ϕ) corresponding to a rigid rotation Ω along
the y axis will be analyzed. Recalling the expression

sin β =
sin ϕ cosh ψw√
cosh2 ψ − cos2 ϕ

, (8.3)

and considering figure 8.3, the twist corresponding to the rigid rotation Ω can be
found:

α (ϕ) = Ω sin β = Ω
sin ϕ cosh ψw√
cosh2 ψ − cos2 ϕ

. (8.4)

Now consider the particular case in which Ω = 15. The convergence test for two

Figure 8.3. Incidence corresponding to a rigid rotation Ω along y.

different cases (ellipse and ellipse close to a circle6) is shown in figure 8.4. As
illustrated in figure 8.4, 20 collocation points are sufficient in practical applications.
Notice that in the biplane study (see chapter 5), 20 points were used as well.

8.3 Numerical Evaluation of the Induced Drag

Once the doublet distribution is found via integral equation solution, the lifting
force can be calculated using a simple integration. Usually, this operation is not

5Because of the unitary value of Ω, the coefficient of lift could be seen as an angular coefficient
of lift.

6Notice that the circular annular wing can be studied as a particular case of an elliptical annular
wing in which aw → bw.

149



8 – Numerical Validation

Figure 8.4. Convergence test when aw
bw
→ 12

12 and aw
bw

= 8
12 .

difficult and the integral expressing the lift can be numerically computed using the
Gaussian quadrature formula. For the induced drag, the calculation is less simple.
In order to better understand the problem, consider the coefficient of induced drag
in an elliptical annular wing with bw > aw

7:

Di = − ρ∞
8πV 2∞

2π∫
0

m (ϕd)
2π∫
0

m (ϕ)

(
sinh2 ψw cosh2 ψw

(sinh2 ψw+sin2 ϕ+ϕd
2 )

2 −
1
2

cosh(2ψw)

(sinh2 ψw+sin2 ϕ+ϕd
2 )

)
dϕ dϕd+

− ρ∞
8πV 2∞

2π∫
0

m (ϕd) =
2π∫
0

m(ϕ)
1−cos(ϕ−ϕd)

dϕ dϕd.

(8.5)
Observing the integrand function inside the inner integral, it can be understood that
it is of the same type of the integrand function appeared in the integral equation
(figures 8.1 and 8.2 illustrate the behavior of that function). Therefore, it can be
understood that:

• The Gaussian rule is not a good method to evaluate the inner integral due to
high gradients of the function.

• The induced drag is a very small number compared to the magnitude of the
other quantities (for example, CL). Thus, a small error in the calculation of
the doublet distribution m can create significant errors in the evaluation of
the double integral used for the induced drag coefficient.

7Note that, here, the Cauchy integral is not used. The reason is that this dissertation analyzes
only two cases: annular wing with a twist corresponding to a rigid rotation along y and annular
wing under optimal conditions. In both cases, the doublet distribution is zero at both endpoints
of the integral; as a result, the Cauchy integral becomes a standard integral.
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Several different numerical approaches and techniques could be applied in this case.

• Approach 1
The singular term in the integral equation (8.1) (now, m is a known function
and, therefore, all integrals are easily calculable) is eliminated. In this method,
the Hadamard integral does not have to be addressed, and this is the main
advantage. But there is the numerical cancellation issue (round-off error),
since, as it is possible to see, two terms with the same order of magnitude are
algebraically added.
Using this approach, three different methods have been developed:

– Method 1
Both of the integrals in the CDi

expression are seen like integral in one
variable and are calculated using an adaptive method (see chapter 2).
The precision of the computation is very good8, but the CPU usage, in
terms of time, is slightly expensive.

– Method 2
The internal integral (which contains the non-smooth function) is cal-
culated using the adaptive procedure, while the external integral is
calculated using the classical Gaussian rule. Compared to method 1,
this method is faster in terms of CPU time.

– Method 3
The internal and external integrals are calculated using a subroutine
designed for double integrals (H2B2A from the ABACI library).

• Approach 2
The Hadamard integral is not eliminated. This method is the only possible
method if there is no interest in the solution of the direct problem9 or if it
can not be solved. A typical case is the minimum induced drag problem: the
function α(s) is not known a priori; therefore, it can not be used to eliminate
the Hadamard integral10. Using this approach, two different methods have
been developed:

– Method 4
Both of the regular integrals (internal and external) are calculated using

8But the cancellation problem is more severe because the Hadamard integral is eliminated using
the integral equation.

9The direct problem is represented by the integral equation (8.1).
10The Hadamard integral is not eliminated, but the cancellation issue is still present (but less

significant), because equation (8.5) contains the term sinh2 ψw cosh2 ψw(
sinh2 ψw+sin2 ϕ+ϕd

2

)2 −
1
2 cosh(2ψw)(

sinh2 ψw+sin2 ϕ+ϕd
2

) ,

which presents cancellation problem.
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an adaptive procedure11. The Hadamard internal integral is calculated
using the method shown in chapter 2.

– Method 5
The internal integral (the regular part) is computed using an adaptive
procedure, while the external integral is calculated using a Gaussian rule.
The external integral in the double integral that contains the Hadamard
integral12 is calculated using a Gaussian rule with a number of points
coinciding with the number of the collocation points13. In the biplane
study (see chapter 5), this method has been used.

Now consider a practical case in which the annular wing has aw

bw
→ 12

12
, bw

l
= 12,

Ω = 1 and α (ϕ) = Ω sin ϕ cosh ψw√
cosh2 ψ−cos2 ϕ

. In figure 8.5, the results of all five methods14 are

reported. From figure 8.5, it can be understood that, with the present formulation,

Figure 8.5. Coefficient of induced drag calculated using five different methods.

the coefficient of induced drag has two digits accuracy. This is not a problem if
the nature of this dissertation is considered: the aim is to formulate an innovative,
analytical approach for non-planar wings, and, for this objective the accuracy of the
present method is acceptable. For more accurate results the concepts exposed in
chapter 4 should be applied.

11The subroutine H2A1D was used.
12Obviously, the Hadamard integral is computed using the method shown in chapter 2.
13Because, in the Gaussian rule, the nodes are the zeros of the Legendre polynomials and because

the collocation method with the points calculated as zeros of the Legendre polynomial was used,
it can be understood that using the Gaussian rule can minimize the error in this case.

14In the Gaussian quadrature formula, 200 points were used, except in case 5, where, for the
external integral containing the Hadamard integral, 20 points were used (notice that in the
collocation method as well 20 points were used). 200 Gauss points were used because, with
the matured experience for these particular analyses, using the empirical relation NGauss Points =
10 ·NCollocation Points yielded good results. The required high number of Gauss points is clear if the
complexity of the functions that have to be integrated is considered.
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8.4 Effect of the Aspect Ratio

In this section, the effect of the aspect ratio on the induced drag as well as a few
related numerical problems will be analyzed.
When the ratio of aw

bw
decreases, the function fR

int nearly becomes singular. Clearly,

this creates a problem in the evaluation of the lift and induced drag15. This problem
can partially be avoided by increasing the number of collocation points, but when
aw/bw is too small even this method does not work well.
Figure 8.6 illustrates the effect of the aspect ratio, when the incidence is corre-
spondent to an unitary rigid rotation of the ellipse along the y axis (in all cases,
bw

l
= 12). As can be seen, the induced drag increases as aw

bw
becomes smaller. In

Figure 8.6. Coefficient of lift and induced drag. Aspect ratio effects

theory, it could not be concluded that the aerodynamics of the ellipse is worse
when aw

bw
becomes smaller, because the comparison is not done with fixed lift. But,

observing the numbers in figure 8.6 shows that the coefficient of lift increases from
4.63 to 4.92 (difference: +6%). From a qualitative point of view, considering a
quadratic dependence from the lift, a variation of the coefficient of induced drag
should be expected to be 4.922−4.632

4.632 = 13%. But this is not true; as shown in
figure 8.6, the coefficient of induced drag increases from 0.28 to 0.39 (difference:
+39%>13%).
A comparison between the two different aspect ratios is reported in figure 8.7. Notice
that, in a rigorous point of view, the curves in figure 8.7 could not be superimposed,
because the variables t and s are different in such cases.

15Fortunately, these problems are less evident when the wing under optimal conditions is studied.
This is because the analytical expressions are much simpler.
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Figure 8.7. Aspect ratio effect on the doublet distribution

Nomenclature

ρ fluid density
l chord
m doublet distribution
L lift
Di induced drag
CL coefficient of lift
CDi

coefficient of induced drag
V∞ velocity (freestream conditions)
=
∫

Hadamard finite-part integral
bw semi-axis of the elliptical annular wing
aw semi-axis of the elliptical annular wing
ψ, ϕ coordinates used in the elliptical annular wing

c
√

b2
w − a2

w

β,Ω see figure 8.3
fR

int regular function in the integral equation (direct problem)
fS

int singular function in the integral equation (direct problem)

Subscripts

∞ freestream conditions
d doublet
w quantity referred to the wing
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Chapter 9

Annular Wings: Minimum
Induced Drag

9.1 Introduction

In chapter 6, the analytical formulation for the annular wings was discussed.
Chapter 2, also, discussed the procedure to find the Euler-Lagrange equation and
its numerical solution. In chapter 5, the procedure studying the classical cantilever
wing and the biplane was validated.
For all annular wings examined in this dissertation, the following quantities can now
be calculated analytically and numerically:

• Quantity 1
Optimal doublet distribution.

• Quantity 2
Coefficient of minimum induced drag

• Quantity 3
Induced velocity (normalwash) under the condition of minimum induced drag

Munk’s Minimum Induced Drag Theorems will be applied to test the quality of the
solutions, and a comparison with some available results [15] will be done.
The same analytical procedure is used in all cases. However, the mathematical
expressions are different. Therefore, for the aim of completeness, the details of the
derivations are not omitted.
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9.2 Minimum Induced Drag in a Circular

Annular Wing

The coefficient of induced drag has the expression:

CDi
= − π

16RwlV 4∞
−
+1∫

−1

m (s) =

+1∫

−1

m (t)

(
1

1− cos (π (t− s))

)
dt ds. (9.1)

The goal is to minimize the coefficient by considering the following conditions:

• Condition 1
The coefficient of lift is fixed:

− π

2lV 2∞

+1∫

−1

m (t) sin (πt) dt = CL (9.2)

• Condition 2
The wing span 2bw = 2Rw is fixed

Before proceeding, the following important observation can be made.

Observation 30 When the biplane under optimal condition was studied in chapter
5, it was found that the wings had the same doublet distribution, which was zero
at the tips. If, with an ideal experiment, it was possible to curve the wings
symmetrically, an elliptical annular wing could be obtained. It is intuitive that
this process would lead to an unknown doublet distribution, but it is reasonable to
think that it has to be zero at the points y = ±bw

1. If this hypothesis is considered,
the external integral can be considered as a normal integral, but the final distribution
must satisfy the conditions seen above: m has to be zero at y = ±bw.

Observing expression (9.1), it can be understood that it is of the same type of the
functional minimized in chapter 2. Now, the kernel is

Y (t,s) =
1

1− cos (π (t− s))
. (9.3)

To use the procedure developed in chapter 2, the kernel has to be in the form

Y (t,s) =
1

(t− s)2 . (9.4)

1In chapter 4, it was shown that in a closed wing system a constant distribution can be added
without drag penalty. If the arbitrary constant is assumed zero (under that condition the doublet
distribution is called fundamental distribution) and the wing has some symmetries (like an elliptical
annular wing) then the fundamental doublet distribution has to be zero at y = ±bw.
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But it is not difficult to understand that multiplying and dividing equation (9.3) by
(t− s)2, a kernel of the type (9.4) is obtained. Therefore:

1

1− cos (π (t− s))
=

(t− s)2

1− cos (π (t− s))

1

(t− s)2 =
(t− s)2

1− cos (π (t− s))
Y (t,s) . (9.5)

Now it has been shown that the same procedure shown in chapter 22 can be used.
Observing expressions (9.1) and (9.2) and comparing them with equations (2.82)
and (2.84), it is deduced that, in this case,

C1 = − π
16RwlV 4∞

, C2 = − π
2lV 2∞

,

C = CL, g (t) = sin (πt) .
(9.6)

Using equation (2.101)3, the Euler-Lagrange equation is obtained:

2C1 =
+1∫
−1

mopt (s) Y (t,s) ds− C2λg (t) = 0 ⇒

⇒ − π
8RwlV 4∞

=
+1∫
−1

mopt(s)
1−cos(π(t−s))

ds + π
2lV 2∞

λ sin (πt) = 0.

(9.7)

Therefore, this concludes that, in order to find the optimal distribution mopt, the
system shown below has to be solved:





1
4RwV 2∞

=
+1∫
−1

mopt(s)
1−cos(π(t−s))

ds− λ sin (πt) = 0,

− π
2lV 2∞

+1∫
−1

mopt (t) sin (πt) dt = CL.

(9.8)

9.2.1 Analytical Solution of the Euler-Lagrange Equation

Observing the system of equations (9.8), notice that the function sin (πt) appears
explicitly in both equations. Moreover, this function has the property to be a
continuous and periodical function, as it should be for mopt. Furthermore, the
function is zero when t = −1 and t = 0 (which corresponds to y = ±bw), as
is expected. Therefore, the aim is to verify whether this function satisfies the
system (9.8). From a practical point of view, the following expression of the optimal
distribution can be used:

mopt (t) = k sin (πt) k real number. (9.9)

2This is possible because the property demonstrated in appendix A is valid also for the kernel
Y (t,s).

3In this case Y (t,s) has to be used instead of Y (t,s).
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Substituting equation (9.9) into the system (see appendix J) yields:

λ =
lCL

πRw

, (9.10)

k = −2lV 2
∞CL

π
. (9.11)

Because the system has been satisfied, it can be concluded that the optimal doublet
distribution is:

mopt (t) = −2lV 2
∞CL

π
sin (πt) . (9.12)

In the original variable:

mopt (ϕ) = 2lV 2∞CL

π
sin (ϕ) . (9.13)

It is possible to calculate the normalwash under optimal conditions4 as:

[
(un)opt

]
X=0

=
1

8V∞Rw

=

+1∫

−1

mopt (t)

(1− cos (π (t− s)))
dt =

1

8V∞Rw

[
2
2lV 2

∞CL

π
sin(πs)

]
.

(9.14)
Simplifying:

[
(un)opt

]
X=0

=
lV∞CL

2πRw

sin(πs). (9.15)

In the original variables:

[
(un)opt

]
X=0

= − lV∞CL

2πRw
sin ϕ . (9.16)

The coefficient of minimum induced drag is5:

[
(CDi

)opt

]
bw
aw

=1
= − π

16RwlV 4∞

1∫

−1

mopt (s) =

1∫

−1

mopt (t)

(
1

1− cos (π (t− s))

)
dt ds.

(9.17)
Calculating the integral (see appendix J for the Hadamard integral):

[
(CDi

)opt

]
bw
aw

=1
=

lC
2
L

2πRw

. (9.18)

4See appendix J for the value of the integral.
5The subscript bw

aw
= 1 is used to underline that the coefficient is referred to the circular annular

wing, where aw = bw = Rw.
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The corresponding induced drag is6:

[
(Di)opt

]
bw
aw

=1
= L

2

2πq(2Rw)2
, (9.19)

while the aerodynamic efficiency is

[
(E)opt

]
bw
aw

=1
= 2πq(2Rw)2

L
. (9.20)

Now consider a classical cantilever wing with the same total lifting force and the
same wing span 2bw

7. The efficiency under optimal condition is8:

[
(E)opt

]
ref

=
πq (2bw)2

L
. (9.21)

Hence, it is deduced that

[(E)opt] bw
aw

=1

[(E)opt]ref
= 2 . (9.22)

This last result shows the great aerodynamic advantage of the closed wing system.
It is also in perfect accord with the known value found by Cone [15].
The Euler-Lagrange equation can be solved numerically by following the steps
illustrated in chapter 2. The comparison between the analytical and numerical
solutions is shown in figure 9.1. As can be seen, the numerical solution shows good
correlations with the analytical results.

9.2.2 Verification of Munk’s Minimum Induced Drag
Theorem

If the doublet distribution mopt is effectively the optimum distribution, Munk’s
Minimum Induced Drag Theorem has to be satisfied (see figure 9.2). Thus:

[
(un)opt

]
X=0

cos ϑ
=
− lV∞CL sin ϕ

2πRw

sin ϕ
= − lV∞CL

2πRw

= const. (9.23)

6q indicates the dynamic pressure: q = 1
2ρ∞V 2

∞.
7Notice that bw = Rw for circular wing.
8The subscript ”ref” indicates that the classical wing is used as a reference wing.
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Figure 9.1. Circular annular wing: coefficient of minimum induced drag (CL = 1).

Figure 9.2. Circular annular wing and Munk’s Minimum Induced Drag Theorem.
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9.3 Minimum Induced Drag in an Elliptical

Annular Wing with bw > aw

The coefficient of induced drag has the expression9:

CDi
= − π

16bwlV 4∞

+1∫

−1

m (s) =

+1∫

−1

m (t) Y (t,s) dt ds. (9.24)

Y (t,s) is the symmetric kernel:

Y (t,s) = sinh2 ψw cosh2 ψw

(sinh2 ψw+sin2(π(t+s)
2 ))

2 −
1
2

cosh(2ψw)

(sinh2 ψw+sin2(π(t+s)
2 ))

+ 1
(1−cos(π(t−s)))

. (9.25)

The goal is to minimize the coefficient of induced drag by considering the following
conditions:

• Condition 1
The coefficient of lift is fixed:

CL = − π

2lV 2∞

+1∫

−1

m (t) sin (πt) dt. (9.26)

• Condition 2
The wing span 2bw is fixed.

Using the usual notation (see previous sections and chapter 2):

C1 = − π
16bwlV 4∞

, C2 = − π
2lV 2∞

,

C = CL, g (t) = sin (πt) .
(9.27)

Using equation (2.101), the Euler-Lagrange equation becomes:

2C1 =
+1∫
−1

mopt (s) Y (t,s) ds− C2λg (t) = 0 ⇒

⇒ − π
8bwlV 4∞

=
+1∫
−1

mopt (s) Y (t,s) ds + π
2lV 2∞

λ sin (πt) = 0.

(9.28)

9Considered here is the particular case in which the doublet distribution is zero at y = ±bw,
as has been done above for the circular annular wing. Therefore, the external integral is not a
Cauchy integral.
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Therefore, it is deduced that, in order to find the optimal distribution mopt, the
system that has to be solved is





1
4bwV 2∞

=
+1∫
−1

mopt (s) Y (t,s) ds− λ sin (πt) = 0,

− π
2lV 2∞

+1∫
−1

mopt (t) sin (πt) dt = CL.

(9.29)

9.3.1 Analytical Solution of the Euler-Lagrange Equation

Observing the system of equations (9.29), and thinking as has been done for the
circular annular wing, the following optimal distribution candidate is used:

mopt (t) = k sin (πt) k real number. (9.30)

Substituting equation (9.30) into the system (see appendix K) yields:

λ =
2lCL

π (bw + aw)
, (9.31)

k = −2lV 2
∞

π
CL. (9.32)

Thus, it is deduced that the optimal doublet distribution is:

mopt (t) = −2lV 2
∞CL

π
sin (πt) . (9.33)

In the original variable:

mopt (ϕ) = 2lV 2∞CL

π
sin (ϕ) . (9.34)

In figure 9.3, the optimal doublet distribution is shown. It is possible to calculate
the normalwash under optimal conditions (see appendix K for details about the
integrals IA, IB and IC):

[
(un)opt

]
X=0

=
1

8cV∞
√(

cosh2 ψw − cos2 (πs)
) (IA − IB + IC) . (9.35)

Simplifying:

[
(un)opt

]
X=0

=
sin (πs) cosh ψw√(

cosh2 ψw − cos2 (πs)
)

lV∞CL (cosh ψw − sinh ψw)

cπ
. (9.36)
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Figure 9.3. Elliptical annular wing with bw > aw. Doublet distribution under
optimal conditions.

In the original variables:

[
(un)opt

]
X=0

= − sin ϕ cosh ψw√
(cosh2 ψw−cos2 ϕ)

lV∞CL(cosh ψw−sinh ψw)
cπ

. (9.37)

The coefficient of minimum induced drag is10:

[
(CDi

)opt

]
bw
aw

>1
= − lC

2
L

4πbw

+1∫

−1

sin (πs)

(
IA (s)

k
− IB (s)

k
+

IC (s)

k

)
ds. (9.38)

Calculating the integral (see appendix K for details about the integrals):

[
(CDi

)opt

]
bw
aw

>1
=

lC
2
L

π (bw + aw)
. (9.39)

The corresponding induced drag is:

[
(Di)opt

]
bw
aw

>1
= L

2

πq( bw+aw
bw

)(2bw)2
, (9.40)

while the aerodynamic efficiency is

[
(E)opt

]
bw
aw

>1
=

πq( bw+aw
bw

)(2bw)2

L
. (9.41)

10The subscript bw

aw
> 1 is used to show that the coefficient is related to the elliptical annular

wing with bw > aw.
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Using the expression of efficiency in a classical cantilever wing with the same total
lifting force and the same wing span 2bw:

[(E)opt] bw
aw

>1

[(E)opt]ref
= bw+aw

bw
= 1 + aw

bw
. (9.42)

Observation 31 From the previous equation, it is clear that 1 <
[(E)opt] bw

aw
>1

[(E)opt]ref
< 2.

It is also clear that

lim
aw→0

[
(E)opt

]
bw
aw

>1[
(E)opt

]
ref

= 1, (9.43)

lim
aw→bw

[
(E)opt

]
bw
aw

>1[
(E)opt

]
ref

= 2. (9.44)

The elliptical annular wing with bw > aw has the same induced drag (under optimal
condition) as a cantilever classical wing when aw → 0. Moreover, the elliptical
annular wing with bw > aw has the same induced drag (under optimal condition) as
a circular annular wing when aw → bw.

The Euler-Lagrange equation can also be solved numerically. Figure 9.4 shows the
comparison between the analytical and numerical solution (in all cases, bw

l
= 1 and

CL = 1).

9.3.2 Verification of Munk’s Minimum Induced Drag
Theorem

If the doublet distribution mopt is effectively the optimum distribution, Munk’s
Minimum Induced Drag Theorem has to be satisfied (see figure 9.5). Therefore11:

[(un)opt]X=0

cos ϑ
=

− cosh ψw sin ϕ√
cosh2 ψw−cos2 ϕ

lV∞CL(cosh ψw−sinh ψw)

πc

cosh ψw sin ϕ√
cosh2 ψw−cos2 ϕ

= − lV∞CL(cosh ψw−sinh ψw)
πc

= const.

(9.45)
Thus, the theorem is satisfied and the doublet distribution is effectively the
distribution of minimum induced drag.

11Notice that
cosϑ = sin β =

cosh ψw sin ϕ√
cosh2 ψw − cos2 ϕ

.
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Figure 9.4. Elliptical annular wing with bw > aw. Comparison between analytical
and numerical results.

Figure 9.5. Elliptical annular wing with bw > aw and Munk’s Minimum Induced
Drag Theorem.
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9.4 Minimum Induced Drag in an Elliptical

Annular Wing with bw < aw

The coefficient of induced drag has the expression12:

CDi
= − π

16bwlV 4∞

+1∫

−1

m (s) =

+1∫

−1

m (t) Y (t,s) dt ds. (9.46)

Y (t,s) is the symmetric kernel:

Y (t,s) = sinh2 ψw cosh2 ψw

(sinh2 ψw+cos2(π(t+s)
2 ))

2 −
1
2

cosh(2ψw)

(sinh2 ψw+cos2(π(t+s)
2 ))

+ 1
1−cos(π(t−s))

. (9.47)

The goal is to minimize the coefficient of induced drag by considering the following
conditions:

• Condition 1
The coefficient of lift is fixed:

CL = − π

2lV 2∞

+1∫

−1

m (t) sin (πt) dt (9.48)

• Condition 2
The wing span 2bw is fixed.

Using the usual notation (see previous sections and chapter 2):

C1 = − π
16bwlV 4∞

, C2 = − π
2lV 2∞

,

C = CL, g (t) = sin (πt) .
(9.49)

Using equation (2.101), the Euler-Lagrange equation becomes:

2C1 =
+1∫
−1

mopt (s) Y (t,s) ds− C2λg (t) = 0 ⇒

⇒ − π
8bwlV 4∞

=
+1∫
−1

mopt (s) Y (t,s) ds + π
2lV 2∞

λ sin (πt) = 0.

(9.50)

12Considered here is the particular case in which the doublet distribution is zero at y = ±bw, as
has been done above for the other annular wings. Therefore, the external integral is not a Cauchy
integral.
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Therefore, this deduces that, in order to find the optimal distribution mopt, the
following system has to be solved:





1
4bwV 2∞

=
+1∫
−1

mopt (s) Y (t,s) ds− λ sin (πt) = 0,

− π
2lV 2∞

+1∫
−1

mopt (t) sin (πt) dt = CL.

(9.51)

9.4.1 Analytical Solution of the Euler-Lagrange Equation

Observing the system of equations (9.51), and thinking as has been done for the
circular annular wing and the elliptical annular wing with bw > aw, the following
optimal distribution candidate is used:

mopt (t) = k sin (πt) k real number. (9.52)

Substituting equation (9.52) into the system (9.51) (see appendix L):

λ =
2lCL

π (bw + aw)
, (9.53)

k = −2lV 2
∞

π
CL. (9.54)

Thus, this deduces that the optimal doublet distribution is:

mopt (t) = −2lV 2
∞CL

π
sin (πt) . (9.55)

In the physical variable:

mopt (ϕ) = 2lV 2∞CL

π
sin (ϕ) . (9.56)

It is possible to calculate the normalwash under optimal conditions (see appendix L
for details on integrals IA, IB and IC):

[
(un)opt

]
X=0

=
1

8cV∞

1√(
sinh2 ψw + cos2 (πs)

) (IA − IB + IC) . (9.57)

Simplifying:

[
(un)opt

]
X=0

=
sin (πs) sinh ψw√(

sinh2 ψw + cos2 (πs)
)

lV∞CL (cosh ψw − sinh ψw)

cπ
. (9.58)
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In the original variables:

[
(un)opt

]
X=0

= − sin ϕ sinh ψw√
(sinh2 ψw+cos2 ϕ)

lV∞CL(cosh ψw−sinh ψw)
cπ

. (9.59)

The coefficient of minimum induced drag is13:

[
(CDi

)opt

]
bw
aw

<1
= − lC

2
L

4πbw

+1∫

−1

sin (πs)

(
IA (s)

k
− IB (s)

k
+

IC (s)

k

)
ds. (9.60)

Calculating the integral (see appendix L for details on the integral):

[
(CDi

)opt

]
bw
aw

<1
=

lC
2
L

π (bw + aw)
. (9.61)

The corresponding induced drag is:

[
(Di)opt

]
bw
aw

<1
= L

2

πq( bw+aw
bw

)(2bw)2
, (9.62)

while the aerodynamic efficiency is

[
(E)opt

]
bw
aw

<1
=

πq( bw+aw
bw

)(2bw)2

L
. (9.63)

Using the expression of efficiency in a classical cantilever wing with the same total
lifting force and the same wing span 2bw:

[(E)opt] bw
aw

<1

[(E)opt]ref
= bw+aw

bw
= 1 + aw

bw
. (9.64)

Observation 32 In the previous equation, notice that 2 <
[(E)opt] bw

aw
<1

[(E)opt]ref
< ∞. It is

also clear that

lim
aw→bw

[
(E)opt

]
bw
aw

<1[
(E)opt

]
ref

= 2, (9.65)

lim
aw→∞

[
(E)opt

]
bw
aw

<1[
(E)opt

]
ref

= ∞. (9.66)

13The subscript bw

aw
< 1 is used to show that the coefficient is related to the elliptical annular

wing with bw < aw.
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The elliptical annular wing with bw < aw has the same induced drag (under optimal
condition) as a circular wing when aw → bw. Moreover, the elliptical annular wing
with bw < aw has infinite efficiency when aw →∞.
But this does not mean that, effectively, this condition can be reached, because other
aspects of the problem should be considered. For example, the weight of the wing
was not taken into account. If it was then, clearly, the condition aw → ∞ would
imply infinite weight and this is not acceptable. However, these analyses show that
the aerodynamic of the closed wing system is very good.

As has been done for the other cases, the Euler-Lagrange equation can also be solved
numerically.

9.4.2 Verification of Munk’s Minimum Induced Drag
Theorem

If the doublet distribution mopt is effectively the optimum distribution, Munk’s
Minimum Induced Drag Theorem has to be satisfied (see figure 9.6).

Figure 9.6. Elliptical annular wing with bw < aw and Munk’s Minimum Induced
Drag Theorem.
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Therefore14:

[(un)opt]X=0

cos ϑ
=

− sinh ψw sin ϕ√
sinh2 ψw+cos2 ϕ

lV∞CL(cosh ψw−sinh ψw)

πc

sinh ψw sin ϕ√
sinh2 ψw+cos2 ϕ

= − lV∞CL(cosh ψw−sinh ψw)
πc

= const.

(9.67)
Thus, the theorem is satisfied and the doublet distribution is effectively the
distribution of minimum induced drag.

9.5 Doublet Distribution of Minimum Induced

Drag. Non-uniqueness of the Solution

Is the optimal doublet distribution unique? Remembering the contents of chapter
4, the answer is: no. The solution is not unique. In particular, if mopt is a solution
for the minimization problem, the distribution m′

opt = mopt +const is a solution too.
This property can be verified for the annular wings15.

9.5.1 Circular Annular Wing Case

In order to demonstrate the property, it is sufficient to show that for a constant
doublet distribution the lift and induced drag are zero. The first verification is very
simple and is omitted here. The second property, however, will be verified.
Suppose that m = const = m. The induced drag is16:

CDi
= − m2π

16RwlV 4∞
−
+1∫

−1

=

+1∫

−1

(
1

1− cos (π (t− s))

)
dt ds. (9.68)

But the indefinite integral can be calculated as:
∫ (

1

(1− cos (π (t− s)))

)
dt = − 1

π tan (π(t−s))
2

. (9.69)

Using this result, the Hadamard integral becomes zero. Because the internal integral
is zero, the following is found:

CDi
= 0. (9.70)

Thus, the property is demonstrated.

14Notice that
cos ϑ = sin β =

sinhψw sin ϕ√
sinh2 ψw + cos2 ϕ

.

15This is another way to demonstrate that the formulation is correct.
16Now the external integral must be defined as a Cauchy integral. That is because the doublet

distribution is not zero at the endpoints of the integral.
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9.5.2 Elliptical Annular Wing Case

Consider the case in which bw > aw (similar to the method for the case bw < aw).
This case is a little more complicated than the previous one. If m = m, the coefficient
of induced drag can be written as

CDi
= − m2π

16bwlV 4∞
−
+1∫

−1

(I ′A − I ′B + I ′C) ds, (9.71)

where:

I ′A =
+1∫
−1

sinh2 ψw cosh2 ψw

(sinh2 ψw+sin2(π(t+s)
2 ))

2 ds = sinh2 ψw cosh2 ψw

+1∫
−1

1

(sinh2 ψw+sin2(π(t+s)
2 ))

2 ds,

I ′B =
+1∫
−1

1
2

cosh(2ψw)

(sinh2 ψw+sin2(π(t+s)
2 ))

ds = 1
2
cosh (2ψw)

+1∫
−1

1

(sinh2 ψw+sin2(π(t+s)
2 ))

ds,

I ′C = =
+1∫
−1

1
(1−cos(π(t−s)))

ds.

(9.72)

I ′C has already been calculated and has been shown that it is zero. The other two
integrals (i.e., I ′B and I ′C) are calculated in appendix M. Referring to appendix M:

I ′A = I ′B =
cosh (2ψw)

sinh ψw cosh ψw

, (9.73)

therefore, CDi
= 0. Thus, the property is demonstrated.

9.6 Annular Wings and Classical Wings.

Comparison Under Optimal Conditions

The obtained results are summarized in this section. The ratio between the
aerodynamic efficiency of the annular wings and the efficiency of the classical
cantilever wings is reported in figure 9.7.

9.7 Annular Wings Under Optimal Conditions.

Twist of Minimum Induced Drag

What is the twist that creates the optimal doublet distribution? In order to answer
this question, m = mopt should be inserted into the integral equation to find the
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Figure 9.7. Efficiency of annular wings under optimal conditions.

twist α(s). But, from a practical point of view, observing figure 8.6 and applying
the formula

[
(CDi

)opt

]
bw
aw

<1
=

lC
2
L

π (bw + aw)
,

almost the same coefficient of induced drag is found. Thus, from a practical point
of view, if aw ≈ bw, the twist corresponding to a rigid rotation of the ellipse along
the y axis is the twist of minimum induced drag. Figure 9.8 illustrates this concept.
As can be seen, the optimal distribution and the distribution corresponding to a
rigid rotation along the y axis are almost the same if bw ≈ aw. This figure also
shows that the optimal distribution has lesser gradient than the distribution in the
rigid rotation case, in correspondence to the points t = ±1,0. Notice that the two
curves are almost coincident when aw → bw, but when aw is different than bw this
is no longer true. Concluding, the twist corresponding to a rigid rotation is not the
optimal incidence law if aw

bw
is small.

9.8 Elliptical Annular Wing and Biplane.

Comparison Under Optimal Conditions

The annular wings and the biplane have been analyzed. The conditions that
guarantee the minimum induced drag were found under fixed wing span. But it
is interesting to understand when an elliptical annular wing is better than a biplane
(both under the condition of minimum induced drag). First of all, it must be decided
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Figure 9.8. Comparison of doublet distributions.

which is the best ellipse to compare with the biplane. Considering the fact that the
ellipse has curved extremities, a biplane with the distance between the wings equal
to H can be compared with an elliptical annular wing with aw = H (this is not
the only possible choice). The geometry of the wings is reported in figure 9.9. The

Figure 9.9. Geometry of the wings.

comparison between the wings is reported in figure 9.10. From figure 9.10, it is clear
that, for small aspect ratio, the annular wing and biplane show similar behavior,
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Figure 9.10. Biplane and elliptical annular wing under optimal conditions
(CL = 1). Coefficient of minimum induced drag.

while for high aspect ratio the tendency is the opposite17.

9.8.1 Closed Wing System and Biplane.
An Experimental Comparison

The results shown above have a simple experimental verification. Consider the
wind tunnel model of the Prandtlplane made by Alenia Aeronautica (see chapter
4). The model was built with the main purpose of better understanding the
difference between joined wing and the corresponding biplane obtained by removing
the vertical joining wings. As shown in figure 9.11, the induced drag in the closed
system is practically the same as the induced drag of the corresponding biplane.
This is in perfect accord with figure 9.10: for the range of aspect ratio used in the
test (0.23 and 0.34), the closed wing system and biplane do not show big difference
in their induced drag18.

17The biplane has a minimum value of induced drag equal to 1/2 the induced drag of a classical
wing (when the wings are indefinitely distant), while an elliptical annular wing does not have this
limit.

18Notice that Alenia’s model was not tested under optimal conditions. Therefore, the results
shown in figure 9.10 can not be applied in the real case. However, they can be accepted in a
qualitative way.
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Figure 9.11. Alenia’s Prandtlplane model. Coefficient of induced drag versus
coefficient of lift (see [68]).
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Nomenclature

α twist
ρ fluid density
un normalwash
2bw wing span
ϑ angle of inclination of the lifting element
l chord
m doublet distribution
m constant doublet distribution
L lift
Di induced drag
CL coefficient of lift
CDi

coefficient of induced drag
F aerodynamic force
L fixed value of the lifting force
CL fixed value of the coefficient of lift
λ Lagrange multiplier
V∞ velocity (freestream conditions)
q aerodynamic pressure
=
∫

Hadamard finite-part integral

−∫ integral defined in the Cauchy principal values sense

H distance between wings 1 and 2 (biplane case)
E aerodynamic efficiency
Y, Y kernels

Subscripts

∞ freestream conditions
ref referred to a cantilever wing with the same lift and wing span
opt optimal condition (minimum induced drag)
bw

aw
< 1 referred to an elliptical annular wing with bw

aw
< 1

bw

aw
= 1 referred to a circular annular wing with Rw = bw = aw

bw

aw
> 1 referred to an elliptical annular wing with bw

aw
> 1
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Chapter 10

Elliptical Lifting Arcs: Minimum
Induced Drag

10.1 Introduction

The analytical formulation for the elliptical lifting arcs was seen in chapter 7. In this
chapter, the condition corresponding to a minimum induced drag will be studied,
as was done for the annular wings (see chapter 9). The results will be compared
with the classical cantilever wing and with the corresponding annular wing. It will
be understood which is the most advantageous point to close the wing and what are
the differences between annular wings and C-wings.
Some theoretical considerations can be found in [14], [15] and in chapter 4.
The following quantities will be calculated:

• Quantity 1
Optimal doublet distribution.

• Quantity 2
Coefficient of minimum induced drag.

Kroo’s results will be confirmed: the C-wings have similar induced drag to that of the
closed wing systems. But note that the purpose of these analyses is to demonstrate
that this formulation is a good tool for the preliminary study of a new configuration.
Also, very interesting properties of the annular (and, in general, closed) wings will
be found.
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10.2 Minimum Induced Drag in a Convex

Elliptical Lifting Arc

The coefficient of induced drag has the expression (see chapter 7)1:

CDi
= − ε2π

4SV 4∞

+1∫
−1

m (s)
+1∫
−1

m (t)

(
sinh2 ψw cosh2 ψw

(sinh2 ψw+cos2(επ t+s
2 ))

2 −
1
2

cosh(2ψw)

(sinh2 ψw+cos2(επ t+s
2 ))

)
dt ds+

− ε2π
4SV 4∞

+1∫
−1

m (s) =
+1∫
−1

m(t)
1−cos(επ(t−s))

dt ds = − ε2π
4SV 4∞

+1∫
−1

m (s) =
+1∫
−1

m (t) Y (t,s) dt ds.

(10.1)
The goal is to minimize the coefficient of induced drag by considering the following
conditions:

• Condition 1
The coefficient of lift is fixed:

− 2επbw

SV 2∞

+1∫

−1

m (t) cos (επt) dt = CL. (10.2)

• Condition 2
The wing span 2bw is fixed.

Observing expression (10.1), it is clear that the expression is of the same type of the
functional J minimized in chapter 2. Observing expressions (10.1) and (10.2) and
comparing with equations (2.82) and (2.84), it can be deduced that, in this case,

C1 = − ε2π
4SV 4∞

, C2 = −2επbw

SV 2∞
,

C = CL, g (t) = cos (επt) .
(10.3)

Using equation (2.101), the Euler-Lagrange equation becomes:

2C1 =
+1∫
−1

mopt (s) Y (t,s) ds− C2λg (t) = 0 ⇒

⇒ − ε2π
2SV 4∞

=
+1∫
−1

mopt (s) Y (t,s) ds + 2επbw

SV 2∞
λ cos (επt) = 0.

(10.4)

1If bw < aw, the following equation is almost the same. Only cos2
(
επ t+s

2

)
has to be substituted

with sin2
(
επ t+s

2

)
.
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Therefore, it is deduced that in order to find the optimal distribution mopt, the
system that has to be solved is:





ε
2V 2∞

=
+1∫
−1

mopt (s) Y (t,s) ds− 2bwλ cos (επt) = 0,

−2επbw

SV 2∞

+1∫
−1

mopt (t) cos (επt) dt = CL.

(10.5)

Unlike the annular wings, this system can be solved only numerically, which will be
performed later.

10.3 Minimum Induced Drag in a Concave

Elliptical Lifting Arc

The coefficient of induced drag is the same as the case of a convex arc. The coefficient
of lift is the same except for a sign. Therefore, this concludes that in order to
determine the minimum induced drag, the system that has to be solved is:





ε
2V 2∞

=
+1∫
−1

mopt (s) Y (t,s) ds + 2bwλ cos (επt) = 0,

+2επbw

SV 2∞

+1∫
−1

mopt (t) cos (επt) dt = CL.

(10.6)

Observation 33 Consider the systems (10.6) and (10.5). Let the optimal distribu-
tion in a concave arc be indicated by [mopt]concave and the optimal distribution in a
convex arc be indicated by [mopt]convex. Comparing the lift constraints (the second
equation in both systems) deduces that

[mopt]concave = − [mopt]convex . (10.7)

Substituting the last expression into the Euler-Lagrange equation of a concave arc
(system (10.6)), in a formal point of view, the Euler-Lagrange equation of a convex
arc (system (10.5)) is the obtained result. This concludes that the convex arc and
the concave arc have the same optimal induced drag. Obviously, the two arcs must
be perfectly identical (i.e., ε must be the same). The only difference between the
two cases is in the induced lift not considered here (see chapter 4 for details).

10.4 Results

First, the present method is validated using a result from [15]. In that paper, Cone
investigates circular arcs using conformal transformations. Cone plots the efficiency
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ratio
(E)opt

(E)ref
against the a

b
ratio. As shown in figure 10.1, the present optimization

procedure shows very good correlation. In figure 10.2, the arcs with bw

aw
≈ 1 are

Figure 10.1. Elliptical lifting arcs. Comparison with the literature results.

studied. In particular, the efficiency ratio with the angle 2επ is analyzed. Clearly,
when 2επ ≈ 0, the curvature effects are negligible, and the efficiency is almost the
same as the optimally loaded classical wing. But when the angle is increased, an
increment of the efficiency can be observed. This is particularly evident in the
range 150

180
π ≤ 2επ ≤ 210

180
π, where the efficiency ratio increases by 33%. Moreover,

it can be noticed that, when the arcs tend to be a closed curve, the induced drag
is practically the same as the induced drag of the corresponding circular annular
wing2. Now it is of interest to answer the following questions: how does the optimal
doublet distribution change when the angle 2επ is changed? What is the difference
between the doublet distribution in the annular wing and the arc with 2επ ≈ 2π?
In order to answer these questions, consider figures 10.3, 10.4, 10.5, 10.6 and 10.7.
The following results can be noticed3:

• Result 1
The elliptical lifting arcs (and, in general, all arcs) have the same efficiency
(under optimal conditions) as an optimally loaded classical wing when ε is

2Remember that, in figure (10.2), bw

aw
≈ 1.

3If it is not said otherwise, consider, in all cases, CL = 1.
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Figure 10.2. Elliptical lifting arcs under optimal conditions. Comparison with a
classical wing with the same lift and wing span.

small. Moreover, the doublet distribution is almost elliptical (figure 10.3).
This is an intuitive result: when ε → 0, the curvature effects are negligible
and the elliptical lifting arcs are practically a classical wing.

• Result 2
When ε is not small, the efficiency increases and the doublet distribution is not
an ellipse anymore (figures 10.4, 10.5, 10.6 and 10.7). This is particularly true
when the arc is almost a closed curve (figures 10.6 and 10.7). This behavior
does not change if the bw

aw
ratio is changed (figures 10.6 and 10.7).

• Result 3
When the arc is almost a closed curve (but still an arc) the induced drag is
the same as the induced drag of the corresponding annular wing (figures 10.6
and 10.7).

• Result 4
The optimal doublet distribution is always different than zero, except at the
tip of the wing. This is a very different situation with respect to what have
been seen in the annular wings, where the distribution was sinusoidal. This
property is also valid when the arc is almost a closed curve.
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Figures 10.8, 10.9 and 10.10 show the non-dimensional optimal doublet distribution
on the lifting arcs4.

Figure 10.3. Optimal doublet distribution. 2επ = 1
180π and 2επ = 40

180π cases.

4The reference surface used to calculate the coefficient of lift is the following:

S = 2lbw sin επ if ε < 1
2 ,

S = 2lbw if ε ≥ 1
2 .
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Figure 10.4. Optimal doublet distribution. 2επ = 80
180π and 2επ = 120

180π cases.

Figure 10.5. Optimal doublet distribution. 2επ = 180
180π and 2επ = 240

180π cases.
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Figure 10.6. Optimal doublet distribution. 2επ = 320
180π and 2επ = 360

180π cases.

Figure 10.7. Optimal doublet distribution. 2επ = 360
180π case.
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Figure 10.8. Optimal doublet distribution. 2επ = 180
180π case.

Figure 10.9. Optimal doublet distribution. 2επ = 240
180π case.
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Figure 10.10. Optimal doublet distribution. 2επ = 360
180π case.

Nomenclature

2bw wing span
m doublet distribution
CL coefficient of lift
CDi

coefficient of induced drag
F aerodynamic force
CL fixed value of the coefficient of lift
λ Lagrange multiplier
V∞ velocity (freestream conditions)
E aerodynamic efficiency
Y kernel
S reference surface

Subscripts

∞ freestream conditions
ref referred to a cantilever wing with the same lift and wing span
concave referred to a concave lifting arc
convex referred to a convex lifting arc
opt optimal condition (minimum induced drag)
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Chapter 11

A Nonlinear Structural Model for
the Nonlinear Aeroelastic Analysis
of Joined Wings

11.1 Introduction

The work reported in this chapter is a result of the collaboration between the
universities Politecnico di Torino (Turin, Italy) and University of Washington
(Seattle, USA) about the joined wing analyses and studies.
A structural nonlinear code has been developed by the writer with the supervision
of professor Livne. Here, a few details of this work (see, also, [70]) are reported.
A structural/structural-dynamic method for the modeling of general assemblies
of thin plate segments is described. The method is based on Ritz functions
approximations using complete polynomials as generalized coordinates per plate
segment. A penalty function approach is used to impose boundary conditions and
compatibility of motion between adjacent segments. The method is flexible in that
it allows configuration-dependent selection of large segments with high order Ritz
functions or small segments with low order Ritz functions or combinations of both
for the efficient modeling of different configurations. No numerical integration is
required. Test results obtained by the present method for a variety of plate structures
show good correlation with published results and results by other computer codes.
As is widely recognized by now, structural nonlinearity has a major effect on the
aeroelastic behavior of Joined-Wing configurations. When significant compressive
loads are present in the rear wing (which supports the main wing) its effective
stiffness (linear + geometric) varies. Aeroelastic mechanisms can involve buckling
(or divergence) of the rear wing or flutter. As axial loads in the rear wing change,
when the airplane maneuvers, its effective stiffness varies, and with it its flutter
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mechanisms. The nonlinear structure might develop limit cycle oscillations or other
nonlinear dynamic mechanisms. The fact that the two wings (rear and main) are
joined complicates things. The type of joint and its location will be important. And
then, of course, whether linearized or nonlinear aerodynamic modeling is used might
make a difference too, depending on how large the deformations of the configuration
are.
The fundamental nature of such questions, and the lack of thorough understanding of
joined-wing aeroelasticity issues, call for basic research using mathematical models
that can capture the important physics of the problem and that yet are simple
enough to allow quick and user-friendly generation and provide guidance during the
development of possible simple scaled-models for experiments.
Here, a simple and efficient nonlinear structural modeling capability developed for
the fundamental study of simple plate-like lifting surface configurations undergoing
moderate nonlinear deformation and oscillation is presented. General 3-dimensional
configurations made of lifting surfaces and control surfaces can be modeled. The
discretization of the differential equations describing the structure is based on a Ritz
technique, using global function bases for the different lifting surface segment. With
the capability to calculate deflections and rotations at any point on the structure
using the global Ritz functions, the problem of transformation between structural
and aerodynamic grids - one of the fundamental problems of Aeroelasticity - is
greatly simplified.

11.2 Description of the Structural Model

The mathematical model is built by assembling nonlinear solid-plate elements
(denoted as wing segments). Boundary conditions and compatibility constraints
used to connect different segments to one another are imposed by a penalty function
method [71]. The physical meaning of the weights used for the penalty terms is that
of physical springs. This discretization is shown in figure 11.1. Wing segments are
modeled as solid thin plates, with planar cross sections remaining planar and staying
perpendicular to the plate’s reference surface. Nonlinear behavior is studied using
the von-Karman plate theory for moderately-large displacements:

εxx = u,x + 1
2
w2

,x ,

εyy = v,y + 1
2
w2

,y ,

εxy = 1
2

(
u,y + v,x

)
+ 1

2
w,xw,y .

(11.1)

In accordance with the Classical Plate Theory, it is also assumed that each layer
(lamina) of the plate is in plane strain:

εzx = εzy = εzz = 0. (11.2)
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Figure 11.1. Joined wing discretization using trapezoidal wing segments.

For the displacement field, CLPT (Classical Plate Theory) is based on:

u (x,y,z,t) = u0 (x,y,t)− zw0,x
(x,y,t) ,

v (x,y,z,t) = v0 (x,y,t)− zw0,y
(x,y,t) ,

w (x,y,z,t) = w0 (x,y,t) .

(11.3)

Multiplication of the equations of equilibrium by virtual displacements, and
integration over the plate’s volume lead to the virtual work principle in the form

∫

V

σijδεij dv +
∫

V

ρüiδui dv =
∫

S

Tiδui ds, (11.4)

where Ti is the traction force per unit of area. For the layer-by-layer plane stress
case, the last equation can be written as

∫
V

(σxxδεxx + σyyδεyy + σxyδγxy) dv +
∫
V

ρ (üδu + v̈δv + ẅδw) dv =

=
∫
S

(Txδu + Tyδv + Tzδw) ds.
(11.5)

Using a general linear material law for plane-stress1, the previous equation becomes:
∫

V

δεT Qε dv +
∫

V

ρδuT ü dv =
∫

S

δuT T ds. (11.6)

1 The Hooke law is:
σ = Qε,

where:
σ = [σxx σyy σxy]T , ε = [εxx εyy γxy]T ,

Q =




Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66


 .
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The strains can be written as (equations (11.1) and (11.3))

ε = εl0 − zεl1 + εnl, (11.7)

where:

εl0 =




u0,x

v0,y

u0,y + v0,x


 , εl1 =




w0,xx

w0,yy

2w0,xy


 , εnl =




1
2
w2

0,x

1
2
w2

0,y

w0,xw0,y


 . (11.8)

Carrying out the volume integration, first with respect to z and then with respect
to x and y and using the matrices:

A =
∫
z

Qdz,

D =
∫
z

z2 Qdz,
(11.9)

yields, in the case of symmetric layups2,

∫

V

δεT Qε dv =
∫

x,y

δεT
l0
Aεl0 dxdy +

∫

x,y

δεT
l0
Aεnl dxdy +

∫

x,y

δεT
l1
Dεl1 dxdy +

∫

x,y

δεT
nlAεl0 dxdy +

∫

x,y

δεT
nlAεnl dxdy. (11.10)

11.3 Ritz Discretization

Solutions for the displacement field are sought by using a set of Ritz functions as
generalized coordinates:

u0 (x,y,t) = F u
1 (x,y) qu1 (t) + F u

2 (x,y) qu2 (t) + ... + F u
Nu

(x,y) quNu
(t) ,

v0 (x,y,t) = F v
1 (x,y) qv1 (t) + F v

2 (x,y) qv2 (t) + ... + F v
Nv

(x,y) qvNv
(t) ,

w0 (x,y,t) = Fw
1 (x,y) qw1 (t) + Fw

2 (x,y) qw2 (t) + ... + Fw
Nw

(x,y) qwNw
(t) .

(11.11)

Here, following [72]-[77], polynomials of the type xsyr are used as Ritz functions to
create complete-polynomials.
It is well known that simple polynomials lead to ill-conditioning when used as Ritz
functions, as terms with high powers r and s are present alongside low-order terms.
However, simple polynomials lead to a greatly simplified problem formulation, and,
if a configuration is divided into small segments where low-order polynomials are

2The reference plane x,y is the middle plane of the plate.
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used, ill-conditioning is not a problem.
Using a more compact notation, the displacement field (equation (11.11)) is
expressed as 



u0

v0

w0


 =




F u T 0v T 0w T

0u T F v T 0w T

0u T 0v T F w T


 ·




qu

qv

qw


 . (11.12)

Substitution into equations (11.8) and (11.10) leads to

∫

V

δεT Q ε dv = δqT K l0l0q + δqT K l0nlq + δqT K l1l1q +

+ δqT Knl l0q + δqT Knl nlq. (11.13)

The details of the computation of the different stiffness matrices are given in
appendices N and O. Because of the simple-polynomial nature of the Ritz function
used, all volume integrals over trapezoidal plate segments can be carried out
analytically without any need for numerical integration.
For a symmetric layup and uniform density, the inertial terms are

∫

V

ρδuT ü dv = δqT M 1q̈ + δqT M 2q̈. (11.14)

The virtual work equation (equations (11.10) and (11.13)) now takes the form

δqT [K l0 l0 + K l0 nl + K l1 l1 + Knl l0 + Knl nl] q+δqT
[
M 1 + M 2

]
q̈ = δLe, (11.15)

where δLe is the external virtual work.

11.4 Imposition of the Boundary Conditions

Stiffness and mass matrices are calculated for each wing segment separately in local
coordinate axes for the segment. In assembling a configuration from segments,
boundary conditions have to be imposed as well as compatibility conditions between
segments. The following boundary conditions have to be imposed:

• Boundary Condition 1
Displacements and rotations between two adjacent wing segments must be the
same3.

3 There is an important exception. In some joined wing studies, it could be interesting, for
example, to impose only the same displacements in the joint and compare the results with a case
where the rotations are also imposed.
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• Boundary Condition 2
Displacement and/or rotations have to be zero at points or along the lines
attached to the ground.

One of the essential features of the finite element method is that generalized
displacements are actual physical displacements and rotations of element nodes. By
adding to the proper locations on the global stiffness and mass matrices stiffness and
mass contributions of elements that share the same nodes, compatibility of motion is
guaranteed at those nodes. But compatibility of motion is not guaranteed along the
common edges of elements, and what convergence characteristics ”compatible” or
”incompatible” various plate elements have is one of the most challenging problems
of plate and shell finite elements.
By using a penalty function technique (Ref. [71]) to impose compatibility along
the sides of adjacent plate elements, relating the Ritz functions to nodal motions is
not needed. Any order of Ritz functions can be used over a plate segment, while
element-to-element attachments are enforced by lines of stiff springs - the physical
meaning of the penalty terms used to enforce the compatibility constraints.
To do that, it is sufficient to put adequate number of springs along the edges between
two adjacent wing segments. In order to impose compatibility of the rotations
between two wing segments, if only translational springs are used, it is sufficient to
place translational springs in different positions along the thickness.
Consider a simple case where two points, 1A on wing segment A and 1B on wing
segment B, have to be linked by springs (figure 11.2). The procedure is based on
these steps:

• Step 1
The displacement field at point 1A in the local coordinate system on the wing
segment A is considered.

• Step 2
The global coordinates of the same point are determined by multiplying the
local coordinates by the geometric transformation matrix from local A axes to
global axes.

• Step 3
The same procedure is applied to point 1B on the wing segment B.

• Step 4
The potential energy of springs linking the x− y− z motions of points 1A and
1B is written as
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Figure 11.2. Imposition of boundary conditions by springs.

U =
1

2







u1A

v1A

w1A




g

−




u1B

v1B

w1B




g




T 


k1
x 0 0

0 k1
y 0

0 0 k1
z










u1A

v1A

w1A




g

−




u1B

v1B

w1B




g


 .

(11.16)
The subscripts g in the previous equation indicate that the displacements have
to be referred to the global coordinate system.

• Step 5
Substituting the Ritz function series approximations for the displacements of
1A and 1B in axes A and B, respectively (equations (11.11) and (11.12)), and
using the subscripts A and B for the generalized coordinates on the wing
segments A and B, the potential energy can be rewritten as

U =
1

2

[
qT

A

(
Ks1

AA

)
qA + qT

A

(
Ks1

AB

)
qB + qT

B

(
Ks1

BA

)
qA + qT

B

(
Ks1

BB

)
qB

]
.

(11.17)
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The quantities Ks1
AA, Ks1

AB, Ks1
BA and Ks1

BB are the stiffness matrices that
have to be added to the total stiffness matrix in locations corresponding to
generalized coordinates qA and qB (figure 11.3).

Figure 11.3. Example of imposition of boundary conditions by springs.

11.5 Analytical Integration

One important advantage of the usage of Ritz functions in the form xsyr is that it
is possible to use analytical integration to calculate the integrals over a trapezoidal
domain (the middle surface of the wing segment).
Consider a wing segment in which two edges are parallel to the local x axis4, as
shown in figure 11.4. The front and rear (aft) lines depend on the coordinates of
the vertices of the trapezoid and are defined by the equations:

xF (y) = F1y + F2,

xA (y) = A1y + A2,
(11.18)

where:
F1 = xFR−xFL

yR−yL
,

F2 = xFLyR−xFRyL

yR−yL
,

A1 = xAR−xAL

yR−yL
,

A2 = xALyR−xARyL

yR−yL
.

(11.19)

4It is always possible to divide the wing into segments with this characteristic without losing
generality.
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Figure 11.4. Analytical integration.

The integral of any simple-polynomial term with powers r and s over the wing is of
the type:

ITR (r,s) =
y=yR∫
y=yL

yr
x=xA(y)∫
x=xF (y)

xsd xd y = 1
s+1

y=yR∫
y=yL

yr
[
xA (y)s+1 − xF (y)s+1

]
dy =

= 1
s+1

y=yR∫
y=yL

yr (A1y + A2)
s+1 dy − 1

s+1

y=yR∫
y=yL

yr (F1y + F2)
s+1 dy =

= 1
S

y=yR∫
y=yL

yR (A1y + A2)
S dy − 1

S

y=yR∫
y=yL

yR (F1y + F2)
S dy.

(11.20)
The last two integrals can be calculated by using the recursive formulas:

∫
yR (A1y + A2)

S dy =
yR+1 (A1y + A2)

S

R + S + 1
+

SA2

R + S + 1

∫
yR (A1y + A2)

S−1 dy,

(11.21)
∫

yR (F1y + F2)
S dy =

yR+1 (F1y + F2)
S

R + S + 1
+

SF2

R + S + 1

∫
yR (F1y + F2)

S−1 dy.

(11.22)
A table of integrals of simple-polynomial functions of increasing order is prepared
once for each trapezoidal segments at the start of a simulation run up to the highest
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order needed. Integrals of xs yr over the trapezoid are then taken from such tables
in the stiffness and mass matrix assembly process.

11.6 Solution of the Nonlinear System

Several methods are presented in literature for the integration and solution of fully
nonlinear structural analysis problems ([78]-[87]). In the formulation used here for
the moderately-small deformations of plates, the direct iteration method and Newton-
Raphson method are adopted. While the linear parts of the stiffness matrix are
computed once, the nonlinear parts, which depend on the motion q, have to be
repetitively calculated during simulation. This is done by pulling out of the integral
tables needed integrals of polynomial functions and using them to compute new
nonlinear stiffness matrices (appendices N and O).

11.7 The Selected Test Problems

A number of test cases were selected for evaluation of the nonlinear structural plate
analysis described here. Results of the present capability are compared with the
reported results from literature and with MSC-NASTRAN solutions. In all MSC-
NASTRAN cases, CQUAD4 plate elements were used. The following cases are
analyzed:

• Case 1
Isotropic cantilever plate under uniform pressure (figure 11.5). Static loading.
This case is used to study the convergence of the present method. It is also
used to study the effect of the stiffness of the constraint springs on final results.

• Case 2
Isotropic squared plate supported along its circumference (figure 11.5). Static
loading. All edges have u0 = v0 = w0 = 0. A uniform pressure load is applied.

• Case 3
Isotropic rhombic cantilever plate (figure 11.6), on which uniform pressure is
applied. The analysis is linear.

• Case 4
Typical joined-wing configuration (figure 11.6). Linear and nonlinear behavior
are analyzed under uniform loading, as shown in figure 11.6. Natural modes
are also calculated.
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Figure 11.5. Case 1 and case 2: geometry and notations.

Figure 11.6. Case 3 and case 4: geometry and notations.
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11.8 Convergence Test

As shown in figure 11.7, an increased number of wing segments with low-order Ritz
polynomials per segments lead to results that are more close to a solution obtained by
the ADINA code [76] and [77]. It should be noted that the ADINA solution is fully

Figure 11.7. Case 1: effect of the number of wing segments.

nonlinear and allows large deformation. That is, nodes are allowed to move when
the load is increased. The present solution, based on von-Karman’s plate theory,
assumes fixed local coordinates for segments, and, thus, as expected, it cannot follow
the large-deformation case beyond a certain load level. In the cases shown in figure
11.7, the present modeling technique captures the nonlinear behavior of the plate
up to a normalized load factor of about K=7.
In figure 11.7, 6 Ritz functions are used for the displacements u0, v0 and w0 of each
segment. Hence, the Ritz function used are F u

1 = F v
1 = Fw

1 = 1, F u
2 = F v

2 = Fw
2 = x,

F u
3 = F v

3 = Fw
3 = y, F u

4 = F v
4 = Fw

4 = x2, F u
5 = F v

5 = Fw
5 = xy and

F u
6 = F v

6 = Fw
6 = y2.

Figure 11.8 shows the effect of the stiffness of the springs used for boundary
conditions and compatibility enforcement. As is evident, the solution is not sensitive
to the stiffness of the springs, as long as the springs (penalty weights) are stiff enough
but not too stiff to cause ill-conditioning [71].
Values of kx = ky = kz = aE are, thus, used for all springs. Figure 11.9 shows
that selection of the order of expansion used is very important. A good correlation
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Figure 11.8. Case 1: effect of springs’ stiffness.

with ADINA is obtained by using 12 wing segments, where, for each segment, 6
Ritz functions (quadratic complete polynomials) are used for u0 and v0 and 15 Ritz
functions are used for w0 (4th order complete polynomial).
Note the difference in results between ADINA and MSC-NASTRAN, due, possibly,
to a difference between the plate element formulations used.

11.9 Comparison with Published Results

In figures 11.10 and 11.11, results obtained by the present capability are compared
with results presented in the literature ([88]-[92]). In figure 11.10, four wing segments
are used, with 6 Ritz functions for u0 and v0 and 15 Ritz functions for w0 of
each segment. Results obtained by the present capability are denoted by ”Present
MATLAB”. In figure 11.11, the same Ritz functions are used, but nine wing
segments had to be used to have a good convergence for the linear case of the
rhombic wing.
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Figure 11.9. Case 1: effect of the number of Ritz functions.

Figure 11.10. Case 2: nonlinear displacements.
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Figure 11.11. Case 3: linear displacements.

11.10 Structural Analysis of a Joined Wing

Configuration

Fourty two wing segments (21 for each wing) have been used to model the Joined-
Wing configuration of case 4 (figure 11.6).
Six Ritz functions for u0 and v0 and 15 Ritz functions for w0 were used.
Figures 11.13, 11.14 and 11.15 show the natural modes and frequencies obtained by
the present capability and NASTRAN. The correlation is good up to quite a high
natural frequency.
Comparison of static linear and nonlinear displacements under tip load between the
present capability and MSC-NASTRAN is shown in figure 11.12.
Results by NASTRAN and the present code deviate slightly from one another,
starting with the linear case, due, possibly, to the differences in modeling classical
plates between the CQUAD4 element formulation and the formulation used here.
This is not surprising given the sensitivity of nonlinear structural simulations to
element selection, especially in the case of plates and shells. Overall, the present
capability captures the nonlinear deformation quite well.
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11.11 Conclusion

The structural model presented here is capable of well capturing displacements
(linear and nonlinear) and natural modes and frequencies of multi-segment plate
configurations. Several different geometries have been analyzed. In all cases, results
obtained in present study showed good agreement with the published results and
NASTRAN runs. The present capability can capture vibration modes and nonlinear
deformation, including buckling of joined wings configurations. It is general in that
it allows modeling using different sizes of wing segments (from small to large) and
different orders of Ritz polynomials per segment (from high order to low-order).
Some experimentation with paneling (division into segments) and Ritz function
order selection per panel is required when a new configuration is studied for the first
time to determine the best paneling/Ritz function order necessary.

Figure 11.12. Case 4: nonlinear results.
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Figure 11.13. Case 4: modes 1, 2, 3 compared with NASTRAN.
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Figure 11.14. Case 4: modes 4, 5, 6 compared with NASTRAN.
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Figure 11.15. Case 4: modes 7, 8 compared with NASTRAN.
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Nomenclature

t time
u (x,y,z,t) x-component displacement
v (x,y,z,t) y-component displacement
w (x,y,z,t) w-component displacement
ds infinitesimal area
dv infinitesimal volume
ü ∂2u

∂t2

v̈ ∂2v
∂t2

ẅ ∂2w
∂t2

ρ material density
V volume
S surface
E modulus of elasticity
ν Poisson’s ratio
U potential energy
kx, ky, kz spring stiffness
q generalized coordinates
F u T , F v T ,F w T Ritz functions
M = M 1 + M 2 mass matrix
K l0 l0 ,K l1 l1 stiffness matrices
K l0 nl,Knl l0 stiffness matrices (linear dependence from q)
Knl nl stiffness matrix (quadratic dependence from q)
q0 distributed constant pressure

Subscripts

,x derivative with respect to x
,y derivative with respect to y
,xx second derivative with respect to x
,yy second derivative with respect to y
0 referred to the middle surface of the plate
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Appendix A

Exchange Property in a Double
Integral Defined in the Hadamard
Finite-part Sense

Reported here is an original demonstration of the following property:

=

+1∫

−1


 =

+1∫

−1

f (t,s)

(t− s)2 dt


 ds = =

+1∫

−1


 =

+1∫

−1

f (t,s)

(t− s)2 ds


 dt. (A.1)

To achieve this goal, the integrals defined in the Cauchy principal value sense have
to be considered (see next section).

A.1 Proof for Integrals Defined in the Cauchy

Principal Value Sense

The following property has to be demonstrated:

+1∫

−1


−

+1∫

−1

f (t,s)

t− s
dt


 ds =

+1∫

−1


−

+1∫

−1

f (t,s)

t− s
ds


 dt. (A.2)

Suppose that the function f is not a constant. Suppose also that f is not constant
with respect to variable t. Adding and subtracting the term f (s,s), it is possible to
write

+1∫

−1


 −

+1∫

−1

f (t,s)

t− s
dt


 ds =

+1∫

−1




+1∫

−1

(
f (t,s)− f (s,s)

t− s

)
dt + f (s,s) −

+1∫

−1

1

t− s
dt


 ds.

(A.3)
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Notice that the assumption of f being not constant with respect to variable t does
not reduce the generality of the demonstration. Even if the function was constant
with respect to t, but not with respect to s, instead of expression (A.2), the following
equivalent statement should be demonstrated:

+1∫

−1


−

+1∫

−1

f (t,s)

t− s
ds


 dt =

+1∫

−1


−

+1∫

−1

f (t,s)

t− s
dt


 ds, (A.4)

and instead of equation (A.3), the following identity should be considered:

+1∫
−1

(
−
+1∫
−1

f(t,s)
t−s

ds

)
dt =

+1∫
−1

(
+1∫
−1

(
f(t,s)−f(t,t)

t−s

)
ds + f (t,t) −

+1∫
−1

1
t−s

ds

)
dt. (A.5)

Back to equation (A.3). The first double integral is regular, therefore, the order of
integration can be exchanged:

+1∫
−1

(
−
+1∫
−1

f(t,s)
t−s

dt

)
ds =

+1∫
−1

(
+1∫
−1

(
f(t,s)−f(s,s)

t−s

)
ds

)
dt +

+1∫
−1

(
f (s,s) −

+1∫
−1

1
t−s

dt

)
ds.

(A.6)
But

−
+1∫

−1

1

t− s
dt = ln |1− s| − ln |−1− s| , (A.7)

and using the fact that t and s are included in the interval -1,1:

+1∫
−1

(
−
+1∫
−1

f(t,s)
t−s

dt

)
ds =

+1∫
−1

(
+1∫
−1

(
f(t,s)−f(s,s)

t−s

)
ds

)
dt +

+1∫
−1

f (s,s) ln 1−s
1+s

ds. (A.8)

Elaborating the first integral:

+1∫
−1

(
−
+1∫
−1

f(t,s)
t−s

dt

)
ds =

+1∫
−1

dt −
+1∫
−1

f(t,s)
t−s

ds−
+1∫
−1

dt −
+1∫
−1

f(s,s)
t−s

ds+

+
+1∫
−1

f (s,s) ln 1−s
1+s

ds,

(A.9)

+1∫
−1

(
−
+1∫
−1

f(t,s)
t−s

dt

)
ds =

+1∫
−1

dt −
+1∫
−1

f(t,s)
t−s

ds−
+1∫
−1

(
d
dt

+1∫
−1

f (s,s) ln |t− s| ds

)
dt+

+
+1∫
−1

f (s,s) ln 1−s
1+s

ds.

(A.10)
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Hence:

+1∫
−1

(
−
+1∫
−1

f(t,s)
t−s

dt

)
ds =

+1∫
−1

dt −
+1∫
−1

f(t,s)
t−s

ds−
[

+1∫
−1

f (s,s) ln |t− s| ds

]+1

−1

+

+
+1∫
−1

f (s,s) ln 1−s
1+s

ds.

(A.11)

Rearranging:
+1∫

−1


−

+1∫

−1

f (t,s)

t− s
dt


 ds =

+1∫

−1

dt −
+1∫

−1

f (t,s)

t− s
ds. (A.12)

This relation demonstrates that exchanging the variables of integration is correct if
the function is not a constant. Now consider f (t,s) = const = a. Hence:

+1∫

−1


−

+1∫

−1

a

t− s
dt


 ds = a

+1∫

−1

ln
1− s

1 + s
ds = 0. (A.13)

Similarly:
+1∫

−1


−

+1∫

−1

a

t− s
ds


 dt = 0. (A.14)

Thus, it has been demonstrated that

+1∫

−1


−

+1∫

−1

f (t,s)

t− s
dt


 ds =

+1∫

−1


−

+1∫

−1

f (t,s)

t− s
ds


 dt (A.15)

in all cases.

A.2 Proof for Integrals Defined in the Hadamard

Finite-part Sense

In this case, it has to be supposed that f(t,s) is not constant, and verify with
direct calculation that the exchange of variables is possible when f(t,s) is constant.
Suppose f(t,s) is not constant. Summing and subtracting the term f (s,s), yields a
Cauchy integral:

=
+1∫
−1

(
=
+1∫
−1

f(t,s)

(t−s)2
dt

)
ds =

+1∫
−1

(
−
+1∫
−1

f(t,s)−f(s,s)

(t−s)2
dt

)
ds+ =

+1∫
−1

(
f (s,s) =

+1∫
−1

1
(t−s)2

dt

)
ds.

(A.16)
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But it has previously been demonstrated that the exchange operation is possible for
the Cauchy integrals, therefore:

=
+1∫
−1

(
=
+1∫
−1

f(t,s)

(t−s)2
dt

)
ds =

+1∫
−1

(
−
+1∫
−1

f(t,s)−f(s,s)

(t−s)2
ds

)
dt+ =

+1∫
−1

(
f (s,s) =

+1∫
−1

1
(t−s)2

dt

)
ds.

(A.17)
Now a few algebraic manipulations are reported:

=
+1∫
−1

(
=
+1∫
−1

f(t,s)

(t−s)2
dt

)
ds = =

+1∫
−1

(
=
+1∫
−1

f(t,s)

(t−s)2
ds

)
dt− =

+1∫
−1

(
=
+1∫
−1

f(s,s)

(t−s)2
ds

)
dt+

+ =
+1∫
−1

(
f (s,s) =

+1∫
−1

1
(t−s)2

dt

)
ds,

(A.18)

=
+1∫
−1

(
=
+1∫
−1

f(t,s)

(t−s)2
dt

)
ds = =

+1∫
−1

(
=
+1∫
−1

f(t,s)

(t−s)2
ds

)
dt +

+1∫
−1

d
dt

(
−
+1∫
−1

f(s,s)
(t−s)

ds

)
dt+

+ =
+1∫
−1

(
f (s,s) =

+1∫
−1

1
(t−s)2

dt

)
ds,

(A.19)

=
+1∫
−1

(
=
+1∫
−1

f(t,s)

(t−s)2
dt

)
ds = =

+1∫
−1

(
=
+1∫
−1

f(t,s)

(t−s)2
ds

)
dt +

[
−
+1∫
−1

f(s,s)
(t−s)

ds

]+1

−1

+

+ =
+1∫
−1

(
f (s,s)

[
− 1

1−s
+ 1

−1−s

])
ds.

(A.20)

Hence,

=

+1∫

−1


 =

+1∫

−1

f (t,s)

(t− s)2 dt


 ds = =

+1∫

−1


 =

+1∫

−1

f (t,s)

(t− s)2 ds


 dt, (A.21)

at least for non-constant functions. Now suppose f(t,s) = a. The integral becomes:

=

+1∫

−1


 =

+1∫

−1

a

(t− s)2 dt


 ds = =

+1∫

−1

2a

(−1 + s) (1 + s)
ds = − ln 2. (A.22)

Similarly:

=

+1∫

−1


 =

+1∫

−1

a

(t− s)2 ds


 dt = =

+1∫

−1

2a

(−1 + t) (1 + t)
dt = − ln 2. (A.23)

Thus, the property is demonstrated for all cases.
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Observation 34 If the function f is zero at both endpoints, the following property
is valid:

+1∫

−1


 =

+1∫

−1

f (t,s)

(t− s)2 dt


 ds =

+1∫

−1


 =

+1∫

−1

f (t,s)

(t− s)2 ds


 dt. (A.24)

This is possible because the external integral is not singular at the endpoints (the
function is zero at those points). Therefore, the external integral does not have to
be defined as Hadamard finite-part integral.
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Appendix B

Normalwash in a Biplane. A
Geometrical Approach

Consider figure B.1. At point P on wing 1, vortex γ2x (yd) dyd induces the velocity

Figure B.1. Induced velocity calculation using geometric method.

Vγx2 = γx2 dydi× r
4πr

= γx2

4π
√

(y−yd)2+H2

(
− H√

(y−yd)2+H2
j + y−yd√

(y−yd)2+H2
k

)
dyd.

(B.1)
At the same point, vortex γ1x (yd) dyd induces the velocity

Vγx1 =
γx1 dyd

4π (y − yd)
k. (B.2)
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B – Normalwash in a Biplane. A Geometrical Approach

From these relations, it is deduced that:

dun (y) = Vγx2 · k + Vγx1 , (B.3)

where dun is directed along +z. Using the previous equations:

dun (y) = γx2 dyd1
(y − yd)

4π
(
(y − yd)

2 + H2
) + γx1 dyd

1

4π (y − yd)
. (B.4)

Remembering that γx1 = −dΓ1(yd)
dyd

, γx2 = −dΓ2(yd)
dyd

, and integrating:

un1 (y) = − 1

4π

+bw∫

−bw

(y − yd)(
(y − yd)

2 + H2
) dΓ (yd)

dyd

dyd − 1

4π
−
+bw∫

−bw

dΓ (yd)
dyd

(y − yd)
dyd. (B.5)

Integrating by parts:

+bw∫
−bw

(y−yd)

((y−yd)2+H2)
dΓ (yd)
dyd1

dyd =
[
Γ (yd)

(y−yd)

((y−yd)2+H2)

]+bw

−bw

+

−
+bw∫
−bw

Γ (yd)
((y−yd)2−H2)
((y−yd)2+H2)

2 dyd,
(B.6)

−
+bw∫

−bw

dΓ (yd)
dyd

(y − yd)
dyd =

[
Γ (yd)

(y − yd)

]+bw

−bw

− =

+bw∫

−bw

Γ (yd)

(y − yd)
2 dyd. (B.7)

The circulation is zero at the tips and the following relation1 is valid:

ρV∞Γ (yd) = −ρm (yd) ⇒ Γ (yd) = −m (yd)

V∞
. (B.8)

As a result,

+bw∫

−bw

(y − yd)(
(y − yd)

2 + H2
) dΓ (yd)

dyd

dyd =
1

V∞

+bw∫

−bw

m (yd)

(
(y − yd)

2 −H2
)

(
(y − yd)

2 + H2
)2 dyd, (B.9)

−
+bw∫

−bw

1

(y − yd)

dΓ (yd)

dyd

dyd =
1

V∞
=

+bw∫

−bw

m (yd)
1

(y − yd)
2 dyd. (B.10)

Substituting equations (B.9) and (B.10) into (B.5), the same relation as (5.34) is
obtained. The same procedure can be applied for the velocity induced on the wing
2.

1Notice that the doublets have been chosen with axes along +z. This explains the negative sign
in the next expression.
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Appendix C

Minimum Induced Drag in a
Biplane: Euler-Lagrange
Equations

The functional is

J
(
(m1)opt (·) + σδ1 (·) , (m2)opt (·) + σδ2 (·)

)
=

= − ρ∞
4πV 2∞

+bw∫
−bw

=
+bw∫
−bw

[(m1)opt(yd)+σδ1(yd)][(m1)opt(y)+σδ1(y)]
(y−yd)2

dy dyd+

− ρ∞
4πV 2∞

+bw∫
−bw

+bw∫
−bw

[
[(m1)opt(yd)+σδ1(yd)][(m2)opt(y)+σδ2(y)]+[(m1)opt(y)+σδ1(y)][(m2)opt(yd)+σδ2(yd)]

]

((y−yd)2+H2)
2 ·

·
(
(y − yd)

2 −H2
)

dy dyd − ρ∞
4πV 2∞

+bw∫
−bw

=
+bw∫
−bw

[(m2)opt(y)+σδ2(y)][(m2)opt(yd)+σδ2(yd)]
(y−yd)2

dy dyd.

(C.1)
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The derivative with respect to σ of the functional is:

d
dσ

J
(
(m1)opt (·) + σδ1 (·) , (m2)opt (·) + σδ2 (·)

)
=

= − ρ∞
4πV 2∞

+bw∫
−bw

=
+bw∫
−bw

δ1(yd)[((m1)opt(y)+σδ1(y))]+[(m1)opt(yd)+σδ1(yd)]δ1(y)

(y−yd)2
dy dyd+

− ρ∞
4πV 2∞

+bw∫
−bw

+bw∫
−bw

[
δ1(yd)[(m2)opt(y)+σδ2(y)]+[(m1)opt(yd)+σδ1(yd)]δ2(y)

]

((y−yd)2+H2)
2

(
(y − yd)

2 −H2
)

dy dyd+

− ρ∞
4πV 2∞

+bw∫
−bw

+bw∫
−bw

[
δ1(y)[(m2)opt(yd)+σδ2(yd)]+[(m1)opt(y)+σδ1(y)]δ2(yd)

]

((y−yd)2+H2)
2

(
(y − yd)

2 −H2
)

dy dyd+

− ρ∞
4πV 2∞

+bw∫
−bw

=
+bw∫
−bw

(
δ2(yd)[((m2)opt(y)+σδ2(y))]+[(m2)opt(yd)+σδ2(yd)]δ2(y)

(y−yd)2
dy

)
dyd.

(C.2)
Setting σ = 0:

[
d
dσ

J
]
σ=0

= − ρ∞
4πV 2∞

+bw∫
−bw

=
+bw∫
−bw

δ1(yd)(m1)opt(y)+(m1)opt(yd)δ1(y)

(y−yd)2
dy dyd+

− ρ∞
4πV 2∞

+bw∫
−bw

+bw∫
−bw

[δ1(yd)(m2)opt(y)+(m1)opt(yd)δ2(y)+δ1(y)(m2)opt(yd)+(m1)opt(y)δ2(yd)]
((y−yd)2+H2)

2 ·

·
(
(y − yd)

2 −H2
)

dy dyd − ρ∞
4πV 2∞

+bw∫
−bw

=
+bw∫
−bw

(
δ2(yd)(m2)opt(y)+(m2)opt(yd)δ2(y)

(y−yd)2
dy

)
dyd.

(C.3)
But it is easy to demonstrate the following equations (see chapter 2 and appendix
A):

+bw∫
−bw

=
+bw∫
−bw

δ1(yd)(m1)opt(y)+(m1)opt(yd)δ1(y)

(y−yd)2
dy dyd =

+bw∫
−bw

=
+bw∫
−bw

2
δ1(yd)(m1)opt(y)

(y−yd)2
dy dyd, (C.4)

+bw∫
−bw

=
+bw∫
−bw

δ2(yd)(m2)opt(y)+(m2)opt(yd)δ2(y)

(y−yd)2
dy dyd =

+bw∫
−bw

=
+bw∫
−bw

2
δ2(yd)(m2)opt(y)

(y−yd)2
dy dyd, (C.5)

+bw∫
−bw

+bw∫
−bw

[δ1(yd)(m2)opt(y)+(m1)opt(yd)δ2(y)+δ1(y)(m2)opt(yd)+(m1)opt(y)δ2(yd)]((y−yd)2−H2)
((y−yd)2+H2)

2 dy dyd =

=
+bw∫
−bw

+bw∫
−bw

2
[δ1(yd)(m2)opt(y)+δ2(yd)(m1)opt(y)]((y−yd)2−H2)

((y−yd)2+H2)
2 dy dyd.

(C.6)
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Therefore, the derivative is

[
d
dσ

J
]
σ=0

= − ρ∞
2πV 2∞

+bw∫
−bw

=
+bw∫
−bw

(
δ1(yd)(m1)opt(y)

(y−yd)2
+

δ2(yd)(m2)opt(y)

(y−yd)2

)
dy dyd+

− ρ∞
2πV 2∞

+bw∫
−bw

+bw∫
−bw

[δ1(yd)(m2)opt(y)+δ2(yd)(m1)opt(y)]((y−yd)2−H2)
((y−yd)2+H2)

2 dy dyd.

(C.7)

Now the condition of fixed total lift is taken into account using the Lagrange
multiplier method. The condition has to be manipulated as reported below1:

L = −ρ∞
+bw∫
−bw

m1 (yd) dyd − ρ∞
+bw∫
−bw

m2 (yd) dyd ⇒

l (yd) = −ρ∞
yd∫
−bw

m1 (y) dy − ρ∞
yd∫
−bw

m2 (y) dy ⇒

l′ (yd) + ρ∞m1 (yd) + ρ∞m2 (yd) = 0.

(C.8)

Setting
l (·) = l (·)opt + σδ3 (·) σ ∈ (−1,1) ,

m1 (·) = (m1)opt (·) + σδ1 (·) σ ∈ (−1,1) ,

m2 (·) = (m2)opt (·) + σδ2 (·) σ ∈ (−1,1) ,

(C.9)

the condition becomes

l′ (yd)opt + σδ′3 (yd) + ρ∞
[
(m1)opt (yd) + σδ1 (yd)

]
+ ρ∞

[
(m2)opt (yd) + σδ2 (yd)

]
= 0.

(C.10)
Its derivative with respect to σ and calculated for σ = 0 yields:

δ′3 (yd) + ρ∞δ1 (yd) + ρ∞δ2 (yd) = 0. (C.11)

Multiplying this expression by λ (yd), integrating by parts2 the term containing
δ′3 (yd), and summing with equation (C.7), the result is:

0 = − ρ∞
2πV 2∞

+bw∫
−bw

=
+bw∫
−bw

δ1(yd)(m1)opt(y)+δ2(yd)(m2)opt(y)

(y−yd)2
dy dyd+

− ρ∞
2πV 2∞

+bw∫
−bw

+bw∫
−bw

[δ1(yd)(m2)opt(y)+δ2(yd)(m1)opt(y)]((y−yd)2−H2)
((y−yd)2+H2)

2 dy dyd −
+bw∫
−bw

λ′ (yd) δ3 (yd) dyd+

+ρ∞
+bw∫
−bw

λ (yd) δ1 (yd) dyd + ρ∞
+bw∫
−bw

λ (yd) δ2 (yd) dyd.

(C.12)

1Notice that l (y = bw) = L and l (y = −bw) = 0.
2 Notice that δ3 (+bw) = δ3 (−bw) = 0.
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The Euler-Lagrange equation leads to a system of three equations containing the
unknown functions λ (yd), (m2)opt and (m1)opt. It can be observed that the functions
δ1 (yd), δ2 (yd) and δ3 (yd) are arbitrary functions. Thus, it can be written that

δ2 (yd) = δ1 (yd) ≡ 0 ⇒ λ′ (yd) = 0 ⇒ λ (yd) = cost. (C.13)

Using this result:

0 = − ρ∞
2πV 2∞

+bw∫
−bw

=
+bw∫
−bw

δ1(yd)(m1)opt(y)+δ2(yd)(m2)opt(y)

(y−yd)2
dy dyd+

− ρ∞
2πV 2∞

+bw∫
−bw

+bw∫
−bw

[δ1(yd)(m2)opt(y)+δ2(yd)(m1)opt(y)]((y−yd)2−H2)
((y−yd)2+H2)

2 dy dyd+

+ρ∞λ
+bw∫
−bw

δ1 (yd) dyd + ρ∞λ
+bw∫
−bw

(yd) δ2 (yd) dyd.

(C.14)

Now imposing δ2 (yd) ≡ 0:

− ρ∞
2πV 2∞

+bw∫
−bw

(
=
+bw∫
−bw

δ1(yd)(m1)opt(y)

(y−yd)2
dy +

+bw∫
−bw

δ1(yd)(m2)opt(y)((y−yd)2−H2)
((y−yd)2+H2)

2 dy

)
dyd+

+ρ∞λ
+bw∫
−bw

δ1 (yd) dyd = 0.

(C.15)

Elaborating this expression yields

+bw∫
−bw

δ1 (yd)

[(
− ρ∞

2πV 2∞
=
+bw∫
−bw

(m1)opt(y)

(y−yd)2
dy − ρ∞

2πV 2∞

+bw∫
−bw

(m2)opt(y)((y−yd)2−H2)
((y−yd)2+H2)

2 dy

)
+ ρ∞λ

]
dyd = 0.

(C.16)
Because the function δ1 (yd) is arbitrary, in order to satisfy the equation, the quantity
in brackets must be equal to zero:

− ρ∞
2πV 2∞

=
+bw∫
−bw

(m1)opt(y)

(y−yd)2
dy − ρ∞

2πV 2∞

+bw∫
−bw

(m2)opt(y)((y−yd)2−H2)
((y−yd)2+H2)

2 dy + ρ∞λ = 0. (C.17)

Now imposing δ1 (yd) ≡ 0 and using similar algebraic manipulations:

− ρ∞
2πV 2∞

=
+bw∫
−bw

(m2)opt(y)

(y−yd)2
dy − ρ∞

2πV 2∞

+bw∫
−bw

(m1)opt(y)((y−yd)2−H2)
((y−yd)2+H2)

2 dy + ρ∞λ = 0. (C.18)

The last two expressions are the Euler-Lagrange equations for the biplane.
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Appendix D

Elliptical Annular Wing with
bw > aw. Orthogonality of the Used
Coordinate System

In order to demonstrate this property, the tangent vectors at the intersection of
an ellipse and a hyperbola have to be calculated, and the fact that they are
perpendicular to each other have to be shown.
Consider the curve ψ = ψ. It is an ellipse of equation

y2

cosh2 ψ
+

z2

sinh2 ψ
= c2. (D.1)

Notice that the previous equation is always defined because ψ > 0. Setting ϕ = ϕ
and supposing ϕ 6= k π

2
, a hyperbola of equation

− y2

cos2 ϕ
+

z2

sin2 ϕ
= −c2 (D.2)

is defined. The ellipse and hyperbola intersect at point

y = c cosh ψ cos ϕ,
z = c sinh ψ sin ϕ.

(D.3)

The equation of the tangent of the hyperbola at that point is

− 2y

cos2 ϕ
(y − y) +

2z

sin2 ϕ
(z − z) = 0, (D.4)

while the equation of the tangent of the ellipse at the same point is

2y

cosh2 ψ
(y − y) +

2z

sinh2 ψ
(z − z) = 0. (D.5)
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The vectors parallel to the tangent lines are, respectively,

Vhyp = 2z
sin2 ϕ

j + 2y
cos2 ϕ

k,

Vel = 2z
sinh2 ψ

j− 2y

cosh2 ψ
k.

(D.6)

Their scalar product is

Vhyp ·Vel = 4

(
z2

sin2 ϕ sinh2 ψ
− y2

cos2 ϕ cosh2 ψ

)
. (D.7)

Using the expression of y and z:

Vhyp ·Vel = 4c2

(
sinh2 ψ sin2 ϕ

sin2 ϕ sinh2 ψ
− cosh2 ψ cos2 ϕ

cos2 ϕ cosh2 ψ

)
= 0 ∀ψ ,∀ϕ 6= k

π

2
. (D.8)

Thus, the orthogonality is demonstrated for all cases1.

1In the particular condition of ϕ = k π
2 , there are horizontal or vertical lines, and they are

perpendicular to a generic ellipse. Hence, the orthogonality is valid in all cases.
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Appendix E

Elliptical Annular Wing with
bw > aw. Some Useful Derivations

Cartesian Distance

In order to write the small perturbation acceleration potential, the cartesian distance
between a generic point P (x,y,z) and a point Pd(xd,yd,zd)

1 on the lifting line w,
where the generic doublet is positioned, is needed. The distance is

D =
√

(x− xd)
2 + (y − yd)

2 + (z − zd)
2. (E.1)

The lifting line is contained in the y − z plane, thus xd = 0. With the position
x = cX and using the new coordinate system:

D = c

√(
X2 + (cosh ψ cos ϕ− cosh ψw cos ϕd)

2 + (sinh ψ sin ϕ− sinh ψw sin ϕd)
2
)
,

(E.2)
where the relations valid on the lifting line w have been used:

yd = c cosh ψw cos ϕd 0 ≤ ϕd ≤ 2π,
zd = c sinh ψw sin ϕd ψw > 0.

(E.3)

The cartesian distance can be written in another way:

D = c [∆ (X,ψ,ϕ,ψw,ϕd)]
1
2 , (E.4)

where

∆ = X2 + sinh2 ψ + cos2 ϕ− cosh (ψ − ψw) cos (ϕ + ϕd) +

− cosh (ψ + ψw) cos (ϕ− ϕd) + sinh2 ψw + cos2 ϕd. (E.5)

1The point Pd is characterized by ϕ = ϕd.
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Cosine Directions of the Normal to the Lifting Line

The lifting line is studied considering a doublet distribution m. Each doublet has
axis which has inward direction to the ellipse and is perpendicular to the lifting
line (figure E.1). The straight line perpendicular to the ellipse, where the generic

Figure E.1. Positive direction of the doublet’s axis.

doublet is positioned, has the equation

− 2yd

cos2 ϕd

(y − yd) +
2zd

sin2 ϕd

(z − zd) = 0. (E.6)

From that relation, a vector perpendicular to the ellipse has the expression

V⊥el =
zd

sin2 ϕd

j +
yd

cos2 ϕd

k. (E.7)

Using relation (E.3):

V⊥el =
c sinh ψw sin ϕd

sin2 ϕd

j +
c cosh ψw cos ϕd

cos2 ϕd

k. (E.8)

Therefore, the vector

V⊥el =
sinh ψw

sin ϕd

j +
cosh ψw

cos ϕd

k, (E.9)

is perpendicular to the ellipse at the point characterized by y = yd, x = xd = 0,
z = zd and ϕ = ϕd. Normalizing the vector expressed in equation (E.9):

V⊥el =

√
cosh2 ψw − cos2 ϕd

|sin ϕd| |cos ϕd| ; (E.10)
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V⊥el =
sinh ψw

sin ϕd

V⊥el
j +

cosh ψw

cos ϕd

V⊥el
k ⇒

V⊥el =
|sinϕd| |cosϕd|√

cosh2 ψw − cos2 ϕd

sinhψw

sinϕd
j +

|sinϕd| |cosϕd|√
cosh2 ψw − cos2 ϕd

coshψw

cosϕd
k. (E.11)

From this equation, it can be deduced that vector nd, perpendicular to the ellipse
where the doublet is positioned, is

nd = − cos ϕd sinh ψw√
cosh2 ψw − cos2 ϕd

j− sin ϕd cosh ψw√
cosh2 ψd − cos2 ϕd

k. (E.12)

It is easy to verify that the direction of vector nd is in accord with figure E.1. Clearly,
from the previous expression, it can be written that:

ndx = 0,

ndy = − cos ϕd sinh ψw√
cosh2 ψw − cos2 ϕd

, (E.13)

ndz = − sin ϕd cosh ψw√
cosh2 ψw − cos2 ϕd

.

Now, the small perturbation acceleration potential can be written.
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Appendix F

Elliptical Annular Wing with
bw > aw. Weissinger’s Condition

F.1 Mathematical Derivation

Weissinger’s condition is

− α (ϕ) =
1

V∞

(
1

h

∂φ (X,ψ,ϕ,ψw)

∂ψ

)

X=X0; ψ=ψw

, (F.1)

where X0 = l
2c

. In order to calculate the derivative of the small perturbation velocity
potential, the small perturbation velocity potential is written as

φ (X,ψ,ϕ,ψw) =
1

8πV∞

2π∫

0

m (ϕd) · f2 (ψ,ϕ,ψw) · f3 (X,ψ,ϕ,ψw) dϕd, (F.2)

where:

f2 = (sinh(ψ+ψw) cos(ϕ−ϕd)−sinh(ψ−ψw) cos(ϕ+ϕd)−sinh 2ψw)

sinh2 ψ+cos2 ϕ−cosh(ψ−ψw) cos(ϕ+ϕd)−cosh(ψ+ψw) cos(ϕ−ϕd)+sinh2 ψw+cos2 ϕd
= N

D
,

f3 = X√
X2+D

+ 1,

N = (sinh (ψ + ψw) cos (ϕ− ϕd)− sinh (ψ − ψw) cos (ϕ + ϕd)− sinh 2ψw) ,

D = sinh2 ψ + cos2 ϕ− cosh (ψ − ψw) cos (ϕ + ϕd) +

− cosh (ψ + ψw) cos (ϕ− ϕd) + sinh2 ψw + cos2 ϕd.
(F.3)

In the derivative of the small perturbation velocity potential, the following quantity
appears: [

∂

∂ψ
(f2 · f3)

]

ψ=ψw; X=X0

=

[
∂f2

∂ψ
f3 + f2

∂f3

∂ψ

]

ψ=ψw; X=X0

. (F.4)
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Now, the principal algebraic operations are shown:

[N ]ψ=ψw
= − sinh (2ψw) (1− cos (ϕ− ϕd)) ,

[D]ψ=ψw
= sinh2 ψw + cos2 ϕ− cos (ϕ + ϕd)− cosh (2ψw) cos (ϕ− ϕd) +

+ sinh2 ψw + cos2 ϕd = 2 (H5) (1− cos (ϕ− ϕd)) ,

[f2]ψ=ψw
= − sinh(2ψw)

2(H5)
,

[f3]ψ=ψw,X=X0
= X0√

H6
+ 1,

[
∂N
∂ψ

]
ψ=ψw

= 2
(
cosh2 ψw cos (ϕ− ϕd)− cos ϕ cos ϕd

)
,

[
∂D
∂ψ

]
ψ=ψw

= sinh (2ψw) (1− cos (ϕ− ϕd)) = − [N ]ψ=ψw
,

[
∂f2

∂ψ

]
ψ=ψw

= cosh2 ψw cos(ϕ−ϕd)−cos ϕ cos ϕd

(H5)(1−cos(ϕ−ϕd))
+ sinh2 ψw cosh2 ψw

(H5)2
,

[
∂f3

∂ψ

]
ψ=ψw,X=X0

= −X0 cosh ψw sinh ψw(1−cos(ϕ−ϕd))

(H6)
3
2

,

[
f2

∂f3

∂ψ

]
ψ=ψw,X=X0

= X0 cosh2 ψw sinh2 ψw(1−cos(ϕ−ϕd))

(H5)(H6)
3
2

,

[
∂f2

∂ψ
f3

]
ψ=ψw,X=X0

=
(

cosh2 ψw cos(ϕ−ϕd)−cos ϕ cos ϕd

(H5)(1−cos(ϕ−ϕd))
+ sinh2 ψw cosh2 ψw

(H5)2

) (
X0√
H6

+ 1
)
,

H5 = sinh2 ψw + sin2 ϕ+ϕd

2
,

H6 = X2
0 + 2

(
sinh2 ψw + sin2 ϕ+ϕd

2

)
(1− cos (ϕ− ϕd)) .

(F.5)

Notice that the term
[

∂f2

∂ψ
f3

]
ψ=ψw,X=X0

contains the singular term X0√
H6

(when ϕ = ϕd,

it reaches infinity). Thus,
[

∂f2

∂ψ
f3

]
ψ=ψw,X=X0

is rewritten in the form

[
∂f2

∂ψ
f3

]

ψ=ψw,X=X0

=




[
∂f2

∂ψ

]S

f3




ψ=ψw,X=X0

+




[
∂f2

∂ψ

]R

f3




ψ=ψw,X=X0

, (F.6)

where the superscripts ”S” and ”R” indicate ”singular” and ”regular”, respectively.
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F.2 Treatment of the Singularity

The is to isolate the singularity from the term
([

∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

. That term is:

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

= cosh2 ψw cos(ϕ−ϕd)−cos ϕ cos ϕd

(H5)(1−cos(ϕ−ϕd))

(
X0√
H6

+ 1
)
. (F.7)

In a compact form:
([

∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

= cosh2 ψw cos(ϕ−ϕd)−cos ϕ cos ϕd

(H5)
· f3(X0,ϕ,ψw,ϕd)

1−cos(ϕ−ϕd)
. (F.8)

Using the following identity:

f3 (X0,ϕ,ψw,ϕd)

1− cos (ϕ− ϕd)
=

f3 (X0,ϕ,ψw,ϕd)− f3 (X0,ϕ,ψw,ϕ)

1− cos (ϕ− ϕd)
+

f3 (X0,ϕ,ψw,ϕ)

1− cos (ϕ− ϕd)
, (F.9)

where
f3 (X0,ϕ,ψw,ϕ) = 2, (F.10)

f3 (X0,ϕ,ψw,ϕd)− f3 (X0,ϕ,ψw,ϕ)

1− cos (ϕ− ϕd)
= fI , (F.11)

fI = −2(H5)

(X0+
√

H6)
√

H6
, (F.12)

thus,
f3 (X0,ϕ,ψw,ϕd)

1− cos (ϕ− ϕd)
= fI +

2

1− cos (ϕ− ϕd)
. (F.13)

Using expression (F.13), equation (F.8) becomes:
([

∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

= cosh2 ψw cos(ϕ−ϕd)−cos ϕ cos ϕd

(H5)
fI+

+2 cosh2 ψw cos(ϕ−ϕd)−cos ϕ cos ϕd

(H5)(1−cos(ϕ−ϕd))
.

(F.14)

The second term, which appears in the previous equation, can be simplified more.
Considering the identities

2 cosh2 ψw cos(ϕ−ϕd)−cos ϕ cos ϕd

(H5)(1−cos(ϕ−ϕd))
= 2 cosh2 ψw cos(ϕ−ϕd)−cos ϕ cos ϕd−(H5)

(H5)(1−cos(ϕ−ϕd))
+ 2

1−cos(ϕ−ϕd)
,

(F.15)

cosh2 ψw cos (ϕ− ϕd)− cos ϕ cos ϕd − (H5) = −(cosh(2ψw))(1−cos(ϕ−ϕd))
2

, (F.16)

it can be deduced that

2
cosh2 ψw cos (ϕ− ϕd)− cos ϕ cos ϕd

(H5) (1− cos (ϕ− ϕd))
=
− cosh (2ψw)

(H5)
+

2

1− cos (ϕ− ϕd)
. (F.17)
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Finally, equation (F.14) is rewritten as

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

= cosh2 ψw cos(ϕ−ϕd)−cos ϕ cos ϕd

(H5)
· fI − cosh(2ψw)

(H5)
+ 2

1−cos(ϕ−ϕd)
.

(F.18)

233



Appendix G

Normalwash in an Elliptical
Annular Wing with bw > aw. A
Geometrical Approach

Suppose that the circulation Γ (ϕ) is known. The normalwash at a point on the
ellipse induced by the vortex γx is

dun =
γx (sd)

4πr
cos ς dsd, (G.1)

where r indicates the distance between the point characterized by ϕd (where the
trailing vortex γx (sd) dsd is positioned) and the point characterized by ϕ (where the
induced velocity is calculated). For more details see figure G.1.
But the following well known formula (see figure G.2) is valid:

γx (sd) = −dΓ (sd)

dsd

; (G.2)

recalling the relation dsd = c
√

cosh2 ψw − cos2 ϕd dϕd, equation (G.1) becomes

dun = −
dΓ (ϕd)

dϕd

4πr
cos ς dϕd. (G.3)

The following is a step by step calculation of all terms that appear in equation (G.3).

• Step 1
Finding of the expression of distance r.
It is seen as the modulus of the vector that links the points (see figure G.1).
This vector is the difference between the position vectors as reported below:

r = V (ϕ)−V (ϕd) = c (cosh ψw) (cos ϕ− cos ϕd) j+

+ c (sinh ψw) (sin ϕ− sin ϕd)k.
(G.4)
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Figure G.1. Induced velocity by the vortex γx (sd) dsd.

Figure G.2. Bounded vortex and trailing vortex.

Hence:

r = c

√
2

(
sinh2 ψw + sin2 ϕ + ϕd

2

)
(1− cos (ϕ− ϕd)). (G.5)

• Step 2
Writing of the unitary vector nγx .

nγx = i× r
r

= − (sinh ψw)(sin ϕ−sin ϕd)√
2(sinh2 ψw+sin2 ϕ+ϕd

2 )(1−cos(ϕ−ϕd))
j+

+ (cosh ψw)(cos ϕ−cos ϕd)√
2(sinh2 ψw+sin2 ϕ+ϕd

2 )(1−cos(ϕ−ϕd))
k.

(G.6)
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• Step 3
Writing of the unitary vector nϕ perpendicular to the ellipse in ϕ1.

nϕ = − cos ϕ sinh ψw√
cosh2 ψw − cos2 ϕ

j− sin ϕ cosh ψw√
cosh2 ψw − cos2 ϕ

k. (G.7)

• Step 4
Calculation of cos ς.
cos ς is determined using the scalar product of the unitary vectors nγx and nϕ:

cos ς = nγx · nϕ = − sin 2ϕ+sin(ϕ+ϕd)−(cosh 2ψw) sin(−ϕ+ϕd)

2
√

cosh2 ψw−cos2 ϕ

√
2(sinh2 ψw+sin2 ϕ+ϕd

2 )(1−cos(ϕ−ϕd))
. (G.8)

Substituting these quantities into the expression of the induced velocity:

dun = −
dΓ
dϕd

(− sin 2ϕ+sin(ϕ+ϕd)−(cosh 2ψw) sin(−ϕ+ϕd))

16πc
√

cosh2 ψw−cos2 ϕ(sinh2 ψw+sin2 ϕ+ϕd
2 )(1−cos(ϕ−ϕd))

dϕd. (G.9)

Integrating over the lifting line:

un = − 1

16πc
√

cosh2 ψw−cos2 ϕ
=
2π∫
0

dΓ
dϕd

(− sin 2ϕ+sin(ϕ+ϕd)−(cosh 2ψw) sin(−ϕ+ϕd))

(sinh2 ψw+sin2 ϕ+ϕd
2 )(1−cos(ϕ−ϕd))

dϕd. (G.10)

Now the variables t and s are changed because they are useful in the numerical
approach and because the notation is more clean. Thus2,

un = − 1

16πc
√

cosh2 ψw−cos2(πs)
=
1∫
−1

dΓ
dt

(− sin 2πs+sin π(t+s)+(cosh 2ψw) sin π(s−t))

(sinh2 ψw+sin2(π(t+s)
2 ))(1−cos(π(t−s)))

dt. (G.11)

Now what remains is to show that the theoretical expression of the induced velocity
(see chapter 6) leads to the equation reported above (equation G.11).
In chapter 6, the following expression was found:

un = 1
8cV∞

1√
(cosh2 ψw−cos2(πs))

=
+1∫
−1

m (t)

[
sinh2 ψw cosh2 ψw

(sinh2 ψw+sin2(π(t+s)
2 ))

2 +

− cosh(2ψw)

2(sinh2 ψw+sin2(π(t+s)
2 ))

+ 1
(1−cos(π(t−s)))

]
dt.

(G.12)

1Notice that the vector acts towards the local center of curvature. This is the opposite of the
convention used in the theory.

2Remember that the normalwash is considered positive if it has the same direction as nϕ.
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Integrating by parts and after a few algebraic operations:

un = 1
8cV∞

1√
(cosh2 ψw−cos2(πs))

[
m (t) − sin(2πs)+sin π(t+s)+cosh 2ψw sin π(s−t)

2π(sinh2 ψw+sin2(π(t+s)
2 ))(1−cos(π(t−s)))

]+1

−1

+

− 1
8cV∞

1√
(cosh2 ψw−cos2(πs))

=
+1∫
−1

dm(t)
dt

− sin(2πs)+sin π(t+s)+cosh 2ψw sin π(s−t)

2π(sinh2 ψw+sin2(π(t+s)
2 ))(1−cos(π(t−s)))

dt.

(G.13)
But it is obvious that m (−1) = m (+1)3. Using this result, equation (G.13)
becomes:

un = − 1

8cV∞
√

(cosh2 ψw−cos2(πs))

+1∫
−1

dm(t)
dt

− sin(2πs)+sin π(t+s)+cosh 2ψw sin π(s−t)

2π(sinh2 ψw+sin2(π(t+s)
2 ))(1−cos(π(t−s)))

dt.

(G.14)
Remembering the relation found in chapter 1:

ρV∞Γ (ϕd) = −ρm (ϕd) ⇒ m (ϕd) = −V∞Γ (ϕd) , (G.15)

and substituting into equation (G.14), expression (G.11)4 is obtained.

3 Therefore, the term [ · ]+1
−1, which appears in equation (G.13), can be written as

m (1)

(
− sin(2πs)+sin π(1+s)+cosh 2ψw sin π(s−1)

2π
(
sinh2 ψw+sin2

(
π(1+s)

2

))
(1−cos(π(1−s)))

− − sin(2πs)+sin π(−1+s)+cosh 2ψw sin π(s+1)

2π
(
sinh2 ψw+sin2

(
π(−1+s)

2

))
(1−cos(π(−1−s)))

)
= 0,

because the following identities are valid:

− sin (2πs) + sin π (1 + s) + cosh 2ψw sin π (s− 1) =

= − sin (2πs) + sin π (−1 + s) + cosh 2ψw sin π (s + 1) = −2 sin πs cos πs− 2 cosh2 ψw sinπs;

2π
(
sinh2 ψw + sin2

(
π(1+s)

2

))
(1− cos (π (1− s))) =

= 2π
(
sinh2 ψw + sin2

(
π(−1+s)

2

))
(1− cos (π (−1− s))) =

= 2π sinh2 ψw + 2π sinh2 ψw cos πs + 2π cos2 1
2πs + 2π cos2 1

2πs cos πs.

4Remember that, here, a different sign convention for un is used.
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Annular Wing with bw < aw. Some
Useful Derivations

H.1 Cartesian Distance

In order to write the small perturbation acceleration potential, the cartesian distance
between a generic point P (x,y,z) and a point1 Pd(xd,yd,zd) on the lifting line w,where
the generic doublet is positioned, is needed. The distance is:

D =
√

(x− xd)
2 + (y − yd)

2 + (z − zd)
2. (H.1)

The lifting line is contained in the y − z plane, thus xd = 0. Setting x = cX and
using the new coordinate system:

D = c

√(
X2 + (sinh ψ cos ϕ− sinh ψw cos ϕd)

2 + (cosh ψ sin ϕ− cosh ψw sin ϕd)
2
)
,

(H.2)
where the relations valid on the lifting line w have been used:

yd = c sinh ψw cos ϕd 0 ≤ ϕd ≤ 2π,
zd = c cosh ψw sin ϕd ψw > 0.

(H.3)

The cartesian distance can be written in another form:

D = c [∆ (X,ψ,ϕ,ψw,ϕd)]
1
2 , (H.4)

where

∆ = X2 + sinh2 ψ + sin2 ϕ + sinh2 ψw + sin2 ϕd +

− cosh (ψ + ψw) cos (ϕ− ϕd) + cosh (ψ − ψw) cos (ϕ + ϕd) . (H.5)

1The point Pd is characterized by ϕ = ϕd.

238



H – Annular Wing with bw < aw. Some Useful Derivations

H.2 Cosine Directions of the Normal to the Lifting

Line

The lifting line is studied considering a doublet distribution m. Each doublet has
axis which has inward direction to the ellipse and is perpendicular to the lifting line
(figure H.1). Consider a point where the generic doublet is positioned. The straight

Figure H.1. Positive direction of the doublet’s axis.

line perpendicular to the ellipse at that point has the equation:

− 2yd

cos2 ϕd

(y − yd) +
2zd

sin2 ϕd

(z − zd) = 0. (H.6)

From that relation, a vector perpendicular to the ellipse has the expression

V⊥el =
zd

sin2 ϕd

j +
yd

cos2 ϕd

k. (H.7)

Using equation (H.3):

V⊥el =
c cosh ψw sin ϕd

sin2 ϕd

j +
c sinh ψw cos ϕd

cos2 ϕd

k. (H.8)

Therefore, it is not difficult to understand that the vector

V⊥el =
cosh ψw

sin ϕd

j +
sinh ψw

cos ϕd

k, (H.9)
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is also perpendicular to the ellipse at the point characterized by y = yd, x = xd = 0,
z = zd and ϕ = ϕd. Normalizing that vector:

V⊥el =

√
sinh2 ψw + cos2 ϕd

|sin ϕd| |cos ϕd| ; (H.10)

V⊥el =
cosh ψw

sin ϕd

V⊥el
j +

sinh ψw

cos ϕd

V⊥el
k ⇒

V⊥el =
|sinϕd| |cosϕd|√
sinh2 ψw + cos2 ϕd

coshψw

sinϕd
j +

|sinϕd| |cosϕd|√
sinh2 ψw + cos2 ϕd

sinψw

cosϕd
k. (H.11)

From this equation, it can be deduced that vector nd perpendicular to the ellipse,
where the doublet is positioned, is:

nd = − cos ϕd cosh ψw√
sinh2 ψw + cos2 ϕd

j− sin ϕd sin ψw√
sinh2 ψw + cos2 ϕd

k. (H.12)

It is easy to verify that the direction of vector nd is in accordance with figure H.1.
Clearly, from the previous expression, it can be written that

ndx = 0,

ndy = − cos ϕd cosh ψw√
sinh2 ψw + cos2 ϕd

, (H.13)

ndz = − sin ϕd sinh ψw√
sinh2 ψw + cos2 ϕd

.
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Appendix I

Elliptical Annular Wing with
bw < aw. Weissinger’s Condition

I.1 Mathematical Derivation

Weissinger’s condition is:

− α (ϕ) =
1

V∞

(
1

h

∂φ (X,ψ,ϕ,ψw)

∂ψ

)

X=X0; ψ=ψw

, (I.1)

where X0 = l
2c

. In order to calculate the derivative of the velocity potential, the
following definition is used:

φ (X,ψ,ϕ,ψw) =
1

8πV∞

2π∫

0

m (ϕd) · f2 (ψ,ϕ,ψw) · f3 (X,ψ,ϕ,ψw) dϕd, (I.2)

where:

f2 = (sinh(ψ+ψw) cos(ϕ−ϕd)+sinh(ψ−ψw) cos(ϕ+ϕd)−sinh 2ψw)

sinh2 ψ+sin2 ϕ+sinh2 ψw+sin2 ϕd−cosh(ψ+ψw) cos(ϕ−ϕd)+cosh(ψ−ψw) cos(ϕ+ϕd)
= N

D
,

f3 = X√
X2+D

+ 1,

N = sinh (ψ + ψw) cos (ϕ− ϕd) + sinh (ψ − ψw) cos (ϕ + ϕd)− sinh 2ψw,

D = sinh2 ψ + sin2 ϕ + sinh2 ψw + sin2 ϕd − cosh (ψ + ψw) cos (ϕ− ϕd) +

+ cosh (ψ − ψw) cos (ϕ + ϕd) .

(I.3)

In the derivative of the small perturbation velocity potential, the following quantity
appears: [

∂

∂ψ
(f2 · f3)

]

ψ=ψw; X=X0

=

[
∂f2

∂ψ
f3 + f2

∂f3

∂ψ

]

ψ=ψw; X=X0

. (I.4)
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Now, the principal operations are shown:

[N ]ψ=ψw
= − sinh (2ψw) (1− cos (ϕ− ϕd)) ,

[D]ψ=ψw
= 2 (H5) (1− cos (ϕ− ϕd)) ,

[f2]ψ=ψw
= − sinh 2ψw

2(H5)
,

[f3]ψ=ψw,X=X0
= X0√

H6
+ 1,

[
∂N
∂ψ

]
ψ=ψw

= 2
(
cosh2 ψw cos (ϕ− ϕd)− sin ϕ sin ϕd

)
,

[
∂D
∂ψ

]
ψ=ψw

= sinh (2ψw) (1− cos (ϕ− ϕd)) = − [N ]ψ=ψw
,

[
∂f2

∂ψ

]
ψ=ψw

=
(cosh2 ψw cos(ϕ−ϕd)−sin ϕ sin ϕd)

(H5)(1−cos(ϕ−ϕd))
+ sinh2 ψw cosh2 ψw

(H5)2
,

[
∂f3

∂ψ

]
ψ=ψw,X=X0

= −X0 cosh ψw sinh ψw(1−cos(ϕ−ϕd))

(H6)
3
2

,

[
f2

∂f3

∂ψ

]
ψ=ψw,X=X0

= X0 cosh2 ψw sinh2 ψw(1−cos(ϕ−ϕd))

(H5)(H6)
3
2

,

[
∂f2

∂ψ
f3

]
ψ=ψw,X=X0

=
(

cosh2 ψw cos(ϕ−ϕd)−sin ϕ sin ϕd

(H5)(1−cos(ϕ−ϕd))
+ sinh2 ψw cosh2 ψw

(H5)2

)
·
(

X0√
H6

+ 1
)
,

H5 = sinh2 ψw + cos2 ϕ+ϕd

2
,

H6 = X2
0 + 2

(
sinh2 ψw + cos2 ϕ+ϕd

2

)
(1− cos (ϕ− ϕd)) .

(I.5)

Notice that the term
[

∂f2

∂ψ
f3

]
ψ=ψw,X=X0

contains the singular term X0√
H6

(when ϕ = ϕd,

it reaches infinity), Thus,
[

∂f2

∂ψ
f3

]
ψ=ψw,X=X0

is rewritten in the form

[
∂f2

∂ψ
f3

]

ψ=ψw,X=X0

=




[
∂f2

∂ψ

]S

f3




ψ=ψw,X=X0

+




[
∂f2

∂ψ

]R

f3




ψ=ψw,X=X0

, (I.6)

where the superscripts ”S” and ”R” indicate ”singular” and ”regular”, respectively.
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I.2 Treatment of the Singularity

The goal of this paragraph is to isolate the singularity from the term
([

∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

.

That term is:
([

∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

= cosh2 ψw cos(ϕ−ϕd)−sin ϕ sin ϕd

(H5)(1−cos(ϕ−ϕd))
·
(

X0√
H6

+ 1
)
. (I.7)

In a compact form:

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

=
(cosh2 ψw cos(ϕ−ϕd)−sin ϕ sin ϕd)

(H5)
· f3(X0,ϕ,ψw,ϕd)

1−cos(ϕ−ϕd)
. (I.8)

Using the following identity:

f3 (X0,ϕ,ψw,ϕd)

1− cos (ϕ− ϕd)
=

f3 (X0,ϕ,ψw,ϕd)− f3 (X0,ϕ,ψw,ϕ)

1− cos (ϕ− ϕd)
+

f3 (X0,ϕ,ψw,ϕ)

1− cos (ϕ− ϕd)
, (I.9)

where

f3 (X0,ϕ,ψw,ϕ) = 2, (I.10)

f3 (X0,ϕ,ψw,ϕd)− f3 (X0,ϕ,ψw,ϕ)

1− cos (ϕ− ϕd)
= fI , (I.11)

fI = −2(H5)

(X0+
√

H6)
√

H6
, (I.12)

thus,
f3 (X0,ϕ,ψw,ϕd)

1− cos (ϕ− ϕd)
= fI +

2

1− cos (ϕ− ϕd)
. (I.13)

Using expression (I.13), equation (I.8) becomes:

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

=
(cosh2 ψw cos(ϕ−ϕd)−sin ϕ sin ϕd)

(H5)
· fI+

+2
(cosh2 ψw cos(ϕ−ϕd)−sin ϕ sin ϕd)

(H5)(1−cos(ϕ−ϕd))
.

(I.14)

The second term which appears in equation (I.14) can be manipulated more.
Considering the identities

2
(cosh2 ψw cos(ϕ−ϕd)−sin ϕ sin ϕd)

(H5)(1−cos(ϕ−ϕd))
= 2 cosh2 ψw cos(ϕ−ϕd)−sin ϕ sin ϕd−(H5)

(H5)(1−cos(ϕ−ϕd))
+ 2

1−cos(ϕ−ϕd)
,

(I.15)

cosh2 ψw cos (ϕ− ϕd)− sin ϕ sin ϕd − (H5) = −(cosh(2ψw))(1−cos(ϕ−ϕd))
2

, (I.16)
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it can be deduced that

2
cosh2 ψw cos (ϕ− ϕd)− sin ϕ sin ϕd

(H5) (1− cos (ϕ− ϕd))
=
− (cosh (2ψw))

(H5)
+

2

1− cos (ϕ− ϕd)
. (I.17)

Finally, equation (I.14) is rewritten as:

([
∂f2

∂ψ

]S
f3

)

ψ=ψw,X=X0

= cosh2 ψw cos(ϕ−ϕd)−sin ϕ sin ϕd

(H5)
· fI − cosh(2ψw)

(H5)
+ 2

1−cos(ϕ−ϕd)
.

(I.18)
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Appendix J

Circular Annular Wing.
Analytical Solution of the
Euler-Lagrange Equation

The following system of equations has to be solved:





1
4RwV 2∞

=
+1∫
−1

mopt(s)
1−cos(π(t−s))

ds− λ sin (πt) = 0,

− π
2lV 2∞

+1∫
−1

mopt (t) sin (πt) dt = CL,

(J.1)

under the assumption of

mopt (t) = k sin (πt) k real number. (J.2)

Using the following identities:

sin a =
2 tan a

2

1+tan2 a
2
,

cos a =
1−tan2 a

2

1+tan2 a
2
,

(J.3)

it can be deduced:

sin (πt) =
2 tan πt

2

1+tan2 πt
2

= 2u
1+u2 ,

cos (πt) = 1−u2

1+u2 ,

sin (πs) =
2 tan πs

2

1+tan2 πs
2

= 2v
1+v2 ,

cos (πs) = 1−v2

1+v2 .

(J.4)
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J – Circular Annular Wing. Analytical Solution of the Euler-Lagrange Equation

where
u = tan πt

2
,

v = tan πs
2
.

(J.5)

Observing that

1− cos (π (t− s)) = 1− cos (πt) cos (πs)− sin (πt) sin (πs) , (J.6)

yields

1− cos (π (t− s)) = 1− 1− u2

1 + u2

1− v2

1 + v2
− 2u

1 + u2

2v

1 + v2
. (J.7)

Using the same method:

k sin (πs) = k
2v

1 + v2
, (J.8)

v = tan
πs

2
⇒ dv =

π

2

(
tan2 πs

2
+ 1

)
ds. (J.9)

Elaborating the previous expression:

dv =
π

2

(
v2 + 1

)
ds ⇒ ds =

2

π (v2 + 1)
dv. (J.10)

The integral expressed using the new variables becomes:

2k (1 + u2)

π
=

+∞∫

−∞

v

1 + v2

1

(v − u)2 dv. (J.11)

But1

∫ v
1+v2

1
(v−u)2

dv = ln
(1+v2)

u2

2(u4+2u2+1)

(1+v2)

1
2(u4+2u2+1)

− 2
u4+2u2+1

u arctan v+

+ ln |(v−u)|
1

u4+2u2+1

|(v−u)|
u2

u4+2u2+1

− u
(1+u2)(v−u)

.

(J.12)

Calculating the integral in the Hadamard finite-part sense:

=

+∞∫

−∞

v

1 + v2

1

(v − u)2 dv = − 2πu

u4 + 2u2 + 1
. (J.13)

Therefore:

2k (1 + u2)

π
=

+∞∫

−∞

v

1 + v2

1

(v − u)2 dv = − 2πu

u4 + 2u2 + 1

2k (1 + u2)

π
= −2k

2u

1 + u2
.

(J.14)

1For the analytical evaluation of the integral, the website [69] has been used.
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Remembering the definition of u:

− 2k
2u

1 + u2
= −2k sin (πt) . (J.15)

Thus, it has been demonstrated that, under the hypothesis of mopt (s) = k sin (πs),

=

+1∫

−1

mopt (s)

1− cos (π (t− s))
ds = −2k sin(πt). (J.16)

Using this result, the Euler-Lagrange equation becomes

−2k sin πt

4RwV 2∞
− λ sin (πt) = 0. (J.17)

But the condition of coefficient of lift assigned has to be satisfied. Hence,

− π

2lV 2∞

+1∫

−1

mopt (t) sin (πt) dt = CL, (J.18)

which now is:

− π

2lV 2∞

+1∫

−1

k sin2 (πt) dt = −1

2

π

lV 2∞
k = CL. (J.19)

Therefore, from the previous equation, it can be deduced that

k = −2lV 2
∞CL

π
. (J.20)

Substituting into the Euler-Lagrange equation:

22lV 2∞CL

π

4RwV 2∞
− λ = 0. (J.21)

Simplifying:

λ =
lCL

πRw

. (J.22)
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Appendix K

Elliptical Annular Wing with
bw > aw. Analytical Solution of the
Euler-Lagrange Equation

The following system of equations has to be solved:




1
4bwV 2∞

=
+1∫
−1

mopt (s) Y (t,s) ds− λ sin (πt) = 0,

− π
2lV 2∞

+1∫
−1

mopt (t) sin (πt) dt = CL,

(K.1)

where

Y (t,s) = sinh2 ψw cosh2 ψw

(sinh2 ψw+sin2(π(t+s)
2 ))

2 −
1
2

cosh(2ψw)

(sinh2 ψw+sin2(π(t+s)
2 ))

+ 1
(1−cos(π(t−s)))

. (K.2)

The candidate optimal doublet distribution is:

mopt (t) = k sin (πt) k real number. (K.3)

Substituting (K.3) into the first expression in equation (K.1):

1
4bwV 2∞

+1∫
−1

k sin(πs) sinh2 ψw cosh2 ψw

(sinh2 ψw+sin2(π(t+s)
2 ))

2 ds− 1
4bwV 2∞

+1∫
−1

1
2
k sin(πs) cosh(2ψw)

(sinh2 ψw+sin2(π(t+s)
2 ))

ds+

+ 1
4bwV 2∞

=
+1∫
−1

k sin(πs)
(1−cos(π(t−s)))

ds− λ sin (πt) = 0.

(K.4)

Expression (K.4) can be written in a compact form:

1

4bwV 2∞
IA − 1

4bwV 2∞
IB +

1

4bwV 2∞
IC − λ sin (πt) = 0, (K.5)
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where

IA =
+1∫
−1

k sin(πs) sinh2 ψw cosh2 ψw

(sinh2 ψw+sin2(π(t+s)
2 ))

2 ds = k sinh2 ψw cosh2 ψw

+1∫
−1

sin(πs)

(sinh2 ψw+sin2(π(t+s)
2 ))

2 ds,

IB =
+1∫
−1

1
2
k sin(πs) cosh(2ψw)

(sinh2 ψw+sin2(π(t+s)
2 ))

ds = k cosh(2ψw)
2

+1∫
−1

sin(πs)

(sinh2 ψw+sin2(π(t+s)
2 ))

ds,

IC =
+1∫
−1

k sin(πs)
(1−cos(π(t−s)))

ds = k
+1∫
−1

sin(πs)
(1−cos(π(t−s)))

ds.

(K.6)

K.1 Elaboration of IA

Using the identity

sin

(
π (t + s)

2

)
= sin

πs

2
cos

πt

2
+ sin

πt

2
cos

πs

2
, (K.7)

it is possible to write:

sin2

(
π (t + s)

2

)
= sin2 πt

2
cos2 πs

2
+ sin2 πs

2
cos2 πt

2
+

1

2
sin (πt) sin (πs) . (K.8)

Setting
u = tan πt

2
,

v = tan πs
2
,

(K.9)

the following can be written:

sin2 πt
2

=
tan2 πt

2

tan2 πt
2

+1
= u2

u2+1
,

cos2 πt
2

= 1
tan2 πt

2
+1

= 1
u2+1

,

sin2 πs
2

=
tan2 πs

2

tan2 πs
2

+1
= v2

v2+1
,

cos2 πs
2

= 1
tan2 πs

2
+1

= 1
v2+1

,

sin (πt) =
2 tan πt

2

tan2 πt
2

+1
= 2u

u2+1
,

sin (πs) =
2 tan πs

2

tan2 πs
2

+1
= 2v

v2+1
.

(K.10)

Substituting (K.10) into (K.8):

sin2
(

π(t+s)
2

)
= u2

u2+1
1

v2+1
+ v2

v2+1
1

u2+1
+ 1

2
2u

u2+1
2v

v2+1
= (v+u)2

(u2+1)(v2+1)
. (K.11)
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The differential is:

v = tan πs
2
⇒ dv = π

2

(
1 + tan2 πs

2

)
ds = π

2
(1 + v2) ds ⇒ ds = 2

π(1+v2)
dv. (K.12)

Thus,

IA = k sinh2 ψw cosh2 ψw

+∞∫

−∞

2v
v2+1(

sinh2 ψw + (v+u)2

(u2+1)(v2+1)

)2

2

π (1 + v2)
dv. (K.13)

With a few algebraic manipulations:

IA =
4k sinh2 ψw cosh2 ψw(u2+1)

2

π

+∞∫
−∞

v

((u2+1)(v2+1) sinh2 ψw+(v+u)2)
2 dv. (K.14)

The corresponding indefinite integral (sinh ψw = a, for brevity) is:

∫ v

((u2+1)(v2+1)a2+(v+u)2)
2 dv = −a2−u2−a2u2−uv

2a2(1+a2)(1+u2)2(a2+u2+a2u2+2uv+v2+a2v2+a2u2v2)
+

−
u arctan

(
u+v+a2v+a2u2v

a
√

1+a2(1+u2)

)

2a3(1+a2)
3
2 (1+u2)3

.

(K.15)
Observing that

limv→±∞ −a2−u2−a2u2−uv
2a2(1+a2)(1+u2)2(a2+u2+a2u2+2uv+v2+a2v2+a2u2v2)

= 0,

limv→±∞−
u arctan

(
u+v+a2v+a2u2v

a
√

1+a2(1+u2)

)

2a3(1+a2)
3
2 (1+u2)3

= ∓ πu

4a3(1+a2)
3
2 (1+u2)3

,

(K.16)

the integral in equation (K.14) becomes:

+∞∫

−∞

v
(
(u2 + 1) (v2 + 1) sinh2 ψw + (v + u)2

)2 dv = − πu

2a3 (1 + a2)
3
2 (1 + u2)3

. (K.17)

Returning to the original variables:

+∞∫

−∞

v
(
(u2 + 1) (v2 + 1) sinh2 ψw + (v + u)2

)2 dv = − πu

2 sinh3 ψw cos3 ψw (1 + u2)3 .

(K.18)
Therefore:

IA = −4k

π

πu

2 sinh ψw cos ψw (1 + u2)
. (K.19)
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But sin (πt) = 2u
u2+1

; hence,

IA = −2k
sin (πt)

sinh 2ψw

. (K.20)

K.2 Elaboration of IB

Using the same changing of variables seen in the previous section (elaboration of
IA), it is possible to write:

IB =
k cosh (2ψw)

2

+∞∫

−∞

2v
v2+1(

sinh2 ψw + (v+u)2

(u2+1)(v2+1)

) 2

π (1 + v2)
dv. (K.21)

Simplifying:

IB =
2k cosh (2ψw) (u2 + 1)

π

+∞∫

−∞

v
v2+1(

(u2 + 1) (v2 + 1) sinh2 ψw + (v + u)2
) dv. (K.22)

The corresponding indefinite integral is:

∫ v
v2+1

((u2+1)(v2+1) sinh2 ψw+(v+u)2)
dv =

= 2u
(u2+1)2

[
arctan v − cosh 2ψw

sinh 2ψw
arctan

(
2

u+v+v(1+u2) sinh2 ψw

sinh 2ψw(u2+1)

)]
+

+ ln
(

(1+v2)
((u2+1)(v2+1) sinh2 ψw+(v+u)2)

) u2−1

2(u2+1)2
.

(K.23)

Considering that

limv→±∞ 2u
(u2+1)2

[
arctan v − cosh 2ψw

sinh 2ψw
arctan

(
2

u+v+v sinh2 ψw(1+u2)
sinh 2ψw(u2+1)

)]
=

= ± uπ
(u2+1)2

(
1− cosh 2ψw

sinh 2ψw

)
,

limv→±∞ ln
(

(1+v2)
((u2+1)(v2+1) sinh2 ψw+(v+u)2)

) u2−1

2(u2+1)2
=

= ln
(

1
1+(u2+1) sinh2 ψw

) u2−1

2(u2+1)2 ,

(K.24)

it can be deduced that:

+∞∫
−∞

v
v2+1

((u2+1)(v2+1) sinh2 ψw+(v+u)2)
dv = 2uπ

(u2+1)2

(
1− cosh 2ψw

sinh 2ψw

)
. (K.25)
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K – Elliptical Annular Wing with bw > aw. Analytical Solution of the Euler-Lagrange Equation

Finally, remembering that sin (πt) = 2u
(u2+1)2

:

IB = 2k sin (πt) cosh (2ψw)

(
1− cosh 2ψw

sinh 2ψw

)
. (K.26)

K.3 Elaboration of IC

It has already been demonstrated that1:

=

1∫

−1

sin (πs)

(1− cos (π (t− s)))
ds = −2 sin (πt) . (K.27)

Thus, it can be concluded that

IC = −2k sin (πt) . (K.28)

K.4 Substitution of IA, IB, IC into the

Euler-Lagrange Equation

Using the expressions of IA, IB and IC obtained in previous sections, the Euler-
Lagrange Equation becomes:

− k
2bwV 2∞

sin πt
sinh 2ψw

− k sin πt cosh(2ψw)
2bwV 2∞

(
1− cosh 2ψw

sinh 2ψw

)
− k

2bwV 2∞
sin (πt)− λ sin (πt) = 0,

(K.29)
while the constraint is:

CL = − π
2lV 2∞

+1∫
−1

m (t) sin (πt) dt = − π
2lV 2∞

+1∫
−1

k sin2 (πt) dt = − π
2lV 2∞

k ⇒

⇒ k = −2lV 2∞
π

CL.

(K.30)

Substituting the last formula into (K.29):

λ =
lCL

πbw

(cosh 2ψw − sinh 2ψw + 1) . (K.31)

Remembering the relations:

cosh 2ψw = 2 cosh2 ψw − 1 = 2 b2w
b2w−a2

w
− 1 = b2w+a2

w

b2w−a2
w
,

sinh 2ψw = 2 cosh ψw sinh ψw = 2 bw√
b2w−a2

w

aw√
b2w−a2

w

= 2 awbw

b2w−a2
w
,

(K.32)

1See minimum induced drag of a circular annular wing in chapter 9.
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K – Elliptical Annular Wing with bw > aw. Analytical Solution of the Euler-Lagrange Equation

The Lagrange multiplier is obtained:

λ =
2lCL

π (bw + aw)
. (K.33)

Notice that, if bw → aw = Rw (circular annular wing), λ = lCL

πRw
, as has been found

for the circular annular wing.
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Appendix L

Elliptical Annular Wing with
bw < aw. Analytical Solution of the
Euler-Lagrange Equation

The following system of equations has to be solved:




1
4bwV 2∞

=
+1∫
−1

mopt (s) Y (t,s) ds− λ sin (πt) = 0,

− π
2lV 2∞

+1∫
−1

mopt (t) sin (πt) dt = CL,

(L.1)

where

Y (t,s) = sinh2 ψw cosh2 ψw

(sinh2 ψw+cos2(π(t+s)
2 ))

2 −
1
2

cosh(2ψw)

(sinh2 ψw+cos2(π(t+s)
2 ))

+ 1
1−cos(π(t−s))

. (L.2)

The candidate optimal doublet distribution is:

mopt (t) = k sin (πt) k real number. (L.3)

Substituting (L.3) into the first expression in equation (L.1):

1
4bwV 2∞

+1∫
−1

k sin(πs) sinh2 ψw cosh2 ψw

(sinh2 ψw+cos2(π(t+s)
2 ))

2 ds− 1
4bwV 2∞

+1∫
−1

1
2
k sin(πs) cosh(2ψw)

(sinh2 ψw+cos2(π(t+s)
2 ))

ds+

+ 1
4bwV 2∞

=
+1∫
−1

k sin(πs)
1−cos(π(t−s))

ds− λ sin (πt) = 0.

(L.4)

Expression (L.4) can be written in a compact form:

1

4bwV 2∞
IA − 1

4bwV 2∞
IB +

1

4bwV 2∞
IC − λ sin (πt) = 0, (L.5)
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L – Elliptical Annular Wing with bw < aw. Analytical Solution of the Euler-Lagrange Equation

where

IA =
+1∫
−1

k sin(πs) sinh2 ψw cosh2 ψw

(sinh2 ψw+cos2(π(t+s)
2 ))

2 ds = k sinh2 ψw cosh2 ψw

+1∫
−1

sin(πs)

(sinh2 ψw+cos2(π(t+s)
2 ))

2 ds,

IB =
+1∫
−1

1
2
k sin(πs) cosh(2ψw)

(sinh2 ψw+cos2(π(t+s)
2 ))

ds = k cosh(2ψw)
2

+1∫
−1

sin(πs)

(sinh2 ψw+cos2(π(t+s)
2 ))

ds,

IC =
+1∫
−1

k sin(πs)
1−cos(π(t−s))

ds = k
+1∫
−1

sin(πs)
1−cos(π(t−s))

ds.

(L.6)

L.1 Elaboration of IA

Using the identity

cos

(
π (t + s)

2

)
= cos

πs

2
cos

πt

2
− sin

πt

2
sin

πs

2
, (L.7)

it is possible to write:

cos2

(
π (t + s)

2

)
= cos2 πs

2
cos2 πt

2
+ sin2 πt

2
sin2 πs

2
− 1

2
sin (πs) sin (πt) . (L.8)

Setting
u = tan πt

2
,

v = tan πs
2
,

(L.9)

the following can be written:

sin2 πt
2

=
tan2 πt

2

tan2 πt
2

+1
= u2

u2+1
,

cos2 πt
2

= 1
tan2 πt

2
+1

= 1
u2+1

,

sin2 πs
2

=
tan2 πs

2

tan2 πs
2

+1
= v2

v2+1
,

cos2 πs
2

= 1
tan2 πs

2
+1

= 1
v2+1

,

sin (πt) =
2 tan πt

2

tan2 πt
2

+1
= 2u

u2+1
,

sin (πs) =
2 tan πs

2

tan2 πs
2

+1
= 2v

v2+1
.

(L.10)

Substituting (L.10) into (L.8):

cos2
(

π(t+s)
2

)
= 1

v2+1
1

u2+1
+ u2

u2+1
v2

v2+1
− 1

2
2u

u2+1
2v

v2+1
= (uv−1)2

(v2+1)(u2+1)
. (L.11)
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L – Elliptical Annular Wing with bw < aw. Analytical Solution of the Euler-Lagrange Equation

The differential is:

v = tan πs
2
⇒ dv = π

2

(
1 + tan2 πs

2

)
ds = π

2
(1 + v2) ds ⇒ ds = 2

π(1+v2)
dv. (L.12)

Thus,

IA = k sinh2 ψw cosh2 ψw

+∞∫

−∞

2v
v2+1(

sinh2 ψw + (uv−1)2

(v2+1)(u2+1)

)2

2

π (1 + v2)
dv. (L.13)

With a few algebraic manipulations:

IA =
4k sinh2 ψw cosh2 ψw(u2+1)

2

π

+∞∫
−∞

v

((u2+1)(v2+1) sinh2 ψw+(uv−1)2)
2 dv. (L.14)

Using sinh ψw = a for brevity , yields:
∫ v

((u2+1)(v2+1)a2+(uv−1)2)
2 dv =

= −1−a2−a2u2+uv
2a2(1+a2)(1+u2)2(1+a2+a2u2−2uv+a2v2+u2v2+a2u2v2)

+
u arctan

(
−u+a2v+u2v+a2u2v

a
√

1+a2(1+u2)

)

2a3(1+a2)
3
2 (1+u2)3

.

(L.15)
Observing that

limv→±∞ −1−a2−a2u2+uv
2a2(1+a2)(1+u2)2(1+a2+a2u2−2uv+a2v2+u2v2+a2u2v2)

= 0,

limv→±∞
u arctan

(
−u+a2v+u2v+a2u2v

a
√

1+a2(1+u2)

)

2a3(1+a2)
3
2 (1+u2)3

= ± uπ

4a3(1+a2)
3
2 (1+u2)3

,

(L.16)

the integral in (L.14) becomes

+∞∫

−∞

v
(
(u2 + 1) (v2 + 1) sinh2 ψw + (uv − 1)2

)2 dv =
πu

2a3 (1 + a2)
3
2 (1 + u2)3

. (L.17)

Returning to the original variables:

+∞∫

−∞

v
(
(u2 + 1) (v2 + 1) sinh2 ψw + (uv − 1)2

)2 dv =
πu

2 sinh3 ψw cos3 ψw (1 + u2)3 .

(L.18)
Therefore:

IA =
4k

π

πu

2 sinh ψw cos ψw (1 + u2)
. (L.19)

But sin (πt) = 2u
u2+1

; hence,

IA = 2k
sin (πt)

sinh 2ψw

. (L.20)
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L – Elliptical Annular Wing with bw < aw. Analytical Solution of the Euler-Lagrange Equation

L.2 Elaboration of IB

Operating similar positions used for the calculation of IA:

IB =
k cosh (2ψw)

2

+∞∫

−∞

2v
v2+1(

sinh2 ψw + (uv−1)2

(v2+1)(u2+1)

) 2

π (1 + v2)
dv, (L.21)

IB =
2k cosh (2ψw) (u2 + 1)

π

+∞∫

−∞

v
v2+1(

(u2 + 1) (v2 + 1) sinh2 ψw + (uv − 1)2
) dv. (L.22)

But

∫ v
v2+1

((u2+1)(v2+1) sinh2 ψw+(uv−1)2)
dv =

= 2u
(u2+1)2

[
− arctan v + cosh 2ψw

sinh 2ψw
arctan

(−u+v sinh2 ψw+u2v+u2v sinh2 ψw

sinh ψw cosh ψw(u2+1)

)]
+

+ ln
∣∣∣∣
(1+sinh2 ψw+u2 sinh2 ψw−2uv+v2 sinh2 ψw+u2v2+u2v2 sinh2 ψw)

(1+v2)

∣∣∣∣
(u2−1)

2(1+u2)2
.

(L.23)

Considering

limv→±∞ 2u
(u2+1)2

[
− arctan v + cosh 2ψw

sinh 2ψw
arctan

(−u+v sinh2 ψw+u2v+u2v sinh2 ψw

sinh ψw cosh ψw(u2+1)

)]
=

= ± uπ
(u2+1)2

(
−1 + cosh 2ψw

sinh 2ψw

)
,

limv→±∞ ln
∣∣∣∣
(1+sinh2 ψw+u2 sinh2 ψw−2uv+v2 sinh2 ψw+u2v2+u2v2 sinh2 ψw)

(1+v2)

∣∣∣∣
(u2−1)

2(1+u2)2
=

= ln
(
(1 + u2) sinh2 ψw + u2

) (u2−1)
2(1+u2)2 ,

(L.24)
it can be deduced that

+∞∫
−∞

v
v2+1

((u2+1)(v2+1) sinh2 ψw+(uv−1)2)
dv = 2uπ

(u2+1)2

(
−1 + cosh 2ψw

sinh 2ψw

)
. (L.25)

Finally, remembering that sin (πt) = 2u
(u2+1)2

:

IB = −2k sin (πt) cosh (2ψw)

(
1− cosh 2ψw

sinh 2ψw

)
. (L.26)
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L – Elliptical Annular Wing with bw < aw. Analytical Solution of the Euler-Lagrange Equation

L.3 Elaboration of IC

It has already been demonstrated that (see minimum induced drag of a circular
annular wing ):

=

1∫

−1

sin (πs)

(1− cos (π (t− s)))
ds = −2 sin (πt) . (L.27)

It can be concluded that
IC = −2k sin (πt) . (L.28)

L.4 Substitution of IA, IB, IC into the Euler-

Lagrange Equation

The Euler-Lagrange Equation is:

k
2bwV 2∞

sin πt
sinh 2ψw

+ k sin πt cosh(2ψw)
2bwV 2∞

(
1− cosh 2ψw

sinh 2ψw

)
− k

2bwV 2∞
sin (πt)− λ sin (πt) = 0,

(L.29)
while the constraint is:

CL = − π
2lV 2∞

+1∫
−1

m (t) sin (πt) dt = − π
2lV 2∞

+1∫
−1

k sin2 (πt) dt = − π
2lV 2∞

k ⇒ k = −2lV 2∞
π

CL.

(L.30)
Substituting the last formula into (L.29):

λ = − lCL

πbw

(cosh 2ψw − sinh 2ψw − 1) . (L.31)

Remembering the relations:

cosh 2ψw = 2 cosh2 ψw − 1 = 2 a2
w

a2
w−b2w

− 1 = b2w+a2
w

a2
w−b2w

,

sinh 2ψw = 2 cosh ψw sinh ψw = 2 aw√
a2

w−b2w

bw√
a2

w−b2w
= 2 awbw

a2
w−b2w

,
(L.32)

the following result is obtained:

λ =
2lCL

π (bw + aw)
. (L.33)

Notice that, if bw → aw = Rw (circular annular wing), λ = lCL

πRw
, as has been found

for the circular annular wing.
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Appendix M

Elliptical Annular Wing with
bw > aw. Integrals I ′A, I ′B for a
Constant Doublet Distribution

The goal of this appendix is to find the following integrals:

I ′A = sinh2 ψw cosh2 ψw

+1∫
−1

1

(sinh2 ψw+sin2(π(t+s)
2 ))

2 ds,

I ′B = 1
2
cosh (2ψw)

+1∫
−1

1

(sinh2 ψw+sin2(π(t+s)
2 ))

ds.

(M.1)

M.1 Elaboration of I ′A
With the transformation

u = tan πt
2
,

v = tan πs
2
,

(M.2)

integral I ′A becomes:

I ′A = (u2 + 1)
2 2

π
sinh2 ψw cosh2 ψw

+∞∫
−∞

(v2+1)
((u2+1)(v2+1) sinh2 ψw+(v+u)2)

2 dv. (M.3)

Setting a = sinh2 ψw, the corresponding indefinite integral is:

∫ (v2+1)
((u2+1)(v2+1)a2+(v+u)2)

2 dv = u+2a2u+v+a2v−a2u2v
2a2(1+a2)(1+u2)(1+a2+a2u2)(a2+u2+a2u2+2uv+v2+a2v2+a2u2v2)

+

+
(1+2a2) arctan

[
u+v+a2v+a2u2v

a
√

1+a2(1+u2)

]

2a3(1+a2)
3
2 (1+u2)2

.

(M.4)
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M – Elliptical Annular Wing with bw > aw. Integrals I ′A, I ′B for a Constant Doublet Distribution

Observing that

limv→±∞ u+2a2u+v+a2v−a2u2v
2a2(1+a2)(1+u2)(1+a2+a2u2)(a2+u2+a2u2+2uv+v2+a2v2+a2u2v2)

= 0,

limv→±∞
(1+2a2) arctan

[
u+v+a2v+a2u2v

a
√

1+a2(1+u2)

]

2a3(1+a2)
3
2 (1+u2)2

=
(1+2a2)

2a3(1+a2)
3
2 (1+u2)2

(
±π

2

)
,

(M.5)

it can be deduced that

+∞∫
−∞

(v2+1)
((u2+1)(v2+1) sinh2 ψw+(v+u)2)

2 dv =
(1+2 sinh2 ψw)π

2 sinh3 ψw(1+sinh2 ψw)
3
2 (1+u2)2

. (M.6)

Therefore, the integral I ′A is:

I ′A =
cosh 2ψw

sinh ψw cosh ψw

. (M.7)

M.2 Elaboration of I ′B
Using the transformation adopted for I ′A, I ′B can be written as

I ′B =
2

π

(u2 + 1) cosh (2ψw)

2

+∞∫

−∞

1(
(u2 + 1) (v2 + 1) sinh2 ψw + (v + u)2

) dv. (M.8)

The corresponding indefinite integral is:

∫ 1(
(u2 + 1) (v2 + 1) a2 + (v + u)2

) dv =
arctan

[
u+v+a2v+a2u2v
a
√

1+a2(1+u2)

]

a
√

1 + a2 (1 + u2)
. (M.9)

Thus,

+∞∫

−∞

1(
(u2 + 1) (v2 + 1) a2 + (v + u)2

) dv =
π

a
√

1 + a2 (1 + u2)
. (M.10)

Finally, integral I ′B can be written as

I ′B = 2
π

(u2+1) cosh(2ψw)

2
π

a
√

1+a2(1+u2)
= cosh(2ψw)

a
√

1+a2 = cosh(2ψw)
sinh ψw cosh ψw

. (M.11)
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Appendix N

Details About the Nonlinear
Matrices

This appendix expressly shows one of the terms of the Knl nl matrix. That matrix
can be written as

Knl nl = K1
nl nl + K2

nl nl + K3
nl nl + K4

nl nl + K5
nl nl + K6

nl nl + K7
nl nl + K8

nl nl + K9
nl nl.

(N.1)
The term K9

nl nl is:

K9
nl nl =

A66

2




0u0u T 0u0v T 0u0w T

0v0u T 0v0v T 0v0w T

0w0u T 0w0v T
∫

x,y

[
F w

,yF
w T
,x + F w

,xF w T
,y

]
qwqT

w

[
F w

,xF w T
,y + F w

,yF
w T
,x

]
d xd y




.

(N.2)
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Appendix O

Transformation of the Integrals to
Perform their Analytical
Computation

The integrals that appear in the nonlinear stiffness matrices have to be transformed
in order to perform the analytical calculation. This operation is required because
the table of integrals calculated once is preferred. To illustrate the method, one of
the integrals in the first term K1

nl nl is analyzed:
∫

x,y

F w
,xF

w T
,x qwqT

wF w
,xF

w T
,x dx dy. (O.1)

It is easy to see that the terms
F w T

,x qw,

qT
wF w

,x ,
(O.2)

are scalar quantities. For this reason, they can be written as:

F w T
,x qw = qT

wF w
,x ,

qTwF w
,x = F w T

,x qw.
(O.3)

By using the previous expressions, the integrals become:
∫

x,y
F w

,xF
w T
,x qwqT

wF w
,xF

w T
,x dx dy =

∫
x,y

F w
,x

[
F w T

,x qw

] [
qT

wF w
,x

]
F w T

,x dx dy =

∫
x,y

[
F w T

,x qw

]
F w

,xF
w T
,x

[
qT

wF w
,x

]
dx dy =

∫
x,y

[
qT

wF w
,x

]
F w

,xF
w T
,x

[
F w T

,x qw

]
dx dy =

∫
x,y

[
qw kwFw

,x kw

]
Fw

,x iw
Fw

,x jw

[
Fw

,x lw
qw lw

]
dx dy =

∫
x,y

qw kwFw
,x kw

Fw
,x iw

Fw
,x jw

Fw
,x lw

qw lwdx dy =

qw kwqw lw

∫
x,y

Fw
,x kw

Fw
,x iw

Fw
,x jw

Fw
,x lw

dx dy kw,lw,iw,jw = 1,...,Nw.

(O.4)
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O – Transformation of the Integrals to Perform their Analytical Computation

This expression is useful because the integrals contain only Ritz functions, and,
because the polynomials xsyr were used, it is possible to use the analytical
integration, as seen in chapter 11.
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